TWI854054B - 擴散板、顯示裝置、投影裝置及照明裝置 - Google Patents
擴散板、顯示裝置、投影裝置及照明裝置 Download PDFInfo
- Publication number
- TWI854054B TWI854054B TW109136883A TW109136883A TWI854054B TW I854054 B TWI854054 B TW I854054B TW 109136883 A TW109136883 A TW 109136883A TW 109136883 A TW109136883 A TW 109136883A TW I854054 B TWI854054 B TW I854054B
- Authority
- TW
- Taiwan
- Prior art keywords
- aforementioned
- grid
- microlenses
- microlens
- shape
- Prior art date
Links
- 238000009792 diffusion process Methods 0.000 claims abstract description 118
- 239000000758 substrate Substances 0.000 claims abstract description 59
- 230000001788 irregular Effects 0.000 claims description 22
- 238000009826 distribution Methods 0.000 abstract description 83
- 238000010586 diagram Methods 0.000 description 37
- 230000000052 comparative effect Effects 0.000 description 31
- 238000000034 method Methods 0.000 description 30
- 239000011521 glass Substances 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 10
- 238000013461 design Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 230000000737 periodic effect Effects 0.000 description 8
- 238000012545 processing Methods 0.000 description 6
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 5
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 238000003491 array Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 3
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000005672 electromagnetic field Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- -1 polyethylene terephthalate Polymers 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 229920002284 Cellulose triacetate Polymers 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Abstract
[課題]在排列成矩形格子狀之微透鏡的2個方向中,抑制亮度分布的不均勻,並提高配光的均質性。
[解決手段]提供一種擴散板,是微透鏡陣列型的擴散板,其具備基材、及由在前述基材的至少一表面之XY平面上以矩形格子為基準來排列的複數個微透鏡所構成的微透鏡陣列,排列在前述矩形格子的X方向之前述微透鏡的前述X方向之格子間隔相互不同,排列在前述矩形格子的Y方向之前述微透鏡的前述Y方向之格子間隔相互不同,前述複數個微透鏡之表面形狀相互不同。
Description
發明領域
本發明是有關於擴散板、顯示裝置、投影裝置及照明裝置。
發明背景
為了使光的擴散特性變化,使用讓入射光往期望方向擴散的擴散板。擴散板被廣泛地利用在,例如顯示器等的顯示裝置、投影機等的投影裝置或是各種的照明裝置等的各式各樣的裝置。有一種利用由擴散板的表面形狀所引起的光的折射而使入射光以所期望之擴散角來擴散之類型的擴散板。作為該類型的擴散板,已知由複數個數十μm程度大小的微透鏡配置而成的微透鏡陣列型的擴散板。
在這樣的微透鏡陣列型的擴散板中,有以下問題:來自各微透鏡之光的波面干涉之結果,產生由於微透鏡排列的周期構造而導致的繞射波,使擴散光的強度分布產生不均勻。因此,提出一種藉由使微透鏡的配置、透鏡面的形狀、開口的形狀不一致,來減低由於干涉或繞射而導致的擴散光強度分佈之不均勻的技術。
例如,在專利文獻1中,記載著在主表面上以矩形格子狀規則地配置有複數個微透鏡的擴散板中,使用斷面形狀互相不同且沒有對稱軸的複數個微透鏡。另外,在專利文獻2記載著將以矩形格子狀排列之複數個微透鏡的透鏡頂點位置從基準格子的格子點錯開配置。
[先前技術文獻]
[專利文獻]
[專利文獻1]國際公開第2016/051785號
[專利文獻2]國際公開第2015/182619號
[發明概要]
[發明欲解決之課題]
然而,如上述專利文獻1中所記載,在沒有對象軸且具有互相不同的斷面形狀之複數個微透鏡以矩形格子狀規則地排列之陣列構造中,變成只藉由互相鄰接的微透鏡間之光的相位變化來減低擴散光強度分布的不均勻。因此,限制了在矩形格子的相互正交之2個方向上均質地分配擴散光的效果。另外,如上述專利文獻2中所記載,在以矩形格子狀規則地排列的陣列構造中,只藉由錯開各微透鏡的頂點位置,無法在矩形格子的2個方向上實現均質性高的配光控制。
因此,本發明是有鑑於上述情況而做成者,且本發明之目的在於,在以矩形格子狀排列之微透鏡的2個方向中,抑制亮度分布的不均勻,並提高配光的均質性。
[用以解決課題之手段]
為了解決上述課題,依據本發明的某個觀點,
提供一種擴散板,是微透鏡陣列型的擴散板,其具備:
基材;及
微透鏡陣列,由在前述基材的至少一表面之XY平面上以矩形格子為基準來排列的複數個微透鏡所構成,
排列在前述矩形格子的X方向之前述微透鏡的前述X方向之格子間隔Wx相互不同,
排列在前述矩形格子的Y方向之前述微透鏡的前述Y方向之格子間隔Wy相互不同,
前述複數個微透鏡之表面形狀相互不同。
亦可做成:前述X方向的格子間隔Wx在以基準格子間隔Wx_k為基準±10%~±50%以內的變動率δWx中隨機地變動,
前述Y方向的格子間隔Wy在以基準格子間隔Wy_k為基準±10%~±50%以內的變動率δWy中隨機地變動。
亦可做成:排列在前述X方向的前述微透鏡之前述X方向的曲率半徑Rx是相互地變動,
排列在前述Y方向的前述微透鏡之前述Y方向的曲率半徑Ry是相互地變動。
亦可做成:前述X方向的曲率半徑Rx在以基準曲率半徑Rx_k為基準±10%~±50%以內的變動率δRx中隨機地變動,
前述Y方向的曲率半徑Ry在以基準曲率半徑Ry_k為基準±10%~±50%以內的變動率δRy中隨機地變動。
亦可做成:前述X方向的格子間隔Wx在以基準格子間隔Wx_k為基準±10%~±50%以內的變動率δWx中隨機地變動,
前述Y方向的格子間隔Wy在以基準格子間隔Wy_k為基準±10%~±50%以內的變動率δWy中隨機地變動,
前述基準格子間隔Wx_k、Wy_k及前述基準曲率半徑Rx_k、Ry_k滿足以下關係式(A)及(B),
前述擴散板造成的擴散角(半峰全寬)為20°以下。
Rx_k/Wx_k≧1.85・・・(A)
Ry_k/Wy_k≧1.85・・・(B)
亦可做成:排列在前述X方向及前述Y方向的前述微透鏡之頂點的平面位置從前述矩形格子的中心點偏心。
亦可做成:在將從前述矩形格子的中心點到前述偏心的微透鏡之頂點的平面位置之前述X方向、前述Y方向的距離分別設為偏心量Ecx、Ecy,並將前述偏心量Ecx、Ecy對前述矩形格子的格子間隔Wx、Wy的比率分別設成偏心率δEcx、δEcy時,
前述微透鏡之頂點的平面位置是在±10%~±50%以內的偏心率δEcx、δEcy中隨機地偏心。
亦可做成:排列在前述X方向及前述Y方向之前述複數個微透鏡之頂點之高度位置為相互不同。
亦可做成:排列在前述X方向及前述Y方向之前述微透鏡為相互無間隙而連續地配置。
相互鄰接的前述微透鏡的邊界線亦可包含直線及曲線。
亦可做成:前述微透鏡陣列是由複數個單位單元(cell)形成,前述單位單元是前述微透鏡的基本配置圖案,
藉由一邊保持前述複數個單位單元間的邊界部分之前述微透鏡的連續性一邊無間隙地排列前述複數個單位單元,來構成前述微透鏡陣列。
前述微透鏡的表面形狀亦可為球面形狀或是具有前述X方向或前述Y方向之異向性的非球面形狀。
為了解決上述課題,依據本發明的另一個觀點,提供具備上述之擴散板的顯示裝置。
為了解決上述課題,依據本發明的另一個觀點,提供具備上述之擴散板的投影裝置。
為了解決上述課題,依據本發明的另一個觀點,提供具備上述之擴散板的照明裝置。
[發明效果]
如以上說明,依據本發明,可在以矩形格子狀排列之微透鏡的2個方向中,抑制亮度分布的不均勻,並提高配光的均質性。
[用以實施發明之形態]
以下一邊參照附件圖式一邊詳細說明關於本發明適合的實施形態。再者,在本說明書與圖式中,關於具有實質上相同的功能構成之構成要素,藉由附上相同編號以省略重複說明。
<1.擴散板的概要>
首先,說明關於本發明的實施形態之擴散板的概要。
以下詳細說明的本實施形態之擴散板是具備光的均質擴散功能之微透鏡陣列型的擴散板。這樣的擴散板具有在基材的至少一表面(主表面)中之XY平面上所形成的微透鏡。微透鏡陣列是由以矩形格子狀排列及展開的複數個微透鏡來構成的。該微透鏡是由具有光擴散功能的凸構造(凸透鏡)或是凹構造(凹透鏡)構成,具有數十μm程度的透鏡徑。
接著,在本實施形態之擴散板中,以具有不規則性的矩形格子作為基準,複數個微透鏡以矩形格子狀(矩陣狀)排列。在這種具有不規則性的矩形格子中,X方向(列方向)的複數個格子間隔Wx隨機地變動而相互不同,並且Y方向(行方向)的複數個格子間隔Wy也隨機地變動而相互不同。此外,使在X及Y方向上排列的複數個微透鏡的曲率半徑Rx、Ry相互不同而隨機地(不規則地)變動。另外,使各微透鏡的頂點之平面位置從矩形格子的中心點偏離而隨機地變動(偏心)。另外,複數個微透鏡的頂點的Z方向之高度位置(擴散板的厚度方向的位置)也隨機地變動並且相互不同。藉由像這樣使格子間隔Wx、Wy、曲率半徑Rx、Ry、透鏡頂點的平面位置及高度位置等隨機地變動,已展開成矩形格子狀的複數個微透鏡的表面形狀隨機地變動而形成相互不同的形狀。
如此,根據本實施形態之擴散板,藉由使複數個微透鏡的各個可變要素隨機地改變,來實現隨機性高的微透鏡陣列的3維表面構造。 藉此,可以控制從各微透鏡發散的光之相位的重疊狀態。結果,可以提供:具有高透射性的亮度特性並且滿足相互正交的2個方向(X及Y方向)的配光的均質性,並且可控制充分的配光的異向性與擴散光的強度分布的截止(cut off)性之擴散板的表面構造體。
此外,根據本實施形態,以具有相互不同的格子間隔Wx、Wy的不規則之矩形格子作為基準,在XY平面上排列複數個微透鏡。 藉此,可以確保每個微透鏡的表面形狀之隨機性,並且在擴散板的表面上相互無間隙而連續地配置複數個微透鏡陣列。所以,由於可以使平坦部極力地不存在於鄰接的微透鏡的邊界部分,而可以進一步減低擴散光之強度分布的不均勻,進一步提高2個方向(X及Y方向)之配光的均質性。
以下詳細地說明具有如以上的特徵的本實施形態之擴散板。
<2.擴散板的全體構成>
首先,參照圖1,說明關於本發明的一實施形態之擴散板的全體構成與微透鏡的佈局圖案。圖1是示意地顯示本實施形態之擴散板1的說明圖。
本實施形態之擴散板1是在基板上配置由複數個微透鏡(單透鏡)所形成之微透鏡陣列的微透鏡陣列型擴散板。這樣的擴散板1的微透鏡陣列如圖1所示,是由複數個單位單元(cell)3所構成。單位單元3是微透鏡的基本配置圖案。在每個單位單位3的表面上,以預定的佈局圖案(配置圖案)配置著複數個微透鏡。
在此,圖1中顯示構成擴散板1之單位單元3的形狀為矩形,特別是正方形的例子。但,單位單元3的形狀不限定於圖1中顯示的例子,例如,正三角形狀或正六角形狀等般,只要可以無間隙地填滿擴散板1之表面(XY平面)上的話,任意形狀皆可。
在圖1的示例中,在擴散板1的表面上,正方形的複數個單位單元3縱向地且橫向地重複排列。構成本實施形態之擴散板1的單位單元3的個數沒有特別限制,擴散板1可以由1個單位單元3所構成,也可以由複數個單位單元3所構成。在本實施形態之擴散板1中,可以重複地配置具有互相不同的表面構造的單位單元3,也可以重複地配置具有相同表面構造的單位單元3。
另外,在單位單元3之間,如圖1中的右側的放大圖示意地顯示般,設置在單位單元3內的複數個微透鏡的佈局圖案(配置圖案)在單位單元3的排列方向(換言之,陣列排列方向)上連續。藉由一邊在複數個單位單位3之間的邊界部分保持微透鏡的連續性,一邊將單位單元3無間隙地排列,而構成微透鏡陣列。在此,微透鏡的連續性意指在相互鄰接的2個單位單元3當中,位於一邊的單位單元3之外緣的微透鏡與位於另一邊的單位單元3之外緣的微透鏡沒有平面形狀的偏移或高度方向的落差而連續地連接。
如此,在本實施形態之擴散板1中,藉由微透鏡陣列的單位單元3(基本結構)保持邊界的連續性且無間隙地排列,而構成微透鏡陣列。藉此,可以防止在單位單元3之間的邊界部分發生光的繞射、反射、散射等意想不到的瑕疵,而藉由擴散板1獲得期望的配光特性。
<3.擴散板的構成>
再來,參照圖2~圖4,更詳細地說明關於本實施形態之擴散板1的構成。圖2是示意地顯示本實施形態之擴散板1的構成之放大平面圖及放大斷面圖。圖3是示意地顯示本實施形態之微透鏡21之邊界附近的放大斷面圖。圖4是示意地顯示從相對於基材10的表面而垂直的方向俯視微透鏡21時的微透鏡21之平面形狀(外形)的平面圖。
如圖2所示,本實施形態之擴散板1具備基材10與在基材10的表面形成的微透鏡陣列20。
首先,說明關於基材10。 基材10是用於支撐微透鏡陣列20的基板。這樣的基材10可以是膜狀亦可以是板狀。圖2所顯示的基材10例如具有矩形平板狀,但並不限於這樣的例子。基材10的形狀或厚度亦可因應於要安裝擴散板1之裝置的形狀而為任意的形狀及厚度。
基材10是光能夠透射的透明基材。基材10由在入射到擴散板1之光的波長區域中可視為透明的材質所形成。例如,基材10亦可以藉由在對應於可見光的波長區域中光透過率為70%以上的材質來形成。
基材10亦可以由已知之樹脂來形成,例如聚甲基丙烯酸甲酯(polymethyl methacrylate:PMMA)、聚對苯二甲酸乙二酯(Polyethylene terephthalate:PET)、聚碳酸酯(polycarbonate:PC)、環狀烯烴共聚物(Cyclo Olefin Copolymer:COC) 、環狀烯烴聚合物(Cyclo Olefin Polymer:COP)、三乙酸纖維素(Triacetylcellulose:TAC)等。或是,基材10亦可以由已知的光學玻璃來形成,例如石英玻璃、硼矽酸玻璃、白板玻璃等。
接下來,說明關於微透鏡陣列20。微透鏡陣列20設置在基材10的至少一表面(主表面)。微透鏡陣列20是排列在基材10的表面上的複數個微透鏡21(單透鏡)的集合體。在本實施形態中,如圖2所示,微透鏡陣列20形成在基材10的一表面上。然而,並不限於這樣的例子,亦可以在基材10的兩邊的主表面(表面與背面)上形成微透鏡陣列20。
微透鏡21例如是數十μm量級的微細的光學透鏡。微透鏡21構成微透鏡陣列20的單透鏡。微透鏡21可以是在擴散板1的厚度方向上凹陷而形成的凹構造(凹透鏡),亦可以是在擴散板1的厚度方向上突出而形成的凸構造(凸透鏡)。在本實施形態中,雖說明如圖2所示的微透鏡21為凹構造(凹透鏡)的一例,但是不限於這樣的例子。因應擴散板1之期望的光學特性,微透鏡21亦可以是凸構造(凸透鏡)。
各微透鏡21的表面形狀只要是包含曲面成分的曲面形狀,沒有特別限制。微透鏡21的表面形狀,例如可以是只包含球面成分的球面形狀,也可以是包含球面成分和非球面成分的非球面形狀,或是只包含非球面成分的非球面形狀。
如圖2所示,理想的是,複數個微透鏡21密集地配置成互相無間隙地鄰接。換句話說,理想的是,連續地配置複數個微透鏡21,以使得在互相鄰接的微透鏡21之間的邊界部分不存在間隙(平坦部)。藉由將微透鏡21無間隙地配置在基材10上(換言之,將微透鏡21配置成填充率成為100%),可抑制入射光當中不在擴散板1的表面上散射而就這樣透射過去的成分(以下,也稱為「0次透射光成分」)。其結果,藉由複數個微透鏡21配置成互相無間隙地鄰接之微透鏡陣列20,可以進一步提高擴散性能。
再者,為了抑制0次透射光成分,基材10上的微透鏡21之填充率宜為90%以上,更理想為100%。在此,填充率是在基材10的表面上由複數個微透鏡21佔據的部分之面積的比率。當填充率是100%時,微透鏡陣列20的表面由曲面成分所形成,並且幾乎不包含平坦面成分。
然而,在實際的微透鏡陣列20的製造上,為了將複數個透鏡21的曲面連續地連接,在鄰接的微透鏡21之間的邊界的反曲點附近可能變得大致平坦。在這種情況下,在微透鏡21之間的邊界,變得大致平坦的反曲點附近區域的寬度(微透鏡21之間的邊界線的寬度)宜為1μm以下。藉此,可以充分抑制0次透射光成分。
另外,在本實施例之微透鏡陣列20中,複數個微透鏡21不是隨機地(不規則地)配置,而是如圖2所示,以格子間隔Wx、Wy在X方向和Y方向上變動的不規則的矩形格子(參照圖5)為基準,某種程度上規則地(以下稱為「準規則地」)配置。在此,「隨機」表示在微透鏡陣列的任意區域中,在微透鏡的配置方面並不存在實質的規則性。但是,即使在微小區域中微透鏡的配置存在某種規律性,但任意的區域全體在微透鏡的配置方面不存在有規則性的情況,則被包含在「不規則」中。
在本實施形態中,複數個微透鏡21以具有不規則性的矩形格子為基準,準規則地被配置。除此之外,微透鏡21的表面形狀或平面形狀隨機地變動。如圖2及圖4所示,微透鏡21的平面形狀(外形)具有全體上接近大致矩形狀的形狀,但不是與矩形格子對應完整的矩形形狀(正方形狀或長方形狀)。具體來說,微透鏡21的平面形狀具有接近略四角形、略五角形、略六角形等,具有4個以上的頂點之大致多角形的形狀。並且,複數個微透鏡21的表面形狀(立體的曲面形狀)及平面形狀(投影到基材10的XY平面上的形狀)相互不同。各微透鏡21像這樣具有從矩形狀不規則地變樣的形狀的理由,是因為各微透鏡21的曲率半徑Rx、Ry,開口徑Dx、Dy及透鏡頂點的平面位置及高度位置等,在預定的變動率之範圍內隨機變動。再者,隨後將敘述本實施形態之以矩形格子為基準的微透鏡21之準規則的配置方法的細節(參考圖5~圖7)。
如此,在本實施形態中,各微透鏡21的曲率半徑Rx、Ry及開口徑Dx、Dy各自隨機地變動並且具有不一致性。再者,微透鏡21的開口徑Dx、Dy相當於單透鏡的透鏡徑。各微透鏡21的光學開口的相位分布根據方位而不同。複數個微透鏡21在基材10的表面上連續地配置成互相重疊,並且各微透鏡21的曲率半徑Rx、Ry及開口徑Dx、Dy(透鏡徑)具有不一致性。藉此,複數個微透鏡21的形狀(表面形狀及平面形狀)彼此不會成為相同形狀。因此,複數個微透鏡21具有如圖2所示的各種形狀,並且不具有對稱性者變多。
結果,如圖3所示,產生下述狀態:微透鏡21A的曲率半徑為RA
,另一方面,與該微透鏡21A鄰接的微透鏡21B的曲率半徑為RB
(≠RA
)。當彼此相鄰的微透鏡21的曲率半徑RA
、RB
互相不同時,彼此鄰接的微透鏡21之間的邊界線變成不只由直線構成,還至少一部分包含曲線而構成。
具體來說,如圖4所示,當從相對於基材10的表面垂直的Z方向俯視微透鏡21時,微透鏡21的平面形狀的外形線(該微透鏡21和鄰接的其他複數個微透鏡21之間的邊界線)包含曲率互相不同的複數個曲線和直線。當微透鏡21的邊界線包含曲率互相不同的複數個曲線時,由於微透鏡21之間的邊界之規則性進一步被打亂,故可進一步減低擴散光的繞射成分。
<4.微透鏡的配置方法>
接下來,參照圖5~圖7,詳細說明本實施形態之微透鏡21的配置方法。圖5是示意地顯示本實施形態之不規則的矩形格子狀的微透鏡21之配置的平面圖。圖6是顯示從圖5的狀態使微透鏡21的表面形狀變動之例子的說明圖。圖7是顯示從圖6的狀態使微透鏡21的頂點22的平面位置偏心之例子的說明圖。
具有上述特徵的複數個微透鏡21所排列而成的微透鏡陣列20,可以透過以下敘述的本實施形態之配置方法來實現。
首先,如圖5所示,暫時先將具有基準形狀的複數個微透鏡21設定成矩形格子狀地且準規則地排列的基準狀態(以下也稱為「初期排列狀態」)。接下來,從這樣的初期排列狀態,如圖6和7所示,變更成微透鏡21的形狀(即曲率半徑Rx、Ry、開口徑Dx、Dy等)、以及微透鏡21的頂點22的位置隨機地變動的狀態(以下,也稱為「變動排列狀態」)。以下,將這種微透鏡21的配置方法稱為「基準配置方法」。
在這種基準配置方法中,是在經過準規則的微透鏡21之排列(參照圖5)後,對微透鏡21的形狀及配置賦予隨機性(參照圖6、圖7)。因此,如果某種程度上宏觀地來俯瞰最終的變動排列狀態的微透鏡陣列20(參照圖2、圖7),微透鏡21的配置成為可以某種程度上推定出準規則的初期排列狀態(參照圖5)。以下,詳述此基準配置方法。
(1)以不規則的矩形格子為基準的微透鏡21之初期排列狀態(圖5)
在本實施形態之基準配置法中,首先,設定成為微透鏡21的配置之基準的初期排列狀態。具體來說,如圖5所示,在初期排列狀態中,複數個微透鏡21在基準面之XY平面上,以具有不規則性的矩形格子為基準,某種程度上規則地(準規則地)被排列。
本實施形態之矩形格子可以是長方形的格子亦可是正方形的格子。如圖5所示,矩形格子是由在第1方向(X方向)上延伸的複數條格子線32和在第2方向(Y方向)上延伸的複數條格子線31所形成。第1方向(X方向)和第2方向(Y方向)相互正交。在這樣的矩形格子中,X方向的格子間隔Wx是在第2方向(Y方向)上延伸的複數條格子線31的間隔。 Y方向的格子間隔Wy是在第1方向(X方向)上延伸的複數條格子線32的間隔。
在此,上述不規則的矩形格子是如下的矩形格子:如圖5所示,X方向的格子間隔Wx隨機地變動而相互不同,且Y方向的格子間隔Wy隨機地變動而相互不同。在圖5的矩形格子的例子中,X方向的3個格子間隔Wx1
,Wx2
和Wx3
相互不同,Y方向的三個格子間隔Wy1
,Wy2
和Wy3
也相互不同。格子間隔Wx和格子間隔Wy亦可相互不相關,各自獨立地且隨機地變動。其結果,例如X方向及Y方向的格子間隔Wx1
、Wx2
、Wx3
、Wy1
、Wy2
及Wy3
亦可以相互不同。
隨機地變動格子間隔Wx和格子間隔Wy的方法例如如下。首先,設定成為X方向和Y方向的格子間隔Wx、Wy的變動的基準之一定的基準值Wx_k和Wy_k(以下稱為基準格子間隔Wx_k、Wy_k)。接下來,在預定的變動率δWx、δWy[±%]之範圍內隨機地變動基準格子間隔Wx_k和Wy_k來設定格子間隔Wx和Wy(Wx = Wx_k×(100±δWx[%])、Wy = Wy_k×(100±δWy[%]))。依矩形格子的格子數來重複此步驟,而分別設定X方向及Y方向的複數個格子間隔Wx1
、Wx2
、Wx3
…Wy1
、Wy2
、Wy3
…。
在此,變動率δWx、δWy宜在±10%~±50%的範圍內。當變動率δWx、δWy設定為小於±10%時,格子間隔Wx、Wy的變動變得不充分,並且難以賦予微透鏡陣列20充分的非週期性,微透鏡陣列20所帶來的擴散光的均質性有減低的疑慮。另一方面,如果將變動率δWx、δWy設定為大於±50%,則格子間隔W的變動會過度地變大,並且有難以在XY平面上無間隙而連續地排列複數個微透鏡21的疑慮。
例如,當變動率δWx、δWy被設定為「±10%」時,格子間格Wx、Wy會被設定成:以基準格子間隔Wx_k、Wy_k為基準,在「±10%」以下的範圍內(即Wx_k、Wy_k的90%的值以上且110%的值以下)從基準格子間距Wx_k、Wy_k隨機地偏離的值。
如以上,在本實施形態中,X方向及Y方向的複數個格子間隔Wx1
、Wx2
、Wx3
…Wy1
、Wy2
、Wy3
…隨機地設定成相互不同的值。 然後,使用該格子間隔Wx1
、Wx2
、Wx3
…Wy1
、Wy2
、Wy3
…來設定互相不同的不規則的矩形格子(參照圖5)。
接著,以上述不規則的矩形格子為基準,如圖5所示,在XY平面上排列複數個微透鏡21。該狀態是成為微透鏡21的配置之基準的初期排列狀態。在初期排列狀態中,各微透鏡21的平面形狀是與矩形格子對應的矩形狀,且微透鏡21的平面形狀的外形線與X方向及Y方向的格子線31、32一致。另外,各微透鏡21的頂點22之位置與由格子線31、32圍成的各矩形格子的中心點23一致。另外,在該初期排列狀態中,各微透鏡21的X方向及Y方向的開口徑Dx、Dy分別與X方向及Y方向的格子間隔Wx、Wy一致。在此,由於格子間隔Wx、Wy變動成相互不同的值,因此開口徑Dx、Dy亦變動成相互不同的值。
另外,在初期排列狀態中的各微透鏡21的表面形狀是將預先設定的預定之基準形狀(例如,非球面形狀的基準形狀)用對應於各微透鏡21的矩形格子來切出的形狀。在此,由於與各微透鏡21對應的格子間隔Wx和Wy相互不同,因此複數個微透鏡21的開口徑Dx、Dy或表面形狀相互不同。即,藉由以上述不規則的矩形格子為基準來排列複數個微透鏡21,在初期排列狀態中,可以以微透鏡21的開口徑Dx、Dy或表面形狀相互不同的方式來配置複數個微透鏡21。
(2)使曲率半徑Rx、Ry變動的微透鏡21之第1變動排列狀態(圖6)
在如上述般設定初期排列狀態之後,如圖6所示,設定藉由隨機地變動微透鏡21的曲率半徑Rx、Ry來使微透鏡21的表面形狀變動的第1變動排列狀態。圖6顯示當微透鏡21的表面形狀為具有X方向的異向性之非球面形狀時,使該非球面形狀的曲率半徑Rx、Ry變動的例子。
曲率半徑R包括:以X方向的斷面切斷的微透鏡21的斷面形狀的曲率半徑Rx、和以Y方向的斷面切斷的微透鏡21的斷面形狀的曲率半徑Ry。當微透鏡21的表面形狀是球面形狀時,Rx和Ry具有相同的值。另一方面,當微透鏡21的表面形狀是具有異向性的非球面形狀時,Rx與Ry可能成為不同的值。
隨機地變動上述的初期排列狀態的微透鏡21的曲率半徑Rx、Ry之方法,例如如下。首先,設定成為X方向和Y方向的曲率半徑Rx、Ry的變動的基準之一定的基準值Rx_k、Ry_k(以下稱為基準曲率半徑Rx_k、Ry_k)。接下來,在預定的變動率δRx、δRy[%]之範圍內隨機地變動基準曲率半徑Rx_k、Ry_k來設定曲率半徑Rx、Ry(Rx = Rx_k×(100±δRx[%]),Ry = Ry_k×(100±δRy[%]))。依各微透鏡21的個數來重複此步驟,而分別對各微透鏡21設定X方向及Y方向的曲率半徑Rx11
、Ry11
、Rx21
、Ry21
…Rxnm
、Rynm
。再者,n是X方向上排列的微透鏡21的個數,m是Y方向上排列的微透鏡21的個數。
在此,變動率δRx、δRy宜在±10%~±50%的範圍內。當變動率δRx、δRy設定為小於±10%時,曲率半徑Rx、Ry的變動變得不充分,並且難以賦予微透鏡陣列20充分的非週期性,微透鏡陣列20所帶來的擴散光的均質性有減低的疑慮。另一方面,如果將變動率δRx、δRy設定為大於±50%,則曲率半徑Rx、Ry的變動會過度地變大,並且有難以在XY平面上無間隙而連續地排列複數個微透鏡21的疑慮。
如以上,使初期排列狀態的各微透鏡21的曲率半徑Rx、Ry隨機變動(第一變動排列狀態)。其結果,如圖6所示,在X方向上排列的微透鏡21的X方向的曲率半徑Rx成為相互不同的值。同樣地,在Y方向上排列的微透鏡21的Y方向的曲率半徑Ry成為相互不同的值。詳細來說,曲率半徑Rx在以基準曲率半徑Rx_k為基準±10%~±50%以內的變動率δRx中隨機地變動。另外,曲率半徑Ry在以基準曲率半徑Ry_k為基準±10%~±50%以內的變動率δRy中隨機地變動。
在這樣的第1變動排列狀態中,如圖6所示,各微透鏡21的平面形狀成為從矩形格子偏離的形狀,且微透鏡21之平面形狀的外形線亦有和X方向及Y方向的格子線31、32不一致的情況。然而,各微透鏡21的頂點22的位置與各個矩形格子的中心點23一致。另外,在第1變動排列狀態中,各微透鏡21的X方向及Y方向之開口徑Dx、Dy偏離X方向及Y方向的格子間隔Wx、Wy。
如此,在使微透鏡21的曲率半徑Rx、Ry隨機變動的第1變動排列狀態中,可以以微透鏡21的開口徑Dx、Dy或表面形狀比起初期排列狀態更相互不同的方式,來配置複數個微透鏡21。
(3)使透鏡頂點位置變動的微透鏡21的第2變動排列狀態(圖7)
在如上述設定第1變動排列狀態之後,如圖7所示,設定使微透鏡21的頂點22的平面位置從上述矩形格子的中心點23隨機地偏心的第2變動排列狀態。在此,偏心是指在XY平面上使微透鏡21之頂點22的平面位置以偏離矩形格子的中心點23的方式變動。再者,矩形格子的中心點23是矩形格子的2條對角線的交點(參照圖4)。
使上述第1變動排列狀態的微透鏡21之頂點22的平面位置隨機地偏心之方法,例如如下。
首先,設定微透鏡21的頂點22的平面位置(以下,也稱為透鏡頂點位置22)的偏心量Ec。偏心量Ec是透鏡頂點位置22從矩形格子的中心點23偏離的偏離量(距離)。偏心量Ec是以X方向的偏心量Ecx和Y方向的偏心量Ecy來表示。偏心量Ecx是透鏡頂點位置22從矩形格子的中心點23偏離的X方向的偏離量,偏心量Ecy是透鏡頂點位置22從矩形格子的中心點23偏離的Y方向的偏離量。
接著,設定X方向及Y方向的偏心率δEcx、δEcy。X方向的偏心率δEcx是偏心量Ecx對上述矩形格子的格子間隔Wx的比率(百分比)。Y方向的偏心率δEcy是偏心量Ecy對上述矩形格子的格子間隔Wy的比率(百分比)。偏心率δEcx、δEcy由以下數式表示。
δEcx[%]=Ecx/Wx×100
δEcy[%]=Ecy/Wy×100
接下來,基於上述設定的偏心率δEcx、δEcy,使透鏡頂點位置偏心。詳細來說,使各微透鏡21的透鏡頂點位置22在±10%~±50%以內的偏心率δEcx、δEcy中隨機地偏心。
在此,偏心率δEcx、δEcy宜在±10%~±50%的範圍內。當偏心率δEcx、δEcy設定為小於±10%時,透鏡頂點位置22的偏心量Ecx、Ecy變得不充分,並且難以賦予微透鏡陣列20充分的非週期性,微透鏡陣列20所帶來的X方向及Y方向的擴散光的均質性有減低的疑慮。另一方面,如果將偏心率δEcx、δEcy設定為大於±50%,則透鏡頂點的偏心量Ecx、Ecy會過度地變大,並且有難以在XY平面上無間隙而連續地排列複數個微透鏡21的疑慮。
如以上,使第1變動排列狀態的各微透鏡21的頂點22的平面位置從矩形格子的中心點23隨機地變動(第2變動排列狀態)。其結果,如圖7所示,各微透鏡21的頂點22的平面位置在XY平面上朝隨機的方向以隨機的偏心量Ecx、Ecy偏離。
其結果,如圖4及圖7所示,在第2變動排列狀態中,比起上述第1變動排列狀態(參照圖6)更進一步地,各微透鏡21的平面形狀成為從對應於矩形格子之矩形狀偏離之形狀。又,在第2變動排列狀態中,各微透鏡21之X方向及Y方向的開口徑Dx、Dy從X方向及Y方向的格子間隔Wx、Wy進一步偏離。
如此,在使微透鏡21的頂點22的平面位置隨機地偏心之第2變動排列狀態中,可以以微透鏡21的表面形狀或開口徑Dx、Dy比起第1變動排列狀態更相互不同的方式來配置複數個微透鏡21。
另外,在上述第2變動排列狀態中,複數個微透鏡21的頂點22的高度位置(擴散板1之厚度方向的位置)相互變動。詳細來說,如圖2所示,在X方向上排列的複數個微透鏡21的頂點22(凹透鏡的最深點)的高度位置相互不同,在Y方向上排列的複數個微透鏡21的頂點22(凹透鏡的最深點)的高度位置亦相互不同。藉此,可以進一步提高複數個微透鏡21的形狀及配置的隨機性,並可賦予微透鏡陣列20充分的非週期性。
如上,根據本實施形態之微透鏡21的配置方法,首先,以具有相互不同之格子間隔Wx、Wy的不規則的矩形格子為基準,來準規則地排列複數個微透鏡21(初期排列狀態:圖5)。藉此,做成各微透鏡21的平面形狀的外形線沿著該不規則的矩形格子的格子線31、32,而讓微透鏡21在XY平面內準規則地被排列。
之後,使該被排列的複數個微透鏡21的曲率半徑Rx、Ry或表面形狀、透鏡頂點位置22隨機地變動(第1、第2變動排列狀態:圖6、圖7)。藉此,可以使準規則地被排列的微透鏡21的表面形狀(立體形狀)或開口形狀(平面形狀)、開口徑Dx、Dy、配置等隨機地不一致。因此,可以實現準規則的微透鏡21的排列,並且實現隨機性高的微透鏡陣列20之3維表面構造。
因此,根據本實施形態之微透鏡陣列20,可以適當地控制從各微透鏡21發散的光的相位之重疊狀態。因此,可以適當地抑制來自各微透鏡21的擴散光的干涉、或由微透鏡排列的周期結構所引起的繞射。因此,可以減低擴散光之強度分佈的不均勻,而提高相互正交的X及Y方向的配光的均質性。此外,亦可能控制X及Y方向的配光的異向性和擴散光的強度分布的截止性。
再者,截止性意指來自微透鏡陣列20的擴散光具有所謂的頂帽(top hat)型的擴散特性。頂帽型擴散特性是指:相對於可見光區域的準直光、或擁有具準直性的主光線且具有一定開口的遠心光,在一定區域的角度成分內能量分布的均勻性非常高,而當超過此角度成分的一定區域時,能量會急遽地減少的一種光學機能。藉由實現這種頂帽型擴散特性,入射到微透鏡陣列20的光的擴散光之亮度分布,在預定的擴散角度範圍內變得大致均一,在預定的擴散角範圍內,可實現擴散光的亮度值以峰值位準的平均值為中心而落在例如 ±20%的範圍內之狀態。
依據本實施形態之微透鏡陣列20,用上述配置方法將複數個微透鏡21排列成矩形格子狀,並且適當地控制各微透鏡21的曲率半徑Rx、Ry、透鏡頂點位置22等,或將非球面形狀導入微透鏡21的表面形狀。藉此,由於可以實現微透鏡陣列20所期望的擴散特性,所以可以更確實地實現頂帽型擴散特性。
此外,根據本實施形態,以具有相互不同的格子間隔Wx、Wy之不規則的矩形格子為基準,在XY平面上準規則地排列複數個微透鏡21後(初期排列狀態),使曲率半徑Rx、Ry或透鏡頂點位置22變動(第1、第2變動排列狀態)。藉此,可以確保每個微透鏡21的表面形狀的隨機性,並且可在擴散板1的表面上相互無間隙而連續地配置複數個微透鏡21。因此,由於能夠使平坦部極力地不存在於鄰接的微透鏡21的邊界部分,因此能夠抑制入射光當中不在擴散板表面散射而就這樣透射過去的成分(0次透射光成分)。其結果,可以進一步提高相互正交的X及Y方向的配光的均質性與擴散性能。
<5.微透鏡的非球面形狀之例子>
接下來,說明關於本實施形態之微透鏡21的表面形狀是具有異向性的非球面形狀的例子。
在本實施形態中,亦可涵蓋微透鏡陣列20的全體,將在共通的方向上具有異向性的複數個微透鏡21排列成矩形格子狀。具有異向性的微透鏡21,例如是具有一個方向(長邊方向)的長度比和該一個方向正交的另一個方向(短邊方向)的長度還長的平面形狀之微透鏡。在基材10的XY平面上,以各微透鏡21的長邊方向朝向同一方向的方式來排列具有異向性的複數個微透鏡21。
藉此,可以控制在投射面上的擴散光的異向形狀。例如,在擴散板1中,將微透鏡21的長邊方向的光之擴散寬度減小,短邊方向的光之擴散寬度增大。藉此,能夠配合投射面的形狀來控制藉由擴散板1而擴散的光的異向形狀。
以下,參照圖8~圖11更詳細地說明每個微透鏡21的表面形狀(三維立體形狀)為具有異向性的非球面形狀的情況。微透鏡21具有非球面形狀,前述非球面形狀具有在預定方向延伸的異向性。作為此種非球面形狀,例如,可以使用以下說明的第1非球面形狀例(變形形狀)或第2非球面形狀例(環面形狀)等。
(1)第1非球面形狀例(變形形狀)
首先,參照圖8~圖11,說明關於微透鏡21的非球面形狀的例子(變形形狀)。圖8是顯示變形形狀的微透鏡21之平面形狀的說明圖。圖9是顯示變形形狀的微透鏡21之立體形狀的立體圖。圖10是顯示變形形狀之曲面的立體圖。
圖8及圖9中顯示的微透鏡21是所謂的變形透鏡,並且其表面形狀是包含變形形狀的曲面的非球面形狀。如圖8中顯示,該微透鏡21的平面形狀是具有異向性的橢圓形狀。該橢圓形狀的Y軸方向的長徑是Dy,X軸方向的短徑是Dx。這些Dx、Dy相當於微透鏡21的X方向及Y方向的開口徑。如圖9中顯示,該微透鏡21的立體形狀是由在橢圓形狀的長軸方向及短軸方向之各方向上具有預定的曲率半徑Rx、Ry之非球面形狀的曲面所構成。這樣的微透鏡21成為在Y軸方向上具有異向性的非球面形狀。
在此,參照圖10及下述數學式(1),說明關於變形形狀的微透鏡21的表面形狀的設定方法。圖10是顯示用下述數學式(1)表示的變形形狀的曲面(非球面)的立體圖。下述數學式(1)是表示變形形狀的曲面(非球面)的算式的一例。
[數1]
再者,在數學式1中,各參數如下。
Cx = 1 / Rx
Cy = 1 / Ry
Rx:X方向的曲率半徑
Ry:Y方向的曲率半徑
Kx:X方向的圓錐係數
Ky:Y方向的圓錐係數
Ax4
,Ax6
:X方向的4次、6次非球面係數
Ay4
,Ay6
:Y方向的4次、6次非球面係數
如圖10中所顯示,從上述數學式(1)所規定的變形形狀之曲面,以XY平面上的橢圓形狀之X方向的短徑為Dx,Y方向的長徑為Dy的方式來切出曲面。將此切出的一部分之曲面形狀設定為微透鏡21的曲面形狀(變形形狀)。在此,對於每個微透鏡21,使橢圓形狀的長徑Dy、短徑Dx、Y方向(長軸方向)的曲率半徑Ry及X方向(短軸方向)的曲率半徑Rx,在預定的變動率δ的範圍內隨機地變動而不一致。藉此,可以設定由相互不同的變形形狀所構成的複數個微透鏡21的表面形狀。
(2)第2非球面形狀例(環面形狀)
接著,參照圖11~圖13,說明微透鏡21的非球面形狀的其他的例子(環面形狀)。圖11是顯示環面形狀的微透鏡21之平面形狀的說明圖。圖12是顯示環面形狀的微透鏡21之立體形狀的立體圖。圖13是顯示環面形狀之曲面的立體圖。
如圖11至圖13中所顯示,第2非球面形狀例之微透鏡21的表面形狀是包含環面形狀的一部分曲面之非球面形狀。環面是將圓旋轉而得到的旋轉面。具體來說,如圖13中所顯示,以在小圓(半徑:r)的外側配置的旋轉軸(X軸)為中心,沿著大圓(半徑:R)的圓周使該小圓旋轉,藉此可得到所謂甜甜圈型的圓環體。該圓環體的表面(環面面)的曲面形狀為環面形狀。藉由切出此環面形狀的外側部分,可以得到如圖12中顯示的環面形狀的微透鏡21的立體形狀。
如圖11所示,環面形狀的微透鏡21的平面形狀是具有異向性的橢圓形狀。該橢圓形狀的Y軸方向的長徑是R,X軸方向的短徑是r。這些r、R相當於微透鏡21的X方向及Y方向的開口徑Dx、Dy。如圖12中所顯示,該微透鏡21的立體形狀是由在橢圓形狀的長軸方向及短軸方向之各方向上具有預定的曲率半徑R、r之非球面形狀的曲面所構成。這樣的微透鏡21成為在Y軸方向上具有異向性的非球面形狀。
在此,參考圖13及下述數學式(2),說明關於環面形狀的微透鏡21的表面形狀的設定方法。圖13是顯示由下述數學式(2)表示的非球面的曲面的立體圖。再者,在數學式2中,R是大圓半徑,r是小圓半徑。
[數2]
如圖13所示,從上述數學式(2)所規定的環面形狀的曲面,以XY平面上的橢圓形狀的X方向的短徑為r,Y方向的長徑為R的方式來切出曲面。將該切出的一部分之曲面形狀設定為微透鏡21的曲面形狀(環面形狀)。在此,對於每個微透鏡21,使橢圓形狀的長徑Dy、短徑Dx、Y方向(長軸方向)的曲率半徑R(相當於透鏡的曲率半徑Ry)及X方向(短軸方向)的曲率半徑r(相當於透鏡的曲率半徑Rx),在預定的變動率δ的範圍內隨機地變動而不一致。藉此,可以設定由相互不同的環形形狀所構成的複數個微透鏡21的表面形狀。
再者,作為本實施形態之微透鏡21的表面形狀(具有異向性的非球面形狀),除了上述第1及第2非球面形狀的例子以外,例如,也可以使用從橢圓球體切出的非球面形狀。
<6.微透鏡的設計方法>
接下來,參照圖14~圖18說明關於本實施形態之微透鏡的設計方法。圖14顯示本實施形態之微透鏡的設計方法的流程圖。
(S10)網格參數的設定
如圖14中所顯示,首先,設定與作為在XY平面上排列複數個微透鏡21之基準的矩形格子(網格)有關的各種參數(網格參數)(S10)。網格參數例如包括以下參數。
Wx_k[μm]:X方向的格子間隔Wx的基準值(X方向的網格大小)
Wy_k[μm]:Y方向的格子間隔Wy的基準值(Y方向的網格大小)
δWx[±%]:X方向的格子間隔Wx的變動率(X方向的Wx的容許變動範圍)
δWy[±%]:Y方向的格子間隔Wy的變動率(Y方向的Wy的容許變動範圍)
δEcx[±%]:X方向的透鏡頂點位置的偏心率(X方向的偏心範圍)
δEcy[±%]:Y方向的透鏡頂點位置的偏心率(Y方向的偏心範圍)
具體而言,可以將網格參數的設定值設定為例如以下數值。
Wx_k:120μm
Wy_k:90μm
δWx:±20%
δWy:±10%
δEcx:±10%
δEcy:±10%
(S12)網格的生成
接下來,基於在S10中設定的網格參數,生成在X及Y方向上排列的複數個矩形格子(S12)。圖15是顯示在本步驟S12中生成的矩形格子的說明圖。如圖15中所顯示,設定X及Y方向的格子間隔Wx、Wy隨機地變動之不規則的矩形格子。X方向的格子間隔Wx是在X方向上鄰接的格子線31的間隔。 Y方向的格子間隔Wy是在Y方向上鄰接的格子線32的間隔。
將X方向的格子間隔Wx設定為以變動率δWx[±%]隨機地變動基準格子間隔Wx_k[μm]而得的值。同樣地,將Y方向的格子間隔Wy設定為以變動率δWy[±%]隨機地變動基準格子間隔Wy_k[μm]而得的值。例如,當網格參數的設定值為上述具體例的數值(Wx_k=120μm、δWx=±20%)時,格子間隔Wx以120μm(Wx_k)為中心,在96μm~144μm(120μm的80%~120%之值)的範圍內被設定為隨機的值。對格子間隔Wy也同樣地設定。其結果如圖15中顯示,在X及Y方向上排列的複數個矩形格子的格子間隔Wx、Wy被設定為相互不同的值。
(S14)網格中心的偏心處理
隨後,執行使各個矩形格子的中心點(以下稱為「網格中心」)的位置隨機地變動的偏心處理(S14)。圖16是顯示在本步驟S14中網格中心已被偏心之矩形格子的說明圖。
如圖16中顯示,偏心處理之前的網格中心被配置在各矩形格子的2條對角線的交點的座標位置(前述矩形格子的中心點23)。藉由偏心處理,網格中心移動到與使用偏心率δEcx、偏心率δEcy隨機計算出的偏心量Ecx、Ecy相對應的X,Y座標位置。例如,當網格參數的設定值是上述具體例的數值(δEcx=±10%,δEcy=±10%)時,偏心量Ecx、Ecy被設定為各格子間隔Wx、Wy的90%~110%的範圍內的值。然後,使網格中心朝X方向及Y方向只移動相當於該偏心量Ecx、Ecy的距離。移動後的網格中心的位置相當於前述微透鏡21的頂點22的平面位置(透鏡頂點位置22)。藉由對各個矩形格子重複該偏心處理,各矩形格子的網格中心在各矩形格子內且在偏心率δEcx、偏心率δEcy的範圍內偏心到隨機的位置。
(S16~S24)微透鏡的生成
接下來,基於在上述S12生成的矩形格子與在S14偏心的網格中心,來配置對應於各個矩形格子的微透鏡21。具體來說,首先,選擇微透鏡21的表面形狀(透鏡面)的基本形狀(S16)。接下來,設定與所選擇的基本形狀有關的參數(透鏡參數)(S18、S20)。之後,基於所設定的透鏡參數,決定各矩形格子中的微透鏡21的形狀,並且計算表示微透鏡21之形狀的Z座標位置,以生成微透鏡21(S22、S24)。
具體來說,在本實施形態中,作為微透鏡21的基本形狀(以下稱為透鏡形狀),例如,選擇變形形狀或環面形狀(S16)。但,本發明不限於這樣的例子,亦可做成可選擇其他種類的非球面形狀或球面形狀來作為透鏡形狀。
當在S16中選擇變形形狀時,設定與變形形狀有關的各種透鏡參數(S18)。變形形狀的透鏡參數例如包含以下參數。
Rx_k[μm]:X方向之曲率半徑Rx的基準值
Ry_k[μm]:Y方向之曲率半徑Ry的基準值
δRx[±%]:X方向之曲率半徑Rx的變動率(X方向之Rx的容許變動範圍)
δRy[±%]:Y方向之曲率半徑Ry的變動率(Y方向之Ry的容許變動範圍)
具體來說,可以將變形形狀的透鏡參數的設定值設定成例如以下的數值。
Rx_k:240μm
Ry_k:200μm
δRx:±10%
δRy:±10%
接著,基於在S18中設定的透鏡參數來生成變形形狀之微透鏡21的表面形狀(S22)。詳細來說,基於透鏡參數來決定各微透鏡21的表面形狀,並且在各矩形格子上配置各微透鏡21。即,計算變形形狀的透鏡表面的各點之Z座標值。
圖17是顯示在本步驟S22中生成的複數個微透鏡21的說明圖。如圖17中顯示,各微透鏡21以透鏡頂點位置22與在S14中偏心的網格中心位置與一致的方式,被配置在各矩形格子上。另外,各微透鏡21的X及Y方向的曲率半徑Rx、Ry隨機地變動。因此,具有相互不同的表面形狀(變形形狀)的複數個微透鏡21被配置成在XY平面上相互重疊。
X方向的曲率半徑Rx被設定成以變動率δRx[±%]隨機地變動基準曲率半徑Rx_k[μm]而得的值。同樣地,Y方向的曲率半徑Ry被設定成以變動率δRy[±%]隨機地變動基準曲率半徑Ry_k[μm]而得的值。例如,當透鏡參數的設定值是上述具體例的數值(Rx_k=240μm,δRx=±10%)時,曲率半徑Rx以240μm(Rx_k)為中心,在216μm~264μm(240μm的90%~110%之值)的範圍內被設定成隨機的值。對曲率半徑Ry也同樣地設定。其結果,如圖17中所顯示,在X及Y方向上排列的複數個微透鏡21的表面形狀(變形形狀)成為相互不同的形狀。
另一方面,當上述S16中選擇環面形狀時,設定與環面形狀有關的各種透鏡參數(S20)。環面形狀的透鏡參數例如包含以下參數。再者,小圓半徑r及大圓半徑R是規定圖11~圖13中顯示的環面形狀的曲率半徑。
r_k[μm]:小圓半徑(X方向的曲率半徑Rx)的基準值
R_k[μm]:大圓半徑(Y方向的曲率半徑Ry)的基準值
δRx[±%]:小圓半徑(X方向的曲率半徑Rx)的變動率(X方向的r的容許變動範圍)
δRy[±%]:大圓半徑(Y方向的曲率半徑Ry)的變動率(Y方向的R的容許變動範圍)
具體來說,可以將環面形狀的透鏡參數的設定值設定成例如以下的數值。
Rx_k:240μm
Ry_k:200μm
δRx:±10%
δRy:±10%
接著,基於在S20中設定的透鏡參數來生成環面形狀之微透鏡21的表面形狀(S24)。詳細來說,基於透鏡參數來決定各微透鏡21的表面形狀,並且在各矩形格子上配置各微透鏡21。即,計算環面形狀的透鏡表面的各點之Z座標值。因為本步驟S24的環面形狀的透鏡生成處理與上述S22的變形形狀的透鏡生成處理相同,所以省略詳細說明。
(S26)透鏡圖案的輸出
之後,輸出表示在上述S20或S24中生成的微透鏡21的形狀及配置的透鏡圖案(S26)。例如,輸出表示該透鏡圖案的XYZ座標值的檔案、或用濃淡漸變來表現該透鏡圖案的Z座標值的圖像檔案。
圖18是表示用本實施形態之設計方法所設計之透鏡圖案的圖像。如圖18中所顯示,複數個微透鏡21在XY平面上被排列成不規則的矩形格子狀。各微透鏡21的透鏡頂點位置22是隨機地偏心,並且各微透鏡21的曲率半徑Rx、Ry也隨機地變動。
因此,可知複數個微透鏡21具有相互不同的非球面形狀(例如,變形形狀或環面形狀)。另外,複數個微透鏡21具有相互不同的平面形狀。各微透鏡21的平面形狀概略來說,雖具有沿著上述矩形格子的大致矩形狀,但是形成為一個個不一致的形狀。在微透鏡21之間的邊界線中,四邊部分大致由直線構成,但是四個角的部分是由曲線構成。
此外,複數個微透鏡21被配置成相互無間隙地重疊,並且在相鄰接的微透鏡21之間的邊界部分不存在平坦部。
如上,根據本實施形態之微透鏡21的設計方法,以上述之不規則的矩形格子為基準,準規則地配置複數個微透鏡21,並且使微透鏡21的各變動要素(格子間隔Wx、Wy、曲率半徑Rx、Ry、透鏡頂點位置22等)隨機地變動。藉此,可以在XY平面上相互無間隙而連續地排列複數個微透鏡陣列20,並對各微透鏡21賦予相互不同的擴散特性。這種構成的微透鏡陣列20具有取決於透鏡表面構成的宏觀光量變動、或因繞射光而導致的光量變化變小、均質性高的多樣的配光控制性。
<7.微透鏡的製造方法>
接著,參照圖19來說明關於本實施形態之擴散板1的製造方法。圖19是顯示本實施形態之擴散板1之製造方法的流程圖。
如圖19中顯示,在本實施形態之擴散板1的製造方法中,首先,洗淨基材(母原盤的基材或擴散板1的基材10)(步驟S101)。基材例如可以是如玻璃輥之輥狀的基材,亦可以是如玻璃晶圓或矽晶圓的平板狀的基材。
接著,在洗淨後的基材的表面上形成阻劑(步驟S103)。例如,藉由使用了金屬氧化物的阻劑,可形成阻劑層。具體來說,對於輥形狀的基材,藉由將阻劑進行噴塗或浸漬處理,可以在輥狀的基材上形成阻劑層。另一方面,對於平板狀的基材,藉由將阻劑進行各種塗覆處理,可以形成阻劑層。再者,作為阻劑,可以使用正型光反應阻劑,亦可以使用負型光反應阻劑。另外,為了提高基材和阻劑的密著性,亦可以使用偶合劑。
此外,使用與微透鏡陣列20的形狀相對應的圖案來曝光阻劑層(步驟S105)。這樣的曝光處理只要適當地適用例如使用了灰階遮罩的曝光、重疊複數個灰階遮罩所造成的多重曝光、或使用了皮秒脈衝雷射或是飛秒脈衝雷射的雷射曝光等公知的曝光方法即可。
之後,顯影曝光後的阻劑層(S107)。藉由這樣的顯影處理,在阻劑層上形成圖案。藉由因應阻劑層的材質而使用適當的顯影液,可以執行顯影處理。例如,當阻劑層由使用了金屬氧化物的阻劑形成時,藉由使用無機或有機鹼性溶液,可以對阻劑層進行鹼顯影。
接著,藉由使用顯影後的阻劑層進行濺鍍處理或蝕刻處理(S109),來完成在表面上形成有微透鏡陣列20的形狀的母原盤(S111)。具體來說,可以將形成有圖案的阻劑層作為遮罩,將玻璃基材進行玻璃蝕刻,藉此來製造玻璃母盤。或者,在形成有圖案的阻劑層上進行Ni濺鍍或鍍鎳(NED處理),在轉印有圖案的鎳層形成後,藉由剝離基材,可製造金屬母盤。例如,可藉由膜厚50nm程度的Ni濺鍍或膜厚100μm~200μm的鍍鎳(例如,胺磺酸Ni浴)等,來形成轉印有阻劑圖案的鎳層,藉此製造金屬母盤。
此外,使用在上述S111中完成的母原盤(例如,玻璃母盤,金屬母盤),在樹脂膜等上轉印(壓印)圖案,藉此來作成在表面上形成有微透鏡陣列20的反轉形狀的軟模(S113)。
然後,使用軟模對玻璃基板或膜基材等轉印微透鏡陣列20的圖案(S115),且進一步因應需要來形成保護膜、反射防止膜等(S117),藉此製造出本實施形態之擴散板1。
再者,在上述中,已經說明關於以下例子:在使用母原盤(S111)製造軟模(S113)後,藉由使用該軟模進行轉印來製造擴散板1(S115)。然而,並不限於這樣的例子,亦可以製造形成有微透鏡陣列20的反轉形狀的母原盤(例如無機玻璃原盤),並藉由使用該母原盤的壓印來製造擴散板1。例如,可對由PET(聚對苯二甲酸乙二酯,Polyethylene Terephthalate)或PC(聚碳酸酯,PolyCarbonate)構成的基材,塗布丙烯酸系光硬化樹脂,對塗布後的丙烯酸系光硬化樹脂轉印母原盤的圖案,並且使丙烯酸系光硬化樹脂UV硬化,藉此來製造擴散板1。
另一方面,當對玻璃基材本身實施直接加工來製造擴散板1時,在步驟S107中的顯影處理後,接著使用CF4
等的公知化合物對基材10實施乾蝕刻處理(S119),隨後,藉由因應需要來形成保護膜、反射防止膜等(S121),製造出本實施形態之擴散板1。
再者,圖19中顯示的製造方法僅是一例,擴散板的製造方法並不限於上述例子。
<8.擴散板1的適用例>
接著,說明關於本實施形態之擴散板1的適用例。
如上說明的擴散板1可以適當地安裝在需要使光擴散的裝置上以實現其功能。作為這種裝置,例如可列舉各種顯示器(例如LED、有機EL顯示器)等顯示裝置、投影機等的投影裝置以及各種照明裝置。
例如,擴散板1可以適用於液晶顯示裝置的背光、擴散板一體化透鏡等,並且也可以適用於光成形的用途。另外,擴散板1也可以適用於投影裝置的透光屏幕、菲涅耳透鏡(Fresnel lens)、反射螢幕等。另外,擴散板1也可以適用於聚光燈、基礎照明等所使用的各種照明裝置、各種特殊照明、中間螢幕或最終螢幕等的各種螢幕等。此外,擴散板1也可以適用於光學裝置中的光源光的擴散控制等用途,也可適用在LED光源裝置的配光控制、雷射光源裝置的配光控制、以及對各種光閥系統的入射配光控制等。
再者,擴散板1所適用的裝置不限於上述適用例,只要是利用光的擴散的裝置,對任意的公知的裝置皆可適用。
[實施例]
接著,說明關於本發明的實施例之擴散板。再者,以下實施例僅是用於展示本發明之擴散板的效果或可實施性之一例而已,本發明不限定於以下實施例。
在變更微透鏡陣列的表面構造,並且藉由以下說明的製造方法,來製造實施例及比較例之擴散板。
具體來說,首先,在洗淨玻璃基材之後,在玻璃基材的一表面(主表面)上,以2μm至15μm的阻劑厚度塗布光反應阻劑。作為光反應阻劑,例如,使用PMER-LA900(東京應化工業公司製造)或AZ4620(註冊商標)(AZ電子材料公司製造)等的正型光反應阻劑。
接下來,藉由使用波長為405nm的雷射之雷射描繪裝置,對玻璃基板上的阻劑描繪圖案,並曝光阻劑層。再者,亦可以藉由使用g線的步進曝光裝置,對玻璃基板上的阻劑進行遮罩曝光,藉此曝光阻劑層。
接著,藉由顯影阻劑層而在阻劑上形成圖案。作為顯影液,例如,使用NMD-W(東京應化工業公司製造)或PMER P7G(東京應化工業公司製造)等四甲基氫氧化銨(Tetramethylammonium hydroxide:TMAH)溶液。
接著,藉由使用形成有圖案的阻劑來蝕刻玻璃基材而製造擴散板。具體來說,藉由使用Ar氣體或CF4
氣體的玻璃蝕刻,在玻璃基材上形成阻劑的圖案,藉此製造擴散板。
關於如上述製造的實施例及比較例之擴散板,表1顯示微透鏡陣列的表面構造的設計條件以及該擴散板的配光之均質性的評價結果。
[表1]
在表1中顯示的各實施例及比較例中,是藉由上述圖14~圖18中所顯示的設計方法來設計微透鏡陣列。此時,將表1所示的網格參數(Wx_k、Wy_k、δWx、δWy、δEcx、δEcy)和透鏡參數(Rx_k、Ry_k、δRx、δRy)等的各種參數適當地變更,而生成相異的微透鏡的表面形狀之圖案。然後,輸出表示各實施例及比較例之微透鏡的形狀及配置的透鏡圖案。使用該透鏡圖案,藉由上述製造方法來製造各實施例及比較例之擴散板。
如表1中顯示,在實施例1~9中,在設計微透鏡陣列的表面構造時,使各微透鏡的格子間隔Wx、Wy隨機地變動。相對於此,在比較例1~4中,不變動格子間隔Wx、Wy,並且將所有微透鏡的格子間隔設成一定的基準格子間隔Wx_k、Wy_k。
另外,關於曲率半徑Rx、曲率半徑Ry,如表1中顯示,依各實施例及比較例,設成固定值或隨機的變動值。當變動率δRx、δRy=±0%時,意味著各微透鏡的曲率半徑Rx、Ry不變動而設成固定值,當變動率δRx、δRy=±10%、±15%時,意味著已使該曲率半徑Rx、Ry在該變動率δRx、δRy的範圍內隨機地變動。另外,關於在XY平面的透鏡頂點位置之偏心,當偏心率δEcx、δEcy=±0%時,意味著透鏡頂點位置沒有被偏心,當偏心率δEcx、δEcy=±10%、±15%時,意味著已使透鏡頂點位置在該偏心率δEcx、δEcy的範圍內隨機地偏心。
另外,關於微透鏡的表面形狀,在實施例1~4、8、9及比較例1~3中是設成球面形狀,在實施例5~7中是設成非球面形狀(例如變形形狀)。另外,關於微透鏡陣列的平面形狀,在實施例1~7及比較例1~3中是設成正方形狀,在實施例8、9及比較例4中是設成矩形狀(X方向較長的長方形狀)。
以雷射顯微鏡觀察如上述般製造的實施例1~9及比較例1~4之擴散板的微透鏡陣列之表面形狀。此外,藉由Virtual-Lab(LightTrans公司製造)來模擬該各擴散板的配光圖案,並且藉由配光特性測定器Mini-Diff(Light Tec公司製造)來測定該各擴散板的配光特性。另外,為了測定擴散板的配光特性,從雷射光強度的拍攝圖像測量了擴散光的強度分布(後述的遠場圖案測量)。
將實施例1~9及比較例1~4之擴散板的微透鏡陣列之表面形狀的圖案、擴散光的配光特性、亮度分布等的模擬結果和實測結果分別顯示於圖20~圖33。
圖20~圖33(實施例1~9及比較例1~4)中,(a)是顯示微透鏡陣列的表面形狀的圖案的圖像(BMP)或共焦雷射顯微鏡圖像(倍率50倍)。 (b)是顯示藉由電磁場分析所進行的配光之模擬結果的圖像。(c)是顯示擴散光的亮度分布之模擬結果的圖表(橫軸:座標位置,縱軸:亮度)。(d)是顯示上述(c)的亮度分布中的擴散角(半峰全寬(FWHM)。Screen Z=100mm)。
另外,在圖30(實施例7)中,(e)是顯示使用實際製造的擴散板測量雷射光源的擴散光的遠場圖案(FFP)之實測結果的圖表(橫軸:擴散角度,縱軸:亮度)。(f)是顯示該(e)的FFP的X及Y方向的擴散角(半峰全寬(FWHM))。 (g)是顯示該(e)的實測結果的FFP圖像。
另外,在圖32及圖33(實施例8、9)中,(e)是顯示擴散光的X及Y方向的配光特性之模擬結果的圖表(橫軸:擴散角度,縱軸: 亮度),(f)是顯示上述(c)的亮度分布中的X及Y方向的擴散角(半峰全寬(FWHM))。
將如上述的實施例1~9及比較例1~3之擴散板的配光特性(配光的均質性等),藉由如下的評價基準,用3階段(評價A、B、C)來評價。這樣的評價結果示於表1。
評價A:擴散光的X方向及Y方向之均質性充分高,且沒有觀察到沿著矩形格子的亮度分布之不均勻。擴散光的亮度分布在預定的擴散角度範圍內大致均一,且在該預定的擴散角度範圍內,擴散光的亮度值落在以峰值位準的平均值為中心之±20%的範圍內。
評價B:擴散光的X方向及Y方向之均質性高,雖然稍有沿著矩形格子的亮度分布之不均勻,但是沒有觀察到較大的不均勻。擴散光的亮度分布在預定的擴散角度範圍內大致均一,且在該預定的擴散角度範圍內,擴散光的亮度值落在以峰值位準的平均值為中心之±40%的範圍內。
評價C:擴散光的X方向及Y方向之均質性不充分,且觀察到沿著矩形格子較大的亮度分布之不均勻。擴散光的亮度分布在預定的擴散角度範圍內不一致,且在該預定的擴散角度範圍內,擴散光的亮度值沒有落在以峰值位準的平均值為中心之±40%的範圍內。
以下對比說明關於實施例1~9及比較例1~4的評價結果。
(1)實施例1~9與比較例1~4的對比(格子間隔的不規則性之效果)
在比較例1~4中,如圖20~圖22及圖31中顯示,在擴散光的亮度分布中,亮度週期性地大幅增減,並且擴散光的亮度分布中產生矩形格子狀的不均勻,擴散光的配光的均質性不充分。認為其理由如下。
在比較例1~4中,成為微透鏡的排列的基準之矩形格子是規則的矩形格子,且X及Y方向的格子間隔固定在一定值Wx_k、Wy_k(δWx、δWy= ±0%)。因此,認為藉由規則的矩形格子狀之微透鏡排列的周期構造,來自各微透鏡的擴散光會產生繞射,所以亮度分布上產生不均勻,配光的均質性降低。
此點,藉由如比較例2那樣使透鏡頂點位置偏心,或者如比較例3那樣隨機地變動曲率半徑Rx、Ry,可以稍微提高亮度分布的均質性。然而,當如比較例1~4般格子間隔Wx、Wy為一定時,認為由此格子間隔的周期性所引起的繞射造成的亮度不均勻,會超過由透鏡頂點位置或曲率半徑Rx、Ry的變動所帶來的均質性的提高效果,配光的均質性受到阻礙。
相對於此,在實施例1~9中,在擴散光的亮度分布中,亮度儘管變動,但沒有觀察到週期性的增減或週期性的峰值,且充分抑制了擴散光的亮度分布的不均勻,擴散光之配光的均質性良好。認為其理由如下。
在實施例1~9中,微透鏡以矩形格子為基準排列在XY平面上。在此,實施例1~9的矩形格子不是比較例那樣的規則的矩形格子,而是具有格子間隔Wx、Wy的不規則性之準規則的矩形格子。即,如圖15中顯示,實施例1~9的矩形格子的格子間隔Wx、Wy以成為相互不同的值的方式隨機地變動,其變動率δWx、δWy為±10% 以上。藉由以具有這種不規則性的矩形格子為基準而排列複數個微透鏡,來使微透鏡的開口徑Dx、Dy或平面形狀隨機地不一致,並且鄰接的微透鏡間之邊界線的位置也可隨機地錯開。
其結果,例如,如圖2、圖4、圖18等中顯示,微透鏡的平面形狀的外形線(微透鏡之間的邊界線)由任意的曲率半徑的曲線和直線的組合而構成。藉此,在微透鏡之間的邊界的配置的規則性進一步被打亂,可以進一步減低繞射成分。因此,可以抑制擴散光在複數個微透鏡之間相互繞射,且可以提高微透鏡陣列整體的擴散光的配光之均質性。
從以上結果可知,藉由使用本發明的擴散板,可以在相互正交的2個方向(X及Y方向)上抑制亮度分布的不均勻,且可以充分提升配光的均質性。
(2)實施例1與實施例2~9的對比(曲率半徑的變動或透鏡頂點的偏心之效果)
如表1中顯示,在實施例1中,僅變動格子間隔Wx、Wy。相對於此,在實施例2~9中,除了格子間隔Wx、Wy之外,還變動曲率半徑Rx、Ry,並使透鏡頂點位置偏心。
其結果,實施例2~9(評價A)比實施例1(評價B)更能夠有效地抑制亮度分布的不均勻,且能夠提高擴散光的配光之均質性。藉此,從提高配光的均質性的觀點來看,可知除了格子間隔Wx、Wy之外,還變動曲率半徑Rx、Ry,並使透鏡頂點位置偏心是有效的。
此外,在實施例2、3、5中,是變動曲率半徑Rx、Ry或使透鏡頂點位置偏心。相對於此,在實施例4、6~9中,是使曲率半徑Rx、Ry變動且也使透鏡頂點位置偏心。其結果,如圖24~圖29、圖32、圖33的(b)電磁場分析圖像或(c)亮度分布的圖表所示,在實施例4、6~9中,可更加抑制亮度分布的不均勻,可更進一步提高擴散光的配光之均質性。藉此,從提高配光之均質性的觀點來看,可知除了格子間隔Wx、Wy之外,還進行曲率半徑Rx、Ry的變動以及進行透鏡頂點位置的偏心是更有效的。
(3)實施例1〜4與實施例5〜7的對比(非球面透鏡形狀的效果)
如表1中顯示,作為微透鏡的基本形狀,實施例1~4中使用球面透鏡。相對於此,在實施例5~7中,使用了非球面透鏡(例如,圖8~圖10中顯示的變形形狀的透鏡)。在實施例5~7的非球面透鏡的情況下,修正數學式(1)的右邊的4次項之非球面係數A4
來規定透鏡形狀,前述數學式(1)是規定上述變形形狀的曲面的數學式。
其結果,如圖23~圖29的(b)電磁場分析圖像或(c)亮度分布的圖表所示,比起實施例1~4的球面透鏡,實施例5~7的非球面透鏡更可以抑制亮度分布的不均勻,並且可實現更細緻的配光均質性。藉此,從提高配光的均質性的觀點來看,可知使用非球面透鏡比球面透鏡更有效。此外,如果使用具有異向性的非球面透鏡,則可以控制從擴散板被投射的擴散光的異向性。因此,可以實現擴散光的高均質性,並且控制成配光角在X方向和Y方向之間具有異向性。
(4)實施例7的擴散特性(優異的配光均質性和截止性)
如表1中顯示,在實施例7中,基準曲率半徑Rx_k、Ry_k設定成相對較大的值(150μm),並在Rx_k、Ry_k的±10%的範圍內變動曲率半徑Rx、Ry,且使透鏡頂點位置在偏心率δEcx、δEcy=±10%的範圍內偏心。
此外,實施例7的微透鏡的表面形狀是基準曲率半徑Rx_k、Ry_k[μm]及基準格子間隔Wx_k、Wy_k[μm]的比值滿足以下關係式(A)及(B)的非球面形狀。在實施例7中,為(Rx_k/Wx_k)=(Ry_k/Wy_k)=(150/80)=1.875。
Rx_k/Wx_k≧1.85・・・(A)
Ry_k/Wy_k≧1.85・・・(B)
實施例7之微透鏡的表面形狀是具有如上述的異向性之非球面形狀,並且在表1中顯示的條件下,使格子間隔Wx、Wy、曲率半徑Rx、Ry變動,並使透鏡頂點位置偏心,來調整基準曲率半徑Rx_k、Ry_k[μm]及基準格子間隔Wx_k、Wy_k[μm],以滿足上述關係式(A)及(B)。此外,從擴散板射出的擴散光的擴散角(半峰全寬(FWHM))在20°以下的範圍內。藉此,可以更確實地實現所謂的頂帽型的擴散特性。
如圖30(e)的FFP測量結果的圖表中所顯示,實施例7的擴散特性實現了頂帽型擴散特性。即,可實現以下狀態:入射到微透鏡陣列的光之擴散光的亮度分布在預定的擴散角度範圍(半峰全寬在20°以下的範圍。在圖10的例子中為-5~+5°)中大致均一,且在該擴散角度範圍內,擴散光的亮度值落在以峰值位準的平均值為中心之±20%的範圍內。
從以上的結果可知,藉由使用與上述實施例7相同的擴散板,在擴散角(半峰全寬)為20°以下的範圍內,在相互正交的2個的方向(X及Y方向)上可充分地提高配光的均質性,並且可以適當地控制X及Y方向的配光之異向性、以及擴散光的強度分布的截止性。
(7)實施例8、9與比較例4的對比(矩形非球面透鏡形狀的效果)
實施例8、9和比較例4之擴散板,使用了X方向延伸得較長的矩形狀之微透鏡陣列。基準格子間隔Wx_k=50μm、Wy_k=40μm,微透鏡陣列的長邊方向(X方向)的基準格子間隔Wx_k被設定成大於短邊方向(Y方向)的基準格子間隔Wy_k(Wx_k>Wy_k)。
在這種矩形狀的微透鏡陣列中,在比較例4中,不變動格子間隔Wx、Wy。另一方面,在實施例8、9中,使格子間隔Wx、Wy在±10%或±15%的範圍內隨機地變動,並且使曲率半徑Rx、Ry在±10%或±15%的範圍內隨機地變動。此外,在實施例8、9中,透鏡頂點位置也在±10%或±15%的範圍內隨機地偏心。
其結果,在比較例4中,如圖31中顯示,擴散光的亮度分布週期性地大幅增減,明顯產生矩形格子狀的不均勻,擴散光的配光之均質性不充分。另一方面,在實施例8、9中,在擴散光的亮度分布中未觀察到週期性的增減或峰值,充分抑制了擴散光的亮度分布的不均勻,且擴散光的配光之均質性良好。
從以上結果可知,即使在如實施例8、9那樣使用矩形狀的微透鏡陣列之情況下,也可以在相互正交的2個方向(X及Y方向)上充分提升配光的均質性。
以上,一邊參照附圖一邊詳細說明了本發明的適宜的實施形態,但是本發明不限定於這樣的示例。只要是本發明所屬技術領域中具有通常知識者,顯然可在申請專利範圍中所記載的技術思想的範疇內想到各種變更例或是修正例,並且了解這些當然也屬於本發明的技術範圍。
1:擴散板
3:單位單元
10:基材
20:微透鏡陣列
21,21A,21B:微透鏡
22:頂點、透鏡頂點位置
23:矩形格子的中心點
31,32:格子線
Dx,Dy:開口徑
Ecx,Ecy:偏心量
R:大圓半徑
RA
,RB
,Rx,Ry:曲率半徑
r:小圓半徑
Rx_k,Ry_k:基準曲率半徑
Wx,Wy,Wx1
,Wx2
,Wx3
,Wx4
,Wx5
,Wy1
,Wy2
,Wy3
,Wy4
,Wy5
:格子間隔
Wx_k,Wy_k:基準格子間隔
S10,S12,S14,S16,S18,S20,S22,S24,S26:步驟
S101,S103,S105,S107,S109,S111,S113,S115,S117,S119,S121:步驟
X,Y,Z:方向
δWx,δWy:變動率
δRx,δRy:變動率
δEcx,δEcy:偏心率
圖1是示意地顯示本發明的一實施形態之擴散板的說明圖。
圖2是示意地顯示同實施形態之擴散板的構成之放大平面圖及放大斷面圖。
圖3是示意地顯示同實施形態之微透鏡之邊界附近的放大斷面圖。
圖4是示意地顯示同實施形態之微透鏡之平面形狀(外形)的平面圖。
圖5是示意地顯示同實施形態之不規則的矩形格子狀的微透鏡之配置的平面圖。
圖6是顯示從圖5的狀態使微透鏡的表面形狀變動之例子的說明圖。
圖7是顯示從圖6的狀態使微透鏡的頂點位置偏心之例子的說明圖。
圖8是顯示同實施形態之變形(anamorphic)形狀的微透鏡之平面形狀的說明圖。
圖9是顯示同實施形態之變形形狀的微透鏡之立體形狀的立體圖。
圖10是顯示同實施形態之變形形狀之曲面的立體圖。
圖11是顯示同實施形態之環面(torus)形狀的微透鏡之平面形狀的說明圖。
圖12是顯示同實施形態之環面形狀的微透鏡之立體形狀的立體圖。
圖13是顯示同實施形態之環面形狀之曲面的立體圖。
圖14是顯示同實施形態之微透鏡之設計方法的流程圖。
圖15是顯示同實施形態之網格(grid)生成步驟中所生成之矩形格子的說明圖。
圖16是顯示同實施形態之網格偏心步驟中所生成之矩形格子的說明圖。
圖17是顯示同實施形態之透鏡生成步驟中所生成之複數個微透鏡的說明圖。
圖18是表示用同實施形態之設計方法所設計之透鏡圖案的圖像。
圖19是顯示同實施形態之擴散板之製造方法的流程圖。
圖20是比較例1之擴散板相關的說明圖。
圖21是比較例2之擴散板相關的說明圖。
圖22是比較例3之擴散板相關的說明圖。
圖23是實施例1之擴散板相關的說明圖。
圖24是實施例2之擴散板相關的說明圖。
圖25是實施例3之擴散板相關的說明圖。
圖26是實施例4之擴散板相關的說明圖。
圖27是實施例5之擴散板相關的說明圖。
圖28是實施例6之擴散板相關的說明圖。
圖29是實施例7之擴散板相關的說明圖。
圖30是實施例7之擴散板相關的說明圖。
圖31是比較例4之擴散板相關的說明圖。
圖32是實施例8之擴散板相關的說明圖。
圖33是實施例9之擴散板相關的說明圖。
1:擴散板
10:基材
20:微透鏡陣列
21:微透鏡
X,Y:方向
Claims (15)
- 一種擴散板,是微透鏡陣列型的擴散板,其具備:基材;及微透鏡陣列,由在前述基材的至少一表面之XY平面上以具有相互不同之複數個格子間隔之不規則的矩形格子為基準來規則地排列的複數個微透鏡所構成,排列在前述矩形格子的X方向之前述微透鏡的前述X方向之格子間隔Wx相互不同,排列在前述矩形格子的Y方向之前述微透鏡的前述Y方向之格子間隔Wy相互不同,前述複數個微透鏡之表面形狀相互不同。
- 如請求項1之擴散板,其中前述X方向的格子間隔Wx是在以基準格子間隔Wx_k為基準±10%~±50%以內的變動率δWx中隨機地變動,前述Y方向的格子間隔Wy是在以基準格子間隔Wy_k為基準±10%~±50%以內的變動率δWy中隨機地變動。
- 如請求項1或2之擴散板,其中排列在前述X方向的前述微透鏡之前述X方向的曲率半徑Rx是相互地變動,排列在前述Y方向的前述微透鏡之前述Y方向的曲率半徑Ry是相互地變動。
- 如請求項3之擴散板,其中前述X方向的曲率半徑Rx是在以基準曲率半徑Rx_k為基準±10%~±50%以內的變動率δRx中隨機地變動,前述Y方向的曲率半徑Ry是在以基準曲率半徑Ry_k為基準±10%~±50%以內的變動率δRy中隨機地變動。
- 如請求項4之擴散板,其中前述X方向的格子間隔Wx是在以基準格子間隔Wx_k為基準±10%~±50%以內的變動率δWx中隨機地變動, 前述Y方向的格子間隔Wy是在以基準格子間隔Wy_k為基準±10%~±50%以內的變動率δWy中隨機地變動,前述基準格子間隔Wx_k、Wy_k及前述基準曲率半徑Rx_k、Ry_k滿足以下關係式(A)及(B),前述擴散板造成的擴散角(半峰全寬)為20°以下,Rx_k/Wx_k≧1.85...(A) Ry_k/Wy_k≧1.85...(B)。
- 如請求項1或2之擴散板,其中排列在前述X方向及前述Y方向的前述微透鏡之頂點的平面位置從前述矩形格子的中心點偏心。
- 如請求項6之擴散板,其中在將從前述矩形格子的中心點到前述偏心的微透鏡之頂點的平面位置之前述X方向、前述Y方向的距離分別設為偏心量Ecx、Ecy,將前述偏心量Ecx、Ecy對前述矩形格子的格子間隔Wx、Wy的比率分別設成偏心率δEcx、δEcy時,前述微透鏡之頂點的平面位置是在±10%~±50%以內的偏心率δEcx、δEcy中隨機地偏心。
- 如請求項1或2之擴散板,其中排列在前述X方向及前述Y方向之前述複數個微透鏡之頂點之高度位置為相互不同。
- 如請求項1或2之擴散板,其中排列在前述X方向及前述Y方向之前述微透鏡為相互無間隙而連續地配置。
- 如請求項1或2之擴散板,其中相互鄰接的前述微透鏡的邊界線包含直線及曲線。
- 如請求項1或2之擴散板,其中前述微透鏡陣列是由複數個單位單元形成,前述單位單元是前述微透鏡的基本配置圖案,藉由一邊保持前述複數個單位單元間的邊界部分之前述微透鏡的連續性一 邊無間隙地排列前述複數個單位單元,來構成前述微透鏡陣列。
- 如請求項1或2之擴散板,其中前述微透鏡的表面形狀為球面形狀或是具有前述X方向或前述Y方向之異向性的非球面形狀。
- 一種顯示裝置,具備如請求項1至12中任一項之擴散板。
- 一種投影裝置,具備如請求項1至12中任一項之擴散板。
- 一種照明裝置,具備如請求項1至12中任一項之擴散板。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-194363 | 2019-10-25 | ||
JP2019194363 | 2019-10-25 | ||
JP2020175853A JP2021071721A (ja) | 2019-10-25 | 2020-10-20 | 拡散板、表示装置、投影装置及び照明装置 |
JP2020-175853 | 2020-10-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202122835A TW202122835A (zh) | 2021-06-16 |
TWI854054B true TWI854054B (zh) | 2024-09-01 |
Family
ID=
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180106930A1 (en) | 2015-03-12 | 2018-04-19 | Kuraray Co., Ltd. | Diffuser plate |
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180106930A1 (en) | 2015-03-12 | 2018-04-19 | Kuraray Co., Ltd. | Diffuser plate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6753660B2 (ja) | 拡散板、表示装置、投影装置及び照明装置 | |
US11592156B2 (en) | Diffuser plate, designing method of diffuser plate, manufacturing method of diffuser plate, display device, projection device, and lighting device | |
CN114556168B (zh) | 扩散板、显示装置、投影装置以及照明装置 | |
CN108351437B (zh) | 扩散板、扩散板的设计方法、扩散板的制造方法、显示装置、投影装置和照明装置 | |
KR102501349B1 (ko) | 반사형 확산판, 표시 장치, 투영 장치 및 조명 장치 | |
US11726237B2 (en) | Light diffuser plate, image display device, and lighting device | |
US20230384490A1 (en) | Diffusion plate, display device, projection device, lighting device, and remote sensing light source | |
JP2023152876A (ja) | 拡散板および装置 | |
WO2023042798A1 (ja) | 拡散板、表示装置、投影装置および照明装置 | |
TWI854054B (zh) | 擴散板、顯示裝置、投影裝置及照明裝置 | |
WO2021079923A1 (ja) | 拡散板、表示装置、投影装置及び照明装置 | |
WO2023190682A1 (ja) | 拡散板および装置 | |
WO2023190680A1 (ja) | 拡散板、表示装置、投影装置および照明装置 | |
WO2020059770A1 (ja) | 光拡散板、画像表示装置及び照明装置 |