M309201 八、新型說明: 【新型所屬之技術領域】 本創作係有關於 號之測試接頭,其中 號夏測的準確性。 〜種測試接頭 藉由轉換介面 ,尤指一種擷取高頻訊 的設置將有利於提高訊M309201 VIII. New description: [New technical field] The author has a test connector for the number, which is the accuracy of the summer test. ~ kinds of test connectors through the conversion interface, especially a type of high-frequency access will help improve the message
【先前技術】 產品程或是研發過程當中,對電子 相當重要的-個步驟。的訊號進行量測,都是 作,來確切所生產之严產過程當中可藉由量測的動 t亦可藉由量測,有效的取得產品研發過程的相 一-般用來量測通訊產品内部訊號的裝置係如第工圖 所不’通訊裝置中所使用的傳輸線通常具有其特殊的規 則,例如,使用共面波導傳輸線(c〇planar Waveguide Transmission Une)ll為傳輸線,並以共面波導傳輸線u 與天線(未顯示)進行連接,主要是因為共面波導傳輸線u 係可有效率的設置於電路板上,並有利於進行高頻訊號 傳遞等優點。 在對通訊裝置進行訊號量測時,一般是對共面波導 傳輸線11内所傳遞的訊號(例如RF訊號)進行量測,例如 ’在共面波導傳輸線11上設置有一開口 13,並以一設置 有探針151之測試接顯15對共面波導傳輸線1〗内部所傳 4 M309201 ί;:=量二在量,探針151插人相對應 111及;^ 、/、面波導傳輪線11内部之訊號導體層 及接地W層113相接觸,藉此以量取訊號料層 Z與接地_ 113所行成的共面_部所傳遞白^ 當探針151與共面波導傳輸線11之訊號導體層m 層113接觸後,原本在訊號導體層ill i接地 __的訊號’將會延著探針151傳遞至 1 接頭15,並延著賴接頭後端職接之訊號線 所=至測試裝置19。測試裝置19在接受由探針⑸ 所傳遞之測试訊號後,可逸 數據分析比對之動作。\步對測斌訊號進行記錄或 mm式的過程當中’ 因為共面波導傳輸 ί太/顧接頭15及訊號線17之_抗的差異,造成 =存在於共面波導傳輸線η的訊號,在傳遞至測試接 =5士後因為阻抗及傳輸構造的不同而產生誤差,並使得 19所接*之賴賴與原本在共面料傳輸線 ▲。申所傳輸的訊號出現差異,而造成量測的結果產生錯 二錯誤的賴結果不料對產4好產生影響,同 %亦不利於產品研發動作的進行。 【新型内容】 為此,如何設計出一種新穎之測試接頭,不僅可有效 回所取得之測試訊號的正確性,且有利於通訊裝置之品 5 M3 09201 管及研發步驟的進行,此即為本創作之創作重點。 本創作之主要目的,在於提供一種擷取 試接頭,其轉換介面與待測之傳。^、δ唬之測 ㈣仰1 有相同的構造及阻 才;L,la此和有利於h鬲測試的準確度。 本創作之次要目的,在於提供一種操取高頻 試接頭,其中該測試接頭具有共面波導傳輸線的結ς,二 有利於對共面波導傳輪線㈣所舰的訊號進行量測。[Prior Art] A step that is quite important to electronics during the product process or development process. The measurement of the signals is done for the exact production process. The measurement can be measured by the measurement, and the measurement and development process can be effectively used to measure the communication. The internal signal of the product is the same as the transmission line used in the communication device. The transmission line used in the communication device usually has its own special rules. For example, a co-planar waveguide transmission line (c〇planar Waveguide Transmission Une) is used as the transmission line, and is coplanar. The waveguide transmission line u is connected to an antenna (not shown) mainly because the coplanar waveguide transmission line u can be efficiently disposed on the circuit board and is advantageous for high-frequency signal transmission. In the signal measurement of the communication device, the signal (for example, RF signal) transmitted in the coplanar waveguide transmission line 11 is generally measured, for example, 'the opening 13 is provided on the coplanar waveguide transmission line 11, and is set by one. The test with the probe 151 is connected to the 15 pairs of coplanar waveguide transmission line 1 and the internal transmission is 4 M309201 ί;:= the quantity is in the quantity, the probe 151 is inserted corresponding to the 111 and; ^, /, the surface waveguide transmission line 11 The inner signal conductor layer and the ground W layer 113 are in contact with each other, thereby measuring the signal of the probe 151 and the coplanar waveguide transmission line 11 by measuring the coplanar portion of the signal layer Z and the ground_113. After the contact of the conductor layer m layer 113, the signal 'the signal __ grounded in the signal conductor layer ill i will be transmitted to the 1 connector 15 through the probe 151, and the signal line of the back end of the connector is connected to the test. Device 19. After the test device 19 receives the test signal transmitted by the probe (5), the test data can be compared. \Steps to record the bin signal for recording or mm-type process' Because the difference between the _ resistance of the coplanar waveguide transmission ί Tai/Gu connector 15 and the signal line 17 causes the signal existing in the coplanar waveguide transmission line η to pass After the test is connected to 5±, the error occurs due to the difference in impedance and transmission structure, and the 19-connected* is based on the original fabric transmission line ▲. The signal transmitted by the application is different, and the result of the measurement is wrong. The result of the error is not expected to have an impact on the production, and the same is not conducive to the development of product development. [New content] To this end, how to design a novel test connector can not only effectively return the correctness of the test signal obtained, but also facilitate the 5 M3 09201 tube and R&D steps of the communication device. The focus of creative creation. The main purpose of this creation is to provide a capture connector, its conversion interface and the transmission to be tested. ^, δ唬 measurement (4) Yang 1 has the same structure and resistance; L, la this and the accuracy of the h鬲 test. The secondary purpose of this creation is to provide a high-frequency test joint, wherein the test joint has a crucible of a coplanar waveguide transmission line, and the second is advantageous for measuring the signal of the ship of the coplanar waveguide transmission line (4).
本創作之又—目的,在於提供—種擷取高^婦之測 试接頭,其中該測試接頭係與一訊號線相連接,而^接 碩之轉換介面與訊號線具有相同的阻抗,同樣有利於“ 測試訊號的準確度。 R、捉回 本創作之又一目的 試接頭,其阻抗與所欲 測路徑阻抗的不連續, 頻訊號。 ’在於提供-種擷取高頻訊號之測 量測之傳輸線相同’可有效減少量 並容易擷取傳輸線内部所傳遞的射 主要Γ二^作提供一種擷取高頻訊號之蜊試接頭,其 要係L括有、轉換介面,轉換介面具有共面傳輸 、、泉的結構;及至少一探針,係設置於轉換介面上。. 又’本創作尚提供一種擷取高頻訊號之剛試接頭,可 對傳輸線進行量測,其主要係包括有:一轉換介面,與 傳輪線具有相同的構造及阻抗;及至少一探針,係設置於 轉換介面上。 ' 【實施方式】 6 M309201 • _錢,請參閱第2圖,係為本創作取高頻訊號之測 試接頭一較佳實施例之俯視圖。如圖所示,本創作所述之 測。式接碩25係包括有一轉換介面253及至少一探針251, 在I測時係將測試接頭25與—傳輸線21進行接觸,旅使 得原本存在於傳輸線21内部之訊號經由探針251傳遞至 轉換介面253。其中,在測試接頭25設置的時候,係致使 軺換^面253與傳輸、線21具有相同的阻抗,藉此,將可 鲁 4彡彳錄抗的科續,並有利㈣本存在於傳輸線 21内部之訊號,由測試接頭25延著訊號線27傳至測試裝 置29 ’以減低量測誤差的產生。 又,於實際應用時亦可使得轉換介面253與傳輸線21 具有相同的結構,例如,當傳輪線21係為一共面波導傳 2料,係使得㈣介φ 253同樣具有共面波導傳輪線的 、、、。構,以有利於原本存在共面波導傳輸線之訊號傳遞至轉 換’1面,並以測試接頊對共面波導傳輸線進行量測。當然 _ ,亦可使得對探針251的型式進行改變,以降低在量測過 私當中所可能產生的誤差,例如,縮短探針251的長度戋 是選擇適當的材質作為探針251的材料。 ^ 作為測試接頭25與測試裝置29之間訊號傳輸的訊號 線27,其阻抗亦可進行調整,並致使訊號線27的阻抗與^ 測试接頭25之轉換介面253相同,例如,當傳輸線21的 阻抗為50歐姆(〇hm)時,轉換介面253及訊號線27的阻 抗亦選擇為50歐姆,將同樣有利於訊號由測試接頭乃經 由訊號線27傳遞至測試裝置29。此外,當傳輸線21内部 7 * M309201 所傳遞的訊號係為一射頻(Radio Frequency,RF)訊號時, 訊號線27係可選擇為一同軸電纜線,以有利於射頻訊號 的傳輸。 再者,請參閱第3圖、第4 A圖及第4 B圖,係分別 為共面波導傳輸線之剖面圖及擷取高頻訊號之測試接頭之 俯視圖及剖面圖。如圖所示,共面波導傳輸線31主要係 包括有一訊號導體層311及接地導體層313,其中訊號導 體層311及接地導體層313不相互接觸,並於兩者之間存 在有一介電層315,再以一保護層317對訊號導體層311 及接地導體層313加以包覆。一般而言,共面波導傳輸線 31主要是應用在通訊裝置(未顯示)中,並有利於進行射頻 訊號在通訊裝置内部的傳輸。 測試接頭35係依據待測之共面波導傳輸線31的結構 進行設置,並使得測試接頭35之轉換介面353與共面波 導傳輸線31具有相同的結構,如第4 A圖及第4 B圖所 不。例如,轉換介面353係包括有訊號導體層3531及接 地導體層3533,於兩者之間存在有一介電層3535,並以 一保護層3537對訊號導體層3531及接地導體層3533進 行包覆。其中,訊號導體層311/3531、接地導體層 313/3533、介電層315/3535及保護層317/3537係分別由相 同之材質所製成,換言之,係致使轉換介面353及共面波 導傳輸線31具有相同的構造及阻抗。 又在對共面波導傳輸線31進行量測時,主要係將 共面波導傳輪線31之部分保護層317移除(如第3圖所示 8 M309201 之虛線部分),並於共面波導傳輸線31上形成有至少—開 口 33,以有利於測試接頭35之探針351與共面波導傳輸 線31之訊號導體層31〗及接地導體層313接觸,並進行 共面波導傳輸線31之量測。 當然’測試接頭35係可直接於其後端連接有一訊號 線27,或是如第4 A圖所示於轉換介面353後端設置有一 轉換介面連接頭355,而訊號線27上係設置有一相對應之The purpose of this creation is to provide a test connector for the high-powered woman, wherein the test connector is connected to a signal line, and the conversion interface of the connection has the same impedance as the signal line, which is also advantageous. In the "test signal accuracy. R, catch another objective of the creation of the test joint, the impedance and the path impedance of the path to be measured discontinuous, frequency signal. 'In the provision of - the measurement of high frequency signals The same transmission line can effectively reduce the amount and easily capture the internal transmission of the transmission line. The main connection is to provide a high-frequency signal test connector, which is required to include the conversion interface, and the conversion interface has coplanar transmission. And the structure of the spring; and at least one probe is disposed on the conversion interface. . 'This creation also provides a test joint for extracting high-frequency signals, which can measure the transmission line, and the main items thereof include: A conversion interface has the same structure and impedance as the transmission line; and at least one probe is disposed on the conversion interface. 'Embodiment】 6 M309201 • _ money, please refer to Fig. 2, which is a creation A top view of a preferred embodiment of the test connector of the high frequency signal. As shown, the measurement system of the present invention includes a conversion interface 253 and at least one probe 251, which will be The test connector 25 is in contact with the transmission line 21, and the bridging causes the signal originally existing inside the transmission line 21 to be transmitted to the conversion interface 253 via the probe 251. Wherein, when the test connector 25 is set, the 253 面 253 and the transmission are caused, The line 21 has the same impedance, whereby the continuation of the knives and the advantageous signals (4) present in the transmission line 21 are transmitted from the test connector 25 to the test device 29 by the signal line 27 to reduce The measurement error is generated. Also, in practice, the conversion interface 253 and the transmission line 21 have the same structure. For example, when the transmission line 21 is a coplanar waveguide, the (4) φ 253 has the same The structure of the coplanar waveguide transmission line is transmitted to the conversion '1 plane to facilitate the transmission of the coplanar waveguide transmission line, and the coplanar waveguide transmission line is measured by the test interface. Of course, _ The type of the probe 251 can be changed to reduce the error that may occur in the measurement, for example, shortening the length of the probe 251, and selecting an appropriate material as the material of the probe 251. ^ As a test connector The signal line 27 transmitted between the signal and the test device 29 can also be adjusted in impedance, and the impedance of the signal line 27 is the same as the conversion interface 253 of the test connector 25, for example, when the impedance of the transmission line 21 is 50 ohms. (〇hm), the impedance of the conversion interface 253 and the signal line 27 is also selected to be 50 ohms, which will also facilitate the transmission of the signal from the test connector to the test device 29 via the signal line 27. In addition, when the transmission line 21 is internally 7 * M309201 When the transmitted signal is a radio frequency (RF) signal, the signal line 27 can be selected as a coaxial cable to facilitate the transmission of the RF signal. Furthermore, please refer to Fig. 3, Fig. 4A and Fig. 4B, which are respectively a cross-sectional view of the coplanar waveguide transmission line and a top view and a cross-sectional view of the test joint for extracting the high frequency signal. As shown, the coplanar waveguide transmission line 31 mainly includes a signal conductor layer 311 and a ground conductor layer 313. The signal conductor layer 311 and the ground conductor layer 313 are not in contact with each other, and a dielectric layer 315 is present between the two. Then, the signal conductor layer 311 and the ground conductor layer 313 are covered by a protective layer 317. In general, the coplanar waveguide transmission line 31 is primarily used in communication devices (not shown) and facilitates the transmission of radio frequency signals within the communication device. The test connector 35 is disposed according to the structure of the coplanar waveguide transmission line 31 to be tested, and the conversion interface 353 of the test connector 35 has the same structure as the coplanar waveguide transmission line 31, as shown in FIGS. 4A and 4B. . For example, the conversion interface 353 includes a signal conductor layer 3531 and a ground conductor layer 3533 with a dielectric layer 3535 therebetween, and the signal conductor layer 3531 and the ground conductor layer 3533 are covered by a protective layer 3537. Wherein, the signal conductor layer 311/3531, the ground conductor layer 313/3533, the dielectric layer 315/3535, and the protective layer 317/3537 are respectively made of the same material, in other words, the conversion interface 353 and the coplanar waveguide transmission line are caused. 31 has the same structure and impedance. When measuring the coplanar waveguide transmission line 31, the partial protection layer 317 of the coplanar waveguide transmission line 31 is mainly removed (as shown by the dotted line of 8 M309201 in FIG. 3), and is in the coplanar waveguide transmission line. At least an opening 33 is formed in the 31 to facilitate contact between the probe 351 of the test connector 35 and the signal conductor layer 31 and the ground conductor layer 313 of the coplanar waveguide transmission line 31, and to measure the coplanar waveguide transmission line 31. Of course, the test connector 35 can be connected to a signal line 27 directly at its rear end, or a conversion interface connector 355 can be disposed at the rear end of the conversion interface 353 as shown in FIG. 4A, and a phase is provided on the signal line 27. Corresponding
訊號線連接頭271,如第2圖所示,並可使得轉換介面連 接頭355與訊號線連接頭271相連接,例如,轉換介面連 接頭扮係為-SMA連接頭(公連接頭),而訊號線連接頭 系為相對應之SAM連接頭(母連接頭),且兩者之間 係設置2—相對應之螺紋,並可以旋轉方式達到兩者的連 接及固=。其中藉由轉換介面連接頭355與訊號線連接頭 之°又置將可70成訊號線27與測試接頭的連接戋 拆卸’並進行測試接頭35之更換,以提高測試接頭%使 性。x,亦可對訊號線連接頭Μ及轉換介面 ^ _抗進行調整,使得訊號線連接頭Μ及轉 換丨面連接頭3 5 5愈却缺綺ο 7 2!具有相同的阻抗:泉轉換介面353及傳輸線 用而面連接碩355係透過一固定介面357的使 用’而直接與轉換介面35 357係包括有一第n山订連接例如’固疋介面 接觸立而3571、一繁-垃自弓☆山mi菸 -第三接觸端3575,戈佶― 接•而3573及 353之1@ 2 侍弟—接觸端3571與轉換介面 353之汛唬導體層3531 々連接而弟二接觸端3573及第 9 • M309201 三接觸端3575係與轉換介面353之接地導體層3533相連 接,換言之,係致使第二接觸端3573及第三接觸端3575 接地。 最後,請參閱第5圖,係為本創作又一實施例之剖面 圖。本創作所述之實施例與上述實施例相異之處在於,所 量測之訊號線21的構造係有所差異,而測試接頭25的構 造亦隨之改變,例如,訊號線21為一微條線(Micr〇stripThe signal line connector 271, as shown in FIG. 2, and allows the conversion interface connector 355 to be connected to the signal line connector 271, for example, the conversion interface connector is a -SMA connector (male connector), and The signal line connector is a corresponding SAM connector (female connector), and the two are provided with corresponding threads, and can be rotated to achieve the connection and solid=. The conversion interface connector 355 and the signal line connector can be replaced by the connection of the signal line 27 and the test connector and the test connector 35 can be replaced to improve the test connector %. x, can also adjust the signal line connector and conversion interface ^ _ resistance, so that the signal line connector and the conversion connector 3 5 5 is less and less ο 7 2! has the same impedance: spring conversion interface 353 and the transmission line are connected to the 355 series through the use of a fixed interface 357' and directly with the conversion interface 35 357 series including an n-mountain connection, such as 'solid interface contact with the 3571, a complex-la from the bow ☆ Mountain mi smoke - third contact end 3575, Ge Wei - connected · and 3573 and 353 of 1 @ 2 Waiter - contact end 3571 and conversion interface 353 between the conductor layer 3531 而 connected to the second contact end 3573 and 9 • The M309201 three-contact terminal 3575 is connected to the ground conductor layer 3533 of the conversion interface 353, in other words, the second contact terminal 3573 and the third contact terminal 3575 are grounded. Finally, please refer to Fig. 5, which is a cross-sectional view showing still another embodiment of the present invention. The embodiment described in the present application is different from the above embodiment in that the structure of the measured signal line 21 is different, and the configuration of the test connector 25 is also changed. For example, the signal line 21 is a micro. Line (Micr〇strip
Line)41時,測試接頭25之轉換介面253將具有微條線41 ® 的結構,如第5圖所示。 由於微條線41之訊號導體層411及接地導體層413 之位置(深度)係有所差異,因此應用在微條線41之測試接 頭25之各個棟針251的長度係可加以調整,以有利於量 測動作的進行。 於本創作上述實施例中,主要係以共面波導傳輸線31 及微條線41為創作實施例,並使得轉換介面253具有共 • 面波導傳輸線31及微條線41之構造。然而在實際應㈣ ,輸線21亦可選擇為不同的型式,而測試接頭25之轉換 厂面253係依據傳輪線21的種類進行變更,例如,使得 車:換’I * 253與傳輪線具有相同的構造或是同樣的阻 抗。 以上所述者,僅為本創作之一較佳實施例而已,並非 用來限疋本創作具知之範圍,即凡依本創作申請專利範圍 所述之形狀、構造、特徵及精神所為之均等變化與修飾, 均應包括於本創作之申請專利範圍内。 10 ^ M309201 【圖式簡單說明】 第1圖:係為習用技術測試接頭之構造不意圖。 第2圖:係為本創作擷取高頻訊號之測試接頭一較佳實施 例之構造不意圖。 第3圖··係為共面波導傳輸線之剖面圖。 第4A圖:係為本創作擷取高頻訊號之測試接頭又一實施 例之構造不意圖。 第4 B圖··係為本創作擷取高頻訊號之測試接頭上述實施 ® 例之剖面圖。 第5圖:係為本創作又一實施例之剖面圖。 【主要元件符號說明】 11 共面波導傳輸線 111 訊號導體層 113 接地導體層 13 開口 15 測試接頭 151 探針 17 訊號線 19 測試裝置 21 傳輸線 25 測試接頭 251 探針 253 轉換介面 27 訊號線 271 訊號線連接頭 29 測試裝置 31 共面波導傳輸線 311 訊號導體層 313 接地導體層 315 介電層 317 保護層 33 開口 35 測試接頭 351 探針 353 轉換介面 ^ M309201 3531 訊號導體層 3533 接地導體層 3535 介電層 3537 保護層 355 轉換介面連接頭 357 固定介面 3571 第一接觸端 3573 第二接觸端 3575 第三接觸端 41 微條線 411 訊號導體層 413 接地導體層Line 41, the conversion interface 253 of the test connector 25 will have the structure of the microstrip 41 ® as shown in FIG. Since the position (depth) of the signal conductor layer 411 and the ground conductor layer 413 of the microstrip line 41 are different, the length of each of the pins 251 applied to the test joint 25 of the microstrip line 41 can be adjusted to be advantageous. For measuring the progress of the action. In the above embodiment of the present invention, the coplanar waveguide transmission line 31 and the microstrip line 41 are mainly used as an authoring embodiment, and the conversion interface 253 has a configuration of a common waveguide transmission line 31 and a microstrip line 41. However, in actual (4), the transmission line 21 may also be selected in different types, and the conversion surface 253 of the test joint 25 is changed according to the type of the transmission line 21, for example, the vehicle: for the 'I * 253 and the transmission wheel Lines have the same construction or the same impedance. The above description is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, that is, the shape, structure, characteristics and spirit described in the scope of the patent application are equally changed. And the modifications should be included in the scope of the patent application of this creation. 10 ^ M309201 [Simple description of the diagram] Figure 1: The structure of the test connector is not intended. Fig. 2 is a schematic view of a preferred embodiment of a test connector for capturing high frequency signals. Figure 3 is a cross-sectional view of a coplanar waveguide transmission line. Fig. 4A is a schematic view showing another embodiment of the test joint for which the high frequency signal is drawn. Figure 4B is a cross-sectional view of the above-mentioned implementation ® example of the test connector for the high frequency signal. Figure 5 is a cross-sectional view showing still another embodiment of the present invention. [Main component symbol description] 11 Coplanar waveguide transmission line 111 Signal conductor layer 113 Ground conductor layer 13 Opening 15 Test connector 151 Probe 17 Signal line 19 Test device 21 Transmission line 25 Test connector 251 Probe 253 Conversion interface 27 Signal line 271 Signal line Connector 29 Test device 31 Coplanar waveguide transmission line 311 Signal conductor layer 313 Ground conductor layer 315 Dielectric layer 317 Protective layer 33 Opening 35 Test connector 351 Probe 353 Conversion interface ^ M309201 3531 Signal conductor layer 3533 Ground conductor layer 3535 Dielectric layer 3537 protective layer 355 conversion interface connector 357 fixed interface 3571 first contact end 3573 second contact end 3575 third contact end 41 microstrip line 411 signal conductor layer 413 ground conductor layer