TWI849033B - Optical elements - Google Patents
Optical elements Download PDFInfo
- Publication number
- TWI849033B TWI849033B TW109100141A TW109100141A TWI849033B TW I849033 B TWI849033 B TW I849033B TW 109100141 A TW109100141 A TW 109100141A TW 109100141 A TW109100141 A TW 109100141A TW I849033 B TWI849033 B TW I849033B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- disposed
- terminal
- optical element
- boron
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 123
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 47
- 229910052796 boron Inorganic materials 0.000 claims abstract description 47
- 239000000758 substrate Substances 0.000 claims abstract description 24
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052580 B4C Inorganic materials 0.000 claims abstract description 20
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052582 BN Inorganic materials 0.000 claims abstract description 18
- 239000010410 layer Substances 0.000 claims description 416
- 238000001900 extreme ultraviolet lithography Methods 0.000 claims description 40
- 238000001514 detection method Methods 0.000 claims description 30
- 239000010703 silicon Substances 0.000 claims description 20
- 229910052710 silicon Inorganic materials 0.000 claims description 17
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 15
- 229910052707 ruthenium Inorganic materials 0.000 claims description 15
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 14
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 9
- 239000011733 molybdenum Substances 0.000 claims description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 7
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 claims description 6
- 239000004408 titanium dioxide Substances 0.000 claims description 6
- 229910000484 niobium oxide Inorganic materials 0.000 claims description 4
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 4
- 239000011247 coating layer Substances 0.000 claims 4
- 238000000151 deposition Methods 0.000 abstract description 93
- 238000000034 method Methods 0.000 abstract description 55
- 238000007740 vapor deposition Methods 0.000 abstract description 18
- 230000008021 deposition Effects 0.000 description 57
- 238000009792 diffusion process Methods 0.000 description 41
- 230000004888 barrier function Effects 0.000 description 40
- 238000005286 illumination Methods 0.000 description 19
- 238000002310 reflectometry Methods 0.000 description 17
- 230000003647 oxidation Effects 0.000 description 16
- 238000007254 oxidation reaction Methods 0.000 description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 15
- 239000004065 semiconductor Substances 0.000 description 13
- 230000005540 biological transmission Effects 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 230000001681 protective effect Effects 0.000 description 10
- 235000012431 wafers Nutrition 0.000 description 9
- 238000013500 data storage Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 238000003384 imaging method Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000003595 spectral effect Effects 0.000 description 7
- 238000000576 coating method Methods 0.000 description 6
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 5
- BFRGSJVXBIWTCF-UHFFFAOYSA-N niobium monoxide Chemical compound [Nb]=O BFRGSJVXBIWTCF-UHFFFAOYSA-N 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- HFLAMWCKUFHSAZ-UHFFFAOYSA-N niobium dioxide Chemical compound O=[Nb]=O HFLAMWCKUFHSAZ-UHFFFAOYSA-N 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- YZCKVEUIGOORGS-UHFFFAOYSA-N Hydrogen atom Chemical compound [H] YZCKVEUIGOORGS-UHFFFAOYSA-N 0.000 description 1
- 229910039444 MoC Inorganic materials 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- GALOTNBSUVEISR-UHFFFAOYSA-N molybdenum;silicon Chemical compound [Mo]#[Si] GALOTNBSUVEISR-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000003121 nonmonotonic effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
本發明大體上係關於半導體光刻。更特定言之,本發明大體上係關於用於EUV光學之覆蓋層。 The present invention generally relates to semiconductor lithography. More particularly, the present invention generally relates to capping layers for EUV optics.
半導體製造業之演進對良率管理且尤其是度量及檢測系統提出更高要求。臨界尺寸不斷縮小,但產業需要減少時間來達成高良率、高價值生產。最少化偵測到一良率問題至將其修復之總時間決定了一半導體製造商之投資報酬率。 The evolution of semiconductor manufacturing places higher demands on yield management and especially on metrology and inspection systems. Critical dimensions continue to shrink, but the industry needs to reduce the time to achieve high-yield, high-value production. Minimizing the total time from detecting a yield problem to fixing it determines the return on investment for semiconductor manufacturers.
製造半導體裝置(諸如邏輯及記憶體裝置)通常包含使用大量製程來處理一半導體晶圓以形成半導體裝置之各種特徵及多個層級。例如,光刻係涉及將一圖案自一倍縮光罩轉印至配置於一半導體晶圓上之一光阻劑之一半導體製程。半導體製程之額外實例包含(但不限於)化學機械拋光(CMP)、蝕刻、沈積及離子植入。多個半導體裝置可依一配置製造於一單一半導體晶圓上且接著分離成個別半導體裝置。 The manufacture of semiconductor devices, such as logic and memory devices, typically involves processing semiconductor wafers using a number of processes to form the various features and multiple layers of the semiconductor devices. For example, photolithography is a semiconductor process that involves transferring a pattern from a reticle to a photoresist disposed on a semiconductor wafer. Additional examples of semiconductor processes include, but are not limited to, chemical mechanical polishing (CMP), etching, deposition, and ion implantation. Multiple semiconductor devices can be fabricated on a single semiconductor wafer in a configuration and then separated into individual semiconductor devices.
極紫外光光刻(EUV)係半導體製造中之一新興光刻技術。EUV系統大致包含一雷射電漿光源及反射光學器件,其大體上包括一控制周圍環境內之鉬(Mo)矽(Si)多層(Mo:Si)。 Extreme ultraviolet lithography (EUV) is an emerging lithography technology in semiconductor manufacturing. EUV systems generally consist of a laser plasma light source and reflective optical devices, which generally include a molybdenum (Mo) silicon (Si) multilayer (Mo:Si) in a controlled ambient environment.
用於EUV輻射之光學器件大體上包含通常為數奈米厚之鉬 及矽之多層堆疊。光學效能因在最上表面上之操作及碳累積期間氧化矽層及鉬層而嚴重降級。施加一覆蓋層(或多個覆蓋層)來防止矽氧化且允許清除碳污染。硼非常適合於此目的,因為其與矽形成一穩定介面,抗氧化,具有低EUV吸收,且可使用低溫濺鍍程序或高溫化學汽相沈積來沈積於連續層中。 Optical devices for EUV radiation generally consist of a multi-layer stack of molybdenum and silicon, typically a few nanometers thick. Optical performance is severely degraded by oxidation of the silicon and molybdenum layers during operation and carbon accumulation on the top surface. A capping layer (or layers) is applied to prevent oxidation of the silicon and to allow removal of carbon contamination. Boron is well suited for this purpose because it forms a stable interface with silicon, is resistant to oxidation, has low EUV absorption, and can be deposited in continuous layers using low-temperature sputtering processes or high-temperature chemical vapor deposition.
既有釕基覆蓋層無法抵抗氧化清潔方法,諸如紫外光臭氧(UVO)及電漿。必須使用原子氫(H)來清潔釕基覆蓋層,其需要大流量之氫氣(H2)。此顯著增加光學系統之費用、設計複雜性及安全風險。 Existing ruthenium-based coatings are not resistant to oxidative cleaning methods such as ultraviolet ozone (UVO) and plasma. Atomic hydrogen (H) must be used to clean ruthenium-based coatings, which requires large flows of hydrogen (H 2 ). This significantly increases the cost, design complexity, and safety risks of the optical system.
既有金屬氧化物覆蓋層(例如二氧化鈦(TiO2)、氧化鋯(ZrO2)及五氧化二鈮(Nb2O5))能抵抗氧化清潔,但其比硼吸收更多EUV光。由此,其必須小於約3nm厚。此無法提供充分保護下伏矽免於在EUV曝光期間氧化。 Existing metal oxide capping layers such as titanium dioxide ( TiO2 ), zirconium oxide ( ZrO2 ) and niobium pentoxide ( Nb2O5 ) are resistant to oxidative cleaning, but absorb EUV light more than boron. Therefore, they must be less than about 3nm thick. This does not provide adequate protection for the underlying silicon from oxidation during EUV exposure.
因此,需要用於EUV光學之改良覆蓋層。 Therefore, improved capping layers for EUV optics are needed.
本文揭示用於EUV光學之硼基覆蓋層及其製造方法。 This article discloses a boron-based capping layer for EUV optics and a method for making the same.
在一實施例中,一種光學元件可包括安置於一基板上之一第一層、安置於該第一層上之一第二層、安置於該第二層上之一終端層及安置該終端層上之一覆蓋層。可存在一單一第一層及一單一第二層,或可存在多個該第一層或多個該第二層。 In one embodiment, an optical element may include a first layer disposed on a substrate, a second layer disposed on the first layer, a terminal layer disposed on the second layer, and a cover layer disposed on the terminal layer. There may be a single first layer and a single second layer, or there may be multiple first layers or multiple second layers.
在另一實施例中,提供一種製造一光學元件之方法。該方法可包含沈積一第一層、沈積一第二層、沈積一終端層及沈積一覆蓋層。該第一層可使用汽相沈積來沈積且可經沈積使得其安置於一基板上。該第二層可使用汽相沈積來沈積且可經沈積使得其安置於該第一層上。該終端 層可使用汽相沈積來沈積且可經沈積使得其安置於該第二層上。可存在一單一第一層及一單一第二層,或可存在多個該第一層或多個該第二層。該覆蓋層可使用汽相沈積來沈積且可經沈積使得其安置於該終端層上。 In another embodiment, a method of manufacturing an optical element is provided. The method may include depositing a first layer, depositing a second layer, depositing a terminal layer, and depositing a cap layer. The first layer may be deposited using vapor deposition and may be deposited so that it is disposed on a substrate. The second layer may be deposited using vapor deposition and may be deposited so that it is disposed on the first layer. The terminal layer may be deposited using vapor deposition and may be deposited so that it is disposed on the second layer. There may be a single first layer and a single second layer, or there may be multiple first layers or multiple second layers. The cover layer may be deposited using vapor deposition and may be deposited such that it is disposed over the termination layer.
該方法可進一步包括沈積一擴散障壁。該擴散障壁可使用汽相沈積來沈積且可經沈積使得該擴散障壁安置於該終端層上且該覆蓋層安置於該擴散障壁上。 The method may further include depositing a diffusion barrier. The diffusion barrier may be deposited using vapor phase deposition and may be deposited such that the diffusion barrier is disposed on the terminal layer and the cover layer is disposed on the diffusion barrier.
該方法可進一步包括使用汽相沈積來沈積一終端覆蓋層。該終端覆蓋層可經沈積使得該終端覆蓋層安置於該覆蓋層上。 The method may further include depositing a terminal cover layer using vapor deposition. The terminal cover layer may be deposited such that the terminal cover layer is disposed on the cover layer.
該覆蓋層可包括硼、氮化硼或碳化硼或其等之任何組合。 The coating may include boron, boron nitride or boron carbide or any combination thereof.
該覆蓋層可使用磁控濺鍍來沈積。 The cover layer can be deposited using magnetron sputtering.
該光學元件可構成包含該光學元件之一極紫外光光刻系統。替代地,該光學元件可構成包含該光學元件之一檢測系統。 The optical element may constitute an extreme ultraviolet lithography system including the optical element. Alternatively, the optical element may constitute a detection system including the optical element.
該覆蓋層可包括硼。該覆蓋層可具有或可沈積至自5nm至30nm之範圍(含5nm及30nm)內之一厚度。 The capping layer may include boron. The capping layer may have or may be deposited to a thickness in the range of from 5 nm to 30 nm (inclusive).
該覆蓋層可包括氮化硼。該覆蓋層可具有或可沈積至自2nm至10nm之範圍(含2nm及10nm)內之一厚度。 The capping layer may include boron nitride. The capping layer may have or may be deposited to a thickness in the range of from 2 nm to 10 nm (inclusive).
該覆蓋層可包括碳化硼。該覆蓋層可具有或可沈積至自2nm至25nm之範圍(含2nm及25nm)內之一厚度。 The capping layer may include boron carbide. The capping layer may have or may be deposited to a thickness in the range of from 2 nm to 25 nm (inclusive).
該光學元件可進一步包括一擴散障壁。該擴散障壁可安置於該終端層上且可使得該覆蓋層安置於該擴散障壁上。 The optical element may further include a diffusion barrier. The diffusion barrier may be disposed on the terminal layer and the cover layer may be disposed on the diffusion barrier.
該擴散障壁可包括碳。 The diffusion barrier may include carbon.
該光學元件可包括一終端覆蓋層。該終端覆蓋層可安置於該覆蓋層上。 The optical element may include a terminal covering layer. The terminal covering layer may be disposed on the covering layer.
該終端覆蓋層可包括釕、二氧化鈦、二氧化鋯或氧化鈮或其等之任何組合。 The terminal coating may include ruthenium, titanium dioxide, zirconium dioxide or niobium oxide or any combination thereof.
100:基板 100: Substrate
101:第一層 101: First level
102:第二層 102: Second level
103:序列 103: Sequence
104:終端層 104: Terminal layer
105:擴散障壁 105: Diffusion barrier
106:覆蓋層 106: Covering layer
107:終端覆蓋層 107: Terminal covering layer
110:光學元件 110: Optical components
120:光學元件 120: Optical components
130:光學元件 130:Optical components
140:光學元件 140:Optical components
201:沈積步驟 201:Deposition Steps
202:沈積步驟 202:Deposition step
203:重複 203: Repeat
204:沈積步驟 204:Deposition Steps
205:沈積步驟 205:Deposition Steps
206:沈積步驟 206:Deposition Steps
207:沈積步驟 207:Deposition Steps
210:方法 210: Methods
220:方法 220:Methods
230:方法 230:Methods
240:方法 240:Methods
300:作圖 300: Drawing
301:曲線 301:Curve
302:曲線 302:Curve
303:曲線 303:Curve
304:下限RCrit 304: Lower limit R Crit
305:上限RCrit 305: Upper limit R Crit
400:作圖 400: Drawing
401:圖線 401:Graph
402:圖線 402:Graph
403:圖線 403:Graph
500:系統 500:System
501:基於光學之子系統 501: Optical-based subsystem
502:樣品 502: Sample
503:光源 503: Light source
504:光學元件 504:Optical components
505:透鏡 505: Lens
506:載台 506: Carrier
507:收集器 507: Collector
508:元件 508: Components
509:偵測器 509: Detector
510:收集器 510: Collector
511:元件 511: Components
512:偵測器 512: Detector
513:分束器 513: Beam splitter
514:處理器 514: Processor
515:電子資料儲存單元 515: Electronic data storage unit
為較完全理解本發明之本質及目的,應參考結合附圖之以下詳細描述,其中:圖1A繪示具有一保護覆蓋層之一光學元件;圖1B繪示具有一保護覆蓋層之一光學元件;圖1C繪示具有一保護覆蓋層之一光學元件;圖1D繪示具有一保護覆蓋層之一光學元件;圖2A繪示形成具有一保護覆蓋層之一光學元件之一方法;圖2B繪示形成具有一保護覆蓋層之一光學元件之一方法;圖2C繪示形成具有一保護覆蓋層之一光學元件之一方法;圖2D繪示形成具有一保護覆蓋層之一光學元件之一方法;圖3繪示依據覆蓋層厚度而變化之一典型光學元件之反射率之一作圖;圖4繪示一繪示性光學系統之計算傳輸;及圖5繪示根據本發明之實施例之一光學系統。 In order to more fully understand the nature and purpose of the present invention, reference should be made to the following detailed description in conjunction with the accompanying drawings, in which: FIG. 1A shows an optical element having a protective covering layer; FIG. 1B shows an optical element having a protective covering layer; FIG. 1C shows an optical element having a protective covering layer; FIG. 1D shows an optical element having a protective covering layer; FIG. 2A shows a method of forming an optical element having a protective covering layer; FIG. 2B shows FIG. 2C shows a method of forming an optical element having a protective covering layer; FIG. 2D shows a method of forming an optical element having a protective covering layer; FIG. 3 shows a plot of the reflectivity of a typical optical element as a function of the thickness of the covering layer; FIG. 4 shows a calculated transmission of an illustrative optical system; and FIG. 5 shows an optical system according to an embodiment of the present invention.
本申請案主張2019年1月4日申請之美國臨時申請案第62/788,330號的優先權,該案之全部內容係以引用的方式併入本文中。 This application claims priority to U.S. Provisional Application No. 62/788,330 filed on January 4, 2019, the entire contents of which are incorporated herein by reference.
儘管將依據特定實施例來描述本發明,但其他實施例(包含 未提供本文所闡述之所有益處及特徵之實施例)亦在本發明之範疇內。可在不背離本發明之範疇之情況下進行各種結構、邏輯、程序步驟及電子改變。因此,本發明之範疇僅藉由參考隨附申請專利範圍來界定。 Although the present invention will be described in terms of specific embodiments, other embodiments (including embodiments that do not provide all of the benefits and features described herein) are also within the scope of the present invention. Various structural, logical, process step and electrical changes may be made without departing from the scope of the present invention. Therefore, the scope of the present invention is defined solely by reference to the scope of the attached patent application.
本文揭示值之範圍。範圍設定一下限值及一上限值。除非另有說明,否則範圍包含所有值至最小值(下限值或上限值)之量值及所述範圍之值之間的範圍。 This document discloses a range of values. A range specifies a lower limit and an upper limit. Unless otherwise specified, a range includes all values up to the minimum value (lower limit or upper limit) and the range between the values of the range.
除非另有指示,否則本文所提供之所有範圍包含落入範圍內之所有值至第十小數位。 Unless otherwise indicated, all ranges provided herein include all values within the range to the tenth decimal place.
EUV光學會因成分矽層及鉬層氧化及碳(C)累積而嚴重降級。硼(B)基材料(如純硼(B)、氮化硼(BN)及碳化硼(B4C))可沈積於與矽形成強鍵之密集厚層中以在EUV曝光期間抗氧化且實現碳污染清除。碳化硼已長期用作為其他材料之間的一薄(<2nm)緩衝層以防止擴散。因此,本文揭示含有用於EUV光學之硼之保護層或覆蓋層,其厚度可大於約2nm至約4nm。 EUV optics is severely degraded by oxidation and carbon (C) accumulation of constituent silicon and molybdenum layers. Boron (B) based materials such as pure boron (B), boron nitride (BN), and boron carbide ( B4C ) can be deposited in dense thick layers that form strong bonds with silicon to resist oxidation and enable carbon contamination removal during EUV exposure. Boron carbide has long been used as a thin (<2nm) buffer layer between other materials to prevent diffusion. Therefore, a protective layer or capping layer containing boron for EUV optics is disclosed herein, which may be greater than about 2nm to about 4nm thick.
硼基保護層高度抗氧化,可用作為一覆蓋或緩衝層以防止矽氧化,且可形成一表面上之碳化硼之一鈍化層以減少進一步碳污染。其可藉由分子氫、氫電漿、UVO或其他紫外光(UV)活化氧化清潔、真空紫外光(VUV)活化氧化清潔或EUV活化氧化清潔、氧電漿或其他電漿來清潔至原子級。其具有比大多數其他覆蓋材料低之一EUV吸收。此允許一較厚保護層。硼之獨特光學性質與EUV光學之相長干涉交互作用以產生8nm至12nm之間的硼層厚度之提高反射率。硼基保護層可用作為一分佈式光譜純度濾波器以抑制約130nm至約430nm之範圍內之帶外反射率,其與釕(Ru)覆蓋光學之13.5nm反射率相當。 Boron-based protective layers are highly resistant to oxidation and can be used as a cap or buffer layer to prevent silicon oxidation, and can form a passivation layer of boron carbide on a surface to reduce further carbon contamination. It can be cleaned to the atomic level by molecular hydrogen, hydrogen plasma, UVO or other ultraviolet (UV) activated oxidation cleaning, vacuum ultraviolet (VUV) activated oxidation cleaning or EUV activated oxidation cleaning, oxygen plasma or other plasma. It has a lower EUV absorption than most other capping materials. This allows a thicker protective layer. The unique optical properties of boron interact with the constructive interference of EUV optics to produce enhanced reflectivity for boron layer thicknesses between 8nm and 12nm. The boron-based protective layer can be used as a distributed spectral purity filter to suppress out-of-band reflectivity in the range of about 130nm to about 430nm, which is comparable to the 13.5nm reflectivity of ruthenium (Ru) covered optics.
硼之獨特光學性質與EUV光學之相長干涉交互作用以引起反射率隨硼厚度增大於約7nm至約10nm之間而提高。約9nm至約10nm之間的所得局部反射率最大值僅比絕對最大值低3.5%。類似諧振效應不發生或導致金屬氧化物或釕覆蓋材料之低很多之局部最大反射率。 The unique optical properties of boron interact with the constructive interference of EUV optics to cause reflectivity to increase with increasing boron thickness between about 7 nm and about 10 nm. The resulting local reflectivity maximum between about 9 nm and about 10 nm is only 3.5% below the absolute maximum. Similar resonance effects do not occur or result in much lower local maximum reflectivity for metal oxide or ruthenium capping materials.
約200nm至約400nm之範圍內之典型釕覆蓋鉬矽多層之帶外反射率與13.5nm處之帶內反射率相當。覆蓋大於5nm之硼使帶外反射率與帶內發射率之此比率減小十倍以上以減少無用光到達偵測器。 The out-of-band reflectivity of a typical ruthenium-coated molybdenum silicon multilayer in the range of about 200nm to about 400nm is comparable to the in-band reflectivity at 13.5nm. Boron coverage greater than 5nm reduces this ratio of out-of-band reflectivity to in-band emissivity by more than a factor of ten to reduce the amount of unwanted light reaching the detector.
本文所揭示之實施例包含用於EUV光學之硼基保護覆蓋層及其製造方法。硼基保護覆蓋層可為包含光學元件之一EUV光刻系統之一組件。 Embodiments disclosed herein include a boron-based protective capping layer for EUV optics and a method for making the same. The boron-based protective capping layer may be a component of an EUV lithography system including an optical element.
如圖1A中所繪示,本發明之一實施例可為用於EUV光刻中之一光學元件110。光學元件110可包括一第一層101及安置於第一層101上之一第二層102之一序列103,其安置於一基板100上。序列103中可僅存在第一層101及第二層102之各一者,或序列103中可存在n個第一層101及n個第二層102。一終端層104可安置於序列103上,若僅存在一單一第二層102,則終端層104可安置於第二層102上;若存在n個第二層102,則終端層104可安置於第n第二層102上。一覆蓋層106可安置於終端層104上。在此例項中,光學元件110之基板上之層序列可為:(i)一或多個第一層101及第二層102、(ii)終端層104及(iii)覆蓋層106。 As shown in FIG. 1A , an embodiment of the present invention may be an optical element 110 for use in EUV lithography. The optical element 110 may include a first layer 101 and a sequence 103 of a second layer 102 disposed on the first layer 101, which is disposed on a substrate 100. There may be only one of each of the first layer 101 and the second layer 102 in the sequence 103, or there may be n first layers 101 and n second layers 102 in the sequence 103. A terminal layer 104 may be disposed on the sequence 103, if there is only a single second layer 102, the terminal layer 104 may be disposed on the second layer 102; if there are n second layers 102, the terminal layer 104 may be disposed on the nth second layer 102. A cover layer 106 may be disposed on the terminal layer 104. In this example, the sequence of layers on the substrate of the optical element 110 may be: (i) one or more first layers 101 and second layers 102, (ii) the terminal layer 104, and (iii) the cover layer 106.
如圖1B中所繪示,本發明之一實施例可為用於EUV光刻中之一光學元件120。光學元件120可類似於光學元件110,但其可另外包含一擴散障壁105。依此方式,光學元件120可包括一第一層101及安置於第一層101上之一第二層102之一序列103,其安置於一基板100上。序列103 中可僅存在第一層101及第二層102之各一者,或序列103中可存在n個第一層101及n個第二層102。一終端層104可安置於序列103上,若僅存在一單一第二層102,則終端層104可安置於第二層102上;若存在n個第二層102,則終端層104可安置於第n第二層102上。一覆蓋層106可安置於終端層104上,但擴散障壁105介於終端層104與覆蓋層106之間,使得擴散障壁105安置於終端層104上且覆蓋層106安置於擴散障壁105上。換言之,光學元件120可包含安置於終端層104上之擴散障壁105,使得覆蓋層106安置於擴散障壁105上。在此例項中,光學元件120之基板上之層序列可為:(i)一或多個第一層101及第二層102、(ii)終端層104、(iii)擴散障壁105及(iv)覆蓋層106。 As shown in FIG. 1B , an embodiment of the present invention may be an optical element 120 for use in EUV lithography. The optical element 120 may be similar to the optical element 110 , but it may additionally include a diffusion barrier 105 . In this manner, the optical element 120 may include a first layer 101 and a sequence 103 of a second layer 102 disposed on the first layer 101 , which is disposed on a substrate 100 . There may be only one of each of the first layer 101 and the second layer 102 in the sequence 103 , or there may be n first layers 101 and n second layers 102 in the sequence 103 . A terminal layer 104 may be disposed on the sequence 103. If there is only a single second layer 102, the terminal layer 104 may be disposed on the second layer 102; if there are n second layers 102, the terminal layer 104 may be disposed on the nth second layer 102. A cover layer 106 may be disposed on the terminal layer 104, but the diffusion barrier 105 is disposed between the terminal layer 104 and the cover layer 106, so that the diffusion barrier 105 is disposed on the terminal layer 104 and the cover layer 106 is disposed on the diffusion barrier 105. In other words, the optical element 120 may include a diffusion barrier 105 disposed on the terminal layer 104, such that the cover layer 106 is disposed on the diffusion barrier 105. In this example, the layer sequence on the substrate of the optical element 120 may be: (i) one or more first layers 101 and second layers 102, (ii) the terminal layer 104, (iii) the diffusion barrier 105, and (iv) the cover layer 106.
如圖1C中所繪示,本發明之一實施例可為用於EUV光刻中之一光學元件130。光學元件130可類似於光學元件110,但其可另外包含一終端覆蓋層107。依此方式,光學元件130可包括一第一層101及安置於第一層101上之一第二層102之一序列103,其安置於一基板100上。序列103中可僅存在第一層101及第二層102之各一者,或序列103中可存在n個第一層101及n個第二層102。一終端層104可安置於序列103上,若僅存在一單一第二層102,則終端層104可安置於第二層102上;若存在n個第二層102,則終端層104可安置於第n第二層102上。一覆蓋層106可安置於終端層104上。一終端覆蓋層107可安置於覆蓋層106上。在此例項中,光學元件130之基板上之層序列可為:(i)一或多個第一層101及第二層102、(ii)終端層104、(iii)覆蓋層106及(iv)終端覆蓋層107。 As shown in FIG. 1C , an embodiment of the present invention may be an optical element 130 for use in EUV lithography. The optical element 130 may be similar to the optical element 110, but it may additionally include a terminal capping layer 107. In this manner, the optical element 130 may include a first layer 101 and a sequence 103 of a second layer 102 disposed on the first layer 101, which is disposed on a substrate 100. There may be only one of each of the first layer 101 and the second layer 102 in the sequence 103, or there may be n first layers 101 and n second layers 102 in the sequence 103. A terminal layer 104 may be disposed on the sequence 103. If there is only a single second layer 102, the terminal layer 104 may be disposed on the second layer 102; if there are n second layers 102, the terminal layer 104 may be disposed on the nth second layer 102. A cover layer 106 may be disposed on the terminal layer 104. A terminal cover layer 107 may be disposed on the cover layer 106. In this example, the sequence of layers on the substrate of the optical element 130 may be: (i) one or more first layers 101 and second layers 102, (ii) terminal layer 104, (iii) cover layer 106, and (iv) terminal cover layer 107.
如圖1D中所繪示,本發明之一實施例可為用於EUV光刻中之一光學元件140。光學元件140可類似於光學元件110,但其可另外包含 一擴散障壁105及一終端覆蓋層107。依此方式,光學元件140可包括一第一層101及安置於第一層101上之一第二層102之一序列103,其安置於一基板100上。序列103中可僅存在第一層101及第二層102之各一者,或序列103中可存在n個第一層101及n個第二層102。一終端層104可安置於序列103上,若僅存在一單一第二層102,則終端層104可安置於第二層102上;若存在n個第二層102,則終端層104可安置於第n第二層102上。一覆蓋層106可安置於終端層104上,但擴散障壁105介於終端層104與覆蓋層106之間,使得擴散障壁105安置於終端層104上且覆蓋層106安置於擴散障壁105上。換言之,光學元件120可包含安置於終端層104上之擴散障壁105,使得覆蓋層106安置於擴散障壁105上。一終端覆蓋層107可安置於覆蓋層106上。在此例項中,光學元件140之基板上之層序列可為:(i)一或多個第一層101及第二層102、(ii)終端層104、(iii)擴散障壁105、(iv)覆蓋層106及(v)終端覆蓋層107。 As shown in FIG. 1D , an embodiment of the present invention may be an optical element 140 for use in EUV lithography. Optical element 140 may be similar to optical element 110, but it may additionally include a diffusion barrier 105 and a terminal capping layer 107. In this manner, optical element 140 may include a first layer 101 and a sequence 103 of a second layer 102 disposed on the first layer 101, which is disposed on a substrate 100. There may be only one of each of the first layer 101 and the second layer 102 in the sequence 103, or there may be n first layers 101 and n second layers 102 in the sequence 103. A terminal layer 104 may be disposed on the sequence 103. If there is only a single second layer 102, the terminal layer 104 may be disposed on the second layer 102; if there are n second layers 102, the terminal layer 104 may be disposed on the nth second layer 102. A cover layer 106 may be disposed on the terminal layer 104, but the diffusion barrier 105 is disposed between the terminal layer 104 and the cover layer 106, so that the diffusion barrier 105 is disposed on the terminal layer 104 and the cover layer 106 is disposed on the diffusion barrier 105. In other words, the optical element 120 may include a diffusion barrier 105 disposed on the terminal layer 104, such that the cover layer 106 is disposed on the diffusion barrier 105. A terminal cover layer 107 may be disposed on the cover layer 106. In this example, the layer sequence on the substrate of the optical element 140 may be: (i) one or more first layers 101 and second layers 102, (ii) terminal layer 104, (iii) diffusion barrier 105, (iv) cover layer 106, and (v) terminal cover layer 107.
本發明之其他實施例係用於製造用於EUV光刻中之一光學元件之方法。 Other embodiments of the present invention are methods for manufacturing an optical element for use in EUV lithography.
如圖2A中所繪示,本發明之一實施例可為用於製造用於EUV光刻中之一光學元件之一方法210。方法210可用於(例如)製造光學元件110。方法210可包括沈積一第一層使得第一層可安置於一基板上之沈積步驟201,其可使用(例如)汽相沈積來完成。接著可為沈積一第二層使得第二層可安置於第一層上之沈積步驟202,其可使用(例如)汽相沈積來完成。可視情況沈積高達及包含n個第一層及n個第二層之額外第一層及第二層。因此,針對n個所要第一層及n個所要第二層,可存在沈積第一層及第二層之m次重複203,其中m=n-1。依此方式,初始第一層之後的各額 外第m第一層可安置於先前第m-1第二層上,直至n個第一層及n個第二層。接著可為沈積一終端層使得終端層可安置於第二層上之沈積步驟204。應注意,當可僅存在一個第二層時,終端層可經沈積使得其可安置於第二層上,及當存在n個第二層時,終端層可經沈積使得其可安置於第n第二層上。接著可為沈積一覆蓋層使得覆蓋層可安置於終端層上之沈積步驟206。在此例項中,當完成時,根據方法210所產生之基板上之層序列可為:(i)一或多個第一層及第二層、(ii)一終端層及(iii)一覆蓋層。 As shown in FIG. 2A , an embodiment of the present invention may be a method 210 for fabricating an optical element for use in EUV lithography. The method 210 may be used, for example, to fabricate the optical element 110. The method 210 may include a deposition step 201 of depositing a first layer such that the first layer may be disposed on a substrate, which may be accomplished using, for example, vapor deposition. This may be followed by a deposition step 202 of depositing a second layer such that the second layer may be disposed on the first layer, which may be accomplished using, for example, vapor deposition. Additional first and second layers up to and including n first layers and n second layers may be deposited as appropriate. Thus, for n desired first layers and n desired second layers, there may be m repetitions 203 of depositing first layers and second layers, where m=n-1. In this manner, each additional mth first layer after the initial first layer may be disposed on the previous m-1th second layer, up to n first layers and n second layers. This may be followed by a deposition step 204 of depositing a terminal layer such that the terminal layer may be disposed on the second layer. It should be noted that when there may be only one second layer, the terminal layer may be deposited such that it may be disposed on the second layer, and when there are n second layers, the terminal layer may be deposited such that it may be disposed on the nth second layer. This may be followed by a deposition step 206 of a capping layer such that the capping layer may be disposed on the terminal layer. In this example, when completed, the sequence of layers on the substrate produced according to method 210 may be: (i) one or more first layers and second layers, (ii) a terminal layer, and (iii) a capping layer.
如圖2B中所繪示,本發明之一實施例可為用於製造用於EUV光刻中之一光學元件之一方法220。方法220可類似於方法210,但其可另外包含用於沈積一擴散障壁之一沈積步驟205。方法220可用於(例如)製造光學元件120。方法220可包括沈積一第一層使得第一層可安置於一基板上之沈積步驟201,其可使用(例如)汽相沈積來完成。接著可為沈積一第二層使得第二層可安置於第一層上之沈積步驟202,其可使用(例如)汽相沈積來完成。可視情況沈積高達及包含n個第一層及n個第二層之額外第一層及第二層。因此,針對n個所要第一層及n個所要第二層,可存在沈積第一層及第二層之m次重複203,其中m=n-1。依此方式,初始第一層之後的各額外第m第一層可安置於先前第m-1第二層上,直至n個第一層及n個第二層。接著可為沈積一終端層使得終端層可安置於第二層上之沈積步驟204。應注意,當可僅存在一個第二層時,終端層可經沈積使得其可安置於第二層上,及當存在n個第二層時,終端層可經沈積使得其可安置於第n第二層上。接著可為沈積一覆蓋層使得覆蓋層可安置於終端層上之沈積步驟206,但在沈積步驟206之前,可執行沈積步驟205。沈積步驟205可包含沈積一擴散障壁使得擴散障壁可安置於終端層上,且在沈積步 驟206之後,覆蓋層可安置於擴散障壁上。在此例項中,當完成時,根據方法210所產生之基板上之層序列可為:(i)一或多個第一層及第二層、(ii)一終端層、(iii)一擴散障壁及(iv)一覆蓋層。 As shown in FIG. 2B , an embodiment of the present invention may be a method 220 for fabricating an optical element for use in EUV lithography. Method 220 may be similar to method 210, but it may additionally include a deposition step 205 for depositing a diffusion barrier. Method 220 may be used, for example, to fabricate optical element 120. Method 220 may include a deposition step 201 of depositing a first layer such that the first layer may be disposed on a substrate, which may be accomplished using, for example, vapor deposition. This may be followed by a deposition step 202 of depositing a second layer such that the second layer may be disposed on the first layer, which may be accomplished using, for example, vapor deposition. Additional first and second layers may be deposited up to and including n first layers and n second layers. Thus, for n desired first layers and n desired second layers, there may be m repetitions 203 of depositing first and second layers, where m=n-1. In this manner, each additional mth first layer after the initial first layer may be placed on the previous m-1th second layer, up to n first layers and n second layers. This may be followed by a deposition step 204 of depositing a terminal layer such that the terminal layer may be placed on the second layer. It should be noted that when there may be only one second layer, the terminal layer may be deposited so that it may be disposed on the second layer, and when there are n second layers, the terminal layer may be deposited so that it may be disposed on the nth second layer. This may be followed by a deposition step 206 of depositing a cover layer so that the cover layer may be disposed on the terminal layer, but before the deposition step 206, the deposition step 205 may be performed. The deposition step 205 may include depositing a diffusion barrier so that the diffusion barrier may be disposed on the terminal layer, and after the deposition step 206, the cover layer may be disposed on the diffusion barrier. In this example, when completed, the sequence of layers on the substrate produced according to method 210 may be: (i) one or more first layers and second layers, (ii) a termination layer, (iii) a diffusion barrier, and (iv) a capping layer.
如圖2C中所繪示,本發明之一實施例可為用於製造用於EUV光刻中之一光學元件之一方法230。方法230可類似於方法210,但其可另外包含用於沈積一終端覆蓋層之一沈積步驟207。方法230可用於(例如)製造光學元件130。方法230可包括沈積一第一層使得第一層可安置於一基板上之沈積步驟201,其可使用(例如)汽相沈積來完成。接著可為沈積一第二層使得第二層可安置於第一層上之沈積步驟202,其可使用(例如)汽相沈積來完成。可視情況沈積高達及包含n個第一層及n個第二層之額外第一層及第二層。因此,針對n個所要第一層及n個所要第二層,可存在沈積第一層及第二層之m次重複203,其中m=n-1。依此方式,初始第一層之後的各額外第m第一層可安置於先前第m-1第二層上,直至n個第一層及n個第二層。接著可為沈積一終端層使得終端層可安置於第二層上之沈積步驟204。應注意,當可僅存在一個第二層時,終端層可經沈積使得其可安置於第二層上,及當在存在n個第二層時,終端層可經沈積使得其可安置於第n第二層上。接著可為沈積一覆蓋層使得覆蓋層可安置於終端層上之沈積步驟206。接著可為沈積一終端覆蓋層使得終端覆蓋層可安置於覆蓋層上之沈積步驟207。在此例項中,當完成時,根據方法210所產生之基板上之層序列可為:(i)一或多個第一層及第二層、(ii)一終端層、(iii)一覆蓋層及(iv)一終端覆蓋層。 As shown in FIG. 2C , an embodiment of the present invention may be a method 230 for fabricating an optical element for use in EUV lithography. Method 230 may be similar to method 210, but it may additionally include a deposition step 207 for depositing a terminal capping layer. Method 230 may be used, for example, to fabricate optical element 130. Method 230 may include a deposition step 201 of depositing a first layer such that the first layer may be disposed on a substrate, which may be accomplished using, for example, vapor deposition. This may be followed by a deposition step 202 of depositing a second layer such that the second layer may be disposed on the first layer, which may be accomplished using, for example, vapor deposition. Additional first and second layers may be deposited up to and including n first layers and n second layers. Thus, for n desired first layers and n desired second layers, there may be m repetitions 203 of depositing first and second layers, where m=n-1. In this manner, each additional mth first layer after the initial first layer may be placed on the previous m-1th second layer, up to n first layers and n second layers. This may be followed by a deposition step 204 of depositing a terminal layer such that the terminal layer may be placed on the second layer. It should be noted that when there may be only one second layer, the terminal layer may be deposited so that it may be disposed on the second layer, and when there are n second layers, the terminal layer may be deposited so that it may be disposed on the nth second layer. This may be followed by a deposition step 206 of depositing a cover layer so that the cover layer may be disposed on the terminal layer. This may be followed by a deposition step 207 of depositing a terminal cover layer so that the terminal cover layer may be disposed on the cover layer. In this example, when completed, the sequence of layers on the substrate produced according to method 210 may be: (i) one or more first layers and second layers, (ii) a terminal layer, (iii) a cap layer, and (iv) a terminal cap layer.
如圖2D中所繪示,本發明之一實施例可為用於製造用於EUV光刻中之一光學元件之一方法240。方法240可類似於方法210,但其 可另外包含用於沈積一擴散障壁之一沈積步驟205,及用於沈積一終端覆蓋層之沈積步驟207。方法240可用於(例如)製造光學元件140。方法240可包括沈積一第一層,使得第一層可被安置於一基板上之沈積步驟201,其可使用(例如)汽相沈積來完成。接著可為沈積一第二層,使得第二層可被安置於第一層上之沈積步驟202,其可使用(例如)汽相沈積來完成。可視情況沈積高達及包含n個第一層及n個第二層之額外第一層及第二層。因此,針對n個所要第一層及n個所要第二層,可存在沈積第一層及第二層之m次重複203,其中m=n-1。依此方式,初始第一層之後的各額外第m第一層可被安置於先前第m-1第二層上,直至n個第一層及n個第二層。接著可為沈積一終端層使得終端層可被安置於第二層上之沈積步驟204。應注意,當可僅存在一個第二層時,終端層可經沈積使得其可被安置於第二層上,及當存在n個第二層時,終端層可沈積使得其可被安置於第n第二層上。接著可為沈積一覆蓋層使得覆蓋層可被安置於終端層上之沈積步驟206,但在沈積步驟206之前,可執行沈積步驟205。沈積步驟205可包含沈積一擴散障壁,使得擴散障壁可被安置於終端層上,且在沈積步驟206之後,覆蓋層可被安置於擴散障壁上。接著可為沈積一終端覆蓋層使得終端覆蓋層可被安置於覆蓋層上之沈積步驟207。在此例項中,當完成時,根據方法210所產生之基板上的層序列可為:(i)一或多個第一層及第二層、(ii)一終端層、(iii)一擴散障壁、(iv)一覆蓋層,及(v)一終端覆蓋層。 As shown in FIG. 2D , an embodiment of the present invention may be a method 240 for fabricating an optical element for use in EUV lithography. Method 240 may be similar to method 210, but it may additionally include a deposition step 205 for depositing a diffusion barrier, and a deposition step 207 for depositing a terminal capping layer. Method 240 may be used, for example, to fabricate optical element 140. Method 240 may include a deposition step 201 of depositing a first layer such that the first layer may be disposed on a substrate, which may be accomplished using, for example, vapor deposition. This may be followed by a deposition step 202 of depositing a second layer such that the second layer may be disposed on the first layer, which may be accomplished using, for example, vapor deposition. Additional first and second layers may be deposited up to and including n first layers and n second layers. Thus, for n desired first layers and n desired second layers, there may be m repetitions 203 of depositing first and second layers, where m=n-1. In this way, each additional mth first layer after the initial first layer may be placed on the previous m-1th second layer, up to n first layers and n second layers. This may be followed by a deposition step 204 of depositing a terminal layer such that the terminal layer may be placed on the second layer. It should be noted that when there may be only one second layer, the terminal layer may be deposited so that it may be disposed on the second layer, and when there are n second layers, the terminal layer may be deposited so that it may be disposed on the nth second layer. This may be followed by a deposition step 206 of depositing a cover layer so that the cover layer may be disposed on the terminal layer, but before the deposition step 206, the deposition step 205 may be performed. The deposition step 205 may include depositing a diffusion barrier so that the diffusion barrier may be disposed on the terminal layer, and after the deposition step 206, the cover layer may be disposed on the diffusion barrier. A terminal capping layer may then be deposited such that the terminal capping layer may be disposed on the capping layer in a deposition step 207. In this example, when completed, the sequence of layers on the substrate produced according to method 210 may be: (i) one or more first layers and second layers, (ii) a terminal layer, (iii) a diffusion barrier, (iv) a capping layer, and (v) a terminal capping layer.
沈積步驟201可為(例如)圖1A至圖1D中所繪示之一第一層101的沈積。沈積步驟202可為(例如)圖1A至圖1D中所繪示之一第二層102的沈積。重複203可為(例如)形成圖1A至圖1D中所繪示之一序列103。沈積步驟204可為(例如)圖1A至圖1D中所繪示之一終端層104的沈積。沈積 步驟205可為(例如)圖1B及圖1D中所繪示之一擴散障壁105的沈積。沈積步驟206可為(例如)圖1A至圖1D中所繪示之一覆蓋層106的沈積。沈積步驟207可為(例如)圖1C及圖1D中所繪示之一終端覆蓋層107的沈積。 Deposition step 201 may be, for example, deposition of a first layer 101 as shown in FIGS. 1A to 1D. Deposition step 202 may be, for example, deposition of a second layer 102 as shown in FIGS. 1A to 1D. Repetition 203 may be, for example, formation of a sequence 103 as shown in FIGS. 1A to 1D. Deposition step 204 may be, for example, deposition of a termination layer 104 as shown in FIGS. 1A to 1D. Deposition step 205 may be, for example, deposition of a diffusion barrier 105 as shown in FIGS. 1B and 1D. Deposition step 206 may be, for example, deposition of a capping layer 106 as shown in FIGS. 1A to 1D. The deposition step 207 may be, for example, the deposition of a terminal capping layer 107 as shown in FIG. 1C and FIG. 1D .
根據本文所描述之方法之任何者之沈積可尤其為汽相沈積、物理汽相沈積、化學汽相沈積、濺鍍或磁控濺鍍。 Deposition according to any of the methods described herein may in particular be vapor deposition, physical vapor deposition, chemical vapor deposition, sputtering or magnetron sputtering.
(若干)第一層101(其亦可指稱使用沈積步驟201所沈積之一或多個第一層)可包括(例如)矽(Si)。 The first layer(s) 101 (which may also refer to one or more first layers deposited using deposition step 201) may include, for example, silicon (Si).
(若干)第二層102(其亦可指稱使用沈積步驟202所沈積之一或多個第二層)可包括(例如)鉬(Mo)。 The second layer(s) 102 (which may also refer to one or more second layers deposited using deposition step 202) may include, for example, molybdenum (Mo).
(若干)終端層104(其亦可指稱使用沈積步驟204所沈積之一終端層)可包括(例如)矽(Si)。 The terminal layer(s) 104 (which may also refer to a terminal layer deposited using deposition step 204) may include, for example, silicon (Si).
擴散障壁105(其亦可指稱使用沈積步驟205所沈積之一擴散障壁)可包括(例如)碳或另一適合材料或材料組合。 Diffusion barrier 105 (which may also be referred to as a diffusion barrier deposited using deposition step 205) may include, for example, carbon or another suitable material or combination of materials.
覆蓋層106(其亦可指稱使用沈積步驟206所沈積之一覆蓋層)可包括硼、氮化硼(BN)或碳化硼(B4C)。當覆蓋層106包括硼時,其可具有自5nm至30nm之範圍(含5nm及30nm)內之一厚度。當覆蓋層106包括氮化硼時,其可具有自2nm至10nm之範圍(含2nm及10nm)內之一厚度。替代地,當覆蓋層106包括氮化硼時,其可具有自4nm至10nm之範圍(含4nm及10nm)內之一厚度。當覆蓋層106包括碳化硼時,其可具有自2nm至25nm之範圍(含2nm及25nm)內之一厚度。替代地,當覆蓋層106包括碳化硼時,其可具有自4nm至25nm之範圍(含4nm及25nm)內之一厚度。此等厚度範圍可係指整個覆蓋層106上之最終沈積厚度或可係指覆蓋層106之目標厚度或厚度容限。在一實施例中,當係指目標厚度時,可 存在具有不同實際厚度之覆蓋層106之一成品目標厚度,但材料之平均或目標厚度落入覆蓋層106之組合物材料之本文範圍內。依此方式,覆蓋層106上之任何給定點處之實際厚度可高於或低於平均或目標厚度。在另一實施例中,當係指厚度容限時,可存在具有不同厚度之覆蓋層106之一成品厚度,但由本文給定之範圍界限為容限位準或覆蓋層106之最小及最大厚度。依此方式,覆蓋層106上之任何給定點處之實際厚度可落入厚度之給定範圍內。進一步實施例可需要覆蓋層106之一目標厚度落入組合物材料所指定之範圍內且由所描述之最小值及最大值界限。 The capping layer 106 (which may also refer to a capping layer deposited using the deposition step 206) may include boron, boron nitride (BN), or boron carbide ( B4C ). When the capping layer 106 includes boron, it may have a thickness in the range of 5 nm to 30 nm (including 5 nm and 30 nm). When the capping layer 106 includes boron nitride, it may have a thickness in the range of 2 nm to 10 nm (including 2 nm and 10 nm). Alternatively, when the capping layer 106 includes boron nitride, it may have a thickness in the range of 4 nm to 10 nm (including 4 nm and 10 nm). When the capping layer 106 includes boron carbide, it may have a thickness in the range of 2 nm to 25 nm (including 2 nm and 25 nm). Alternatively, when the capping layer 106 includes boron carbide, it may have a thickness in the range of from 4 nm to 25 nm (inclusive). These thickness ranges may refer to the final deposition thickness on the entire capping layer 106 or may refer to a target thickness or thickness tolerance for the capping layer 106. In one embodiment, when referring to a target thickness, there may be a finished target thickness of the capping layer 106 with different actual thicknesses, but the average or target thickness of the material falls within the scope of the composition material of the capping layer 106. In this way, the actual thickness at any given point on the capping layer 106 may be higher or lower than the average or target thickness. In another embodiment, when thickness tolerances are referred to, there may be a finished thickness of the cover layer 106 having different thicknesses, but the range boundaries given herein are tolerance levels or minimum and maximum thicknesses of the cover layer 106. In this way, the actual thickness at any given point on the cover layer 106 may fall within the given range of thicknesses. Further embodiments may require a target thickness of the cover layer 106 to fall within a range specified by the composition material and bounded by the minimum and maximum values described.
替代地,覆蓋層106可包括硼、碳化硼及氮化硼之任何組合。在一例項中,覆蓋層可包括碳化硼覆蓋層、硼覆蓋層及氮化硼覆蓋層。 Alternatively, the capping layer 106 may include any combination of boron, boron carbide, and boron nitride. In one example, the capping layer may include a boron carbide capping layer, a boron capping layer, and a boron nitride capping layer.
終端覆蓋層107(其亦可係指使用沈積步驟207所沈積之一終端覆蓋層)可包括(例如)釕(Ru)、二氧化鈦(TiO2)、二氧化鋯(ZrO2)或氧化鈮。氧化鈮可係指妮之不同氧化態,其尤其包含一氧化鈮(NbO)、二氧化鈮(NbO2)或五氧化二妮(Nb2O5)。 The terminal capping layer 107 (which may also refer to a terminal capping layer deposited using deposition step 207) may include, for example, ruthenium (Ru), titanium dioxide ( TiO2 ), zirconium dioxide ( ZrO2 ) or niobium oxide. Niobium oxide may refer to different oxidation states of niobium, which particularly includes niobium monoxide (NbO), niobium dioxide ( NbO2 ) or niobium pentoxide ( Nb2O5 ).
第一層101、第二層102、終端層104、擴散障壁105、覆蓋層106及終端覆蓋層107可包括具有不同物理性質之材料,其取決於應用。例如,材料可取決於應用及所使用之沈積程序而具有不同多孔性、密度及均勻性。在一些實施例中,最佳化多孔性、密度及均勻性且其他材料可促成多孔性、密度及均勻性之一或多者最佳化。亦可存在基於應用及檢測需要所指定之一雜質容限。可尤其基於材料或製造商設定來判定此一雜質容限。 The first layer 101, the second layer 102, the terminal layer 104, the diffusion barrier 105, the cover layer 106, and the terminal cover layer 107 may include materials with different physical properties, depending on the application. For example, the materials may have different porosities, densities, and uniformities depending on the application and the deposition process used. In some embodiments, the porosity, density, and uniformity are optimized and other materials may contribute to the optimization of one or more of the porosity, density, and uniformity. There may also be an impurity tolerance specified based on the application and detection needs. Such an impurity tolerance may be determined based on material or manufacturer settings, among other things.
為演示硼作為一覆蓋層之可能性,使用IMD軟體及已針對 硼、矽、鉬及碳化硼量測及針對二氧化鈦、釕及氮化硼計算之13.5nm處之光學常數來執行其模擬。圖3描繪展示依據不同覆蓋材料(即,釕(曲線301)、二氧化鈦(曲線302)及硼(曲線303))之覆蓋層厚度而變化之一典型Mo:Si多層光學器件之反射率R的一作圖300。R對覆蓋厚度之非單調相依性係歸因於多層光學器件固有之相長干涉。 To demonstrate the possibility of boron as a capping layer, simulations were performed using the IMD software and the optical constants at 13.5 nm that have been measured for boron, silicon, molybdenum and boron carbide and calculated for titanium dioxide, ruthenium and boron nitride. FIG. 3 depicts a plot 300 showing the reflectivity R of a typical Mo:Si multilayer optical device as a function of the thickness of the capping layer of different capping materials, namely, ruthenium (curve 301), titanium dioxide (curve 302) and boron (curve 303). The non-monotonic dependence of R on the capping thickness is due to the constructive interference inherent in multilayer optical devices.
一替代覆蓋層不應使標準2.2nm釕覆蓋多層反射鏡之反射率降低超過某一臨界量△RCrit。就圖3中所展示之模擬而言,使用△RCrit=3.5%(下限RCrit(304)至上限RCrit(305)之間),其係可接受損失之典型表現。此將釕覆蓋及二氧化鈦覆蓋之厚度分別限制為4.5nm及2.2nm。二氧化鈦之此厚度可能不足以保護下伏矽在EUV曝光之數年期間免於氧化。 An alternative capping layer should not reduce the reflectivity of a standard 2.2nm ruthenium-capped multi-layer mirror by more than a certain critical amount ΔR Crit . For the simulation shown in FIG3 , ΔR Crit = 3.5% (between lower limit R Crit (304) and upper limit R Crit (305)) was used, which is a typical representation of acceptable losses. This limits the thickness of the ruthenium cap and the titanium dioxide cap to 4.5nm and 2.2nm, respectively. This thickness of titanium dioxide may not be sufficient to protect the underlying silicon from oxidation during years of EUV exposure.
硼之一臨界厚度4.2nm應基於Si基偵測器上之既有5nm塗層之效能來提供足夠防氧化保護。若一較大反射率損失5%係使覆蓋層厚度增大一倍以上之一可接受折衷,則可使用一9.8nm硼層以利用圖3中所展示之硼曲線303中之局部最大值。 A critical boron thickness of 4.2 nm should provide adequate protection against oxidation based on the performance of existing 5 nm coatings on Si-based detectors. If a greater reflectivity loss of 5% is an acceptable tradeoff for more than doubling the capping thickness, a 9.8 nm boron layer can be used to exploit the local maximum in the boron curve 303 shown in FIG3 .
類似計算表明,4nm至5nm純氮化硼及碳化硼層亦具有可接受反射率損失。由於碳化硼被稱為一有效擴散障壁且已知氮化硼高度抗氧化及氧擴散,所以可使用以下結構(自下而上)來獲得隨時間穩定性、抗氧化性及反射率之最佳平衡:矽/碳化硼/硼/氮化硼。 Similar calculations show that 4nm to 5nm layers of pure boron nitride and boron carbide also have acceptable reflectivity loss. Since boron carbide is known to be an effective diffusion barrier and boron nitride is known to be highly resistant to oxidation and oxygen diffusion, the following structure can be used (bottom-up) to obtain the best balance of stability over time, oxidation resistance, and reflectivity: silicon/boron carbide/boron/boron nitride.
為展示硼覆蓋層作為一分佈式光譜純度濾波器之效力,圖4描繪具有硼及釕塗層(即,針對2.2nm釕(由圖線401描述)、9.8nm硼(由圖線402描述)及4.4nm硼(由圖線403描述))之一繪示性4反射鏡系統之計算傳輸之一作圖400。就2.2nm釕之典型覆蓋而言,範圍200nm至400nm 內之系統傳輸與13.5nm處之帶內反射率相當。範圍130nm至430nm內之傳輸藉由使用硼覆蓋層來減少10倍至100倍,其中較厚硼導致較大抑制。此厚度趨勢在50nm至130nm範圍內反轉;因此,必須在此等兩個頻帶之抑制之間進行權衡。 To demonstrate the effectiveness of the boron capping layer as a distributed spectral purity filter, FIG. 4 depicts a plot 400 of the calculated transmission for a pictorial 4-mirror system having boron and ruthenium coatings, i.e., for 2.2 nm ruthenium (depicted by plot 401), 9.8 nm boron (depicted by plot 402), and 4.4 nm boron (depicted by plot 403). For a typical coverage of 2.2 nm ruthenium, the system transmission in the range 200 nm to 400 nm is comparable to the in-band reflectivity at 13.5 nm. The transmission in the range 130 nm to 430 nm is reduced by a factor of 10 to 100 by using the boron capping layer, with thicker boron resulting in greater suppression. This thickness trend is reversed in the 50nm to 130nm range; therefore, a trade-off must be made between the suppression of these two bands.
圖5中展示一系統500之一實施例。系統500包含基於光學之子系統501。一般而言,基於光學之子系統501經組態以藉由將光導引至一樣品502(或使光掃描樣品502)且自樣品502偵測光來產生樣品502之基於光學之輸出。在一實施例中,樣品502包含一晶圓。晶圓可包含本技術中已知之任何晶圓。在另一實施例中,樣品包含一倍縮光罩。倍縮光罩可包含本技術中已知之任何倍縮光罩。 An embodiment of a system 500 is shown in FIG. 5 . The system 500 includes an optics-based subsystem 501 . Generally, the optics-based subsystem 501 is configured to generate an optics-based output of a sample 502 by directing light to a sample 502 (or causing light to scan the sample 502 ) and detecting light from the sample 502 . In one embodiment, the sample 502 includes a wafer. The wafer may include any wafer known in the art. In another embodiment, the sample includes a zoom mask. The zoom mask may include any zoom mask known in the art.
在圖5所展示之系統500之實施例中,基於光學之子系統501包含經組態以將光導引至樣品502之一照明子系統。照明子系統包含至少一光源。例如,如圖5中所展示,照明子系統包含光源503。在一實施例中,照明子系統經組態以依可包含一或多個斜角及/或一或多個法線角之一或多個入射角將光導引至樣品502。例如,如圖5中所展示,來自光源503之光依一斜入射角導引穿過光學元件504及接著透鏡505而至樣品502。斜入射角可包含任何適合斜入射角,其可取決於(例如)樣品502之特性而變動。 In an embodiment of system 500 shown in FIG. 5 , an optical-based subsystem 501 includes an illumination subsystem configured to direct light to a sample 502. The illumination subsystem includes at least one light source. For example, as shown in FIG. 5 , the illumination subsystem includes a light source 503. In one embodiment, the illumination subsystem is configured to direct light to the sample 502 at one or more incident angles that may include one or more oblique angles and/or one or more normal angles. For example, as shown in FIG. 5 , light from the light source 503 is directed through the optical element 504 and then the lens 505 to the sample 502 at an oblique incident angle. The oblique incident angle may include any suitable oblique incident angle, which may vary depending on, for example, the characteristics of the sample 502.
基於光學之子系統501可經組態以在不同時間依不同入射角將光導引至樣品502。例如,基於光學之子系統501可經組態以更改照明子系統之一或多個元件之一或多個特性,使得光可依不同於圖5中所展示之入射角的一入射角導引至樣品502。在一此實例中,基於光學之子系統501可經組態以移動光源503、光學元件504及透鏡505,使得光依一不 同斜入射角或一法線(或近法線)入射角導引至樣品502。 The optics-based subsystem 501 can be configured to direct light to the sample 502 at different incident angles at different times. For example, the optics-based subsystem 501 can be configured to change one or more characteristics of one or more components of the illumination subsystem so that light can be directed to the sample 502 at an incident angle different from the incident angle shown in FIG. 5. In one such example, the optics-based subsystem 501 can be configured to move the light source 503, the optical element 504, and the lens 505 so that light is directed to the sample 502 at a different oblique incident angle or a normal (or near-normal) incident angle.
在一些例項中,基於光學之子系統501可經組態以同時依一個以上入射角將光導引至樣品502。例如,照明子系統可包含一個以上照明通道,照明通道之一者可包含光源503、光學元件504及透鏡505(如圖5中所展示)且照明通道之另一者(圖中未展示)可包含類似元件,其可經不同或相同組態或可包含至少一光源及可能一或多個其他組件(諸如本文進一步所描述之組件)。若此光與其他光同時導引至樣品,則依不同入射角導引至樣品502之光之一或多個特性(例如波長、偏振等等)可不同,使得由依不同入射角照射樣品502所致之光可在(若干)偵測器處彼此區別。 In some examples, the optical-based subsystem 501 may be configured to direct light to the sample 502 at more than one incident angle simultaneously. For example, the illumination subsystem may include more than one illumination channel, one of which may include a light source 503, an optical element 504, and a lens 505 (as shown in FIG. 5 ) and another of the illumination channels (not shown) may include similar elements, which may be configured differently or identically or may include at least one light source and possibly one or more other components (such as those further described herein). If this light is directed to the sample simultaneously with the other light, one or more characteristics (e.g., wavelength, polarization, etc.) of the light directed to the sample 502 at different incident angles may be different, so that the light resulting from illuminating the sample 502 at different incident angles can be distinguished from each other at the detector(s).
在另一例項中,照明子系統可僅包含一個光源(例如圖5中所展示之光源503)且來自光源之光可由照明子系統之一或多個光學元件(圖中未展示)分離成不同光學路徑(例如基於波長、偏振等等)。接著,不同光學路徑之各者中之光可導引至樣品502。多個照明通道可經組態以在相同時間或不同時間(例如在不同照明通道用於依序照射樣品時)將光導引至樣品502。在另一例項中,相同照明通道可經組態以在不同時間將具有不同特性之光導引至樣品502。例如,在一些例項中,光學元件504可經組態為一光譜濾波器且光譜濾波器之性質可依各種不同方式(例如藉由換出光譜濾波器)改變,使得不同波長之光可在不同時間導引至樣品502。照明子系統可具有本技術中已知之任何其他適合組態,其用於依不同或相同入射角將具有不同或相同特性之光依序或同時導引至樣品502。 In another example, the illumination subsystem may include only one light source (e.g., light source 503 shown in FIG. 5 ) and light from the light source may be separated into different optical paths (e.g., based on wavelength, polarization, etc.) by one or more optical elements (not shown) of the illumination subsystem. Light in each of the different optical paths may then be directed to the sample 502. Multiple illumination channels may be configured to direct light to the sample 502 at the same time or at different times (e.g., when different illumination channels are used to illuminate the sample sequentially). In another example, the same illumination channel may be configured to direct light with different characteristics to the sample 502 at different times. For example, in some instances, optical element 504 can be configured as a spectral filter and the properties of the spectral filter can be changed in various ways (e.g., by swapping out spectral filters) so that light of different wavelengths can be directed to sample 502 at different times. The illumination subsystem can have any other suitable configuration known in the art for directing light with different or the same characteristics to sample 502 sequentially or simultaneously at different or the same incident angles.
在一實施例中,光源503可包含一寬頻電漿(BBP)源及一極紫外光光刻(EUV)源。依此方式,由光源503產生且導引至樣品502之光可包含寬頻光或紫外光。然而,光源可包含任何其他適合光源,諸如一雷 射。雷射可包含本技術中已知之任何適合雷射且可經組態以產生本技術中已知之一或若干任何適合波長之光。另外,雷射可經組態以產生單色或近單色光。依此方式,雷射可為一窄頻雷射。光源503亦可包含產生多個離散波長或波帶之光之一多色光源。 In one embodiment, light source 503 may include a broadband plasma (BBP) source and an extreme ultraviolet lithography (EUV) source. In this manner, the light generated by light source 503 and directed to sample 502 may include broadband light or ultraviolet light. However, the light source may include any other suitable light source, such as a laser. The laser may include any suitable laser known in the art and may be configured to generate light of one or more of any suitable wavelengths known in the art. In addition, the laser may be configured to generate monochromatic or near-monochromatic light. In this manner, the laser may be a narrowband laser. Light source 503 may also include a polychromatic light source that generates light of multiple discrete wavelengths or bands.
來自光學元件504之光可由透鏡505聚焦至樣品502上。儘管透鏡505在圖5中展示為一單一折射光學元件,但應瞭解,透鏡505實際上可包含將來自光學元件之光組合聚焦至樣品之若干折射及/或反射光學元件。圖5中所展示及本文所描述之照明子系統可包含任何其他適合光學元件(圖中未展示)。此等光學元件之實例包含(但不限於)(若干)偏振組件、(若干)光譜濾波器、(若干)空間濾波器、(若干)反射光學元件、(若干)變跡器、(若干)分束器(諸如分束器513)、(若干)孔隙及其類似者,其等可包含本技術中已知之任何此等適合光學元件。另外,基於光學之子系統501可經組態以基於用於產生基於光學之輸出之照明之類型來更改照明子系統之元件之一或多者。此等光學元件可具有本文所描述及(例如)圖1A中所描繪之第一層、第二層、終端層及覆蓋層。此等光學元件可另外具有一擴散障壁、一終端覆蓋層或兩者,如本文所描述及(例如)圖1B至圖1D中所描繪。此處所描述之層及障壁可適當使用(例如)本文所描述及圖2A至圖2D中所描繪之方法之一者來形成。 Light from optical element 504 may be focused by lens 505 onto sample 502. Although lens 505 is shown in FIG. 5 as a single refractive optical element, it should be understood that lens 505 may actually include a plurality of refractive and/or reflective optical elements that focus a combination of light from the optical elements onto the sample. The illumination subsystem shown in FIG. 5 and described herein may include any other suitable optical elements (not shown). Examples of such optical elements include, but are not limited to, polarization components, spectral filter(s), spatial filter(s), reflective optical element(s), apodizer(s), beam splitter(s) (such as beam splitter 513), aperture(s), and the like, which may include any such suitable optical elements known in the art. Additionally, the optical-based subsystem 501 may be configured to change one or more of the elements of the illumination subsystem based on the type of illumination used to produce the optical-based output. Such optical elements may have a first layer, a second layer, a terminal layer, and a cover layer as described herein and depicted, for example, in FIG. 1A. Such optical elements may additionally have a diffusion barrier, a terminal cover layer, or both, as described herein and depicted, for example, in FIGS. 1B-1D. The layers and barriers described herein may be formed using, for example, one of the methods described herein and depicted in FIGS. 2A-2D as appropriate.
基於光學之子系統501亦可包含經組態以引起光掃描樣品502之一掃描子系統。例如,基於光學之子系統501可包含在基於光學之輸出產生期間將樣品502安置於其上之載台506。掃描系統可包含任何適合機械及/或機器人總成(其包含載台506),其可經組態以移動樣品502,使得光可掃描樣品502。另外或替代地,基於光學之子系統501可經組態 使得基於光學之子系統501之一或多個光學元件執行樣品502之某一光掃描。光可依任何適合方式(諸如沿一蛇形路徑或一螺旋路徑)掃描樣品502。 The optical-based subsystem 501 may also include a scanning subsystem configured to cause light to scan the sample 502. For example, the optical-based subsystem 501 may include a stage 506 on which the sample 502 is placed during the generation of the optical-based output. The scanning system may include any suitable mechanical and/or robotic assembly (including the stage 506) that can be configured to move the sample 502 so that the light can scan the sample 502. Additionally or alternatively, the optical-based subsystem 501 may be configured so that one or more optical elements of the optical-based subsystem 501 perform a certain optical scan of the sample 502. The light can scan the sample 502 in any suitable manner, such as along a serpentine path or a spiral path.
基於光學之子系統501進一步包含一或多個偵測通道。一或多個偵測通道之至少一者包含一偵測器,其經組態以歸因於由子系統照射樣品502而自樣品502偵測到光且回應於偵測光而產生輸出。例如,圖5中所展示之基於光學之子系統501包含兩個偵測通道:一偵測通道由收集器507、元件508及偵測器509形成且另一偵測通道由收集器510、元件511及偵測器512形成。如圖5中所展示,兩個偵測通道經組態以依不同收集角收集及偵測光。在一些例項中,兩個偵測通道經組態以偵測散射光,且偵測通道經組態以偵測依不同角自樣品502散射之光。然而,偵測通道之一或多者可經組態以自樣品502偵測另一類型之光(例如反射光)。 The optics-based subsystem 501 further includes one or more detection channels. At least one of the one or more detection channels includes a detector that is configured to detect light from the sample 502 due to illumination of the sample 502 by the subsystem and to generate an output in response to the detected light. For example, the optics-based subsystem 501 shown in FIG5 includes two detection channels: one detection channel is formed by a collector 507, an element 508, and a detector 509 and the other detection channel is formed by a collector 510, an element 511, and a detector 512. As shown in FIG5, the two detection channels are configured to collect and detect light at different collection angles. In some examples, two detection channels are configured to detect scattered light, and the detection channels are configured to detect light scattered from the sample 502 at different angles. However, one or more of the detection channels may be configured to detect another type of light (e.g., reflected light) from the sample 502.
如圖5中所進一步展示,兩個偵測通道經展示為定位於紙面中且照明子系統亦展示為定位於紙面中。因此,在此實施例中,兩個偵測通道定位於(例如居中於)入射面中。然而,偵測通道之一或多者可定位於入射面外。例如,由收集器510、元件511及偵測器512形成之偵測通道可經組態以收集及偵測自入射面散射出之光。因此,此一偵測通道通常可指稱一「側」通道,且此一側通道可居中於實質上垂直於入射面之一平面中。 As further shown in FIG. 5 , two detection channels are shown as being positioned in the paper and the illumination subsystem is also shown as being positioned in the paper. Thus, in this embodiment, the two detection channels are positioned in (e.g., centered in) the incident plane. However, one or more of the detection channels may be positioned outside the incident plane. For example, the detection channel formed by the collector 510, the element 511, and the detector 512 may be configured to collect and detect light scattered from the incident plane. Thus, such a detection channel may generally be referred to as a "side" channel, and such a side channel may be centered in a plane substantially perpendicular to the incident plane.
儘管圖5展示包含兩個偵測通道之基於光學之子系統501之一實施例,但基於光學之子系統501可包含不同數目個偵測通道(例如僅一個偵測通道或兩個或更多個偵測通道)。在一此例項中,由收集器510、元件511及偵測器512形成之偵測通道可形成上文所描述之一側通道,且基 於光學之子系統501可包含形成為定位於入射面之對置側上之另一側通道之一額外偵測通道(圖中未展示)。因此,基於光學之子系統501可包含偵測通道,其包含收集器507、元件508及偵測器509且居中於入射面中且經組態以收集及偵測法向於或接近法向於樣品502表面之(若干)散射角之光。因此,此偵測通道通常可指稱一「頂部」通道,且基於光學之子系統501亦可包含兩個或更多個如上文所描述般組態之側通道。因而,基於光學之子系統501可包含至少三個通道(即,一個頂部通道及兩個側通道),且至少三個通道之各者自身具有收集器,各收集器經組態以收集不同於其他收集器之各者之散射角之光。 Although FIG. 5 shows an embodiment of an optical-based subsystem 501 including two detection channels, the optical-based subsystem 501 may include a different number of detection channels (e.g., only one detection channel or two or more detection channels). In one such example, the detection channel formed by the collector 510, the element 511, and the detector 512 may form a side channel as described above, and the optical-based subsystem 501 may include an additional detection channel (not shown) formed as another side channel positioned on the opposite side of the incident surface. Thus, the optical-based subsystem 501 may include a detection channel including a collector 507, an element 508, and a detector 509 and centered in the incident plane and configured to collect and detect light at (several) scattering angles normal or close to normal to the surface of the sample 502. Thus, this detection channel may generally be referred to as a "top" channel, and the optical-based subsystem 501 may also include two or more side channels configured as described above. Thus, the optical-based subsystem 501 may include at least three channels (i.e., one top channel and two side channels), and each of the at least three channels has its own collector, each collector being configured to collect light at a different scattering angle than each of the other collectors.
如本文所進一步描述,包含於基於光學之子系統501中之偵測通道之各者可經組態以偵測散射光。因此,圖5中所展示之基於光學之子系統501可經組態用於樣品502之暗場(DF)輸出產生。然而,基於光學之子系統501亦可或替代地包含經組態用於樣品502之明場(BF)輸出產生之(若干)偵測通道。換言之,基於光學之子系統501可包含經組態以偵測自樣品502鏡面反射之光之至少一偵測通道。因此,本文所描述之基於光學之子系統501可經組態用於僅DF、僅BF或DF及BF成像兩者。儘管收集器之各者在圖5中展示為單一折射光學元件,但應瞭解,收集器之各者可包含一或多個折射光學晶粒及/或一或多個反射光學元件。 As further described herein, each of the detection channels included in the optics-based subsystem 501 can be configured to detect scattered light. Thus, the optics-based subsystem 501 shown in FIG. 5 can be configured for dark field (DF) output generation of the sample 502. However, the optics-based subsystem 501 can also or alternatively include (several) detection channels configured for bright field (BF) output generation of the sample 502. In other words, the optics-based subsystem 501 can include at least one detection channel configured to detect light reflected from a mirror surface of the sample 502. Thus, the optics-based subsystem 501 described herein can be configured for DF-only, BF-only, or both DF and BF imaging. Although each of the collectors is shown in FIG. 5 as a single refractive optical element, it should be understood that each of the collectors may include one or more refractive optical grains and/or one or more reflective optical elements.
一或多個偵測通道可包含本技術中已知之任何適合偵測器。例如,偵測器可包含光倍增管(PMT)、電荷耦合裝置(CCD)、時間延遲積分(TDI)攝影機及本技術中已知之任何其他適合偵測器。偵測器亦可包含非成像偵測器或成像偵測器。依此方式,若偵測器係非成像偵測器,則偵測器之各者可經組態以偵測散射光之特定特性(諸如強度),但無法經 組態以偵測依據成像面內之位置而變化之此等特性。因而,由包含於基於光學之子系統之偵測通道之各者中之偵測器之各者產生之輸出可為信號或資料,但非影像信號或影像資料。在此等例項中,一處理器(諸如處理器514)可經組態以自偵測器之非成像輸出產生樣品502之影像。然而,在其他例項中,偵測器可經組態為經組態以產生成像信號或影像資料之成像偵測器。因此,基於光學之系統可經組態以依諸多方式產生光學影像或本文所描述之其他基於光學之輸出。 The one or more detection channels may include any suitable detector known in the art. For example, the detectors may include photomultiplier tubes (PMTs), charge coupled devices (CCDs), time delay integration (TDI) cameras, and any other suitable detectors known in the art. The detectors may also include non-imaging detectors or imaging detectors. In this manner, if the detectors are non-imaging detectors, each of the detectors may be configured to detect specific properties of the scattered light (such as intensity), but may not be configured to detect such properties that vary depending on position within the imaging plane. Thus, the output generated by each of the detectors included in each of the detection channels of the optically-based subsystem may be a signal or data, but not an image signal or image data. In such examples, a processor (such as processor 514) may be configured to generate an image of sample 502 from the non-imaging output of the detector. However, in other examples, the detector may be configured as an imaging detector configured to generate an imaging signal or image data. Thus, the optically-based system may be configured to generate an optical image or other optically-based output described herein in a variety of ways.
應注意,本文提供圖5來大體上繪示一基於光學之子系統501之一組態,其可包含於本文所描述之系統實施例中或可產生由本文所描述之系統實施例使用之基於光學之輸出。本文所描述之基於光學之子系統501組態可經更改以最佳化設計一商業輸出獲取系統時通常所執行之基於光學之子系統501之效能。另外,本文所描述之系統可使用一既有系統實施(例如藉由添加本文所描述之功能性至一既有系統)。針對一些此等系統,本文所描述之方法可經提供為系統之選用功能性(例如除系統之其他功能性之外)。替代地,本文所描述之系統可經設計為一全新系統。 It should be noted that FIG. 5 is provided herein to generally illustrate a configuration of an optical-based subsystem 501 that may be included in or may produce an optical-based output used by the system embodiments described herein. The configuration of the optical-based subsystem 501 described herein may be modified to optimize the performance of the optical-based subsystem 501 typically performed when designing a commercial output acquisition system. In addition, the system described herein may be implemented using an existing system (e.g., by adding the functionality described herein to an existing system). For some of these systems, the methods described herein may be provided as optional functionality of the system (e.g., in addition to other functionality of the system). Alternatively, the system described herein may be designed as an entirely new system.
處理器514可依任何適合方式(例如經由可包含有線及/或無線傳輸媒體之一或多個傳輸媒體)耦合至系統500之組件,使得處理器514可接收輸出。處理器514可經組態以使用輸出來執行若干功能。系統500可自處理器514接收指令或其他資訊。處理器514及/或電子資料儲存單元515可視情況與一晶圓檢測工具、一晶圓度量工具或一晶圓複查工具(圖中未繪示)電子通信以接收額外資訊或發送指令。例如,處理器514及/或電子資料儲存單元515可與一SEM電子通信。 Processor 514 may be coupled to components of system 500 in any suitable manner (e.g., via one or more transmission media that may include wired and/or wireless transmission media) so that processor 514 can receive output. Processor 514 may be configured to use the output to perform a number of functions. System 500 may receive instructions or other information from processor 514. Processor 514 and/or electronic data storage unit 515 may electronically communicate with a wafer inspection tool, a wafer metrology tool, or a wafer review tool (not shown), as appropriate, to receive additional information or send instructions. For example, processor 514 and/or electronic data storage unit 515 may electronically communicate with a SEM.
本文所描述之處理器514、(若干)其他系統或(若干)其他子 系統可為包含一個人電腦系統、影像電腦、大型電腦系統、工作站、網路設備、網際網路設備或其他裝置之各種系統之部分。(若干)子系統或系統亦可包含本技術中已知之任何適合處理器,諸如一並行處理器。另外,(若干)子系統或系統可包含具有高速處理及軟體之一平台作為一獨立或網路工具。 The processor 514, other system(s), or other subsystem(s) described herein may be part of a variety of systems including a personal computer system, video computer, mainframe computer system, workstation, network equipment, Internet equipment, or other devices. The subsystem(s) or system may also include any suitable processor known in the art, such as a parallel processor. In addition, the subsystem(s) or system may include a platform with high-speed processing and software as a stand-alone or networked appliance.
處理器514及電子資料儲存單元515可安置於系統或另一裝置中或否則為系統500或另一裝置之部分。在一實例中,處理器514及電子資料儲存單元515可為一獨立控制單元之部分或位於一集中品質控制單元中。可使用多個處理器514或電子資料儲存單元515。 The processor 514 and the electronic data storage unit 515 may be disposed in the system or another device or otherwise be part of the system 500 or another device. In one example, the processor 514 and the electronic data storage unit 515 may be part of an independent control unit or located in a centralized quality control unit. Multiple processors 514 or electronic data storage units 515 may be used.
處理器514實際上可由硬體、軟體及韌體之任何組合實施。另外,本文所描述之其功能可由一個單元執行或分配於不同組件之間,各組件繼而可由硬體、軟體及韌體之任何組合實施。使處理器514實施各種方法及功能之程式碼或指令可儲存於可讀儲存媒體(諸如電子資料儲存單元515中之一記憶體或其他記憶體)中。 Processor 514 may be implemented by any combination of hardware, software, and firmware. In addition, the functions described herein may be performed by a single unit or distributed among different components, each of which may in turn be implemented by any combination of hardware, software, and firmware. Program code or instructions for processor 514 to implement various methods and functions may be stored in a readable storage medium (such as a memory in electronic data storage unit 515 or other memory).
若系統500包含一個以上處理器514,則不同子系統可彼此耦合,使得影像、資料、資訊、指令等等可發送於子系統之間。例如,一子系統可藉由可包含本技術中已知之任何適合有線及/或無線傳輸媒體之任何適合傳輸媒體來耦合至(若干)額外子系統。此等子系統之兩者或更多者亦可由一共用電腦可讀儲存媒體(圖中未展示)有效耦合。 If the system 500 includes more than one processor 514, different subsystems may be coupled to each other so that images, data, information, instructions, etc. may be sent between subsystems. For example, a subsystem may be coupled to additional subsystem(s) via any suitable transmission medium, which may include any suitable wired and/or wireless transmission medium known in the art. Two or more of such subsystems may also be effectively coupled by a common computer-readable storage medium (not shown).
處理器514可經組態以使用系統500之輸出或其他輸出來執行若干功能。例如,處理器514可經組態以將輸出發送至一電子資料儲存單元515或另一輸出媒體。處理器514可進一步如本文所描述般組態。 Processor 514 may be configured to use the output of system 500 or other output to perform a number of functions. For example, processor 514 may be configured to send output to an electronic data storage unit 515 or another output medium. Processor 514 may be further configured as described herein.
若系統包含一個以上子系統,則不同子系統可經彼此耦 合,使得影像、資料、資訊、指令等等可被發送於子系統之間。例如,一子系統可藉由可包含本技術中已知之任何適合有線及/或無線傳輸媒體的任何適合傳輸媒體來耦合至(若干)額外子系統。此等子系統之兩者或更多者亦可係由一共用電腦可讀儲存媒體(圖中未展示)有效耦合。 If the system includes more than one subsystem, the different subsystems may be coupled to each other so that images, data, information, instructions, etc. may be sent between the subsystems. For example, a subsystem may be coupled to (several) additional subsystems via any suitable transmission medium, which may include any suitable wired and/or wireless transmission medium known in the art. Two or more of these subsystems may also be effectively coupled by a common computer-readable storage medium (not shown).
處理器514可根據本文所描述之實施例中之任何者來組態。處理器514亦可經組態以使用系統500之輸出或使用來自其他源之影像或資料來執行其他功能或額外步驟。 Processor 514 may be configured according to any of the embodiments described herein. Processor 514 may also be configured to use the output of system 500 or to use images or data from other sources to perform other functions or additional steps.
系統500之各種步驟、功能及/或操作及本文所揭示之方法係由以下之一或多者實施:電子電路、邏輯閘、多工器、可程式化邏輯裝置、ASIC、類比或數位控制/開關、微控制器,或運算系統。實施方法(諸如本文所描述之方法)之程式指令可經由載波媒體被傳輸或儲存於載波媒體上。載波媒體可包含一輸出媒體,諸如一唯讀記憶體、一隨機存取記憶體、一磁碟或光碟、一非揮發性記憶體、一固態記憶體、一磁帶,及其類似者。一載波媒體可包含一傳輸媒體,諸如一導線、電纜,或無線傳輸鏈路。例如,本發明中所描述之各種步驟可係由一單一處理器514或替代地多個處理器514實施。再者,系統500之不同子系統可包含一或多個運算或邏輯系統。因此,以上描述不應被解譯為本發明之限制,而是僅為說明。 The various steps, functions and/or operations of system 500 and the methods disclosed herein are implemented by one or more of the following: electronic circuits, logic gates, multiplexers, programmable logic devices, ASICs, analog or digital controls/switches, microcontrollers, or computing systems. Program instructions for implementing methods (such as the methods described herein) can be transmitted via or stored on a carrier medium. The carrier medium can include an output medium, such as a read-only memory, a random access memory, a magnetic or optical disk, a non-volatile memory, a solid-state memory, a magnetic tape, and the like. A carrier medium can include a transmission medium, such as a wire, cable, or wireless transmission link. For example, the various steps described in the present invention may be implemented by a single processor 514 or alternatively multiple processors 514. Furthermore, different subsystems of the system 500 may include one or more computational or logical systems. Therefore, the above description should not be interpreted as a limitation of the present invention, but is merely illustrative.
各種優點係由本發明之實施例呈現。此等實施例包含用於EUV光學之硼基保護覆蓋層,即:使用一厚(5nm至30nm之間)硼層來保護EUV光學器件;使用具有大於或等於5nm之厚度且經最佳化於多層反射鏡之局部反射率最大值處的硼層來保護EUV光學器件;使用一厚(約2nm至約25nm之間)碳化硼層來保護EUV光學器件;使用一厚(約2nm至約 10nm之間)氮化硼層來保護EUV光學器件;使用矽/碳化硼/硼/氮化硼(自下而上)之一堆疊來保護EUV光學器件;及使用硼覆蓋層作為一分佈式光譜純度濾波器。此等實施例可提供尤其包含降低設計、製造及操作EUV光刻設備之成本及風險的優點。另外,硼基覆蓋層提供更易清潔性及多個循環的增強耐久性。歸因於不同晶體結構及尺寸及其他化學差異,使釕基覆蓋層上之本文所揭示之硼基覆蓋層的實施例實現此更易清潔性。 Various advantages are presented by embodiments of the present invention. These embodiments include boron-based protective capping layers for EUV optics, namely: using a thick (between 5nm and 30nm) boron layer to protect EUV optics; using a boron layer having a thickness greater than or equal to 5nm and optimized at the local reflectivity maximum of a multi-layer mirror to protect EUV optics; using a thick (between about 2nm and about 25nm) boron carbide layer to protect EUV optics; using a thick (between about 2nm and about 10nm) boron nitride layer to protect EUV optics; using a stack of silicon/boron carbide/boron/boron nitride (bottom-up) to protect EUV optics; and using a boron capping layer as a distributed spectral purity filter. Such embodiments may provide advantages including, among other things, reduced costs and risks in designing, manufacturing, and operating EUV lithography equipment. Additionally, the boron-based capping layer provides easier cleanability and enhanced durability over multiple cycles. The embodiments of the boron-based capping layer disclosed herein on the ruthenium-based capping layer achieve this easier cleanability due to different crystal structures and sizes and other chemical differences.
本文所揭示之各種實施例及實例中所描述之方法之步驟足以實施本發明之方法。因此,在一實施例中,方法基本上由本文所揭示之方法之步驟之一組合組成。在另一實施例中,方法由此等步驟組成。 The various embodiments disclosed herein and the steps of the methods described in the embodiments are sufficient to implement the methods of the present invention. Therefore, in one embodiment, the method consists essentially of a combination of the steps of the methods disclosed herein. In another embodiment, the method consists of these steps.
儘管已相對於一或多個特定實施例描述本發明,但應瞭解,可在不背離本發明之範疇之情況下進行本發明之其他實施例。 Although the present invention has been described with respect to one or more specific embodiments, it should be understood that other embodiments of the present invention may be made without departing from the scope of the present invention.
100:基板 100: Substrate
101:第一層 101: First level
102:第二層 102: Second level
103:序列 103: Sequence
104:終端層 104: Terminal layer
106:覆蓋層 106: Covering layer
110:光學元件 110: Optical components
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109100141A TWI849033B (en) | 2020-01-03 | 2020-01-03 | Optical elements |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109100141A TWI849033B (en) | 2020-01-03 | 2020-01-03 | Optical elements |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202126843A TW202126843A (en) | 2021-07-16 |
TWI849033B true TWI849033B (en) | 2024-07-21 |
Family
ID=77908646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109100141A TWI849033B (en) | 2020-01-03 | 2020-01-03 | Optical elements |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI849033B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7300724B2 (en) * | 2004-06-09 | 2007-11-27 | Intel Corporation | Interference multilayer capping design for multilayer reflective mask blanks |
TW201341969A (en) * | 2012-03-23 | 2013-10-16 | Globalfoundries Us Inc | Pellicles for use during EUV photolithography processes |
TW201606358A (en) * | 2014-07-11 | 2016-02-16 | 應用材料股份有限公司 | Extreme ultraviolet capping layer and method of manufacturing and lithography thereof |
TW201812434A (en) * | 2016-07-27 | 2018-04-01 | 應用材料股份有限公司 | Extreme ultraviolet mask blank with multilayer absorber and method of manufacture |
-
2020
- 2020-01-03 TW TW109100141A patent/TWI849033B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7300724B2 (en) * | 2004-06-09 | 2007-11-27 | Intel Corporation | Interference multilayer capping design for multilayer reflective mask blanks |
TW201341969A (en) * | 2012-03-23 | 2013-10-16 | Globalfoundries Us Inc | Pellicles for use during EUV photolithography processes |
TW201606358A (en) * | 2014-07-11 | 2016-02-16 | 應用材料股份有限公司 | Extreme ultraviolet capping layer and method of manufacturing and lithography thereof |
TW201812434A (en) * | 2016-07-27 | 2018-04-01 | 應用材料股份有限公司 | Extreme ultraviolet mask blank with multilayer absorber and method of manufacture |
Also Published As
Publication number | Publication date |
---|---|
TW202126843A (en) | 2021-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7022110B2 (en) | Extreme UV mask blank with multi-layer absorber and its manufacturing method | |
JP2023052147A (en) | Extreme ultraviolet mask blank with multilayer absorber and method of manufacturing the same | |
US20180224585A1 (en) | Reflective optical element and euv lithography appliance | |
TWI410676B (en) | Multi-layer reflecting mirror, its production method, optical system, exposure device and production method of elements | |
US7599112B2 (en) | Multilayer-film mirrors, lithography systems comprising same, and methods for manufacturing same | |
US8828627B2 (en) | Reflective mask blank for EUV lithography and reflective mask for EUV lithography | |
JP6166257B2 (en) | Reflective optical element and optical system for EUV lithography | |
TWI654450B (en) | Multilayer mirror | |
JP5926190B2 (en) | Reflective mask for EUV lithography | |
US11086055B2 (en) | Mirror, in particular for a microlithographic projection exposure apparatus or an inspection system | |
KR102707756B1 (en) | Boron-based capping layers for EUV optics | |
TWI849033B (en) | Optical elements | |
TW201704891A (en) | Mirror, more particularly for a microlithographic projection exposure apparatus | |
KR100801484B1 (en) | Extreme ultraviolet lithography mask and manufacturing method of thereof | |
JP4352977B2 (en) | Multilayer reflector and EUV exposure apparatus | |
US20230205090A1 (en) | Reflective optical element, illumination optical unit, projection exposure apparatus, and method for producing a protective layer | |
TW202331406A (en) | Reflection-type mask blank, reflection-type mask, and method for producing reflection-type mask | |
TW475094B (en) | Anti-reflection layer structure of mask | |
JP4524976B2 (en) | Manufacturing method of multilayer mirror | |
JP2024530977A (en) | Multilayer extreme UV reflective material | |
JP2003075591A (en) | Multilayer film reflector, manufacturing method thereof, soft x-ray exposing device, and soft x-ray optical system | |
TW202303267A (en) | Multilayer extreme ultraviolet reflectors | |
KR20240055071A (en) | Multilayer extreme ultraviolet reflectors | |
JP2002131486A (en) | Multilayer film reflection mirror and control method for wave aberration of the multilayer film reflection mirror |