TWM331246U - Equalization charging circuit - Google Patents

Equalization charging circuit Download PDF

Info

Publication number
TWM331246U
TWM331246U TW96218409U TW96218409U TWM331246U TW M331246 U TWM331246 U TW M331246U TW 96218409 U TW96218409 U TW 96218409U TW 96218409 U TW96218409 U TW 96218409U TW M331246 U TWM331246 U TW M331246U
Authority
TW
Taiwan
Prior art keywords
voltage
power
current
unit
neutral point
Prior art date
Application number
TW96218409U
Other languages
Chinese (zh)
Inventor
Kuei-Hsiang Chao
Original Assignee
Nat Univ Chin Yi Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chin Yi Technology filed Critical Nat Univ Chin Yi Technology
Priority to TW96218409U priority Critical patent/TWM331246U/en
Publication of TWM331246U publication Critical patent/TWM331246U/en

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

An equalization charging circuit is disclosed. The equalization charging circuit includes an N-level neutral point clamped converter device, an electrical storage device and a voltage control device. The voltage control device comprises a table look-up device and a judgment circuit. The judgment circuit gets the signal from an input device and the electrical storage device, and then generates the proper switch function signal through the table look-up device for the N-level neutral point clamped converter device. The N-level neutral point clamped converter device is controlled by the voltage control device to make the input voltage of the input device provide a suitable voltage level employed to charge the electrical storage device.

Description

M3 31246 八、新型說明: 【新型所屬之技術領域】 本新型是有關於一種充電電路,且特別是有關於一種 鉛酸蓄電池之均勻充電電路。 【先前技術】 蓄電池在人類生活中一直佔有著相當重要的地位,其 係藉由能量轉換的方式’將電能變成化學能加以儲存。近 年來能源短缺及環境污染的問題,使得再生能源(如風力、 水力等)漸漸變成電力來源的主流,而因再生能源的電力產 生來源的不穩定性以及不確定性,讓蓄電池之需求更是有 增無減。 疋 由於使用單只蓄電池所提供的電源並無法滿足系統 所需的電壓’因此常會多只蓄電池串聯成蓄電池組,以提 供足夠的電壓值’但多只蓄電池組串聯充電時,由於其内 部特性的差異、每只蓄電池不同的電量以及化學成分^的 差異,將使得蓄電池組中每只電池充入電量產生不均句的 現象’造成蓄電池組之壽命’隨著串聯的數目增加,呈 指數性減少。 均勻充電之主要目的# ^ J你马了使串聯電池組中每一 η 電池都能得到相同之電量狀態,冬由聯+ l 爾串聯電池組内電池電量 不均勻時,對高電量狀態之電池,令 〜电也,就須以較少的能量對复 充電,反之以較高之能量對低電^ 八 阪电里電池充電,以達到串聯 電池組均勻充電之需求。 M331246 目如均勻充電技術大略可分成被動式均句充電技術 與主動式均勻充電技術兩種。被動式均充又可分為長時間 過充與消耗型均充架構;而主動式均勻充電技術又分為電 感均充架構、電容均充架構及多重繞組變壓器均充架構三 種。 長時間過充法利用延長充電時間達到電池組每只電 池都處於高電量狀態,但相對的容易造成電池氣體溢散永 久損壞的危險。而消耗型均充架構則是在每只電池旁邊並 聯一均壓器,將已充飽的電池上之充電電流導入均壓器 中,以避免電池過充現象發生,此方法則會浪費太多能量。 電感均充架構與電容均充架構係利用電感或電容等 元件轉換電量,意即將電量較多之電池藉由電感或電容在 充電過程中將尚出之電量轉移至較低電池中,此種方式可 避免電池過充,且不用將電量轉成熱能消耗造成不必要之 損失,此種方式的缺點在於能量的轉換受限於元件的容 量,因此會有充電時間過長之問題發生。 多重繞組變壓器均充架構,由一組多重繞組變壓器及 一直流至直流轉換器所組成。由於二次側繞組阻數相^, 所以串聯電池組在二次側以相同之電壓對每尸電池充 電,因以相同電壓進行充電,其對電量較高之電池充電率 較低,相對的電量低之電池可得到較高的充電率,以達到 均勻充電之效果°然而實際上耦合繞組間存在有互感及漏 電感,因此即使繞組匝數相同,亦無法得到相同之充電電 壓。 6 M331246 【新型内容】 、本新型的目的是在提供—種均句充電電路,用以克服 上述既有蓄電池均充電路之缺點H N階層中性點籍 位轉換裝置對蓄電裝置定電壓充電,U自動調整蓄電裝置 中串聯蓄電池組之充電電4,使其均勻充電,並同時可使 父流輸入端功因獲得改善。 本新里較佳實施例中的—種均句充電電路係供對 一蓄電裝置進行充電’均勻充電電路包含—N階層中性點 箝位轉換裝置以及-電壓控制裂置。其中,電㈣制裝置 包含-查表裝置以及-判斷電路1階層中性點箝位轉換 裝置具有-交流侧以及一直流側,其交流侧與一輸入裝置 電性連接,其直流側與蓄電裝置電性連接,係用以將交流 電源轉換為直流電源對蓄電裝置進行充電。 電壓控制裝置與N階層中性點箝位轉換裝置電性連 接,其中判斷電路擷取輸入裝置與蓄電裝置之訊號,經查 表裝置運算後選擇適當之工作模式,並輸出一對應開關切 換函數訊號給N階層中性點箝位轉換裝置,用以調控N階 層中性點箝位轉換裝置之動作,使輸入裝置之輸入端電壓 產生適當的電壓位準,對蓄電裝置進行平衡補償控制(即 作適當之充電或放電)’並可使交流電源之線電流追隨輸 入命令電流,且與交流電源同相,達到高輸入功因和低電 流諧波(Harmonic )。 7 M331246 【實施方式】 清參照第1圖’其繪示為本新型—較佳實施例中之一 種均勻充電電路之架構示意圖。均勻充電電路包含一主電 路單元20以及一控制電路單元3〇。其中主電路單元2〇包 3輸入裝置21、一蓄電装置22以及一:^階層中性點箝 位轉換裝置23。控制電路單元3〇為一電壓控制裝置31。 控制電路單元30擷取主電路單元2〇之訊號後,經由 其中之電壓控制裝置31調控主電路單元20之N階層中性 點箝位轉換裝置23,用以將輸入裝置21之交流訊號轉換 為直流訊號,使其可提供穩定之直流電壓對主電路單元2〇 之蓄電裝置22進行定電壓充電’之外,並可使主電路單元 20之輸入裝置21之父流輸入端之功率因數(p〇wer fact〇r) 得到修正(接近1 )。 请進一步參照第2圖,其繪示為第1圖中均勻充電電 路的主電路單元之電路圖。輸入裝置21連接一交流電源 201,並包含一升壓電感(々)202。交流電源201提供一 線電流(L ) 210與一端電壓(v此)220,且與升壓電感(& ) 202串接後,於兩端點(a和b)之間提供一輸入端電壓( 230。其中升壓電感(及)202,係作為功因控制時之儲能 電感。 蓄電裝置22為一串聯電池組,並包含一第一蓄電池 組(尽)301以及一第二蓄電池組(孕)302,且兩者相互 串聯,其串聯處為一中性點311,串聯後蓄電裝置22之正 極端為一正極端點312,負極端為一負極端點313。正極 8 M331246 端點312與中性點311之間為第一蓄電池組u)朗之 端電壓中性點311與負極端點313之間為第二蓄電 池組U) 302之端電壓U2),正極端點312與負極端點 3Π—之間為一直流鏈輸出端電壓(匕)。在本實施例中,第 一蓄電池組(尽)301以及第二蓄電池組(昊)3〇2 鉛酸電池。 μ Ν階層(本發明之說明例採Ν=3)中性點箝位轉換裝置 Μ包含一交流側401、一直流侧4〇2、以及複數個單位臂 單元403及403a。Ν階層中性點箝位轉換裝置23之交流 侧401與輸入裝置21電性連接,用以接收輸入裝置2丨^ 交流電源201所提供之線電流(〇21〇與輸入端電壓(、) 230。N階層中性點柑位轉換裝置23之直流側402與蓄電 裝置22電性連接,用以提供穩定之直流電壓供給蓄電裝 置22進行充電。 在N階層中性點箝位轉換裝置23中單位臂單元之數 里,者父流電源201之相數而定。如:交流電源2〇 1為 單相電源,則需要二個單位臂單元,當交流電源2〇1為三 相電源,則需要三個單位臂單元。 其中每一單位臂單元403及403a包含複數個功率半導 體開關元件以及複數個中性點箝位二極體。每一單位臂單 元中之功率半導體開關元件數目與N階層中性點箝位轉換 裝置23之階層數有關,其關係為(N-l) x2,其中N為N 階層中性點箝位轉換裝置23之階層數,且為大於1之正 整數。每一單位臂單元403及403a中之中性點箝位二極體 9 M331246 數目與N階層中性點箝位轉換裝置23之階層數有關,其 關係為(N-l) X (N_2),其中n為n階層中性點箝位轉換 裝置23之階層數,其為大於1之正整數,且為奇數。 因此,當N階層中性點箝位轉換裝置23為一 3階層 中性點箝位轉換裝置時,其每一單位臂單元中之功率半導 體開關元件數目為四個((3-1 ) χ2=4),每一單位臂單元中 之中性點箝位二極體數目為兩個χ 〇2) =2)。 在本實施例中,以一 3階層中性點箝位轉換裝置,其 輸入電源為單相電源為例,加以說明。Ν階層中性點箝位 轉換裝置23包含八個功率半導體開關元件(Sl〜s8)以及 四個中性點箝位二極體(Di〜d4)。而每一單位臂單元4〇3 及403a之功率半導體開關元件有三種可能之切換狀態,對 單位臂單兀403而言為s1=S2=l、S2=S3=1以及S3=S4=1, 而對單位臂單元403a而言為S5=S6=1、S6=S7=1以及 SfSfl。(1代表導通,〇代表關閉) 因此’本實施例所提出之3階層中性點箝位轉換裝 置’其功率半導體開關元件開關切換可能之變化有32=9 種切換模式,而其中有三個切換模式,皆可在輸入端電壓 (〜)230產生零電壓準位。因此,為了節省功率半導體 開關元件之開關切換狀態,所以僅選擇S2==S3=1且S6 = S7=1 的功率半導體開關元件之開關切換狀態,故僅剩下七種可 能之功率半導體開關元件之開關切換模式,且在交流侧 201之輸入端電壓(、)23〇可產生五種電壓位準(〇,土匕/2, 土匕)。 … M331246 根據上述3階層中性點箝位轉換裝置的七種切換模式 加从分析,最後彙整出主導方程式為:M3 31246 VIII. New description: [New technical field] The present invention relates to a charging circuit, and in particular to a uniform charging circuit for a lead-acid battery. [Prior Art] Batteries have always played a very important role in human life, and they are converted into chemical energy by means of energy conversion. In recent years, the problems of energy shortage and environmental pollution have made renewable energy (such as wind power, water power, etc.) gradually become the mainstream of power sources, and the demand for batteries due to the instability and uncertainty of renewable energy sources. There is no increase.疋Because the power supply provided by a single battery does not meet the voltage required by the system', it is often the case that multiple batteries are connected in series to form a battery pack to provide sufficient voltage value, but many battery packs are charged in series due to their internal characteristics. The difference, the difference in the amount of electricity and the difference in chemical composition of each battery will cause the phenomenon that each battery in the battery pack is charged with a non-uniform sentence, causing the life of the battery pack to decrease exponentially as the number of series increases. . The main purpose of uniform charging # ^ J you have made every n battery in the series battery pack get the same state of charge, the battery in the high battery state when the battery is not even in the battery pack in winter To make ~ power also, it is necessary to charge the battery with less energy, and instead charge the battery with low energy to the low battery, in order to achieve the uniform charging of the series battery. M331246 The purpose of uniform charging technology can be roughly divided into passive uniform sentence charging technology and active uniform charging technology. Passive equalization can be divided into long-term overcharge and consumption equalization architectures; active uniform charging technology is divided into three types: inductive equalization architecture, capacitor equalization architecture and multiple winding transformer equalization architecture. The long-time overcharge method uses the extended charging time to reach a high battery state in each battery of the battery pack, but it is relatively easy to cause the battery gas to overflow and permanently damage. In the consumption-type equalization architecture, a voltage equalizer is connected in parallel with each battery to introduce the charging current on the fully charged battery into the voltage equalizer to avoid overcharging of the battery. This method wastes too much. energy. Inductor equalization architecture and capacitor equalization architecture use components such as inductors or capacitors to convert power. It means that the battery with more power will be transferred to the lower battery by the inductor or capacitor during the charging process. It can avoid overcharging of the battery, and does not need to convert the electric quantity into heat energy to cause unnecessary loss. The disadvantage of this method is that the energy conversion is limited by the capacity of the component, so there is a problem that the charging time is too long. The multi-winding transformer equalization architecture consists of a set of multiple winding transformers and a DC to DC converter. Because the resistance of the secondary winding is phased, the series battery pack charges each corpse battery with the same voltage on the secondary side. Because the battery is charged at the same voltage, the battery charging rate is higher for the higher battery, and the relative power is lower. A low battery can achieve a higher charging rate to achieve a uniform charging effect. However, in reality, mutual inductance and leakage inductance exist between the coupled windings, so even if the number of winding turns is the same, the same charging voltage cannot be obtained. 6 M331246 [New content] The purpose of this new model is to provide a kind of uniform sentence charging circuit to overcome the shortcomings of the above-mentioned existing battery charging path. The HN level neutral point setting device charges the power storage device with a constant voltage. The charging power 4 of the series battery pack in the power storage device is automatically adjusted to be uniformly charged, and at the same time, the power factor of the parent flow input end can be improved. The novel sentence charging circuit of the preferred embodiment of the present invention is for charging a power storage device. The uniform charging circuit includes - N-level neutral point clamp switching means and - voltage control splitting. Wherein, the electric (four) system includes a look-up table device and the judging circuit 1 hierarchical neutral point clamp conversion device has an AC side and a DC side, and the AC side is electrically connected to an input device, and the DC side and the power storage device The electrical connection is used to convert the AC power to a DC power source to charge the power storage device. The voltage control device is electrically connected to the N-level neutral point clamp conversion device, wherein the determination circuit captures the signal of the input device and the power storage device, selects an appropriate working mode after the table look-up device operation, and outputs a corresponding switch switching function signal. The N-level neutral point clamp conversion device is used to regulate the action of the N-level neutral point clamp conversion device, so that the input terminal voltage of the input device generates an appropriate voltage level, and the balance compensation control of the power storage device is performed (ie, Appropriate charging or discharging) and allows the line current of the AC power source to follow the input command current and be in phase with the AC power source to achieve high input power and low current harmonics (Harmonic). 7 M331246 [Embodiment] Referring to FIG. 1 , a schematic diagram of a structure of a uniform charging circuit in a novel embodiment is shown. The uniform charging circuit includes a main circuit unit 20 and a control circuit unit 3''. The main circuit unit 2 includes an input device 21, a power storage device 22, and a hierarchical neutral point clamp device 23. The control circuit unit 3 is a voltage control device 31. After the control circuit unit 30 captures the signal of the main circuit unit 2, the N-level neutral point clamp conversion device 23 of the main circuit unit 20 is regulated by the voltage control device 31 for converting the AC signal of the input device 21 into The DC signal is such that it can supply a stable DC voltage to the constant voltage charging of the main circuit unit 2's power storage device 22, and can make the power factor of the parent input of the input device 21 of the main circuit unit 20 (p 〇wer fact〇r) got corrected (close to 1). Please refer to Fig. 2, which is a circuit diagram of the main circuit unit of the uniform charging circuit in Fig. 1. The input device 21 is connected to an AC power source 201 and includes a boosting inductor (202). The AC power source 201 provides a line current (L) 210 and an end voltage (v) 220, and in series with the boost inductor (&) 202, provides an input voltage between the two ends (a and b) ( 230. The boost inductor (and) 202 is used as a storage inductor for power factor control. The power storage device 22 is a series battery pack and includes a first battery pack (one) 301 and a second battery pack (pregnancy). 302, and the two are connected in series, and the series is a neutral point 311. After the series connection, the positive terminal of the power storage device 22 is a positive terminal 312, and the negative terminal is a negative terminal 313. The positive terminal 8 M331246 is 312 and Between the neutral point 311 is the first battery pack u) the terminal voltage neutral point 311 and the negative terminal end 313 are the terminal voltage U2) of the second battery pack U) 302, the positive terminal 312 and the negative terminal 3Π—Between the output voltage of the constant current chain (匕). In the present embodiment, the first battery pack (the end) 301 and the second battery pack (昊) 3〇2 lead-acid battery. The μ Ν level (description of the present invention = 3) neutral point clamp conversion device Μ includes an AC side 401, a DC side 4〇2, and a plurality of unit arm units 403 and 403a. The AC side 401 of the Ν-level neutral point clamp conversion device 23 is electrically connected to the input device 21 for receiving the line current provided by the input device 2 交流^ the AC power source 201 (〇21〇 and the input terminal voltage (,) 230 The DC side 402 of the N-level neutral point citrus conversion device 23 is electrically connected to the power storage device 22 for supplying a stable DC voltage to the power storage device 22 for charging. Units in the N-level neutral point clamp conversion device 23 The number of arm units depends on the number of phases of the parent flow power supply 201. For example, if the AC power supply 2〇1 is a single-phase power supply, two unit arm units are required. When the AC power supply 2〇1 is a three-phase power supply, it is required. Three unit arm units, wherein each unit arm unit 403 and 403a includes a plurality of power semiconductor switching elements and a plurality of neutral point clamp diodes. The number of power semiconductor switching elements in each unit arm unit is in the N-level The number of layers of the point clamp conversion device 23 is related to (N1) x2, where N is the number of layers of the N-level neutral point clamp conversion device 23, and is a positive integer greater than 1. Each unit arm unit 403 and 403a The number of neutral point clamp diodes 9 M331246 is related to the number of layers of the N-level neutral point clamp conversion device 23, and the relationship is (Nl) X (N_2), where n is an n-level neutral point clamp conversion device The number of layers of 23, which is a positive integer greater than 1, and is an odd number. Therefore, when the N-level neutral point clamp conversion device 23 is a 3-level neutral point clamp conversion device, each unit arm unit is The number of power semiconductor switching elements is four ((3-1 ) χ 2 = 4), and the number of neutral point clamp diodes per unit arm unit is two χ 〇 2) = 2). In the present embodiment, a three-level neutral point clamp conversion device is described, in which the input power is a single-phase power supply. The Ν-level neutral point clamp conversion device 23 includes eight power semiconductor switching elements (S1 to s8) and four neutral point clamp diodes (Di to d4). The power semiconductor switching elements of each of the unit arm units 4〇3 and 403a have three possible switching states, and for the unit arm unit 403, s1=S2=l, S2=S3=1, and S3=S4=1, For the unit arm unit 403a, S5=S6=1, S6=S7=1, and SfSfl. (1 means turn-on, 〇 means turn-off) Therefore, the 'three-layer neutral point clamp conversion device proposed in the present embodiment' has a power semiconductor switching element switching change possible with 32=9 switching modes, and three of them are switched. The mode can generate a zero voltage level at the input voltage (~) 230. Therefore, in order to save the switching state of the power semiconductor switching elements, only the switching states of the power semiconductor switching elements of S2==S3=1 and S6=S7=1 are selected, so only seven possible power semiconductor switching elements remain. The switch mode is switched, and the voltage (,) 23 输入 at the input terminal of the AC side 201 can generate five kinds of voltage levels (〇, 匕/2, bandits). ... M331246 According to the above seven switching modes of the three-level neutral point clamp conversion device, the slave analysis is performed, and finally the leading equation is:

- L - ^ ^SaVBl-SbVB2 (” 、 其中開關切換函數&與&定義為·· ,S^(SlS2^S5Se) Α、Αυ8) ⑶ • 及 &Η2”‘·’8 =1(0),若心12 8 觸發(不觸發) (4 ) ^3,4,7,8 =^^1,2,5,6 ⑴ 首請參照第3圖,其繪示依據本新型一較佳實施例由主 稳式(1)〜(5)所整理出之每一個功率半導體開關 元件之開關切換模式下之工作模式狀態圖表。根據第㈣1 所不’若已知線電流“J 21〇變動方向與端電壓匕) φ 大小所在之區域,則可選擇適當之卫作模式,使輸^入 端電壓(νώ) 230產生適當的電壓位準,對蓄電裝置^進 行平衡補償控制(即作適當之充電或放電)。 • 口月參照第4目’其緣示為本新型-較佳實施例之一種 • 均勻充電電路的控制電路單元之電路圖。電壓控制裝置31 包含-判斷電路50以及一查表裝置5卜其中判斷電路兄 包含一第一判斷單元501、一第二判斷單元5〇2、一第三 斷單元503以及一第四判斷單元504。 第-判斷單元5G1擷取輸人裝置21之交流電源2〇1 M331246 的端電壓(V ) 220却味 广/ 訊5虎,用以判斷交流電湄201之踹雷 壓(4) 220處於正丰调赤“ …原201之知電 Μ (A) 511 ”或負半週,判斷後輸出一控制參 叛、511給杳表奘番 .,第m 置51。因此,控制參數(A) 5H之 决桌方式可以表示如下·· A-。’ 若 v’〇 ; A=q,若',〇。 ⑷ 檢測器。實^第一判斷單元5〇1為一電源電磨極性- L - ^ ^SaVBl-SbVB2 (", where switch switching function & & & is defined as ··, S^(SlS2^S5Se) Α, Αυ8) (3) • and &Η2"'·'8 =1 ( 0), if the heart 12 8 triggers (does not trigger) (4) ^3,4,7,8 =^^1,2,5,6 (1) First, please refer to Figure 3, which shows a preferred one according to the present invention. The embodiment is a graph of the operation mode state in the switching mode of each of the power semiconductor switching elements arranged by the main stable equations (1) to (5). According to the (4)1, if the line current "J 21〇 variation direction and terminal voltage 匕) φ is located, the appropriate mode can be selected to make the input voltage (νώ) 230 appropriate. The voltage level is used to perform balance compensation control on the power storage device (ie, proper charging or discharging). • The moon is referred to the fourth item, which is a new type of the preferred embodiment. • The control circuit of the uniform charging circuit The circuit diagram of the unit. The voltage control device 31 includes a determination circuit 50 and a table lookup device 5, wherein the judgment circuit brother includes a first determination unit 501, a second determination unit 5〇2, a third break unit 503, and a first The fourth judging unit 504. The first judging unit 5G1 draws the terminal voltage (V) 220 of the AC power source 2〇1 M331246 of the input device 21, but the terminal voltage (V) 220 is used to judge the lightning pressure of the AC battery 201 (4) 220 is in the positive Feng Chi red "... original 201 knows the electricity Μ (A) 511" or negative half cycle, after the judgment, the output of a control renegade, 511 to the 杳 table. The m is set to 51. Therefore, the control parameters (A) The 5H table method can be expressed as follows: A-. ‘ if v’〇 ; A=q, if ', 〇. (4) Detector. The first judgment unit 5〇1 is a power supply electric grinding polarity

第二判斷單元502梅取輸入裝置2 之端電麼(V ) 220㈣m m電源201 訊唬,用以判斷交流電源2〇1之端電 i V&lt;K) 220所處之區域,判斷後輪出-控制參數⑻512 給查表裝置51。在本實施例中,第二斷單元5〇2為一區域 檢測器。 一如要得到輸入端電塵(VeJ 23〇具有三階層之波形, 交流電源201之端電麗(VeJ咖與直流輸出電壓之關係 必南符合Frfe/2&lt;|v—|&lt;匕之條件。故首先將劃分為 區域一,而k|&gt;4/2定為區域二,並且假設〜=〜=匕/2。 因此,控制參數(B) 512之決策方式可以表示:下' B 0 ’右Μ&lt;4/2 (區域一);B=卜若|^卜^/2 (區域 二)。 , (7) 第三判斷單元503擷取蓄電裝置22之第一蓄電池組 (A) 301之端電壓(、)訊號以及第二蓄電池組(^) 302 之端電壓(ν,2)訊號,用以判斷應對第一蓄電池組(孕) 301或第二蓄電池組(晃)302分別進行充電或玫電,以使 其均勻充電,判斷後輸出一控制參數(C) 513給查表裝置 12 M331246 51。在本實施例中,第三斷單元5〇3為一電壓平衡控制器。 因此,控制參數(C) 513之決策方式可以表示如下: C 〇,若 &lt;v们;c=l,若 ν51 &gt;νβ2。 ( 8 ) 第四判斷單元504包含一直流輸出電壓控制器541以 及一磁滯電流控制器(Hysteresis current controller, HCC)542。直流輸出電壓控制器541用以將一直流鏈回授 電壓(C)與一命令電壓之誤差調制後產生一輸入 命令電流之峰值(匕h在本實施例中,直流輸出電壓控制 器541為一比例積分(pr〇p〇rti〇nai integrai,pi)控制器,直 流鏈回授電壓(4)為擷取自蓄電裝置22之直流端電壓 (匕)乘以一回授電壓比例因子(尺v )而成。 輸入命令電流之峰值(匕)與交流電源201同相位之 單位弦波(外成))相乘後產生輸入命令電流(〇,將輸入 命令電流(乙)與實際輸入電流(4 )之間的變動量(&amp;·) 輸入給磁滯電流控制器542,使其產生控制參數(d) 514, 輸出給查表裝置51。藉此使實際輸入電流(4 ),緊密追 隨其輸入命令電流(〇,進而使交流電源(vaJ 201之功 率因數為1。 其中單位弦波(外奴))為擷取自輸入裝置21之交流電 源201的端電壓(vfle) 220除以其純量電壓(|VJ )而成。 而實際輸入電流(L )為擷取自輸入裝置21之線電流() 210乘以一電流比例因子(尺,)而成。 因此,控制參數(D)514之決策方式可以表示如下· D=0,若(4-; D=1,若(4一。( 9) 13 M3 31246 其中’ χ為磁滞電流控制器之磁滞邊界。 查表裝置51根據控制參數(A) 511、控制參數(B) 512、控制參數(c) 513以及控制參數(D) 513運算後輸 出一開關切換函數訊號551給N階層中性點箝位轉換裝置 23 ’用以控制N階層中性點箝位轉換裝置23中所對應之 功率半導體開關元件(si〜ss )動作,使其直流鏈串聯之蓄 電裝置22的電壓達到平衡。 請參照第5圖,其繪示為查表裝置在各工作模式下, 功率半導體開關元件之開關切換函數與控制參數的關係 圖表。依據第3圖及方程式(6)〜(9)可整理出開關切 換狀態與控制參數之關係,而由控制參數(A〜D ) 511〜54 所產生之狀態’可以決定相對應之開關切換模式,讓N階 層中性點箝位轉換裝置23工作於特定工作模式下,使其 線電流(U 210追隨輸入命令電流(4),並與交流電源 (4) 201同相,同時亦可控制蓄電裝置22作均勻充電。 舉例說明,假設交流電源201之端電壓(心)22〇大 於零(即A=l),且落在區域二(即B==1),第一蓄電池組 (祝)301之端電壓(ViJ大於第二蓄電池組(民)3〇2之 端電壓(v52)(即〇1),線電流(21〇與輸入命令電 流(Ο之誤差大於磁滯邊界(即Dy)。 當電壓控制裝置31中之判斷單元5〇1〜5〇4分別取得 到上述相關之訊號進行判斷後’分別輪出對應的控制參數 (A〜D)給查表裝置51 ’查表裝置51進行比對後,輸出 開關切換訊號給N階層中性點箝位轉換袭置23,使其所對 M331246 應之功率半導體開關元件S2、S3、S7以及s8觸發(即s2=s3= S7= Ss=l),工作於模式三,對第一蓄電池組(301進 行放電,而對第二蓄電池組(矣)3〇2進行充電,並可使 線電流(L ) 210追隨輸入命令電流(&amp; ),且與交流電源 201同相,達到高輸入功因和低電流諧波。 在本實施例中,採用電力電子模擬軟體(PowerSIM 公司出廠之PSIM)進行模擬,模擬參數設定為:升壓電 感(A-〇· 175mH)、電源端電阪(α=5πιΩ )、交流電源之 端電壓(vflc=14V)、直流鏈輸出端電壓(l=28V)、第一蓄 電池組(尽)與第二蓄電池組(孕)之規格為12V-13Ah。 請參照第6圖,其繪示為本新型一較佳實施例中之均 勻充電電路之輸入端電壓(、)的模擬波形圖。由模擬結 果知知輸入端電壓(、)波形230a在交流電源201 &lt;端電 壓(4 ) 220正負半週,均有三個電壓準位,故可減少輪 出電壓諧波。 請參照第7圖和第8圖,其繪示分別為本新型一較佳 實施例中之均勻充電電路在進行充㈣,兩蓄電池組容量 與兩蓄電池組端電壓之變化曲線圖。一開始讓兩只蓄電池 組之起始電壓及容量設定不相同,第一蓄電池組(a)%。 初始設定電壓801為ii.iv,第二蓄電池組(3〇2&amp;初 始設定電壓搬為u.39V,並在充電中期(3^鐘時)= 加第二蓄電池組U)之容量,以加劇其在充電期間容: 不均勻情形。 里 請參照第9圖,其繪示為本新型一較佳實施例中之均 15 M3 31246 勻充電電路在進行充電時,兩蓄電池組電壓差之變化曲線 圖。清參照第1 〇圖’其緣不為本新型一較佳實施例中之 均勻充電電路在進行充電時,交流電源之端電壓(、)波 形220a和線電流(L)波形210a之模擬圖。 由第7圖〜第10圖之模擬結果觀得本實施例所提之均 勻充電電路,具有提供蓄電裝置均勻充電之性能,且可改 善充電器交流電源端之電力品質。 雖然本新型已以一較佳實施例揭露如上,然其並非用 以限定本新型,任何熟習此技藝者,在不脫離本新型之精 神和範圍内,當可作各種之更動與潤飾,因此本新型之保 護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本新型之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之詳細說明如下: 第1圖係繪示為本新型一較佳實施例中之一種均勻充 電電路之架構示意圖。 第2圖係繪示為第i圖中均勻充電電路的主電路單元 之電路圖。 第3圖係緣示依據本新型一較佳實施例之每一個功率 半導體開關元件之開關切換模式下之工作模式狀態圖表。 第4圖係繪不為本新型一較佳實施例之一種均句 電路的控制電路單元之電路圖。 第5圖係繪示為查表裝置在各工作模式下,功率半導 16 M331246 體開關7〇件之_切換函數與控制參數的關係圖表。 第6圖係繪示為本新型一較佳實施例中之均勻充電電 路之輸入端電壓(U)的模擬波形圖。 第7圖係繪示為本新型一較佳實施例中之均勻充電電 路在進行充電時,兩蓄電池組容量之變化曲線圖。 第8圖係繪示為本新型一較佳實施例中之均勻充電電 路在進仃充電時’兩蓄電池組端電壓之變化曲線圖。 第9圖係繪示為本新型一較佳實施例中之均勻充電電 路在進行充電時,兩蓄電池組電壓差之變化曲線圖。 第10圖係繪示為本新型一較佳實施例中之均勻充電 電路在進行充電時,交流電源之端電壓(、)和線電流〇 之模擬波形圖。 【主要元件符號說明】 20 ··主電路單元 30 :控制電路單元 21 ··輸入裝置 22 :蓄電裝置 23 : N階層中性點箝位轉換31:電壓控制褒置 裝置 202 :升壓電感 201 :交流電源 210 :交流線電流 220 :交流端電壓 230 :輸入端電壓 301 :第一蓄電池組 302 :第二蓄電池組 3 11 :中性點 312 :正極端點 313 :負極端點 401 :交流側 402 :直流側 403、403a :單位臂單 17 M331246 50 ··判斷電路 51 :查表裝置 501〜504 :判斷單元 5 11〜514 :控制參數 541 :直流輸出電壓控制器 542 :磁滯電流控制器 551 :開關切換函數訊號 230a:輸入端電壓波形 301a:第一蓄電池組容量波302a:第二蓄電池組容量波 形 形 801〜802 :初始設定電壓 210a :交流電源線電流波形 220a :交流電源端電壓波形The second judging unit 502 takes the end of the input device 2 (V) 220 (four) m m power source 201 for judging the area where the end of the AC power source 2〇1 is i V&lt;K) 220, judging the rear wheel - Control parameter (8) 512 is given to the look-up device 51. In the present embodiment, the second breaking unit 5〇2 is an area detector. As for the input terminal dust (VeJ 23〇 has a three-level waveform, the end of the AC power supply 201 (VeJ coffee and DC output voltage relationship must meet the requirements of Frfe/2&lt;|v-|&lt; Therefore, it will be first divided into region one, and k|&gt;4/2 will be determined as region two, and assuming ~=~=匕/2. Therefore, the decision mode of control parameter (B) 512 can be expressed as: lower 'B 0 'Right Μ&lt;4/2 (Zone 1); B=Bu Ruo|^ Bu^/2 (Zone 2). (7) The third judging unit 503 captures the first battery pack (A) 301 of the power storage device 22. The terminal voltage (,) signal and the terminal voltage (ν, 2) signal of the second battery pack (^) 302 are used to determine that the first battery pack (pregnancy) 301 or the second battery pack (shake) 302 should be charged separately. Or the motor is charged to uniformly charge, and a control parameter (C) 513 is outputted to the look-up device 12 M331246 51. In the present embodiment, the third breaking unit 5〇3 is a voltage balance controller. The decision mode of the control parameter (C) 513 can be expressed as follows: C 〇, if &lt;v;; c=l, if ν51 &gt; νβ2. (8) Fourth judgment list The 504 includes a DC output voltage controller 541 and a Hysteresis current controller (HCC) 542. The DC output voltage controller 541 is used to modulate the error of the DC link feedback voltage (C) with a command voltage. After generating an input command current peak (匕h in this embodiment, the DC output voltage controller 541 is a proportional integral (pr〇p〇rti〇nai integrai, pi) controller, DC link feedback voltage (4) It is obtained by multiplying the DC voltage (匕) of the power storage device 22 by a feedback voltage scale factor (foot v). The peak current (匕) of the command current is input in units of the same phase as the AC power source 201. )) After multiplication, an input command current is generated (〇, the amount of change (&amp;·) between the input command current (B) and the actual input current (4) is input to the hysteresis current controller 542 to generate control parameters. (d) 514, output to the look-up table device 51. Thereby the actual input current (4) is closely followed by the input command current (〇, thereby making the AC power source (the power factor of vaJ 201 is 1. where the unit sine wave (outside) slave)) The terminal voltage (vfle) 220 of the AC power source 201 taken from the input device 21 is divided by its scalar voltage (|VJ). The actual input current (L) is the line current drawn from the input device 21 () 210 is multiplied by a current scale factor (foot,). Therefore, the decision mode of the control parameter (D) 514 can be expressed as follows: D = 0, if (4-; D = 1, if (4). (9) 13 M3 31246 where 'χ is the hysteresis boundary of the hysteresis current controller. The look-up table device 51 outputs a switch switching function signal 551 to the N-level neutral point clamp conversion according to the control parameter (A) 511, the control parameter (B) 512, the control parameter (c) 513, and the control parameter (D) 513. The device 23' is for controlling the operation of the power semiconductor switching elements (si to ss) corresponding to the N-level neutral point clamp switching device 23 so that the voltage of the power storage device 22 in which the DC link is connected in series is balanced. Please refer to FIG. 5, which is a graph showing the relationship between the switching function of the power semiconductor switching element and the control parameters in each working mode of the meter reading device. According to Fig. 3 and equations (6)~(9), the relationship between the switching state and the control parameters can be arranged, and the state generated by the control parameters (A~D) 511~54 can determine the corresponding switching mode. The N-level neutral point clamp conversion device 23 is operated in a specific operation mode to make its line current (U 210 follows the input command current (4), and is in phase with the AC power source (4) 201, and can also control the power storage device. 22 for uniform charging. For example, assume that the terminal voltage (heart) 22〇 of the AC power source 201 is greater than zero (ie, A=l), and falls in the area two (ie, B==1), the first battery pack (b) 301 The terminal voltage (ViJ is greater than the terminal voltage (v52) of the second battery pack (Min) 3〇2 (ie, 〇1), and the line current (21〇 and the input command current (the error of Ο is greater than the hysteresis boundary (ie, Dy). When the determining units 5〇1 to 5〇4 in the voltage control device 31 respectively obtain the signals related to the above, the corresponding control parameters (A to D) are respectively rotated to the table lookup device 51 for the table lookup device 51. After the comparison, the output switch switches the signal to the N-level neutral point clamp conversion attack. , causing the power semiconductor switching elements S2, S3, S7 and s8 of the M331246 to be triggered (ie s2 = s3 = S7 = Ss = 1), operating in mode three, discharging the first battery pack (301, and The second battery pack (矣) 3〇2 is charged, and the line current (L) 210 can follow the input command current (&amp;) and be in phase with the AC power source 201 to achieve high input power and low current harmonics. In this embodiment, the power electronic simulation software (PowerSIM company's PSIM) is used for simulation. The analog parameters are set as: boost inductor (A-〇·175mH), power supply terminal (α=5πιΩ), and the end of the AC power supply. The voltage (vflc=14V), the DC link output voltage (l=28V), the first battery pack (out) and the second battery pack (pregnancy) are 12V-13Ah. Please refer to Figure 6, which is shown as An analog waveform diagram of the input terminal voltage (,) of the uniform charging circuit in a preferred embodiment of the present invention. It is known from the simulation result that the input terminal voltage (,) waveform 230a is at the AC power source 201 &lt; terminal voltage (4) 220 positive and negative Half cycle, there are three voltage levels, so the wheel can be reduced Voltage harmonics. Please refer to FIG. 7 and FIG. 8 , which are diagrams showing the variation of the capacity of the two battery packs and the voltage of the two battery packs in the uniform charging circuit of the preferred embodiment of the present invention. Initially, the initial voltage and capacity settings of the two battery packs are different, the first battery pack (a)%. The initial set voltage 801 is ii.iv, and the second battery pack (3〇2&amp; initial set voltage is moved to u.39V, and in the middle of charging (3^ clock) = increase the capacity of the second battery pack U) to exacerbate its capacity during charging: uneven situation. Please refer to FIG. 9 , which is a graph showing the voltage difference between two battery packs when the 15 M3 31246 level charging circuit is charged in the preferred embodiment of the present invention. Referring to Fig. 1 for the sake of the charging circuit of the alternating current power supply, the terminal voltage (,) waveform 220a and the line current (L) waveform 210a of the alternating current power supply are not shown. From the simulation results of Figs. 7 to 10, the uniform charging circuit of the present embodiment is observed, which has the performance of providing uniform charging of the power storage device, and can improve the power quality of the AC power terminal of the charger. Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the present invention, and it is to be understood that those skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. The scope of the new protection is subject to the definition of the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; A schematic diagram of the architecture of a uniform charging circuit in the example. Fig. 2 is a circuit diagram showing the main circuit unit of the uniform charging circuit in Fig. i. Fig. 3 is a graph showing the operation mode state in the switching mode of each of the power semiconductor switching elements in accordance with a preferred embodiment of the present invention. Fig. 4 is a circuit diagram showing a control circuit unit of a uniform sentence circuit which is not a preferred embodiment of the present invention. Figure 5 is a graph showing the relationship between the switching function and the control parameters of the power semiconductor 16 M331246 body switch 7 in each working mode. Figure 6 is a diagram showing an analog waveform of the input terminal voltage (U) of the uniform charging circuit in a preferred embodiment of the present invention. Figure 7 is a graph showing changes in capacity of two battery packs during charging of a uniform charging circuit in accordance with a preferred embodiment of the present invention. Fig. 8 is a graph showing changes in the voltages of the terminals of the two battery packs during the charging of the uniform charging circuit in the preferred embodiment of the present invention. Figure 9 is a graph showing changes in voltage difference between two battery packs during charging of a uniform charging circuit in a preferred embodiment of the present invention. Figure 10 is a diagram showing the analog waveforms of the terminal voltage (,) and line current 交流 of the AC power source during charging of the uniform charging circuit in the preferred embodiment of the present invention. [Description of main component symbols] 20 · Main circuit unit 30: Control circuit unit 21 · Input device 22: Power storage device 23: N-level neutral point clamp conversion 31: Voltage control device 202: Boost inductor 201: AC power source 210: AC line current 220: AC terminal voltage 230: Input terminal voltage 301: First battery pack 302: Second battery pack 3 11: Neutral point 312: Positive terminal 313: Negative terminal 401: AC side 402 DC side 403, 403a: unit arm single 17 M331246 50 · Judgment circuit 51: look-up table devices 501 to 504: Judging unit 5 11 to 514: Control parameter 541: DC output voltage controller 542: Hysteresis current controller 551 : Switching switching function signal 230a: input terminal voltage waveform 301a: first battery pack capacity wave 302a: second battery pack capacity waveform shape 801 to 802: initial setting voltage 210a: AC power line current waveform 220a: AC power terminal voltage waveform

1818

Claims (1)

M3 31246 九、申請專利範圍: 二種均句充電電路,係適用於對—蓄電裝置進行充 其中該蓄電裝置包含⑷)個相互串聯的蓄電池組, 該均勻充電電路包含··M3 31246 IX. Patent application scope: Two kinds of uniform sentence charging circuits are suitable for charging the power storage device, wherein the power storage device comprises (4) a battery pack connected in series with each other, and the uniform charging circuit includes -N階層中難隸轉換裝置,具有―交❹,丨以及一 直流側,該线側係m裝置電性連接,該直流側 係供。該蓄電裝置電性連接,該N階層中性點箝位轉換裝 置轉換該輸人裝置之父流電源為—直流電源,並輸出該直 流電源給該蓄電裝置以對其崎充電,其巾N為大於^ 正整數,且為奇數;以及 一電壓控制裝置,係電氣連接於該\階層中性點箝位 轉換裴置,並包含: 一判斷電路,係擷取該輸入裝置之電壓訊號與電 流訊號,以及該蓄電裝置之電壓訊號,判斷後輸出一個以 上之控制參數訊號;以及 一查表裝置’係接收各該控制參數訊號後,輸出 一開關切換函數訊號給該N階層中性點箝位轉換裝置,以 控制該N階層中性點箝位轉換裝置之工作模式。 2·如申請專利範圍第1項所述之均勻充電電路,其中 該判斷電路,包含: 一第一判斷單元,係擷取該輪入裝置之交流電源的電 壓訊號,判斷後輸出一第一控制參數訊號給該查表裝置; 一第二判斷單元,係擷取該輸入裝置之交流電源之電 M3 31246 壓準位訊號,判斷後輸出一第二控制參數訊號給該查表裝 置; 一第三判斷單元,係擷取各該蓄電池組之端電壓訊 號,判斷後輸出一第三控制參數訊號給該查表裝置;以及 • 一第四判斷單元,係擷取該交流電源之電壓訊號、該 — 交流電源之電流訊號以及該蓄電裝置之電壓訊號,判斷後 輸出一第四控制參數訊號。 春 3.如申請專利範圍第2項所述之均勻充電電路,其中 該第四判斷單元包含: 一直流輸出電壓控制器以及一磁滯電流控制器,該直 流輸出電壓控制器用以將一直流鏈回授電壓與一命令電 壓之誤差調制後產生一輸入命令電流之峰值,該輸入命令 電流之峰值與該交流電源同相位之單位弦波相乘後,產生 -輪入命令電流,將該輸人命令電流與—實際輸人電流之 Fb1的變動量輸人給該磁滞電流控制器,使其產生該第四控 W 制參數訊號。 該 流 4.如申請專利範圍第3項所述之均句充電電路,其中 1^階層中性點箝位轉換裝置包含. 雷^個單位臂單元’該些單位臂以之數量係與該交 電源之相數相關。 5·如申請專利範圍第4 項所述之均勻充電電路,其中 20 M331246 3玄乂 &gt;;IL電源之相數為早相,該些單位臂單元之數量為二 個。 6·如申請專利範圍第4項所述之均勻充電電路,其中 該父流電源之相數為三相,該些單位臂單元之數量為三 個0 7.如申請專利範圍第5項或第6項所述之均句充電電 路’其中每一單位臂單元包含: 複數個功率半導體開關元件以及複數個中性點箝位 二極體,其中該些功率半導體開關元件之數目為(N-l) x 2 ’該些中性點柑位二極體之數目為(Nd ) X ( ),其 中N為該N階層中性點箝位轉換裝置之階層數。 8·如申請專利範圍第7項所述之均勻充電電路,其中 該直流鏈回授電壓為該蓄電裝置之端電壓訊號乘以 一回授電壓比例因子。 9·如申請專利範圍第8項所述之均勻充電電路,其中 該單位弦波為該交流電源之電壓訊號除以其純量電壓訊 號,而該實際輸入電流為該交流電源之電流訊號乘以一電 流比例因子D 10·如申睛專利範圍第9項所述之均勻充電電路,其中 21 M331246The -N-level hard-to-subsequence conversion device has "intersection", "丨" and a DC side, and the line side is electrically connected to the m device, and the DC side is supplied. The power storage device is electrically connected, and the N-level neutral point clamp conversion device converts the parent flow power of the input device into a DC power source, and outputs the DC power to the power storage device to charge the battery, and the towel N is And a voltage control device electrically connected to the \-level neutral point clamp conversion device, and comprising: a judgment circuit for extracting voltage signals and current signals of the input device And the voltage signal of the power storage device, and outputting one or more control parameter signals after determining; and a meter reading device receiving a switch switching function signal to the N-level neutral point clamp conversion after receiving the control parameter signals And means for controlling the operation mode of the N-level neutral point clamp conversion means. 2. The uniform charging circuit according to claim 1, wherein the determining circuit comprises: a first determining unit for extracting a voltage signal of the alternating current power source of the wheeling device, and outputting a first control after determining The parameter signal is sent to the table lookup device; a second determining unit is configured to retrieve the power M3 31246 pressure level signal of the AC power of the input device, and then output a second control parameter signal to the table lookup device; The determining unit is configured to capture the voltage signal of each of the battery packs, and then output a third control parameter signal to the meter reading device; and • a fourth determining unit that extracts the voltage signal of the AC power source, the The current signal of the AC power source and the voltage signal of the power storage device are judged to output a fourth control parameter signal. 3. The uniform charging circuit according to claim 2, wherein the fourth determining unit comprises: a DC output voltage controller and a hysteresis current controller for using the DC link voltage controller The error of the feedback voltage and a command voltage is modulated to generate a peak of an input command current, and the peak of the input command current is multiplied by the unit sine wave of the same phase of the AC power source to generate a wheel-in command current, which is input The command current and the fluctuation amount of Fb1 of the actual input current are input to the hysteresis current controller to generate the fourth control parameter signal. The stream 4. The uniform sentence charging circuit according to claim 3, wherein the 1^ hierarchical neutral point clamp conversion device comprises: a unit unit arm unit, and the unit arms are in quantity The number of phases of the power supply is related. 5. The uniform charging circuit described in claim 4, wherein 20 M331246 3 Xuanyuan &gt;; the number of phases of the IL power source is early phase, and the number of the unit arm units is two. 6. The uniform charging circuit according to claim 4, wherein the number of phases of the parent current power source is three phases, and the number of the unit arm units is three zeros. 7. For the fifth or the Each of the unit arm units includes: a plurality of power semiconductor switching elements and a plurality of neutral point clamp diodes, wherein the number of the power semiconductor switching elements is (Nl) x 2 'The number of neutral citrus diodes is (Nd ) X ( ), where N is the number of levels of the N-level neutral point clamp conversion device. 8. The uniform charging circuit of claim 7, wherein the DC link feedback voltage is a terminal voltage signal of the power storage device multiplied by a feedback voltage scaling factor. 9. The uniform charging circuit according to claim 8, wherein the unit sine wave is a voltage signal of the alternating current power source divided by a scalar voltage signal, and the actual input current is a current signal of the alternating current power source multiplied by A current scaling factor D 10 · a uniform charging circuit as described in claim 9 of the scope of the patent, wherein 21 M331246 該第一判斷單元為一電源電壓極性檢測器,該第二判斷單 元為一區域檢測器,該第三判斷單元為一電壓平衡控制 器,該直流輸出電壓控制器為一比例積分控制器。 十、圖式: 如次頁 22The first determining unit is a power voltage polarity detector, the second determining unit is an area detector, the third determining unit is a voltage balance controller, and the DC output voltage controller is a proportional integral controller. X. Schema: as the next page 22
TW96218409U 2007-11-01 2007-11-01 Equalization charging circuit TWM331246U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96218409U TWM331246U (en) 2007-11-01 2007-11-01 Equalization charging circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96218409U TWM331246U (en) 2007-11-01 2007-11-01 Equalization charging circuit

Publications (1)

Publication Number Publication Date
TWM331246U true TWM331246U (en) 2008-04-21

Family

ID=44324592

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96218409U TWM331246U (en) 2007-11-01 2007-11-01 Equalization charging circuit

Country Status (1)

Country Link
TW (1) TWM331246U (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8339100B2 (en) 2009-09-29 2012-12-25 O2Micro Inc Systems and methods for cell balancing
US8344694B2 (en) 2009-09-29 2013-01-01 O2Micro International, Ltd. Battery management system with energy balance among multiple battery cells
US8415905B2 (en) 2010-11-25 2013-04-09 Industrial Technology Research Institute Battery power system
TWI452800B (en) * 2012-02-20 2014-09-11 Univ Nat Changhua Education Battery charging device and method with battery balance
TWI466412B (en) * 2011-02-21 2014-12-21 Monolithic Power Systems Inc A novel cell balance circuit and regulating method thereof
TWI492480B (en) * 2012-06-18 2015-07-11 Univ Nat Changhua Education Both high power, high efficiency and battery balance of the battery charge and discharge devices and methods

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8339100B2 (en) 2009-09-29 2012-12-25 O2Micro Inc Systems and methods for cell balancing
US8344694B2 (en) 2009-09-29 2013-01-01 O2Micro International, Ltd. Battery management system with energy balance among multiple battery cells
US8957625B2 (en) 2009-09-29 2015-02-17 O2Micro, Inc. Systems and methods for cell balancing
US8415905B2 (en) 2010-11-25 2013-04-09 Industrial Technology Research Institute Battery power system
TWI466412B (en) * 2011-02-21 2014-12-21 Monolithic Power Systems Inc A novel cell balance circuit and regulating method thereof
TWI452800B (en) * 2012-02-20 2014-09-11 Univ Nat Changhua Education Battery charging device and method with battery balance
TWI492480B (en) * 2012-06-18 2015-07-11 Univ Nat Changhua Education Both high power, high efficiency and battery balance of the battery charge and discharge devices and methods

Similar Documents

Publication Publication Date Title
Huang et al. A pulsed power supply adopting active capacitor converter for low-voltage and low-frequency pulsed loads
Kisacikoglu et al. EV/PHEV bidirectional charger assessment for V2G reactive power operation
Debnath et al. Two-stage solar photovoltaic-based stand-alone scheme having battery as energy storage element for rural deployment
Wu et al. Combined unipolar and bipolar PWM for current distortion improvement during power compensation
Aamir et al. An online transformerless uninterruptible power supply (UPS) system with a smaller battery bank for low-power applications
Liao et al. Newly-constructed simplified single-phase multistring multilevel inverter topology for distributed energy resources
Sarhangzadeh et al. Multiinput direct DC–AC converter with high-frequency link for clean power-generation systems
CN100563086C (en) Active bi-directional electric power adjuster
Manandhar et al. Joint control of three-level DC–DC converter interfaced hybrid energy storage system in DC microgrids
Kim et al. Asymmetric duty control of a dual-half-bridge DC/DC converter for single-phase distributed generators
Mozaffari et al. A single-phase inverter/rectifier topology with suppressed double-frequency ripple
CN102832841A (en) Modularized multi-level converter with auxiliary diode
CN106329555B (en) The control method of photovoltaic energy storage micro-grid system and photovoltaic energy storage micro-grid system
TWM331246U (en) Equalization charging circuit
CN104485832A (en) Photovoltaic high-frequency chain grid-connected inverter capable of restraining input low-frequency current ripples
CN102790422A (en) Uninterrupted power supply (UPS) charging module device and control method thereof
CN104638961A (en) System and method for balancing multilevel power converter
Tan et al. Predictive control of plug-in electric vehicle chargers with photovoltaic integration
Liu et al. Reliable transformerless battery energy storage systems based on cascade dual‐boost/buck converters
Michal Switched-mode active decoupling capacitor allowing volume reduction of the high-voltage DC filters
Wang et al. Topology and control method of a single-cell matrix-type solid-state transformer
Khedekar et al. Bidirectional on-board EV battery charger with V2H application
Husev et al. A new single-phase flying inductor-based common grounded converter for dual-purpose application
Aldosari et al. A three-level isolated AC–DC PFC power converter topology with a reduced number of switches
CN101546913A (en) Multifunctional high-power electronic load and control method thereof

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees