TWM324205U - Single-sided portable NMR apparatus - Google Patents

Single-sided portable NMR apparatus Download PDF

Info

Publication number
TWM324205U
TWM324205U TW96203458U TW96203458U TWM324205U TW M324205 U TWM324205 U TW M324205U TW 96203458 U TW96203458 U TW 96203458U TW 96203458 U TW96203458 U TW 96203458U TW M324205 U TWM324205 U TW M324205U
Authority
TW
Taiwan
Prior art keywords
nuclear magnetic
coil
permanent magnet
magnetic resonance
magnetic field
Prior art date
Application number
TW96203458U
Other languages
Chinese (zh)
Inventor
Lian-Pin Hwang
Jyh-Horng Chen
Wei-Hao Chang
Original Assignee
Lian-Pin Hwang
Jyh-Horng Chen
Wei-Hao Chang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lian-Pin Hwang, Jyh-Horng Chen, Wei-Hao Chang filed Critical Lian-Pin Hwang
Priority to TW96203458U priority Critical patent/TWM324205U/en
Publication of TWM324205U publication Critical patent/TWM324205U/en

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

M324205 八、新型說明: 【新型所屬之技術領域】 • 纟新型涉及-種單邊可攜帶式之核磁共振裝置的改良,尤指 _ 一種可以減少磁鐵個數、降低製作成本與製作時間、並使裝置除 了可以測量固體的遲豫曲線(RELAXATI〇N CURVE)以外,亦可大 致上树地·㈣_散餘之單邊可卿式核磁共振裝置的 永久磁鐵之充磁方式與擺放方式。 【先前技術】 核磁共振為化學、材料科學與生物f料領域㈣使用的技 術。、一般的核磁共振頻譜儀(NMR SPECTR0MET^)所使用的超導 =鐵1 la或永久磁鐵lib之磁鐵架構,待測物12必須位於磁鐵包 =工間内’如圖-⑷⑻’才能進行核磁共振實驗。然而磁鐵 ^圍之立間無法為無限大’因此對於尺寸過大或形狀特別,益法 進入磁鐵包__之制物即無法進行實驗。 可 核磁共振裝置(麵侧ρο麵臓 置m ^為克服上述問題而被發明的裝置,「單邊」意指裝 岐健麟_分職於—平面的兩邊, 磁待”攜」思指裝置可用單手握持,「核 “二ϊ 處僅是指磁鐵與射頻線圈的組合體,並不包 的部組合,料不包括核磁共振頻譜儀 接、u ;衣 之工作方式為待测物12位於裝置的外面, 強:周二 12 最大_或形狀上的限制,如圖-⑹。但必須 蝴的疋’早邊可攜帶式核磁共振裝置目前並無法取代—般核磁 5 M324205 共振頻譜顏的磁鐵之所有舰,最主要_因為在單邊裝 置中,磁鐵僅位於待測物的-邊,造成待測物所在空間之靜磁場 不狗均句,因此無法取得待測物之高解析度核磁共振頻譜 (HIGH-RESOLUTIONMR SPECTRA),近來雖有使用單邊核磁共振 裝置取得高解析度核磁共振頻譜的報告⑽L〇 ET AL.,奶職 2005’遞,1279-1279,參考文獻一)’但其裝置較為龐大,並不 合於此處可鮮之定義,而且其賴解析度仍低於超導磁鐵可声 得之頻譜解減。單射攜帶式核料縣置也有黯深度的^ 制’二般只能取得制物表_近之核磁共振訊號。 皁邊可攜帶式核磁共絲置主要包括了—個永久磁鐵仙或 由數個永久磁鐵11b組成的磁鐵組與—個以電容糖匹配的射頻 線圈14 ’有些設計亦添加輛鐵15⑽E)以增加靜磁場強度,此 裝置透過無触配盒16連接之_魏線17,經由發射/ 接收開關18 (T/R謝⑻與核磁共振頻譜儀19相連接(圖二a 與圖一 B)。以-種較早出現且具代表性的馬鞍型設計(圖二 (EIDMANNETAL., /. MAGN. RESOM. Aim, 122, l〇4T109, 參考文獻二),兩塊永久磁鐵llb被反向置於辆鐵i5上,射頻線 圈14被固定在永久磁鐵llb的間隙内,射頻線圈14的上方為完 的空間’在接近射頻線圈上方的空間區域(或稱為收訊敏 感區域’即圖二B中虛線橢圓部分)内,由永久磁鐵仙產生的 靜磁場方向20與射頻線圈14產生的射頻磁場方向21為互相垂直 根據核磁共振原理,當待測物位於此敏感區域内,並將射頻 線圈通電、對待測物施加等於拉莫耳頻率(larm〇r舰如體) 的射頻脈衝後’即可經由射頻線圈14取得位 測物的核磁共振訊號。 、。敏4£域内待 許多非破壞檢雕檢_縣為位於戶外且無法移動之大型 6 M324205 A於近年來已有體積如手提箱,甚至約等於手提式電腦 磁特^於戶外使用之小型核磁共振儀產品,單邊可攜帶式核 二二、在與小型核磁共振儀連接的情況下,即可在原址(IN )里測位於戶外大型待測物之核磁共振訊號。 或科=T;核磁共振裝置的設計已被發表在美國專利 ^式與擺財式,藉狀魏崎感__靜磁 ,使雜Ϊ能擁有更高的訊號靈敏度或更多的魏。關 :攜帶式核磁共振裝置的魏,首先,當單邊可攜帶式核磁共振 Μ已可取得_物之核磁共振訊號以後,即可透過改變射頻脈 衝之間的時間間隔而測量到待測物之遲豫曲線(祖顧應 CURVE) ’依此擬合(FITTING)出待測物的遲豫時間(拙職Hon TIME)。在各種設計中,以則删等人提出的架構(則聰^丁 AL· ’⑺說:娜水狐观厶2〇〇2,75,255 261,參考文獻三) (美國專利US 20G5/_823 A卜參考文獻四)最為簡便,示音 圖如圖三,他們僅使用單根軸向充磁的永久磁鐵仙作為靜磁^ 源丄在磁_上表面上方巾_近(即該裝置之收訊敏感區域, 圖三中虛線橢圓部分)產生垂直方向的靜磁場2〇,並將平面螺旋 形(SPIRAL)的射頻線圈14反向串連並固定在磁鐵Ub的上表面 上方,射頻線圈14通電後即可在敏感區域内產生水平方向的射頻 磁場2卜這種簡易的設計有助於減少裝置之製作成本與製作時 間、。此外由於BLUMICH等人的裝置在收訊敏感區域内的靜磁場強 度為高度不均勻的,意即在收訊敏感區域内具有強大的靜磁場梯 度,因此對於液體的待測物而言,其液體分子在此不均勻靜磁場 内的擴散運動會造成核磁共振訊號的額外衰減,因此此裝置只能 測量固體制物的輯時間,而無⑽確測量雜制物的遲豫 M324205 時間,但利用此靜磁場梯度可以測量液體的擴散係數,KLEIN等 人利用該裝置測量了數種液體的擴散係數(KLEINETAL.,/你级 2003,/你,310-320,參考文獻五),誤差大約為2〇%。 為了減少測量液體擴散係數的誤差,靜磁場在收訊敏感空間 - 内的梯度必須盡量均勻;PERLO等人提出了一種新式的單邊可攜帶 • 式核磁共振裝置(PERLO ET AL·,/·崩淡他2005, 64-70,參考文獻六),示意圖如圖四,他們使用了四塊永久磁鐵j化 附著於軛鐵15上方,使得在磁鐵間隙上方(即該裝置之收訊敏感 φ 區域,圖四中虛線橢圓部分)產生了水平方向的靜磁場20,並將 表面線圈14通電產生垂直方向的射頻磁場21,並藉由調整四塊永 久磁鐵彼此之間的水平距離22與23,在收訊敏感區域内產生接近 均勻的靜磁場梯度,並使用自旋回訊擴散脈衝序列(spiN ECH〇 DIFFUSION PULSE _ENCE )或激發回訊擴散脈衝序列 (STI肌ATED ECHO DIFFUSION PULSE SEQUENCE)求得了 更準確 的液體擴散係數值⑽AETAL·,/撤^概观漏,鐵 229-235,參考文獻七),誤差最小可到〇· 5%,誤差較大者為3〇/〇。 鲁-S此必須提到·有另一類的單邊可攜帶式核磁共振裝置可以在敏 ,感區域内產生較均勻的磁場(如CALLAGHAN等人的美國專利,us 2006/0097725 A卜參考文獻八),因此該類裝置可以準確地測量 液體待測物的遲豫時間,但由於缺少靜磁場梯度,因此無法測量 液體待測物的擴散係數。 【新型内容】 本創作的目的在於提出—種製作簡易、可以測量固體的遲豫 時間’又可測魏體擴散係數之單邊可攜帶式核磁共振裝置。 承上段所述’ BLUMICH等人提出的裝置(圖三)僅使用了單根 8 M324205 轴向充磁的永久磁鐵作紐磁場源,便可晰到酬物的核磁共 振訊號’其為最簡便的設計’但該裝置測量液體擴散係數之誤差 .值較大,約為·;肌〇等人提出的裝置(圖四)雖能將測量 .液震㈣_誤差_ 但考量雌佩核製作時間 的問題:使用永久磁鐵組(即兩顆以上的永久磁鐵)來建構單邊 可攜帶式核磁共振裝置時,必麵可能減少各磁鐵之間的磁化強 度誤差’為了減少此項誤差,必須預先購入更多磁鐵 • 選出磁化誤差較小的一群,因此製作成本較高且製作時間較長。 本創作之目的為提出-種較簡單的靜磁場源設計,也就是僅 使用到最少個數(即單顆)的永久磁鐵’而完成之裝置既能測量 固體的遲豫時間’又能大致準確地測量液體的擴散係數,換言之, 本創作的目的為合併圖三與圖四裝置之優點。本創作之示意圖為 圖五’其巾使用-根徑向(水平方向且沿直徑)磁化的實心磁鐵 圓柱11b作為靜磁場源,以此方式磁化之永久磁鐵llb會在其上 籲 表面中心之上方附近(即收訊敏感區域,圖五中虛線擴圓部分) 產生水平方向的靜磁場20,此時將平面式的射頻線圈14固定於磁 鐵柱lib之上表面上方並通電,即可於收訊敏感區域内產生與靜 磁場方向20垂直之射頻磁場21,射頻線圈的幾何形狀可為單圈、 螺旋形線圈或數個螺旋形線_反向串聯。在與核磁共振儀連接 的情況下’透過裝置之射麟圈對制物施加等於拉莫耳頻率的 射頻脈衝後,即可經由射頻線圈取得位於收訊敏感區域内待測物 的核磁共振訊號,雜取得核縣振訊號,即可透過改變射頻脈 9 M324205 衝之間的時間間隔而測量酬體待測物之遲豫曲線與計算出固體 待測物的遲豫時間。此外,直觀上吾人可推測出磁鐵上^面中心 之上方附近(即收訊敏感區域)的靜磁場等高線應近似與磁鐵上 表面平行’有限元素分析法之電腦模擬結果,如圖六,亦顯示出 收訊敏感區_的靜磁科高線接近水平,极合乎具有均句靜 磁場梯度的要求。本_有_倾(錢),其_怔己烧㈣ 精的讎係紐差分顺2.離3.5%,軸略切pERLQ等人之 裝置(圖四)的測量誤差(0.5%~3%),但明顯小於則觀j等人之 裝置(圖三)的測量誤差(約),因此本創作在測量液體的擴 散係數方面仍有實用價值。 總言之,本創作藉由使用單一根徑向磁化的實心磁鐵圓柱作 為単邊可鮮式核磁共練置的靜磁場賴簡易設計,可以減少 單邊可攜帶式核磁舰裝置㈣作成本據作咖,同時完成之 裝置除了可以測量固體的遲豫時間外,還可大致準確地測量液體 的擴散係數。 【實施方式】 基版24上’並在磁鐵llb與射頻線圈14之間插入-片接地之銅 片25以防止磁鐵lib對射頻線圈14產生額外的電子雜訊,一個 在此提供本創作之’實例,請參閱第七圖與第人圖,盆中 第七圖為拆解圖,第人圖為組合圖。此實例包含—根徑向磁㈣ 貝〜磁鐵圓柱lib ’-個以電容_匹配的射頻線圈μ,此實例 中射頻線圈14與電容調觀配電路盒16共同附著在—印刷電路 M324205 用來固定磁鐵與射頻線圈之相對位置的非磁性外殼26,與觸匹 配電路盒16連接的同軸線17與接頭打,固定表面線圈14於 外殼26上的非磁性小螺絲28等。組裝方式為先將實心磁鐵柱仙 置入外成26中’再依序將接地銅片25與載有射頻線圈和調譜 匹配電路盒16的_·基板加非雖小_ 28鎖在外殼沈 之上表面。 ▲本實例的零件參數如下:永久磁鐵柱仙的直徑為6公分、 高度5公分,材質為钕鐵懸⑽磁鐵,射頻線圈14為 一姓刻於印刷電路基板24上、長寬皆為2公分、線徑為0. 5公釐 之八字型線圈(兩個螺旋線圈反向串聯),非磁性外殼26為内徑6 a刀外L 1〇公分、内深5公分、外高7公分的塑鋼空心圓柱, 非磁性小螺絲28為M2的黃銅平頭螺絲,電規線17為_㈣同 軸電、纜線’接頭27為BNC_。此實例可被人以單手握持,完成 之外觀即如圖八,收訊敏感區域的靜磁場強度約為0. 275特斯拉, 、牙應氫原子核的拉莫耳共振鮮約為1L 7兆赫。此實例對橡皮擦 使用單次自旋迴纖衝相所取得之核磁共振自旋回訊訊號如圖 九,取得受到不同熱損壞程度的木板之自旋_自旋遲豫曲線(即I 遲豫曲線)如圖十’擬合出來的自旋_自旋遲豫時間(即I遲豫時 間)為:完好木板的Τ2遲豫時間為41.17±4.92微秒,受輕微執損 壞的木板的雄㈣間為37.做6_、,受嚴重熱損壞的木板 的Τ2遲豫關為30. 67±1. 27微秒。以高斯計測量永久磁鐵中心上 方的靜磁場分佈如圖十—,測量㈣擴散魏之擺設圖為圖十 11 M324205 一 ’液體小瓶29被擺在射頻線目14的上方。使用自旋回訊擴散 脈衝序列㈣°C咐_正己賊99.獅精雜所狀擴散衰減 良如圖十二,擬合出來的擴散係數值為:正己烷4.11χΐ〇-9公尺2 =’2文獻值為4. 26xlG—9公尺2秒-1,誤差為3. 5% ;酒精丨· 〇5χ1〇-9 公尺秒1,文獻值為1· 〇8χ10—9公尺2秒1,誤差為2. 8%。 【圖式簡單說明】 圖一 (Α)表示-般的核磁共振鱗儀所使用的超導磁鐵和待測物 的相對空f·係’圖―⑻表示—般馳磁共振賴儀所使用的永 久磁鐵和制物的姆空_係,圖—⑹表示單邊可攜帶式核磁 共振裝置和待測物的相對空間關係 圖-(A)為單邊可攜帶式核磁共振裝置之操作示意圖,圖二⑻為 馬鞍式單邊核磁共振裝置的基本構造 圖-(A)為BLUMICH等人提出的單邊可攜帶式核磁共振裝置的外觀 。圖⑻為BLUMICH等人提出的單邊可攜帶式核磁共振裝 置的工作原理示意圖 i^PERLO等人提出的單邊可攜帶式核磁共振裝置的示意圖 圖五為本創作的示意圖 圖A(A)為本創作使用之磁鐵上表面中心之上方附近(即收訊敏感 區域)的縱向剖面(沿著磁鐵磁化方向之剖面)的靜磁場強度等 高線之電腦模擬,圖六⑻為本創作使用之磁鐵上表面中心之上 方附近(即4欠訊敏感區域)的橫向剖φ (垂直於磁鐵磁化方向之 剖面)的靜磁場強度等高線之電腦模擬 12 M324205 圖七為本創作實例之拆解圖 圖八為本創作實例之組裝完成圖 例測量到橡皮擦的核磁共振自旋回訊訊號 圖九為本創作之實 圖十為本創作實例測量木板的自旋-自旋遲豫曲線M324205 VIII. New description: [New technical field] • Improvements in the new type of unilateral portable nuclear magnetic resonance device, especially one that can reduce the number of magnets, reduce the manufacturing cost and production time, and In addition to measuring the retardation curve of the solid (RELAXATI〇N CURVE), the device can also be roughly magnetized and placed in a permanent magnet of a single-sided nucleus magnetic resonance device. [Prior Art] Nuclear magnetic resonance is a technology used in the fields of chemistry, materials science, and biological materials. , the general nuclear magnetic resonance spectrum analyzer (NMR SPECTR0MET^) used superconductor = iron 1 la or permanent magnet lib magnet structure, the object to be tested 12 must be located in the magnet package = work room 'Figure - (4) (8) 'can carry out nuclear magnetic Resonance experiment. However, the position of the magnet can not be infinitely large. Therefore, for an oversize or a special shape, it is impossible to carry out experiments by entering the magnet package __. The nuclear magnetic resonance apparatus (face side ρο surface m m ^ is a device invented to overcome the above problem, "unilateral" means that 岐 岐 麟 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ It can be held by one hand. The "nuclear" is only a combination of a magnet and a radio frequency coil. It does not include a combination of parts. It does not include a nuclear magnetic resonance spectrum analyzer, u; the working mode of the garment is the object to be tested 12 Located outside the device, strong: Tuesday 12 max _ or shape limit, as shown in Figure-(6). But the must-have 疋 'early portable NMR device is currently not a substitute for -Nuclear magnetic 5 M324205 Resonance Spectrum Yan magnet All the ships, the most important _ because in the unilateral device, the magnet is only located at the - side of the object to be tested, causing the static magnetic field in the space where the object to be tested is not a dog, so the high-resolution NMR of the object to be tested cannot be obtained. The spectrum (HIGH-RESOLUTIONMR SPECTRA), although recently reported using a single-sided nuclear magnetic resonance device to obtain a high-resolution nuclear magnetic resonance spectrum (10) L〇ET AL., Dairy 2005's, 1279-1279, reference 1) 'but its device Larger, and May be bonded to the fresh defined herein, but is still lower than the resolution which depends on the superconducting magnets may be acoustic spectrum of the obtained solution Save. The single-shot portable nuclear county also has a depth of control system. The soap-side portable nuclear magnetic conjugate is mainly composed of a permanent magnet or a magnet group composed of a plurality of permanent magnets 11b and a RF coil 14 matched with a capacitor sugar. Some designs also add a metal 15 (10) E) to increase The static magnetic field strength, the device is connected to the nuclear magnetic resonance spectrum analyzer 19 via the transmitting/receiving switch 18 (T/R Xie (8) via the transmitting/receiving switch 18 (Fig. 2a and Fig. 1B). - An early and representative saddle design (Figure 2 (EIDMANNETAL., /. MAGN. RESOM. Aim, 122, l〇4T109, Reference 2), two permanent magnets llb are placed in the opposite direction On the iron i5, the RF coil 14 is fixed in the gap of the permanent magnet 11b, and the upper part of the RF coil 14 is the finished space 'in the space area close to the RF coil (or called the receiving sensitive area), that is, the dotted line in Fig. 2B In the elliptical part), the static magnetic field direction 20 generated by the permanent magnets and the radio frequency magnetic field direction 21 generated by the radio frequency coil 14 are perpendicular to each other. According to the principle of nuclear magnetic resonance, when the object to be tested is located in the sensitive area, the radio frequency coil is energized and treated. Measurement application, etc. After the RF pulse of the Larmer frequency (larm〇r ship body), the NMR signal of the measured object can be obtained via the RF coil 14. The sensitive 4 域 domain is waiting for many non-destructive inspections. The large 6 M324205 A, which cannot be moved, has a small size such as a suitcase in recent years, and is even equivalent to a portable computer with a small nuclear magnetic resonance product for outdoor use, a single-sided portable nuclear 22, and a small nuclear magnetic When the resonator is connected, the NMR signal of the large outdoor object to be tested can be measured in the original site (IN). Or the department = T; the design of the nuclear magnetic resonance device has been published in the US patent and the financial formula. By Weisaki __ magnetostatic, so that the chowder can have higher signal sensitivity or more Wei. Guan: portable nuclear magnetic resonance device Wei, first of all, when unilateral portable nuclear magnetic resonance Μ has been available After the NMR signal of the object, the delay curve of the object to be tested can be measured by changing the time interval between the RF pulses (CURVE). FITTING the delay of the object to be tested Time (Hon TIME) In the design, the structure proposed by et al. (Wu Cong ^ Ding AL· '(7) said: Nahuihu Guanlan 2〇〇2, 75, 255 261, Reference 3) (US Patent US 20G5/_823 A References 4) The most convenient, the sound map shown in Figure 3, they only use a single axial magnetization of the permanent magnets as a magnetostatic source 丄 on the magnetic _ upper surface _ near (ie the device's reception The sensitive area, the dotted elliptical portion in FIG. 3) generates a static magnetic field 2〇 in the vertical direction, and reversely couples the planar spiral (SPIRAL) RF coil 14 to the upper surface of the magnet Ub, and the RF coil 14 is energized. The horizontal RF magnetic field can be generated in the sensitive area. This simple design helps to reduce the manufacturing cost and production time of the device. In addition, since the static magnetic field intensity of the device of BLUMICH et al. in the receiving sensitive area is highly uneven, that is, it has a strong static magnetic field gradient in the sensitive area of the receiving, so the liquid of the liquid to be tested is liquid. The diffusion of molecules in this uneven static magnetic field will cause additional attenuation of the NMR signal, so the device can only measure the time of the solid material, and no (10) does measure the time of the M412205 of the impurity, but use this static The magnetic field gradient measures the diffusion coefficient of the liquid. KLEIN et al. used this device to measure the diffusion coefficients of several liquids (KLEINETAL., / you 2003, / you, 310-320, Reference 5) with an error of approximately 2〇%. . In order to reduce the error in measuring the diffusion coefficient of the liquid, the gradient of the static magnetic field in the receiving sensitive space must be as uniform as possible; PERLO et al. propose a new type of unilateral portable nuclear magnetic resonance device (PERLO ET AL·, /· Yanta 2005, 64-70, reference VI), schematic diagram shown in Figure 4, they use four permanent magnets j attached to the top of the yoke 15, so that above the magnet gap (ie, the receiving sensitive φ area of the device, The dotted elliptical portion in Fig. 4) generates a static magnetic field 20 in the horizontal direction, and energizes the surface coil 14 to generate a radio frequency magnetic field 21 in the vertical direction, and adjusts the horizontal distances 22 and 23 between the four permanent magnets. A nearly uniform static magnetic field gradient is generated in the sensitive area, and a more accurate liquid is obtained using a spin echo diffusion pulse sequence (spiN ECH 〇 DIFFUSION PULSE _ENCE ) or an STI muscle ED ECHO DIFFUSION PULSE SEQUENCE. The diffusion coefficient value (10) AETAL·, / withdrawal ^ overview leakage, iron 229-235, reference seven), the error can be as small as 〇 · 5%, the larger error is 3 〇 / 〇. Lu-S must mention that there is another type of unilateral portable nuclear magnetic resonance device that can produce a relatively uniform magnetic field in the sensitive and sensitive regions (such as the US patent of CALLAGHAN et al., us 2006/0097725 A) Therefore, such a device can accurately measure the delay time of the liquid analyte, but the diffusion coefficient of the liquid analyte cannot be measured due to the lack of the static magnetic field gradient. [New content] The purpose of this creation is to propose a single-sided portable nuclear magnetic resonance device that can be used to measure the delay time of a solid and can measure the diffusion coefficient of a solid body. According to the device proposed by BLUMICH et al. (Fig. 3), only a single 8 M324205 axially magnetized permanent magnet is used as the source of the magnetic field, so that the NMR signal of the reward can be clearly understood. Design 'but the device measures the error of the liquid diffusion coefficient. The value is large, about ·; the device proposed by the tendon and other people (Figure 4) can measure the liquid shock (four) _ error _ but consider the production time of the female nucleus Problem: When using a permanent magnet group (ie, two or more permanent magnets) to construct a unilateral portable nuclear magnetic resonance device, it is possible to reduce the magnetization error between the magnets. In order to reduce this error, it is necessary to purchase in advance. Multi-magnets • Select a group with less magnetization error, so the production cost is higher and the production time is longer. The purpose of this creation is to propose a simpler static magnetic field source design, that is, a device that uses only a minimum number of (ie, a single) permanent magnet' to complete the measurement of the solid's delay time' and is roughly accurate The measurement of the diffusion coefficient of the liquid, in other words, the purpose of this creation is to combine the advantages of the apparatus of Figure 3 and Figure 4. The schematic diagram of the present invention is a solid magnet cylinder 11b magnetized in the radial direction (horizontal direction and diameter) of FIG. 5 as a source of static magnetic field, and the permanent magnet 11b magnetized in this manner will be above the center of the surface thereof. In the vicinity (ie, the sensitive area of the reception, the dotted circle in Figure 5), the static magnetic field 20 in the horizontal direction is generated. At this time, the planar RF coil 14 is fixed on the upper surface of the magnet column lib and energized, and the signal can be received. A radio frequency magnetic field 21 perpendicular to the static magnetic field direction 20 is generated in the sensitive area, and the geometry of the radio frequency coil may be a single turn, a spiral coil or a plurality of spiral lines _ reverse series. In the case of connection with the nuclear magnetic resonance apparatus, after applying a radio frequency pulse equal to the Lamour frequency to the workpiece through the shooting ring of the device, the nuclear magnetic resonance signal of the object to be tested in the receiving sensitive area can be obtained through the radio frequency coil. By obtaining the nuclear county vibration signal, the delay time between the RF pulse 9 M324205 and the delay time of the solid object to be tested can be measured and the delay time of the solid analyte can be calculated. In addition, intuitively, we can speculate that the static magnetic field contour near the top of the magnet surface (ie, the sensitive area of the signal) should be approximately parallel to the upper surface of the magnet. The computer simulation results of the finite element analysis method are shown in Figure 6. The geomagnetic high line of the receiving sensitive area _ is close to the level, which is very suitable for the uniform static magnetic field gradient. This _ has _ dump (money), its _ 怔 烧 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( However, it is significantly smaller than the measurement error (approx.) of the device of Fig. j et al. (Fig. 3), so this creation still has practical value in measuring the diffusion coefficient of liquid. In summary, this creation can reduce the unilateral portable nuclear magnetic ship device (4) by using a solid magnet cylinder with a single radial magnetization as a simple magnetic field for the nucleus of the nucleus. The completed device can measure the diffusion coefficient of the liquid substantially accurately, in addition to measuring the time delay of the solid. [Embodiment] On the base plate 24, a copper piece 25 grounded between the magnet 11b and the RF coil 14 is inserted to prevent the magnet lib from generating additional electronic noise to the RF coil 14, and one of the works is provided here. For examples, please refer to the seventh figure and the figure of the person. The seventh picture in the basin is the disassembly diagram, and the first person diagram is the combination diagram. This example includes - a radial magnetic (four) shell ~ magnet cylinder lib '- a capacitor _ matching RF coil μ, in this example the RF coil 14 and the capacitor adjustment circuit box 16 are attached together - printed circuit M324205 for fixing The non-magnetic outer casing 26, which is opposite to the position of the magnet and the radio frequency coil, and the coaxial line 17 connected to the mating matching circuit case 16 are attached to the joint, and the non-magnetic small screw 28 of the surface coil 14 on the outer casing 26 is fixed. The assembly method is to first place the solid magnet column into the outer 26. Then, the grounding copper piece 25 and the substrate carrying the RF coil and the spectrum matching circuit box 16 are added to the substrate. Above the surface. ▲The parameters of the parts of this example are as follows: the diameter of the permanent magnet column is 6 cm and the height is 5 cm. The material is a neodymium suspension (10) magnet. The RF coil 14 is engraved on the printed circuit board 24, and the length and width are 2 cm. , the wire diameter is 0. 5 mm octagonal coil (two spiral coils are reversely connected in series), and the non-magnetic outer casing 26 is a plastic steel with an inner diameter of 6 a outside the blade L 1 〇 cm, an inner depth of 5 cm, and an outer height of 7 cm. Hollow cylinder, non-magnetic small screw 28 is M2 brass flat head screw, electric gauge line 17 is _ (four) coaxial electric, cable 'connector 27 is BNC_. This example can be held by one hand, and the finished appearance is as shown in Figure 8. The static magnetic field strength of the sensitive area is about 0. 275 Tesla, and the Lamour resonance of the hydrogen atomic nucleus is about 1L. 7 MHz. In this example, the NMR spin echo signal obtained by the single-spin reverberation phase of the eraser is shown in Fig. 9. The spin-spin delay curve of the board subjected to different thermal damage is obtained (ie, the I-healing curve) As shown in Figure 10, the spin_spin delay time (ie, I delay time) is: the Τ2 delay time of the intact board is 41.17±4.92 microseconds, and the male (four) of the slightly damaged board For the case of 37., the Τ2 of the board which was severely damaged by heat was delayed to 30. 67±1. 27 microseconds. The static magnetic field distribution above the center of the permanent magnet is measured by a Gauss meter as shown in Fig. 10.—Measurement (4) The layout of the diffusion Wei is shown in Fig. 10 11 M324205 A liquid vial 29 is placed above the RF line 14. Using the spin-echo diffusion pulse sequence (4) °C咐_正己贼99. The diffusion attenuation of the lion is as shown in Figure 12. The fitted diffusion coefficient is: n-hexane 4.11χΐ〇-9 meters 2 =' 2 The literature value is 4.26xlG-9 meters 2 seconds-1, the error is 3. 5%; alcohol 丨·〇5χ1〇-9 meters seconds 1, the literature value is 1· 〇8χ10-9 meters 2 seconds 1 , the error is 2.8%. [Simple description of the diagram] Figure 1 (Α) shows the relative space of the superconducting magnet and the object to be tested used in the general nuclear magnetic spectrometer. The figure (8) indicates the use of the general-purpose magnetic resonance instrument. Permanent magnets and articles of the _ _ system, Figure - (6) shows the relative spatial relationship between the unilateral portable nuclear magnetic resonance device and the object to be tested - (A) is a schematic diagram of the operation of the unilateral portable NMR device, The second (8) is a basic structure diagram of a saddle type unilateral nuclear magnetic resonance apparatus - (A) is the appearance of a single-sided portable nuclear magnetic resonance apparatus proposed by BLUMICH et al. Figure (8) is a schematic diagram of the working principle of the unilateral portable nuclear magnetic resonance device proposed by BLUMICH et al. i^PERLO et al. The schematic diagram of the unilateral portable nuclear magnetic resonance device is shown in Figure 5 The computer simulation of the static magnetic field strength contour of the longitudinal section (the section along the magnetization direction of the magnet) near the center of the upper surface of the magnet used in this creation (Fig. 6) is the upper surface of the magnet used in this creation. The computer simulation of the static magnetic field strength contour of the transverse section φ (the section perpendicular to the magnetization direction of the magnet) near the top of the center (ie, the 4 unresponsive sensitive area) is shown in Figure VII. The assembly of the example completes the legend to measure the nuclear magnetic resonance spin echo signal of the eraser. Figure 9 is the real picture of the creation. The spin-spin delay curve of the board is measured by this example.

圖十一(A)為高斯計測量到的本創作實例所使用之磁鐵之上表面 中〜上方附近(即收訊敏感區域)的縱向剖面(沿著磁鐵磁化方 向之剖面)的靜磁場強度等高線圖,圖十一(β)為高斯計測量到 的本創作實例所使用之磁鐵之上表面中心上方附近(即收訊敏感 區域)的橫向剖面(垂直於磁鐵磁化方向之剖面)的靜磁場強度 等高線圖 _十二為本創作實例測量液體擴散係數之擺設圖 圖十二為本創作實例測量液體擴散係數之資料圖 13 M324205Figure 11 (A) shows the static magnetic field strength contour of the longitudinal section (the section along the magnetization direction of the magnet) in the upper surface of the upper surface of the magnet used in the present example of the magnet sample measured by the Gauss meter. Fig. 11 (β) shows the static magnetic field strength of the transverse section (the section perpendicular to the magnetization direction of the magnet) near the center of the upper surface of the magnet used in the present example of the present example measured by the Gauss meter (the section perpendicular to the magnetization direction of the magnet) Contour map _12 is the design example of measuring the liquid diffusion coefficient of the creation example. Figure 12 is the data of the liquid diffusion coefficient measured by the creation example. Figure 13 M324205

【主要元件符號說明】 1 la超導磁鐵 12待測物 14射頻線圈 16調諧匹配電路盒 18發射/接收開關 20靜磁場方向 22水平間距一 24印刷電路基板 26非磁性外殼 28非磁性螺絲 lib永久磁鐵 13單邊可攜帶核磁共振裝置 15輛鐵 17同軸電纜線 19核磁共振儀 21射頻磁場方向 23水平間距二 25接地銅片 27同軸電纜線接頭 29液體小瓶[Main component symbol description] 1 la superconducting magnet 12 object to be tested 14 radio frequency coil 16 tuning matching circuit box 18 transmitting/receiving switch 20 static magnetic field direction 22 horizontal spacing one 24 printed circuit board 26 non-magnetic outer casing 28 non-magnetic screw lib permanent Magnet 13 can carry nuclear magnetic resonance device on one side 15 iron 17 coaxial cable 19 nuclear magnetic resonance instrument 21 RF magnetic field direction 23 horizontal spacing 2 25 ground copper 27 coaxial cable connector 29 liquid vial

Claims (1)

M324205 九、申請專利範圍: 1. 一種單邊可攜帶式核磁共振装置,包括: ,-根励魏的和永久__,絲提顧鑛需之靜磁 場; 二個以電容觸匹配的射頻線圈,其可被通電以產生射頻磁場脈 衝並可接收待測物產生的核磁共振訊號,該射頻線圈位於永久磁 鐵圓柱之上方’並有-接地之鋼片將永久磁_柱與射頻線 開; 一個用來固定永久磁鐵圓柱與射頻線圈之相對位置的外殼,此外殼 包圍永久磁鐵圓柱之側面與下面。 2·如申請專利細第丨項所述之單邊可攜帶式核磁共縣置,其中射 頻線圈是以餘刻方式在印刷電路板上被製造出來。 3.如申請專利範圍第丨項所述之單邊可攜帶式核磁共振裝置,其中射 '相的詳、”田★何形狀為螺旋型(spiRAL)細或數個螺旋形線圈 的組合。 15 M324205 七、指定代表圖: (一) 本案指定代表圖為:第(七)圖。 (二) 本代表圖之元件符號簡單說明: lib永久磁鐵 14射頻線圈 16調諧匹配電路盒 24印刷電路基板 26非磁性外殼 17同軸電纜線 25接地銅片 27同軸電纜線接頭M324205 Nine, the scope of application for patents: 1. A unilateral portable nuclear magnetic resonance device, including:, - root-excited Wei and permanent __, the static magnetic field required by the wire; two RF coils matched by capacitive touch , which can be energized to generate a radio frequency magnetic field pulse and can receive a nuclear magnetic resonance signal generated by the object to be tested, the radio frequency coil is located above the permanent magnet cylinder 'and the grounded steel piece will open the permanent magnet column and the radio frequency line; An outer casing for fixing the position of the permanent magnet cylinder and the radio frequency coil, the outer casing surrounding the side and the bottom of the permanent magnet cylinder. 2. The one-sided portable nuclear magnetic core device described in the patent application specification, wherein the RF coil is fabricated on the printed circuit board in a residual manner. 3. The unilateral portable nuclear magnetic resonance apparatus according to the scope of the patent application, wherein the details of the 'phase', the shape of the field are spiRAL fine or a combination of several spiral coils. M324205 VII. Designated representative map: (1) The representative representative figure of this case is: (7). (2) The symbol of the representative figure is briefly described: lib permanent magnet 14 RF coil 16 tuned matching circuit box 24 printed circuit board 26 Non-magnetic housing 17 coaxial cable 25 ground copper 27 coaxial cable connector 28非磁性螺絲28 non-magnetic screws
TW96203458U 2007-03-02 2007-03-02 Single-sided portable NMR apparatus TWM324205U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96203458U TWM324205U (en) 2007-03-02 2007-03-02 Single-sided portable NMR apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96203458U TWM324205U (en) 2007-03-02 2007-03-02 Single-sided portable NMR apparatus

Publications (1)

Publication Number Publication Date
TWM324205U true TWM324205U (en) 2007-12-21

Family

ID=39461709

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96203458U TWM324205U (en) 2007-03-02 2007-03-02 Single-sided portable NMR apparatus

Country Status (1)

Country Link
TW (1) TWM324205U (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102657559A (en) * 2012-04-26 2012-09-12 中国人民解放军军事医学科学院放射与辐射医学研究所 Electron paramagnetic resonance cavity for in-vivo measurement of human teeth
TWI397711B (en) * 2009-04-21 2013-06-01 Hong Chang Yang An apparatus for detecting nuclear magnetic resonance of sample
CN103411991A (en) * 2013-08-19 2013-11-27 上海纽迈电子科技有限公司 Portable low-field nuclear magnetic resonance old frying oil analysis meter
CN104297281A (en) * 2014-10-24 2015-01-21 广东电网有限责任公司东莞供电局 Circular arc unilateral nuclear magnetic resonance sensor
CN109406558A (en) * 2017-08-17 2019-03-01 中国石油化工股份有限公司 Unilateral nuclear magnetic resonance device
CN110618160A (en) * 2019-11-05 2019-12-27 重庆航天职业技术学院 Magnetic resonance sensor for aging detection of cable insulation layer material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI397711B (en) * 2009-04-21 2013-06-01 Hong Chang Yang An apparatus for detecting nuclear magnetic resonance of sample
CN102657559A (en) * 2012-04-26 2012-09-12 中国人民解放军军事医学科学院放射与辐射医学研究所 Electron paramagnetic resonance cavity for in-vivo measurement of human teeth
CN102657559B (en) * 2012-04-26 2017-12-22 中国人民解放军军事医学科学院放射与辐射医学研究所 For the electron paramagnetic resonance resonator in bulk measurement people's tooth
CN103411991A (en) * 2013-08-19 2013-11-27 上海纽迈电子科技有限公司 Portable low-field nuclear magnetic resonance old frying oil analysis meter
CN103411991B (en) * 2013-08-19 2016-04-20 上海纽迈电子科技有限公司 Portable low-field nuclear magnetic resonance frying oil analyser
CN104297281A (en) * 2014-10-24 2015-01-21 广东电网有限责任公司东莞供电局 Circular arc unilateral nuclear magnetic resonance sensor
CN109406558A (en) * 2017-08-17 2019-03-01 中国石油化工股份有限公司 Unilateral nuclear magnetic resonance device
CN109406558B (en) * 2017-08-17 2021-07-27 中国石油化工股份有限公司 Single-side nuclear magnetic resonance device
CN110618160A (en) * 2019-11-05 2019-12-27 重庆航天职业技术学院 Magnetic resonance sensor for aging detection of cable insulation layer material
CN110618160B (en) * 2019-11-05 2023-01-10 重庆航天职业技术学院 Magnetic resonance sensor for aging detection of cable insulation layer material

Similar Documents

Publication Publication Date Title
FI95624C (en) Self-shielding gradient coils for nuclear magnetic resonance imaging
Chang et al. Single-sided mobile NMR with a Halbach magnet
US8106657B2 (en) Apparatus for high-resolution NMR spectroscopy and/or imaging with an improved filling factor and RF field amplitude
US8067938B2 (en) Microcoil NMR detectors
Anferova et al. Construction of a NMR‐MOUSE with short dead time
US20070182413A1 (en) Single-sided NMR sensor with microscopic depth resolution
US20120010497A1 (en) Single-Sided Magnetic Resonance Imaging System Suitable for Performing Magnetic Resonance Elastography
US9964501B2 (en) Nuclear magnetic resonance apparatus and methods
TWM324205U (en) Single-sided portable NMR apparatus
Kriegl et al. Novel inductive decoupling technique for flexible transceiver arrays of monolithic transmission line resonators
Manz et al. A simple, small and low cost permanent magnet design to produce homogeneous magnetic fields
US20160116554A1 (en) Nmr probe comprising a coil including two helical windings having turns of different opposing angles of between 0 and 90 degrees relative to the axis thereof
RU2367982C1 (en) Method of logging with application of nuclear-magnetic resonance and device for its realisation
Utsuzawa et al. Inside-out NMR with two concentric ring magnets
US9817094B2 (en) Nuclear magnetic resonance apparatus and methods
Avdievich et al. Improved homogeneity of the transmit field by simultaneous transmission with phased array and volume coil
Yang et al. A low-cost, miniature Halbach magnet designed for portable time domain NMR
JPH07502925A (en) Local transverse gradient coil
Cheng et al. Sample-centred shimming enables independent parallel NMR detection
CN201331589Y (en) Probe capable of accurately adjusting magnetic gradient and uniformity and rock core analysis device
US7733091B2 (en) Probe, system and method suitable for unilateral nuclear magnetic resonance
Paulsen et al. Volume-selective magnetic resonance imaging using an adjustable, single-sided, portable sensor
CN115656901A (en) Magnetic resonance magnetometer device for millitesla-level magnetic field measurement
Marchand et al. Development of flexible array eddy current probes for complex geometries and inspection of magnetic parts using magnetic sensors
Perlo Magnets and coils for single-sided nmr

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees