JP3146186U - Optical lens of aspherical wide illumination angle light emitting diode and light emitting diode component constituting the same - Google Patents

Optical lens of aspherical wide illumination angle light emitting diode and light emitting diode component constituting the same Download PDF

Info

Publication number
JP3146186U
JP3146186U JP2008005992U JP2008005992U JP3146186U JP 3146186 U JP3146186 U JP 3146186U JP 2008005992 U JP2008005992 U JP 2008005992U JP 2008005992 U JP2008005992 U JP 2008005992U JP 3146186 U JP3146186 U JP 3146186U
Authority
JP
Japan
Prior art keywords
optical lens
emitting diode
light
light emitting
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008005992U
Other languages
Japanese (ja)
Inventor
柏源 施
楷謀 林
怡芬 廖
Original Assignee
一品光学工業股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一品光学工業股▲ふん▼有限公司 filed Critical 一品光学工業股▲ふん▼有限公司
Application granted granted Critical
Publication of JP3146186U publication Critical patent/JP3146186U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Device Packages (AREA)
  • Lenses (AREA)

Abstract

【課題】一種の非球面広照射角度発光ダイオードの光学レンズ及びそれを構成する発光ダイオード構成材を提供する。
【解決手段】光学レンズ13の凹面を光源側に、凸面を映像側にそれぞれ設けるように構成し、構成された発光ダイオード(LED)構成材10はLEDダイ放射光源11の集光が行われ、ピーク強度120°から180°までの照射角度の円形光分散パターンが形成される。これにより、単純な光学レンズ13でもって、LEDの放射光源を所定の光分散パターンに集光可能のほか、光度比例値85%を超える要求に適合し、照明、携帯電話機又はカメラのフラッシュライトに応用できる。
【選択図】図2
Kind Code: A1 An optical lens of a kind of aspherical wide illumination angle light emitting diode and a light emitting diode component constituting the same are provided.
A light emitting diode (LED) component 10 is configured such that a concave surface of an optical lens 13 is provided on the light source side and a convex surface is provided on the image side, and the LED die radiation light source 11 is condensed, A circular light dispersion pattern having an irradiation angle from 120 ° to 180 ° is formed. As a result, the light source of the LED can be condensed into a predetermined light dispersion pattern with a simple optical lens 13, and the light intensity proportional value exceeds 85%, and it can be used as a flashlight for lighting, mobile phones or cameras. Can be applied.
[Selection] Figure 2

Description

本考案は一種の非球面広照射角度発光ダイオードの光学レンズ及びそれを構成する発光ダイオード構成材、特に一種のLED光源で光分散パターンが生成される光学レンズに応用でき、さらにその構成された発光ダイオード構成材はLED照明、携帯電話機又はカメラのフラッシュライトに応用できる。   The present invention can be applied to an optical lens of a kind of aspherical wide illumination angle light emitting diode and a light emitting diode constituting material thereof, in particular, an optical lens in which a light dispersion pattern is generated by a kind of LED light source, and further, the light emission composed thereof. The diode component can be applied to LED lighting, mobile phone or camera flashlight.

発光ダイオードことLEDは低電圧、低消費電力、寿命が長いなどの長所を有するため、すでに表示(indicator)、照明(illuminator)などの分野で大量使用されている。LEDは光色単純、小型化と平面実装可能などの長所を有するため、携帯電話機やカメラのフラッシュライトに採用されている。しかしながら、LEDダイから放射する光源は点の光源のため、輝度不均衡の特性がある。光源の集約について、すでに多くの研究学者が従事されている。ダイの小型化や発光効率の向上など、光学レンズの採用も重要な開発目標となっている。   LEDs, which are light-emitting diodes, have advantages such as low voltage, low power consumption, and long life, so they are already used in large quantities in fields such as indicators and illuminators. Since LEDs have the advantages of simple light color, small size, and flat mounting, they are used in flashlights for mobile phones and cameras. However, since the light source emitted from the LED die is a point light source, it has a characteristic of luminance imbalance. Many research scholars are already engaged in the aggregation of light sources. The adoption of optical lenses has become an important development goal, such as miniaturization of dies and improvement of luminous efficiency.

LED光学レンズ設計は主に一次光学レンズ(primary optical lens)と二次光学レンズ(secondary optical lens)に分けられる。一次光学レンズはLEDダイ上にレンズが直接に実装され、通常は集光(concentrate)を主な目的とする。二次光学レンズは1個又は数個のLEDアレイ(Array)が使用され、光源分散を主な目的とする。公知技術の一次光学レンズについて、特許文献1では対称式非球面レンズ、特許文献2、特許文献3、特許文献4、特許文献5、特許文献6などでは球面レンズ、さらに特許文献7はバルク式LEDに球面レンズがそれ使用されている。   The LED optical lens design is mainly divided into a primary optical lens and a secondary optical lens. The primary optical lens has a lens mounted directly on an LED die, and is usually intended mainly for concentration. As the secondary optical lens, one or several LED arrays are used, and the main purpose is light source dispersion. Regarding primary optical lenses of known technology, in Patent Document 1, a symmetric aspheric lens, in Patent Document 2, Patent Document 3, Patent Document 4, Patent Document 5, Patent Document 6, etc., a spherical lens, and in Patent Document 7, a bulk LED A spherical lens is used for it.

高度化の運用について、一次光学レンズは集光機能のほか、広角度、小角度、円形、楕円形など特殊の光分散パターンが生成され、LEDアレイと組み合わせて使用するときに、最適な光学効果を発生させるため、均一のピーク強度(peak intensity)において、特定の光分散パターン(distribution pattern)を生成しなければならない。一次光学レンズの応用は図1に示す通り、LEDダイ21上にレンズ23が覆われて、レンズ23とLEDダイ21の間に珪素ゲル(silicon gel)が充填される。LEDダイ21は青色を発光するダイを使用しても良い。珪素22内部に黄色い蛍光体(phosphors)を含まれており、LEDダイ21より青色光源を発光し珪素22内部の蛍光体により波長変換(wave-length conversion)を行い、白光に変換した上、レンズ23にて集光された後光源を放射する。   For advanced operation, the primary optical lens generates a special light dispersion pattern such as wide angle, small angle, circle, ellipse, etc. in addition to the light collecting function, and optimal optical effects when used in combination with LED arrays To generate a specific distribution pattern at a uniform peak intensity. As shown in FIG. 1, the application of the primary optical lens includes a lens 23 covered on the LED die 21, and a silicon gel is filled between the lens 23 and the LED die 21. The LED die 21 may be a die that emits blue light. Yellow phosphors are contained inside the silicon 22, a blue light source is emitted from the LED die 21, wavelength conversion is performed by the phosphor inside the silicon 22, and the light is converted into white light. After being condensed at 23, the light source is emitted.

該一次光学レンズは公知技術として、特許文献8、特許文献9、特許文献10、特許文献11、特許文献12及び特許文献13、特許文献14、特許文献15、特許文献16、特許文献17、特許文献18、特許文献19、特許文献20、特許文献21などは光学レンズにより光分散パターン、特許文献22、特許文献23は楕円形光分散パターン、特許文献24は160度以下の矩形、正方形又は細長い形状の光分散パターンをそれぞれ生成されることが開示されている。   The primary optical lens is known as Patent Document 8, Patent Document 9, Patent Document 10, Patent Document 11, Patent Document 12, and Patent Document 13, Patent Document 14, Patent Document 15, Patent Document 16, Patent Document 17, Patent Literature 18, Patent Literature 19, Patent Literature 20, Patent Literature 21 and the like are light dispersion patterns by optical lenses, Patent Literature 22 and Patent Literature 23 are elliptical light dispersion patterns, and Patent Literature 24 is rectangular, square or elongated at 160 degrees or less. It is disclosed that each light dispersion pattern having a shape is generated.

ES2157829号公報ES2157829 publication 特許第3032069号公報Japanese Patent No. 3030669 特開2002−111068号公報JP 2002-111068 A 特開2005−203499号公報JP 2005-203499 A US2006/187653号公報US2006 / 187653 gazette CN101013193号公報CN101013193 特開2002−221658号公報JP 2002-221658 A 特開2004−356512号公報JP 2004-356512 A 特開2005−229082号公報JP 2005-229082 A 特開2006−072874号公報JP 2006-072874 A 特開2007−140524号公報JP 2007-140524 A 特開2007−115708号公報JP 2007-115708 A US2005/162854号公報US2005 / 162854 US2006/105485号公報US2006 / 105485 gazette US2006/076568号公報US2006 / 076568 US2007/114551号公報US2007 / 114551 US2007/152231号公報US2007 / 152231 US7,344,902号公報US 7,344,902 gazette US7,345,416号公報US7,345,416 gazette US7,352,011号公報US7,352,011 publication TWM332796号公報TWM332927 Gazette 特開平6−7425号公報JP-A-6-7425 WO2007/100837号公報WO2007 / 100837 CN200710118965.0号公報CN2007101188965.0

科学技術の進歩に連れて、電子製品は軽薄短小ならび多機能に発展しており、特に電子製品ではデジタルカメラ(Digital Still Camera)、PCカメラ(PC camera)、ネットワークカメラ(Network camera)携帯電話機などはレンズが基本の装備となりつつある。さらに、携帯型情報端末(PDA)などもレンズ装備の需要が見え始めた。よって、この種の製品に使用されるLEDフラッシュライト又は照明用LED灯具は1個又は複数個のLED構成材によりアレイが組み込まれている。なお、携帯便利と人間工学ニーズに合わせることや、LEDフラッシュライト又は照明用LED灯具は所定のルーミナスに適合させるため、様々な光分散パターンLEDの構成材を組み合わせるほか、小容積と低コストが要求されている。LED一次光学レンズのニーズについて、公知技術の複雑な外観設計又は回折面を持つ光学レンズが製造困難のほか、プラスチック射出成型による変形やコスト高いなどの欠点が残る。よって、外観単純で、かつ、簡単製造の発光ダイオードレンズ設計と構成はLEDの放射光源を集光してピーク強度(peak intensity)120°から180°までの広照射角度円形光分散パターンからなるLED構成材、かつ、光度の比例値が85%のものが、利用者がもっとも望むものである。   With the advancement of science and technology, electronic products are developing light, thin, small and multi-functional, especially digital products (Digital Still Camera), PC camera (PC camera), network camera (Network camera) mobile phone etc. The lens is becoming the basic equipment. In addition, demand for lens equipment for portable information terminals (PDAs) has begun to appear. Therefore, the LED flashlight or the lighting LED lamp used in this type of product has an array incorporated by one or a plurality of LED components. In addition, in order to meet the needs of portable convenience and ergonomics, and to adapt LED flashlights or LED lighting fixtures for lighting to a predetermined luminance, various light dispersion pattern LED components are combined, and small volume and low cost are required. Has been. Regarding the needs of LED primary optical lenses, it is difficult to manufacture optical lenses having complicated appearance designs or diffractive surfaces known in the art, and there are still defects such as deformation due to plastic injection molding and high cost. Therefore, the LED lens design and configuration with simple appearance and easy manufacture is a LED with a wide light irradiation angle circular light dispersion pattern from 120 ° to 180 ° of peak intensity by condensing the radiation source of LED. The component and the one with the proportional value of the luminous intensity of 85% are the most desired by the user.

LED構成材に応用できる、一種の非球面広照射角度発光ダイオードの光学レンズを提供することを本考案の主な目的とする。該LED構成材は発光ダイオードダイ(LED die)より光源が放射され、光学レンズによって光源が集光され、均一な光ピーク強度120°から180°までの広照射角度円形光分散パターンを形成させ、光学レンズと発光ダイオードとの間に密封材(seal gel)を充填して構成する。該光学レンズは凹面と凸面を備えた光学部材より仕上げるレンズであって、該凹面は光源と対向配置させて光源側の光学面とし、凸面は映像側と対向配置させて映像側光学面とする。そのうち、少なくとも一つの光学面は非球面であり、かつ、以下の条件が適合される。
It is a main object of the present invention to provide a kind of aspherical wide-angle light-emitting diode optical lens that can be applied to LED components. The LED component is emitted by a light source from a light emitting diode die (LED die), and the light source is condensed by an optical lens to form a wide light irradiation angle circular light dispersion pattern having a uniform light peak intensity of 120 ° to 180 °, A sealing material (seal gel) is filled between the optical lens and the light emitting diode. The optical lens is a lens that is finished from an optical member having a concave surface and a convex surface. The concave surface is disposed opposite to the light source to be an optical surface on the light source side, and the convex surface is disposed to face the image side to be an image side optical surface. . Among them, at least one optical surface is aspheric and the following conditions are met.

該光学レンズは光学ガラス又は化学部材のプラスチックを使用するなど、利用選択の利便性を提供することを本考案もう一つの目的とする。   It is another object of the present invention to provide the convenience of use selection, such as using optical glass or chemical plastic.

本考案による非球面広照射角度発光ダイオードは光学レンズ及び発光ダイオードダイを含め、該発光ダイオード構成材は120°から180°までの広照射角度円形光分散パターンが含められて、該光度の比例値は85%(β/α≧85%)以上の要求に適合し、かつ、以下の条件が適合される一種の発光ダイオード構成材を提供することを本考案もう一つの目的とする。
The aspherical wide illumination angle light emitting diode according to the present invention includes an optical lens and a light emitting diode die, and the light emitting diode component includes a wide illumination angle circular light dispersion pattern from 120 ° to 180 °, and is proportional to the luminous intensity. It is another object of the present invention to provide a kind of light-emitting diode component that meets the requirement of 85% (β / α ≧ 85%) or more and satisfies the following conditions.

よって、本考案による光学レンズと該光学レンズより構成される発光ダイオード構成材は120°から180°の広照射角度円形光分散パターンが含められて、光度の比例値は85%以上の要求に適合するほか、該光学レンズは形状単純、薄型、製造簡単などの長所を有するため、一個のLED又はLEDアレイに設けて、照明又は携帯電話機、カメラのフラッシュライトに提供できる。   Therefore, the optical lens according to the present invention and the light-emitting diode component composed of the optical lens include a circular light dispersion pattern with a wide irradiation angle of 120 ° to 180 °, and the proportional value of the luminous intensity meets the requirement of 85% or more. In addition, since the optical lens has advantages such as a simple shape, a thin shape, and easy manufacture, the optical lens can be provided in a single LED or LED array and provided for illumination, a mobile phone, or a camera flashlight.

本考案による構造と技術特徴をより確実にするため、好ましい実施例を以下の図式と合わせて詳細説明する。   In order to ensure the structure and technical features of the present invention, a preferred embodiment will be described in detail with reference to the following diagrams.

<実施例1>
図2は本考案による一種の非球面広照射角度発光ダイオードの光学レンズ及びそれを構成する発光ダイオード構成材のLED構成材の概略図である。中心軸zに沿って、光源側から映像側はLEDダイ11、シール材12と光学レンズ13の順序に配列されている。光源はLEDダイ11から放射され、シール材12経由して光学レンズ13により集光を行い、中心軸zに対して120°から180°まで釣り合った広照射角度円形光分散パターンの光度を映像側に放射される。該光学レンズ13は凹面と凹面を備えた光学部材より作られたレンズであって、凹面は光源側と向き合う光学面R1であり、該凸面は映像側に向き合う光学面R2である。そのうち、少なくとも一つの光学面を非球面とする。光学レンズ13の光学面R、R及び有効焦点距離は式(1)、式(2)及び式(3)の条件を適合し、LEDダイ11の放射角度2ωと光学レンズ13より形成する光強度の光分散パターン角度2φは式(4)の条件を適合する。
<Example 1>
FIG. 2 is a schematic view of an optical lens of a kind of aspherical wide-angle light emitting diode according to the present invention and an LED constituent material of the light emitting diode constituent material constituting the optical lens. The LED die 11, the sealing material 12, and the optical lens 13 are arranged in this order from the light source side to the video side along the central axis z. The light source is emitted from the LED die 11 and condensed by the optical lens 13 via the sealing material 12, and the luminous intensity of the wide irradiation angle circular light dispersion pattern balanced from 120 ° to 180 ° with respect to the central axis z is shown on the image side. To be emitted. The optical lens 13 is a lens made of an optical member having a concave surface and a concave surface. The concave surface is an optical surface R1 facing the light source side, and the convex surface is an optical surface R2 facing the image side. Among them, at least one optical surface is an aspherical surface. The optical surfaces R 1 and R 2 and the effective focal length of the optical lens 13 meet the conditions of the expressions (1), (2), and (3), and are formed from the radiation angle 2ω of the LED die 11 and the optical lens 13. The light dispersion pattern angle 2φ of the light intensity satisfies the condition of the formula (4).

そのうち、シール材12の部材使用は制限されない。LED構成材の常用部材として光学樹脂(resin)又は珪素ゲル(silicon gel)などがある。   Of these, the use of the sealing material 12 is not limited. There are optical resin (resin), silicon gel (silicon gel), etc. as a regular member of LED constituent material.

光学レンズ13の光学面RとRは非球形光学面より構成される場合、該非球面の方程式(Aspherical Surface Formula)は式(6)に示す。式(6)において、cは曲率、hはレンズ高さ、Kは円錐常数(Conic Constant)、A、A、A、A10はそれぞれ4、8、10階調の非球面係数(Nth Order Aspherical Coefficient)である。
When the optical surfaces R 1 and R 2 of the optical lens 13 are constituted by aspherical optical surfaces, the aspherical equation (Aspherical Surface Formula) is shown in Equation (6). In equation (6), c is the curvature, h is the lens height, K is the conic constant, A 4 , A 6 , A 8 , and A 10 are 4 , 8 , and 10 gradation aspheric coefficients ( Nth Order Aspherical Coefficient).

図3は本考案の光路概略図である。LEDダイ11放射光源の最大角度が2ω(中心軸zにて釣り合う)、光学レンズ13により集光及び回折された後、2φ角度(中心軸zにて釣り合う)にて必要な光分散パターン及びβ/α≧70%で要求された条件を適合する。そのうち、αはLEDダイ放射光源の光度、βは映像側の相関無限距離(fの100倍)の光源光度であって、空気の回折(refraction)と散乱効果(scattering)を無視する。さらに、該光学レンズ13は光学ガラス又は光学プラスチックスより製造される。 FIG. 3 is a schematic view of the optical path of the present invention. The maximum angle of the LED die 11 radiation source is 2ω (balanced with the central axis z), and after being condensed and diffracted by the optical lens 13, the necessary light dispersion pattern and β at the 2φ angle (balanced with the central axis z) / Α ≧ 70% to meet the required conditions. Of these, α is the luminous intensity of the LED die radiation source, and β is the luminous intensity of the image side correlation infinite distance (100 times f s ), and ignores air refraction and scattering effects. Further, the optical lens 13 is made of optical glass or optical plastics.

前記した構成要素により、本考案による非球面広照射角度発光ダイオードの光学レンズ及びそれを構成する発光ダイオード構成材は120°から180°までの広照射角度円形光分散パターンの要求に適合でき、LED構成材10より所定の光分散パターンを放射させ、かつ、光度比例値85%(β/α≧85%)の要求を適合できるほか、1個又は様々な光分散パターンによりアレイに組み込んで使用できる。   With the above-described components, the optical lens of the aspherical wide illumination angle light emitting diode according to the present invention and the light emitting diode component constituting the same can meet the requirement of a wide illumination angle circular light dispersion pattern from 120 ° to 180 °, and the LED The component 10 emits a predetermined light dispersion pattern and can meet the requirement of a light intensity proportional value of 85% (β / α ≧ 85%), and can be used by being incorporated into an array with one or various light dispersion patterns. .

本考案の応用例として、LEDダイ11寸法は1.0×1.0mm、光学レンズ13は直径5mmそれぞれ使用し、各実施例の応用状況を比較説明する。ただし、LEDダイ11の寸法と光学レンズ13の直径はそれぞれ前記した寸法に限られないものとする。   As an application example of the present invention, the LED die 11 has a size of 1.0 × 1.0 mm and the optical lens 13 has a diameter of 5 mm. However, the dimensions of the LED die 11 and the diameter of the optical lens 13 are not limited to the dimensions described above.

図2と図4は本考案の光学レンズをLED構成材への取付概略図及び実施例1の光ピーク強度と照射角度による極座標相関図である。   2 and 4 are a schematic view of attaching the optical lens of the present invention to an LED component, and a polar coordinate correlation diagram according to the light peak intensity and the irradiation angle of Example 1. FIG.

下表(1)は光源側から映像側まで中心軸zに沿ってLEDダイ11、シール材12、光学レンズ13の光源側光学面R1と映像側光学面R2の曲率半径R(単位:mm)(the radius of curvature R)、間隔d(単位:mm)(the on-axis surface spacing)、LEDダイ11放射光源の最大角度は2ω(度、deg)、光学レンズ13放射光源の光分散パターン最大角度2φ(度、deg)、各回折率(N)、各アッベ数(Abbe’s number)v、各厚み(thickness)それぞれ示す。表(1)において、光学面(Surf)に*記号があるものは非球面光学面を示す。
The following table (1) shows the radius of curvature R (unit: mm) of the light source side optical surface R1 and the image side optical surface R2 of the LED die 11, the sealing material 12, and the optical lens 13 along the central axis z from the light source side to the image side. (The radius of curvature R), spacing d (unit: mm) (the on-axis surface spacing), the maximum angle of the LED die 11 radiation source is 2ω (degrees, deg), the optical lens 13 the maximum light dispersion pattern of the radiation source An angle 2φ (degrees, deg), each diffraction index (N d ), each Abbe's number v d , and each thickness (thickness) are shown. In Table (1), an optical surface (Surf) with an asterisk (*) indicates an aspheric optical surface.

下表(2)は各光学面の非球面、式(6)の各係数である。
Table (2) below shows the aspherical surface of each optical surface and the coefficients of equation (6).

本実施例において、シール材12の回折率Nd1は1.527、アッベ数vd1は34の透明光学シリカゲルによって充填されている。光学レンズ13の回折率Nd2は1.5828、アッベ数vd2は61.7のガラス部材をそれぞれ使用する。シール材12及び光学レンズ13の回折係数とアッベ数との組合せにより、光源の回折角度が形成される。LEDダイ11よりα=13.928ルーメンの青色光源が放射され、有効最大角度は80°、光学レンズ13の有効焦点距離fは−36.114mmであって、該光学レンズ13より集光された後、160°の広照射角度で無限距離(fを100倍とする)においてβ=13.813ルーメン(空気中の回折と散乱効果を無視)。式(1)〜(5)はそれぞれ、
In this embodiment, the sealing material 12 is filled with transparent optical silica gel having a refractive index N d1 of 1.527 and an Abbe number v d1 of 34. The optical lens 13 uses a glass member having a refractive index N d2 of 1.5828 and an Abbe number v d2 of 61.7. The diffraction angle of the light source is formed by the combination of the diffraction coefficient of the sealing material 12 and the optical lens 13 and the Abbe number. A blue light source of α = 13.928 lumen is emitted from the LED die 11, the effective maximum angle is 80 °, and the effective focal length f s of the optical lens 13 is −36.114 mm, which is collected from the optical lens 13. After that, β = 13.813 lumen (ignoring diffraction and scattering effects in the air) at an infinite distance (f s is 100 times) at a wide irradiation angle of 160 °. Equations (1) to (5) are respectively

よって、条件式(1)〜式(5)を適合できる。図3はLEDダイ11の放射光源がシール材12及び光学レンズ13が通過される光路図で、図4は光ピーク強度分布と照射角度の極座標相関図である。前記した表(1)、表(2)及び図4に示す通り、本考案による非球面広照射角度発光ダイオード光学レンズは単純な表面形状を有し、製造が簡単、発光ダイオード構成材は所定の光分散パターンが放射されるほか、各角度に於ける放射光ピーク強度分布が均一であるため、本考案の応用性を向上できることが証明されている。   Therefore, the conditional expressions (1) to (5) can be adapted. 3 is an optical path diagram through which the radiation source of the LED die 11 passes through the sealing material 12 and the optical lens 13, and FIG. 4 is a polar coordinate correlation diagram of the light peak intensity distribution and the irradiation angle. As shown in Table (1), Table (2), and FIG. 4, the aspherical wide-angle light-emitting diode optical lens according to the present invention has a simple surface shape and is easy to manufacture. It is proved that the applicability of the present invention can be improved because the light distribution pattern is emitted and the radiated light peak intensity distribution at each angle is uniform.

<実施例2>
図2と図5は本考案の光学レンズをLED構成材への取付概略図及び実施例2の光ピーク強度と照射角度による極座標相関図である。
<Example 2>
FIGS. 2 and 5 are a schematic view of attaching the optical lens of the present invention to an LED component, and a polar coordinate correlation diagram according to the light peak intensity and the irradiation angle in Example 2. FIG.

下表(3)は光源側から映像側まで中心軸zに沿ったLEDダイ11、シール材12、光学レンズ13の光源側光学面R1と映像側光学面R2の曲率半径R、間隔d、LEDダイ11放射光源の最大角度は2ω、光学レンズ13放射光源の光分散パターン最大角度2φ、各回折率(N)、各アッベ数v、各厚み(thickness)それぞれ示す。下表(4)は各光学面の非球面、式(6)の各係数である。
The following table (3) shows the LED die 11, the seal material 12, and the radius of curvature R of the light source side optical surface R1 and the image side optical surface R2 of the optical lens 13 from the light source side to the image side. The maximum angle of the die 11 radiation light source is 2ω, the light dispersion pattern maximum angle 2φ of the optical lens 13 radiation light source, each diffraction index (N d ), each Abbe number v d , and each thickness (thickness). Table (4) below shows the aspherical surface of each optical surface and the coefficients of equation (6).

本実施例において、シール材12の回折率Nd1は1.527、アッベ数vd1は34の透明光学シリカゲルによって充填されている。光学レンズ13は回折率Nd2が1.5828、アッベ数vd2は61.7のガラス部材をそれぞれ使用する。シール材12及び光学レンズ13の回折係数とアッベ数との組合せにより、光源の回折角度が形成される。LEDダイ11よりα=13.958ルーメンの青色光源が放射され、有効最大照射角度は120°、光学レンズ13の有効焦点距離fは−42.375mmであって、該光学レンズ13より集光された後、158°の広照射角度で無限距離(fを100倍とする)においてβ=11.878ルーメン(空気中の回折と散乱効果を無視)。式(1)〜(5)はそれぞれ、
In this embodiment, the sealing material 12 is filled with transparent optical silica gel having a refractive index N d1 of 1.527 and an Abbe number v d1 of 34. The optical lens 13 uses a glass member having a refractive index N d2 of 1.5828 and an Abbe number v d2 of 61.7. The diffraction angle of the light source is formed by the combination of the diffraction coefficient of the sealing material 12 and the optical lens 13 and the Abbe number. A blue light source of α = 13.958 lumen is emitted from the LED die 11, the effective maximum irradiation angle is 120 °, and the effective focal length f s of the optical lens 13 is −42.375 mm. After that, β = 11.878 lumens (ignoring diffraction and scattering effects in air) at an infinite distance (f s is 100 times) at a wide irradiation angle of 158 °. Equations (1) to (5) are respectively

よって、条件式(1)〜式(5)を適合できる。前記した表(5)、表(6)及び図5に示す通り、本考案による非球面広照射角度発光ダイオード光学レンズは単純な表面形状を有し、製造が簡単、発光ダイオード構成材は所定の光分散パターンが放射されるほか、各角度に於ける放射光ピーク強度分布が均一であるため、本考案の応用性を向上できることが証明されている。   Therefore, the conditional expressions (1) to (5) can be adapted. As shown in Table (5), Table (6) and FIG. 5, the aspherical wide irradiation angle light-emitting diode optical lens according to the present invention has a simple surface shape, is easy to manufacture, and the light-emitting diode constituent material is predetermined. It is proved that the applicability of the present invention can be improved because the light distribution pattern is emitted and the radiated light peak intensity distribution at each angle is uniform.

<実施例3>
図2と図6は本考案による光学レンズをLED構成材への取付概略図及び実施例3の光ピーク強度と照射角度による極座標相関図である。
<Example 3>
2 and 6 are a schematic view of attaching the optical lens according to the present invention to the LED component, and a polar coordinate correlation diagram according to the light peak intensity and the irradiation angle of Example 3. FIG.

下表(5)は光源側から映像側まで中心軸zに沿ってLEDダイ11、シール材12、光学レンズ13の光源側光学面R1と映像側光学面R2の曲率半径R、間隔d、LEDダイ11放射光源の最大角度は2ω、光学レンズ13放射光源の光分散パターン最大角度2φ、各回折率(N)、各アッベ数v、各厚み(thickness)それぞれ示す。下表(6)は各光学面の非球面、式(6)の各係数である。
The following table (5) shows the LED die 11, the seal material 12, the radius of curvature R between the light source side optical surface R1 and the image side optical surface R2 of the optical lens 13, the distance d, the LED along the central axis z from the light source side to the image side. The maximum angle of the die 11 radiation light source is 2ω, the light dispersion pattern maximum angle 2φ of the optical lens 13 radiation light source, each diffraction index (N d ), each Abbe number v d , and each thickness (thickness). Table (6) below shows the aspherical surface of each optical surface and the coefficients of equation (6).

本実施例において、シール材12の回折率Nd1は1.527、アッベ数vd1は34の透明光学シリカゲルによって充填されている。光学レンズ13の回折率Nd2は1.5828、アッベ数vd2は61.7のガラス部材をそれぞれ使用する。シール材12及び光学レンズ13の回折係数とアッベ数との組合せにより、光源の回折角度が形成される。LEDダイ11よりα=13.958ルーメンの青色光源が放射され、有効最大角度は120°、光学レンズ13の有効焦点距離fは86.50mmであって、該光学レンズ13より集光された後、164°の広照射角度で無限距離(fを100倍とする)においてβ=13.809ルーメン(空気中の回折と散乱効果を無視)。式(1)〜(5)はそれぞれ、
In this embodiment, the sealing material 12 is filled with transparent optical silica gel having a refractive index N d1 of 1.527 and an Abbe number v d1 of 34. The optical lens 13 uses a glass member having a refractive index N d2 of 1.5828 and an Abbe number v d2 of 61.7. The diffraction angle of the light source is formed by the combination of the diffraction coefficient of the sealing material 12 and the optical lens 13 and the Abbe number. A blue light source of α = 13.958 lumen is emitted from the LED die 11, the effective maximum angle is 120 °, and the effective focal length f s of the optical lens 13 is 86.50 mm. Later, β = 13.809 lumens (ignoring diffraction and scattering effects in the air) at an infinite distance (f s is 100 times) at a wide irradiation angle of 164 °. Equations (1) to (5) are respectively

よって、条件式(1)〜式(5)を適合できる。前記した表(6)、表(6)及び図5に示す通り、本考案による非球面広照射角度発光ダイオード光学レンズは単純な表面形状を有し、製造が簡単、発光ダイオード構成材は所定の光分散パターンが放射されるほか、各角度に於ける放射光ピーク強度分布が均一であるため、本考案の応用性を向上できることが証明されている。   Therefore, the conditional expressions (1) to (5) can be adapted. As shown in Table (6), Table (6) and FIG. 5, the aspherical wide irradiation angle light-emitting diode optical lens according to the present invention has a simple surface shape, is easy to manufacture, and the light-emitting diode constituent material is a predetermined one. It is proved that the applicability of the present invention can be improved because the light distribution pattern is emitted and the radiated light peak intensity distribution at each angle is uniform.

<実施例4>
図2と図7は本考案のLED光学レンズの概略図及び実施例4の光ピーク強度と照射角度による極座標相関図である。
<Example 4>
2 and 7 are schematic diagrams of the LED optical lens of the present invention, and polar coordinate correlation diagrams according to the light peak intensity and the irradiation angle of Example 4. FIG.

下表(7)は光源側から映像側まで中心軸zに沿ったLEDダイ11、シール材12、光学レンズ13の光源側光学面R1と映像側光学面R2の曲率半径R、間隔d、LEDダイ11放射光源の最大角度は2ω、光学レンズ13放射光源の光分散パターン最大角度2φ、各回折率(N)、各アッベ数v、各厚み(thickness)それぞれ示す。下表(8)は各光学面の非球面、式(6)の各係数である。
The following table (7) shows the LED die 11, the seal material 12, and the radius of curvature R between the light source side optical surface R1 and the image side optical surface R2 of the optical lens 13 from the light source side to the image side, distance d, LED The maximum angle of the die 11 radiation light source is 2ω, the light dispersion pattern maximum angle 2φ of the optical lens 13 radiation light source, each diffraction index (N d ), each Abbe number v d , and each thickness (thickness). Table (8) below shows the aspherical surface of each optical surface and the coefficients of equation (6).

本実施例において、シール材12の回折率Nd1は1.527、アッベ数νd1は34の透明光学シリカゲルによって充填されている。光学レンズ13の回折率Nd2は1.530、アッベ数vd2は57のプラスチックス部材をそれぞれ使用する。シール材12及び光学レンズ13の回折係数とアッベ数との組合せにより、光源の回折角度が形成される。LEDダイ11よりα=13.958ルーメンの青色光源が放射され、有効最大角度は120°、光学レンズ13の有効焦点距離fsは57.195mmであって、該光学レンズ13より集光された後、164°の広照射角度で無限距離(fを100倍とする)においてβ=13.864ルーメン(空気中の回折と散乱効果を無視)。式(1)〜(5)はそれぞれ、
In this embodiment, the sealing material 12 is filled with transparent optical silica gel having a refractive index N d1 of 1.527 and an Abbe number ν d1 of 34. The optical lens 13 uses a plastic member having a refractive index N d2 of 1.530 and an Abbe number v d2 of 57. The diffraction angle of the light source is formed by the combination of the diffraction coefficient of the sealing material 12 and the optical lens 13 and the Abbe number. A blue light source of α = 13.958 lumen is emitted from the LED die 11, the effective maximum angle is 120 °, and the effective focal length fs of the optical lens 13 is 57.195 mm. Β = 13.864 lumens (ignoring diffraction and scattering effects in the air) at an infinite distance (with f s being 100 times) at a wide irradiation angle of 164 °. Equations (1) to (5) are respectively

よって、条件式(1)〜式(5)を適合できる。前記した表(7)、表(8)及び図7に示す通り、本考案による非球面広照射角度発光ダイオード光学レンズは単純な表面形状を有し、製造が簡単、発光ダイオード構成材は所定の光分散パターンが放射されるほか、各角度に於ける放射光ピーク強度分布が均一であるため、本考案の応用性を向上できることが証明されている。   Therefore, the conditional expressions (1) to (5) can be adapted. As shown in Table (7), Table (8) and FIG. 7, the aspherical wide irradiation angle light emitting diode optical lens according to the present invention has a simple surface shape, is easy to manufacture, and the light emitting diode constituent material is a predetermined one. It is proved that the applicability of the present invention can be improved because the light distribution pattern is emitted and the radiated light peak intensity distribution at each angle is uniform.

<実施例5>
図2と図8は本考案による光学レンズをLED構成材への取付概略図及び実施例5の光ピーク強度と照射角度による極座標相関図である。
<Example 5>
FIGS. 2 and 8 are a schematic view of attaching the optical lens according to the present invention to an LED component, and a polar coordinate correlation diagram according to the light peak intensity and the irradiation angle of Example 5. FIG.

下表(9)は光源側から映像側まで中心軸zに沿ったLEDダイ11、シール材12、光学レンズ13の光源側光学面R1と映像側光学面R2の曲率半径R、間隔d、LEDダイ11放射光源の最大角度は2ω、光学レンズ13放射光源の光分散パターン最大角度2φ、各回折率(N)、各アッベ数v、各厚み(thickness)それぞれ示す。下表(10)は各光学面の非球面、式(6)の各係数である。
The following table (9) shows the LED die 11, the seal material 12, and the radius of curvature R of the light source side optical surface R1 and the image side optical surface R2 of the optical lens 13 from the light source side to the image side, the distance d, and the LED. The maximum angle of the die 11 radiation light source is 2ω, the light dispersion pattern maximum angle 2φ of the optical lens 13 radiation light source, each diffraction index (N d ), each Abbe number v d , and each thickness (thickness). Table (10) below shows the aspherical surface of each optical surface and the coefficients of equation (6).

本実施例において、シール材12の回折率Nd1は1.527、アッベ数vd1は34の透明光学シリカゲルによって充填されている。光学レンズ13の回折率Nd2は1.5828、アッベ数vd2は61.7のガラス部材をそれぞれ使用する。シール材12及び光学レンズ13の回折係数とアッベ数との組合せにより、光源の回折角度が形成される。LEDダイ11よりα=13.958ルーメンの青色光源が放射され、有効最大角度は120°、光学レンズ13の有効焦点距離fは−143.15mm であって、該光学レンズ13より集光された後、164°の広照射角度で無限距離(fを100倍とする)においてβ=11.923ルーメン(空気中の回折と散乱効果を無視)。式(1)〜(5)はそれぞれ、
In this embodiment, the sealing material 12 is filled with transparent optical silica gel having a refractive index N d1 of 1.527 and an Abbe number v d1 of 34. The optical lens 13 uses a glass member having a refractive index N d2 of 1.5828 and an Abbe number v d2 of 61.7. The diffraction angle of the light source is formed by the combination of the diffraction coefficient of the sealing material 12 and the optical lens 13 and the Abbe number. A blue light source of α = 13.958 lumen is emitted from the LED die 11, the effective maximum angle is 120 °, and the effective focal length f s of the optical lens 13 is −143.15 mm, which is collected from the optical lens 13. After that, β = 11.923 lumens (ignoring diffraction and scattering effects in the air) at an infinite distance (f s is 100 times) at a wide irradiation angle of 164 °. Equations (1) to (5) are respectively

よって、条件式(1)〜式(5)を適合できる。前記した表(9)、表(10)及び図8に示す通り、本考案による非球面広照射角度発光ダイオード光学レンズは単純な表面形状を有し、製造が簡単、発光ダイオード構成材は所定の光分散パターンが放射されるほか、各角度に於ける放射光ピーク強度分布が均一であるため、本考案の応用性を向上できることが証明されている。   Therefore, the conditional expressions (1) to (5) can be adapted. As shown in Table (9), Table (10) and FIG. 8, the aspherical wide irradiation angle light-emitting diode optical lens according to the present invention has a simple surface shape, is easy to manufacture, and the light-emitting diode constituent material is a predetermined one. It is proved that the applicability of the present invention can be improved because the light distribution pattern is emitted and the radiated light peak intensity distribution at each angle is uniform.

<実施例6>
図2と図9は本考案による光学レンズをLED構成材への取付概略図及び実施例6の光ピーク強度と照射角度による極座標相関図である。
<Example 6>
FIGS. 2 and 9 are schematic diagrams of attaching the optical lens according to the present invention to the LED component, and polar coordinate correlation diagrams according to the light peak intensity and the irradiation angle of Example 6. FIG.

下表(11)は光源側から映像側まで中心軸zに沿ったLEDダイ11、シール材12、光学レンズ13の光源側光学面R1と映像側光学面R2の曲率半径R、間隔d、LEDダイ11放射光源の最大角度は2ω、光学レンズ13放射光源の光分散パターン最大角度2φ、各回折率(N)、各アッベ数v、各厚み(thickness)それぞれ示す。下表(12)は各光学面の非球面、式(6)の各係数である。
The following table (11) shows the LED die 11 along the central axis z from the light source side to the image side, the sealing material 12, the radius of curvature R of the light source side optical surface R1 and the image side optical surface R2 of the optical lens 13, the distance d, the LED The maximum angle of the die 11 radiation light source is 2ω, the light dispersion pattern maximum angle 2φ of the optical lens 13 radiation light source, each diffraction index (N d ), each Abbe number v d , and each thickness (thickness). Table (12) below shows the aspherical surface of each optical surface and the coefficients of equation (6).

本実施例において、シール材12の回折率Nd1は1.527、アッベ数vd1は34の透明光学シリカゲルによって充填されている。光学レンズ13は回折率Nd2が1.5828、アッベ数vd2は61.7のガラス部材をそれぞれ使用する。シール材12及び光学レンズ13の回折係数とアッベ数との組合せにより、光源の回折角度が形成される。LEDダイ11よりα=78ルーメンの白色光源が放射され、有効最大角度は130°、光学レンズ13の有効焦点距離fは142.96mmであって、該光学レンズ13より集光された後、160°の広照射角度で無限距離(fを100倍とする)においてβ=69.168ルーメン(空気中の回折と散乱効果を無視)。式(1)〜(5)はそれぞれ、
In this embodiment, the sealing material 12 is filled with transparent optical silica gel having a refractive index N d1 of 1.527 and an Abbe number v d1 of 34. The optical lens 13 uses a glass member having a refractive index N d2 of 1.5828 and an Abbe number v d2 of 61.7. The diffraction angle of the light source is formed by the combination of the diffraction coefficient of the sealing material 12 and the optical lens 13 and the Abbe number. A white light source of α = 78 lumens is emitted from the LED die 11, the effective maximum angle is 130 °, and the effective focal length f s of the optical lens 13 is 142.96 mm. Β = 69.168 lumens (ignoring diffraction and scattering effects in air) at an infinite distance (with f s being 100 times) at a wide irradiation angle of 160 °. Equations (1) to (5) are respectively

よって、条件式(1)〜式(5)を適合できる。前記した表(10)、表(11)及び図9に示す通り、本考案による非球面広照射角度発光ダイオード光学レンズは単純な表面形状を有し、製造が簡単、発光ダイオード構成材は所定の光分散パターンが放射されるほか、各角度に於ける放射光ピーク強度分布が均一であるため、本考案の応用性を向上できることが証明されている。   Therefore, the conditional expressions (1) to (5) can be adapted. As shown in Table (10), Table (11), and FIG. 9, the aspherical wide irradiation angle light emitting diode optical lens according to the present invention has a simple surface shape, is easy to manufacture, and the light emitting diode constituent material is a predetermined one. It is proved that the applicability of the present invention can be improved because the light distribution pattern is emitted and the radiated light peak intensity distribution at each angle is uniform.

<実施例7>
図2と図10は本考案による光学レンズをLED構成材への取付概略図及び実施例7の光ピーク強度と照射角度による極座標相関図である。
<Example 7>
FIGS. 2 and 10 are schematic views of attaching the optical lens according to the present invention to the LED component, and polar coordinate correlation diagrams according to the light peak intensity and the irradiation angle of Example 7.

下表(13)は光源側から映像側まで中心軸zに沿ったLEDダイ11、シール材12、光学レンズ13の光源側光学面R1と映像側光学面R2の曲率半径R、間隔d、LEDダイ11放射光源の最大角度は2ω、光学レンズ13放射光源の光分散パターン最大角度2φ、各回折率(N)、各アッベ数v、各厚み(thickness)それぞれ示す。下表(14)は各光学面の非球面、式(6)の各係数である。
The following table (13) shows the LED die 11, the seal material 12, and the radius of curvature R between the light source side optical surface R1 and the image side optical surface R2 of the optical lens 13 from the light source side to the image side, the distance d, and the LED. The maximum angle of the die 11 radiation light source is 2ω, the light dispersion pattern maximum angle 2φ of the optical lens 13 radiation light source, each diffraction index (N d ), each Abbe number v d , and each thickness (thickness). Table (14) below shows the aspherical surface of each optical surface and the coefficients of equation (6).

本実施例において、シール材12の回折率Nd1は1.527、アッベ数vd1は34の透明光学シリカゲルによって充填されている。光学レンズ13は回折率Nd2が1.5828、アッベ数vd2は61.7のガラス部材をそれぞれ使用する。シール材12及び光学レンズ13の回折係数とアッベ数との組合せにより、光源の回折角度が形成される。LEDダイ11よりα=13.958ルーメンの青色光源が放射され、有効最大角度は130°、光学レンズ13の有効焦点距離fは−285.91mmであって、該光学レンズ13より集光された後、158°の広照射角度で無限距離(fを100倍とする)においてβ=12.557ルーメン(空気中の回折と散乱効果を無視)。式(1)〜(5)はそれぞれ、
In this embodiment, the sealing material 12 is filled with transparent optical silica gel having a refractive index N d1 of 1.527 and an Abbe number v d1 of 34. The optical lens 13 uses a glass member having a refractive index N d2 of 1.5828 and an Abbe number v d2 of 61.7. The diffraction angle of the light source is formed by the combination of the diffraction coefficient of the sealing material 12 and the optical lens 13 and the Abbe number. A blue light source of α = 13.958 lumen is emitted from the LED die 11, the effective maximum angle is 130 °, and the effective focal length f s of the optical lens 13 is −285.91 mm, which is collected from the optical lens 13. After that, β = 12.557 lumen (ignoring diffraction and scattering effects in the air) at an infinite distance (f s is 100 times) at a wide irradiation angle of 158 °. Equations (1) to (5) are respectively

よって、条件式(1)〜式(5)を適合できる。前記した表(13)、表(14)及び図10に示す通り、本考案による非球面広照射角度発光ダイオード光学レンズは単純な表面形状を有し、製造が簡単、発光ダイオード構成材は所定の光分散パターンが放射されるほか、各角度に於ける放射光ピーク強度分布が均一であるため、本考案の応用性を向上できることが証明されている。   Therefore, the conditional expressions (1) to (5) can be adapted. As shown in Table (13), Table (14), and FIG. 10, the aspherical wide irradiation angle light-emitting diode optical lens according to the present invention has a simple surface shape, is easy to manufacture, and the light-emitting diode constituent material is predetermined. It is proved that the applicability of the present invention can be improved because the light distribution pattern is emitted and the radiated light peak intensity distribution at each angle is uniform.

前記した説明の通り、本考案による非球面広照射角度発光ダイオードは光学レンズ及びそれを構成する発光ダイオード構成材の効果は表面形状が単純で、プラスチック射出成型又は金型によるガラス加工などの生産プロセスで大量生産しても変形がないため、生産コストを軽減できる。   As described above, the aspherical wide-angle light-emitting diode according to the present invention has a simple surface shape due to the effect of the optical lens and the light-emitting diode constituent material constituting the optical lens, and is a production process such as plastic injection molding or glass processing with a mold. Because there is no deformation even in mass production, production costs can be reduced.

本考案による非球面広照射角度発光ダイオードは光学レンズ及びそれを構成する発光ダイオード構成材もう一つの効果はLEDダイの照射光源は所定の光分散パターンを有するため、照明の品質が向上される。   The aspherical wide illumination angle light emitting diode according to the present invention is an optical lens and the light emitting diode component constituting the optical lens. Another effect is that the illumination light source of the LED die has a predetermined light dispersion pattern, so that the illumination quality is improved.

本考案による非球面広照射角度発光ダイオードは光学レンズ及びそれを構成する発光ダイオード構成材さらに一つの効果はLEDダイの放射光源はすべての角度において同じ光ピーク強度を維持できるため、映像側に一部区域の明暗差がおきない、照明の品質が向上される。   The aspherical wide illumination angle light emitting diode according to the present invention is an optical lens and a light emitting diode constituent material constituting the optical lens. Further, the radiation source of the LED die can maintain the same light peak intensity at all angles. There is no difference in brightness between areas, and the quality of lighting is improved.

以上は本考案の実施例を例示説明しているが、それらは説明目的のみであって、本考案になんらの制限を加わるものではない。よって、この種の技術を熟知する者は本考案の精神及び範疇に対する変更、修正、又は等効果変更などはなお本考案の請求範疇に含まれるものとする。   Although the embodiments of the present invention have been described above by way of example, they are for illustrative purposes only and do not impose any restrictions on the present invention. Therefore, those who are familiar with this type of technology shall still be included in the claim category of the present invention, such as changes, modifications, or equivalent changes to the spirit and category of the present invention.

公知技術によるLED光学レンズをLED構成材への応用概略図である。It is the application schematic diagram to LED constituent material by the LED optical lens by a well-known technique. 本考案による一種の非球面広照射角度発光ダイオードの光学レンズ及びそれを構成する発光ダイオード構成材のLED構成材の概略図である。1 is a schematic view of an optical lens of a kind of aspherical wide illumination angle light emitting diode according to the present invention and an LED constituent material of a light emitting diode constituent material constituting the optical lens. 本考案のLED光学レンズ光路の概略図である。It is the schematic of the LED optical lens optical path of this invention. 本考案実施例1によるLED構成材の光ピーク強度分布と照射角度との極座標関係図である。It is a polar-coordinate relationship figure of the light peak intensity distribution of LED constituent material by this invention Example 1, and an irradiation angle. 本考案実施例2によるLED構成材の光ピーク強度分布と照射角度との極座標関係図である。It is a polar coordinate relationship figure of the light peak intensity distribution of the LED constituent material by this invention Example 2, and an irradiation angle. 本考案実施例3によるLED構成材の光ピーク強度分布と照射角度との極座標関係図である。It is a polar coordinate relationship figure of light peak intensity distribution of LED constituent material by this invention Example 3, and irradiation angle. 本考案実施例4によるLED構成材の光ピーク強度分布と照射角度との極座標関係図である。It is a polar coordinate relationship figure of light peak intensity distribution of LED constituent material by this invention Example 4, and irradiation angle. 本考案実施例5によるLED構成材の光ピーク強度分布と照射角度との極座標関係図である。It is a polar coordinate relationship figure of the light peak intensity distribution of the LED constituent material by this invention Example 5, and an irradiation angle. 本考案実施例6によるLED構成材の光ピーク強度分布と照射角度との極座標関係図である。It is a polar coordinate relationship figure of the light peak intensity distribution of LED constituent material by this invention Example 6, and an irradiation angle. 本考案実施例7によるLED構成材の光ピーク強度分布と照射角度との極座標関係図である。It is a polar coordinate relationship figure of light peak intensity distribution of LED constituent material by this invention Example 7, and irradiation angle.

符号の説明Explanation of symbols

10 LED構成材
11、21 LEDダイ
12 シール材
13 光学レンズ
23 レンズ
光源側光学面又はその曲率半径
映像側光学面又はその曲率半径
中心軸上LEDダイの厚み
中心軸上LEDダイの表面から光学レンズ光源側までの光学面距離
中心軸光学レンズの厚み
ω LEDダイ放射光源最大角度の半分
φ 光学レンズ放射する光分散パターン最大角度の半分
回折率
アッベ数
α LEDダイ放射光源の光度値
β 映像側無限距離光源の光度
10 LED constituting material 11 and 21 LED die 12 sealant 13 optical lens 23 lens R 1 light source side optical surface or a radius of curvature R 2 video side optical surface or thickness d 1 the central axis of the radius of curvature d 0 centered on axis LED die half the surface of the upper LED die half light distribution pattern maximum angle of φ optical lens radiation thickness omega LED die radiation source maximum angle of the optical surface distance d 2 central axis optical lens to the optical lens the light source side N d diffractive index v d Abbe number α Luminance value of LED die radiation source β Luminous intensity of image side infinite distance light source

Claims (8)

一種の発光ダイオード構成材に応用でき、非球面広照射角度発光ダイオード光学レンズにおいて、中心軸の光源側から映像側に配列される発光ダイオードダイ、シール材、及び光学レンズを含める非球面広照射角度発光ダイオード光学レンズにおいて、
該光学レンズは凹面と凸面を備えたガラス製光学部材より仕上げられたレンズであって、該凹面は光源と対向配置させて光源側の光学面とし、凸面は映像側と対向配置させて映像側光学面として、少なくとも一つの光学面は非球面であって、かつ、式(A)の条件が適合されることを特徴とする光学レンズ。
Applicable to a kind of light-emitting diode components, aspherical wide illumination angle light-emitting diode optical lens, including a light-emitting diode die, sealing material, and optical lens arranged from the light source side of the central axis to the video side In light-emitting diode optical lens,
The optical lens is a lens finished from a glass optical member having a concave surface and a convex surface, and the concave surface is disposed opposite to the light source to be an optical surface on the light source side, and the convex surface is disposed opposite to the image side to display the image side. As an optical surface, at least one optical surface is an aspherical surface, and the condition of the formula (A) is satisfied.
該光学レンズはさらに式(B)の条件が適合されることを特徴とする請求項1記載の非球面広照射角度発光ダイオードの光学レンズ。
2. The optical lens of an aspherical wide illumination angle light emitting diode according to claim 1, wherein the optical lens further satisfies the condition of the formula (B).
該光学レンズはさらに式(C)の条件が適合されることを特徴とする請求項1記載の非球面広照射角度発光ダイオードの光学レンズ。
2. The optical lens of an aspherical wide illumination angle light-emitting diode according to claim 1, wherein the optical lens further satisfies the condition of the formula (C).
該光学レンズはさらに式(D)の条件が適合されることを特徴とする請求項2記載の非球面広照射角度発光ダイオードの光学レンズ。
The optical lens of an aspherical wide illumination angle light-emitting diode according to claim 2, wherein the optical lens further satisfies the condition of formula (D).
該光学レンズはプラスチック製であることを特徴とする請求項1記載の非球面広照射角度発光ダイオードの光学レンズ。 2. The optical lens of an aspherical wide illumination angle light emitting diode according to claim 1, wherein the optical lens is made of plastic. 請求項1ないし請求項4のいずれか1項に記載の光学レンズを構成する非球面広照射角度発光ダイオード及び発光ダイオードダイにおいて、120°から180°までの広照射角度円形光分散パターンが含められて、かつ、式(E)の条件が適合されることを特徴とする発光ダイオード構成材。
The aspherical wide irradiation angle light emitting diode and the light emitting diode die constituting the optical lens according to any one of claims 1 to 4, wherein a wide irradiation angle circular light dispersion pattern from 120 ° to 180 ° is included. And the conditions of Formula (E) are adapted, The light emitting diode structural material characterized by the above-mentioned.
該発光ダイオード構成材放射光源の光度と映像側無限距離光源光度の比較値は式(F)の条件が適合されることを特徴とする請求項6記載の発光ダイオード構成材。
β/α≧85% ・・・(F)
αは該発光ダイオードダイ放射光源の光度
βは該発光ダイオード構成材映像側無限距離において空気中の回折と散乱効果を無視された光度
7. The light emitting diode component according to claim 6, wherein the comparison value between the luminous intensity of the light emitting diode component radiation light source and the image side infinite distance light source luminous intensity satisfies the condition of formula (F).
β / α ≧ 85% (F)
α is the luminous intensity of the light emitting diode die radiation source β is the luminous intensity where diffraction and scattering effects in the air are ignored at the infinite distance on the light emitting diode component image side
該光学レンズはプラスチック製であることを特徴とする請求項6記載の非球面広照射角度発光ダイオード構成材。 The aspherical wide-angle light-emitting diode component according to claim 6, wherein the optical lens is made of plastic.
JP2008005992U 2008-06-30 2008-08-26 Optical lens of aspherical wide illumination angle light emitting diode and light emitting diode component constituting the same Expired - Fee Related JP3146186U (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97211643U TWM345355U (en) 2008-06-30 2008-06-30 Aspherical LED angular lens for wide distribution patterns and LED assembly using the same

Publications (1)

Publication Number Publication Date
JP3146186U true JP3146186U (en) 2008-11-06

Family

ID=43295907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008005992U Expired - Fee Related JP3146186U (en) 2008-06-30 2008-08-26 Optical lens of aspherical wide illumination angle light emitting diode and light emitting diode component constituting the same

Country Status (2)

Country Link
JP (1) JP3146186U (en)
TW (1) TWM345355U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020205458A (en) * 2020-10-05 2020-12-24 日亜化学工業株式会社 Light-emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI486700B (en) * 2011-09-23 2015-06-01 Appotronics Corp Ltd Light source and projection system using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020205458A (en) * 2020-10-05 2020-12-24 日亜化学工業株式会社 Light-emitting device
JP7021447B2 (en) 2020-10-05 2022-02-17 日亜化学工業株式会社 Luminescent device

Also Published As

Publication number Publication date
TWM345355U (en) 2008-11-21

Similar Documents

Publication Publication Date Title
US7980733B2 (en) Aspherical LED angular lens for wide distribution patterns and LED assembly using the same
TWI364120B (en) Convex-fresnel led lens for angular distribution patterns and led assembly thereof
US8967833B2 (en) LED lens and light source device using the same
US7993035B2 (en) Aspherical LED angular lens for narrow distribution patterns and LED assembly using the same
US20100061106A1 (en) Plano-fresnel led lens and led assembly thereof
US8371714B2 (en) Fresnel LED lens and LED assembly thereof
JP2010244790A (en) Lighting device
US20130083521A1 (en) Optical lens, light-emitting diode optical component and light-emitting diode road lamp
JP2011014434A5 (en)
US8979328B2 (en) Optical lens and lighting device having same
JP2011014434A (en) Lighting device, surface light source, and liquid crystal display apparatus
CN101676615B (en) Convex Fresnel LED optical lens for angular distribution patterns and LED assembly thereof
TWI479107B (en) Led light distributing lens and light source apparatus using the same
GB2423373A (en) Illumination system and method for camera
US20130043493A1 (en) Light-emitting diode structure
US8011811B2 (en) Aspherical LED angular lens for central distribution patterns and LED assembly using the same
CN201273524Y (en) Convex surface Fresnel LED optical lens and LED component composed by the same
CN201310816Y (en) Planar Fresnel LED optical lens and LED assembly consisting same
CN201401725Y (en) Fresnel LED (light-emitting diode) lens and LED component comprised thereby
EP2322973A1 (en) Lens and light emitting diode lamp using same
JP3146186U (en) Optical lens of aspherical wide illumination angle light emitting diode and light emitting diode component constituting the same
JP3148803U (en) Optical lens of aspherical positive irradiation angle light emitting diode and light emitting diode component constituting the same
JP3146185U (en) Optical lens of aspherical narrow irradiation angle light emitting diode and light emitting diode constituent material constituting the same
JP3147939U (en) Planar Fresnel LED lens and LED assembly thereof
CN201233905Y (en) Aspheric narrow lighting angle optical lens and LED component constituted thereby

Legal Events

Date Code Title Description
R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees