TWM322106U - A films bulk acoustic resonator using ZnO thin films with the shear resonant mode - Google Patents

A films bulk acoustic resonator using ZnO thin films with the shear resonant mode Download PDF

Info

Publication number
TWM322106U
TWM322106U TW96200599U TW96200599U TWM322106U TW M322106 U TWM322106 U TW M322106U TW 96200599 U TW96200599 U TW 96200599U TW 96200599 U TW96200599 U TW 96200599U TW M322106 U TWM322106 U TW M322106U
Authority
TW
Taiwan
Prior art keywords
film
piezoelectric layer
mode
bulk acoustic
wave
Prior art date
Application number
TW96200599U
Other languages
Chinese (zh)
Inventor
Hsin-Hsien Wu
Chih-Sun Lin
Ru-Yen Lo
Maw-Shung Lee
Hsin-Yuan Tung
Original Assignee
Advance Design Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance Design Technology Inc filed Critical Advance Design Technology Inc
Priority to TW96200599U priority Critical patent/TWM322106U/en
Publication of TWM322106U publication Critical patent/TWM322106U/en

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

M322106 八、新型說明: 【新型所屬之技術領域】 本創作係有關於-㈣膜體聲波共振器,其特财關於具有剪向 模態之氧化鋅薄膜形成之薄膜體聲波共振器。 【先前技術】 習知之薄膜體聲波共振器是一種電場厚度激發(thickness excited) 模式之壓電共振器,操作頻率在數個GHz與數十個GHz,可應用於高 頻通訊元件與感測器。厚度激發(TE)薄臈體聲波共振器,其工作原理 為-壓電薄膜’上下财導電材料以形成上、下電極,在外加厚度激 發之電場的作用下,電極重合區之壓電層透過壓電效應將外加電場的 能量轉換為機械場能量之振動。厚度激發(1111(如^挪加(1,1^薄膜 體聲波共振1縣-種電場厚度歸赋之壓f共顧,其操作頻率 在數個GHz與數十個GHz,可應用於高頻通訊元件與感測器。厚度激 發薄膜體聲波共振器之功原理為’在—壓電薄膜上下财導電材料 以形成上、下電極,在外加厚度激發之電場的作用下,電極重合區之 壓電層透過壓電效應將外加電場量轉換為機械場能量之振動。 般來5兒,§亥厚度激發薄膜體聲波共振器之壓電薄膜係為(〇〇2)優 選取向(或稱c軸)之氮化鋁(A1N)與氧化辞(Zn〇)壓電薄膜,其產生之 體i波振動模為垂直於基板之縱向體聲波(L〇ngitu(jinai buik acoustic wave)。在感測器的應用方面可用於氣體感測,然而在液體中,則會有 明顯的聲波能量損失而導致解析上嚴重的失真。 M322106 習知技術可見於國際期刊IEEE Sensors,ρρ· 492-495, 2005,標題為 “Shear mode AIN thin film electroacoustic resonator for biosensor applications”(用於生物感測應用之氮化鋁薄膜聲電共振器之剪向模 態)。在該文獻中,Wingqvist等人提出以兩段式濺鍍法沉積傾斜於基 板之c軸優選取向的氮化鋁薄膜,並提出此薄膜之結構為近似於(103) 優選取向,以此壓電薄膜製作之厚度激發薄膜體聲波共振子可成功激 發出準縱向體聲波與準剪向體聲波。然而,上述方法所沉積的壓電薄 膜’會造成同-晶圓(Wafer)上沉積之壓電薄膜會非常不均勻的問題產 生,而這嚴重影響元件製程良率與造成成本大幅增加。 因此’為了解決這個問題,有需要提供一種新型的薄膜體聲波共 振器以克服先前技術的缺點。 【新型内容】 習知技術之問題,本創作揭示具有剪向模態之氧化辞薄 共振器’利用物理氣相沈積法成長具有勤聲波 嶋波權㈣,咖简測器與 本創作之主要目 之薄膜體聲波共振器 模態之壓電薄膜。 的在於提供-種具有剪向之氧倾薄膜形成 ’以射頻磁控濺鍍秋積具有剪向模態與準剪向 為達上述之主要目的, 成之薄膜體聲波共振器 本創作提供一種具有剪向握能 有^向杈怨之氧化鋅薄膜形 ’其包含-基板;複數崎波反射層;—下電 M322106 極,一壓電層;以及一上電極。該基板係作為該具有剪向模態之薄膜 體聲波共振器之承載本體;該複數個聲波反射層配置成長於該基板 上;該下電極沈積並定義該下電極於該反射層上;該壓電層係為氧化 辞薄膜,其沈積並定義該壓電層於該下電極上;以及該上電極沈積並 定義该上電極於該壓電層上。該複數個聲波反射層用以濾除不必要的 谐波與避铺聲絲細;該壓電騎激發之體聲麵態係為煎 向模悲波與準剪向模態波中之一種,用以減少聲波在接觸到液體介質 後所產生的能量損失。 根據本創作之一特徵,該壓電層所激發之體聲波模態係為剪向模 悲波,用以減少聲波在接觸到液體介質後所產生的能量損失,可應用 於液體感測器上。 根據本創作之一特徵,該壓電層所激發之體聲波模態係為準剪向 模恶波,其具有縱向共振效應,可應用於無線通訊系統中之微波濾波 元件。 根據本創作之一特徵’該壓電層之結晶軸向係為(l〇Q)、(HQ)、 (200)、(210)、(300)與(220)中之一種,用以激發剪向模態體聲波。 根據本創作之一特徵,該壓電層之結晶軸向為(101)、(102)、(1〇3)、 (112)、(201)、(202)、(104)、(203)、(211)、(114)、(212)、(105)、(204)、 (213)、(302)、(205)、(106)與(214)中之一種,用以激發準剪向模態體 聲波。 為讓本創作之上述和其他目的、特徵、和優點能更明顯易懂,下 文特舉數個較佳實施例,並配合所附圖式,作詳細說明如下。 M322106 【實施方式】 雖然本創作可表現林同形式之實補,但關所示者及於下文 中Λ月者係為本創作可之較佳實施例,並請了解本文所揭示者係考量 為本創作之-㈣,且並非意_以將本_關於圖示及/或所描述 之特定實施例中。 *本創作之旨在於揭示—種具有剪向模態之氧化鋅薄膜形成之薄膜 體聲波共振器3GG,藉由成長一種壓電層13〇,其具有晶粒㈣叫垂直 成長於基板Π0,賴紐料狀剪向紐振動鋪蚀咖臟), 其可減少聲波在接朗紐介f後所產生的能量損失,以顧於液體 感測器。另外’若該壓電層13()所麟之體聲波模_為準剪向模態 波(quaS1 shear mode),其具有縱向共振效應’可應用於無線通訊系統中 之微波滤波元件。 請參照第1圖,該薄膜體聲波共振器之主要結構可分為背姓型薄 膜體聲波共振器100 (第la圖)與面蝕型薄膜體聲波共振器2〇〇 (第比 圖)。該具有剪向模態之背蝕型薄膜體聲波共振器1〇〇與該具有剪向模 態之面餘型薄膜體聲波共振器200皆包含有一基板11(); 一下電極 120 ; -壓電層⑽;以及一上電極H0。該基板110係作為該具有剪 向模態之背蝕型薄膜體聲波共振器100之承載本體;該下電極12〇係 以物理氣相沈積於該基板110上·,該壓電層130係為氧化辞薄膜,係 以物理氣相沈積該下電極上;以及該上電極14〇係以物理氣相沈積該 壓電層130上。該壓電層130所激發之體聲波模態係為剪向模態波與 M322106 準剪向模態波中之一種,田、,、α曹 々里用以減少聲波在接觸到液體介質後所產生的 能量損失。不同的是,兮且士a 茨具有男向模態之背蝕型薄膜體聲波共振器100 係以選擇性濕餘刻製作· 卞,该具有男向模態之面蝕型薄膜體聲波共振器 200係以微機電製裎枯淋制 私技顿作。_具有剪向難之背师薄膜體聲 波共振器100為例,力制和 在1耘上,其製程步驟大致包含:A)在基板110 上依序沈積下電極120、壓電声 , 至电層Π〇,B)沈積並定義壓電層130圖案; 沈積並疋義上電極14〇圖安· r 、— 固案,C)於基板110背面以感應耦合電漿蝕刻 方式7L成基板110空腔結構。需注意的是,在尚未沈積壓電層⑽及 電極前,紹軸11G進行背面祕_咖:氫氧化鉀(職)、四鉀 :銨(ΜΑΗ),聯胺)製程,餘刻基板則至剩餘有數十微米的厚度, 遠有數十微米之基板11〇厚度是為減少薄膜應力有助於後續電極與壓 電層130賴以支撐此結構。另外,在完成基板削背面空腔結構步 驟之濕侧液,加熱含少制魏錄絲_基銨(丽η)之溶 液。 根據本創作所揭示之_蓮聲波元件之另—較佳實施例,請參 照第2圖,其卿為具有剪賴紅氧鱗薄卿成之_體聲波共 振器300之結構圖。該具有剪賴狀氧化鋅薄卿成之薄膜體聲波 共振器300 ±要包含-基板11〇 ;複數個聲波反射層15〇 ; 一下電極 120 ; —壓電層130 ;以及一上電極14〇。 該基板110係作為該具有剪向模態之氧化辞薄膜形成之薄膜體聲 波共振器300之承載本體;該複數個聲波反㈣15〇配置成長於該基 板110上’用以濾除不必要的諧波與避免體聲波從基板11〇賴;該 M322106 下電極120以物理氣減積於該反射層上;該壓電層13〇係為氧化辞 薄膜,係以物理氣相沈積該下電極上;以及該上電極14〇以物理氣相 沈積於該壓電層130上。該複數個聲波反射層15〇係由鎢(w)、鉑(pt)、 二氧化矽(Si〇2)與鋁(A1)等材料所組成。該下電極12〇之材料係使用 鉬、鋁、鎢、鉑、銅、金、鉻、釔鋇銅氧超導體(YBC〇)與透明導 電氧化物(ITO)所組成族群中之一種材料。需注意的是,該壓電層 13〇所激發之體聲波模態係為剪向模態波與準剪向獅波巾之一種, 用以減少聲波在接觸到液體介質後所產生的能量損失。另外,若該壓 電層130所激發之體聲波模態係為準剪向模態波,其具有縱向共振效 應,可應用於無線通訊系統中之微波滤波元件。 該具有剪向鶴之氧化鋅薄卿成之賴體聲波共廳·之工 作原理係為在該具有剪向模態之氧化鋅_形成之薄麵聲波共振器 300的-端電極輸人_交流訊號或電壓,根據逆壓電效應理論,當壓 電晶體上加人-外加電場,此晶體的内部晶格結構將會因為電場的加 入而產㈣變和扭轉。又因為交流電場的正半週與負半週的交互作用 下使知曰曰體的形變產生縮小和膨脹。因此壓電晶體内會產生彈性波 於壓電晶翻傳遞及反射,這裡指的彈性波仍為聲波。當此壓電晶體 產生機械振動後,則根據正壓電效應,將聲波轉換成電訊號,再由壓 電曰曰體另端電極所輸出。其巾逆壓電效應所產生雜波之頻率(自 然譜振頻率)與外加交流電之頻率相同時,則此時壓電晶體會產生共 振效應,此共振縣會使得壓電晶體中之彈性波有最大的位移量而產 生最大的電峨,亦即騎大神應。 11 M322106 口亥^、有为向极態之氧化辞薄膜形成之薄膜體聲波共振器3⑻的操 作頻率方面可根據下列公式得知·· … ⑴ • 了為70件的操作頻率、v為聲波在壓電層13G中的速度以及d ^二電極厚度及壓電層⑽總厚度。當d=A/2時,則高頻聲波元件的 聲波波長U )將會與树的操作頻率達到良好的最佳匹配,聲能和 電能的轉換也能達到最佳。將W/2此式帶入⑴式,可得到下列關係 式: f= V/2d ^ _ (2) 該具有剪向模態之氧化鋅薄膜形成之薄膜體聲波共振器300的特 性糾數個參數影響,包含壓電層13〇材料性質、電極材料性質、薄 膜尽度★、轉幾何設料。其巾壓電層⑽必須具有與其他層間良好 的接著性'表面必須平坦在大面積範圍内維持均勻厚度 〜結晶方向需垂直於基板成長、高壓_合度及高 在又,而且材料本身必須為料體,及可承受大的電壓。 =清楚_財有剪向觀之纽·麵聲波共絲⑽之製 配合第1圖說明之。請參照第la圖,以體型微細加工製作之該 纽型薄膜體聲波共振器励元件採用以驗性溶液 其糾 石夕基材麵向表面進行背向_,使未受到保護的 二#被吃穿而留下橫暖式㈣振[因此伽 =面積财比由正_騎需料工作面積獻,科齡^ 立且其機械強度也比較差。為清楚說明該具有剪向模態之面韻 12 M322106 型薄膜體聲波共振器200製 主 _ i私明麥^弟lb圖,以面型微細加工製 1之:具有剪向模態之面蝕型薄膜體聲波共振器200則需預先於基材 :面上層犠牲層(sacriflcialLayer),待電極和壓電層⑽做成之 後’再移除犠牲層使·振器成為懸空的構造。面型微細加工皆於基 材正面進行製造,所以可以與積體電㈣製程與設備相整合,元件所 佔面積也比較小。然而面型微細力江碰最大的問題仍在於使用溶液 移除犠牲層日^ ’會面臨液滴縮小時表面張力的作用㈣起該具有剪向 模態之祕型薄膜體聲波共振器·結構黏貼於基材表面的問題,因 此為解如b法㈣配合超臨界清洗(Supercritieal Cleaning)才能維持 該具有剪向鶴之通型_體聲波共振器2⑻結構完整。 在該壓電層130之製程係選用物理氣相沈積法,包含熱蒸鑛法, 電子束法與濺鍍法。在本創作中,該壓電層13〇之製程較佳係以射頻 磁控濺鑛法。其雜树為三射、純度99 9%的躲,同時使用純 度為99.995〇/〇的氧氣(ο:)和純度為99 99%的氬氣(Ar)作為反應氣體。在 «亥壓電層13〇之材料上,係以成長(觸)優選取向之氧化鋅薄膜。根據 本幻作之隶佳實施例’若需成長(100)優選取向之氧化鋅薄膜,則該製 耘條件為壓力為1〇-6 t〇rr,射頻功率為1〇〇〜3〇〇w,氣體流量為 10〜12sccm。在分析各種優選取向之相位速度與壓電耦合係數必須先 從壓電聲波理論與壓電材料之剛性係數矩陣(stiffiless matrix)、壓電係 數矩陣(piezoelectric matrix)、介電常數矩陣(pemiittivity matrix)推導出M322106 VIII. New description: [New technical field] This creation is about -(4) film bulk acoustic resonator, which is a film bulk acoustic resonator formed by a zinc oxide film with shear mode. [Prior Art] A conventional film bulk acoustic resonator is a piezoelectric resonator of an electric field thickness excited mode, operating at several GHz and several tens of GHz, and can be applied to high frequency communication components and sensors. . Thickness-excited (TE) thin-body acoustic wave resonator, whose working principle is - piezoelectric film's upper and lower conductive materials to form upper and lower electrodes, under the action of externally applied electric field of thickness, the piezoelectric layer of the electrode overlap region transmits The piezoelectric effect converts the energy of the applied electric field into the vibration of the mechanical field energy. Thickness excitation (1111 (such as ^ Noga (1, 1 ^ film body acoustic resonance 1 county - kind of electric field thickness is assigned to the pressure f, the operating frequency is in several GHz and tens of GHz, can be applied to high frequency The communication component and the sensor. The principle of the thickness-excited film bulk acoustic resonator is 'in the piezoelectric film and the upper and lower conductive materials to form the upper and lower electrodes. Under the action of the electric field excited by the thickness, the pressure of the electrode overlap region The electric layer converts the applied electric field amount into the vibration of the mechanical field energy through the piezoelectric effect. Generally, the piezoelectric film of the film bulk acoustic resonator is 〇〇 ) ) 优选 ) ) ) ) ) ) ) ) ) ) ) ) ) The aluminum nitride (A1N) and oxidized (Zn〇) piezoelectric film, the body i-wave vibration mode generated is perpendicular to the longitudinal bulk acoustic wave of the substrate (L〇ngitu (jinai buik acoustic wave). In the sensor The application aspect can be used for gas sensing, however, in liquid, there will be obvious loss of acoustic energy and cause severe distortion in analysis. M322106 Conventional techniques can be found in the international journal IEEE Sensors, ρρ· 492-495, 2005, title "Shear mode AIN thin film electroacoustic "resonator for biosensor applications". In this document, Wingqvist et al. proposed a two-stage sputtering method to deposit a tilted substrate. The axis is preferably oriented aluminum nitride film, and the structure of the film is approximated to (103) preferred orientation, and the thickness of the piezoelectric film is used to excite the acoustic bulk acoustic wave resonator to successfully excite the quasi-longitudinal bulk acoustic wave and quasi-shear direction. Bulk acoustic waves. However, the piezoelectric film deposited by the above method can cause a problem that the piezoelectric film deposited on the wafer can be very uneven, which seriously affects the component process yield and the cost increase. Therefore, in order to solve this problem, it is necessary to provide a novel film bulk acoustic resonator to overcome the shortcomings of the prior art. [New content] The problem of the prior art, the present disclosure reveals an oxidized thin resonator with a shearing mode. 'Using physical vapor deposition to grow the sound wave with the sonic wave wave (4), the main purpose of the film and the original mode of the film bulk acoustic resonator mode The electro-film is based on the provision of a kind of oxygen-dip film formation with shearing direction. The main purpose of the RF magnetron sputtering is the shearing mode and the quasi-shearing direction of the film, and the film body acoustic resonator is created. Providing a zinc oxide film having a shearing grip capable of having a ruthenium-like shape, comprising: a substrate; a plurality of sinusoidal reflective layers; a lowering M322106 pole, a piezoelectric layer; and an upper electrode. a carrier body of a film bulk acoustic resonator having a shearing mode; the plurality of acoustic wave reflective layers are disposed on the substrate; the lower electrode deposits and defines the lower electrode on the reflective layer; the piezoelectric layer is oxidized a film that deposits and defines the piezoelectric layer on the lower electrode; and the upper electrode deposits and defines the upper electrode on the piezoelectric layer. The plurality of acoustic wave reflection layers are used for filtering unnecessary harmonics and avoiding sounding sounds; the piezoelectric sound state excited by the piezoelectric riding is one of a fried mode sinus wave and a quasi-shearing mode wave. It is used to reduce the energy loss generated by sound waves after contacting the liquid medium. According to one feature of the present invention, the bulk acoustic wave mode excited by the piezoelectric layer is a shear mode sinus wave, which is used to reduce the energy loss generated by the sound wave after contacting the liquid medium, and can be applied to the liquid sensor. . According to one of the features of the present invention, the bulk acoustic wave mode excited by the piezoelectric layer is a quasi-shear-oriented mode wave, which has a longitudinal resonance effect and can be applied to a microwave filtering component in a wireless communication system. According to one of the features of the present invention, the axial direction of the piezoelectric layer is one of (l〇Q), (HQ), (200), (210), (300) and (220) for exciting the shear Sound waves to the modal body. According to one feature of the present invention, the piezoelectric axes of the piezoelectric layer are (101), (102), (1〇3), (112), (201), (202), (104), (203), One of (211), (114), (212), (105), (204), (213), (302), (205), (106), and (214) for exciting the quasi-shear mode State sound waves. The above and other objects, features, and advantages of the present invention will become more apparent and understood. M322106 [Embodiment] Although this creation can express the actual form of the same form, the person shown in the following and the following is the preferred embodiment of the creation, and please understand that the person disclosed in this article considers The present invention - (d), and is not intended to be in the specific embodiment of the present invention. * The purpose of this creation is to reveal a film bulk acoustic resonator 3GG with a shear mode modal zinc oxide film, by growing a piezoelectric layer 13 〇, which has crystal grains (4) called vertical growth on the substrate Π0, The material-like shears are etched into the new vibrations, which can reduce the energy loss generated by the sound waves after the singularity, so as to take care of the liquid sensors. Further, if the acoustic mode _ of the piezoelectric layer 13 is a quasi-shear mode, it has a longitudinal resonance effect' which can be applied to a microwave filter element in a wireless communication system. Referring to Fig. 1, the main structure of the film bulk acoustic resonator can be classified into a back-type thin film bulk acoustic resonator 100 (Fig. la) and a surface-etched thin film bulk acoustic resonator 2 (Fig. 1). The back-etched film bulk acoustic resonator 1 剪 having a shearing mode and the surface-formed bulk acoustic wave resonator 200 having a shearing mode include a substrate 11 (); a lower electrode 120; - piezoelectric Layer (10); and an upper electrode H0. The substrate 110 is used as a carrier body of the back-etched film bulk acoustic resonator 100 having a shearing mode; the lower electrode 12 is physically vapor deposited on the substrate 110, and the piezoelectric layer 130 is The oxidized film is deposited on the lower electrode by physical vapor deposition; and the upper electrode 14 is deposited on the piezoelectric layer 130 by physical vapor deposition. The bulk acoustic wave mode excited by the piezoelectric layer 130 is one of a shearing mode wave and a M322106 quasi-shearing mode wave, and the field, the, and the Cao is used to reduce the sound wave after contacting the liquid medium. The energy lost. The difference is that the 背 a 具有 具有 具有 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 选择性 选择性 选择性 选择性 卞 卞 卞 卞 卞 卞 卞 卞 卞 卞 卞 卞 卞 卞 卞 卞 卞 卞 卞 卞 卞 卞 卞 卞 卞 卞 卞 卞 卞The 200 series was made with micro-electromechanical system. For example, the process of the film-shaped acoustic resonator 100 with the shearing difficulty is as follows. The process steps of the process are roughly as follows: A) sequentially depositing the lower electrode 120, piezoelectric sound, and electricity on the substrate 110. Layer Π〇, B) deposition and definition of the piezoelectric layer 130 pattern; deposition and ambiguity of the upper electrode 14 〇 · · r, - solid case, C) in the back of the substrate 110 by inductively coupled plasma etching 7L into the substrate 110 empty Cavity structure. It should be noted that before the piezoelectric layer (10) and the electrode have been deposited, the Shaoxing 11G is subjected to the process of backside _ _: potassium hydroxide (job), tetrapotassium: ammonium (ΜΑΗ), hydrazine), and the remaining substrate is There are tens of micrometers of thickness remaining, and the thickness of the substrate 11 tens of tens of micrometers is to reduce the film stress to help the subsequent electrode and the piezoelectric layer 130 to support the structure. Further, the wet side liquid in the step of cutting the back surface cavity structure of the substrate is heated to heat the solution containing a small amount of Weisuosi-based ammonium. According to another preferred embodiment of the lotus acoustic wave component disclosed in the present application, reference is made to Fig. 2, which is a structural diagram of a bulk acoustic wave resonator 300 having a red oxide scale. The thin film bulk acoustic resonator 300 with a shear-like zinc oxide thin film comprises - a substrate 11 〇; a plurality of acoustic wave reflective layers 15 〇; a lower electrode 120; a piezoelectric layer 130; and an upper electrode 14 〇. The substrate 110 is used as a carrier body of the film bulk acoustic resonator 300 formed by the oxidized film having a shearing mode; the plurality of acoustic waves are arranged on the substrate 110 to filter out unnecessary harmonics. Waves and avoiding bulk acoustic waves from the substrate 11; the M322106 lower electrode 120 is physically reduced on the reflective layer; the piezoelectric layer 13 is an oxidized film, which is physically vapor deposited on the lower electrode; And the upper electrode 14 is deposited on the piezoelectric layer 130 by physical vapor deposition. The plurality of acoustic wave reflective layers 15 are composed of materials such as tungsten (w), platinum (pt), cerium oxide (Si〇2), and aluminum (A1). The material of the lower electrode 12 is made of a material consisting of molybdenum, aluminum, tungsten, platinum, copper, gold, chromium, beryllium copper oxygen superconductor (YBC) and transparent conductive oxide (ITO). It should be noted that the bulk acoustic wave mode excited by the piezoelectric layer 13 is a kind of shearing mode wave and quasi-shearing lion wave towel, which is used to reduce the energy loss generated by the sound wave after contacting the liquid medium. . In addition, if the bulk acoustic wave mode excited by the piezoelectric layer 130 is a quasi-shearing mode wave, it has a longitudinal resonance effect and can be applied to a microwave filter component in a wireless communication system. The working principle of the thin-sounding acoustic wave resonator having the shear-oriented zirconia thin-film is to be the end-electrode input of the thin-surface acoustic resonator 300 having the shear mode modality. Signal or voltage, according to the theory of inverse piezoelectric effect, when a human-applied electric field is applied to the piezoelectric crystal, the internal lattice structure of the crystal will be produced (4) and twisted due to the addition of an electric field. Moreover, the deformation of the body is reduced and expanded due to the interaction between the positive half cycle and the negative half cycle of the alternating electric field. Therefore, an elastic wave is generated in the piezoelectric crystal to transmit and reflect the piezoelectric crystal, and the elastic wave referred to herein is still a sound wave. When the piezoelectric crystal generates mechanical vibration, the sound wave is converted into an electrical signal according to the positive piezoelectric effect, and then output from the other end electrode of the piezoelectric body. When the frequency of the clutter generated by the inverse piezoelectric effect (the natural spectral frequency) is the same as the frequency of the applied alternating current, the piezoelectric crystal will have a resonance effect, and the resonance county will cause the elastic wave in the piezoelectric crystal to have The maximum amount of displacement produces the largest power, that is, riding the gods. 11 M322106 mouth ^ ^, the operating frequency of the film bulk acoustic resonator 3 (8) formed to the polar oxidation film can be known according to the following formula ... (1) • 70 operating frequency, v is the sound wave The velocity in the piezoelectric layer 13G and the thickness of the d^two electrodes and the total thickness of the piezoelectric layer (10). When d = A/2, the acoustic wave wavelength U of the high-frequency acoustic wave component will have a good match with the operating frequency of the tree, and the conversion of acoustic energy and electrical energy can be optimized. Bringing W/2 to equation (1), the following relationship can be obtained: f = V/2d ^ _ (2) The characteristic correction number of the film bulk acoustic resonator 300 formed by the zinc oxide film with shear mode The influence of parameters includes the piezoelectric layer 13〇 material properties, electrode material properties, film endurance ★, and geometric design. The piezoelectric layer (10) of the towel must have good adhesion to other layers. The surface must be flat and maintain a uniform thickness over a large area. The direction of crystallization should be perpendicular to the growth of the substrate, the high pressure and the height, and the material itself must be material. Body, and can withstand large voltages. = Clear _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Please refer to the figure la, the excitation element of the sinusoidal body acoustic resonator made by the micro-machining of the body shape adopts the test solution, and the surface of the base material facing the surface is back-oriented, so that the unprotected two is eaten. Wear and leave the horizontal warm (four) vibration [therefore, the gamma = area ratio is provided by the positive _ riding required work area, the age is established and its mechanical strength is relatively poor. In order to clearly illustrate the face-to-face rhyme of the 12 M322106 film bulk acoustic resonator 200, the surface of the film is made by micro-machining: a facet with a shear mode The film bulk acoustic resonator 200 needs to be pre-structured on the substrate: the sacriflcial layer, and after the electrode and the piezoelectric layer (10) are formed, the structure of the vibrator is suspended. The surface micro-machining is manufactured on the front side of the substrate, so it can be integrated with the integrated electro-system (4) process and equipment, and the area occupied by the components is also relatively small. However, the biggest problem with the face-type micro-pressure force is still to use the solution to remove the layer of the ^ ^ ' ' ' will face the surface tension when the droplets shrink (4) from the secret film body with a shear mode modal sound wave resonator · structural paste The problem is on the surface of the substrate. Therefore, in order to solve the problem, such as b method (4) with supercritical cleaning (Supercritieal Cleaning), the structure of the body-shaped acoustic resonator 2 (8) with shear-cutting crane can be maintained. The process of the piezoelectric layer 130 is a physical vapor deposition method including a hot steam method, an electron beam method and a sputtering method. In the present creation, the piezoelectric layer 13 is preferably subjected to a radio frequency magnetron sputtering method. The mixed tree is a three-shot, 999% purity hiding, and uses an oxygen (ο:) having a purity of 99.995 〇/〇 and an argon (Ar) having a purity of 99 99% as a reaction gas. On the material of the «Phi piezoelectric layer 13 ,, a zinc oxide film which is preferably oriented by growth (touch) is used. According to the preferred embodiment of the present invention, if it is desired to grow (100) a preferred orientation of the zinc oxide film, the pressure conditions are 1 〇 -6 t rr, and the RF power is 1 〇〇 3 〇〇 w The gas flow rate is 10 to 12 sccm. In analyzing the phase velocity and piezoelectric coupling coefficient of various preferred orientations, it is necessary to first derive the stiffness coefficient matrix, the piezoelectric matrix, and the pemiittivity matrix from the piezoelectric acoustic wave theory and the piezoelectric material. Deduced

Christoffel方程式’ Christoffel方程式可以用來描述在三維空間内聲 波在晶體内的傳播。根據下式可求得該壓電層丨3〇之壓電耦合係數 13 M322106 (κ2): 其中,e係由壓電係數矩陣中選取之任一值,ce為剛性係數矩陣中選 取之任一值,ε8為介電係數矩陣中選取之任一值。根據上式即可分析 該具有剪向模態之氧化鋅薄膜形成之薄膜體聲波共振器3〇〇之剪向模 態與近似剪向模態波之相速度與壓電係數。該壓電層13〇之結晶軸向 係為(100)、(110)、(200)、(210)、(300)與(220)中之一種時,可激發純 奧向模態體聲波,其係整理於表一。另外,若該壓電層之結晶軸 向為(101)、(102)、(103)、(112)、(201)、(202)、(104)、(203)、(211)、 (114)、(212)、(105)、(204)、(213)、(302)、(205)、(106)與(214)中之一 種日守,可激發準與向模態體聲波,其係整理於表二。 綜上所述,本創作所揭示之該具有剪向模態之氧化辞薄膜形成之 薄膜體聲波共振g 300,其特徵在於該壓電層13Q所激發之體聲波模 恶係為剪向模態波,用喊少聲波在接_液體介質後所產生的能量 損失,可廣泛應用於液體感測器。另外,若該壓電層請所激發之體 聲波模祕騎f向模驗,其具魏向共振效應,可應驗無線通 訊系統中之微波濾波元件。 雖然本創作已以前述較佳實施例揭示,然其並非用以限定本創 作’任何㈣此祕者’林雌本_之料和翻内,當可作各 種之更動與修改。如上述的解釋,都可以作各型式的修正與變化,而 不會破壞此解的精神。因此摘狀賴軸#猶附之帽專利 M322106 範圍所界定者為準。 M322106 【圖式簡單說明】 第la圖顯示為背姓型薄膜體聲波共振器 第lb圖顯示為面餘型薄膜體聲波共振器; 振器 第2 =為具有剪向模態之氧化鋅薄膜形成之 之結構圖; 收八 表一顯示魏鱗薄歡簡向鶴分析;以及 之準剪向模態分析。 【主要元件符號說明】 1〇〇背蝕型薄膜體聲波共振器 110基板 120下電極 130壓電層 140上電極 150複數個聲波反射層 200面蝕型薄膜體聲波共振器 有j向模悲之氧化鋅薄膜形成之薄膜體聲波共振器 16The Christoffel equation ‘ Christoffel equation can be used to describe the propagation of sound waves within a crystal in three dimensions. The piezoelectric coupling coefficient 13 M322106 (κ2) of the piezoelectric layer 求3〇 can be obtained according to the following formula: where e is any value selected from the piezoelectric coefficient matrix, and ce is selected from the matrix of rigidity coefficients The value, ε8, is any value selected from the matrix of dielectric coefficients. According to the above formula, the phase velocity and piezoelectric coefficient of the shear mode and the approximate shear mode wave of the film bulk acoustic resonator formed by the zinc oxide film with shear mode can be analyzed. When the piezoelectric layer 13 has a crystal axial direction of one of (100), (110), (200), (210), (300), and (220), the pure ausotropic mode sound wave can be excited. The system is organized in Table 1. In addition, if the crystal axis of the piezoelectric layer is (101), (102), (103), (112), (201), (202), (104), (203), (211), (114 And one of (212), (105), (204), (213), (302), (205), (106), and (214), which can excite the quasi-directional modal bulk acoustic wave, The department is organized in Table 2. In summary, the film body acoustic resonance g 300 formed by the oxidized film having a shearing mode disclosed in the present invention is characterized in that the body acoustic wave system excited by the piezoelectric layer 13Q is a shearing mode. Waves, which can be widely used in liquid sensors, can be widely used in liquid sensors by shuffling less energy waves. In addition, if the piezoelectric layer is excited by the body acoustic wave model, it has a Wei-direction resonance effect, which can meet the microwave filter components in the wireless communication system. Although the present invention has been disclosed in the foregoing preferred embodiments, it is not intended to limit the creation and modification of any of the creations of the present invention. As explained above, all types of corrections and changes can be made without destroying the spirit of this solution. Therefore, the scope defined by the scope of the patent cap M322106 is subject to the standard of the cap. M322106 [Simple description of the diagram] The first diagram shows that the lb diagram of the back-type film bulk acoustic resonator is shown as a residual film bulk acoustic resonator; the vibrator 2 = is formed by a zinc oxide film with a shear mode. The structural diagram of the eight tables shows the analysis of the Wei scales and the simple cranes; and the quasi-shear modal analysis. [Main component symbol description] 1〇〇Back-type film bulk acoustic resonator 110 substrate 120 lower electrode 130 piezoelectric layer 140 upper electrode 150 multiple acoustic wave reflection layer 200 surface-etching film body acoustic wave resonator has j-mode mode Film bulk acoustic resonator formed by zinc oxide film 16

Claims (1)

M322106 九、申請專利範圍: 具有料鶴之纽鋅薄卿奴咖體聲波紐器,其包 ^板’辟祕作鱗科麵鶴之_料料姉之承載 一下電極’沈積並域該下電極於該基板上; ::電層係為氣化物,其沈積並定義該壓電層於該 -上電極,沈積並定義該上電極於該壓電層上; 其找壓電層所激發之體聲波模態係為剪向模態與準剪向模態中 之"種。 2. 如申請專利範圍第1項所述一 丨種具有男向杈態之氧化鋅薄膜形 成之薄膜體聲波共振器,其中螻且古前+ ^ 具有男向杈怨之薄膜體聲波共振器 係為背餘型與面韻型結構中之一種。 3. 如申請專利範圍第i項所述之—種具有剪向模態之氧化辞薄膜形 成之薄膜體聲波共振器,其中該壓電層係以物理氣相沈積法成長。 4·如申請專繼圍第1項所叙—種具有剪向模態之氧化辞薄膜形 成之薄膜體聲波共振裔,其中該壓電層之結晶軸向係為(1〇〇)、 (110)、(200)、(210)、(300)與(220)中之一種,用以激發剪向模態體 17 M322106 聲波。 5. 如申請專利範’丨項所述之—種具有剪向模態之氧化辞薄膜形 成之薄膜體聲波共振器’其中該壓電層之結晶軸向為⑽)、⑽卜 (103)、(112)、(201)、(202)、(1〇4)、(2〇3)、(211)、(114)、(212)、 (1〇5)、(204)、(213)、(3〇2)、(2〇5)、(1〇6)與(214)中之一種用以 激發準剪向模態體聲波。 6. 如申料職圍第i項所述之—種具有剪向模態之氧化辞薄膜形 成之薄膜體聲波共振器,其中該下電極之材料係使肋、銘、鶴、 鉑、銅、金、鉻、釔鋇銅氧超導體(YBC〇)與透明導電氧化物(聊 所組成族群中之一種材料。 7·種具有剪向模悲之氧化鋅薄膜形成之薄膜體聲波共振器, 含: 〃 一基板,絲板_為該具有剪向鄕之賴體較共 本體; 尺 複數個聲波反射層’係配置成長於該基板上,用以滤除不必要的譜 波與避免體聲波從基板洩漏; 一下電極,沈積並定義該下電極於該反射層上; 一壓電層,該壓電層係為氧化辞薄膜,其沈積並定義該壓電層於該 下電極上;以及 M322106 一上電極,沈積並定義該上電極於該壓電層上; 其中該壓電層所激發之體聲波模態係為剪向模態波與準剪向模態 波中之一種。 8. 如申請專概圍帛7項所狀-齡有剪向觀之氧化鋅薄膜形 成之薄膜體聲波共振器,其中該壓電層係以物理氣相沈積法成長。 9. 如申請專職圍第7項所述之-種具有剪向觀之氧化辞薄膜形 成之薄膜體聲波共振器,其中該壓電層之結晶轴向係為⑽)、 (110)、(200)、(210)、(300)與(220)中之一種,用崎發剪向聲波振 動模態體聲波。 10. 如申請專利麵第7項所述之-種具有剪向鶴之氧化辞薄膜形 成之薄膜體聲波共振器,其中該壓電層之結晶轴向為⑽)、⑽)、 (103)、(112)、(201)、(202)、(104)、(2〇3)、(211)、⑴4)、(212)、 (105)、(204)、(213)、(302)、(205)、(1〇6)與(214)中之一種,用以 激發準剪向聲波振動模態體聲波。 11. 如申請專利細第7項所述之-種具有剪向娜之氧化辞薄膜形 成之薄膜體聲波共振器’其中該複數個聲波反射層係選自於偽 (W)、舶⑻、二氧化石夕(Si〇2_s(A1)等所組成族群中之一種材料、。 19 M322106 12.如申請專利範圍第7項所述之一種具有剪向模態之氧化辞薄膜形 成之薄膜體聲波共振器,其中該下電極之材料係使用鉬、鋁、鎢、 鉑、銅、金、鉻、釔鋇銅氧超導體(YBCO)與透明導電氧化物(ITO) 所組成族群中之一種材料。 20M322106 Nine, the scope of application for patents: There is a new type of zinc thin-brown slave corona sonicator with a crane, and its package is made up of a squad of the squad, which carries the electrode, and deposits the electrode. On the substrate; the :Electrical layer is a vapor, which deposits and defines the piezoelectric layer on the upper electrode, deposits and defines the upper electrode on the piezoelectric layer; and finds the body excited by the piezoelectric layer The acoustic mode is the " species in the shear mode and the quasi-shear mode. 2. As described in the first paragraph of the patent application, a film bulk acoustic resonator with a male-thinned zinc oxide film is formed, and the film is composed of a male-female acoustic wave resonator system. It is one of the structure of the back and the surface. 3. A film bulk acoustic resonator formed by a oxidized film having a shearing mode as described in claim i, wherein the piezoelectric layer is grown by physical vapor deposition. 4. If the application is specifically described in Item 1, the film body acoustic resonance of the oxidized film having a shear mode, wherein the piezoelectric layer has a crystal axial direction of (1〇〇), (110) One of (200), (210), (300), and (220) to excite the shearing mode body 17 M322106 sound wave. 5. A film bulk acoustic resonator formed by a oxidized film having a shearing mode as described in the patent application, wherein the piezoelectric layer has a crystal axial direction of (10), (10), and (103), (112), (201), (202), (1〇4), (2〇3), (211), (114), (212), (1〇5), (204), (213), One of (3〇2), (2〇5), (1〇6) and (214) is used to excite the pseudo-shearing mode body sound wave. 6. A film bulk acoustic resonator formed by a oxidized film having a shearing mode as described in item ith of item 1-4, wherein the material of the lower electrode is rib, inscription, crane, platinum, copper, Gold, chromium, beryllium copper oxygen superconductor (YBC〇) and transparent conductive oxide (a material in the group consisting of. 7. A film bulk acoustic resonator with a shear thin film formed by a zinc oxide film with a shear mode, including: 〃 a substrate, the silk plate _ is the common body of the slanting slanting body; the plurality of acoustic wave reflecting layers are arranged on the substrate to filter unnecessary spectral waves and avoid bulk acoustic waves from the substrate a lower electrode, depositing and defining the lower electrode on the reflective layer; a piezoelectric layer, the piezoelectric layer being an oxidized film, which deposits and defines the piezoelectric layer on the lower electrode; and M322106 An electrode, depositing and defining the upper electrode on the piezoelectric layer; wherein the bulk acoustic wave mode excited by the piezoelectric layer is one of a shearing mode wave and a quasi-shear mode wave. A total of 7 items of age--the age of the zinc oxide thin The formed film bulk acoustic resonator, wherein the piezoelectric layer is grown by physical vapor deposition. 9. The acoustic resonance of the film body formed by the oxidized film having the shearing direction as described in Item 7 of the full-time application , wherein the piezoelectric layer has a crystal axial direction of one of (10)), (110), (200), (210), (300) and (220), and the acoustic wave is used to vibrate the mode acoustic wave . 10. The film bulk acoustic resonator having the oxidized film formed by shearing the crane according to item 7 of the patent application, wherein the piezoelectric layer has a crystal axial direction of (10)), (10)), (103), (112), (201), (202), (104), (2〇3), (211), (1) 4), (212), (105), (204), (213), (302), ( 205), one of (1〇6) and (214) for exciting a quasi-shearing acoustic vibration mode body sound wave. 11. The film bulk acoustic resonator of the invention having the oxidized film formed by the method of the invention, wherein the plurality of acoustic reflection layers are selected from the group consisting of pseudo (W), ship (8), and a material of a group consisting of oxidized stone (Si〇2_s(A1), etc., 19 M322106. 12. Acoustic resonance of a film body formed by a oxidized film having a shear mode as described in claim 7 The material of the lower electrode is one of a group consisting of molybdenum, aluminum, tungsten, platinum, copper, gold, chromium, beryllium copper oxygen superconductor (YBCO) and transparent conductive oxide (ITO).
TW96200599U 2007-01-12 2007-01-12 A films bulk acoustic resonator using ZnO thin films with the shear resonant mode TWM322106U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96200599U TWM322106U (en) 2007-01-12 2007-01-12 A films bulk acoustic resonator using ZnO thin films with the shear resonant mode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96200599U TWM322106U (en) 2007-01-12 2007-01-12 A films bulk acoustic resonator using ZnO thin films with the shear resonant mode

Publications (1)

Publication Number Publication Date
TWM322106U true TWM322106U (en) 2007-11-11

Family

ID=39295474

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96200599U TWM322106U (en) 2007-01-12 2007-01-12 A films bulk acoustic resonator using ZnO thin films with the shear resonant mode

Country Status (1)

Country Link
TW (1) TWM322106U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108231995A (en) * 2018-02-05 2018-06-29 武汉衍熙微器件有限公司 A kind of piezoelectric device and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108231995A (en) * 2018-02-05 2018-06-29 武汉衍熙微器件有限公司 A kind of piezoelectric device and preparation method thereof
CN108231995B (en) * 2018-02-05 2024-04-19 武汉衍熙微器件有限公司 Piezoelectric device and preparation method thereof

Similar Documents

Publication Publication Date Title
EP4087130A1 (en) Bulk acoustic resonator with bottom electrode as gap electrode, and filter and electronic device
Rodríguez-Madrid et al. High precision pressure sensors based on SAW devices in the GHz range
CN101325240B (en) Piezoelectric thin film, piezoelectric material, and fabrication method of piezoelectric thin film and piezoelectric material, and piezoelectric resonator
Streque et al. Design and characterization of high-Q SAW resonators based on the AlN/Sapphire structure intended for high-temperature wireless sensor applications
CN109921759A (en) Acoustic resonator
Jackson et al. Influence of aluminum nitride crystal orientation on MEMS energy harvesting device performance
Lin et al. Fabrication of PZT MEMS energy harvester based on silicon and stainless-steel substrates utilizing an aerosol deposition method
US20050201575A1 (en) Thermally excited sound wave generating device
WO2015041152A1 (en) Oscillation device and manufacturing method therefore
US9972769B2 (en) Piezoelectric thin film and method for manufacturing the same, and piezoelectric element
WO2015025716A1 (en) Piezo-resonator and process for production thereof
JP2005197983A (en) Thin film bulk wave resonator
JPWO2014042020A1 (en) Vibration device and manufacturing method thereof
CN107525610B (en) FBAR micro-pressure sensor based on shear wave mode excited in thickness direction
Zhou et al. Flexible structured high-frequency film bulk acoustic resonator for flexible wireless electronics
JP5843198B2 (en) Piezoelectric element, manufacturing method thereof, and piezoelectric sensor
EP3654528A1 (en) Laminated substrate provided with piezoelectric film, element provided with piezoelectric film, and method for producing laminated substrate provided with piezoelectric film
CN102664602A (en) Embedded electrode lateral field excitation-based film bulk acoustic resonator (FBAR) and manufacturing method thereof
Chen et al. Design and analysis of piezoelectric micromachined ultrasonic transducer using high coupling PMN-PT single crystal thin film for ultrasound imaging
TWM322106U (en) A films bulk acoustic resonator using ZnO thin films with the shear resonant mode
Rana et al. Design of RF MEMS piezoelectric disk resonator for 5G communication
CN108640078A (en) A kind of pressure sensor and forming method thereof
Kang et al. A thickness-mode piezoelectric micromachined ultrasound transducer annular array using a PMN–PZT single crystal
Pérez-Campos et al. Post-CMOS compatible high-throughput fabrication of AlN-based piezoelectric microcantilevers
CN103269209B (en) A kind of FBAR with zigzag inner side edge electrode

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees