TWM279022U - LED with metal-oxide conductive layer - Google Patents

LED with metal-oxide conductive layer Download PDF

Info

Publication number
TWM279022U
TWM279022U TW94206911U TW94206911U TWM279022U TW M279022 U TWM279022 U TW M279022U TW 94206911 U TW94206911 U TW 94206911U TW 94206911 U TW94206911 U TW 94206911U TW M279022 U TWM279022 U TW M279022U
Authority
TW
Taiwan
Prior art keywords
layer
gallium nitride
light
conductive layer
metal
Prior art date
Application number
TW94206911U
Other languages
Chinese (zh)
Inventor
Ruei-Yu Wang
Bo-Ren Fang
Shiang-Jiun Hung
Chung-Jr Su
Wei-Sheng Jeng
Original Assignee
Nan Ya Photonics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nan Ya Photonics Inc filed Critical Nan Ya Photonics Inc
Priority to TW94206911U priority Critical patent/TWM279022U/en
Publication of TWM279022U publication Critical patent/TWM279022U/en

Links

Landscapes

  • Led Devices (AREA)

Description

M279022 八、新型說明: 【新型所屬之技術領域】 本創作係屬一種具金屬 術領域,尤指一種藉由磊晶 使P型半導體層與金屬氧化 能大幅提昇生產良率及元件 步驟,以增加經濟效益。 虱化導電層之發光二極體之技 成長過程中於反應器内活化, 導電層形成良好的歐姆接觸, 可靠度,並同時達成簡化製程 【先前技術】 按,為了增加電流的擴散,係在p型半導體層上蒸鑛 數層薄金屬結構’例如:利用鎳/金(Ni/Au)或钻/金(、 等雙層結構作為透明電㉟’並搭配熱處理的方式,使得薄 金屬結構變成透明導電層…達到光穿透的效果,但此 種發光二極體(GaN LED )的光穿透率仍然受到限制,即使 藉由不同的熱處理方式,光穿透率亦僅能達到40-70%左 右,因而影響氮化鎵發光二極體的發光效率。 又’為了提高氮化鎵發光二極體光的取出效率,產學 界提出在氮化鎵表面成長高折射率、高穿透率與高導電性 的金屬氧化導電層,如氧化銦錫(IT〇 )、氧化鈽錫(CT〇 ) 或氧化鋅(ZnO ),其作用除了在於使電流均勻地擴散至整 個P型氮化鎵半導體層表面,更由於此金屬氧化導電層均 具有良好的光穿透性,其穿透率在可見光波長範圍内 ( 35 0nm-75 0nm)可達90%以上,因而大幅地提高光的取出效 率。此外’此金屬氧化導電層為化性安定的化合物,不易 與大氣反應,也可以大幅提昇元件性賴度;然而,由於氧 5 M279022 化銦錫(ITO )、氧化鈽錫(CTO )或氧化鋅(ZnO )與P型 氮化鎵半導體層不易形成良好的歐姆接觸。 故’後來的氮化鎵之發光二極體(GaN LED )元件結構 中’皆是在p型氮化鎵半導體層上成長高載子濃度的反向 牙遂層或超晶格結構,使其能與金屬氧化導電層形成良好 的歐姆接觸。 上述如專利公告編號493287及證書號數M245595所 示‘此,具金屬氧化物層之發光二極體確有上述所說缺 失之處,是以本創作人乃藉由多年從事相關技術領域之研 發與製造經驗,針對上述面臨的問題加以探討研究,並積 和的哥找解决之方法,經多次測試及改良後,終於創作出 一種可確實改進上述缺失之具金屬氧化導電層之發光二極 體。 【新型内容】 為此,本創作之主要目的係提供一種具金屬氧化導電 _層之發光二極體,其金屬氧化導電層係由氧化姻錫(ιτ〇)、 氧化鈽錫(CTO)或氧化鋅(Ζη〇)所構成材料群組中的一 種^料形成,並成長在Ρ型半導體層上,不僅具有良好的 光:透性,且利用蠢晶成長過程中於反應器内活化,使ρ 型氮化鎵半導體層與金屬氧化導電層形成良好的歐姆接 觸:除可大幅提昇生產良率及元件可靠度外,並可同時達 成簡化製程步驟,降低生產成本。 *為了達到上述之目的’本創作係提供—種具金屬氧化 V電層之發光二㈣’該發光二極體之晶片具有一透光基 6 M279022 板,該透光基板上形成有一半導體堆疊岸, 古一 we 9 Μ半導體堆疊 “ n5L亂化錄半導體層與-Ρ型氮化鎵半導 且該半導體堆疊層具有外漏< N極金屬墊與p極金 別與η型氮化鎵半導體層與p型氮化鎵半 77 通,該P型氮化鎵半導體層與P極金屬墊間形成有―八- 氧化導電層’“,該金屬氧化導電層 ::: (⑽、氧化飾錫(CTO)或氧化辞(Zn0)所構成二 組中的#材料形成,並成長在p型氮化嫁半導體層上, 而具有良好的光穿透性。 曰 /藉由蟲晶成長過程中,當P型氮化鎵半導體層成長完 成後’將反應器内溫度由約9G(rc:降至約4G()()e並通= 氣:對晶片表面進行活化,使得p型氮化鎵半導體層與2 屬氧化導電層形成良好的歐姆接觸。M279022 8. Description of the new type: [Technical field to which the new type belongs] This creation belongs to the field of metallurgy, especially a method of epitaxially p-type semiconductor layer and metal oxidation can greatly improve production yield and component steps to increase Economic benefits. The luminescent diode of the conductive layer is activated in the reactor during the growth process. The conductive layer forms a good ohmic contact, reliability, and achieves a simplified process at the same time. [Previous technology] Press, in order to increase the current diffusion, Several thin metal structures are deposited on the p-type semiconductor layer. The transparent conductive layer ... achieves the effect of light penetration, but the light transmittance of this type of light emitting diode (GaN LED) is still limited. Even through different heat treatment methods, the light transmittance can only reach 40-70 %, Which affects the luminous efficiency of gallium nitride light emitting diodes. In order to improve the efficiency of light extraction of gallium nitride light emitting diodes, the industry and academia have proposed to grow high refractive index, high transmittance and Highly conductive metal oxide conductive layers, such as indium tin oxide (IT〇), hafnium tin oxide (CT〇) or zinc oxide (ZnO), have the effect of uniformly diffusing current to the entire P-type gallium nitride semiconductor layer. table Moreover, because this metal oxide conductive layer has good light permeability, its transmittance can reach more than 90% in the visible light wavelength range (350nm-750nm), so the efficiency of light extraction is greatly improved. In addition, ' This metal oxide conductive layer is a chemically stable compound, which is not easy to react with the atmosphere, and can also greatly improve the component reliability; however, due to oxygen 5 M279022 indium tin oxide (ITO), hafnium tin oxide (CTO) or zinc oxide (ZnO It is difficult to form a good ohmic contact with the P-type gallium nitride semiconductor layer. Therefore, in the later GaN LED light-emitting diode (GaN LED) device structure, all are grown on the p-type gallium nitride semiconductor layer under high load. The sub-concentration of the reverse layer or superlattice structure enables it to form a good ohmic contact with the metal oxide conductive layer. The above is shown in the patent publication number 493287 and the certificate number M245595. The light-emitting diode does have the above-mentioned shortcomings. Based on the author's years of research and development and manufacturing experience in related technical fields, the author has explored and studied the problems faced above, and accumulated Find a solution, after several tests and improvements, finally created a light-emitting diode with a metal oxide conductive layer that can indeed improve the above-mentioned missing. [New content] For this reason, the main purpose of this creation is to provide a The metal oxide conductive layer is a light-emitting diode. The metal oxide conductive layer is formed of one of the materials in the material group consisting of tin oxide (ιτ〇), hafnium tin oxide (CTO), or zinc oxide (Zη〇). , And grow on the P-type semiconductor layer, not only has good light: permeability, and the activation in the reactor during the growth of stupid crystals, so that the p-type gallium nitride semiconductor layer and the metal oxide conductive layer to form a good ohmic contact : In addition to greatly improving production yield and component reliability, it can also achieve simplified process steps and reduce production costs. * In order to achieve the above-mentioned purpose, 'this creative system provides-a kind of light-emitting diode with a metal oxide V electric layer' The wafer of the light-emitting diode has a light-transmitting base 6 M279022 board, and a semiconductor stacking shore is formed on the light-transmitting substrate "Gu Yi we 9 MH semiconductor stack" n5L disorderly recorded semiconductor layer and -P-type gallium nitride semiconductor and the semiconductor stack layer has an external leakage < N pole metal pad and p pole gold and n-type gallium nitride semiconductor The layer is connected to p-type gallium nitride half-77, and an "eight-oxide conductive layer" is formed between the p-type gallium nitride semiconductor layer and the p-electrode metal pad. The metal oxide conductive layer :: (⑽, tin oxide decoration (CTO) or oxide (Zn0) constitutes the # material in the two groups, and grows on the p-type nitrided semiconductor layer, and has good light penetration. During the growth of the worm crystal, When the growth of the P-type GaN semiconductor layer is completed, 'the temperature in the reactor is reduced from about 9G (rc: to about 4G () () e and vent = gas: activation of the wafer surface, so that the p-type GaN semiconductor The layer makes good ohmic contact with the 2-metal oxide conductive layer.

接下來會列舉一較佳實施例,並配合圖示及圖號,對 本創作,、他的目的及效能做進一步的說明,期能使貴審查 委f對本創作有更詳細的瞭解,錢熟悉該項技術者能據 、、 x下所述者僅在於解釋較佳實施例,而非在於限 制本創作之範®,故凡有以本創作之創作精神為基礎,而 為本創作之創作任何形式的變更或修飾,皆屬於本創作意 圖保護之範_。 【實施方式] 如第一圖,本創作係一種具金屬氧化導電層之發光二 極體’該發光二極體$ a 篮之日日片具有一透光基板(10),該透光 ()上开7成有一半導體堆疊層(20),該半導體堆疊 7 M279022 層(20)具有一 η逛氮化鎵半導體層(21) 鎵半導體層(22 ),且該半導體堆疊層(20 ) 極金屬墊(23)與P極金屬墊(24)分別與 導體層(21)與p蜇氮化鎵半導體層(22) P型氮化鎵半導體層(22)與p極金屬墊( 一金屬氧化導電層(25)’該金屬氧化導電層 (ITO)、氧化鈽錫(CTO)或氧化鋅(Zn〇) 組中的一種材料形成,並成長在p型氮化鎵 上,而具有良好的光穿透性,如此,藉由蠢晶 當P型氮化鎵半導體層(22)成長完成後, 度由約9 0 0 °C降至約4 0 0 UC並通入氮氣,對 活化,使得p型氮化鎵半導體層(2 2 )與金 (2 5 )形成良好的歐姆接觸,且能大幅提昇 件可靠度,並同時達成簡化製程步驟,降低 經濟效益。 而關於本創作之實際運用,乃是利用> 中,當P型氮化鎵半導體層(22)成長完後 溫度由約90 0 t:附近降到約40 0 1並通入氮| 進行活化,可以使金屬氧化導電層(2 5 ) Conduct ing Layer)蒸鍍於p型氮化鎵半導體 可以形成較佳的歐姆接觸,如此利用磊晶成 應器内活化,使P型氮化鎵半導體層(2 2 ) 電層(2 5 )形成良好的歐姆接觸,除可大幅 及兀件可靠度外,並可同時達成簡化製程步 與一 P型氮化 具有外漏之N η型氮化鎵半 相互導通,該 2 4 )間形成有 係由氧化銦錫 所構成材料群 丰導體層(22 ) 成長過程中, 將反應器内溫 晶片表面進行 屬氧化導電層 生產良率及元 生產成本而達 昆晶成長過程 ’將反應器内 L ’對晶片表面 (Metal Oxide 層(2 2 )上時, 長過程中於反 與金屬氧化導 提昇生產良率 驟,降低生產 8 M279022 成本和穩定產品’增加經濟效益。 本創作的内容將以眚W γ 1 ^ 貝施例加以說明,實驗的方 . 果,如附件一所示: 右Η結 該附件-中’晶片Α為傳統製程方式之晶粒, 在蠢晶成長完後,即降溫至低溫後取出,晶片於65、= . 化當此晶片經由晶粒製海始 因晶粒上金屬氧化導電岸f 9 ςL你+ 後’ • 兒層(2 5 )與此種方式活化之 化鎵半導體層(22 )較鞔形+ & , u , ^ p型氮 • 難形成良好歐姆接觸,故晶 搴較高的Vf值與較低之ϊ v值 、有 而日日片β則以本發明活 片的方法,進行晶粒製作,Ρ„ s + C„ 1匕日日 作即疋在反應器内活化,則曰# 上金屬氧化導電層(25 )交屁伽 ΛΙ ^ /L 』日日杻 )谷易與P型氮化鎵半導體層 形成較佳歐姆接觸,故晶粒具有較低的vf值斑較古2) 值。 巧之Iv 綜上所述,我們可以c L At Ί J以理解到,本創作具有下 及實用價值: j 4點 ❿ 1 )本創作其金屬氧化導電層(25)係 (ιτο)、氧化鈽錫鋼錫 乳巾锡(CT〇)或乳化鋅(Zn〇)所構成材 組中的一種材料形成,廿士且+ T+ ^ - 亚成長在Ρ型氮化鎵半導體(2 上’而具有良好的光穿透性。 2)本創作係利用磊晶成長過程中於反應器内活化, 至屬乳化導電層(25 )蒸鍵於Ρ型氮化鎵半導體層(22) 上:形成良好的歐姆接觸,除可大幅提昇生產良率及元件 可罪度外,亚可同時達成簡化製裎步驟,降低生產成本。 歸、,、内上述所說,本創作同時具有上述眾多效能與實用 9 M279022 價值,並可有效提升整體的經濟效益,因此本創作確實為 ' 一創意極佳的創作,且在相同技術領域中未見相同或近似 • 之產品公開使用,應已符合創作專利之要件,乃依法提出 申請,並請賜予本創作專利。 【圖式簡單說明】 第一圖係本創作之結構示意圖,用以顯示金屬氧化物層之 發光二極體之較佳實例。 附件一係本創作之實驗的結果。 *【主要元件符號說明】 (1 〇)透光基板 (2 0 )半導體堆疊層 (21) η型氮化鎵半導體層 (22) ρ型氮化鎵半導體層 (2 3 ) Ν極金屬墊 (2 4 ) Ρ極金屬墊 φ (25)金屬氧化導電層 10Next, a preferred embodiment will be listed, and with the illustration and figure number, this creation, his purpose and effectiveness will be further explained, in the hope that your review committee will have a more detailed understanding of this creation, and Qian is familiar with this. Those skilled in the art can only explain the preferred embodiment, but not to limit the scope of this creation. Therefore, any form of creation based on the spirit of the creation, but based on the spirit of the creation Changes or modifications are within the scope of this creative intention_. [Embodiment] As shown in the first figure, this creation is a light-emitting diode with a metal oxide conductive layer. The light-emitting diode has a light-transmitting substrate (10), and the light-transmitting () The upper opening 70% has a semiconductor stack layer (20), the semiconductor stack 7 M279022 layer (20) has an n-gallium nitride semiconductor layer (21), a gallium semiconductor layer (22), and the semiconductor stack layer (20) is a metal The pad (23) and the P-pole metal pad (24) are respectively the conductor layer (21) and the p 蜇 gallium nitride semiconductor layer (22) The P-type gallium nitride semiconductor layer (22) and the p-pole metal pad (a metal oxide conductive) Layer (25) 'The metal oxide conductive layer (ITO), hafnium tin oxide (CTO) or zinc oxide (Zn〇) group is formed of a material and grows on p-type gallium nitride with good light penetration Permeability, in this way, after the growth of the P-type GaN semiconductor layer (22) is completed by stupid crystals, the degree is reduced from about 90 ° C to about 400 UC and nitrogen is passed in to activate the p-type The gallium nitride semiconductor layer (2 2) and gold (2 5) form a good ohmic contact, and can greatly improve the reliability of the part, and at the same time achieve a simplified process step Reduce the economic benefits. The actual application of this creation is to use > when the P-type gallium nitride semiconductor layer (22) is grown, the temperature is reduced from about 90 0 t: nearby to about 40 0 1 and passed in. Nitrogen | The activation can make the metal oxide conductive layer (2 5) Conduct ing Layer) deposited on the p-type gallium nitride semiconductor to form a better ohmic contact. In this way, the epitaxial reactor is used to activate the P-type nitrogen The gallium semiconductor layer (2 2) and the electrical layer (2 5) form a good ohmic contact. In addition to the large size and reliability of the components, a simplified process step and a P-type nitrided N η type with external leakage can be achieved at the same time. The gallium nitride is semi-conducting, and a conductor group (22) of a material group made of indium tin oxide is formed between the 24). During the growth process, the surface of the wafer inside the reactor is subjected to an oxide conductive layer production yield and element. The production cost and the growth process of Dakun crystals will increase the production yield rate and reduce the production yield when the L in the reactor is placed on the wafer surface (Metal Oxide layer (2 2)). Stabilizing products' increases economic efficiency The content of this creation will be explained with an example of 眚 W γ 1 ^ Bayes, the experimental method. The results, as shown in Annex I: The right side of the attachment-the 'chip A' is a grain of the traditional process, After the growth of the crystal, the temperature is lowered to a low temperature, and the wafer is taken out at 65, =. When the wafer passes through the crystal to the sea, it is due to the metal oxidation of the crystal on the crystal grain. Compared with the activated gallium semiconductor layer (22) in this manner, it is more difficult to form + &, u, ^ p-type nitrogen. It is difficult to form a good ohmic contact, so the higher Vf value of the crystal and the lower v value, The Japanese-Japanese film β is made by the method of the live film of the present invention, and the grains are activated in the reactor. The metal oxide conductive layer (25) on the ##伽 Ga Λ 1 ^ / L 『Sun 杻 谷) Gu Yi and P-type gallium nitride semiconductor layer form a better ohmic contact, so the grains have a lower vf value than the ancient 2) value. Qiaozhi Iv In summary, we can c L At Ί J to understand that this creation has the following and practical value: j 4 点 ❿ 1) The creation of the metal oxide conductive layer (25) series (ιτο), thorium oxide One of the materials in the group consisting of tin (CT0) or emulsified zinc (Zn〇), tin-steel tin wipes, is well-developed and has a good + T + ^-sub-growth on the P-type gallium nitride semiconductor (2 on 'and has a good 2) This creation is based on activation in the reactor during epitaxial growth. The emulsified conductive layer (25) is vapor-bonded to the P-type gallium nitride semiconductor layer (22): a good ohm is formed. Contact, in addition to greatly improving production yield and component guilty, Asia can simultaneously achieve simplified manufacturing steps and reduce production costs. Due to the above, this creation has many of the above-mentioned effectiveness and practical value of 9 M279022, and can effectively improve the overall economic benefits. Therefore, this creation is indeed a very creative creation, and in the same technical field If the same or similar product is not publicly used, it should have met the requirements of the creation patent, and the application should be made in accordance with the law. Please grant this creation patent. [Schematic description] The first diagram is a schematic diagram of the structure of this creation, which is used to show a good example of a light-emitting diode of a metal oxide layer. Attachment 1 is the result of the experiment of this creation. * [Description of main component symbols] (10) Translucent substrate (2 0) Semiconductor stacking layer (21) n-type gallium nitride semiconductor layer (22) p-type gallium nitride semiconductor layer (2 3) N-pole metal pad ( 2 4) P-pole metal pad φ (25) metal oxide conductive layer 10

Claims (1)

M279022 九、申請專利範圍: ' 1. 一種具金屬氧化導電層之發光二極體,象 * 體之晶片具有一透光基板,該透光基板上形成# 堆疊層,該半導體堆疊層具有一 η型氮化鎵半_ Ρ型氮化鎵半導體層,且該半導體堆疊層具有外 金屬墊與Ρ極金屬墊分別與η型氮化鎵半導體肩 , 化鎵半導體層相互導通,其特徵在於; 該Ρ型氮化鎵半導體層與Ρ極金屬墊間形4 ®氧化導電層,並使該金屬氧化導電層蒸鍍於Ρ5 導體層上,其中,該金屬氧化導電層係由氧化銦 氧化鈽錫(CTO)或氧化鋅(ΖηΟ)所構成材料舞 種材料形成。 十、圖式: 如次頁 發光二極 一半導體 體層與一 漏之Ν極 與Ρ型氮 有一金屬 氮化鎵半 錫(ΙΤ0)、 組中的一 11M279022 Nine, the scope of patent application: '1. A light-emitting diode with a metal oxide conductive layer, a wafer with a body like * has a light-transmitting substrate, a # stack layer is formed on the light-transmitting substrate, and the semiconductor stack layer has an η A gallium nitride semi-P-type gallium nitride semiconductor layer, and the semiconductor stack layer has an outer metal pad and a p-electrode metal pad and an n-type gallium nitride semiconductor shoulder, and the gallium semiconductor layer is conductive with each other, which is characterized in that: A P-type gallium nitride semiconductor layer is formed between the P-type metal pad and a 4 ® oxide conductive layer, and the metal oxide conductive layer is vapor-deposited on the P5 conductor layer, wherein the metal oxide conductive layer is made of indium tin oxide tin oxide ( CTO) or zinc oxide (ZηΟ). X. Schematic diagram: as the next page, light-emitting diode, a semiconductor body layer, a drain N-pole and P-type nitrogen, a metal gallium nitride semitin (ITO), one of the group 11
TW94206911U 2005-04-29 2005-04-29 LED with metal-oxide conductive layer TWM279022U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94206911U TWM279022U (en) 2005-04-29 2005-04-29 LED with metal-oxide conductive layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94206911U TWM279022U (en) 2005-04-29 2005-04-29 LED with metal-oxide conductive layer

Publications (1)

Publication Number Publication Date
TWM279022U true TWM279022U (en) 2005-10-21

Family

ID=37020332

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94206911U TWM279022U (en) 2005-04-29 2005-04-29 LED with metal-oxide conductive layer

Country Status (1)

Country Link
TW (1) TWM279022U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7741653B2 (en) 2005-11-16 2010-06-22 Showa Denko K.K. Gallium nitride-based compound semiconductor light-emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7741653B2 (en) 2005-11-16 2010-06-22 Showa Denko K.K. Gallium nitride-based compound semiconductor light-emitting device
US7952116B2 (en) 2005-11-16 2011-05-31 Showa Denko K.K. Gallium nitride-based compound semiconductor light-emitting device

Similar Documents

Publication Publication Date Title
US7816700B2 (en) Light emitting diode employing an array of nanorods and method of fabricating the same
TWI285440B (en) High brightness gallium nitride-based light emitting diode with transparent conducting oxide spreading layer
TWI324401B (en) Fabrication method of high-brightness light emitting diode having reflective layer
US20080131988A1 (en) Nitride semiconductor light emitting device and method of manufacturing the same
WO2017118298A1 (en) Light-emitting diode and manufacturing method therefor
Lee et al. High-brightness GaN-based light-emitting diodes on Si using wafer bonding technology
TWM261838U (en) Structure for GaN based LED with high light extraction efficiency
TW200406076A (en) Gallium nitride series light-emitting diode structure and its manufacturing method
CN105023980A (en) LED with P type A1InGaN contact layer, and preparation method thereof
CN102237455B (en) Light-emitting diode structure
Qi et al. Fabrication and characteristics of excellent current spreading GaN-based LED by using transparent electrode-insulator-semiconductor structure
US20180062043A1 (en) Light-emitting device
TW201114065A (en) Group III nitride semiconductor light emitting element, production method thereof, and lamp
Chen et al. High-performance GaN-based LEDs with AZO/ITO thin films as transparent contact layers
TWM279022U (en) LED with metal-oxide conductive layer
TWI746596B (en) Light-emitting device
TW200832725A (en) Method of improving current distribution by non-uniform conductive layer
TWI517440B (en) Semiconductor structure with low contact resistance and its manufacturing method
CN209374474U (en) A kind of light-emitting diode chip for backlight unit
CN107706277B (en) Manufacturing method of transparent conducting layer and light emitting diode thereof
Tsai et al. Ceramic-based thin-film blue LEDs with high operation voltage and unsaturated output power at 1800 W/cm2
TWI297222B (en)
TWI455355B (en) Light emitting diode structure
TWI269464B (en) Manufacturing method of light-emitting diode having metal oxide conducting layer
Horng et al. High-brightness wafer-bonded indium-tin oxide/light-emitting diode/mirror/Si

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees