TWM347533U - Plano-Fresnel LED lens for angular distribution patterns and LED assembly thereof - Google Patents

Plano-Fresnel LED lens for angular distribution patterns and LED assembly thereof Download PDF

Info

Publication number
TWM347533U
TWM347533U TW97216374U TW97216374U TWM347533U TW M347533 U TWM347533 U TW M347533U TW 97216374 U TW97216374 U TW 97216374U TW 97216374 U TW97216374 U TW 97216374U TW M347533 U TWM347533 U TW M347533U
Authority
TW
Taiwan
Prior art keywords
light
optical lens
optical
fresnel
emitting diode
Prior art date
Application number
TW97216374U
Other languages
Chinese (zh)
Inventor
Yi-Min Chen
san-wei Xu
Original Assignee
E Pin Optical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Pin Optical Industry Co Ltd filed Critical E Pin Optical Industry Co Ltd
Priority to TW97216374U priority Critical patent/TWM347533U/en
Publication of TWM347533U publication Critical patent/TWM347533U/en

Links

Landscapes

  • Led Device Packages (AREA)
  • Lenses (AREA)

Description

M347533 (radius on optical axis) dO 中心軸上 LED 晶片厚度(LED die thickness on optical axis) dl中心轴上LED晶片表面至光學鏡片之光源侧光學面之 距離(thickness from die surface to R1 on optical axis) d2 中心軸光學鏡片厚度(lens thickness on optical axis); h 第一環半徑(first zone radius) rn 最末環半徑(last zone radius) rt 環間距(zone pitch) _ hd 環深度(zone height)。 八、新型說明: 【新型所屬之技術領域】 本創作係有關一種平面發光二極體光學鏡片及其所構 成的發光二極體組件,尤指一種可產生光強度^peak intensity)為橢圓照角光型(Elliptie angular此她此⑽pattem) 之菲涅爾光學鏡片,供應用於藉LED發光源以產生光型的 • 發光二極體組件,而可應用於LED照明、手機或相機的閃 光燈。 【先前技術】 發光二極體(light emitting diode,簡稱LED)具有低電 壓、低耗電、壽命長的優點,已大量應用於顯示裝置 (indicate^、照明裝置(iUuminat〇r)等領域。由於㈣更具有 光顏色單純、小型化、可平面封裝的特點,已使用在手機 相機的閃光燈上。㈣由於LED晶片發出的光線具有點光 源^亮度不均勻的躲,對於光_聚集已有研究學者進 行夕員研九,如縮小晶片、提高發光效率外,使用光學鏡 3 M347533 片也是重要的技術開發方向。 在LED光學鏡片的設計上,可分為一次光學鏡片 (primary optical lens)及二次光學鏡片(secondary optical lens); 一次光學鏡片為在LED晶片上直接封裝的透鏡,一般以聚 集(concentrate)光線為主;二次光學鏡片為使用在單顆或數 顆LED陣列(Array),以分散光束為主。在習知的一次光學 鏡片設計上,如ES2157829係使用對稱的非球面透鏡;曰 本專利JP3032069、JP2002-111068、JP2005-203499,美國專 • 利US2006/187653、中國專利CN101013193等係使用球面透 鏡;JP2002-221658係對Bulk型LED使用球面透鏡等。對於 高階的運用上,一次光學鏡片除要能聚集光線外,更能在 均勻的光強度(peak intensity)產生特定的光型(distribution pattern),例如大角度、小角度、圓形、橢圓形等特殊光 型,以搭配LED陣列使用,以產生最佳的光學效果。一次 光學鏡片的運用如圖ΙΑ、1B所示,在LED晶片21上覆 有一透鏡23 ’當LED晶片21發出光線,經由透鏡23聚集後 • 發出預定的光型光線,或在一次光學鏡片上,再加上一層 二次光學鏡片,以求均勻化之效果。該一次光學鏡片有各 種不同的設計’其中一次光學鏡片採用菲埋爾(Fresnel)式 之光學面,在習知技術上,如德國專利WO/2003/083943 ; 曰本專利JP2005_049367等;美國專利US6,726,859、公開號 US2007/0275344、US2008/0158854 ;歐洲專利 EP1091167 ;及台灣專利TW200711186等;然而,上述之 習知技術主要係以菲涅爾式鏡片覆蓋於數個led上或供為 投射裝置(projector)用之二次光學鏡片(secondarylens)。但隨 4 M347533M347533 (radius on optical axis) dO LED die thickness on optical axis dl center axis on the surface of the LED chip to the optical lens light source side of the optical surface (the thickness of die surface to R1 on optical axis) D2 lens thickness on optical axis; h first zone radius rn last zone radius rt ring pitch _ hd zone height. Eight, new description: [New technology field] This creation is related to a planar light-emitting diode optical lens and its light-emitting diode assembly, especially one that can produce light intensity ^peak intensity) The light-type (Elliptie angular) Fresnel optical lens, which is used to produce a light-emitting diode assembly by means of an LED illumination source, can be applied to LED lighting, mobile phones or camera flashes. [Prior Art] A light emitting diode (LED) has the advantages of low voltage, low power consumption, and long life, and has been widely used in display devices (indicate^, lighting devices (iUuminat〇r), etc. (4) It has the characteristics of light color, simpleness, miniaturization and flat packaging, which has been used in the flash of mobile phone camera. (4) Because the light emitted by the LED chip has a point light source, the brightness is unevenly hidden, and there is a researcher on the light_aggregation. For the purpose of reducing the wafer and improving the luminous efficiency, the use of optical mirror 3 M347533 is also an important technology development direction. In the design of LED optical lens, it can be divided into primary optical lens and secondary Secondary optical lens; a primary optical lens is a lens directly packaged on an LED wafer, generally concentrated in concentrated light; a secondary optical lens is used in a single or several LED arrays (Array) The scattered light beam is dominant. In the conventional optical lens design, for example, the ES2157829 uses a symmetric aspherical lens; the patent JP30 32069, JP2002-111068, JP2005-203499, US special US2006/187653, Chinese patent CN101013193, etc. use spherical lens; JP2002-221658 is a spherical lens for Bulk type LED, etc. For high-order applications, one optical lens except In order to gather light, it is possible to generate a specific distribution pattern at a uniform peak intensity, such as a large angle, a small angle, a circle, an ellipse, etc., in combination with an LED array. In order to produce the best optical effect, the use of the primary optical lens is as shown in FIG. 1B, and the LED chip 21 is covered with a lens 23'. When the LED chip 21 emits light, it is collected via the lens 23, and emits a predetermined light beam. Or on a single optical lens, plus a layer of secondary optical lens for uniformity. The primary optical lens has a variety of different designs. One of the optical lenses uses a Fresnel-type optical surface. In the prior art, for example, the German patent WO/2003/083943; the patent JP2005_049367, etc.; the US patent US 6,726,859, the publication number US2007/0275344, US 2008/0158854; European Patent EP1091167; and Taiwan Patent TW200711186, etc.; however, the above-mentioned prior art is mainly a Fresnel lens covering a plurality of LEDs or secondary optical lenses for use as a projector ( Secondarylens). But with 4 M347533

LED發光效能快速發展,單顆LED的運用日漸重要。LED 陣列或多顆LED組成的光源,可透由彼此間交又光線藉由 透鏡予以補償而成為均勻的光線;但單顆T ^ 設計上,遠較LE轉列◎顆LED組柄域為:,必 須考慮-次光學鏡片(primarylens)的聚光致率與光強度的 均勻化;如曰本專利JP2〇〇5_257953、美國專利us 2006/0027828係使用單面或兩面的菲涅爾鏡片放置於 發光體上方,以產生均勻的光線,如圖. 、113 ,冉如 •台灣專利耶_85利用拋物碗形侧面與菲_透鏡以減 少光束發散並構成光束均勻的光型;又如韓國專利 1020070096368與台灣專利1261654將菲涅爾式鏡片製成led 一次光學鏡片,但其光型以圓形照角為主,對於具有實際 應用的橢圓形照角光型的單顆LED組件’尚難以擴展運"" 用。 、 隨著科技的進步,電子產品不斷地朝向輕薄短小以及 多功能的方向發展,而電子產品中如··數位相機(Digital 籲 StlllCamera)、電腦相機(PCcamera)、網路相機 * camera)、行動電話(手機)等已具備鏡頭之外,甚至個人 數位輔助器(PDA)等装置也有加上鏡頭的需求;因此用於 這類產品的LED閃光燈或照明用的LED燈具,常以單顆或 多顆LED組件組成陣列;而為了攜帶方便及符合人性化的 需求’ LED閃光燈或照明用的LED燈具不僅需要符合的光 通量’以不同光型LED組件互相搭配,同時也需要有較小 的體積與較低的成本。菲涅爾透鏡在透鏡表面設有一組不 規則的菲涅爾環(Fresnel zone plate),其環間距由内而外或 5 M347533 大(環間距_改變),由於菲淫爾透 鏡除了具有導光純集光線的能力,麵具輕、薄、可塑 化及低成本的特性,㈣合照日⑽祕中;但對於多 點發光的照明使用,則要考慮照度與光強度的均勾 度。ί 技:上’常採用一定比例的環間距(zone tch)與壞深度(zone height)或漸變的環間距與環深度,LED lighting performance is developing rapidly, and the use of single LEDs is becoming increasingly important. A light source composed of an LED array or a plurality of LEDs can be made to pass through each other and the light is compensated by the lens to become uniform light; however, in a single T^ design, the LED group of the LED group is farther than the LE: Uniformization of the concentrating rate and light intensity of the primary rimarylens must be considered; for example, JP 2 〇〇 5_257953, US patent US 2006/0027828 is placed on a single-sided or two-sided Fresnel lens. Above the illuminant, to produce uniform light, as shown in Fig. 113, such as the Taiwan patent yeah _85 using the parabolic bowl side and phenanthrene lens to reduce the beam divergence and form a uniform light pattern; and such as Korean Patent 1020070096368 With the patent of Taiwan 1261654, the Fresnel lens is made into a led optical lens, but its light type is mainly circular, and it is difficult to expand the single LED component of the elliptical illumination type with practical application. "" Use. With the advancement of technology, electronic products are constantly moving towards light, short, and versatile, and electronic products such as digital cameras (Digital calls for Stllll Camera), computer cameras (PCcamera), network cameras * camera), actions In addition to the lens (mobile phone) and other devices, even the personal digital assistant (PDA) and other devices have the need for lens; therefore, LED flashlights for lighting or lighting for such products are often single or multiple LED components form an array; and for the convenience of carrying and ergonomic requirements 'LED flashlights or lighting LED lamps not only need to meet the luminous flux' to match different light-type LED components, but also need to have a smaller volume and Low cost. The Fresnel lens is provided with a set of irregular Fresnel zone plates on the surface of the lens, the ring spacing is from the inside to the outside or 5 M347533 is large (the ring spacing _ changes), because the Philippine lens has pure light guide The ability to collect light, the light, thin, plasticized and low-cost features of the mask, (4) the day of the photo (10) secret; but for the use of multi-point illumination, the illuminance and light intensity should be considered. ί Technique: The upper part often uses a certain ratio of zone tch and zone height or gradient ring spacing and ring depth.

f其2顆,構成的照明系統則以漸變的環間距方法, 較可符合照度與光強度均勻的實用要求;但對於單顆之 ㈣-次光學則,則要與光學鏡片之光學特性相互搭 I菲_透_具有㈣的外型表面,且製造成本較 兩’但卻有良好的域效率及均勻化的效果,尤以單顆 使用更受注意。為使單顆led發出的光線 創作即在此迫切需求下,利用菲埋爾透鏡 m光:鏡片以產生特定的橢圓光型並藉以形成的 LEDf件,在本創作之適t構成下,對表自發光的 片所發出的光線可加以聚集並產生均勻光強度(peak intensity)且橢圓形的光型。 【新型内容】 本創作主要目的乃在於提供一種平面菲淫爾發光二極 體光學鏡片及其所構成的發光三極體組件,該LED組件係 由-LED晶片(LEDdi相發出光線、—菲涅爾光學鏡片以 聚集光線並以均勻光強度形成橢圓形光型、及封膠層 ㈣1㈣以填塞於菲埋爾光學鏡片與LED晶片之間所 構成,其中,菲淫爾光學鏡片可為一平凹⑼·c〇_e)具 錐度或無錐度之光學材料所形成的鏡片,其凹面為向光源 6 M347533 的光源侧光學面且可為球面或非球面,其平面為向像侧的 像侧光學面且具有菲涅爾式光學面,又該菲涅爾光學面之 聚光曲面可為非球面或球面,其環面為垂直環齒(draft with vertical shape)且可為等環深度(equai z〇ne height)或等 環間距(equal zone pitch),並可滿足以下條件: ⑴ ⑵ ⑶ 0.7 <^<2.2 rn 0.1 Wl)>1.25 J s \\ π ) \ π ) 其中: Λ tan~ tan' —^_ [dO + dl^cn^Lx,D 、 ^dO + dl + dl^Ly j (4)⑶⑹f, the two, the lighting system is a gradual ring spacing method, which can meet the practical requirements of uniform illumination and light intensity; but for a single (four)-secondary optics, it must be combined with the optical characteristics of the optical lens. I Philippine _ _ has (4) the appearance of the surface, and the manufacturing cost is better than two 'but has good domain efficiency and homogenization effect, especially single use is more noticed. In order to make the light generated by a single LED, it is urgent to use this, and use the Philippine lens m light: the lens to produce a specific elliptical light type and form the LEDf piece, in the composition of the creation, the table The light emitted by the self-illuminating sheet can be concentrated and produce a uniform peak intensity and an elliptical light pattern. [New content] The main purpose of this creation is to provide a flat-panel luminescent LED lens and a light-emitting triode assembly thereof. The LED component is made of -LED wafer (LEDdi emits light, - Frege The optical lens is formed by collecting light and forming an elliptical light pattern with uniform light intensity, and a sealing layer (4) 1 (4) for filling between the Philippine optical lens and the LED wafer, wherein the Philippine optical lens can be a flat concave (9) · c〇_e) A lens formed of a tapered or non-tapered optical material having a concave surface that is a light source side optical surface of the light source 6 M347533 and which may be a spherical or aspherical surface, the plane of which is an image side optical surface toward the image side And having a Fresnel-type optical surface, and the concentrated surface of the Fresnel optical surface may be an aspherical surface or a spherical surface, and the toroidal surface is a draft with a vertical shape and may have an equal ring depth (equai z〇) Ne height) or equal zone pitch, and can satisfy the following conditions: (1) (2) (3) 0.7 <^<2.2 rn 0.1 Wl)>1.25 J s \\ π ) \ π ) where: Λ tan~ Tan' —^_ [dO + dl^cn^Lx,D , ^dO + dl + Dl^Ly j (4)(3)(6)

其中’ fs為本光學鏡片之有效焦距(effectivefocal length)之長度,rn為菲涅爾光學面R2之最末環(Last Zone)半徑,d2為中心轴光學鏡片厚度,Nd2為光學鏡片 的折射率,2九為經由光學鏡片射出光線在X方向最高光 強度(intensity) —半(/1/2 )處之角度(度,deg·),2念為 經由光學鏡片射出光線在Y方向最高光強度一半(/1/2 ) 處之角度(度,deg·),2Lx為LED晶片在X方向之長度, 2Ly為LED晶片在Y方向之長度,fg為本光學鏡片之相當 焦距(relative focal length)之長度,&為光源侧光學面之曲 7 M347533 率半徑,rf為像侧菲涅爾光學面之聚光曲面之曲率半徑 (radius of ftesnel convex surface ),d〇 為 LED 晶片厚度,山為 中心軸之封膠層厚度,D為光學鏡片在像侧光學面之半 徑0 更進一步,為因應不同光型角度與聚光特性,該 菲〉里爾光學面之聚光曲面之曲率半徑RF可設為球面或非 球面。Where 'fs is the length of the effective focal length of the optical lens, rn is the radius of the Last Zone of the Fresnel optical surface R2, d2 is the thickness of the central axis optical lens, and Nd2 is the refractive index of the optical lens , 2 9 is the angle of the highest light intensity (intensity) in the X direction through the optical lens - half (/1/2) (degree, deg ·), 2 is the highest light intensity in the Y direction through the optical lens Half (/1/2) angle (degree, deg·), 2Lx is the length of the LED chip in the X direction, 2Ly is the length of the LED wafer in the Y direction, and fg is the relative focal length of the optical lens (relative focal length) The length, & is the radius of the light side of the optical surface 7 M347533 radius, rf is the radius of curvature of the image side of the Fresnel optical surface (radius of ftesnel convex surface), d〇 is the thickness of the LED wafer, the mountain is The thickness of the sealant layer of the central axis, D is the radius of the optical lens on the image side of the optical surface. Further, the radius of curvature of the condensed surface of the Philippine Lille optical surface can be adjusted according to different light angles and condensing characteristics. Set to spherical or aspheric

為簡化製造,菲涅爾光學鏡片可更換為一平面 =與p、no)之光學材料所製成的鏡片’其向像侧的像侧侧 光學:,菲_式光學面,並可滿足式(1)〜式⑶條件。 為增加LED組件之效率,菲涅爾光學鏡片可更換為一 之光學材料所製成的鏡片’其向像侧的像側光學 面為菲》里爾古 β、九學面,並可滿足式⑴〜式(3)條件。 本創作另_ μα福々, 目的’為使用選擇方便’光學鏡片可為光 學玻t或光學塑膠所製成。 係包含如本創目的在於提供一種發光二極體組件’其 鏡片及一發^乍所述之平凹或雙平菲淫爾發光二極體光學 具有橢圓^型〜極體晶片’其特徵在於此發光二極體組件 的要求,並滿、其光通量比值η大於85〇/〇( ^以以850〆0 ) 〜兩足以下條件: Ε '1/2 SO·?友 其中 ⑺ ⑻ 8 M347533 其中,rn為菲涅爾光學面R2之最末環(LastZ〇ne)半徑, 2九為經由光學鏡片射出光線在X方向最高光強度 (intensity)—半(/1/2 )處之角度(度deg.),2 &amp;為經由光 學鏡片射出光線在γ方向最高光強度一半(/ι/2 )處之角 度(度deg·),rn為菲涅爾光學面R2之最末環(Lastz〇ne) 半徑,α為LED晶片發出光線的光通量,β為像侧相對無 限遠處(100倍fs )不考慮衰減因素之光線的光通量,η 為光通量比值;7 = ,,(1為1^0晶片發出之照度 (Incidance) ,Ew為菲涅爾光學鏡片發出之最高光強度一 半處之照度。 藉此,本創作之平面菲涅爾發光二極體光學鏡片及其 所構成的發光二極體組件可具有橢圓形光型,且符合光通 量比值大於85%的要求,並且該光學鏡片具有厚度薄的特 性,可用於單顆LED或陣列LED,提供予照明或手機、相 機之閃光燈使用。 【實施方式】 為使本創作更加明確詳實,茲列舉較佳實施例並配合 下列圖式,將本創作之結構及技術特徵詳述如後: 參照圖6所示,其係本創作之平面菲涅爾發光二極 體光學鏡片及其所構成的發光二極體組件10之結構示意 圖,其沿著中心軸Z排列由光源至像側依序為:一 led 晶片11、一封膠層12及一光學鏡片13,當光線由LED晶 片11發出後,經由封膠層12後,由光學鏡片13將光線聚 集並形成以對稱於中心軸z之橢圓形光型的光束對像侧 照射,光學鏡片13為一光學材料所製成的透鏡,其凹面 9 M347533 為向光源的光源側光學面R1 ,且光學面R1可為非球 面或球面’其相對面為向像側之菲涅爾光學面R2為具 有垂直$辰齒(draft with vertical shape)之菲淫爾光學面;光 學鏡片13之光學面R2、光學鏡片厚度d2及有效焦距長 度間滿足式(1)及式(2)之條件,光學鏡片13所形成的 光強度形成的光型之角度2ψ(Χ方向2九與Y方向2念) 滿足式(3)之條件。 其中,封膠層12並不限制使用之材料,在LED組 件上㊉用光學樹脂(resin)或石夕膠(silicon gel)等不同材 料’而光學鏡片13可由光學玻璃或光學塑膠材料製成。 ,士圖2所示,係使用一雙平φΐ^ο-ρ^ο)菲淫爾LED 光學鏡片於一 LED組件之示意圖,其沿著中心軸Z排列 由光,至像側依序為··一 LED晶片11、一封膠層12及一 雙平菲 &gt;圼爾光學鏡片13,其中光學鏡片13在光源侧之光 予面R1 ’其為平面(Rl=〇〇),其另一平面(相對面)為 向像侧之菲埋爾光學面R2為具有垂直環齒之菲涅爾光 學面。該光學鏡片13之光學面幻、光學鏡片厚度d2及 有效焦距長度間滿足式(1)及式(2)之條件,光學鏡片 13所形成的光強度形成的光型之角度2 0(χ方向2九與 Υ方向2 &amp; )滿足式(3)之條件。 再如圖3所示,其係本創作之另一型式,係使用一 菲涅爾光學鏡片於一 LED組件2〇之示意圖,其沿著中心 軸z排列由光源至像側依序為:一 LED晶片21、一封膠 層22及一雙平菲涅爾光學鏡片23,其中菲涅爾光學鏡片 23係具有錐度v之光學鏡片如圖7所示。光線由led晶 M347533 片21發出後,經由封膠層22後,由光學鏡片23將光線聚 集並形成以對稱於中心軸Z且照角為橢圓形光型的光束 對像侧照射;藉由具有錐度v之菲涅爾光學鏡片23,可 減少由光學鏡片23之侧面散逸之光線,提高效率。該光 學鏡片23之光學面R2、光學鏡片厚度d2及有效焦距長 度間滿足式(1)及式(2)之條件,光學鏡片23所形成的 光強度形成的光型之角度2 0(X方向2九與Y方向 2 &amp; )滿足式⑶之條件。 • 對於光學鏡片13或光學鏡片23,其像側光學面R2 為菲涅爾光學面。本創作使用之像侧光學面R2為具有 垂直環齒(draft with vertical shape)之菲涅爾光學面如圖 4、5所示,其中,該像侧之菲涅爾光學面(R2)係由一 聚光曲面(RF)轉移形成,且依不同的轉移方式而可分 別形成一等環間距(equal zone pitch)之菲涅爾光學面如圖 4所示或一等環深度(equalzoneheight)之菲涅爾光學面如 圖4所示;參考圖4,像侧光學面R2為等環間距(equal # zone pitch)之菲涅爾光學面,也就是環間距(zone pitch)rt 為固定值,其係在聚光曲面曲率半徑RF之聚光曲面 (RF)上以相等的環間距(zonepitch)rt但不等的落差 (中心軸Z點為最高點),也就是不等之環深度(zone height) hd,將聚光曲面(Rf )轉移成等間距環之環狀菲 淫爾光學面(像側光學面R2),也就是由中心轴Z向外 其環深度(zoneheight)hd漸大如圖4所示;又環狀菲涅爾 光學面(像侧光學面R2)之每一環(zone)係由一斜面 (slope )及一垂直環面(vertical draft)構成,其第一環半 11 M347533 徑為h、最末環為半徑為rn。當光線入射於菲涅爾光學 面(R2),藉由各環之斜面,對入射光線產生折射,而達 成類似拋物面曲面(或聚光曲面)之光效果如圖9所 示。再參考圖5,像側光學面R2係為等環深度(equai zone height)之菲涅爾光學面,也就是環深度hd為固定 值,其係在聚光曲面曲率半徑RF之聚光曲面(RF)上以 相等的落差(中心轴Z點為最高點),也就是相等之環 深度(zoneheight)hd,但不等的環間距(zonepitch)rt,將 ❿ 聚光曲面Rf轉移成等環深度(equal zone height)之環狀菲淫 爾光學面(像侧光學面R2)環狀菲涅爾光學面,也就是 由中心軸Z向外其環間距(zone pitch) rt漸小如圖5所 示,其第一環半徑為r〗。同理,當光線入射於菲涅爾光 學面,藉由各環間斜面,對入射光線產生折射,而達成 類似拋物面曲面(或聚光曲面)之光效果如圖9所示。 再參考囷9、圖1〇及圖11所示,Α群之光線(Α1,Α2 及A3)經由菲涅爾光學面折射後,由於Α1,Α2或A3其 • 入射角度不同,其出射角度0角度在目標物上之位置不 同如圖10 ;對於出射後以中心軸之徑向位置,Α群光線 將呈現中心之光強度較強的光群;同理,B群之光線(B1, B2及B3)經由菲涅爾光學面折射後,亦將呈現中心之 光強度較強的光―;經由A群與B群紐組合後如圖11 所示生光強度均—的光型,藉以避免或減少中心區 強度過強it緣區光線較弱,甚至產生暗亮相間的一圈 圈現象。 光子&quot;片13之光學面ri或光學鏡片23之光學面 12 M347533 R1 ,若以非球面光學面所構成,其非球面之方程式 (Aspherical Surface Formula)為式(9) Ζ = 舢 W +如8 +為, (9) 其中,c是曲率,h為鏡片高度,κ為圓錐係數 (Conic Constant )、A4、A6、A8、A10 分別四、六、八、 十階的非球面係數(Nth Order Aspherical Coefficient )。 _ 菲涅爾光學面之聚光曲面曲率半徑RF亦以式(9)定 義,對於拋物面之聚光曲面曲率半徑rf之圓錐係數, 對於球面之聚光曲面曲率半徑rf之圓錐係數κ=0。 請參閱圖8,為本創作LED光學鏡片於LED組件之光 路示意圖,圖中,LED晶片11 (21)發出光線,經由光學 鏡片13 (23)聚集並折射後以2 0角度(X方向2九與γ方 向2咚)形成所需要的橢圓光型及^/心85%的要求,其 中’ α為LED晶片發出光線的光通量,β為像侧相對無限 鲁 遠處(100倍fs )光線的光通量,且忽略空氣的折射 (refraction)與散射(scattering)等效應,並符合式⑺之條 件。藉上述結構,本創作利用一平凹或雙平菲涅爾發光二 極體光學鏡片及一 LED晶片,可使LED組件10可發出預定 的均勻光強度之橢圓形光型,可為單顆使用或以不同光型 組成陣列使用。 本創作以下所揭示之最佳實施例,乃是針對本創作實 際之主要構成元件而作說明,為說明與比較各實施例的應 用情形,採用以LED晶片11使用1.85x0.77mm尺寸的晶片, 13 M347533 其波長為最高強度(1st peak wave-length)波長為450nm及次 高強度(2nd peak wave-length)波長為550nm之藍光的晶片, 在X方向發射角% =39.8。 、Y方向發射角% =35.2。、 α=78·5流明(lm)、照度Ε(Η23·97勒克司(Lux)的藍光;光 學鏡片13(或光學鏡片24)使用直徑5mm(D=2.5mm)為說 明;菲淫爾光學面選擇具有垂直環齒之等環間距或等環深 度之菲涅爾光學面;封膠層12係利用折射率Ndl為1.491的 透明光學矽膠所填塞。但就一般具有光學鏡片及其所構成 • 的LED組件而言,除了本創作所揭示之光學鏡片及其LED 組件外,其他結構乃屬一般通知之技術,也就是該光學鏡 片及其LED組件之各構成元件之尺寸大小、使用材料、 LED波長與發射角度、菲涅爾光學面的型式、環間距與環 深度等,是可以進行許多改變、修改、甚至等效變更。 以下於第一至第七實施例係使用具有無錐度且等環深 度之平面菲涅爾光學鏡片所構成的發光二極體組件、第八 至第九實施例係使用有錐度且等環深度之平面菲涅爾光學 籲 鏡片所構成的發光二極體組件、第十至第十一實施例係使 用無錐度且等環間距之平面菲涅爾光學鏡片所構成的發光 二極體組件、第十二至第十三實施例係使用無錐度且等環 深度之平凹面菲涅爾光學鏡片所構成的發光二極體組件。 &lt;第一實施例&gt; 清參考圖6及圖12所示,其分別係本創作之使用平面 菲淫爾光學鏡片所構成的發光二極體組件示意圖及第一實 施例之光強度分佈與照角之極座標關係圖。In order to simplify the manufacture, the Fresnel optical lens can be replaced with a lens made of an optical material of a plane = p, no). The image side of the image side is optical: the Philippine optical surface, and can be satisfied. (1) ~ (3) conditions. In order to increase the efficiency of the LED component, the Fresnel optical lens can be replaced with an optical material made of an optical material, and the image side optical surface of the image side is Philippine, and the Nine, nine-faced, and satisfyable (1) ~ (3) conditions. This creation is another _μα福々, the purpose of 'easy to use' optical lens can be made of optical glass or optical plastic. The present invention is characterized in that the present invention aims to provide a light-emitting diode assembly, the lens thereof and the flat-panel or double-planet-emitting light-emitting diode optical body having an elliptical shape-polar body wafer. The requirements of the LED assembly are full, and the luminous flux ratio η is greater than 85 〇 / 〇 (^ to 850 〆 0) ~ two enough conditions: Ε '1/2 SO·? Friends of which (7) (8) 8 M347533 , rn is the radius of the last ring of the Fresnel optical surface R2, and 2 is the angle of the highest light intensity (intensity) at half (/1/2) in the X direction through the optical lens. Deg.), 2 &amp; is the angle (degree deg·) at which the light is emitted through the optical lens at half the maximum light intensity (/ι/2) in the γ direction, and rn is the last ring of the Fresnel optical surface R2 (Lastz〇) Ne) Radius, α is the luminous flux of the LED chip, β is the luminous flux of the image relative to infinity (100 times fs) without considering the attenuation factor, η is the luminous flux ratio; 7 = ,, (1 is 1^0 The illumination emitted by the wafer, Ew is the illuminance at half the maximum light intensity emitted by the Fresnel optical lens. The planar Fresnel light-emitting diode optical lens of the present invention and the light-emitting diode assembly thereof can have an elliptical light type and meet the requirement of a luminous flux ratio of more than 85%, and the optical lens has a thin thickness characteristic. It can be used for single LED or array LED, and can be used for lighting or mobile phone or camera flash. [Embodiment] In order to make the creation more clear and detailed, the preferred embodiment is illustrated and the following structure is used to construct the structure of the creation. And the technical features are as follows: Referring to FIG. 6, which is a schematic diagram of the planar Fresnel light-emitting diode optical lens and the light-emitting diode assembly 10 thereof, which are along the central axis Z. The arrangement from the light source to the image side is sequentially: a led wafer 11, an adhesive layer 12 and an optical lens 13. After the light is emitted from the LED wafer 11, after passing through the sealing layer 12, the light is collected by the optical lens 13 and The light beam forming an elliptical light pattern symmetrical to the central axis z is irradiated to the image side, and the optical lens 13 is a lens made of an optical material, and the concave surface 9 M347533 is a light source side optical surface R1 toward the light source. And the optical surface R1 may be an aspherical surface or a spherical surface. The opposite surface is the Fresnel optical surface R2 on the image side, which is a Philippine optical surface having a vertical draft with a vertical shape; the optical surface of the optical lens 13 R2, the optical lens thickness d2 and the effective focal length length satisfy the conditions of the formulas (1) and (2), and the angle of the light pattern formed by the light intensity formed by the optical lens 13 is 2 ψ (Χ direction 2 9 and Y direction 2) The condition of the formula (3) is satisfied. The sealing layer 12 does not limit the material used, and the optical component 13 is made of optical resin (resin) or silicon gel, and the optical lens 13 can be optical. Made of glass or optical plastic material. As shown in Figure 2, a pair of flat φΐ^ο-ρ^ο) Philippine LED optical lenses are shown in a schematic diagram of an LED component, which is arranged along the central axis Z from light to the image side. An LED chip 11, an adhesive layer 12, and a double flat Philippine optical lens 13, wherein the optical lens 13 is on the light source side of the light surface R1 'which is a plane (R1 = 〇〇), and the other The plane (opposing surface) is a Fresnel optical surface R2 having a vertical ring tooth on the image side. The optical surface of the optical lens 13 and the optical lens thickness d2 and the effective focal length satisfy the conditions of the formulas (1) and (2), and the light intensity formed by the optical lens 13 forms an angle of 2 0 (χ direction). 2 9 and Υ direction 2 &) satisfy the condition of formula (3). As shown in FIG. 3, another type of the present invention is a schematic diagram of using a Fresnel optical lens in an LED assembly 2, which is arranged along the central axis z from the light source to the image side in sequence: The LED chip 21, the adhesive layer 22 and a double flat Fresnel optical lens 23, wherein the Fresnel optical lens 23 is an optical lens having a taper v, as shown in FIG. After the light is emitted from the led crystal M347533 sheet 21, after passing through the sealant layer 22, the light is collected by the optical lens 23 and formed to illuminate the image side of the light beam symmetrical with respect to the central axis Z and having an illuminating angle as an elliptical light type; The Fresnel optical lens 23 of the taper v reduces the light scattered by the side of the optical lens 23 and improves the efficiency. The optical surface R2 of the optical lens 23, the optical lens thickness d2, and the effective focal length length satisfy the conditions of the formulas (1) and (2), and the light intensity formed by the optical lens 23 forms an angle of 2 0 (X direction). 2 9 and Y direction 2 &) satisfy the condition of formula (3). • For the optical lens 13 or the optical lens 23, the image side optical surface R2 is a Fresnel optical surface. The image side optical surface R2 used in the present invention is a Fresnel optical surface having a draft with a vertical shape as shown in FIGS. 4 and 5, wherein the Fresnel optical surface (R2) on the image side is composed of A concentrated light surface (RF) transfer is formed, and a Fresnel optical surface of an equal zone pitch can be respectively formed according to different transfer modes, as shown in FIG. 4 or an equal zone depth (equalzoneheight). The Neel optical surface is as shown in FIG. 4; referring to FIG. 4, the image side optical surface R2 is a Fresnel optical surface of an equal ring spacing, that is, a ring pitch rt is a fixed value. It is equal to the zonepitch rt but the unequal difference (the center axis Z is the highest point) on the concentrating surface (RF) of the condensed surface curvature radius RF, that is, the unequal ring depth (zone height) Hd, the condensed surface (Rf) is transferred into a ring-shaped spectacles optical surface (image side optical surface R2) of the equally spaced ring, that is, the ring depth of the central axis Z outwards (zoneheight) hd is as shown in the figure 4; each ring of the ring-shaped Fresnel optical surface (image side optical surface R2) is composed of a slope (s The lope is composed of a vertical draft, and the first ring half 11 M347533 has a diameter h and the last ring has a radius rn. When light is incident on the Fresnel optical surface (R2), the incident light is refracted by the slope of each ring, and the light effect similar to a parabolic surface (or concentrated surface) is shown in Fig. 9. Referring again to FIG. 5, the image side optical surface R2 is a Fresnel optical surface of an equia zone height, that is, a ring depth hd is a fixed value, which is a concentrated surface of the radius of curvature of the condensed surface (RF). RF) is equal to the drop (the center axis Z point is the highest point), that is, the equal ring depth (zoneheight) hd, but the unequal ring spacing (zonepitch) rt, the 聚 collecting surface Rf is transferred to the equal ring depth (equal zone height) ring-shaped fluorescing optical surface (image side optical surface R2) annular Fresnel optical surface, that is, from the central axis Z outward, its ring pitch rt is smaller as shown in Figure 5. Show that its first ring radius is r〗. Similarly, when light is incident on the Fresnel optical plane, the incident light is refracted by the inclined plane between the rings, and the light effect similar to a parabolic surface (or concentrated curved surface) is shown in FIG. Referring again to 囷9, Fig. 1〇 and Fig. 11, the rays of the Α group (Α1, Α2 and A3) are refracted via the Fresnel optical surface, and the angle of incidence is different due to the different incident angles of Α1, Α2 or A3. The position of the angle on the target is different as shown in Fig. 10. For the radial position of the central axis after exiting, the group of rays will show a light group with strong light intensity at the center; for the same reason, the light of group B (B1, B2 and B3) After refracting through the Fresnel optical surface, the light with stronger light intensity at the center will also be present; the light type with the intensity of the light as shown in Fig. 11 after combination of the A group and the B group, to avoid or Reducing the intensity of the central area is too strong. The light in the edge area is weak, and even a dark circle appears. The optical surface ri of the photon&quot; sheet 13 or the optical surface 12 of the optical lens 23 M347533 R1, if composed of an aspherical optical surface, the aspherical surface formula is (9) Ζ = 舢 W + 8 + is, (9) where c is the curvature, h is the height of the lens, κ is the aspheric coefficient of the cone coefficient (Conic Constant), A4, A6, A8, A10, respectively, four, six, eight, tenth order (Nth Order Aspherical Coefficient ). _ The radius of curvature of the condensed surface of the Fresnel optical surface is also defined by equation (9). For the conic coefficient of the radius of curvature rf of the parabolic surface, the conic coefficient κ = 0 for the radius of curvature of the convex surface of the spherical surface. Please refer to FIG. 8 , which is a schematic diagram of the optical path of the LED optical lens in the LED assembly. In the figure, the LED chip 11 ( 21 ) emits light and is concentrated and refracted by the optical lens 13 ( 23 ) at an angle of 20 (X direction 2 9 And γ direction 2咚) form the required elliptical light type and ^/heart 85% requirement, where 'α is the luminous flux of the LED chip, and β is the luminous flux of the image side relative to the infinity (100 times fs) light. And ignore the effects of air refraction and scattering, and meet the conditions of equation (7). With the above structure, the present invention utilizes a flat or double flat Fresnel light-emitting diode optical lens and an LED chip, so that the LED assembly 10 can emit a predetermined uniform light intensity of an elliptical light type, which can be used for a single use or Use an array of different light types. The preferred embodiment disclosed below is described with respect to the main constituent elements of the present invention. For the application and comparison of the embodiments, a wafer having a size of 1.85 x 0.77 mm is used for the LED chip 11. 13 M347533 A wafer whose wavelength is the highest intensity (1st peak wave-length) wavelength of 450 nm and the second highest peak wavelength-length of 550 nm, the emission angle in the X direction is %3. , Y direction of emission angle = 35.2. , α=78·5 lumens (lm), illuminance Ε (Η23·97 lux (Lux) blue light; optical lens 13 (or optical lens 24) using diameter 5mm (D=2.5mm) for explanation; Philippine optical The Fresnel optical surface having a ring pitch or an equal ring depth of a vertical ring tooth is selected; the sealant layer 12 is filled with a transparent optical silicone having a refractive index Ndl of 1.491. However, it generally has an optical lens and its constituents. In terms of LED components, in addition to the optical lens and its LED component disclosed in the present invention, other structures are generally notified technologies, that is, the size, material used, and LED of each component of the optical lens and its LED component. The wavelength and emission angle, the Fresnel optical surface pattern, the ring pitch and the loop depth, etc., are subject to many changes, modifications, and even equivalent changes. The following are used in the first to seventh embodiments to have a taper-free and equi-ring. Light-emitting diode assembly composed of a deep planar Fresnel optical lens, and eighth to ninth embodiments using a light-emitting diode assembly composed of a flat Fresnel optical lens with a taper and an equal ring depth ten To the eleventh embodiment, a light-emitting diode assembly using a flat Fresnel optical lens having no taper and equal pitch, and the twelfth to thirteenth embodiments using a flat concave surface having no taper and equal ring depth A light-emitting diode assembly composed of a Fresnel optical lens. <First Embodiment> Referring to FIG. 6 and FIG. 12, respectively, the light-emitting two formed by the use of the plane Philippine optical lens is created. A schematic diagram of a polar body assembly and a polar coordinate relationship between the light intensity distribution and the illumination angle of the first embodiment.

下列表(一)中分別列有由光源侧至像侧沿中心轴Z 14 M347533 之LED晶片11、封膠層12、光學鏡片之光源侧光學面 R1與像侧光學面R2之曲率半徑或菲涅爾中心軸 聚光曲面曲率半控 RF(mm)、間距〇n-axissurface spacing)、光學鏡片13之錐度υ、各折射率(Nd)等。本實 施例係使用具有無錐度且等環深度之平面玻璃材料製成之 菲涅爾光學鏡片,於圖6之R1光學面為平面。 表(一) fs= 2.024 υ=0 Surface No. R or RF di SO OO 0.10 SI oo 0.52 1.410 S2* 氺 1.000 2.00 1.582 在表(一)中,光學面(Surf.No·)有標註*者為非球面之菲 涅爾光學面。下列表(二)為菲涅爾光學面半徑Rp之非 球面於式(9)之各項係數、沿中心起算之第一菲丨里爾環半 徑r!、最末菲 &gt;里爾%半徑rn、菲 &gt;里爾環深度(z〇ne height)hd 及菲涅爾環數量(No. of zone): 表(二)In the following list (1), the radius of curvature of the LED wafer 11, the sealant layer 12, the light source side optical surface R1 and the image side optical surface R2 of the optical lens from the light source side to the image side along the central axis Z 14 M347533 are respectively listed. Niel center axis condensing surface curvature half-control RF (mm), spacing 〇n-axissurface spacing), optical lens 13 taper υ, each refractive index (Nd) and so on. In this embodiment, a Fresnel optical lens made of a flat glass material having no taper and equal ring depth is used, and the R1 optical surface of Fig. 6 is a flat surface. Table (1) fs= 2.024 υ=0 Surface No. R or RF di SO OO 0.10 SI oo 0.52 1.410 S2* 氺1.000 2.00 1.582 In Table (1), the optical surface (Surf.No·) is marked with * Aspherical Fresnel optical surface. The following list (2) is the coefficient of the aspheric surface of the Fresnel optical surface radius Rp in the formula (9), the radius of the first Philippine ring radius r! from the center, the last phenanthrene &gt; Lille% radius Rn, Philippine &gt; Lerne height hd and No. of zone: Table (2)

Asoherical Surface K a2 a4 A6 -1.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Fennel Siirfacermin^ hd ri No. of Zone X wOXiVl U VI·! AWV J 0.1 0.447 2.490 31 本實施例中,光學鏡片13係利用折射率Nd2為1.582、 阿貝數vd2為61.7的玻璃材質製成。藉由搭配封膠層12及光 學鏡片13之折射係數與阿貝數,形成光線折射角度。經由 此光學鏡片13聚集後’以X方向68。、γ方向3〇。之橢圓 形照角,於無限遠處(以100倍fs為計)之β=69.201流明 15 M347533 (忽略空氣的折射與散射等效應);式(l)、(2)、 (3) 、(7)及式(8)分別為: η= 0.8815 /1/2 = 33.5 Φχ = 32.5 Φν = 15.2 0.8130Asoherical Surface K a2 a4 A6 -1.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Fennel Siirfacermin^ hd ri No. of Zone X wOXiVl U VI·! AWV J 0.1 0.447 2.490 31 In this embodiment, optics The lens 13 is made of a glass material having a refractive index Nd2 of 1.582 and an Abbe number vd2 of 61.7. The light refraction angle is formed by matching the refractive index of the sealant layer 12 and the optical lens 13 with the Abbe number. After the optical lens 13 is collected, it is "in the X direction 68". The γ direction is 3〇. The elliptical angle of illumination, at infinity (in terms of 100 times fs), β = 69.201 lumens, 15 M347533 (ignoring the effects of refraction and scattering of air); equations (l), (2), (3), 7) and (8) are: η = 0.8815 /1/2 = 33.5 Φχ = 32.5 Φν = 15.2 0.8130

rn (^2-1)^= 0.5751 J sRn (^2-1)^= 0.5751 J s

0.2394 0,4489 可以滿足條件式(1)、(2)、(3)及式(7)。圖12為本實 施例之LED組件光強度分佈與照角之極座標關係圖。由上 述表(一)、表(二)及圖12所示,藉此可證明本創作之 平面菲涅爾光學鏡片所構成的發光二極體組件示意圖具有 高效率且有預定的橢圓光型,其各角度之光強度均一,可 提昇本創作之應用性。 &lt;第二實施例&gt; 請參考圖6及圖13所示,其分別係本創作之使用平面 菲涅爾光學鏡片所構成的發光二極體組件示意圖及本實施 例之光強度分佈與照角之極座標關係圖。 M347533 下列表(三)中分別列有由光源侧至像側沿中心軸z 之LED晶片11、封膠層12、光學鏡片13之光源侧光學面 R1與像側光學面R2之曲率半徑R或菲涅爾中心軸聚光 曲面曲率半徑RF、間距di、光學鏡片13之錐度υ、各折射 率(Nd)等。本實施例係使用具有無錐度且等環深度之平 面玻璃材料製成之菲涅爾光學鏡片,於圖6之R1光學面 為平面。 表(三) fs= 2.530 υ= 0 Surface No. R or RF di Ndi SO OO 0.10 SI oo 0.52 1.410 S2* 1.250 4.96 1.582 * Aspherical Zone Fesnel 在表(三)中,光學面(Surf·No·)有標註*者為非球面之菲 涅爾光學面。下列表(四)為菲涅爾光學面半徑RP之非 球面於式(9)之各項係數、沿中心起算之第一菲涅爾環半 徑1^、最末菲涅爾環半徑rn、菲涅爾環深度hd及菲涅爾環 •數量: 表(四)0.2394 0, 4489 can satisfy the conditional expressions (1), (2), (3), and (7). Fig. 12 is a diagram showing the relationship between the light intensity distribution of the LED assembly of the embodiment and the polar coordinates of the illumination angle. From the above table (1), Table (2) and FIG. 12, it can be proved that the schematic diagram of the light-emitting diode assembly formed by the planar Fresnel optical lens of the present invention has high efficiency and a predetermined elliptical light type. The intensity of light at all angles is uniform, which enhances the applicability of the creation. &lt;Second Embodiment&gt; Referring to FIG. 6 and FIG. 13, which are respectively a schematic diagram of a light-emitting diode assembly using the planar Fresnel optical lens and the light intensity distribution and photograph of the present embodiment. The polar coordinate diagram of the corner. M347533 The following table (3) lists the radius of curvature R of the LED wafer 11, the sealant layer 12, the light source side optical surface R1 and the image side optical surface R2 of the optical lens 13 from the light source side to the image side along the central axis z, respectively. Fresnel center axis condensing surface curvature radius RF, spacing di, taper υ of optical lens 13, refractive index (Nd) and so on. In this embodiment, a Fresnel optical lens made of a flat glass material having no taper and equal ring depth is used, and the R1 optical surface of Fig. 6 is a flat surface. Table (3) fs= 2.530 υ= 0 Surface No. R or RF di Ndi SO OO 0.10 SI oo 0.52 1.410 S2* 1.250 4.96 1.582 * Aspherical Zone Fesnel In Table (3), the optical surface (Surf·No·) has The * marked * is the aspherical Fresnel optical surface. The following list (4) is the coefficient of the aspheric surface of the Fresnel optical surface radius RP in the equation (9), the radius of the first Fresnel ring along the center 1^, the radius of the last Fresnel ring rn, Philippine Neel ring depth hd and Fresnel ring • Quantity: Table (4)

Aspherical Surface K 八2 a4 -8.5000E-01 0.0000E+00 2.4000E-05 5.7000E-08 Fesnel Surface(mm) hd h Γη No. of Zone 0.1 0.499 2.480 30 本實施例中,光學鏡片13係利用折射率Nd2為1.582、 阿貝數vd2為61.7的玻璃材質製成。藉由搭配封膠層12及光 學鏡片13之折射係數與阿貝數,形成光線折射角度。經由 此光學鏡片13聚集後,以X方向68。、Y方向33°之橢圓 17 M347533 形照角,於無限遠處(以100倍fs為計)之β=70·245流明 (忽略空氣的折射與散射等效應);式(1)、(2)、 (3) 、(7)及式(8)分別為: 7 = 0.8948 hn: 32.5 Φχ- 33.7 16.8 1.0203 rn (Ndl-l)^= 1.1410Aspherical Surface K 八2 a4 -8.5000E-01 0.0000E+00 2.4000E-05 5.7000E-08 Fesnel Surface(mm) hd h Γη No. of Zone 0.1 0.499 2.480 30 In this embodiment, the optical lens 13 is refracted The rate is Nd2 is 1.582, and the Abbe number vd2 is 61.7 glass material. The light refraction angle is formed by matching the refractive index of the sealant layer 12 and the optical lens 13 with the Abbe number. After being collected by this optical lens 13, it is 68 in the X direction. , Y-direction 33 ° ellipse 17 M347533 shape angle, at infinity (in 100 times fs) β = 70 · 245 lumens (ignoring the effects of air refraction and scattering); formula (1), (2 ), (3), (7), and (8) are: 7 = 0.8948 hn: 32.5 Φχ- 33.7 16.8 1.0203 rn (Ndl-l)^= 1.1410

0.3915 0.13190.3915 0.1319

Ed 可以滿足條件式(1)、(2)、(3)及式(7)。圖13為本實 施例之LED組件光強度分佈與照角之極座標關係圖。由上 述表(三)、表(四)及圖13所示,藉此可證明本創作之 平面菲涅爾光學鏡片所構成的發光二極體組件示意圖具有 高效率且有預定的橢圓光型,其各角度之光強度均一,可 提昇本創作之應用性。 &lt;第三實施例&gt; 請參考圖6及圖14所示,其分別係本創作之使用平面 菲涅爾光學鏡片所構成的發光二極體組件示意圖及本實施 M347533 例之光強度分佈與照角之極座標關係圖。 下列表(五)中分別列有由光源侧至像侧沿中心車由Ζ 之LED晶片11、封膠層12、光學鏡片13之光源侧光學面 R1與像侧光學面R2之曲率半徑尺或菲涅爾中心軸聚光 曲面曲率半徑RF、間距di、光學鏡片13之錐度υ、各折射 率(Nd)等。本實施例係使用具有無錐度且等環深度之平 面玻璃材料製成之菲涅爾光學鏡片,於圖6之R1光學面 為平面。 籲表(五) fs= 2.530 υ= 0 Surface No. RorRF di Ndi SO OO 0.10 SI oo 0.52 1.410 S2* L250 2.00 1.582 * Aspherical Zone Fesnel 在表(五)中,光學面(Surf· No·)有標註*者為非球面之菲 淫爾光學面。下列表(六)為菲埋爾光學面半徑Rp之# 球面於式(9)之各項係數、沿中心起算之第一菲淫爾環半 徑〇、最末菲涅爾環半徑rn、菲涅爾環深度hd及菲涅爾環 :六 旦里 t表Ed can satisfy the conditional expressions (1), (2), (3), and (7). Fig. 13 is a diagram showing the relationship between the light intensity distribution of the LED assembly and the polar coordinates of the illumination angle of the present embodiment. From the above Table (3), Table (4) and Figure 13, it can be proved that the schematic diagram of the LED assembly formed by the planar Fresnel optical lens of the present invention has high efficiency and a predetermined elliptical light type. The intensity of light at all angles is uniform, which enhances the applicability of the creation. &lt;Third Embodiment&gt; Referring to FIG. 6 and FIG. 14, which are respectively a schematic diagram of a light-emitting diode assembly using a planar Fresnel optical lens and a light intensity distribution of the present example M347533 The polar coordinate diagram of the photo. In the following table (5), the radius of curvature of the light source side optical surface R1 and the image side optical surface R2 of the LED chip 11, the sealant layer 12, the optical lens 13 from the light source side to the image side are respectively listed or Fresnel center axis condensing surface curvature radius RF, spacing di, taper υ of optical lens 13, refractive index (Nd) and so on. In this embodiment, a Fresnel optical lens made of a flat glass material having no taper and equal ring depth is used, and the R1 optical surface of Fig. 6 is a flat surface.吁表(五) fs= 2.530 υ= 0 Surface No. RorRF di Ndi SO OO 0.10 SI oo 0.52 1.410 S2* L250 2.00 1.582 * Aspherical Zone Fesnel In Table (5), the optical surface (Surf·No·) is marked *The person is an aspherical Philippine optical surface. The following list (6) is the radius of the Philippine optical surface radius Rp. The spherical surface is the coefficient of the formula (9), the radius of the first Philippine ring 〇 along the center, the radius of the last Fresnel ring rn, Frey Ring depth hd and Fresnel ring: six denier t table

Aspherical Surface K 八2 A4 A6 -1.0000Ε+00 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO Fesnel Surface(mm) ri rn No. of Zone 0.06 0.387 2.510 42 本實施例中, 光學鏡片13係利用折射率Nd2為1.582 阿貝數vd2為61.7的玻璃材質製成。藉由搭配封膠層12及光 學鏡片13之折射係數與阿貝數,形成光線折射角度。經由 M347533 此光學鏡片13聚集後,以X方向64°、Y方向36°之橢圓 形照角,於無限遠處(以100倍fs為計)之β=69·816流明 (忽略空氣的折射與散射等效應);式(1)、(2)、 (3) 、(7)及式(8)分別為: η= 0.8893Aspherical Surface K 八 2 A4 A6 -1.0000 Ε+00 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO Fesnel Surface(mm) ri rn No. of Zone 0.06 0.387 2.510 42 In this embodiment, the optical lens 13 It is made of a glass material having a refractive index Nd2 of 1.582 and an Abbe number of vd2 of 61.7. The light refraction angle is formed by matching the refractive index of the sealant layer 12 and the optical lens 13 with the Abbe number. After the optical lens 13 is gathered by M347533, the elliptical angle of X in the X direction and 36° in the Y direction is β=69·816 lumens at infinity (in terms of 100 times fs) (ignoring the refraction of air and Scattering and other effects); Equations (1), (2), (3), (7), and (8) are: η = 0.8893

/1/2 = 30.0 九=32.1 Φγ = 18.1 1.0081 (^2-1)^= 0.4601 J s [β- 1 ^ J = 0.3406 0.2108/1/2 = 30.0 Nine=32.1 Φγ = 18.1 1.0081 (^2-1)^= 0.4601 J s [β- 1 ^ J = 0.3406 0.2108

Ed 可以滿足條件式(1)、(2)、(3)及式(7)。圖14為本實 施例之LED組件光強度分佈與照角之極座標關係圖。由上 述表(五)、表(六)及圖14所示,藉此可證明本創作之 平面菲涅爾光學鏡片所構成的發光二極體組件示意圖具有 高效率且有預定的橢圓光型,其各角度之光強度均一,可 提昇本創作之應用性。 &lt;第四實施例&gt; 請參考圖6及圖15所示,其分別係本創作之使用平面 M347533 示意圖及本實施 菲涅爾光學鏡片所構成的發光二極體組件 例之光強度分佈與照角之極座標關係圖。 下列表(七)中分別列有由光源侧至像侧沿+ 之LED晶片11、封膠層12、光學鏡片13之光源侧光^面Z R1與像侧光學面R2之曲率半徑R或菲涅爾中心&amp; ^Ed can satisfy the conditional expressions (1), (2), (3), and (7). Fig. 14 is a diagram showing the relationship between the light intensity distribution and the polar angle of the LED assembly of the present embodiment. From the above Table (5), Table (6) and Figure 14, it can be proved that the schematic diagram of the LED assembly formed by the planar Fresnel optical lens of the present invention has high efficiency and a predetermined elliptical light type. The intensity of light at all angles is uniform, which enhances the applicability of the creation. &lt;Fourth Embodiment&gt; Please refer to FIG. 6 and FIG. 15 , which are respectively a schematic diagram of the use of the plane M347533 of the present invention and a light intensity distribution of the example of the light-emitting diode assembly constructed by the Fresnel optical lens. The polar coordinate diagram of the photo. In the following list (7), the radius of curvature R of the light source side surface Z R1 and the image side optical surface R2 of the LED chip 11 from the light source side to the image side edge +, the sealant layer 12, and the optical lens 13 are respectively listed. Nyer Center &amp; ^

曲面曲率半徑RF、間距di、光學鏡片13之錐度υ、各折# 率(Nd)等。本實施例係使用具有無錐度且等環深度二 面塑膠PMMA材料製成之菲涅爾光學鏡片,於圖 光學面為平面。 表(七) fs= 2.530 υ= 0 Surface No. R or RF di Ndi SO OO 0.10 SI oo 0.52 1.410 S2* 1.250 2.00 1.491 * Aspherical Zone Fesnel 在表(七)中,光學面(Surf.No·)有標註*者為非球面之菲 涅爾光學面。下列表(八)為菲涅爾光學面半徑Rp之非 球面於式(9)之各項係數、沿中心起算之第一菲涅爾環半 徑1^、最末菲涅爾環半徑rn、菲涅爾環深度心及菲涅爾環 數量· 表(八)The radius of curvature of the surface RF, the pitch di, the taper of the optical lens 13, the respective fold rate (Nd), and the like. In this embodiment, a Fresnel optical lens made of a PMMA material having no taper and equal ring depth is used, and the optical surface of the figure is a flat surface. Table (7) fs= 2.530 υ= 0 Surface No. R or RF di Ndi SO OO 0.10 SI oo 0.52 1.410 S2* 1.250 2.00 1.491 * Aspherical Zone Fesnel In Table (7), the optical surface (Surf.No·) has The * marked * is the aspherical Fresnel optical surface. The following list (8) is the coefficient of the aspheric surface of the Fresnel optical surface radius Rp in the formula (9), the radius of the first Fresnel ring along the center 1^, the radius of the last Fresnel ring rn, Philippine The depth of the Neel ring and the number of Fresnel rings · Table (8)

Aspherical Surface κ a2 a4 a6 -1.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Fesnel Surface(mm) hd vx rn No. of Zone 0.06 0.387 2.510 41 本實施例中 ,光學鏡片13係利用折射率Nd2為1.491 阿貝數vd2為32的PMMA塑膠材質製成。藉由搭配封膠層12 21 M347533 及光學鏡片13之折射係數與阿貝數,形成光線折射角度。 經由此光學鏡片13聚集後,以X方向68°、Y方向43°之 橢圓形照角,於無限遠處(以100倍fs為計)之β=72·48流 明(忽略空氣的折射與散射等效應);式(1)、(2)、 ⑶、(7)及式(8)分別為:Aspherical Surface κ a2 a4 a6 -1.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Fesnel Surface(mm) hd vx rn No. of Zone 0.06 0.387 2.510 41 In this embodiment, the optical lens 13 is refracted The rate Nd2 is 1.491, and the Abbe number vd2 is 32 PMMA plastic material. The light refraction angle is formed by matching the refractive index of the sealant layer 12 21 M347533 and the optical lens 13 with the Abbe number. After being concentrated by the optical lens 13, the elliptical angle of the X direction of 68° and the Y direction of 43° is β=72·48 lumens at infinity (in terms of 100 times fs) (ignoring the refraction and scattering of air) Equivalent effect); Equations (1), (2), (3), (7), and (8) are:

(φ -〇) V y { π j 1 ^ J ,Λ 0.1672 /7 = 0.9233 ’1/2 = 23.5 Φχ = 34.0 21.5 Λ = rn 1.0081 1)^-=( fs • 0.2231(φ -〇) V y { π j 1 ^ J , Λ 0.1672 /7 = 0.9233 ’1/2 = 23.5 Φχ = 34.0 21.5 Λ = rn 1.0081 1)^-=( fs • 0.2231

Ed 可以滿足條件式(1)、(2)、(3)及式(7)。圖15為本實 施例之LED組件光強度分佈與照角之極座標關係圖。由上 述表(七)、表(八)及圖15所示,藉此可證明本創作之 平面菲涅爾光學鏡片所構成的發光二極體組件示意圖具有 高效率且有預定的橢圓光型,其各角度之光強度均一,可 提昇本創作之應用性。 &lt;第五實施例&gt; 22 Μ3Φ7533 請參考圖6及圖16所示,其分別係本創作之使用平面 菲涅爾光學鏡片所構成的發光二極體組件示意圖及本實施 例之光強度分佈與照角之極座標關係圖。 下列表(木)中分別列有由光源侧至像侧沿中心轴Z 之LED晶片11、封膠層12、光學鏡片13之光源侧光學面 R1與像侧光學面R2之曲率半徑R或菲涅爾中心轴聚光 曲面曲率半徑RF、間距di、光學鏡片13之錐度υ、各折射 率(Nd)等。本實施例係使用具有無錐度且等環間距之平 • 面菲涅爾光學鏡片,其菲涅爾光學鏡片之曲率半徑RF為球 面,於圖6之R1光學面為平面。 表(九) fs= 5.061 υ= 0 Surface No. R or RF di Ndi SO OO 0.10 SI oo 0.52 1.410 S2* 2.500 2.00 1.582Ed can satisfy the conditional expressions (1), (2), (3), and (7). Fig. 15 is a diagram showing the relationship between the light intensity distribution of the LED assembly and the polar coordinates of the illumination angle of the present embodiment. From the above Table (7), Table (8) and Figure 15, it can be proved that the schematic diagram of the LED assembly formed by the planar Fresnel optical lens of the present invention has high efficiency and a predetermined elliptical light type. The intensity of light at all angles is uniform, which enhances the applicability of the creation. &lt;Fifth Embodiment&gt; 22 Μ3Φ7533 Please refer to FIG. 6 and FIG. 16 , which are respectively a schematic diagram of a light-emitting diode assembly using the planar Fresnel optical lens and the light intensity distribution of the present embodiment. The relationship diagram with the polar coordinates of the corner. The lower list (wood) lists the radius of curvature R of the LED wafer 11 from the light source side to the image side along the central axis Z, the sealant layer 12, the light source side optical surface R1 of the optical lens 13 and the image side optical surface R2, respectively. Niel center axis condensing surface curvature radius RF, spacing di, taper υ of optical lens 13, refractive index (Nd), and the like. In this embodiment, a flat Fresnel optical lens having a taper and an equal ring pitch is used, and the radius of curvature RF of the Fresnel optical lens is a spherical surface, and the optical surface of the R1 of Fig. 6 is a plane. Table (9) fs= 5.061 υ= 0 Surface No. R or RF di Ndi SO OO 0.10 SI oo 0.52 1.410 S2* 2.500 2.00 1.582

Spherical Zone FesnelSpherical Zone Fesnel

在表(九)中,光學面(Surf·No·)有標註*者為球面之菲涅 爾光學面。下列表(十)為菲涅爾光學面半徑RP之非球 面於式(9)之各項係數、沿中心起算之第一菲涅爾環半徑 ri、最末菲涅爾環半徑rn、菲涅爾環間距rt及菲涅爾環數 量: 表(十)In Table (9), the optical surface (Surf·No·) has a Fresnel optical surface marked with a spherical surface. The following list (10) is the coefficient of the aspheric surface of the Fresnel optical surface radius RP in the equation (9), the radius of the first Fresnel ring ri along the center, the radius of the last Fresnel ring rn, Frey Ring spacing rt and number of Fresnel rings: Table (10)

Fesnel Surface(mm) rt rn No. of Zone 0.0625 1500 41 本實施例中,光學鏡片13係利用折射率Nd2為1.582、 阿貝數vd2為61.7的玻璃材質製成。藉由搭配封膠層12及光 23 M347533 學鏡片13之折射係數與阿貝數,形成光線折射角度。經由 此光學鏡片13聚集後,以X方向68°、Y方向43。之橢圓 形照角,於無限遠處(以100倍fs為計)之β=72·48流明 (忽略空氣的折射與散射等效應);式(1)、(2)、 (3)、(7)及式(8)分別為: 77= 0.8980Fesnel Surface (mm) rt rn No. of Zone 0.0625 1500 41 In the present embodiment, the optical lens 13 is made of a glass material having a refractive index Nd2 of 1.582 and an Abbe number vd2 of 61.7. The light refraction angle is formed by matching the refractive index and the Abbe number of the lens 13 with the sealant layer 12 and the light 23 M347533. After being collected by the optical lens 13, the X direction is 68° and the Y direction 43 is obtained. The elliptical angle is β=72·48 lumens at infinity (in terms of 100 times fs) (ignoring the effects of refraction and scattering of air); equations (1), (2), (3), 7) and (8) are: 77= 0.8980

11/2 = 22.5 Φχ = 43.0 ^ = 34.5 2.0243 (^2~1)^= 0.2300 J s11/2 = 22.5 Φχ = 43.0 ^ = 34.5 2.0243 (^2~1)^= 0.2300 J s

0.45360.4536

^7= 0,1111 可以滿足條件式(1)、(2) 、(3)及式(7)。圖16為本 實施例之LED組件光強度分佈與照角之極座標關係圖。 由上述表(九)、表(十)及圖16所示,藉此可證明本 創作之平面菲涅爾光學鏡片所構成的發光二極體組件示 意圖具有高效率且有預定的橢圓光型,其各角度之光強 度均一,可提昇本創作之應用性。 &lt;第六實施例&gt; 24 M347533 請參考圖6及围17所示,其 菲淫爾光學鏡片所構成的發光二極體組件示意面 例之光強度分佈與照角之極座標關_。 及本實施 下列表(十-)中分別列有由光源侧至像侧沿中 Z之LED晶1卜封膠層12、光學鏡片13之光源側光 R1與像侧光學面R2之曲率半徑R或菲涅爾中 曲面曲率半徑RF、間距di、光學鏡片13之錐度υ、各取光 率(Nd)等。本實施例係使用具有無錐度且等環深度斤射 面玻璃材料製成之菲淫爾光學鏡片,其菲涅爾光學鏡平 曲率半徑rf為球面,於圖6之R1光學面為平 之 表(Η—) fs= 2.530 0 Surface No. R or RF di Ndi、 SO OO 0.10 ------ SI oo 0.52 !·4ΐ〇 S21 1.250 4.96^7= 0,1111 can satisfy the conditional expressions (1), (2), (3), and (7). Fig. 16 is a diagram showing the relationship between the light intensity distribution and the polar angle of the LED assembly of the present embodiment. From the above Table (9), Table (10) and Figure 16, it can be proved that the schematic diagram of the LED assembly formed by the planar Fresnel optical lens of the present invention has high efficiency and a predetermined elliptical light type. The intensity of light at all angles is uniform, which enhances the applicability of the creation. &lt;Sixth embodiment&gt; 24 M347533 Referring to Fig. 6 and Fig. 17, the light intensity distribution of the light-emitting diode assembly constituted by the Philippine optical lens and the polar coordinate of the illumination angle are _. And in the list (10-) of the present embodiment, the radius of curvature R of the light source side light R1 and the image side optical surface R2 of the optical lens 13 from the light source side to the image side edge are respectively listed. Or the Fresnel middle surface curvature radius RF, the spacing di, the taper of the optical lens 13, the respective light extraction rate (Nd), and the like. In this embodiment, a Philippine optical lens made of a glass material having no taper and equal ring depth is used, and the flat curvature radius rf of the Fresnel lens is a spherical surface, and the R1 optical surface of FIG. 6 is a flat surface. (Η—) fs= 2.530 0 Surface No. R or RF di Ndi, SO OO 0.10 ------ SI oo 0.52 !·4ΐ〇S21 1.250 4.96

Aspherical Surface —〇〇〇〇E,〇l Ν〇· Of Zone A4Aspherical Surface —〇〇〇〇E,〇l Ν〇· Of Zone A4

Fesnel Surface(mm) hdFesnel Surface(mm) hd

A 0.06 0.387 h_ — 2.478 46 本實施例中,光學鏡片13係利用折射率Nd2為1.582 25 1A 0.06 0.387 h_ — 2.478 46 In this embodiment, the optical lens 13 utilizes a refractive index Nd2 of 1.582 25 1

Aspherical Zone Fesnel 在表(十一)中,光學面(Surf· No·)有標註1者為非球 菲涅爾光學面。下列表(十二)為菲涅爾光學面半徑 之非球面於式⑼之各項係數、沿中心起算之第一^涅二 環半徑r!、最末菲涅爾環半徑rn、菲涅爾環深度比及菲涅 爾環數量: / 表(十二) M347533 阿貝數vd2為61.7的玻璃材質製成。藉由搭配封膠層12及光 學鏡片13之折射係數與阿貝數,形成光線折射角度。經由 此光學鏡片13聚集後,以X方向68°、Υ方向43°之橢圓 形照角,於無限遠處(以100倍fs為計)之β=72·48流明 (忽略空氣的折射與散射等效應);式(1)、(2)、 (3)、⑺及式(8)分別為:Aspherical Zone Fesnel In Table (11), the optical surface (Surf·No·) has an aspherical Fresnel optical surface. The following list (12) is the coefficient of the aspheric surface of the Fresnel optical surface in the equation (9), the first radius of the second ring radius r! from the center, the radius of the last Fresnel ring rn, Fresnel Ring depth ratio and number of Fresnel rings: / Table (12) M347533 Abbe number vd2 is made of glass material of 61.7. The light refraction angle is formed by matching the refractive index of the sealant layer 12 and the optical lens 13 with the Abbe number. After the optical lens 13 is collected, the elliptical angle of the X direction of 68° and the Υ direction of 43° is β=72·48 lumens at infinity (in terms of 100 times fs) (ignoring the refraction and scattering of air) Equivalent effect); Equations (1), (2), (3), (7), and (8) are:

η= 0.8913 IU2 - 32.5 Φχ- 31.0 17.0 L0213η = 0.8913 IU2 - 32.5 Φχ- 31.0 17.0 L0213

1.1401 J s1.1401 J s

/g= 0.1030 = 0,4161 可以滿足條件式(1)、(2)、(3)及式(7)。圖17為本實 施例之LED組件光強度分佈與照角之極座標關係圖。由上 述表(十一)、表(十二)及圖17所示,藉此可證明本創 作之平面菲涅爾光學鏡片所構成的發光二極體組件示意圖 具有高效率且有預定的橢圓光型,其各角度之光強度均 一,可提昇本創作之應用性。 26 M347533 〈第七實施例〉 請參考圖6及圖18所示,其分別係本創作之 菲涅爾光學鏡片所構成的發光二極體組件示意圖及警面 例之光強度分佈與照角之極座標關係圖。 施 下列表(十三)中分別列有由光源侧至像侧沿中心 Z之LED晶片U、封膠層12、光學鏡片13之光源侧光二 R1與像侧光學面R2之曲率半徑R或菲涅爾中心軸 曲面曲率半徑rf、間距di、光學鏡片13之錐度υ、各折光 鲁 率(Nd)等。本實施例係使用具有無錐度且等環深度之平 面玻璃材料製成之菲涅爾光學鏡片,其菲涅爾光學&amp;片: 曲率半徑RF為球面,於圖6之R1光學面為平面。 表(十三) fs= 2.530 υ= 0 Surface No. R or RF Φ Ndi SO OO 0.10 SI oo 0.52 1.410 S2* 1.250 4.99 1.582 * Aspherical Zone Fesnel ⑩ 在表(十三)中,光學面(Surf· Ν〇·)有標註*者為非球面之 菲淫爾光學面。下列表(十四)為菲淫爾光學面半徑Rp 之非球面於式(9)之各項係數、沿中心起算之第一菲涅爾 環半徑r!、最末菲涅爾環半徑rn、菲涅爾環深度hd及菲涅 爾環數量: 表(十四)/g= 0.1030 = 0,4161 can satisfy the conditional expressions (1), (2), (3), and (7). Fig. 17 is a diagram showing the relationship between the light intensity distribution of the LED assembly of the embodiment and the polar coordinates of the illumination angle. From the above Table (11), Table (12) and Figure 17, it can be proved that the schematic diagram of the LED assembly formed by the planar Fresnel optical lens of the present invention has high efficiency and predetermined elliptical light. The type, the light intensity of each angle is uniform, which can enhance the applicability of the creation. 26 M347533 <Seventh Embodiment> Please refer to FIG. 6 and FIG. 18, which are respectively a schematic diagram of a light-emitting diode assembly composed of the Fresnel optical lens of the present invention and a light intensity distribution and an illumination angle of the police surface example. Polar coordinate diagram. In the list (13), the radius of curvature R of the light source side light R1 and the image side optical surface R2 of the LED chip U, the sealant layer 12, and the optical lens 13 from the light source side to the image side are respectively listed. Niel center axis surface curvature radius rf, spacing di, optical lens 13 taper 各, each refractive index (Nd) and so on. In this embodiment, a Fresnel optical lens made of a flat glass material having no taper and equal ring depth is used, and the Fresnel optical &amp; sheet: the radius of curvature RF is a spherical surface, and the optical surface of the R1 of Fig. 6 is a plane. Table (13) fs= 2.530 υ= 0 Surface No. R or RF Φ Ndi SO OO 0.10 SI oo 0.52 1.410 S2* 1.250 4.99 1.582 * Aspherical Zone Fesnel 10 In Table (13), optical surface (Surf·Ν 〇·) There is a non-spherical Philippine optical surface marked with *. The following list (14) is the coefficient of the aspheric surface of the Philippine optical surface radius Rp in the equation (9), the radius of the first Fresnel ring r! from the center, the radius of the last Fresnel ring rn, Fresnel ring depth hd and number of Fresnel rings: Table (fourteen)

Aspherical Surface K A2 a4 A6 -1.1000E+00 0.0000E+00 2.4000E-05 5.7000E-08 Fesnel Surface(mm) hd No. of Zone 0.06 0.388 2.494 38 27 M347533 本實施例中,光學鏡片13係利用折射率Nd2為1.582、 阿貝數vd2為61.7的玻璃材質製成。藉由搭配封膠層12及光 學鏡片13之折射係數與阿貝數,形成光線折射角度。經由 此光學鏡片13聚集後,以X方向65°、Y方向40°之橢圓 形照角,於無限遠處(以100倍fs為計)之β=69·33流明 (忽略空氣的折射與散射等效應);式(1)、(2)、 (3)、⑺及式(8)分別為:Aspherical Surface K A2 a4 A6 -1.1000E+00 0.0000E+00 2.4000E-05 5.7000E-08 Fesnel Surface(mm) hd No. of Zone 0.06 0.388 2.494 38 27 M347533 In this embodiment, the optical lens 13 is refracted. The rate is Nd2 is 1.582, and the Abbe number vd2 is 61.7 glass material. The light refraction angle is formed by matching the refractive index of the sealant layer 12 and the optical lens 13 with the Abbe number. After being collected by the optical lens 13, the elliptical angle of the angle of 65° in the X direction and 40° in the Y direction is β=69·33 lumens at infinity (in terms of 100 times fs) (ignoring the refraction and scattering of air) Equivalent effect); Equations (1), (2), (3), (7), and (8) are:

0.1252 土以= 0.2799 77 = 0.8832 ’1/2 = 27.5 ΦΧ- 33.7 19.5 L·: rn 1.0146 -1)^= j fs 1.1475 可以滿足條件式(1)、(2)、(3)及式(7)。圖18為本實 施例之LED組件光強度分佈與照角之極座標關係圖。由上 述表(十三)、表(十四)及圖18所示,藉此可證明本創 作之平面菲涅爾光學鏡片所構成的發光二極體組件示意圖 具有高效率且有預定的橢圓光型,其各角度之光強度均 一,可提昇本創作之應用性。 28 M347533 &lt;第八實施例&gt; 請參考圖6及圖19所示’其分别係本創作之使用平面 菲涅爾光學鏡片所構成的發光二槌體組件示意圖及本實施 例之光強度分佈與照角之極座標關係圓。 下列表(十五)中分別列有由光源侧至像侧沿中心軸 z之㈣晶片η、封膠層12、光學銳片13之光源侧光學面 R1與像侧光學面R2之曲率半後R或菲_中心轴聚光 曲面曲率半徑RF、間距di、光學鏡片13之錐度υ、各折 ❿率(Nd)等。本實施例係使用具有雒度且等環深度之平面 玻璃材料製成之菲淫爾光學鏡片,_kR1光學面為 平面。 表(十五) fs= 2.530 υ= 3.505&quot; Surface No. R or RF Ndi、 SO OO 0.10 iii^^ SI oo 0.52 !-4l〇 S2* 1.250 2.00 1·58? * Aspherical Zone Fesnel0.1252 soil = 0.2799 77 = 0.8832 '1/2 = 27.5 ΦΧ- 33.7 19.5 L·: rn 1.0146 -1)^= j fs 1.1475 can satisfy conditional formulas (1), (2), (3) and (7) ). Fig. 18 is a diagram showing the relationship between the light intensity distribution of the LED assembly of the embodiment and the polar coordinates of the illumination angle. From the above table (13), Table (14) and FIG. 18, it can be proved that the schematic diagram of the light-emitting diode assembly formed by the planar Fresnel optical lens of the present invention has high efficiency and predetermined elliptical light. The type, the light intensity of each angle is uniform, which can enhance the applicability of the creation. 28 M347533 &lt;Eighth Embodiment&gt; Referring to FIG. 6 and FIG. 19, the schematic diagrams of the light-emitting diode assembly using the planar Fresnel optical lens and the light intensity distribution of the present embodiment are respectively shown in FIG. It is related to the polar coordinates of the corner. In the following table (fifteen), the curvature of the light source side optical surface R1 and the image side optical surface R2 of the wafer η, the sealant layer 12, and the optical sharp film 13 from the light source side to the image side along the central axis z are respectively listed. R or phenanthrene-central axis condensing surface curvature radius RF, spacing di, taper of optical lens 13, enthalpy rate (Nd), and the like. In this embodiment, a Philippine optical lens made of a flat glass material having a twist and an equal ring depth is used, and the _kR1 optical surface is a flat surface. Table (15) fs= 2.530 υ= 3.505&quot; Surface No. R or RF Ndi, SO OO 0.10 iii^^ SI oo 0.52 !-4l〇 S2* 1.250 2.00 1·58? * Aspherical Zone Fesnel

在表(十五)巾,光學面(Surf.No,)有標註*者為非球面之 菲》圼爾光學面。下列表(十六)為菲涅爾光學面半徑^ 之非球面於式(9)之各項係數、沿中心起算之第一菲彡里爾 環半徑A、最末菲涅爾環半徑rn、菲涅爾環深度^及菲沒 爾環數量· 表(十六)In the table (fifteen) towel, the optical surface (Surf. No,) is marked with a * aspherical Philippine 圼 光学 optical surface. The following list (16) is the coefficient of the aspheric surface of the Fresnel optical surface ^, the coefficient of the equation (9), the radius A of the first Philippine ring radius along the center, the radius of the last Fresnel ring rn, Fresnel ring depth ^ and the number of Philippine rings · Table (16)

Aspherical Surface K a2 a4 a6 -1.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Fesnel Surface(mm) hd No. of Zone 0.06 0.387 2.387 37 29 M347533 本實施例中,光學鏡片13係利用折射率Nd2為1.582、 阿貝數vd2為61.7的玻璃材質製成。藉由搭配封膠層12及光 學鏡片13之折射係數與阿貝數,形成光線折射角度。經由 此光學鏡片13聚集後,以X方向65。、Y方向60°之橢圓 形照角,於無限遠處(以100倍fs為計)之β=69·588流明 (忽略空氣的折射與散射等效應);式(1)、(2)、 (3) 、(7)及式(8)分別為:Aspherical Surface K a2 a4 a6 -1.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Fesnel Surface(mm) hd No. of Zone 0.06 0.387 2.387 37 29 M347533 In this embodiment, the optical lens 13 is refracted. The rate is Nd2 is 1.582, and the Abbe number vd2 is 61.7 glass material. The light refraction angle is formed by matching the refractive index of the sealant layer 12 and the optical lens 13 with the Abbe number. After passing through the optical lens 13, it is 65 in the X direction. , the elliptical angle of 60° in the Y direction, β=69·588 lumens at infinity (in terms of 100 times fs) (ignoring the effects of refraction and scattering of air); equations (1), (2), (3), (7) and (8) are:

η= 0.8976 Im = 22.0 Φχ = 37.5 φγ = 27.0 1.0598 rnη = 0.8976 Im = 22.0 Φχ = 37.5 φγ = 27.0 1.0598 rn

0.46010.4601

0.2176 1= 0.3022 可以滿足條件式(1)、(2)、(3)及式(7)。圖19為本實 施例之LED組件光強度分佈與照角之極座標關係圖。由上 述表(十五)、表(十六)及圖19所示,藉此可證明本創 作之平面菲涅爾光學鏡片所構成的發光二極體組件示意圖 具有高效率且有預定的橢圓光型,其各角度之光強度均 一,可提昇本創作之應用性。 M347533 &lt;第九實施例&gt; 請參考圖6及圖20所示,其分別係本創作之使用平面 菲丨圼爾光學鏡片所構成的發光二極體組件示意圖及本實施 例之光強度分佈與照角之極座標關係圖。 下列表(十七)中分別列有由光源側至像側沿中心軸 Z之LED晶片11、封膠層12、光學鏡片13之光源侧光學面 R1與像侧光學面R2之曲率半徑R或菲涅爾中心軸聚光 曲面曲率半徑RF、間距di、光學鏡片13之錐度υ、各折射 ❿ 率(Nd)等。本實施例係使用具有錐度且等環深度之平面 玻璃材料製成之菲涅爾光學鏡片,於圖6之iu光學面為 平面。 表(十七) fs= 2.530 υ= 7.172 · Surface No. Ror RF di Ndi SO OO 0.10 SI oo 0.52 1.410 S2* 1.250 2.00 1.582 * Aspherical Zone Fesnel • 在表(十七)中,光學面(Surf.N〇·)有標註*者為非球面之 菲淫爾光學面。下列表(十八)為菲埋爾光學面半徑&amp; 之非球面於式(9)之各項係數、沿中心起算之第一菲淫爾 環半徑Γι、最末菲涅爾環半徑rn、菲涅爾環深度知及菲埋 爾環數量: 表(十八)0.2176 1 = 0.3022 The conditional expressions (1), (2), (3), and (7) can be satisfied. Fig. 19 is a diagram showing the relationship between the light intensity distribution of the LED assembly of the embodiment and the polar coordinates of the illumination angle. From the above table (fifteen), table (sixteen) and FIG. 19, it can be proved that the schematic diagram of the light-emitting diode assembly formed by the planar Fresnel optical lens of the present invention has high efficiency and predetermined elliptical light. The type, the light intensity of each angle is uniform, which can enhance the applicability of the creation. M347533 &lt;Ninth Embodiment&gt; Please refer to FIG. 6 and FIG. 20, which are respectively a schematic diagram of a light-emitting diode assembly using the planar Fischer optical lens and the light intensity distribution of the present embodiment. The relationship diagram with the polar coordinates of the corner. In the following list (17), the radius of curvature R of the LED wafer 11, the sealant layer 12, the light source side optical surface R1 and the image side optical surface R2 of the optical lens 13 from the light source side to the image side along the central axis Z are respectively listed or The Fresnel center axis condensed surface has a radius of curvature RF, a pitch di, a taper of the optical lens 13, a refractive index (Nd), and the like. In this embodiment, a Fresnel optical lens made of a flat glass material having a taper and an equal ring depth is used, and the optical surface of the iu of Fig. 6 is a flat surface. Table (17) fs= 2.530 υ= 7.172 · Surface No. Ror RF di Ndi SO OO 0.10 SI oo 0.52 1.410 S2* 1.250 2.00 1.582 * Aspherical Zone Fesnel • In Table (17), optical surface (Surf.N 〇·) There is a non-spherical Philippine optical surface marked with *. The following list (18) is the radius of the Philippine optical surface radius &amp; aspherical surface of the formula (9), the first Philippine ring radius Γι along the center, the last Fresnel ring radius rn, The depth of the Fresnel ring knows the number of Philippine rings: Table (18)

Aspherical Surface K a2 a4 a6 -L0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Fesnel Surface(mm) hd h No. of Zone 0.06 0.387 2.258 33, 31 M347533 本實施例中,光學鏡片13係利用折射率Nd2為1·582、 阿貝數Vd2為61 ·7的玻璃材質製成。藉由搭配封膠層I2及光 學鏡片13之折射係數與阿貝數’形成光線折射角度。經由 此光學鏡片13聚集後,以X方向68。、Υ方向33°之橢圓 形照角,於無限遠處(以100倍色為計)之β=71·267流明 (忽略空氣的折射與散射等效應);式(1)、(2)、 (3)、(7)及式(8)分別為:Aspherical Surface K a2 a4 a6 -L0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Fesnel Surface(mm) hd h No. of Zone 0.06 0.387 2.258 33, 31 M347533 In this embodiment, the optical lens 13 is utilized. It is made of a glass material having a refractive index Nd2 of 1.582 and an Abbe number Vd2 of 61·7. The light refraction angle is formed by matching the refractive index of the sealant layer I2 and the optical lens 13 with the Abbe number. After being collected by this optical lens 13, it is 68 in the X direction. The elliptical angle of the 33° direction of the Υ, β=71·267 lumens at infinity (in terms of 100 times color) (ignoring the effects of refraction and scattering of air); formulas (1), (2), (3), (7) and (8) are:

η: 0.9078 /1/2 = 34·0 Φχ = 33.8 Φγ = 16.8 4= 1.2045 rnη: 0.9078 /1/2 = 34·0 Φχ = 33.8 Φγ = 16.8 4= 1.2045 rn

(^2-l)^= 0.4601 J s(^2-l)^= 0.4601 J s

0.2176 Ed 0.4998 可以滿足條件式(1)、(2)、⑶及式⑺。圖2〇為本實 施例之LED組件光強度分佈與照角之極座標關係圖 。由上 述表(十七)、表(十八)及圖2〇所示,藉此可證明本創 作之平面!Μ爾光學鏡片所構成的發光二極體組件示意圖 具有高效社_定的_光型,其各角度之光強度均 一,可提昇本創作之應用性。 32 M347533 &lt;第十實施例&gt; 請參考圖6及圖21所示,其分別係本創作之使用平面 菲涅爾光學鏡片所構成的發光二極體組件示意圖及本實施 例之光強度分佈與照角之極座標關係圖。 下列表(十九)中分別列有由光源侧至像侧沿中心軸 Z之LED晶片11、封膠層12、光學鏡片13之光源側光學面 R1與像侧光學面R2之曲率半徑R或菲涅爾中心轴聚光 曲面曲率半徑RF、間距di、光學鏡片13之錐度υ、各折射 φ 率(Nd)等。本實施例係使用具有錐度且等環間距之平面 玻璃材料製成之菲涅爾光學鏡片,於圖6之R1光學面為 平面。 表(十九) fs= 2.530 υ= 0 Surface No. R or RF di Ndi SO 〇〇 0.10 SI 〇〇 0.52 1.410 S2* 1.250 2.00 L582 * Aspherical Zone Fesnel • 在表(十九)中,光學面(Surf.No·)有標註*者為非球面之 菲涅爾光學面。下列表(二十)為菲涅爾光學面半徑RP 之非球面於式(9)之各項係數、沿中心起算之第一菲涅爾 環半徑q、最末菲涅爾環半徑rn、菲涅爾環間距rt及菲涅 爾環數量: 表(二十)0.2176 Ed 0.4998 can satisfy the conditional expressions (1), (2), (3), and (7). Fig. 2 is a diagram showing the relationship between the light intensity distribution and the polar angle of the LED assembly of the present embodiment. From the above table (17), Table (18) and Figure 2〇, the plane of this creation can be proved! The schematic diagram of the LED assembly formed by the optical lens of the Muir has a high-efficiency _ _ light type, and the light intensity of each angle is uniform, which can enhance the application of the creation. 32 M347533 &lt;Tenth Embodiment&gt; Please refer to FIG. 6 and FIG. 21, which are respectively a schematic diagram of a light-emitting diode assembly using the planar Fresnel optical lens and the light intensity distribution of the present embodiment. The relationship diagram with the polar coordinates of the corner. In the following list (nine), the radius of curvature R of the LED wafer 11, the sealant layer 12, the light source side optical surface R1 and the image side optical surface R2 of the optical lens 13 from the light source side to the image side along the central axis Z are respectively listed or Fresnel center axis condensing surface curvature radius RF, spacing di, taper υ of optical lens 13, φ φ rate (Nd). In this embodiment, a Fresnel optical lens made of a flat glass material having a taper and an equal ring pitch is used, and the R1 optical surface of Fig. 6 is a flat surface. Table (19) fs= 2.530 υ= 0 Surface No. R or RF di Ndi SO 〇〇0.10 SI 〇〇0.52 1.410 S2* 1.250 2.00 L582 * Aspherical Zone Fesnel • In the table (19), the optical surface (Surf .No·) There is a Fresnel optical surface with an aspherical surface. The following list (20) is the coefficient of the aspheric surface of the Fresnel optical surface radius RP in the equation (9), the radius of the first Fresnel ring q along the center, the radius of the last Fresnel ring rn, Philippine Nere ring spacing rt and Fresnel ring number: Table (20)

Aspherical SurfaceAspherical Surface

Fesnel Surface(mm) _K_A2_A4_ -1 0000E+00 0·0000Ε+00 0.0000E+00 0·0000Ε+00 rt rn No. of Zone 05 1500 Γ 33 M347533 本貫列中,光學鏡片13係利用折 , 阿貝數vd2為6L7的破續材、凡2為1.582、 學鏡片13之折射係數與 ^, 格配封膠層12及光 此光學鏡片U聚集後,、以χ方向射角度。經由 Π;:,…㈣計二= (2) (忽略以的折射與散射等效應);式⑴ ⑶、⑺及式⑻分別為: η 【1/2 Φχ = L. rn 0.9214 26.0 40.5 35.0 1.0121 (沁2 - 1)^· c/2-1)子=0.4601Fesnel Surface(mm) _K_A2_A4_ -1 0000E+00 0·0000Ε+00 0.0000E+00 0·0000Ε+00 rt rn No. of Zone 05 1500 Γ 33 M347533 In this column, the optical lens 13 is folded, Abe The number vd2 is a broken material of 6L7, where 2 is 1.582, the refractive index of the lens 13 is controlled, and the sealing layer 12 and the optical lens U are collected, and the angle is taken in the direction of the χ. Via Π;:,...(4) Count 2 = (2) (Ignore the effects of refraction and scattering); Equations (1) (3), (7), and (8) are: η [1/2 Φχ = L. rn 0.9214 26.0 40.5 35.0 1.0121 (沁2 - 1)^· c/2-1) Sub = 0.4601

{ ^ ) 1 ^ J •/g= 0.0081 1/2{ ^ ) 1 ^ J •/g= 0.0081 1/2

Ed 0.1366 可以滿足條件式(1)、(2)、(3)及式⑺。圖21為本實 施例之LED組件光強度分佈與照角之極座標關係圖。由上 述表(十九)、表(二十)及圖21所示,藉此可證明本創 作之平面菲涅爾光學鏡片所構成的發光二極體組件示意圖 具有高效率且有預定的橢圓光型,其各角度之光強度均 一 ’可提昇本創作之應用性。 34 M347533 &lt;第十一實施例&gt; 請參考圖6及圖22所示,其分別 菲淫爾光學鏡片所構成的發光二極體^㈣之便用千面 例之光強度分佈與照角之極座標關係圖。不意®及本實施 下列表(二十-)中分別列有由 軸Z之LED晶片U、封膠層12、光學鏡片13之=:2 面Ri與像侧光學面R2之曲率半後汉或菲_中^ 光曲面曲率半徑〜、間距di、光學鏡W之錐度υ、= 射率(Nd)等。本實施福使祕Mu等環間^ 面玻璃材料製成之1化爾光學鏡片1圖6之R!光學: 為平面。 囬 表(二十一) fs= 2.530 υ= 0 Surface No. R or RF di Ndi〜 SO OO 0.10 SI 00 0.52 1.410 S21 1.250 2.00 1.582Ed 0.1366 can satisfy the conditional expressions (1), (2), (3), and (7). Fig. 21 is a diagram showing the relationship between the light intensity distribution of the LED assembly of the embodiment and the polar coordinates of the illumination angle. From the above table (19), Table (20) and FIG. 21, it can be proved that the schematic diagram of the LED assembly formed by the planar Fresnel optical lens of the present invention has high efficiency and predetermined elliptical light. The type, the uniformity of light intensity at each angle can enhance the applicability of this creation. 34 M347533 &lt;Eleventh Embodiment&gt; Referring to FIG. 6 and FIG. 22, the light intensity distribution and the illumination angle of the light-emitting diode (4) formed by the Philippine optical lens respectively The polar coordinate diagram. Unknown® and the list (20-) in this embodiment list the curvature of the LED wafer U, the sealant layer 12, and the optical lens 13 of the axis Z, respectively, and the curvature of the image side optical surface R2. Philippine _ middle ^ light surface curvature radius ~, spacing di, optical mirror W taper υ, = luminosity (Nd) and so on. This embodiment is made of Mi, such as Mu, etc., which is made of a ring-shaped glass material. The lens of Fig. 6 is R! Optics: It is a flat surface. Back Table (21) fs= 2.530 υ= 0 Surface No. R or RF di Ndi~ SO OO 0.10 SI 00 0.52 1.410 S21 1.250 2.00 1.582

Aspherical SurfaceAspherical Surface

K A2 a4 a6 -1.0000E+00 0.0000E+00 O.OOOOE+OO 0.0000E+00K A2 a4 a6 -1.0000E+00 0.0000E+00 O.OOOOE+OO 0.0000E+00

Fesnel Surface(mm)Fesnel Surface(mm)

No. of Zone 0.0625 2.500 40 35 1No. of Zone 0.0625 2.500 40 35 1

Aspherical Zone Fesnel 在表(二十-)中,光學面(Surf.N。·)有標註1者為非球面 之菲淫爾光學面。下列表(二十二)為菲涅爾光學面半徑 RP之非球面於式(9)之各項係數、沿中心起算之第一菲埋 爾環半徑r〗、最末菲涅爾環半徑rn、菲涅爾環間距&amp;及菲 淫爾環數量: 表(二十二) M347533 本實施例中,光學鏡片13係利用折射率Nd2為1.582、 阿貝數vd2為61.7的玻璃材質製成。藉由搭配封膠層12及光 學鏡片13之折射係數與阿貝數,形成光線折射角度。經由 此光學鏡片13聚集後,以X方向60°、Y方向80°之橢圓 形照角,於無限遠處(以100倍為計)之β=72·164流明 (忽略空氣的折射與散射等效應);式(1)、(2)、 ⑶、(7)及式(8)分別為:Aspherical Zone Fesnel In the table (Twenty-), the optical surface (Surf.N.·) has a non-spherical Philippine optical surface. The following list (22) is the coefficient of the aspheric surface of the Fresnel optical surface radius RP in the equation (9), the radius of the first Philippine ring radius r along the center, and the radius of the last Fresnel ring rn , Fresnel ring pitch &amp; and Philippine ring number: Table (22) M347533 In this embodiment, the optical lens 13 is made of a glass material having a refractive index Nd2 of 1.582 and an Abbe number vd2 of 61.7. The light refraction angle is formed by matching the refractive index of the sealant layer 12 and the optical lens 13 with the Abbe number. After the optical lens 13 is collected, the elliptical angle of 60° in the X direction and 80° in the Y direction is β=72·164 lumens at infinity (in 100 times) (ignoring the refraction and scattering of air, etc.) Effect); Equations (1), (2), (3), (7), and (8) are:

η= 0.9192 IV2 = 30.0 Φχ: 39.4 Φ,30 ^-= 1.0121η= 0.9192 IV2 = 30.0 Φχ: 39.4 Φ,30 ^-= 1.0121

0.4601 Js0.4601 Js

•Λ = 0.2184 0.1147•Λ = 0.2184 0.1147

Ed 可以滿足條件式(1)、(2)、(3)及式(7)。圖22為本實 施例之LED組件光強度分佈與照角之極座標關係圖。由上 述表(二十一)、表(二十二)及圖22所示,藉此可證明 本創作之平面菲涅爾光學鏡片所構成的發光二極體組件示 意圖具有高效率且有預定的橢圓光型,其各角度之光強度 均一,可提昇本創作之應用性。 36 M347533 &lt;第十二實施例&gt; 請參考圖6及圖23所示,其分別係本創作之使用平凹 面菲》里爾光學鏡片所構成的發光^一極體組件示章圖及本實 施例之光強度分佈與照角之極座標關係圖。 下列表(一十二)中分別列有由光源侧至像侧沿中心 軸Z之LED晶片11、封膠層12、光學鏡片13之光源侧光學 面R1與像側光學面R2之曲率半徑r或菲涅爾中心轴聚 光曲面曲率半徑Rf、間距出、光學鏡片13之錐度υ、各折 射率(Nd )等。本實施例係使用具有無錐度且等環深度之 平凹面玻璃材料製成之菲涅爾光學鏡片,其凹面係向光源 侧 表(二十三) fs= 2.530 υ= 0 Surface No. R or Rp di Ndi — SO OO 0.10 SI 30.00 0.62 1.410 S2* 1.250 1.90 1.582 在表(二十三)中,光學面(Surf.No·)有標註*者為非球面 之菲涅爾光學面。下列表(二十四)為菲涅爾光學面半搜 Rp之非球面於式(9)之各項係數、沿中心起算之第一菲$里 爾環半徑1^、最末菲涅爾環半徑rn、菲涅爾環深度hd及菲 涅爾環數量: 表(二十四) K a2 a4 八6 /\SpilcriCai oUriaCC 1.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 hd ri No. of Zone rcSIlcl ouriaCc^IxlIIlj 0.06 0.387 2.510 42 37 M347533 本實施例中’光學鏡片13係利用折射率^為1 、 阿貝數W為61.7的玻璃材質製成。藉由搭配封=層12及光 學鏡片13之折射係數與阿貝數,形成光線折射^户。經由 此光學鏡片13聚集後,.以X方向6〇。、γ方向4(^之=圓 形照角’於無限遠處(以10〇倍fs為計)之ρ=695〇6流明 (忽略空氣的折射與散射等效應);式(1)、⑺、” (3)、⑺及式(8)分別為:Ed can satisfy the conditional expressions (1), (2), (3), and (7). Fig. 22 is a diagram showing the relationship between the light intensity distribution of the LED assembly of the embodiment and the polar coordinates of the illumination angle. From the above table (21), Table (22) and Figure 22, it can be proved that the schematic diagram of the LED assembly formed by the planar Fresnel optical lens of the present invention is highly efficient and has a predetermined The elliptical light type has uniform light intensity at all angles, which enhances the applicability of the creation. 36 M347533 &lt;Twelfth Embodiment&gt; Please refer to FIG. 6 and FIG. 23, which are respectively a schematic diagram and a schematic diagram of a light-emitting diode assembly formed by using a flat-concave Philippine Lille optical lens. The polar coordinate relationship between the light intensity distribution and the illumination angle of the embodiment. In the following list (12), the radius of curvature r of the LED wafer 11, the sealant layer 12, the light source side optical surface R1 and the image side optical surface R2 of the optical lens 13 from the light source side to the image side along the central axis Z are respectively listed. Or Fresnel center axis condensing surface curvature radius Rf, spacing out, taper υ of optical lens 13, refractive index (Nd) and so on. In this embodiment, a Fresnel optical lens made of a flat and concave glass material having no taper and equal ring depth is used, and the concave surface is directed to the side of the light source (23) fs=2.530 υ= 0 Surface No. R or Rp Di Ndi — SO OO 0.10 SI 30.00 0.62 1.410 S2* 1.250 1.90 1.582 In the table (23), the optical surface (Surf.No·) has a Fresnel optical surface marked with aspherical surface. The following list (24) is the Fresnel optical surface half search Rp aspheric surface in the formula (9) coefficient, the first Philippine $ Lille ring radius 1 ^, the last Fresnel ring Radius rn, Fresnel ring depth hd and number of Fresnel rings: Table (24) K a2 a4 8 6 /\SpilcriCai oUriaCC 1.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 hd ri No . of Zone rcSIlcl ouriaCc^IxlIIlj 0.06 0.387 2.510 42 37 M347533 In the present embodiment, the 'optical lens 13 is made of a glass material having a refractive index ^1 and an Abbe number W of 61.7. The light refraction is formed by matching the refractive index of the sealing layer 12 and the optical lens 13 with the Abbe number. After being collected by this optical lens 13, it is 6 inches in the X direction. γ direction 4 (^ ==circular angle ' at infinity (in 10 〇 fs) ρ = 695 〇 6 lumens (ignoring the effects of air refraction and scattering); formula (1), (7) , "(3), (7) and (8) are:

η: 0.8854 /1/2= 30.0 Φχ^ 33.1 19.0 1.0008 rnη: 0.8854 /1/2= 30.0 Φχ^ 33.1 19.0 1.0008 rn

(沁2 -1)资= 0.4361(沁2 -1) capital = 0.4361

0.20530.2053

0.2188 可以滿足條件式(1)、(2)、(3)及式(7)。圖23為本實 施例之LED組件光強度分佈與照角之極座標關係圖。由上 述表(二十三)、表(二十四)及圖23所示,藉此可證明 本創作之平凹面菲涅爾光學鏡片所構成的發光二極體組件 示意圖具有高效率且有預定的橢圓光型,其各角度之光強 度均一,可提昇本創作之應用性。 38 M347533 &lt;第十三實施例&gt; 請參考圖6及圖24所示,其分別係本創作之使用平凹 面菲涅爾光學鏡片所構成的發光二極體組件示意圖及本 施例之光強度分佈與照角之極座標關係圖。 下列表(二十五)中分別列有由光源侧至像侧沿中心 軸Z之LED晶片11、封膠層12、光學鏡片13之光源側光取 面R1與像侧光學® R2之曲率半徑&amp;或菲埋爾中心轴= 光曲面曲率半徑RF、間距di、光學鏡片13之錐度υ、各拚 ♦ 射率(Nd)等。本實施例係使用具有無錐度且等環深 平凹面玻璃材料製成之菲連爾光學鏡片,其凹面係向= 侧。 你 表(二十五) fs= 2.530 υ= 〇 Surface No. RorRF Ndi SO OO 0.10 SI 9.00 0.87 1.410 S2* 1.250 1.65 1.582 * Aspherical Zone Fesnel *在表(二十五)巾,光學面(SUrf.N〇·)有標註*者為非球面 之菲涅爾光學面。下列表(二十六)為菲闕光學面顿 Rp之非球面於式⑼之各項係數、沿中心起算之第一菲涅 爾環半徑^、最末菲涅爾環半徑Γη、菲涅爾環深度比及菲 淫爾環數量: 表(二十六)0.2188 can satisfy the conditional expressions (1), (2), (3), and (7). Fig. 23 is a diagram showing the relationship between the light intensity distribution of the LED assembly of the embodiment and the polar coordinates of the illumination angle. From the above table (23), Table (24) and Figure 23, it can be proved that the schematic diagram of the light-emitting diode assembly formed by the flat concave Fresnel optical lens of the present invention is highly efficient and has a predetermined schedule. The elliptical light type has uniform light intensity at all angles, which enhances the applicability of the creation. 38 M347533 &lt;Thirteenth Embodiment&gt; Please refer to FIG. 6 and FIG. 24, which are respectively a schematic diagram of a light-emitting diode assembly using the flat concave Fresnel optical lens and the light of the embodiment. The relationship between the intensity distribution and the polar coordinates of the illumination angle. In the following table (25), the radius of curvature of the LED wafer 11, the sealant layer 12, the light source side light-receiving surface R1 and the image side optical® R2 of the optical lens 13 from the light source side to the image side are respectively listed. &amp; or Philippine central axis = radius of curvature of the surface of the light RF, spacing di, taper of the optical lens 13, 各 ♦ rate (Nd) and so on. In this embodiment, a Fresnel optical lens having a taper-free and equiangular deep-concave glass material is used, the concave surface of which is toward the side. Your table (25) fs= 2.530 υ= 〇Surface No. RorRF Ndi SO OO 0.10 SI 9.00 0.87 1.410 S2* 1.250 1.65 1.582 * Aspherical Zone Fesnel *In the table (25) towel, optical surface (SUrf.N 〇·) There is a Fresnel optical surface with an aspherical surface. The following list (26) is the coefficient of the aspheric surface of the phenanthrene optical surface Rp in the formula (9), the radius of the first Fresnel ring along the center ^, the radius of the last Fresnel ring Γη, Fresnel Ring depth ratio and number of Philippine rings: Table (26)

Aspherical Surface K a2 a4 a6 -1.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Fesnel Surface(mm) hd No. of Zone 0.06 0.387 2.510 35 39 M347533 本實施例中,光學鏡片13係利用折射率Nd2為1.582、 阿貝數vd2為61.7的玻璃材質製成。藉由搭配封膠層12及光 學鏡片13之折射係數與阿貝數,形成光線折射角度。經由 此光學鏡片13聚集後,以X方向60°、Y方向40°之橢圓 形照角,於無限遠處(以100倍fs為計)之β=69·506流明 (忽略空氣的折射與散射等效應);式(1)、(2)、 ⑶、⑺及式(8)分別為:Aspherical Surface K a2 a4 a6 -1.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Fesnel Surface(mm) hd No. of Zone 0.06 0.387 2.510 35 39 M347533 In this embodiment, the optical lens 13 is refracted. The rate is Nd2 is 1.582, and the Abbe number vd2 is 61.7 glass material. The light refraction angle is formed by matching the refractive index of the sealant layer 12 and the optical lens 13 with the Abbe number. After the optical lens 13 is collected, the elliptical angle of 60° in the X direction and 40° in the Y direction is β=69·506 lumens at infinity (in terms of 100 times fs) (ignoring the refraction and scattering of air) Equivalent effect); Equations (1), (2), (3), (7), and (8) are:

η - 0.8828η - 0.8828

Im = 29.0 Φχ= 31.0 = 20.2 1.0081 (^20.3786 ./ =: 0.2227 0.2103Im = 29.0 Φχ = 31.0 = 20.2 1.0081 (^20.3786 ./ =: 0.2227 0.2103

Ed 可以滿足條件式(1)、(2)、(3)及式(7)。圖24為本 實施例之LED組件光強度分佈與照角之極座標關係圖。 由上述表(二十五)、表(二十六)及圖24所示,藉此 可證明本創作之平凹面菲涅爾光學鏡片所構成的發光二 極體組件示意圖具有高效率且有預定的橢圓光型,其各 角度之光強度均一,可提昇本創作之應用性。 M347533 以上所示僅為本新型之優選實施例,對本新型而言僅 是說明性的,而非限制性的。本專業技術領域具通常知識 人員理解,在本新型權利要求所限定的精神和範圍内可對 其進行許多改變、修改、甚至等效變更,但都將落入本新 型的權利範圍内。 【圖式簡單說明】 圖ΙΑ、1B係習知技藝之使用LED光學鏡片於LED組件 之示意圖; 圖2係本創作之使用無錐度菲涅爾LED光學鏡片於LED組 件之立體示意圖; 圖3係本創作之使用有錐度菲涅爾LED光學鏡片於LED組 件之立體示意圖; 圖4係係本創作之使用之垂直環齒等環間距之菲涅爾LED 光學鏡片與聚光曲面曲率半徑關係圖; 圖5係係本創作之使用之垂直環齒等環深度之菲涅爾LED 光學鏡片與聚光曲面曲率半徑關係圖; 圖6係本創作之LED光學鏡片於LED組件之構成示意圖; 圖7係有錐度菲涅爾LED光學鏡片之錐度表示圖; 圖8係本創作之菲涅爾LED光學鏡片於LED組件光路示意 圖, 圖9係本創作之菲涅爾LED光學鏡片A群光線與B群線折 射不意圖; 圖10係本創作之菲涅爾LED光學鏡片A群光線與B群線光 路示意圖; 圖11係圖9與圖10之A群光線與B群線組合成均勻光強度 M347533 之示意圖; 圖12係本創作之第一實施例之LED組件光強度分佈與照角 之極座標關係圖; 圖13係本創作之第二實施例之LED組件光強度分佈與照角 之極座標關係圖; 圖14係本創作之第三實施例之LED組件光強度分佈與照角 之極座標關係圖; 圖15係本創作之第四實施例之LED組件光強度分佈與照角 之極座標關係圖; 圖16係本創作之第五實施例之LED組件光強度分佈與照角 之極座標關係圖; 圖17係本創作之第六實施例之LED組件光強度分佈與照角 之極座標關係圖; 圖18係本創作之第七實施例之LED組件光強度分佈與照角 之極座標關係圖; 圖19係本創作之第八實施例之LED組件光強度分佈與照角 之極座標關係圖; 圖20係本創作之第九實施例之LED組件光強度分佈與照角 之極座標關係圖; 圖21係本創作之第十實施例之LED組件光強度分佈與照角 之極座標關係圖; 圖22係本創作之第十一實施例之LED組件光強度分佈與照 角之極座標關係圖; 圖23係本創作之第十二實施例之LED組件光強度分佈與照 角之極座標關係圖;以及 42 M347533 圖24係本創作之第十三實施例之LED組件光強度分佈與照 角之極座標關係圖。 【主要元件符號說明】 10 LED組件 ’ 11、21 LED 晶片 12 、22封膠層 13、23光學鏡片 R1光源侧光學面或其曲率半徑 R2像側光學面或其曲率半徑 Rf像側菲涅爾光學面之聚光曲面曲率半徑 d0中心軸上LED晶片厚度 dl中心軸上LED晶片表面至光學鏡片光源侧之光學面距 離 d2中心轴光學鏡片厚度; ri第一環半徑 Γη最末環半徑 rt 環間距 hd環深度Ed can satisfy the conditional expressions (1), (2), (3), and (7). Fig. 24 is a diagram showing the relationship between the light intensity distribution of the LED assembly and the polar angle of the illumination angle of the present embodiment. From the above table (25), Table (26) and Figure 24, it can be proved that the schematic diagram of the light-emitting diode assembly formed by the flat-concave Fresnel optical lens of the present invention is highly efficient and has a predetermined schedule. The elliptical light type has uniform light intensity at all angles, which enhances the applicability of the creation. The above is only a preferred embodiment of the present invention, and is intended to be illustrative only and not limiting. It will be apparent to those skilled in the art that many changes, modifications, and equivalents may be made in the spirit and scope of the invention as defined by the appended claims. [Simple diagram of the diagram] Figure ΙΑ, 1B is a schematic diagram of the use of LED optical lens in the LED component of the conventional art; Figure 2 is a three-dimensional schematic diagram of the use of the non-tapered Fresnel LED optical lens in the LED component of the present invention; The use of the present invention is a three-dimensional schematic diagram of a tapered Fresnel LED optical lens in the LED assembly; Figure 4 is a relationship diagram of the radius of curvature of the Fresnel LED optical lens and the concentrated surface of the vertical ring-tooth ring spacing used in the present creation; Figure 5 is a relationship between the radius of curvature of the Fresnel LED optical lens and the condensed surface of the vertical ring gear used in the present invention; Figure 6 is a schematic diagram of the LED optical lens of the present invention in the LED assembly; The taper representation of the tapered Fresnel LED optical lens; Figure 8 is a schematic diagram of the optical path of the Fresnel LED optical lens in the LED component of the present invention, and Figure 9 is the Fresnel LED optical lens of the present invention, group A light and B group line Refraction is not intended; Figure 10 is a schematic diagram of the Group A light and B group light path of the Fresnel LED optical lens of the present invention; Figure 11 is a schematic diagram of the combination of the Group A light and the B group line of Figure 9 and Figure 10 into a uniform light intensity M347533 ; FIG. 12 is a diagram showing the relationship between the light intensity distribution of the LED component and the polar angle of the illumination unit according to the first embodiment of the present invention; FIG. 13 is a diagram showing the relationship between the light intensity distribution of the LED component and the polar coordinate of the illumination unit according to the second embodiment of the present invention; FIG. 15 is a diagram showing the relationship between the light intensity distribution of the LED component and the polar coordinate of the illumination unit according to the third embodiment of the present invention; FIG. 15 is a diagram showing the relationship between the light intensity distribution and the angle of the illumination of the LED component of the fourth embodiment of the present invention; FIG. 17 is a diagram showing the relationship between the light intensity distribution of the LED component of the fifth embodiment and the polar coordinate of the illumination angle; FIG. 17 is a diagram showing the relationship between the light intensity distribution and the angle of the illumination of the LED component of the sixth embodiment of the present invention; FIG. 19 is a diagram showing the relationship between the light intensity distribution of the LED component of the eighth embodiment and the polar coordinate of the illumination angle; FIG. 19 is the ninth relationship between the light intensity distribution and the illumination angle of the LED component of the eighth embodiment; FIG. 21 is a diagram showing the relationship between the light intensity distribution of the LED component and the polar coordinate of the illumination unit according to the tenth embodiment of the present invention; FIG. 22 is the eleventh figure of the creation. FIG. 23 is a diagram showing the relationship between the light intensity distribution of the LED component and the polar coordinate of the illumination unit according to the twelfth embodiment of the present invention; and 42 M347533 FIG. 24 is the creation of the present invention. A diagram showing the relationship between the light intensity distribution of the LED assembly of the thirteenth embodiment and the polar coordinates of the illumination angle. [Main component symbol description] 10 LED component '11, 21 LED wafer 12, 22 sealant layer 13, 23 optical lens R1 light source side optical surface or its radius of curvature R2 image side optical surface or its radius of curvature Rf image side Fresnel Concentration radius of the optical surface of the optical surface d0 The thickness of the LED wafer on the central axis dl The optical surface distance from the LED wafer surface to the optical lens source side on the central axis d2 The central axis optical lens thickness; ri The first ring radius Γη The last ring radius rt Ring Spacing hd ring depth

Nd折射率 vd阿貝數Nd refractive index vd Abbe number

Ed LED晶片發出之照度 E1/2菲涅爾光學鏡片發出之最高光強度一半處之照度 a LED晶片發出光線的光通量 β 像側相對無限遠處光線的光通量 43Illumination from Ed LED wafers Illumination at half the maximum light intensity emitted by the E1/2 Fresnel optical lens a Luminous flux from the LED wafer β Luminous flux at the image side relative to infinity 43

Claims (1)

M347533 九、申請專利範圍: 1、 一種平面菲涅爾發光二極體光學鏡片,供使用於發光 二極體組件中,該發光二極體組件沿著中心轴由光源 侧至像侧排列依序包含一發光二極體晶片、一封膠層 及一光學鏡片;該光學鏡片之特徵在於: 該光學鏡片具有一像侧光學面及一光源侧光學面,其 中該像侧光學面為一平面之菲涅爾光學面,而該菲涅 爾光學面之環面係由一聚光曲面轉移形成,且其環面 • 具有垂直環齒,以使發光二極體晶片所發出之光線經 由封膠層與該光學鏡片後可形成橢圓形照角之光型, 且該光學鏡片滿足以下條件: 0.7 &lt;^&lt;2.2 0.1 &lt;(^2-1)φ-&lt; 1.25 J S 其中,f;為本光學鏡片之有效焦距、rn為菲涅爾光學 面之最末環半徑、d2為中心軸光學鏡片厚度、1^2為 • 光學鏡片的折射率。 2、 如申請專利範圍第1項所述之平面菲涅爾發光二極體 光學鏡片,其中該光學鏡片進一步滿足以下條件: (V,丫 + 卜-叫2 { ^ J 1 ^ J ./g&lt;0_6 其中: Λ (~Tyfs M347533 D :tan&quot; :tan&quot; ^dO + dl + dl + Ly) 其中,fs為本光學鏡片之有效焦距,rn為菲涅爾光學 面之最末環半徑,山為中心軸光學鏡片厚度,Nd2為 光學鏡片的折射率,2 &lt;為經由光學鏡片射出光線^ X方向最高光強度一半處之角度(度deg·),2 &amp;為麵 由光學鏡片射出光線在Y方向最高光強度一半處之角 度(度deg·),2Lx為LED晶片在X方向之長度, 為LED晶片在Y方向之長度,fg為本光學鏡片之相當 焦距,&amp;為光源侧光學面之曲率半徑,rf為像侧菲違 爾光學面之聚光曲面曲率半徑,d0為LED晶片厚度, 山為中心轴之封膠層厚度,d為光學鏡片在像侧光學 面之半徑。 、如申請專利範圍第1項所述之平面菲涅爾發光二極體 光學鏡片,其中該光學鏡片之光源侧光學面為一平 面 4、 如申請專利範圍第1項所述之平面菲涅爾發光二極體 光學鏡&gt;1 ’其巾該光學鏡片之光關光學面為一凹 面0 5、 =申請專利範圍第1項所述之平面菲_發光二極體 二予鏡片,其中該用以轉移形成菲朗光學面之聚光 曲面為球面。 :申明專利fe圍第1項所述之平面菲淫爾發光二極體 &quot;予鏡片’其中㈣以轉移形成脑爾光學面之聚光 45 M347533 曲面為非球面。 7、 如申請專利範圍第1項所述之平面菲涅爾發光二極體 光學鏡片,其中該菲涅爾光學面之環面為等環深度。 8、 如申請專利範圍第1項所述之平面菲涅爾發光二極體 光學鏡片,其中該菲涅爾光學面之環面為等環間距。 9、 如申請專利範圍第1項所述之平面菲涅爾發光二極體 光學鏡片,其中該光學鏡片之外緣面具有錐度。 10、 如申請專利範圍第1項所述之平面菲涅爾發光二極體 • 光學鏡片,其中該光學鏡片係由選自塑膠光學材料及 玻璃光學材料中一種所製成。 11、 一種發光二極體組件,其沿著中心軸由光源侧至像侧 排列依序包含一如申請專利範圍第1至第10項之任一 項所述之平面菲涅爾發光二極體光學鏡片、一封膠層 及一發光二極體晶片;其特徵在於: 該發光二極體組件具有橢圓照角光型,並滿足以下條 件: El/2 &lt; 0.7 Ed , 其中, Ευι =-^; (^rrt*sin^)*(rw*sin^) 其中,rn為菲涅爾光學面之最末環半徑、2九為經由 光學鏡片射出光線在X方向最高光強度一半處之 角度(度deg·)、2為為經由光學鏡片射出光線在Y方 46 M347533 向最高光強度一半/1/2處之角度(度)、rn為菲涅爾 光學面之最末環半徑、α為LED晶片發出光線的光通 量、β為像側相對無限遠處(100倍fs )不考慮衰減 因素之光線的光通量、η為光通量比值7 = ρ/α 、Ed為 LED晶片發出之照度。 12、如申請專利範圍第11項所述之發光二極體組件,其中 該發光二極體組件發出光線的光通量與像侧相對無限 遠處的光通量比值,係滿足以下條件: _ β!α&gt;%5% 其中,α為該發光二極體晶片發出光線的光通量、β 為該發光二極體組件像側相對無限遠處忽略空氣的折 射與散射等效應之光通量。M347533 IX. Patent application scope: 1. A flat Fresnel LED optical lens for use in a light-emitting diode assembly, the light-emitting diode assembly is arranged along the central axis from the light source side to the image side. The invention comprises a light emitting diode chip, an adhesive layer and an optical lens. The optical lens has an image side optical surface and a light source side optical surface, wherein the image side optical surface is a flat surface. Fresnel optical surface, and the torus of the Fresnel optical surface is formed by a concentrated curved surface, and the torus surface has a vertical ring tooth so that the light emitted by the LED chip passes through the sealing layer And the optical lens can form an elliptical angle of light, and the optical lens satisfies the following condition: 0.7 &lt;^&lt;2.2 0.1 &lt;(^2-1)φ-&lt; 1.25 JS wherein f; The effective focal length of the optical lens, rn is the radius of the last ring of the Fresnel optical surface, d2 is the thickness of the central axis optical lens, and 1^2 is the refractive index of the optical lens. 2. The planar Fresnel light-emitting diode optical lens according to claim 1, wherein the optical lens further satisfies the following condition: (V, 丫+卜-叫2 { ^ J 1 ^ J ./g&lt;;0_6 where: Λ (~Tyfs M347533 D :tan&quot;:tan&quot; ^dO + dl + dl + Ly) where fs is the effective focal length of the optical lens, rn is the radius of the last ring of the Fresnel optical surface, mountain For the central axis optical lens thickness, Nd2 is the refractive index of the optical lens, 2 &lt; is the angle (degree deg·) at half the maximum light intensity in the direction of the light emitted from the optical lens, 2 &amp; The angle at half the maximum light intensity in the Y direction (degree deg·), 2Lx is the length of the LED wafer in the X direction, the length of the LED wafer in the Y direction, fg is the focal length of the optical lens, &amp; The radius of curvature of the surface, rf is the radius of curvature of the concentrated surface of the image side of the Philippine optical surface, d0 is the thickness of the LED wafer, the thickness of the sealing layer of the mountain is the central axis, and d is the radius of the optical surface of the optical lens on the image side. As described in the scope of claim 1 a neil light-emitting diode optical lens, wherein the optical side of the optical lens is a plane 4, and the planar Fresnel light-emitting diode optical mirror according to claim 1 is 1 The optical off-optical surface of the optical lens is a concave surface 0 5 , = the flat phenanthrene-light-emitting diode two-preset lens described in claim 1 , wherein the concentrated curved surface for transferring the pentent optical surface is spherical : Affirmation of the patent fei 淫 尔 发光 发光 & 予 予 予 予 予 予 予 予 予 予 予 予 予 予 予 予 予 予 予 予 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 7 7 7 7 7 7 7 7 7 7 7 7 The planar Fresnel light-emitting diode optical lens according to Item 1, wherein the ring surface of the Fresnel optical surface is an equi-ring depth. 8. The planar Fresnel light-emitting diode according to Item 1 of the patent application scope. The polar optical lens, wherein the toroidal surface of the Fresnel optical surface is an equal ring pitch. 9. The planar Fresnel light emitting diode optical lens according to claim 1, wherein the outer edge of the optical lens The surface has a taper. The planar Fresnel light-emitting diode according to the first aspect of the invention, wherein the optical lens is made of one selected from the group consisting of a plastic optical material and a glass optical material. 11. A light-emitting diode assembly, The planar Fresnel light-emitting diode optical lens, a glue layer and a layer according to any one of claims 1 to 10, which are arranged in a sequence from the light source side to the image side along the central axis. a light-emitting diode wafer; characterized in that: the light-emitting diode assembly has an elliptical illumination type and satisfies the following condition: El/2 &lt; 0.7 Ed , wherein, Ευι =-^; (^rrt*sin^) *(rw*sin^) where rn is the radius of the last ring of the Fresnel optical surface, and 2 is the angle (degree deg·) at which the light is emitted through the optical lens at half the maximum light intensity in the X direction, and 2 is The optical lens emits light at the Y-square 46 M347533 to the angle of half the maximum light intensity / 1/2 (degree), rn is the radius of the last ring of the Fresnel optical surface, α is the luminous flux of the LED chip, β is the image The side is relatively infinity (100 times fs) without considering the attenuation factor The flux of light, η is the luminous flux ratios 7 = ρ / α, Ed illuminance of the LED chip emits. 12. The illuminating diode assembly of claim 11, wherein the ratio of the luminous flux of the illuminating diode component to the luminous flux at the infinity of the image side satisfies the following condition: _β!α&gt; %5%, where α is the luminous flux of the light emitted by the light-emitting diode wafer, and β is the luminous flux of the effect of refracting the scattering and scattering of air at the infinity of the image side of the light-emitting diode assembly.
TW97216374U 2008-09-10 2008-09-10 Plano-Fresnel LED lens for angular distribution patterns and LED assembly thereof TWM347533U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97216374U TWM347533U (en) 2008-09-10 2008-09-10 Plano-Fresnel LED lens for angular distribution patterns and LED assembly thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97216374U TWM347533U (en) 2008-09-10 2008-09-10 Plano-Fresnel LED lens for angular distribution patterns and LED assembly thereof

Publications (1)

Publication Number Publication Date
TWM347533U true TWM347533U (en) 2008-12-21

Family

ID=44339900

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97216374U TWM347533U (en) 2008-09-10 2008-09-10 Plano-Fresnel LED lens for angular distribution patterns and LED assembly thereof

Country Status (1)

Country Link
TW (1) TWM347533U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8371714B2 (en) 2009-03-30 2013-02-12 Lan-Yang Investment Co., Ltd. Fresnel LED lens and LED assembly thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8371714B2 (en) 2009-03-30 2013-02-12 Lan-Yang Investment Co., Ltd. Fresnel LED lens and LED assembly thereof

Similar Documents

Publication Publication Date Title
TWI364120B (en) Convex-fresnel led lens for angular distribution patterns and led assembly thereof
TW201011349A (en) Plano-Fresnel LED lens for angular distribution patterns and LED assembly thereof
TWI377709B (en) Led lens and light source device using the same
TWI361261B (en) Aspherical led angular lens for wide distribution patterns and led assembly using the same
TWM368029U (en) Fresnel LED lens and LED assembly thereof
CN101676615B (en) Convex Fresnel LED optical lens for angular distribution patterns and LED assembly thereof
US7993035B2 (en) Aspherical LED angular lens for narrow distribution patterns and LED assembly using the same
US20090213585A1 (en) Light emitting diode display device
CN201273524Y (en) Convex surface Fresnel LED optical lens and LED component composed by the same
CN201310816Y (en) Planar Fresnel LED optical lens and LED assembly consisting same
TWI395908B (en) Aspherical led angular lens for central distribution patterns and led assembly using the same
CN201401725Y (en) Fresnel LED (light-emitting diode) lens and LED component comprised thereby
JP3148493U (en) Convex Fresnel LED lens and its LED assembly
JP3147939U (en) Planar Fresnel LED lens and LED assembly thereof
TWM347533U (en) Plano-Fresnel LED lens for angular distribution patterns and LED assembly thereof
CN101676616B (en) Plane Fresnel LED optical lens and LED assembly thereof
CN201233905Y (en) Aspheric narrow lighting angle optical lens and LED component constituted thereby
TWM347534U (en) Convex-Fresnel LED lens for angular distribution patterns and LED assembly thereof
TWM345357U (en) Aspherical LED angular lens for central distribution patterns and LED assembly using the same
JP3146186U (en) Optical lens of aspherical wide illumination angle light emitting diode and light emitting diode component constituting the same
JP3164215U (en) Fresnel LED lens and its LED assembly (FresnelLEDLensandLEDAssemblyThereof)
TW201018851A (en) Optoelectronic device assembly
JP3146185U (en) Optical lens of aspherical narrow irradiation angle light emitting diode and light emitting diode constituent material constituting the same
CN201233904Y (en) Aspheric wide lighting angle optical lens and LED component constituted thereby
TW201120373A (en) Uniforming-light structure and light-emitting module

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees