TWI847309B - Semiconductor device with programmable structure - Google Patents

Semiconductor device with programmable structure Download PDF

Info

Publication number
TWI847309B
TWI847309B TW111139480A TW111139480A TWI847309B TW I847309 B TWI847309 B TW I847309B TW 111139480 A TW111139480 A TW 111139480A TW 111139480 A TW111139480 A TW 111139480A TW I847309 B TWI847309 B TW I847309B
Authority
TW
Taiwan
Prior art keywords
programmable
semiconductor device
insulating layer
disposed
drain region
Prior art date
Application number
TW111139480A
Other languages
Chinese (zh)
Other versions
TW202341490A (en
Inventor
李維中
丘世仰
Original Assignee
南亞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/678,407 external-priority patent/US20230269935A1/en
Priority claimed from US17/678,212 external-priority patent/US20230269934A1/en
Application filed by 南亞科技股份有限公司 filed Critical 南亞科技股份有限公司
Publication of TW202341490A publication Critical patent/TW202341490A/en
Application granted granted Critical
Publication of TWI847309B publication Critical patent/TWI847309B/en

Links

Images

Abstract

The present application discloses a semiconductor device, including a substrate; an isolation layer positioned in the substrate and defining an active area of the substrate, wherein the active area includes a transistor portion and a programmable portion extending from the transistor portion; a gate structure positioned on the transistor portion; a drain region positioned in the programmable portion and the transistor portion, and adjacent to the gate structure; a source region positioned in the transistor portion, adjacent to the gate structure, and opposite to the drain region with the gate structure interposed therebetween; a middle insulating layer positioned on the programmable portion; and an upper conductive layer positioned on the middle insulating layer. The drain region in the programmable portion, the middle insulating layer, and the upper conductive layer together configure a programmable structure.

Description

具有可程式設計結構的半導體元件Semiconductor device with programmable structure

本申請案主張美國第17/678,212及17/678,407號專利申請案之優先權(即優先權日為「2022年2月23日」),其內容以全文引用之方式併入本文中。This application claims priority to U.S. Patent Application Nos. 17/678,212 and 17/678,407 (i.e., priority date is February 23, 2022), the contents of which are incorporated herein by reference in their entirety.

本揭露關於一種半導體元件。特別是有關於一種具有可程式設計結構的半導體元件。The present disclosure relates to a semiconductor device, and more particularly to a semiconductor device with a programmable structure.

半導體元件用於各種電子應用,如個人電腦、行動電話、數位相機及其他電子裝置。半導體元件的尺寸正在不斷縮小,以滿足日益增長的計算能力的需求。然而,在縮小尺寸的過程中出現各種問題,而且這種問題在不斷增加。因此,在實現提高品質、產量、性能及可靠性以及降低複雜性方面仍然存在挑戰。Semiconductor components are used in a variety of electronic applications, such as personal computers, mobile phones, digital cameras, and other electronic devices. The size of semiconductor components is constantly shrinking to meet the growing demand for computing power. However, various problems arise in the process of size reduction, and these problems are increasing. Therefore, challenges remain in achieving improved quality, yield, performance and reliability, as well as reduced complexity.

上文之「先前技術」說明僅係提供背景技術,並未承認上文之「先前技術」說明揭示本揭露之標的,不構成本揭露之先前技術,且上文之「先前技術」之任何說明均不應作為本案之任一部分。The above “prior art” description is only to provide background technology, and does not admit that the above “prior art” description discloses the subject matter of the present disclosure, does not constitute the prior art of the present disclosure, and any description of the above “prior art” should not be regarded as any part of the present case.

本揭露的一個方面提供一種半導體元件,包括一基底;一隔離層,設置於該基底中,並定義該基底的一主動區,其中該主動區包括一電晶體部分及從該電晶體部分延伸出的一可程式設計部分;一閘極結構,設置於該電晶體部分上;一汲極區,設置於該可程式設計部分及該電晶體部分中,並與該閘極結構相鄰;一源極區,設置於該電晶體部分中,與該閘極結構相鄰,並與該汲極區相對,該閘極結構介於該兩者之間;一中間絕緣層,設置於該可程式設計部分上;以及一上部導電層,設置於該中間絕緣層上。該可程式設計部分的該汲極區、該中間絕緣層及該上部導電層共同配置一可程式設計結構。One aspect of the present disclosure provides a semiconductor device, including a substrate; an isolation layer disposed in the substrate and defining an active region of the substrate, wherein the active region includes a transistor portion and a programmable portion extending from the transistor portion; a gate structure disposed on the transistor portion; a drain region disposed in the programmable portion and the transistor portion and adjacent to the gate structure; a source region disposed in the transistor portion, adjacent to the gate structure and opposite to the drain region, with the gate structure interposed therebetween; an intermediate insulating layer disposed on the programmable portion; and an upper conductive layer disposed on the intermediate insulating layer. The drain region, the middle insulating layer and the upper conductive layer of the programmable part together configure a programmable structure.

本揭露的另一個方面提供一種半導體元件,包括一基底;一隔離層,設置於該基底中,並定義該基底的一主動區,其中該主動區包括一電晶體部及從該電晶體部分延伸出的一可程式設計部分;一埋入式閘極結構,設置於該電晶體部分中;一汲極區,設置於該可程式設計部分及該電晶體部分中,並與該埋入式閘極結構相鄰;一源極區,設置於該電晶體部分中,與該埋入式閘極結構相鄰,並與該汲極區相對,該埋入式閘極結構介於該兩者之間;一中間絕緣層,設置於該可程式設計部分上;一上部導電層,設置於該中間絕緣層上。該可程式設計部分的該汲極區、該中間絕緣層及該上部導電層共同配置一可程式設計結構。Another aspect of the present disclosure provides a semiconductor device, comprising a substrate; an isolation layer disposed in the substrate and defining an active region of the substrate, wherein the active region includes a transistor portion and a programmable portion extending from the transistor portion; a buried gate structure disposed in the transistor portion; a drain region disposed in the programmable The programmable design part and the transistor part are adjacent to the buried gate structure; a source region is arranged in the transistor part, adjacent to the buried gate structure and opposite to the drain region, and the buried gate structure is between the two; an intermediate insulating layer is arranged on the programmable design part; and an upper conductive layer is arranged on the intermediate insulating layer. The drain region, the intermediate insulating layer and the upper conductive layer of the programmable design part jointly configure a programmable design structure.

本揭露的另一個方面提供一種半導體元件的製備方法,包括提供一基底;在該基底中形成一隔離層以定義該基底的一主動區,其中該主動區包括一電晶體部分及從該電晶體部分延伸出的一可程式設計部分;在該電晶體部分上形成一閘極結構;在該可程式設計部分及該電晶體部分中形成一汲極區,並與該閘極結構相鄰;在該電晶體部分中形成一源極區,與該閘極結構相鄰,並與該汲極區相對;在該可程式設計部分上形成一中間絕緣層;以及在該中間絕緣層上形成一上部導電層。該可程式設計部分的該汲極區、該中間絕緣層及該上部導電層共同配置一可程式設計結構。Another aspect of the present disclosure provides a method for preparing a semiconductor element, including providing a substrate; forming an isolation layer in the substrate to define an active region of the substrate, wherein the active region includes a transistor portion and a programmable portion extending from the transistor portion; forming a gate structure on the transistor portion; forming a drain region in the programmable portion and the transistor portion, adjacent to the gate structure; forming a source region in the transistor portion, adjacent to the gate structure and opposite to the drain region; forming an intermediate insulating layer on the programmable portion; and forming an upper conductive layer on the intermediate insulating layer. The drain region, the middle insulating layer and the upper conductive layer of the programmable part together configure a programmable structure.

本揭露的另一個方面提供一種半導體元件的製備方法,包括提供一基底;在該基底中形成一隔離層,以定義該基底的一主動區,其中該主動區包括一電晶體部分及從該電晶體部分延伸出的一可程式設計部分;在該電晶體部分中形成一埋入式閘極結構;在該可程式設計部分及該電晶體部分中形成一汲極區,並與該埋入式閘極結構相鄰;在該電晶體部分中形成一源極區,與該埋入式閘極結構相鄰,並與該汲極區相對;在該可程式設計部分上形成一中間絕緣層;以及在該中間絕緣層上形成一上部導電層。該可程式設計部分的該汲極區、該中間絕緣層及該上部導電層共同配置一可程式設計結構。Another aspect of the present disclosure provides a method for preparing a semiconductor element, including providing a substrate; forming an isolation layer in the substrate to define an active region of the substrate, wherein the active region includes a transistor portion and a programmable portion extending from the transistor portion; forming a buried gate structure in the transistor portion; forming a drain region in the programmable portion and the transistor portion, adjacent to the buried gate structure; forming a source region in the transistor portion, adjacent to the buried gate structure and opposite to the drain region; forming an intermediate insulating layer on the programmable portion; and forming an upper conductive layer on the intermediate insulating layer. The drain region, the middle insulating layer and the upper conductive layer of the programmable part together configure a programmable structure.

由於本揭露的半導體元件的設計,可程式設計結構將與閘極結構相關的汲極區整合為可程式設計結構的下部導體,因此可以減少可程式設計結構的佔用面積。因此,更多的面積可用於其他複雜的功能單元或更多的可程式設計結構。因此,半導體元件的性能可以得到改善。此外,與可程式設計結構相關的閘極結構也可做為隔離電晶體,將高程式設計電壓與相鄰元件隔離。因此,可以減少高程式設計電壓對相鄰元件的損害(例如,源自高程式設計電壓的洩漏電流)。因此,半導體元件的可靠性可以得到改善。Due to the design of the semiconductor element disclosed in the present invention, the programmable structure integrates the drain region associated with the gate structure into the lower conductor of the programmable structure, so the area occupied by the programmable structure can be reduced. Therefore, more area can be used for other complex functional units or more programmable structures. Therefore, the performance of the semiconductor element can be improved. In addition, the gate structure associated with the programmable structure can also be used as an isolation transistor to isolate the high-programmed voltage from the adjacent components. Therefore, the damage of the high-programmed voltage to the adjacent components (for example, the leakage current from the high-programmed voltage) can be reduced. Therefore, the reliability of the semiconductor element can be improved.

上文已相當廣泛地概述本揭露之技術特徵及優點,俾使下文之本揭露詳細描述得以獲得較佳瞭解。構成本揭露之申請專利範圍標的之其它技術特徵及優點將描述於下文。本揭露所屬技術領域中具有通常知識者應瞭解,可相當容易地利用下文揭示之概念與特定實施例可作為修改或設計其它結構或製程而實現與本揭露相同之目的。本揭露所屬技術領域中具有通常知識者亦應瞭解,這類等效建構無法脫離後附之申請專利範圍所界定之本揭露的精神和範圍。The above has been a fairly broad overview of the technical features and advantages of the present disclosure, so that the detailed description of the present disclosure below can be better understood. Other technical features and advantages that constitute the subject matter of the patent application scope of the present disclosure will be described below. Those with ordinary knowledge in the technical field to which the present disclosure belongs should understand that the concepts and specific embodiments disclosed below can be easily used to modify or design other structures or processes to achieve the same purpose as the present disclosure. Those with ordinary knowledge in the technical field to which the present disclosure belongs should also understand that such equivalent constructions cannot deviate from the spirit and scope of the present disclosure as defined by the attached patent application scope.

下面的揭露內容提供許多不同的實施例,或實例,用於實現所提供標的的不同特徵。為了簡化本揭露內容,下面描述元件與安排的具體例子。當然,這些只是示例,並不表示是限制性的。例如,在接下來的描述中,第一特徵在第二特徵上的形成可以包括第一及第二特徵直接接觸形成的實施例,也可以包括第一及第二特徵之間可以形成附加特徵的實施例,因此使第一及第二特徵可以不直接接觸。此外,本揭露內容可能會在各實施例中重複參考數字及/或字母。這種重複是為了簡單明瞭,其本身並不決定所討論的各種實施例及/或配置之間的關係。The following disclosure provides many different embodiments, or examples, for implementing different features of the subject matter provided. In order to simplify the disclosure, specific examples of components and arrangements are described below. Of course, these are merely examples and are not intended to be limiting. For example, in the following description, the formation of a first feature on a second feature may include an embodiment in which the first and second features are directly in contact with each other, and may also include an embodiment in which an additional feature can be formed between the first and second features, so that the first and second features are not in direct contact. In addition, the disclosure may repeatedly refer to numbers and/or letters in various embodiments. This repetition is for simplicity and clarity and does not, in itself, determine the relationship between the various embodiments and/or configurations discussed.

此外,空間相對用語,如"下"、`"下面"、"下方"、"上"、"上面"等,為了便於描述,在此可用於描述一個元素或特徵與圖中所示的另一個(些)元素或特徵的關係。空間上的相對用語旨在包括元件在使用或操作中的不同方向,以及圖中描述的方向。該元件可以有其他方向(旋轉90度或其他方向),這裡使用的空間相對描述詞同樣可以相應地解釋。In addition, spatially relative terms, such as "lower", "below", "beneath", "upper", "above", etc., may be used herein to describe the relationship of one element or feature to another element or features shown in the figure for ease of description. Spatially relative terms are intended to encompass different orientations of the element in use or operation, in addition to the orientation depicted in the figure. The element may have other orientations (rotated 90 degrees or at other orientations), and the spatially relative descriptors used herein may be interpreted accordingly.

應該理解的是,當一個元素或層稱為"連接到"或"耦合到"另一個元素或層時,它可以直接連接到或耦合到另一個元素或層,或者可能存在中間的元素或層。It will be understood that when an element or layer is referred to as being “connected to” or “coupled to” another element or layer, it can be directly connected or coupled to the other element or layer or intervening elements or layers may be present.

應該理解的是,儘管用語第一、第二等可用於描述各種元素,但這些元素不應受到這些用語的限制。除非另有說明,這些用語僅用於區分一個元素及另一個元素。因此,例如,下面討論的第一要素、第一元件或第一部分可以被稱為第二要素、第二元件或第二部分,而不偏離本揭露內容的教導。It should be understood that although the terms first, second, etc. may be used to describe various elements, these elements should not be limited by these terms. Unless otherwise specified, these terms are only used to distinguish one element from another. Thus, for example, the first element, first component, or first part discussed below may be referred to as the second element, second component, or second part without departing from the teachings of the present disclosure.

除非上下文另有說明,本文在提到方向、佈局、位置、形狀、大小、數量或其他措施時,使用的用語如"相同"、"相等"、"平面"或"共面",不一定是指完全相同的方向、佈局、位置、形狀、大小、數量或其他措施,而是指在可能發生的、例如由於製造過程而發生的可接受的變化範圍內,包括幾乎相同的方向、佈局、位置、形狀、大小、數量或其他措施。用語"實質上"在此可以用來反映這一含義。例如,描述為"實質上相同"、"實質上相等"或"實質上平面"的項目可以是完全相同、相等或平面,也可以是在可接受的變化範圍內相同、相等或平面,例如由於製造過程而可能發生的變化。Unless the context indicates otherwise, terms such as "same," "equal," "planar," or "coplanar" used herein when referring to orientation, layout, position, shape, size, quantity, or other measures do not necessarily mean exactly the same orientation, layout, position, shape, size, quantity, or other measures, but rather mean nearly the same orientation, layout, position, shape, size, quantity, or other measures within an acceptable range of variation that may occur, such as due to manufacturing processes. The term "substantially" may be used herein to reflect this meaning. For example, items described as "substantially the same," "substantially equal," or "substantially planar" may be exactly the same, equal, or planar, or they may be the same, equal, or planar within an acceptable range of variation that may occur, such as due to manufacturing processes.

在本揭露內容中,半導體元件一般是指利用半導體特性而能發揮作用的元件,光電元件、發光顯示元件、半導體電路及電子件都包括在半導體元件的範疇內。In the present disclosure, semiconductor elements generally refer to elements that can function by utilizing semiconductor properties. Optoelectronic elements, light-emitting display elements, semiconductor circuits, and electronic components are all included in the scope of semiconductor elements.

應該指出的是,在本揭露的描述中,上(或上方)對應於方向Z的箭頭方向,下(或下方)對應於方向Z的箭頭的相反方向。It should be noted that in the description of the present disclosure, up (or above) corresponds to the direction of the arrow in direction Z, and down (or below) corresponds to the opposite direction of the arrow in direction Z.

圖1是流程圖,例示本揭露一實施例之半導體元件1A的製備方法10。圖2是頂視圖,例示本揭露一個實施例之中間半導體元件。圖3至圖6是沿圖2的線A-A'及線B-B'的橫截面圖,例示本揭露一個實施例之半導體元件1A的部分製備流程。圖7是頂視圖,例示本揭露一個實施例之中間半導體元件。圖8及圖9是沿圖7的線A-A'及線B-B'的橫截面圖,例示本揭露一個實施例之半導體元件1A的部分製備流程。FIG. 1 is a flow chart illustrating a method 10 for preparing a semiconductor element 1A according to an embodiment of the present disclosure. FIG. 2 is a top view illustrating an intermediate semiconductor element according to an embodiment of the present disclosure. FIG. 3 to FIG. 6 are cross-sectional views along line A-A' and line B-B' of FIG. 2, illustrating a portion of the preparation process of a semiconductor element 1A according to an embodiment of the present disclosure. FIG. 7 is a top view illustrating an intermediate semiconductor element according to an embodiment of the present disclosure. FIG. 8 and FIG. 9 are cross-sectional views along line A-A' and line B-B' of FIG. 7, illustrating a portion of the preparation process of a semiconductor element 1A according to an embodiment of the present disclosure.

參照圖1至圖9,在步驟S11,可以提供基底101,並且可以在基底101中形成隔離層103以定義基底101的複數個主動區AA1、AA2、AA3、AA4、AA5。1 to 9 , in step S11 , a substrate 101 may be provided, and an isolation layer 103 may be formed in the substrate 101 to define a plurality of active areas AA1 , AA2 , AA3 , AA4 , and AA5 of the substrate 101 .

參照圖2至圖4,基底101可以包括一含矽材料。適用於基底101的含矽材料的說明示例可包括,但不限於,矽、矽鍺、碳摻雜矽鍺、碳化矽鍺、碳摻雜矽、碳化矽以及其多層。雖然矽是晶圓製備中主要使用的半導體材料,但在一些實施例中,可以採用替代的半導體材料做為附加層,例如,但不限於,鍺、砷化鎵、氮化鎵、矽鍺、碲化鎘、硒化鋅、鍺錫等。2 to 4 , substrate 101 may include a silicon-containing material. Illustrative examples of silicon-containing materials suitable for substrate 101 may include, but are not limited to, silicon, silicon germanium, carbon-doped silicon germanium, silicon germanium carbide, carbon-doped silicon, silicon carbide, and multiple layers thereof. Although silicon is the primary semiconductor material used in wafer preparation, in some embodiments, alternative semiconductor materials may be used as additional layers, such as, but not limited to, germanium, gallium arsenide, gallium nitride, silicon germanium, cadmium telluride, zinc selenide, germanium tin, and the like.

參照圖2至圖4,可以執行一系列的沉積製程,以在基底101上沉積墊氧化層601及墊氮化層603。可以執行一微影製程,藉由在墊氮化層603上形成第一遮罩層607,以定義隔離層103的設置。2 to 4 , a series of deposition processes may be performed to deposit a pad oxide layer 601 and a pad nitride layer 603 on the substrate 101. A lithography process may be performed to define the configuration of the isolation layer 103 by forming a first mask layer 607 on the pad nitride layer 603.

參照圖5及圖6,在該微影製程之後,可以執行一蝕刻製程,例如一非等向性乾蝕刻製程,以形成沿墊氮化層603及墊氧化層601貫穿並延伸至基底101的第一溝槽101TR。5 and 6 , after the lithography process, an etching process, such as an anisotropic dry etching process, may be performed to form a first trench 101TR penetrating along the pad nitride layer 603 and the pad oxide layer 601 and extending to the substrate 101 .

參照圖7至圖9,可將一絕緣材料沉積到第一溝槽101TR中,並且隨後可執行一平坦化製程,例如化學機械研磨,以去除多餘的填充材料,直到曝露出基底101的頂面,以形成隔離層103。隔離層103的頂面與基底101的頂面可以實質上共面。該絕緣材料可以是,例如,氧化矽、氮化矽、氮氧化矽(silicon oxynitride)、氧化氮化矽或摻氟矽酸鹽。應該注意的是,在本揭露的描述中,氮氧化矽指的是一種含有矽、氮及氧的物質,其中氧的比例大於氮的比例。氧化氮化矽是指含有矽、氧及氮的物質,其中氮的比例大於氧的比例。7 to 9 , an insulating material may be deposited into the first trench 101TR, and a planarization process, such as chemical mechanical polishing, may then be performed to remove excess filling material until the top surface of the substrate 101 is exposed to form an isolation layer 103. The top surface of the isolation layer 103 may be substantially coplanar with the top surface of the substrate 101. The insulating material may be, for example, silicon oxide, silicon nitride, silicon oxynitride, silicon oxynitride, or fluorinated silicate. It should be noted that in the description of the present disclosure, silicon oxynitride refers to a substance containing silicon, nitrogen, and oxygen, wherein the proportion of oxygen is greater than the proportion of nitrogen. Silicon oxide nitride refers to a substance containing silicon, oxygen and nitrogen, in which the proportion of nitrogen is greater than that of oxygen.

參照圖7至圖9,被隔離層103包圍的基底101的部分可稱為主動區AA1、主動區AA2、主動區AA3、主動區AA4、主動區AA5。在一些實施例中,主動區AA1、AA2、AA3、AA4、AA5可以沿著一俯視視角下的Y方向排列。為了簡明、清晰及方便描述,只描述一個主動區AA1。主動區AA1可以包括電晶體部分TP及可程式設計部分PP。7 to 9, the portion of the substrate 101 surrounded by the isolation layer 103 may be referred to as an active area AA1, an active area AA2, an active area AA3, an active area AA4, and an active area AA5. In some embodiments, the active areas AA1, AA2, AA3, AA4, and AA5 may be arranged along a Y direction in a top view. For simplicity, clarity, and convenience of description, only one active area AA1 is described. The active area AA1 may include a transistor portion TP and a programmable portion PP.

在一些實施例中,從一俯視視角,電晶體部分TP可具有一矩形輪廓,且電晶體部分TP可沿X方向延伸。電晶體部分TP的寬度W1大於可程式設計部分PP的寬度W2。In some embodiments, from a top view, the transistor portion TP may have a rectangular outline, and the transistor portion TP may extend along the X direction. A width W1 of the transistor portion TP is greater than a width W2 of the programmable portion PP.

在一些實施例中,從一俯視視角,可程式設計部分PP的上側與電晶體部分TP的上側相互對齊,但不限於此。In some embodiments, from a top view angle, the upper side of the programmable portion PP and the upper side of the transistor portion TP are aligned with each other, but not limited thereto.

在一些實施例中,從一俯視視角,電晶體部分TP的長度L1大於或等於可程式設計部分PP的長度L2。In some embodiments, from a top view perspective, a length L1 of the transistor portion TP is greater than or equal to a length L2 of the programmable portion PP.

圖10及圖11是沿圖7的線A-A'及線B-B'的橫截面圖,例示本揭露一個實施例之半導體元件1A的部分製備流程。圖12是頂視圖,例示本揭露一個實施例之中間半導體元件。圖13及圖14是沿圖12的線A-A'及線B-B'的橫截面圖,例示本揭露一個實施例之半導體元件1A的部分製備流程。FIG. 10 and FIG. 11 are cross-sectional views along the line A-A' and the line BB' of FIG. 7, illustrating a partial preparation process of a semiconductor element 1A of an embodiment of the present disclosure. FIG. 12 is a top view illustrating an intermediate semiconductor element of an embodiment of the present disclosure. FIG. 13 and FIG. 14 are cross-sectional views along the line A-A' and the line BB' of FIG. 12, illustrating a partial preparation process of a semiconductor element 1A of an embodiment of the present disclosure.

圖15是頂視圖,例示本揭露一個實施例之中間半導體元件。圖16至圖21是沿圖15的線A-A'及線B-B'的橫截面圖,例示本揭露一個實施例之半導體元件1A的部分製備流程。圖22是頂視圖,例示本揭露一個實施例之中間半導體元件。圖23及圖24是沿圖22的線A-A'及線B-B'的橫截面圖,例示本揭露一個實施例之半導體元件1A的部分製備流程。FIG. 15 is a top view illustrating an intermediate semiconductor element of an embodiment of the present disclosure. FIG. 16 to FIG. 21 are cross-sectional views along line A-A' and line BB' of FIG. 15, illustrating a partial preparation process of a semiconductor element 1A of an embodiment of the present disclosure. FIG. 22 is a top view illustrating an intermediate semiconductor element of an embodiment of the present disclosure. FIG. 23 and FIG. 24 are cross-sectional views along line A-A' and line BB' of FIG. 22, illustrating a partial preparation process of a semiconductor element 1A of an embodiment of the present disclosure.

參照圖1及圖10至圖24,在步驟S13,可在複數個主動區AA1、AA2、AA3、AA4、AA5中形成複數個井區113,可在複數個主動區AA1、AA2、AA3、AA4、AA5上形成複數個閘極結構200,並在複數個井區113中形成複數個源極區117及複數個汲極區119。1 and 10 to 24 , in step S13 , a plurality of well regions 113 may be formed in a plurality of active regions AA1 , AA2 , AA3 , AA4 , AA5 , a plurality of gate structures 200 may be formed on the plurality of active regions AA1 , AA2 , AA3 , AA4 , AA5 , and a plurality of source regions 117 and a plurality of drain regions 119 may be formed in the plurality of well regions 113 .

參照圖10及圖11,在一些實施例中,可以執行一p型雜質植入製程,以在主動區AA1、AA2、AA3、AA4、AA5中分別及相應地形成井區113。該p型雜質植入製程可以將雜質添加到一本徵半導體中,因此產生價電子的缺陷。在一含矽的基底中,p型摻雜物,即雜質的示例包括但不限於硼、鋁、鎵或銦。在一些實施例中,井區113可具有第一電類型(即p型)。10 and 11, in some embodiments, a p-type impurity implantation process may be performed to form well regions 113 in active regions AA1, AA2, AA3, AA4, and AA5, respectively and correspondingly. The p-type impurity implantation process may add impurities to an intrinsic semiconductor, thereby generating defects in valence electrons. In a silicon-containing substrate, examples of p-type dopants, i.e., impurities, include but are not limited to boron, aluminum, gallium, or indium. In some embodiments, well region 113 may have a first electrical type (i.e., p-type).

為了簡明、清晰及方便描述,只描述一個閘極結構200。For the sake of brevity, clarity and convenience of description, only one gate structure 200 is described.

參照圖12至圖14,閘極結構200可以形成在主動區AA1的電晶體部分TP上。應該注意的是,在一俯視視角下,閘極結構200不與主動區AA1的可程式設計部分PP重疊。在一些實施例中,從一俯視視角,閘極結構200的長度L3可以大於或等於主動區AA1的電晶體部分TP的長度L1。12 to 14 , the gate structure 200 may be formed on the transistor portion TP of the active area AA1. It should be noted that the gate structure 200 does not overlap the programmable portion PP of the active area AA1 in a top view. In some embodiments, the length L3 of the gate structure 200 may be greater than or equal to the length L1 of the transistor portion TP of the active area AA1 in a top view.

在一些實施例中,從一俯視視角,閘極結構200可以沿X方向延伸,並將主動區AA1的電晶體部分TP劃分為一上部及一下部。在本實施例中,可程式設計部分PP可以從電晶體部分TP的該上部延伸。In some embodiments, from a top view, the gate structure 200 may extend along the X direction and divide the transistor portion TP of the active area AA1 into an upper portion and a lower portion. In this embodiment, the programmable portion PP may extend from the upper portion of the transistor portion TP.

參照圖12至圖14,閘極結構200可以包括閘極絕緣層201及閘極導電層203。閘極絕緣層201可以形成在主動區AA1的電晶體部分TP上。在一些實施例中,閘極絕緣層201的厚度可以是約50埃或小於50埃。12 to 14 , the gate structure 200 may include a gate insulating layer 201 and a gate conductive layer 203. The gate insulating layer 201 may be formed on the transistor portion TP of the active area AA1. In some embodiments, the thickness of the gate insulating layer 201 may be about 50 angstroms or less.

在一些實施例中,閘極絕緣層201的製作技術可以是,例如,氧化矽。在一些實施例中,閘極絕緣層201的製作技術可以是,例如,一高k介電材料如金屬氧化物、金屬氮化物、金屬矽酸鹽、過渡金屬氧化物、過渡金屬氮化物、過渡金屬矽酸鹽、金屬的氮氧化物、金屬鋁酸鹽、矽酸鋯、鋁酸鋯或其組合等。In some embodiments, the gate insulating layer 201 may be formed using, for example, silicon oxide. In some embodiments, the gate insulating layer 201 may be formed using, for example, a high-k dielectric material such as metal oxide, metal nitride, metal silicate, transition metal oxide, transition metal nitride, transition metal silicate, metal oxynitride, metal aluminate, zirconium silicate, zirconium aluminate, or a combination thereof.

高k介電材料的說明示例可包括,但不限於,氧化鉿、氧化鉿矽、氮氧化鉿矽、氧化鉿鉭、氧化鉿鈦、氧化鉿鋯、氧化鉿鑭、氧化鑭、氧化鋯、氧化鈦、氧化鉭、氧化釔、氧化鈦鍶、氧化鈦鋇、氧化鋯鋇、氧化矽鑭、氧化矽鋁、氧化鋁、氮化矽、氮氧化矽、氧化氮化矽,或其組合。Illustrative examples of high-k dielectric materials may include, but are not limited to, bismuth oxide, bismuth silicon oxide, bismuth silicon oxynitride, bismuth tantalum oxide, bismuth titanium oxide, bismuth zirconium oxide, bismuth tantalum oxide, tantalum oxide, zirconium oxide, titanium oxide, tantalum oxide, yttrium oxide, titanium strontium oxide, titanium barium oxide, zirconium barium oxide, silicon tantalum oxide, aluminum silicon oxide, aluminum oxide, silicon nitride, silicon oxynitride, silicon nitride oxide, or combinations thereof.

在一些實施例中,閘極絕緣層201可以是一多層結構包括,例如,一層氧化矽及另一層高k介電材料。In some embodiments, the gate insulation layer 201 may be a multi-layer structure including, for example, a layer of silicon oxide and another layer of high-k dielectric material.

參照圖12至圖14,閘極導電層203可以形成在閘極絕緣層201上。在一些實施例中,閘極導電層203的製作技術可以是,例如,(摻雜)多晶矽、(摻雜)多晶鍺、(摻雜)多晶矽鍺或其他合適的導電材料。12 to 14 , a gate conductive layer 203 may be formed on the gate insulating layer 201. In some embodiments, the gate conductive layer 203 may be made of, for example, (doped) polysilicon, (doped) polycrystalline germanium, (doped) polysilicon germanium or other suitable conductive materials.

參照圖15至圖17,可使用閘極結構200做為遮罩來執行一n型雜質植入製程,以在主動區AA1、AA2、AA3、AA4、AA5的電晶體部分TP的該上部及該下部形成複數個輕摻雜區115。該n型雜質植入製程可以添加對一本徵半導體貢獻自由電子的雜質。在一含矽的基底中,n型摻雜物,即雜質的示例,包括但不限於銻、砷或磷。在一些實施例中,輕摻雜區115可以具有與該第一電類型相反的一第二電類型(即n型)。15 to 17, an n-type impurity implantation process may be performed using the gate structure 200 as a mask to form a plurality of lightly doped regions 115 in the upper and lower portions of the transistor portions TP of the active regions AA1, AA2, AA3, AA4, AA5. The n-type impurity implantation process may add impurities that contribute free electrons to an intrinsic semiconductor. In a silicon-containing substrate, examples of n-type dopants, i.e., impurities, include but are not limited to antimony, arsenic, or phosphorus. In some embodiments, the lightly doped regions 115 may have a second electrical type (i.e., n-type) opposite to the first electrical type.

參照圖18及圖19,可以共形地形成一層間隙材料605以覆蓋圖15至圖17中說明的中間半導體元件。在一些實施例中,間隙材料605可以是,例如,氧化矽、氮化矽、氮氧化矽、氧化氮化矽或其他合適的絕緣材料。18 and 19, a layer of spacer material 605 may be conformally formed to cover the middle semiconductor device illustrated in FIG15 to FIG17. In some embodiments, the spacer material 605 may be, for example, silicon oxide, silicon nitride, silicon oxynitride, silicon nitride oxide, or other suitable insulating materials.

在一些實施例中,間隙材料605可以包括一能量可移除的材料。該能量可移除的材料可包括一種材料如一熱可分解材料、一光子可分解材料、一電子束可分解材料,或其組合。例如,該能量可移除的材料可以包括一基礎材料及一可分解的致孔材料,該材料在曝露於一能量源時被犧牲掉。該基礎材料可以包括一種基於甲矽烷基二氧六環的材料。該可分解的致孔材料可以包括一種致孔有機化合物,為該能量可移除的基礎材料提供孔隙率。In some embodiments, the interstitial material 605 may include an energy removable material. The energy removable material may include a material such as a thermally decomposable material, a photon decomposable material, an electron beam decomposable material, or a combination thereof. For example, the energy removable material may include a base material and a decomposable porogenic material that is sacrificed when exposed to an energy source. The base material may include a silyldioxane-based material. The decomposable porogenic material may include a porogenic organic compound that provides porosity to the energy removable base material.

參照圖20及圖21,可以執行一蝕刻製程,例如一非等向性乾蝕刻製程,以去除間隙材料605的部分並同時在閘極結構200的側壁200SW上形成閘極間隙子205。閘極間隙子205還可以覆蓋主動區AA1、AA2、AA3、AA4、AA5的電晶體部分TP的該上部及該下部的輕摻雜區115的部分。20 and 21 , an etching process, such as an anisotropic dry etching process, may be performed to remove a portion of the spacer material 605 and simultaneously form a gate spacer 205 on the sidewall 200SW of the gate structure 200. The gate spacer 205 may also cover a portion of the upper and lower lightly doped regions 115 of the transistor portions TP of the active regions AA1, AA2, AA3, AA4, and AA5.

在一些實施例中,當間隙材料605包括該能量可移除的材料時,可在該蝕刻製程後藉由施加一能量源執行一能量處理。該能量源可包括熱、光或其組合。當熱做為該能量源時,該能量處理的一溫度可在約800℃與約900℃之間。當光做為該能量源時,可以使用一紫外線。該能量處理可以將該可分解的致孔材料從該能量可移除的材料中移除,以產生空隙(孔隙),而基礎材料則留在原處。空隙(孔隙)可以降低兩個閘極間隙子205的介電常數。因此,閘極結構200對相鄰元件的寄生電容的影響可能會減少。In some embodiments, when the gap material 605 includes the energy-removable material, an energy treatment can be performed by applying an energy source after the etching process. The energy source can include heat, light, or a combination thereof. When heat is used as the energy source, a temperature of the energy treatment can be between about 800° C. and about 900° C. When light is used as the energy source, an ultraviolet ray can be used. The energy treatment can remove the decomposable porogen from the energy-removable material to produce voids (pores), while the base material remains in place. The voids (pores) can reduce the dielectric constant of the two gate spacers 205. Therefore, the effect of the gate structure 200 on the parasitic capacitance of adjacent components may be reduced.

參照圖22至圖24,可以使用閘極結構200及閘極間隙子205做為遮罩,在主動區AA1、AA2、AA3、AA4、AA5的電晶體部分TP的該下部形成複數個源極區117及在主動區AA1、AA2、AA3、AA4、AA5的電晶體部分TP的該上部形成複數個汲極區119以及主動區AA1、AA2、AA3、AA4、AA5的可程式設計部分PP。該n型雜質植入製程可與圖15至圖17所示的製程類似,在此不再重複其描述。22 to 24, the gate structure 200 and the gate spacer 205 may be used as a mask to form a plurality of source regions 117 at the bottom of the transistor portion TP of the active regions AA1, AA2, AA3, AA4, AA5 and a plurality of drain regions 119 and a programmable portion PP of the active regions AA1, AA2, AA3, AA4, AA5 may be formed at the top of the transistor portion TP of the active regions AA1, AA2, AA3, AA4, AA5. The n-type impurity implantation process may be similar to the process shown in FIGS. 15 to 17, and its description will not be repeated here.

為了簡明、清晰及方便描述,只描述一個源極區117及一個汲極區119。For the sake of simplicity, clarity and convenience of description, only one source region 117 and one drain region 119 are described.

在一些實施例中,源極區117及汲極區119可以具有與該第一電類型相反的該第二電類型(即n型)。源極區117及汲極區119的摻雜劑濃度可以大於輕摻雜區115的摻雜劑濃度。在一些實施例中,源極區117及汲極區119的摻雜物濃度可以是約1E19原子/cm^3至約1E21/cm^3。在一些實施例中,從一俯視視角,源極區117的長度L4可以小於汲極區119的長度L5。在一些實施例中,在一俯視視角,閘極結構200的長度L3可大於源極區117的長度L4。In some embodiments, the source region 117 and the drain region 119 may have the second electrical type (i.e., n-type) opposite to the first electrical type. The dopant concentration of the source region 117 and the drain region 119 may be greater than the dopant concentration of the lightly doped region 115. In some embodiments, the dopant concentration of the source region 117 and the drain region 119 may be about 1E19 atoms/cm^3 to about 1E21/cm^3. In some embodiments, from a top view angle, the length L4 of the source region 117 may be less than the length L5 of the drain region 119. In some embodiments, in a top view, the length L3 of the gate structure 200 may be greater than the length L4 of the source region 117 .

圖25是頂視圖,例示本揭露一個實施例之中間半導體元件。圖26是沿圖25的線A-A’的橫截面圖,例示本揭露一個實施例之半導體元件1A的部分製備流程。圖27是頂視圖,例示本揭露一個實施例之中間半導體元件。圖28及圖29是沿圖27的線A-A’及線B-B’的橫截面圖,例示本揭露一個實施例之半導體元件1A的部分製備流程。FIG. 25 is a top view illustrating an intermediate semiconductor element of an embodiment of the present disclosure. FIG. 26 is a cross-sectional view along line A-A' of FIG. 25 illustrating a partial preparation process of a semiconductor element 1A of an embodiment of the present disclosure. FIG. 27 is a top view illustrating an intermediate semiconductor element of an embodiment of the present disclosure. FIG. 28 and FIG. 29 are cross-sectional views along line A-A' and line B-B' of FIG. 27 illustrating a partial preparation process of a semiconductor element 1A of an embodiment of the present disclosure.

參照圖1、圖25及圖26,在步驟S15,可在複數個汲極區119上形成中間絕緣層401,並在中間絕緣層401上形成上部導電層403,其中複數個汲極區119、中間絕緣層401及上部導電層403共同配置複數個可程式設計結構400。1 , 25 and 26 , in step S15 , a middle insulating layer 401 may be formed on the plurality of drain regions 119 , and an upper conductive layer 403 may be formed on the middle insulating layer 401 , wherein the plurality of drain regions 119 , the middle insulating layer 401 and the upper conductive layer 403 together configure a plurality of programmable structures 400 .

參照圖25及圖26,中間絕緣層401可沿Y方向延伸並可在汲極區119上形成。中間絕緣層401可以與汲極區119正交。應該注意的是,中間絕緣層401在一俯視視角下不與閘極結構200重疊。25 and 26 , the middle insulating layer 401 may extend along the Y direction and may be formed on the drain region 119. The middle insulating layer 401 may be orthogonal to the drain region 119. It should be noted that the middle insulating layer 401 does not overlap with the gate structure 200 in a top view.

在一些實施例中,中間絕緣層401的製作技術可以是,例如,氧化矽。在一些實施例中,中間絕緣層401的製作技術可以是,例如,一高K介電材料,如金屬氧化物、金屬氮化物、金屬矽酸鹽、過渡金屬氧化物、過渡金屬氮化物、過渡金屬矽酸鹽、金屬的氮氧化物、金屬鋁酸鹽、矽酸鋯、鋁酸鋯或其組合。In some embodiments, the manufacturing technology of the middle insulating layer 401 can be, for example, silicon oxide. In some embodiments, the manufacturing technology of the middle insulating layer 401 can be, for example, a high-K dielectric material, such as metal oxide, metal nitride, metal silicate, transition metal oxide, transition metal nitride, transition metal silicate, metal oxynitride, metal aluminate, zirconium silicate, zirconium aluminate or a combination thereof.

高k介電材料的說明示例可包括,但不限於,氧化鉿、氧化鉿矽、氮氧化鉿矽、氧化鉿鉭、氧化鉿鈦、氧化鉿鋯、氧化鉿鑭、氧化鑭、氧化鋯。氧化鈦、氧化鉭、氧化釔、氧化鈦鍶、氧化鈦鋇、氧化鋯鋇、氧化矽鑭、氧化矽鋁、氧化鋁、氮化矽、氮氧化矽、氧化氮化矽,或其組合。Illustrative examples of high-k dielectric materials may include, but are not limited to, bismuth oxide, bismuth silicon oxide, bismuth silicon oxynitride, bismuth tantalum oxide, bismuth titanium oxide, bismuth zirconium oxide, bismuth tantalum oxide, tantalum oxide, zirconium oxide, titanium oxide, tantalum oxide, yttrium oxide, titanium strontium oxide, titanium barium oxide, zirconium barium oxide, silicon tantalum oxide, aluminum silicon oxide, aluminum oxide, silicon nitride, silicon oxynitride, silicon nitride oxide, or combinations thereof.

在一些實施例中,中間絕緣層401可以是一多層結構包括,例如,一層氧化矽及另一層高k介電材料。In some embodiments, the intermediate insulating layer 401 may be a multi-layer structure including, for example, a layer of silicon oxide and another layer of high-k dielectric material.

參照圖25及圖26,上部導電層403可以形成在中間絕緣層401上。在一些實施例中,上部導電層403的製作技術可以是,例如,(摻雜)多晶矽、(摻雜)多晶鍺、(摻雜)多晶矽鍺或其他合適的導電材料。25 and 26 , the upper conductive layer 403 may be formed on the middle insulating layer 401. In some embodiments, the upper conductive layer 403 may be made of, for example, (doped) polysilicon, (doped) polycrystalline germanium, (doped) polysilicon germanium or other suitable conductive materials.

在一些實施例中,中間絕緣層401及上部導電層403可以在遮蓋閘極結構200的同時形成。在一些實施例中,中間絕緣層401及上部導電層403可以與閘極結構200同時形成。In some embodiments, the middle insulating layer 401 and the upper conductive layer 403 can be formed at the same time as the gate structure 200 is covered. In some embodiments, the middle insulating layer 401 and the upper conductive layer 403 can be formed at the same time as the gate structure 200 is formed.

參照圖25及圖26,中間的絕緣層401、上部導電層403及相應的汲極區119共同配置可程式設計結構400。可程式設計結構400可以是,例如,一反熔絲。反熔絲在原生的未程式設計狀態下是不導電,而在程式設計時變成導電。例如,該反熔絲可由夾在兩個導體之間的一薄介電層構成。在本實施例中,汲極區119可做為可程式設計結構400的一下部導體。上部導電層403可做為可程式設計結構400的一上部導體。中間絕緣層401可做為夾在該下部和該上部導體之間的介電層。25 and 26, the middle insulating layer 401, the upper conductive layer 403 and the corresponding drain region 119 together configure the programmable structure 400. The programmable structure 400 can be, for example, an anti-fuse. The anti-fuse is non-conductive in the native unprogrammed state and becomes conductive when programmed. For example, the anti-fuse can be composed of a thin dielectric layer sandwiched between two conductors. In this embodiment, the drain region 119 can serve as a lower conductor of the programmable structure 400. The upper conductive layer 403 can serve as an upper conductor of the programmable structure 400. The middle insulating layer 401 may serve as a dielectric layer sandwiched between the lower and upper conductors.

參照圖1及圖27至圖29,在步驟S17,可形成複數個第一觸點107以電連接到複數個源極區117,並形成第二觸點109以電連接到上部導電層403。1 and 27 to 29 , in step S17 , a plurality of first contacts 107 may be formed to be electrically connected to a plurality of source regions 117 , and a second contact 109 may be formed to be electrically connected to the upper conductive layer 403 .

參照圖27至圖29,可形成層間介電層105以覆蓋基底101、閘極結構200及可程式設計結構400。層間介電層105的製作技術可以包含,例如,二氧化矽、未摻雜的矽酸鹽玻璃、氟矽酸鹽玻璃、硼磷矽酸鹽玻璃、一旋壓式低k介電層、一化學氣相沉積低k介電層或其組合。本揭露中使用的用語"低k"是指介電常數小於二氧化矽的一介電材料。在一些實施例中,層間介電層105可以包括一自平坦化材料,如一旋壓玻璃或一旋壓低k介電材料,如SiLK™。使用一自平坦化介電材料可以避免執行一後續平坦化步驟的需要。在一些實施例中,層間介電層105的製作技術可以包含一沉積製程包括,例如,化學氣相沉積、電漿增強化學氣相沉積、蒸鍍或旋塗。在一些實施例中,可以執行一平坦化製程,如化學機械研磨,以為後續的製程步驟提供一個實質上平坦的表面。27 to 29, an interlayer dielectric layer 105 may be formed to cover the substrate 101, the gate structure 200, and the programmable structure 400. The fabrication technology of the interlayer dielectric layer 105 may include, for example, silicon dioxide, undoped silicate glass, fluorosilicate glass, borophosphosilicate glass, a spin-on low-k dielectric layer, a chemical vapor deposition low-k dielectric layer, or a combination thereof. The term "low-k" used in the present disclosure refers to a dielectric material having a dielectric constant less than that of silicon dioxide. In some embodiments, the interlayer dielectric layer 105 may include a self-planarizing material, such as a spin-on glass or a spin-on low-k dielectric material, such as SiLK™. Using a self-planarizing dielectric material can avoid the need to perform a subsequent planarization step. In some embodiments, the interlayer dielectric layer 105 can be formed by a deposition process including, for example, chemical vapor deposition, plasma enhanced chemical vapor deposition, evaporation, or spin coating. In some embodiments, a planarization process, such as chemical mechanical polishing, can be performed to provide a substantially flat surface for subsequent process steps.

參照圖27至圖29,複數個第一觸點107及第二觸點109可以在層間介電層105中形成。為了簡明、清晰及方便描述,只描述一個第一觸點107。第一觸點107可以形成在源極區117上並與源極區117電連接。第二觸點109可以形成在上部導電層403上並與上部導電層403電連接。第一觸點107及第二觸點109的製作技術可以包含,例如,一鑲嵌製程。27 to 29, a plurality of first contacts 107 and a second contact 109 may be formed in the interlayer dielectric layer 105. For simplicity, clarity and convenience of description, only one first contact 107 is described. The first contact 107 may be formed on and electrically connected to the source region 117. The second contact 109 may be formed on and electrically connected to the upper conductive layer 403. The manufacturing technology of the first contact 107 and the second contact 109 may include, for example, a damascene process.

通常,在該鑲嵌製程中,一種或多種介電材料(即層間介電層105)可以被沉積及圖案蝕刻,以形成垂直互連,或稱為通孔或觸點。導電材料,如含銅材料,以及其他材料,如用於防止含銅材料擴散到周圍的低k介電質中的阻障層材料,然後被鑲嵌到蝕刻圖案中。任何多餘的含銅材料及多餘的阻障層材料-在蝕刻圖案的外部,如在基底區域上,可以然後藉由如化學機械研磨等平坦化製程去除。Typically, in the damascene process, one or more dielectric materials (i.e., interlayer dielectric layer 105) may be deposited and pattern etched to form vertical interconnects, or vias or contacts. Conductive materials, such as copper-containing materials, and other materials, such as barrier materials used to prevent the copper-containing materials from diffusing into the surrounding low-k dielectric, are then damascened into the etched pattern. Any excess copper-containing material and excess barrier material - outside the etched pattern, such as on the substrate area, may then be removed by a planarization process such as chemical mechanical polishing.

在一些實施例中,第一觸點107及第二觸點109的製作技術可以是,例如,多晶矽、多晶鍺、多晶矽鍺、鎢、鈷、鋯、鉭、鈦、鋁、釕、銅、金屬碳化物(例如,碳化鉭、碳化鈦、碳化鉭鎂)、金屬氮化物(例如氮化鈦)、過渡金屬鋁化物,或其組合。In some embodiments, the manufacturing technology of the first contact 107 and the second contact 109 can be, for example, polycrystalline silicon, polycrystalline germanium, polycrystalline silicon germanium, tungsten, cobalt, zirconium, tantalum, titanium, aluminum, ruthenium, copper, metal carbide (e.g., tantalum carbide, titanium carbide, tantalum magnesium carbide), metal nitride (e.g., titanium nitride), transition metal aluminum, or a combination thereof.

當對可程式設計結構400進行程式設計時,可透過第二觸點109對上部導電層403施加一高電壓(例如+6.0伏),可對閘極結構200施加一選擇電壓(例如+1.5伏),並且第一觸點107可接地,由上部導電層403及汲極區119夾著的中間絕緣層401可在程式設計電壓下受力。因此,中間絕緣層401的夾層部分將被破裂,形成一連續路徑以連接上部導電層403及汲極區119。換句話說,中間絕緣層401的夾層部分可被燒斷,可程式設計結構400被程式設計。When programming the programmable structure 400, a high voltage (e.g., +6.0 volts) can be applied to the upper conductive layer 403 through the second contact 109, a selection voltage (e.g., +1.5 volts) can be applied to the gate structure 200, and the first contact 107 can be grounded. The middle insulating layer 401 sandwiched by the upper conductive layer 403 and the drain region 119 can be stressed under the programming voltage. Therefore, the sandwiched portion of the middle insulating layer 401 will be broken, forming a continuous path to connect the upper conductive layer 403 and the drain region 119. In other words, the interlayer portion of the middle insulating layer 401 can be burned off and the programmable structure 400 can be programmed.

應該注意的是,所有的汲極區119可以分別與中間絕緣層401及上部導電層403結合,以配置多個可程式設計結構400。該多個可程式設計結構400可以配置一可程式設計陣列,該陣列具有一共同上部導體(即上部導電層403)。將被程式設計的可程式設計結構400的選擇可以透過控制與相應的汲極區119相關的閘極結構200來實現。It should be noted that all drain regions 119 can be combined with the middle insulating layer 401 and the upper conductive layer 403, respectively, to configure a plurality of programmable structures 400. The plurality of programmable structures 400 can configure a programmable array having a common upper conductor (i.e., the upper conductive layer 403). The selection of the programmable structure 400 to be programmed can be achieved by controlling the gate structure 200 associated with the corresponding drain region 119.

常規上,一可程式設計結構可以透過,例如,M0佈線與其他導電特徵進行電耦合,這需要額外的晶圓面積及更複雜的設計。Conventionally, a programmable structure can be electrically coupled to other conductive features through, for example, M0 traces, which requires additional wafer area and a more complex design.

與此相反,可程式設計結構400將與閘極結構200相關的汲極區119整合為下部導體,因此可程式設計結構400的佔用面積可以減少。因此,更多的面積可用於其他複雜的功能單元或更多的可程式設計結構400。因此,半導體元件1A的性能可得到改善。此外,與可程式設計結構400相關的閘極結構200也可做為隔離電晶體,將高程式設計電壓與相鄰元件隔離。因此,可以減少高程式設計電壓對相鄰元件的損害(例如,源自高程式設計電壓的洩漏電流)。因此,半導體元件1A的可靠性可以得到改善。In contrast, the programmable structure 400 integrates the drain region 119 associated with the gate structure 200 into a lower conductor, so the area occupied by the programmable structure 400 can be reduced. Therefore, more area can be used for other complex functional units or more programmable structures 400. Therefore, the performance of the semiconductor device 1A can be improved. In addition, the gate structure 200 associated with the programmable structure 400 can also be used as an isolation transistor to isolate the high-programmed voltage from the adjacent components. Therefore, the damage of the high-programmed voltage to the adjacent components (for example, the leakage current from the high-programmed voltage) can be reduced. Therefore, the reliability of the semiconductor device 1A can be improved.

圖30至圖33是橫截面圖,例示本揭露另一個實施例之半導體元件1B的部分製備流程。30 to 33 are cross-sectional views illustrating a partial manufacturing process of a semiconductor device 1B according to another embodiment of the present disclosure.

參照圖30及圖31,可以用類似於圖2至圖24中說明的程序來製備一中間半導體元件。一層導電材料(未示出)可共形地形成以覆蓋該中間半導體元件。該導電材料可以包括,例如,鈦、鎳、鉑、鉭或鈷。隨後,可以執行一熱處理。在該熱處理期間,該導電材料層的金屬原子可與源極區117、汲極區119及閘極導電層203的矽原子發生化學反應,以形成複數個中間層111。複數個中間層111可以包括矽化鈦、矽化鎳、矽化鎳鉑、矽化鉭或矽化鈷。該熱處理可以是一動態表面退火製程。在該熱處理之後,可執行一清洗製程,以去除未反應的導電材料。該清洗製程可以使用蝕刻劑,如過氧化氫及SC-1溶液。30 and 31, an intermediate semiconductor element may be prepared using a process similar to that described in FIG. 2 to FIG. 24. A layer of conductive material (not shown) may be conformally formed to cover the intermediate semiconductor element. The conductive material may include, for example, titanium, nickel, platinum, tantalum, or cobalt. Subsequently, a heat treatment may be performed. During the heat treatment, metal atoms of the conductive material layer may chemically react with silicon atoms of the source region 117, the drain region 119, and the gate conductive layer 203 to form a plurality of intermediate layers 111. The plurality of intermediate layers 111 may include titanium silicide, nickel silicide, nickel platinum silicide, tantalum silicide, or cobalt silicide. The heat treatment may be a dynamic surface annealing process. After the heat treatment, a cleaning process may be performed to remove unreacted conductive material. The cleaning process may use an etchant such as hydrogen peroxide and SC-1 solution.

在一些實施例中,複數個中間層111的厚度可在約2奈米與約20奈米之間。In some embodiments, the thickness of the plurality of intermediate layers 111 may be between about 2 nm and about 20 nm.

參照圖32及圖33,中間絕緣層401、上部導電層403、層間介電層105、第一觸點107及第二觸點109的製作技術可類似於圖25至圖29中說明的程序,其描述在此不再重複。複數個中間層111可以減少源極區117、汲極區119及閘極導電層203的接觸電阻,以降低半導體元件1B的功耗。32 and 33, the manufacturing techniques of the middle insulating layer 401, the upper conductive layer 403, the interlayer dielectric layer 105, the first contact 107 and the second contact 109 can be similar to the process described in FIG. 25 to FIG. 29, and the description thereof will not be repeated here. The plurality of middle layers 111 can reduce the contact resistance of the source region 117, the drain region 119 and the gate conductive layer 203 to reduce the power consumption of the semiconductor device 1B.

圖34是頂視圖,例示本揭露另一個實施例之半導體元件1C。圖35是沿圖34的線A-A’的橫截面圖。Fig. 34 is a top view illustrating a semiconductor device 1C according to another embodiment of the present disclosure. Fig. 35 is a cross-sectional view taken along line A-A' of Fig. 34.

參照圖34及圖35,第一連接墊405可以連接到可程式設計結構400的一端,並且可以與可程式設計結構400電連接。第一連接墊405可以包括底部絕緣層405-1及頂部導電層405-3。底部絕緣層405-1可以設置於隔離層103上並與中間絕緣層401連接。頂部導電層405-3可以設置於底部絕緣層405-1上並與上部導電層403連接。第二觸點109可以設置於頂部導電層405-3上。程式設計電壓可透過第二觸點109及第一連接墊405施加到可程式設計結構400。在一些實施例中,第一連接墊405的寬度W3可以大於可程式設計結構400的寬度W4。34 and 35 , the first connection pad 405 may be connected to one end of the programmable structure 400 and may be electrically connected to the programmable structure 400. The first connection pad 405 may include a bottom insulating layer 405-1 and a top conductive layer 405-3. The bottom insulating layer 405-1 may be disposed on the isolation layer 103 and connected to the middle insulating layer 401. The top conductive layer 405-3 may be disposed on the bottom insulating layer 405-1 and connected to the upper conductive layer 403. The second contact 109 may be disposed on the top conductive layer 405-3. The programming voltage may be applied to the programmable structure 400 through the second contact 109 and the first connection pad 405. In some embodiments, the width W3 of the first connection pad 405 may be greater than the width W4 of the programmable structure 400.

在一些實施例中,第一連接墊405可以與中間絕緣層401及上部導電層403同時形成。在一些實施例中,底部絕緣層405-1的製作技術可以是一種與中間絕緣層401相同的材料。在一些實施例中,頂部導電層405-3的製作技術可以是一種與上部導電層403相同的材料。In some embodiments, the first connection pad 405 can be formed simultaneously with the middle insulating layer 401 and the upper conductive layer 403. In some embodiments, the manufacturing technology of the bottom insulating layer 405-1 can be the same material as the middle insulating layer 401. In some embodiments, the manufacturing technology of the top conductive layer 405-3 can be the same material as the upper conductive layer 403.

圖36是流程圖,例示本揭露另一個實施例之半導體元件1D的製備方法20。圖37是頂視圖,例示本揭露另一個實施例之中間半導體元件。圖38是沿圖37的線B-B'的橫截面圖,例示本揭露另一實施例之半導體元件1D的部分製備流程。FIG. 36 is a flow chart illustrating a method 20 for preparing a semiconductor device 1D according to another embodiment of the present disclosure. FIG. 37 is a top view illustrating an intermediate semiconductor device according to another embodiment of the present disclosure. FIG. 38 is a cross-sectional view along line BB' of FIG. 37 illustrating a partial preparation process of a semiconductor device 1D according to another embodiment of the present disclosure.

參照圖36至圖38,在步驟S21,可以提供基底101,可以在基底101中形成隔離層103以定義複數個主動區AA1、AA2、AA3、AA4、AA5,可以在複數個主動區AA1、AA2、AA3、AA4、AA5中形成複數個井區113,並且可以在基底101中形成複數個閘極溝漕300TR。36 to 38 , in step S21, a substrate 101 may be provided, an isolation layer 103 may be formed in the substrate 101 to define a plurality of active areas AA1, AA2, AA3, AA4, AA5, a plurality of well areas 113 may be formed in the plurality of active areas AA1, AA2, AA3, AA4, AA5, and a plurality of gate trenches 300TR may be formed in the substrate 101.

參照圖37及圖38,基底101、隔離層103、主動區AA1、AA2、AA3、AA4、AA5及井區113可以用類似於圖2至圖11中設明的程序來形成,在此不再重複其描述。為了簡明、清晰及方便描述,只描述一個閘極溝槽300TR。在一俯視視角下,閘極溝漕300TR可沿X方向延伸,並可將主動區AA1的電晶體部分TP分為一上部及一下部。Referring to FIG. 37 and FIG. 38 , the substrate 101, the isolation layer 103, the active regions AA1, AA2, AA3, AA4, AA5 and the well region 113 can be formed by a process similar to that described in FIG. 2 to FIG. 11 , and the description thereof will not be repeated here. For the sake of simplicity, clarity and convenience of description, only one gate trench 300TR is described. In a top view, the gate trench 300TR can extend along the X direction and can divide the transistor portion TP of the active region AA1 into an upper portion and a lower portion.

圖39是頂視圖,例示本揭露另一個實施例之中間半導體元件。圖40是沿圖39的線B-B'的橫截面圖,例示本揭露另一實施例之半導體元件1D的部分製備流程。Fig. 39 is a top view illustrating an intermediate semiconductor device according to another embodiment of the present disclosure. Fig. 40 is a cross-sectional view along line BB' of Fig. 39 illustrating a partial preparation process of a semiconductor device 1D according to another embodiment of the present disclosure.

參照圖36、圖39及圖40,在步驟S23,可以在複數個閘極溝槽300TR中形成複數個埋入式閘極結構300。36 , 39 and 40 , in step S23 , a plurality of buried gate structures 300 may be formed in a plurality of gate trenches 300TR.

為了簡明、清晰及方便描述,只描述一個埋入式閘極結構300。For the sake of brevity, clarity and convenience of description, only one buried gate structure 300 is described.

參照圖39及圖40,埋入式閘極結構300可以包括埋入式閘極絕緣層301、埋入式閘極導電層303及埋入式閘極封蓋層305。埋入式閘極絕緣層301可以共形地在閘極溝槽300TR中形成,並且可以具有一U形剖面輪廓。在一些實施例中,埋入式閘極絕緣層301可以包括,例如,氧化矽層、氮化矽層、氮氧化矽層及一高k介電材料中的一種或多種。例如,該高k介電材料可以包括氧化鉿、氧化鉿矽、氧化鑭、氧化鋯、氧化鋯矽、氧化鉭、氧化鈦、氧化鋇鍶鈦、氧化鋇鈦、氧化鍶鈦、氧化鋰、氧化鋁、氧化鉛鈧鉭、鈮酸鉛鋅,或其組合。39 and 40 , the buried gate structure 300 may include a buried gate insulating layer 301, a buried gate conductive layer 303, and a buried gate capping layer 305. The buried gate insulating layer 301 may be conformally formed in the gate trench 300TR and may have a U-shaped cross-sectional profile. In some embodiments, the buried gate insulating layer 301 may include, for example, one or more of a silicon oxide layer, a silicon nitride layer, a silicon oxynitride layer, and a high-k dielectric material. For example, the high-k dielectric material may include tantalum oxide, tantalum oxide silicon, tantalum oxide, zirconia, zirconia silicon, tantalum oxide, titanium oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide, lithium oxide, aluminum oxide, lead tantalum oxide, lead zinc niobate, or a combination thereof.

埋入式閘極導電層303可以形成在埋入式閘極絕緣層301上。在一些實施例中,埋入式閘極導電層303可以包括,例如,導電金屬氮化物(例如氮化鈦或氮化鉭)及金屬(例如鈦、鉭、鎢、銅或鋁)中的一種或多種。埋入式閘極封蓋層305可以形成在埋入式閘極絕緣層301及埋入式閘極導電層303上。在一些實施例中,埋入式閘極蓋層305可以包括,例如,氧化矽層、氮化矽層及氮氧化矽層中的一種或多種。埋入式閘極封蓋層305的頂面及隔離層103的頂面可以實質上共面。The buried gate conductive layer 303 may be formed on the buried gate insulating layer 301. In some embodiments, the buried gate conductive layer 303 may include, for example, one or more of a conductive metal nitride (e.g., titanium nitride or tantalum nitride) and a metal (e.g., titanium, tantalum, tungsten, copper, or aluminum). The buried gate capping layer 305 may be formed on the buried gate insulating layer 301 and the buried gate conductive layer 303. In some embodiments, the buried gate capping layer 305 may include, for example, one or more of a silicon oxide layer, a silicon nitride layer, and a silicon oxynitride layer. The top surface of the buried gate capping layer 305 and the top surface of the isolation layer 103 may be substantially coplanar.

圖41是頂視圖,例示本揭露另一個實施例之中間半導體元件。圖42是沿圖41的線B-B'的橫截面圖,例示本揭露另一實施例之半導體元件1D的部分製備流程。Fig. 41 is a top view illustrating an intermediate semiconductor device according to another embodiment of the present disclosure. Fig. 42 is a cross-sectional view along line BB' of Fig. 41 illustrating a partial preparation process of a semiconductor device 1D according to another embodiment of the present disclosure.

參照圖36、圖41及圖42,在步驟S25,複數個源極區117及複數個汲極區119可以在複數個井區113中形成。36 , 41 and 42 , in step S25 , a plurality of source regions 117 and a plurality of drain regions 119 may be formed in a plurality of well regions 113 .

參照圖41及圖42,可以使用埋入式閘極結構300做為遮罩來執行一n型雜質植入製程,以形成主動區AA1、AA2、AA3、AA4、AA5的電晶體部分TP的該下部中的複數個源極區117及主動區AA1、AA2、AA3、AA4、AA5的電晶體部分TP的該上部中的複數個汲極區119以及主動區AA1、AA2、AA3、AA4、AA5的可程式設計部分PP。該n型雜質植入製程可與圖15至圖17所示的製程類似,在此不再重複其描述。41 and 42, an n-type impurity implantation process may be performed using the buried gate structure 300 as a mask to form a plurality of source regions 117 in the lower portion of the transistor portion TP of the active regions AA1, AA2, AA3, AA4, AA5, a plurality of drain regions 119 in the upper portion of the transistor portion TP of the active regions AA1, AA2, AA3, AA4, AA5, and a programmable portion PP of the active regions AA1, AA2, AA3, AA4, AA5. The n-type impurity implantation process may be similar to the process shown in FIGS. 15 to 17, and its description will not be repeated here.

為了簡明、清晰及方便描述,只描述一個源極區117及一個汲極區119。For the sake of simplicity, clarity and convenience of description, only one source region 117 and one drain region 119 are described.

在一些實施例中,源極區117及汲極區119可以具有該第二電類型(即n型)。源極區117及汲極區119的摻雜物濃度可以是約1E19原子/cm^3至約1E21原子/cm^3。在一些實施例中,從一俯視視角,源極區117的長度L4可以小於汲極區119的長度L5。In some embodiments, the source region 117 and the drain region 119 may have the second electrical type (i.e., n-type). The dopant concentration of the source region 117 and the drain region 119 may be about 1E19 atoms/cm^3 to about 1E21 atoms/cm^3. In some embodiments, from a top view, the length L4 of the source region 117 may be less than the length L5 of the drain region 119.

圖43是頂視圖,例示本揭露另一個實施例之中間半導體元件。圖44至圖47是沿圖43的線A-A'、線B-B'及線C-C'的橫截面圖,例示本揭露另一實施例之半導體元件1D的部分製備流程。Fig. 43 is a top view illustrating an intermediate semiconductor element of another embodiment of the present disclosure. Fig. 44 to Fig. 47 are cross-sectional views along lines AA', BB' and CC' of Fig. 43, illustrating a partial preparation process of a semiconductor element 1D of another embodiment of the present disclosure.

參照圖36及圖43至圖46,在步驟S27,可在複數個主動區AA1、AA2、AA3、AA4、AA5上形成中間絕緣層401,可在中間絕緣層401上形成上部導電層403,其中中間絕緣層401、上部導電層403及複數個汲極區119共同配置複數個可程式設計結構400。36 and 43 to 46 , in step S27 , a middle insulating layer 401 may be formed on a plurality of active regions AA1, AA2, AA3, AA4, AA5, and an upper conductive layer 403 may be formed on the middle insulating layer 401 , wherein the middle insulating layer 401 , the upper conductive layer 403 , and a plurality of drain regions 119 together configure a plurality of programmable structures 400 .

參照圖43至圖46,中間絕緣層401可沿Y方向延伸,並可在汲極區119上形成。中間絕緣層401可以與汲極區119正交。應該注意的是,在一俯視視角下,中間絕緣層401不與埋入式閘極結構300重疊。43 to 46 , the middle insulating layer 401 may extend along the Y direction and may be formed on the drain region 119. The middle insulating layer 401 may be orthogonal to the drain region 119. It should be noted that the middle insulating layer 401 does not overlap the buried gate structure 300 in a top view.

在一些實施例中,中間絕緣層401的製作技術可以是,例如,氧化矽。在一些實施例中,中間絕緣層401的製作技術可以是,例如,一高k介電材料,如金屬氧化物、金屬氮化物、金屬矽酸鹽、過渡金屬氧化物、過渡金屬氮化物、過渡金屬矽酸鹽、金屬的氮氧化物、金屬鋁酸鹽、矽酸鋯、鋁酸鋯或其組合。In some embodiments, the manufacturing technology of the middle insulating layer 401 can be, for example, silicon oxide. In some embodiments, the manufacturing technology of the middle insulating layer 401 can be, for example, a high-k dielectric material, such as metal oxide, metal nitride, metal silicate, transition metal oxide, transition metal nitride, transition metal silicate, metal oxynitride, metal aluminate, zirconium silicate, zirconium aluminate or a combination thereof.

高k介電材料的說明示例可包括,但不限於,氧化鉿、氧化鉿矽、氮氧化鉿矽、氧化鉿鉭、氧化鉿鈦、氧化鉿鋯、氧化鉿鑭、氧化鑭、氧化鋯。氧化鈦、氧化鉭、氧化釔、氧化鈦鍶、氧化鈦鋇、氧化鋯鋇、氧化矽鑭、氧化矽鋁、氧化鋁、氮化矽、氮氧化矽、氧化氮化矽,或其組合。Illustrative examples of high-k dielectric materials may include, but are not limited to, bismuth oxide, bismuth silicon oxide, bismuth silicon oxynitride, bismuth tantalum oxide, bismuth titanium oxide, bismuth zirconium oxide, bismuth tantalum oxide, tantalum oxide, zirconium oxide, titanium oxide, tantalum oxide, yttrium oxide, titanium strontium oxide, titanium barium oxide, zirconium barium oxide, silicon tantalum oxide, aluminum silicon oxide, aluminum oxide, silicon nitride, silicon oxynitride, silicon nitride oxide, or combinations thereof.

在一些實施例中,中間絕緣層401可以是一多層結構,包括,例如,一層氧化矽及另一層高k介電材料。In some embodiments, the intermediate insulating layer 401 may be a multi-layer structure including, for example, a layer of silicon oxide and another layer of high-k dielectric material.

參照圖43至圖46,上部導電層403可以形成在中間絕緣層401上。在一些實施例中,上部導電層403的製作技術可以是,例如,(摻雜)多晶矽、(摻雜)多晶鍺、(摻雜)多晶矽鍺或其他合適的導電材料。43 to 46 , an upper conductive layer 403 may be formed on the middle insulating layer 401. In some embodiments, the upper conductive layer 403 may be made of, for example, (doped) polysilicon, (doped) polygermanium, (doped) polysilicon germanium or other suitable conductive materials.

參照圖43至圖46,中間絕緣層401、上部導電層403及相應的汲極區119共同配置可程式設計結構400。可程式設計結構400可以是,例如,一反熔絲。在本實施例中,汲極區119可以做為可程式設計結構400的下部導體。上部導電層403可做為可程式設計結構400的上部導體。中間絕緣層401可做為夾在下部和上部導體之間的介電層。43 to 46, the middle insulating layer 401, the upper conductive layer 403 and the corresponding drain region 119 together configure the programmable structure 400. The programmable structure 400 can be, for example, an anti-fuse. In this embodiment, the drain region 119 can serve as the lower conductor of the programmable structure 400. The upper conductive layer 403 can serve as the upper conductor of the programmable structure 400. The middle insulating layer 401 can serve as a dielectric layer sandwiched between the lower and upper conductors.

參照圖36及圖47,在步驟S29,可以在中間絕緣層401及上部導電層403的側壁401SW、403SW上形成兩個間隙子407。36 and 47 , in step S29 , two spacers 407 may be formed on the side walls 401SW and 403SW of the middle insulating layer 401 and the upper conductive layer 403 .

參照圖47,一層間隙材料(未顯示)可以被共形地形成以覆蓋圖46中所示的中間半導體元件。在一些實施例中,該間隙材料可以是,例如,氧化矽、氮化矽、氮氧化矽、氧化氮化矽或其他合適的絕緣材料。在一些實施例中,該間隙材料可以包括一能量可移除的材料。該能量可移除的材料可包括一種材料如一熱分解材料、一光子分解材料、一電子束分解材料,或其組合。例如,該能量可移除的材料可以包括一基礎材料及一可分解的致孔材料,該材料在曝露於一能量源時被犧牲掉。該基礎材料可以包括一種基於甲矽烷基二氧六環的材料。該可分解的致孔材料可以包括一種致孔有機化合物,為該能量可移除的基礎材料提供孔隙率。Referring to FIG. 47 , a layer of spacer material (not shown) may be conformally formed to cover the middle semiconductor element shown in FIG. 46 . In some embodiments, the spacer material may be, for example, silicon oxide, silicon nitride, silicon oxynitride, silicon oxynitride, or other suitable insulating materials. In some embodiments, the spacer material may include an energy removable material. The energy removable material may include a material such as a thermally decomposable material, a photon decomposable material, an electron beam decomposable material, or a combination thereof. For example, the energy removable material may include a base material and a decomposable porogenic material that is sacrificed when exposed to an energy source. The base material may include a silyldioxane-based material. The decomposable porogenic material may include a porogenic organic compound that provides porosity to the energy removable base material.

參照圖47,可以執行一蝕刻製程,如一非等向性乾蝕刻製程,以去除該間隙材料的部分並同時在中間絕緣層401的側壁401SW、403SW及上部導電層403上形成兩個間隙子407。在一些實施例中,當間隙材料605包括該能量可移除的材料時,可在該蝕刻製程後藉由施加一能量源執行一能量處理。該能量源可包括熱、光或其組合。當熱做為該能量源時,該能量處理的一溫度可在約800℃與約900℃之間。當光做為該能量源時,可以使用一紫外線。該能量處理可以將該可分解的致孔材料從該能量可移除的材料中移除,以產生空隙(孔隙),而基礎材料則留在原處。空隙(孔隙)可以降低兩個閘極間隙子407的介電常數。因此,可程式設計結構400對相鄰元件的寄生電容的影響可能會減少。47 , an etching process, such as an anisotropic dry etching process, may be performed to remove a portion of the spacer material and simultaneously form two spacers 407 on the sidewalls 401SW, 403SW of the middle insulating layer 401 and the upper conductive layer 403. In some embodiments, when the spacer material 605 includes the energy-removable material, an energy treatment may be performed by applying an energy source after the etching process. The energy source may include heat, light, or a combination thereof. When heat is used as the energy source, a temperature of the energy treatment may be between about 800° C. and about 900° C. When light is used as the energy source, an ultraviolet ray may be used. The energy treatment may remove the decomposable porogen from the energy-removable material to produce voids (pores), while the base material remains in place. The voids (voids) may reduce the dielectric constant of the two gate spacers 407. Therefore, the effect of the programmable structure 400 on the parasitic capacitance of the adjacent devices may be reduced.

圖48是頂視圖,例示本揭露另一個實施例之中間半導體元件。圖49至圖51是沿圖48的線A-A'、線B-B'及線C-C'的橫截面圖,例示本揭露另一實施例之半導體元件1D的部分製備流程。Fig. 48 is a top view illustrating an intermediate semiconductor element of another embodiment of the present disclosure. Fig. 49 to Fig. 51 are cross-sectional views along lines AA', BB' and CC' of Fig. 48, illustrating a partial preparation process of a semiconductor element 1D of another embodiment of the present disclosure.

參照圖36及圖48至圖51,在步驟S31,可形成複數個第一觸點107以電連接到複數個源極區117,並形成第二觸點109以電連接到上部導電層403。36 and 48 to 51 , in step S31 , a plurality of first contacts 107 may be formed to be electrically connected to a plurality of source regions 117 , and a second contact 109 may be formed to be electrically connected to the upper conductive layer 403 .

參照圖48至圖51,層間介電層105、第一接觸107及第二接觸109可以用類似於圖27至圖29所示的程序形成,其描述在此不再重複。48 to 51, the interlayer dielectric layer 105, the first contact 107 and the second contact 109 may be formed by a process similar to that shown in FIGS. 27 to 29, and the description thereof will not be repeated here.

當對可程式設計結構400進行程式設計時,可透過第二觸點109對上部導電層403施加一高電壓(例如+6.0伏),對埋入式閘極結構300施加一選擇電壓(例如+1.5伏),並且第一觸點107可接地,由上部導電層403及汲極區119夾著的中間絕緣層401可在程式設計電壓下受力。因此,中間絕緣層401的夾層部分將被破裂,形成一連續路徑以連接上部導電層403及汲極區119。換句話說,中間絕緣層401的夾層部分可被燒斷,並且可程式設計結構400被程式設計。When programming the programmable structure 400, a high voltage (e.g., +6.0 volts) can be applied to the upper conductive layer 403 through the second contact 109, a selected voltage (e.g., +1.5 volts) can be applied to the buried gate structure 300, and the first contact 107 can be grounded, and the middle insulating layer 401 sandwiched by the upper conductive layer 403 and the drain region 119 can be stressed under the programming voltage. Therefore, the sandwiched portion of the middle insulating layer 401 will be broken, forming a continuous path to connect the upper conductive layer 403 and the drain region 119. In other words, the interlayer portion of the middle insulating layer 401 can be burned off, and the programmable structure 400 is programmed.

應該注意的是,所有的汲極區119可以分別與中間絕緣層401及上部導電層403結合,以配置多個可程式設計結構400。該多個可程式設計結構400可以配置一可程式設計陣列,該陣列具有一共同上部導體(即上部導電層403)。將被程式設計的可程式設計結構400的選擇可以透過控制與相應的汲極區119相關的埋入式閘極結構300來實現。It should be noted that all drain regions 119 can be combined with the middle insulating layer 401 and the upper conductive layer 403, respectively, to configure a plurality of programmable structures 400. The plurality of programmable structures 400 can configure a programmable array having a common upper conductor (i.e., the upper conductive layer 403). The selection of the programmable structure 400 to be programmed can be achieved by controlling the buried gate structure 300 associated with the corresponding drain region 119.

可程式設計結構400將與埋入式閘極結構300相關的汲極區119整合為下部導體,因此可程式設計結構400的佔用面積可以減少。因此,更多的面積可用於其他複雜的功能單元或更多的可程式設計結構400。因此,半導體元件1D的性能可以得到改善。此外,與可程式設計結構400相關的埋入式閘極結構300也可做為隔離電晶體,將高程式設計電壓與相鄰元件隔離。因此,可以減少高程式設計電壓對相鄰元件的損害(例如,源自高程式設計電壓的洩漏電流)。因此,半導體元件1D的可靠性可以得到改善。The programmable structure 400 integrates the drain region 119 associated with the buried gate structure 300 into a lower conductor, so the area occupied by the programmable structure 400 can be reduced. Therefore, more area can be used for other complex functional units or more programmable structures 400. Therefore, the performance of the semiconductor device 1D can be improved. In addition, the buried gate structure 300 associated with the programmable structure 400 can also be used as an isolation transistor to isolate the high-programmed voltage from the adjacent components. Therefore, the damage of the high-programmed voltage to the adjacent components (for example, the leakage current from the high-programmed voltage) can be reduced. Therefore, the reliability of the semiconductor device 1D can be improved.

圖52及圖53是橫截面圖,例示本揭露另一個實施例之半導體元件1E。52 and 53 are cross-sectional views illustrating a semiconductor device 1E according to another embodiment of the present disclosure.

參照圖52及圖53,複數個中間層111可以設置於源極區117與第一觸點107之間、汲極區119與中間絕緣層401之間、以及汲極區119與層間介電層105之間。複數個中間層111可以包括矽化鈦、矽化鎳、矽化鎳鉑、矽化鉭或矽化鈷。在一些實施例中,複數個中間層111的厚度可以在約2奈米與約20奈米之間。52 and 53, a plurality of intermediate layers 111 may be disposed between the source region 117 and the first contact 107, between the drain region 119 and the intermediate insulating layer 401, and between the drain region 119 and the interlayer dielectric layer 105. The plurality of intermediate layers 111 may include titanium silicide, nickel silicide, nickel platinum silicide, tantalum silicide, or cobalt silicide. In some embodiments, the thickness of the plurality of intermediate layers 111 may be between about 2 nanometers and about 20 nanometers.

本揭露的一個方面提供一種半導體元件,包括一基底;一隔離層,設置於該基底中,並定義該基底的一主動區,其中該主動區包括一電晶體部分及從該電晶體部分延伸出的一可程式設計部分;一閘極結構,設置於該電晶體部分上。一汲極區,設置於該可程式設計部分及該電晶體部分中,並與該閘極結構相鄰;一源極區,設置於該電晶體部分中,與該閘極結構相鄰,並與該汲極區相對,該閘極結構介於該兩者之間;一中間絕緣層,設置於該可程式設計部分上;以及一上部導電層,設置於該中間絕緣層上。該可程式設計部分的該汲極區、該中間絕緣層及該上部導電層共同配置一可程式設計結構。One aspect of the present disclosure provides a semiconductor device, including a substrate; an isolation layer disposed in the substrate and defining an active region of the substrate, wherein the active region includes a transistor portion and a programmable portion extending from the transistor portion; a gate structure disposed on the transistor portion; a drain region disposed in the programmable portion and the transistor portion and adjacent to the gate structure; a source region disposed in the transistor portion, adjacent to the gate structure and opposite to the drain region, with the gate structure interposed therebetween; an intermediate insulating layer disposed on the programmable portion; and an upper conductive layer disposed on the intermediate insulating layer. The drain region, the middle insulating layer and the upper conductive layer of the programmable part together configure a programmable structure.

本揭露的另一個方面提供一種半導體元件,包括一基底;一隔離層,設置於該基底中,並定義該基底的一主動區,其中該主動區包括一電晶體部及從該電晶體部分延伸出的一可程式設計部分;一埋入式閘極結構,設置於該電晶體部分中;一汲極區,設置於該可程式設計部分及該電晶體部分中,並與該埋入式閘極結構相鄰;一源極區,設置於該電晶體部分中,與該埋入式閘極結構相鄰,並與該汲極區相對,該埋入式閘極結構介於兩者之間;一中間絕緣層,設置於該可程式設計部分上;一上部導電層,設置於該中間絕緣層上。該可程式設計部分的該汲極區、該中間絕緣層及該上部導電層共同配置一可程式設計的結構。Another aspect of the present disclosure provides a semiconductor device, comprising a substrate; an isolation layer disposed in the substrate and defining an active region of the substrate, wherein the active region includes a transistor portion and a programmable portion extending from the transistor portion; a buried gate structure disposed in the transistor portion; a drain region disposed in the programmable The programmable design part and the transistor part are adjacent to the buried gate structure; a source region is arranged in the transistor part, adjacent to the buried gate structure and opposite to the drain region, and the buried gate structure is located between the two; an intermediate insulating layer is arranged on the programmable design part; an upper conductive layer is arranged on the intermediate insulating layer. The drain region, the intermediate insulating layer and the upper conductive layer of the programmable design part jointly configure a programmable structure.

本揭露的另一個方面提供一種半導體元件的製備方法,包括提供一基底;在該基底中形成一隔離層以定義該基底的一主動區,其中該主動區包括一電晶體部分及從該電晶體部分延伸出的一可程式設計部分;在該電晶體部分上形成一閘極結構;在該可程式設計部分及該電晶體部分中形成一汲極區,並與該閘極結構相鄰;在該電晶體部分中形成一源極區,與該閘極結構相鄰,並與該汲極區相對;在該可程式設計部分上形成一中間絕緣層;以及在該中間絕緣層上形成一上部導電層。該可程式設計部分的該汲極區、該中間絕緣層及該上部導電層共同配置一可程式設計結構。Another aspect of the present disclosure provides a method for preparing a semiconductor element, including providing a substrate; forming an isolation layer in the substrate to define an active region of the substrate, wherein the active region includes a transistor portion and a programmable portion extending from the transistor portion; forming a gate structure on the transistor portion; forming a drain region in the programmable portion and the transistor portion, adjacent to the gate structure; forming a source region in the transistor portion, adjacent to the gate structure and opposite to the drain region; forming an intermediate insulating layer on the programmable portion; and forming an upper conductive layer on the intermediate insulating layer. The drain region, the middle insulating layer and the upper conductive layer of the programmable part together configure a programmable structure.

本揭露的另一個方面提供一種半導體元件的製備方法,包括提供一基底;在該基底中形成一隔離層,以定義該基底的一主動區,其中該主動區包括一電晶體部分及從該電晶體部分延伸出的一可程式設計部分;在該電晶體部分中形成一埋入式閘極結構;在該可程式設計部分及該電晶體部分中形成一汲極區,並與該埋入式閘極結構相鄰;在該電晶體部分中形成一源極區,與該埋入式閘極結構相鄰,並與該汲極區相對;在該可程式設計部分上形成一中間絕緣層;以及在該中間絕緣層上形成一上部導電層。該可程式設計部分的該汲極區、該中間絕緣層及該上部導電層共同配置一可程式設計結構。Another aspect of the present disclosure provides a method for preparing a semiconductor element, including providing a substrate; forming an isolation layer in the substrate to define an active region of the substrate, wherein the active region includes a transistor portion and a programmable portion extending from the transistor portion; forming a buried gate structure in the transistor portion; forming a drain region in the programmable portion and the transistor portion, adjacent to the buried gate structure; forming a source region in the transistor portion, adjacent to the buried gate structure and opposite to the drain region; forming an intermediate insulating layer on the programmable portion; and forming an upper conductive layer on the intermediate insulating layer. The drain region, the middle insulating layer and the upper conductive layer of the programmable part together configure a programmable structure.

由於本揭露的半導體元件的設計,可程式設計結構將與閘極結構相關的汲極區整合為可程式設計結構的下部導體,因此可以減少可程式設計結構的佔用面積。因此,更多的面積可用於其他複雜的功能單元或更多的可程式設計結構。因此,半導體元件的性能可以得到改善。此外,與可程式設計結構相關的閘極結構也可做為隔離電晶體,將高程式設計電壓與相鄰元件隔離。因此,可以減少高程式設計電壓對相鄰元件的損害(例如,源自高程式設計電壓的洩漏電流)。因此,半導體元件的可靠性可以得到改善。Due to the design of the semiconductor element disclosed in the present invention, the programmable structure integrates the drain region associated with the gate structure into the lower conductor of the programmable structure, so the area occupied by the programmable structure can be reduced. Therefore, more area can be used for other complex functional units or more programmable structures. Therefore, the performance of the semiconductor element can be improved. In addition, the gate structure associated with the programmable structure can also be used as an isolation transistor to isolate the high-programmed voltage from adjacent components. Therefore, the damage of the high-programmed voltage to the adjacent components (for example, the leakage current from the high-programmed voltage) can be reduced. Therefore, the reliability of the semiconductor element can be improved.

雖然已詳述本揭露及其優點,然而應理解可進行各種變化、取代與替代而不脫離申請專利範圍所定義之本揭露的精神與範圍。例如,可用不同的方法實施上述的許多製程,並且以其他製程或其組合替代上述的許多製程。Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and replacements can be made without departing from the spirit and scope of the present disclosure as defined by the scope of the patent application. For example, many of the above processes can be implemented in different ways, and other processes or combinations thereof can be used to replace many of the above processes.

再者,本申請案的範圍並不受限於說明書中所述之製程、機械、製造、物質組成物、手段、方法與步驟之特定實施例。該技藝之技術人士可自本揭露的揭示內容理解可根據本揭露而使用與本文所述之對應實施例具有相同功能或是達到實質上相同結果之現存或是未來發展之製程、機械、製造、物質組成物、手段、方法、或步驟。據此,此等製程、機械、製造、物質組成物、手段、方法、或步驟係包含於本申請案之申請專利範圍內。Furthermore, the scope of this application is not limited to the specific embodiments of the processes, machines, manufactures, material compositions, means, methods, and steps described in the specification. A person skilled in the art can understand from the disclosure of this disclosure that existing or future developed processes, machines, manufactures, material compositions, means, methods, or steps that have the same functions or achieve substantially the same results as the corresponding embodiments described herein can be used according to this disclosure. Accordingly, such processes, machines, manufactures, material compositions, means, methods, or steps are included in the scope of the patent application of this application.

1A:半導體元件 1B:半導體元件 1C:半導體元件 1D:半導體元件 1E:半導體元件 10:製備方法 20:製備方法 101:基底 101TR:第一溝槽 103:隔離層 105:層間介電層 107:第一觸點 109:第二觸點 111:中間層 113:井區 115:輕摻雜區 117:源極區 119:汲極區 200:閘極結構 200SW:側壁 201:閘極絕緣層 203:閘極導電層 205:閘極間隙子 300:埋入式閘極結構 300TR:閘極溝漕 301:埋入式閘極絕緣層 303:埋入式閘極導電層 305:埋入式閘極封蓋層 400:可程式設計結構 401:中間絕緣層 401SW:側壁 403:上部導電層 403SW:側壁 405:第一連接墊 405-1:底部絕緣層 405-3:頂部導電層 407:間隙子 601:墊氧化層 603:墊氮化層 605:間隙材料 607:第一遮罩層 A-A':線 AA1:主動區 AA2:主動區 AA3:主動區 AA4:主動區 AA5:主動區 B-B':線 C-C':線 L1:長度 L2:長度 L3:長度 L4:長度 L5:長度 PP:可程式設計部分 S11:步驟 S13:步驟 S15:步驟 S17:步驟 S21:步驟 S23:步驟 S25:步驟 S27:步驟 S29:步驟 S31:步驟 TP:電晶體部分 W1:寬度 W2:寬度 W3:寬度 W4:寬度 X:方向 Y:方向 Z:方向 1A: semiconductor element 1B: semiconductor element 1C: semiconductor element 1D: semiconductor element 1E: semiconductor element 10: preparation method 20: preparation method 101: substrate 101TR: first trench 103: isolation layer 105: interlayer dielectric layer 107: first contact 109: second contact 111: intermediate layer 113: well region 115: lightly doped region 117: source region 119: drain region 200: gate structure 200SW: sidewall 201: gate insulating layer 203: Gate conductive layer 205: Gate spacer 300: Buried gate structure 300TR: Gate trench 301: Buried gate insulating layer 303: Buried gate conductive layer 305: Buried gate capping layer 400: Programmable structure 401: Middle insulating layer 401SW: Sidewall 403: Upper conductive layer 403SW: Sidewall 405: First connection pad 405-1: Bottom insulating layer 405-3: Top conductive layer 407: spacer 601: pad oxide layer 603: pad nitride layer 605: spacer material 607: first mask layer A-A': line AA1: active area AA2: active area AA3: active area AA4: active area AA5: active area B-B': line C-C': line L1: length L2: length L3: length L4: length L5: length PP: programmable part S11: step S13: step S15: step S17: step S21: step S23: step S25: step S27: step S29: step S31: Step TP: Transistor part W1: Width W2: Width W3: Width W4: Width X: Direction Y: Direction Z: Direction

參閱實施方式與申請專利範圍合併考量圖式時,可得以更全面了解本申請案之揭示內容,圖式中相同的元件符號係指相同的元件。 圖1是流程圖,例示本揭露一個實施例之半導體元件的製備方法。 圖2是頂視圖,例示本揭露一個實施例之中間半導體元件。 圖3至圖6是沿圖2的線A-A'及線B-B'的橫截面圖,例示本揭露一個實施例之半導體元件的部分製備流程。 圖7是頂視圖,例示本揭露一個實施例之中間半導體元件。 圖8至圖11是沿圖7的線A-A'及線B-B'的橫截面圖,例示本揭露一個實施例之半導體元件的部分製備流程。 圖12是頂視圖,例示本揭露一個實施例之中間半導體元件。 圖13及14是沿圖12的線A-A’及線B-B’的橫截面圖,例示本揭露一個實施例之半導體元件的部分製備流程。 圖15是頂視圖,例示本揭露一個實施例之中間半導體元件。 圖16至圖21是沿圖15的線A-A’及線B-B’的橫截面圖,例示本揭露一個實施例之半導體元件的部分製備流程。 圖22是頂視圖,例示本揭露一個實施例之中間半導體元件。 圖23及圖24是沿圖22的線A-A’及線B-B’的橫截面圖,例示本揭露一個實施例之半導體元件的部分製備流程。 圖25是頂視圖,例示本揭露一個實施例之中間半導體元件。 圖26是沿圖25的線A-A’的橫截面圖,例示本揭露一個實施例之半導體元件的部分製備流程。 圖27是頂視圖,例示本揭露一個實施例之中間半導體元件。 圖28及圖29是沿圖27的線A-A’及線B-B’的橫截面圖,例示本揭露一個實施例之半導體元件的部分製備流程。 圖30至圖33是橫截面圖,例示本揭露另一個實施例之半導體元件的部分製備流程。 圖34是頂視圖,例示本揭露另一個實施例之半導體元件。 圖35是沿圖34的線A-A’的橫截面圖。 圖36是流程圖,例示本揭露另一個實施例之半導體元件的製備方法。 圖37是頂視圖,例示本揭露另一個實施例之中間半導體元件。 圖38是沿圖37的線B-B'的橫截面圖,例示本揭露另一實施例之半導體元件的部分製備流程。 圖39是頂視圖,例示本揭露另一個實施例之中間半導體元件。 圖40是沿圖39的線B-B'的橫截面圖,例示本揭露另一實施例之半導體元件的部分製備流程。 圖41是頂視圖,例示本揭露另一個實施例之中間半導體元件。 圖42是沿圖41的線B-B'的橫截面圖,例示本揭露另一實施例之半導體元件的部分製備流程。 圖43是頂視圖,例示本揭露另一個實施例之中間半導體元件。 圖44至圖47是沿圖43的線A-A'、線B-B'及線C-C'的橫截面圖,例示本揭露另一實施例之半導體元件的部分製備流程。 圖48是頂視圖,例示本揭露另一個實施例之中間半導體元件。 圖49至圖51是沿圖48的線A-A'、線B-B'及線C-C'的橫截面圖,例示本揭露另一實施例之半導體元件的部分製備流程。 圖52及圖53是橫截面圖,例示本揭露另一個實施例之半導體元件。 When referring to the embodiments and the scope of the patent application together with the drawings, a more comprehensive understanding of the disclosure of the present application can be obtained. The same element symbols in the drawings refer to the same elements. FIG. 1 is a flow chart illustrating a method for preparing a semiconductor element of an embodiment of the present disclosure. FIG. 2 is a top view illustrating an intermediate semiconductor element of an embodiment of the present disclosure. FIG. 3 to FIG. 6 are cross-sectional views along line A-A' and line B-B' of FIG. 2, illustrating a partial preparation process of a semiconductor element of an embodiment of the present disclosure. FIG. 7 is a top view illustrating an intermediate semiconductor element of an embodiment of the present disclosure. FIG. 8 to FIG. 11 are cross-sectional views along line A-A' and line B-B' of FIG. 7, illustrating a partial preparation process of a semiconductor element of an embodiment of the present disclosure. FIG. 12 is a top view illustrating an intermediate semiconductor element of an embodiment of the present disclosure. FIG. 13 and FIG. 14 are cross-sectional views along line A-A’ and line B-B’ of FIG. 12, illustrating a partial preparation process of a semiconductor element of an embodiment of the present disclosure. FIG. 15 is a top view illustrating an intermediate semiconductor element of an embodiment of the present disclosure. FIG. 16 to FIG. 21 are cross-sectional views along line A-A’ and line B-B’ of FIG. 15, illustrating a partial preparation process of a semiconductor element of an embodiment of the present disclosure. FIG. 22 is a top view illustrating an intermediate semiconductor element of an embodiment of the present disclosure. FIG. 23 and FIG. 24 are cross-sectional views along line A-A’ and line B-B’ of FIG. 22, illustrating a partial preparation process of a semiconductor element of an embodiment of the present disclosure. FIG. 25 is a top view illustrating an intermediate semiconductor element of an embodiment of the present disclosure. FIG. 26 is a cross-sectional view along line A-A’ of FIG. 25, illustrating a partial preparation process of a semiconductor element of an embodiment of the present disclosure. FIG. 27 is a top view illustrating an intermediate semiconductor element of an embodiment of the present disclosure. FIG. 28 and FIG. 29 are cross-sectional views along line A-A’ and line B-B’ of FIG. 27, illustrating a partial preparation process of a semiconductor element of an embodiment of the present disclosure. FIG. 30 to FIG. 33 are cross-sectional views illustrating a partial preparation process of a semiconductor element of another embodiment of the present disclosure. FIG. 34 is a top view illustrating a semiconductor element of another embodiment of the present disclosure. FIG. 35 is a cross-sectional view along line A-A’ of FIG. 34. FIG. 36 is a flow chart illustrating a method for preparing a semiconductor element of another embodiment of the present disclosure. FIG. 37 is a top view illustrating an intermediate semiconductor element of another embodiment of the present disclosure. FIG. 38 is a cross-sectional view along line BB' of FIG. 37 illustrating a partial preparation process of a semiconductor element of another embodiment of the present disclosure. FIG. 39 is a top view illustrating an intermediate semiconductor element of another embodiment of the present disclosure. FIG. 40 is a cross-sectional view along line BB' of FIG. 39 illustrating a partial preparation process of a semiconductor element of another embodiment of the present disclosure. FIG. 41 is a top view illustrating an intermediate semiconductor element of another embodiment of the present disclosure. FIG. 42 is a cross-sectional view along line BB' of FIG. 41 illustrating a partial preparation process of a semiconductor element of another embodiment of the present disclosure. FIG. 43 is a top view illustrating an intermediate semiconductor element of another embodiment of the present disclosure. FIG. 44 to FIG. 47 are cross-sectional views along lines A-A', B-B', and CC' of FIG. 43, illustrating a partial preparation process of a semiconductor element of another embodiment of the present disclosure. FIG. 48 is a top view illustrating an intermediate semiconductor element of another embodiment of the present disclosure. FIG. 49 to FIG. 51 are cross-sectional views along lines A-A', B-B', and CC' of FIG. 48, illustrating a partial preparation process of a semiconductor element of another embodiment of the present disclosure. FIG. 52 and FIG. 53 are cross-sectional views illustrating a semiconductor element of another embodiment of the present disclosure.

1A:半導體元件 1A: Semiconductor components

101:基底 101: Base

101TR:第一溝槽 101TR: First groove

103:隔離層 103: Isolation layer

105:層間介電層 105: Interlayer dielectric layer

107:第一觸點 107: First contact

113:井區 113: Well area

115:輕摻雜區 115: Lightly mixed area

117:源極區 117: Source region

119:汲極區 119: Drain area

200:閘極結構 200: Gate structure

201:閘極絕緣層 201: Gate insulation layer

203:閘極導電層 203: Gate conductive layer

205:閘極間隙子 205: Gate gap

AA1:主動區 AA1: Active area

B-B':線 B-B': line

TP:電晶體部分 TP: Transistor part

Z:方向 Z: Direction

Claims (26)

一種半導體元件,包括: 一基底; 一隔離層,設置於該基底中,並定義該基底的一主動區,其中該主動區包括一電晶體部分及從該電晶體部分延伸出的一可程式設計部分; 一閘極結構,設置於該電晶體部分上; 一汲極區,設置於該可程式設計部分及該電晶體部分中,並與該閘極結構相鄰; 一源極區,設置於該電晶體部分中,與該閘極結構相鄰,並與該汲極區相對,該閘極結構介於該兩者之間; 一中間絕緣層,設置於該可程式設計部分上;以及 一上部導電層,設置於該中間絕緣層上; 其中該可程式設計部分中的該汲極區、該中間絕緣層及該上部導電層共同配置一可程式設計結構。 A semiconductor element comprises: a substrate; an isolation layer disposed in the substrate and defining an active region of the substrate, wherein the active region comprises a transistor portion and a programmable portion extending from the transistor portion; a gate structure disposed on the transistor portion; a drain region disposed in the programmable portion and the transistor portion and adjacent to the gate structure; a source region disposed in the transistor portion, adjacent to the gate structure and opposite to the drain region, the gate structure being between the two; an intermediate insulating layer disposed on the programmable portion; and An upper conductive layer is disposed on the middle insulating layer; wherein the drain region, the middle insulating layer and the upper conductive layer in the programmable part together configure a programmable structure. 如請求項1所述的半導體元件,更包括一第一觸點,設置於該源極區上並與該源極區電連接。The semiconductor device as described in claim 1 further includes a first contact disposed on the source region and electrically connected to the source region. 如請求項2所述的半導體元件,更包括一第二觸點,設置於該上部導電層上並與上部導電層電連接。The semiconductor device as described in claim 2 further includes a second contact disposed on the upper conductive layer and electrically connected to the upper conductive layer. 如請求項3所述的半導體元件,其中該閘極結構包括: 一閘極絕緣層,設置於該電晶體部分上,並於該源極區與該汲極區之間;以及 一閘極導電層,設置於該閘極絕緣層上。 A semiconductor device as described in claim 3, wherein the gate structure includes: a gate insulating layer disposed on the transistor portion and between the source region and the drain region; and a gate conductive layer disposed on the gate insulating layer. 如請求項4所述的半導體元件,更包括兩個閘極間隙子,分別設置於該源極區及該汲極區上,並覆蓋該閘極結構的側壁。The semiconductor device as described in claim 4 further includes two gate spacers, which are respectively arranged on the source region and the drain region and cover the side walls of the gate structure. 如請求項5所述的半導體元件,更包括一輕摻雜區,設置於該基底中、該兩個閘極間隙子之一下面,並與該汲極區相鄰。The semiconductor device as described in claim 5 further includes a lightly doped region disposed in the substrate, below one of the two gate spacers, and adjacent to the drain region. 如請求項6所述的半導體元件,其中該汲極區及該輕摻雜區包括相同的電類型。A semiconductor device as described in claim 6, wherein the drain region and the lightly doped region comprise the same electrical type. 如請求項7所述的半導體元件,更包括一井區,設置於該電晶體部分及該可程式設計部分中; 其中該輕摻雜區、該源極區及該汲極區設置於該井區中。 The semiconductor device as described in claim 7 further includes a well region disposed in the transistor portion and the programmable portion; wherein the lightly doped region, the source region and the drain region are disposed in the well region. 如請求項8所述的半導體元件,其中該井區及該汲極區包括不同的電類型。A semiconductor device as described in claim 8, wherein the well region and the drain region comprise different electrical types. 如請求項9所述的半導體元件,更包括一中間層,設置於該第一觸點與該源極區之間; 其中該中間層包括矽化鈦、矽化鎳、矽化鎳鉑、矽化鉭、或矽化鈷。 The semiconductor device as described in claim 9 further includes an intermediate layer disposed between the first contact and the source region; wherein the intermediate layer includes titanium silicide, nickel silicide, nickel platinum silicide, tantalum silicide, or cobalt silicide. 如請求項9所述的半導體元件,更包括一中間層,設置於該汲極區上; 其中該中間層包括矽化鈦、矽化鎳、矽化鎳鉑、矽化鉭、或矽化鈷。 The semiconductor device as described in claim 9 further includes an intermediate layer disposed on the drain region; wherein the intermediate layer includes titanium silicide, nickel silicide, nickel platinum silicide, tantalum silicide, or cobalt silicide. 如請求項9所述的半導體元件,更包括一中間層,設置於該中間絕緣層與該汲極區之間; 其中該中間層包括矽化鈦、矽化鎳、矽化鎳鉑、矽化鉭、或矽化鈷。 The semiconductor device as described in claim 9 further includes an intermediate layer disposed between the intermediate insulating layer and the drain region; wherein the intermediate layer includes titanium silicide, nickel silicide, nickel platinum silicide, tantalum silicide, or cobalt silicide. 如請求項9所述的半導體元件,更包括一中間層,設置於該閘極導電層上; 其中該中間層包括矽化鈦、矽化鎳、矽化鎳鉑、矽化鉭、或矽化鈷。 The semiconductor device as described in claim 9 further includes an intermediate layer disposed on the gate conductive layer; wherein the intermediate layer includes titanium silicide, nickel silicide, nickel platinum silicide, tantalum silicide, or cobalt silicide. 如請求項1所述的半導體元件,其中該源極區的一長度在一俯視視角下小於該汲極區的一長度。A semiconductor device as described in claim 1, wherein a length of the source region is smaller than a length of the drain region when viewed from a top view angle. 如請求項1所述的半導體元件,其中該可程式設計部分沿一第一方向延伸,而該可程式設計結構沿與該第一方向垂直的一第二方向延伸。A semiconductor device as described in claim 1, wherein the programmable portion extends along a first direction, and the programmable structure extends along a second direction perpendicular to the first direction. 如請求項2所述的半導體元件,其中該閘極結構沿該第一方向延伸。A semiconductor device as described in claim 2, wherein the gate structure extends along the first direction. 如請求項1所述的半導體元件,其中該閘極結構的一該長度大於或等於源極區的一長度。A semiconductor device as described in claim 1, wherein a length of the gate structure is greater than or equal to a length of the source region. 如請求項1所述的半導體元件,其中該可程式設計部分的一寬度小於該電晶體部分的一寬度。A semiconductor device as described in claim 1, wherein a width of the programmable portion is smaller than a width of the transistor portion. 如請求項1所述的半導體元件,更包括一第一連接墊,連接到該可程式設計結構的一端;其中該第一連接墊包括: 一底部絕緣層,從該中間絕緣層延伸出,並設置於該基底上;以及 一頂部導電層,從設置於該底部絕緣層上的該上部導電層延伸出。 The semiconductor device as described in claim 1 further includes a first connection pad connected to one end of the programmable structure; wherein the first connection pad includes: a bottom insulating layer extending from the middle insulating layer and disposed on the substrate; and a top conductive layer extending from the upper conductive layer disposed on the bottom insulating layer. 如請求項19所述的半導體元件,其中該第一連接墊的一寬度大於該可程式設計結構的一寬度。A semiconductor device as described in claim 19, wherein a width of the first connection pad is greater than a width of the programmable structure. 一種半導體元件,包括: 一基底; 一隔離層,設置於該基底中,並定義該基底的一主動區,其中該主動區包括一電晶體部分及從該電晶體部分延伸出的一可程式設計部分; 一埋入式閘極結構,設置於該電晶體部分中; 一汲極區,設置於該可程式設計部分及該電晶體部分中,並與該埋入式閘極結構相鄰; 一源極區,設置於該電晶體部分中,與該埋入式閘極結構相鄰,並與該汲極區相對,該埋入式閘極結構介於該兩者之間; 一中間絕緣層,設置於該可程式設計部分上;以及 一上部導電層個,設置於該中間絕緣層上; 其中該可程式設計部分中的該汲極區、該中間絕緣層及該上部導電層共同配置一可程式設計結構。 A semiconductor element comprises: a substrate; an isolation layer disposed in the substrate and defining an active region of the substrate, wherein the active region comprises a transistor portion and a programmable portion extending from the transistor portion; an embedded gate structure disposed in the transistor portion; a drain region disposed in the programmable portion and the transistor portion and adjacent to the embedded gate structure; a source region disposed in the transistor portion, adjacent to the embedded gate structure and opposite to the drain region, the embedded gate structure being between the two; an intermediate insulating layer disposed on the programmable portion; and An upper conductive layer is disposed on the middle insulating layer; wherein the drain region, the middle insulating layer and the upper conductive layer in the programmable part together configure a programmable structure. 如請求項21所述的半導體元件,其中該源極區的一長度在一俯視視角下小於該汲極區的一長度。A semiconductor device as described in claim 21, wherein a length of the source region is smaller than a length of the drain region when viewed from a top-down angle. 如請求項22所述的半導體元件,其中該可程式設計部分沿一第一方向延伸,而該可程式設計結構沿垂直於該第一方向的一第二方向延伸。A semiconductor device as described in claim 22, wherein the programmable portion extends along a first direction and the programmable structure extends along a second direction perpendicular to the first direction. 如請求項21所述的半導體元件,其中該可程式設計部分的一寬度小於該電晶體部分的一寬度。A semiconductor device as described in claim 21, wherein a width of the programmable portion is smaller than a width of the transistor portion. 如請求項21所述的半導體元件,其中該埋入式閘極結構包括: 一埋入式閘極絕緣層,向內設置於該電晶體部分中,並且具有一U形剖面輪廓; 一埋入式閘極導電層,設置於該埋入式閘極絕緣層上;以及 一埋入式閘極封蓋層,設置於該埋入式閘極絕緣層及該埋入式閘極導電層上。 A semiconductor element as described in claim 21, wherein the buried gate structure comprises: a buried gate insulating layer disposed inwardly in the transistor portion and having a U-shaped cross-sectional profile; a buried gate conductive layer disposed on the buried gate insulating layer; and a buried gate capping layer disposed on the buried gate insulating layer and the buried gate conductive layer. 如請求項21所述的半導體元件,更包括兩個間隙子,設置於該中間絕緣層及該上部導電層的側壁上。The semiconductor device as described in claim 21 further includes two spacers disposed on the side walls of the middle insulating layer and the upper conductive layer.
TW111139480A 2022-02-23 2022-10-18 Semiconductor device with programmable structure TWI847309B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US17/678,407 US20230269935A1 (en) 2022-02-23 2022-02-23 Semiconductor device with programmable structure and method for fabricating the same
US17/678,407 2022-02-23
US17/678,212 US20230269934A1 (en) 2022-02-23 2022-02-23 Semiconductor device with programmable structure and method for fabricating the same
US17/678,212 2022-02-23

Publications (2)

Publication Number Publication Date
TW202341490A TW202341490A (en) 2023-10-16
TWI847309B true TWI847309B (en) 2024-07-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI740319B (en) 2019-04-15 2021-09-21 大陸商長江存儲科技有限責任公司 Semiconductor component including programmable logic device (pld) and heterogeneous memory and forming method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI740319B (en) 2019-04-15 2021-09-21 大陸商長江存儲科技有限責任公司 Semiconductor component including programmable logic device (pld) and heterogeneous memory and forming method thereof

Similar Documents

Publication Publication Date Title
CN114078970B (en) Semiconductor element and method for manufacturing the same
TW202141736A (en) Semiconductor memory device with air gaps for reducing capacitive coupling and method for preparing the same
TW202107584A (en) Semiconductor device and method for fabricating the same
US20240213162A1 (en) Semiconductor device with adjustment layers and method for fabricating the same
TWI833077B (en) Semiconductor device with programmable element and method for fabricating the same
TW201926420A (en) Semiconductor device and method of fabricating the same
TW202111920A (en) Semiconductor device and method for fabricating the same
TWI847309B (en) Semiconductor device with programmable structure
US11527538B2 (en) Method for fabricating a semiconductor device with array region and peripheral region
TWI833530B (en) Method for fabricating semiconductor device with programmable structure
TWI793452B (en) Semiconductor device having multiple dimensions of gate structures and method for fabricating the same
US20230269934A1 (en) Semiconductor device with programmable structure and method for fabricating the same
US20230269935A1 (en) Semiconductor device with programmable structure and method for fabricating the same
TWI779816B (en) Semiconductor device with programmable unit and method for fabricating the same
TWI803113B (en) Semiconductor device with pad structure and method for fabricating the same
US20230369386A1 (en) Semiconductor device structure and methods of forming the same
US11824082B2 (en) Method for fabricating semiconductor device with capacitors having shared electrode
TWI756833B (en) Semiconductor device with porous dielectric structure and method for fabricating the same
US20240055521A1 (en) Semiconductor device and method for fabricating the same
TW202234580A (en) Semiconductor device with self-aligning contact and method for fabricating the same
CN112614817A (en) Semiconductor element and method for manufacturing the same