TWI845880B - 用於目標圖案之基於規則之重定目標的方法 - Google Patents
用於目標圖案之基於規則之重定目標的方法 Download PDFInfo
- Publication number
- TWI845880B TWI845880B TW110149433A TW110149433A TWI845880B TW I845880 B TWI845880 B TW I845880B TW 110149433 A TW110149433 A TW 110149433A TW 110149433 A TW110149433 A TW 110149433A TW I845880 B TWI845880 B TW I845880B
- Authority
- TW
- Taiwan
- Prior art keywords
- pattern
- dimension
- feature
- bias
- target pattern
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 301
- 238000005259 measurement Methods 0.000 claims abstract description 85
- 239000000758 substrate Substances 0.000 claims abstract description 85
- 230000008569 process Effects 0.000 claims description 160
- 238000012937 correction Methods 0.000 claims description 64
- 230000003287 optical effect Effects 0.000 claims description 44
- 238000004519 manufacturing process Methods 0.000 claims description 17
- 238000012986 modification Methods 0.000 claims description 9
- 230000004048 modification Effects 0.000 claims description 9
- 238000004590 computer program Methods 0.000 claims description 4
- 238000013461 design Methods 0.000 description 159
- 230000006870 function Effects 0.000 description 128
- 230000005855 radiation Effects 0.000 description 79
- 238000005457 optimization Methods 0.000 description 77
- 238000001459 lithography Methods 0.000 description 50
- 238000005286 illumination Methods 0.000 description 49
- 238000000059 patterning Methods 0.000 description 34
- 230000007547 defect Effects 0.000 description 22
- 238000009826 distribution Methods 0.000 description 21
- 238000011156 evaluation Methods 0.000 description 18
- 238000013459 approach Methods 0.000 description 17
- 238000004891 communication Methods 0.000 description 17
- 230000000694 effects Effects 0.000 description 17
- 238000004088 simulation Methods 0.000 description 15
- 238000012545 processing Methods 0.000 description 13
- 238000004422 calculation algorithm Methods 0.000 description 12
- 210000001747 pupil Anatomy 0.000 description 12
- 230000008080 stochastic effect Effects 0.000 description 11
- 235000012431 wafers Nutrition 0.000 description 11
- 238000003384 imaging method Methods 0.000 description 10
- 239000000356 contaminant Substances 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 230000000875 corresponding effect Effects 0.000 description 8
- 230000006872 improvement Effects 0.000 description 8
- 230000004888 barrier function Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 238000011161 development Methods 0.000 description 7
- 238000005530 etching Methods 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 230000006399 behavior Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000009304 pastoral farming Methods 0.000 description 6
- 238000007639 printing Methods 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 5
- 230000004075 alteration Effects 0.000 description 4
- 238000003491 array Methods 0.000 description 4
- 238000000429 assembly Methods 0.000 description 4
- 230000000712 assembly Effects 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 238000011960 computer-aided design Methods 0.000 description 3
- 238000001393 microlithography Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000003708 edge detection Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005305 interferometry Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 238000012897 Levenberg–Marquardt algorithm Methods 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 238000001015 X-ray lithography Methods 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002939 conjugate gradient method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000012942 design verification Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000001900 extreme ultraviolet lithography Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 238000013386 optimize process Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 238000012887 quadratic function Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000002922 simulated annealing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/706835—Metrology information management or control
- G03F7/706839—Modelling, e.g. modelling scattering or solving inverse problems
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70425—Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
- G03F7/70433—Layout for increasing efficiency or for compensating imaging errors, e.g. layout of exposure fields for reducing focus errors; Use of mask features for increasing efficiency or for compensating imaging errors
- G03F7/70441—Optical proximity correction [OPC]
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/70616—Monitoring the printed patterns
- G03F7/70625—Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/39—Circuit design at the physical level
- G06F30/392—Floor-planning or layout, e.g. partitioning or placement
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Architecture (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
本文描述一種用於產生用於待印刷於一基板上之一目標圖案之一經重定目標圖案的方法。該方法包括:獲得(i)包含至少一個特徵之該目標圖案,該至少一個特徵具有包括一第一維度及一第二維度之幾何形狀;及(ii)複數個偏置規則,其被定義為依據該第一維度、該第二維度及與一量測區內之該目標圖案之特徵相關聯的一屬性而變化;判定該目標圖案之該至少一個特徵上之複數個位置處的該屬性之值,每一位置由該量測區包圍;基於該屬性之該等值自該複數個偏置規則選擇偏置之一子集;及藉由將該所選擇偏置子集應用至該目標圖案之該至少一個特徵而產生該經重定目標圖案。
Description
本文中之描述係關於微影裝置及圖案化製程,且更特定言之,用於判定對目標圖案之校正以改良圖案化製程的方法。
微影投影裝置可用於(例如)積體電路(IC)製造中。在此狀況下,圖案化器件(例如,光罩)可含有或提供對應於IC之個別層之電路圖案(「設計佈局」),且可藉由諸如經由圖案化器件上之電路圖案而輻照已被塗佈有輻射敏感材料(「抗蝕劑」)層之基板(例如,矽晶圓)上之目標部分(例如,包含一或多個晶粒)的方法將此電路圖案轉印至該目標部分上。一般而言,單一基板含有複數個鄰近目標部分,電路圖案係由微影投影裝置順次地轉印至該複數個鄰近目標部分,一次一個目標部分。在一種類型之微影投影裝置中,將整個圖案化器件上之電路圖案一次性轉印至一個目標部分上;此裝置通常被稱作晶圓步進器(wafer stepper)。在通常被稱作步進掃描裝置(step-and-scan apparatus)之替代裝置中,投影光束在給定參考方向(「掃描」方向)上遍及圖案化器件進行掃描,同時平行或反平行於此參考方向而同步地移動基板。圖案化器件上之電路圖案之不同部分逐漸地轉印至一個目標部分。一般而言,因為微影投影裝置將具有放大因數M (通常<1),所以基板被移動之速率F將為投影光束掃描圖案化器件之速率的因數M倍。可(例如)自以引用方式併入本文中之US 6,046,792搜集到關於如本文所描述之微影器件的更多資訊。
在將電路圖案自圖案化器件轉印至基板之前,基板可經歷各種工序,諸如,上底漆、抗蝕劑塗佈及軟烘烤。在曝光之後,基板可經受其他工序,諸如,曝光後烘烤(PEB)、顯影、硬烘烤,及經轉印電路圖案之量測/檢測。此工序陣列用作製造一器件(例如,IC)之個別層的基礎。基板可接著經歷各種製程,諸如,蝕刻、離子植入(摻雜)、金屬化、氧化、化學機械拋光等等,該等製程皆意欲精整該器件之個別層。若在器件中需要若干層,則針對每一層來重複整個工序或其變體。最終,在基板上之每一目標部分中將存在一器件。接著藉由諸如切塊或鋸切之技術而使此等器件彼此分離,據此,可將個別器件安裝於載體上、連接至銷釘,等等。
如所提及,微影蝕刻術(microlithography)為在IC製造中之中心步驟,其中形成於基板上之圖案界定IC之功能元件,諸如,微處理器、記憶體晶片等等。相似微影技術亦用來形成平板顯示器、微機電系統(MEMS)及其他器件。
隨著半導體製造製程繼續進步,幾十年來,功能元件之尺寸已不斷地縮減,而每器件的諸如電晶體之功能元件之量已在穩固地增加,此遵循通常被稱作「莫耳定律(Moore's law)」之趨勢。在當前先進技術下,使用微影投影裝置來製造器件層,微影投影裝置使用來自深紫外線照明源之照明而將設計佈局投影至基板上,從而產生尺寸充分地低於100 nm之個別功能元件,亦即,尺寸小於來自該照明源(例如,193 nm照明源)之輻射之波長的一半。供印刷尺寸小於微影投影裝置之經典解析度極限之特徵的此製程根據解析度公式CD=k
1×λ/NA而通常被稱為低k
1微影,其中λ為所使用輻射之波長(當前在大多數狀況下為248 nm或193 nm),NA為微影投影裝置中之投影光學件之數值孔徑,CD為「臨界尺寸」(通常為所印刷之最小特徵大小),且k
1為經驗解析度因數。一般而言,k
1愈小,則在基板上再生類似於由電路設計者規劃之形狀及尺寸以便達成特定電功能性及效能的圖案變得愈困難。為了克服此等困難,將複雜微調步驟應用於微影投影裝置及/或設計佈局。此等步驟包括(例如,但不限於) NA及光學相干性設定之最佳化、自訂照明方案、相移圖案化器件之使用、設計佈局中之光學近接校正(OPC,有時亦被稱作「光學及製程校正」),或通常被定義為「解析度增強技術」(RET)之其他方法。如本文所使用之術語「投影光學件」應被廣泛地解譯為涵蓋各種類型之光學系統,包括(例如)折射光學件、反射光學件、孔徑及反射折射光學件。術語「投影光學件」亦可包括用於集體地或單個地引導、塑形或控制投影輻射光束的根據此等設計類型中之任一者而操作之組件。術語「投影光學件」可包括微影投影裝置中之任何光學組件,而不管該光學組件在微影投影裝置之光學路徑上位於何處。投影光學件可包括用於在來自源之輻射通過圖案化器件之前塑形、調整及/或投影該輻射的光學組件,及/或用於在該輻射通過圖案化器件之後塑形、調整及/或投影該輻射的光學組件。投影光學件通常排除源及圖案化器件。
在一實施例中,提供一種用於產生用於待印刷於一基板上之一目標圖案之一經重定目標圖案的方法。該方法包括:獲得(i)包含至少一個特徵之該目標圖案,該至少一個特徵具有包括一第一維度及一第二維度之幾何形狀;及(ii)複數個偏置規則,其被定義為依據該第一維度、該第二維度及與一量測區內之該目標圖案之特徵相關聯的一屬性而變化;判定該目標圖案之該至少一個特徵上之複數個位置處的該屬性之值,其中每一位置係由該量測區包圍;基於該屬性之該等值自該複數個偏置規則選擇針對該至少一個特徵上之該複數個位置之一偏置子集;及藉由將該所選擇偏置子集應用至該目標圖案之該至少一個特徵而產生用於該目標圖案之該經重定目標圖案。
此外,在一實施例中,提供一種用於判定用於待印刷於一基板上之一目標圖案之偏置規則的方法。該方法包括:獲得包含由一第一維度及一第二維度界定之至少一個特徵的該目標圖案;經由執行製程校正模型判定針對該第一維度及該第二維度之複數個偏置,且將該複數個偏置中之每一者與該屬性之一值相關聯,其中該製程校正模型使該至少一個特徵之該第一維度及該第二維度偏置,且運算與該至少一個特徵相關聯之該屬性;及基於該複數個偏置定義依據該第一維度、該第二維度及與該至少一個特徵相關聯之該屬性而變化的該等偏置規則。
此外,提供一種電腦程式產品,其包含其上經記錄有指令之一非暫時性電腦可讀媒體,該等指令在由一電腦執行時實施如以上技術方案中任一項之方法。
儘管可在本文中特定地參考IC製造,但應明確理解,本文中之描述具有許多其他可能應用。舉例而言,其可用於製造整合式光學系統、用於磁疇記憶體之導引及偵測圖案、液晶顯示面板、薄膜磁頭等等。熟習此項技術者應瞭解,在此等替代應用之內容背景中,本文中對術語「倍縮光罩」、「晶圓」或「晶粒」之任何使用應被認為分別可與更一般之術語「光罩」、「基板」及「目標部分」互換。
在本文件中,術語「輻射」及「光束」用以涵蓋所有類型之電磁輻射,包括紫外線輻射(例如,具有365 nm、248 nm、193 nm、157 nm或126 nm之波長),及極紫外線輻射(EUV,例如,具有在5 nm至20 nm之範圍內之波長)。
如本文所使用之術語「最佳化(optimizing/optimization)」意謂:調整微影投影裝置,使得微影之結果及/或製程具有更理想之特性,諸如,設計佈局在基板上之投影之較高準確度、較大製程窗等等。
另外,微影投影裝置可屬於具有兩個或兩個以上基板台(及/或兩個或兩個以上圖案化器件台)之類型。在此等「多載物台」器件中,可並行地使用額外台,或可在一或多個台上進行預備步驟,同時將一或多個其他台用於曝光。舉例而言,以引用方式併入本文中之US 5,969,441中描述雙載物台微影投影裝置。
上文所提及之圖案化器件包含或可形成設計佈局。可利用電腦輔助設計(CAD)程式來產生設計佈局,此製程常常被稱作電子設計自動化(EDA)。大多數CAD程式遵循一預定設計規則集合,以便產生功能設計佈局/圖案化器件。藉由處理及設計限制來設定此等規則。舉例而言,設計規則定義電路器件(諸如,閘、電容器等等)或互連線之間的空間容許度,以便確保電路器件或線彼此不會以不理想方式相互作用。設計規則限制通常被稱作「臨界尺寸」(CD)。可將電路之臨界尺寸定義為線或孔之最小寬度,或兩個線或兩個孔之間的最小空間。因此,CD判定經設計電路之總大小及密度。當然,積體電路製作中之目標中之一者係在基板上如實地再生原始電路設計(經由圖案化器件)。
如本文所使用之術語「光罩」或「圖案化器件」可被廣泛地解譯為係指可用以向入射輻射光束賦予經圖案化橫截面之通用圖案化器件,經圖案化橫截面對應於待在基板之目標部分中產生之圖案;術語「光閥」亦可用於此內容背景中。除了經典光罩(透射或反射;二元、相移、混合式等等)以外,其他此等圖案化器件之實例亦包括:
-可程式化鏡面陣列。此器件之一實例為具有黏彈性控制層及反射表面之矩陣可定址表面。此裝置所隱含之基本原理為(例如):反射表面之經定址區域使入射輻射反射作為繞射輻射,而未經定址區域使入射輻射反射作為非繞射輻射。在使用適當濾光器的情況下,可自反射光束濾出該非繞射輻射,從而僅留下繞射輻射;以此方式,光束根據矩陣可定址表面之定址圖案而變得圖案化。可使用合適電子構件來執行所需矩陣定址。可(例如)自以引用方式併入本文中之美國專利第5,296,891號及第5,523,193號搜集到關於此等鏡面陣列之更多資訊。
-可程式化LCD陣列。以引用方式併入本文中之美國專利第5,229,872號中給出此構造之一實例。
作為簡要介紹,圖1說明例示性微影投影裝置10A。主要組件為:輻射源12A,其可為深紫外線準分子雷射源或包括極紫外線(EUV)源的其他類型之源(如上文所論述,微影投影裝置自身無需具有輻射源);照明光學件,其界定部分相干性(被表示為均方偏置)且可包括塑形來自源12A之輻射的光學件14A、16Aa及16Ab;圖案化器件18A;及透射光學件16Ac,其將圖案化器件圖案之影像投影至基板平面22A上。投影光學件之光瞳平面處之可調整濾光器或孔徑20A可限制照射於基板平面22A上之光束角度之範圍,其中最大可能角度定義投影光學件之數值孔徑NA=sin(Θ
max)。
在一系統之最佳化製程中,可將該系統之優值(figure of merit)表示為成本函數。最佳化製程歸結為找到最小化成本函數的系統之參數(設計變數)集合的製程。成本函數可取決於最佳化之目標而具有任何合適形式。舉例而言,成本函數可為系統之某些特性(評估點)相對於此等特性之預期值(例如,理想值)之偏置的加權均方根(RMS);成本函數亦可為此等偏置之最大值(亦即,最差偏置)。本文中之術語「評估點」應被廣泛地解譯為包括系統之任何特性。歸因於系統之實施之實務性,系統之設計變數可限於有限範圍及/或可相互相依。在微影投影裝置之狀況下,約束常常係與硬體之實體屬性及特性(諸如,可調諧範圍,及/或圖案化器件可製造性設計規則)相關聯,且評估點可包括基板上之抗蝕劑影像上之實體點,以及諸如劑量及焦點之非實體特性。
在微影投影裝置中,源提供照明(亦即,光);投影光學件經由圖案化器件而引導及塑形照明且將照明引導及塑形至基板上。此處,術語「投影光學件」被廣泛地定義為包括可變更輻射光束之波前的任何光學組件。舉例而言,投影光學件可包括組件14A、16Aa、16Ab及16Ac中之至少一些。空中影像(AI)為基板位階處之輻射強度分佈。曝光基板上之抗蝕劑層,且將空中影像轉印至抗蝕劑層以在其中作為潛伏「抗蝕劑影像」(RI)。可將抗蝕劑影像(RI)定義為抗蝕劑層中之抗蝕劑之空間溶解度分佈。可使用抗蝕劑模型以自空中影像計算抗蝕劑影像,可在揭示內容之全文據此以引用方式併入的共同讓渡之美國專利申請案第12/315,849號中找到此情形之實例。抗蝕劑模型係僅關於抗蝕劑層之屬性(例如,在曝光、PEB及顯影期間發生之化學製程之效應)。微影投影裝置之光學屬性(例如,源、圖案化器件及投影光學件之屬性)規定空中影像。因為可改變用於微影投影裝置中之圖案化器件,所以需要使圖案化器件之光學屬性與至少包括源及投影光學件的微影投影裝置之其餘部分之光學屬性分離。
圖2中說明用於模擬微影投影裝置中之微影的例示性流程圖。源模型31表示源之光學特性(包括輻射強度分佈及/或相位分佈)。投影光學件模型32表示投影光學件之光學特性(包括由投影光學件引起的輻射強度分佈及/或相位分佈之改變)。設計佈局模型35表示設計佈局之光學特性(包括由給定設計佈局33造成的輻射強度分佈及/或相位分佈之改變),該設計佈局為在圖案化器件上或由圖案化器件形成之特徵之配置的表示。可自設計佈局模型35、投影光學件模型32及設計佈局模型35模擬空中影像36。可使用抗蝕劑模型37而自空中影像36模擬抗蝕劑影像38。微影之模擬可(例如)預測抗蝕劑影像中之輪廓及CD。
更具體言之,應注意,源模型31可表示源之光學特性,該等光學特性包括但不限於NA均方偏置(σ)設定,以及任何特定照明源形狀(例如,離軸輻射源,諸如,環形、四極及偶極等等)。投影光學件模型32可表示投影光學件之光學特性,該等光學特性包括像差、失真、折射率、實體大小、實體尺寸等等。設計佈局模型35亦可表示實體圖案化器件之實體屬性,如(例如)全文以引用方式併入本文中之美國專利第7,587,704號中所描述。模擬之目標係準確地預測(例如)邊緣置放、空中影像強度斜率及CD,可接著將該等邊緣置放、空中影像強度斜率及CD與預期設計進行比較。預期設計通常被定義為預OPC設計佈局,其可以諸如GDSII或OASIS或其他檔案格式之標準化數位檔案格式而提供。
自此設計佈局,可識別被稱作「剪輯」之一或多個部分。在一實施例中,提取剪輯集合,其表示設計佈局中之複雜圖案(通常約為50個至1000個剪輯,但可使用任何數目個剪輯)。如熟習此項技術者應瞭解,此等圖案或剪輯表示設計之小部分(亦即,電路、胞元或圖案),且該等剪輯尤其表示需要特定關注及/或驗證之小部分。換言之,剪輯可為設計佈局之部分,或可相似或具有臨界特徵係藉由經驗而識別(包括由客戶提供之剪輯)、藉由試誤法而識別或藉由執行全晶片模擬而識別的設計佈局之部分的相似行為。剪輯通常含有一或多個測試圖案或量規圖案。
可由客戶基於設計佈局中需要特定影像最佳化之已知臨界特徵區域而先驗地提供初始較大剪輯集合。替代地,在另一實施例中,可藉由使用識別臨界特徵區域之某種自動化(諸如,機器視覺)或手動演算法而自整個設計佈局提取初始較大剪輯集合。
為了改良圖案化製程,可使用若干類型之校正模型以修改待印刷於基板上之所要圖案。所要圖案之此修改被稱作重定目標。與修改所要圖案有關之當前方法包括基於規則之重定目標及基於模型之重定目標。
舉例而言,使用對預OPC佈局之基於規則之修改(被稱為「重定目標」)來改良用於特定特徵之製程窗。參見K. Lucas等人之「Process, Design, and OPC Requirements for the 65 nm Device Generation」(Proc. SPIE,第5040卷,第408頁,2003年)。用於預OPC佈局之基於規則之重定目標的一種途徑包括選擇性偏置及圖案移位。此途徑藉由選擇性地改變OPC軟體用作所要最終結果之目標邊緣置放,可改良用於某些臨界特徵之完整製程窗效能,同時仍僅在標稱製程條件下計算OPC校正。因此,代替最小化設計尺寸與經模擬邊緣置放之間的誤差,OPC軟體替代地最小化經重定目標尺寸與經模擬邊緣置放之間的誤差。
OPC軟體之使用者可以多種方式將設計重定目標以改良製程窗效能。在重定目標之最簡單實例中,可將規則應用至特定特徵以改良其可印刷性及製程窗。舉例而言,隔離線與密集線相比具有較不良製程窗,但製程範圍隨著特徵大小增加而改良。可應用簡單規則以增加小的隔離線之大小,藉此改良製程窗。已開發出其他基於規則之重定目標方法,其中除CD之外之度量用以判定經重定目標邊緣置放,諸如正規化影像對數斜率(NILS)、對光罩CD誤差之敏感度或光罩誤差增強因數(MEEF)。
基於規則之重定目標方法可改良橫越製程窗之特徵之可印刷性,但其遭受若干缺點。此等方法可變得相當複雜且僅基於預OPC佈局。一旦將OPC校正加至設計,依據製程條件而變化的印刷效能可變得與自預OPC設計所預料的情形相當不同,從而引入顯著誤差源且防止重定目標達成所要結果。因此,經印刷特徵之準確度可成為問題。另一方面,基於模型之重定目標可產生較準確結果。然而,基於模型之重定目標途徑在一致性、速度、可解譯性及重定目標精確控制方面遭受更多問題。
可採用基於規則之重定目標,此係因為其具有某些優點。舉例而言,基於規則之重定目標與基於模型之途徑相比快得多。經重定目標圖案係更一致的,藉此更易於解譯例如為何以某種方式修改圓圈設計。然而,在基於模型之途徑中,吾人需要理解及解譯看到模型之確切程度且接著為何以某種方式修改設計圖案。
基於規則之重定目標之另一優點為對任何修改特定圖案之完全控制。另一方面,基於模型之途徑可使用將用作目標函數之連續函數,基於該函數修改設計圖案。因此,若製程並未由模型完美地模型化,則使用者有時可手動調整偏置使得模型結果與晶圓上之所要印刷效能匹配。然而,此額外偏置可難以運用已經校準之模型來進行。另一方面,運用基於規則之重定目標,吾人可容易判定與晶圓上之所要圖案偏離的經模擬圖案(例如由製程模型產生)之部分。接著,基於規則之表可用以使彼等特定部分偏置。換言之,對模型行為不作出改變,因此除了滿足表內之某些規則的圖案之外,不影響其他設計圖案。對於基於模型之途徑,極難以進行此操作,此係因為對模型自身作出改變。且若改變模型,則針對其他設計圖案亦改變校正之行為。舉例而言,可不必要地修改產生所要印刷結果之設計圖案。
儘管基於規則之重定目標相比於基於模型之重定目標具有若干優點,但基於規則之途徑當前限於例如針對特定特徵的基於寬度及空間之規則。因此,運用當前基於規則之途徑,對於相同寬度及空間,偏置可相同。然而,即使特徵之寬度及空間相同,與其他者不同地修改特徵之邊緣亦可產生較佳印刷效能。因此,當前基於規則之途徑就此而言極受限。另一方面,基於模型之重定目標不同地提供修改相同特徵之邊緣之此靈活性,以產生較準確的印刷結果。但如早先所提及,基於模型之方法在運算上更密集,且製造圖案可更昂貴。舉例而言,使用基於模型之重定目標所產生之圖案較不一致、可彎曲、難以解譯且難以獲得對選擇要修改邊緣之外科控制。
本文中所描述之方法擴展了現有的基於規則之重定目標(retargeting)。本文中之方法提供基於規則之重定目標以及基於模型之重定目標之兩個優點。本文中之方法提供了基於規則之重定目標準確度(例如在經印刷特徵之EPE或CD方面)之顯著改良且廣泛擴展了其在設計圖案覆蓋範圍方面的能力。舉例而言,本文中之方法維持了基於規則之重定目標之當前益處,諸如速度、一致性、可解譯性及重定目標精確控制。
本文中之方法提議對待重定目標之所要圖案內之所要特徵的屬性判定。該屬性基於所關注特徵周圍之相鄰特徵提供額外資訊。因此,將規則之描述能力擴展到寬度及空間維度之外。該屬性在重定目標時提供了更多的控制及更高的準確度。方法具有許多應用,包括但不限於蝕刻運算、OPC、抗蝕劑製程校正、OPC後校正等。該屬性提供了除幾何能力以外的額外描述能力。
圖3A為用於產生用於待成像(例如光學影像及抗蝕劑影像)、待印刷(例如在顯影之後)或待形成(例如在蝕刻之後)於基板上之目標圖案之經重定目標圖案的方法300的流程圖。在一實施例中,與當前基於規則之方法相比,所提議方法300可顯著改良規則之表示且更準確地描述圖案;最終導致圖案準確印刷於基板上。方法300仍提供基於規則之重定目標之主要優點,包括速度、一致性、可解譯性及控制,同時獲得準確度域之顯著改良,其已為基於模型之重定目標的主要優點。在一實施例中,方法300判定與目標特徵或目標圖案相關聯之屬性以判定經重定目標特徵或經重定目標圖案。舉例而言,該屬性可為基於幾何形狀之密度運算。本發明不限於密度。如本文中所論述,可使用核心(例如低通濾波器)、變換函數(例如FFT或正弦函數)或給定窗上之其他運算來運算屬性。方法300包括以下工序。
工序P301包括獲得(i)包含至少一個特徵之目標圖案301,該至少一個特徵具有包括第一維度及第二維度之幾何形狀;及(ii)複數個偏置規則304,其被定義為依據該第一維度、該第二維度及與量測區內之目標圖案301之特徵相關聯的屬性而變化。
在一實施例中,目標圖案301可為待印刷於基板上之任何所要圖案。在一實施例中,目標圖案301為設計圖案、在使抗蝕劑影像顯影於基板上之後獲得的顯影後影像(ADI)圖案,及/或在將蝕刻製程應用至該ADI之後獲得的蝕刻圖案。在一實施例中,可以GDS檔案格式提供設計圖案。可經由模擬(例如圖2)與圖案化製程有關之一或多個模型(例如光學器件模型、抗蝕劑模型等)來獲得ADI圖案。在一實施例中,可自經組態以量測經成像基板之度量衡工具獲得ADI。相似地,可經由模擬(例如圖2)與圖案化製程有關之一或多個模型(例如光學器件模型、抗蝕劑模型、蝕刻模型等)來獲得蝕刻圖案。在一實施例中,可自經組態以量測經成像基板之度量衡工具獲得ADI。在一實施例中,目標圖案可為與記憶體(例如DRAM)電路有關之設計圖案。
目標圖案301包括複數個特徵,諸如一或多個桿體、一或多條線、一或多個接觸孔等。在一實施例中,可基於特徵之幾何形狀來特性化至少一個特徵(亦被稱作目標特徵)。舉例而言,目標特徵具有第一維度及第二維度。在一實例中,第一維度為目標特徵之寬度,且第二維度為目標特徵之高度或長度,或目標特徵與相鄰特徵之間的空間。舉例而言,兩條線之間的空間(例如圖5B中之特徵F10與F20之間的空間)。在一實施例中,可藉由曲率半徑來特性化彎曲特徵。在一實施例中,特徵之幾何形狀可被描述為維度之比率(例如高度/寬度)或幾何尺寸(例如面積或圓周)之函數。維度-寬度及空間,係用作實例以解釋概念且並不限制本發明之範疇。
在一實施例中,複數個偏置規則304可被定義為依據第一維度(例如寬度)、第二維度(例如兩個特徵之間的空間)及與量測區內之目標圖案301之特徵相關聯的屬性而變化。在一實施例中,量測區包括目標特徵之至少一部分。在一實施例中,量測區可為使用者定義的。在一實施例中,量測區可具有任何形狀。舉例而言,量測區可為矩形框、正方形框(例如參見圖5A中之R1及R2、圖10A及圖10B中之框)、圓形形狀(例如參見圖11A及圖11B)或其他邊界框形狀。在一實施例中,量測區橫越目標圖案可移動。
在一實施例中,一個屬性或複數個屬性可與目標圖案301之特徵相關聯。舉例而言,第一屬性可使用具有第一大小(例如100 nm×100 nm)之第一框來判定,且第二屬性可使用具有第二大小(例如300 nm×300 nm)之第二框來判定。在一實施例中,一個屬性可為密度且另一屬性可使用核心(例如低通濾波器核心)與目標圖案301之廻旋來獲得。
作為一實例,目標特徵之屬性為量測區內之特徵之密度,其中量測區包括目標特徵之至少一部分。在一實施例中,可將密度運算為量測區內之特徵之面積與量測區之總面積的比率。換言之,密度表示由特徵覆蓋之量測區之分數。然而,本發明不限於密度屬性。在一實施例中,可經由將所要函數或核心(例如低通濾波器、正弦函數)與量測區內之該或該等目標特徵廻旋來運算屬性。在一實施例中,可使用與區(包括目標特徵)廻旋之頂帽函數或矩形函數來運算密度。與目標特徵有關之屬性及用以運算屬性之不同方式的實例在本文中例如關於圖4A至圖4C、圖5A至圖5B、圖10A至圖10B及圖11A至圖11B加以論述。基於目標特徵之位置處之屬性值,即使目標特徵具有相同的寬度及空間,亦可將複數個偏置應用至目標特徵。舉例而言,目標特徵之中心的第一偏置及目標特徵之末端處之第二偏置。
在一實施例中,複數個偏置為用以修改目標圖案301以產生經重定目標圖案之值(亦被稱作重定目標值)。在一實施例中,經重定目標圖案可為根據本發明的包括使用偏置所產生之OPC的光罩圖案。舉例而言,可藉由基於屬性(例如密度)應用偏置來修改設計圖案(包括特定寬度及空間之特徵)。在一實施例中,可基於圖案化製程之製程校正模型(例如蝕刻製程校正)之模擬來判定偏置值,如關於圖12及圖13所論述。
在一實施例中,參看圖4A至圖4C,可將複數個偏置儲存為關係表。圖4A說明實例偏置表402、404、406及408,該等表之每一胞元包括一偏置值(圖中未繪示)。偏置表(例如402)包括根據目標圖案之第一維度D1 (例如寬度)及第二維度D2 (例如空間)及屬性PR1 (例如密度)而指派的一組偏置值。針對第一維度D1及第二維度D2之特定值,取決於屬性值PR1,多個偏置值分別可用於表402、404、406及408中。舉例而言,針對寬度為65 nm且空間為60 nm的目標特徵,基於與待重定目標之特徵相關聯之密度值,複數個偏置係可用的。舉例而言,對於D1=65且D2=60,若密度為0.3,則為1 nm之偏置可用於表404中。在另一實例中,對於相同的D1=65且D2=60,若密度為0.5,則為2 nm之偏置可用於表406中。舉例而言,取決於目標圖案中判定密度的位置,密度值可為不同的。舉例而言,線(實例目標特徵)之中心的密度值可不同於線端處之密度值。
在一實施例中,可針對每一特徵類型界定複數個此類偏置表。舉例而言,可針對線端、接觸孔等界定複數個偏置表。在一實施例中,屬性可用於標記特定特徵。舉例而言,將特徵標記為潛在的熱點或臨界圖案。因此,出於標記之目的,可判定屬性(例如如本文中所論述),使得可使用於線端之表、用於空間及寬度之表可用。因此,可能無法界定涵蓋所有內容之完整通用表。
參看圖4B及圖4C,在一實施例中,可針對單一目標特徵判定複數個屬性。接著,取決於每一屬性之值範圍,可判定及儲存複數個偏置表。圖4B為展示基於屬性PR1及PR2之值範圍之複數個偏置表的表。舉例而言,第一屬性PR1可為使用第一框(例如100 nm×100 nm)所運算之第一密度,且第二屬性PR2可為使用第二框(例如300 nm×300 nm)所運算之第二密度。在一實施例中,密度之最小及最大範圍可為自0至1,其中0指示目標特徵之一部分不存在於框中,且1指示整個框皆填充有目標特徵。0及1密度值兩者可為非所要的,且最佳框大小可經判定使得密度值之範圍介於0.1至0.9;0.3至0.8或其他合乎需要的範圍。本發明不限於特定屬性,亦不限於屬性值之特定範圍。
如圖4B中所展示,當第一屬性PR1之值在A至B之範圍內且第二屬性PR2之值在a至b之範圍內時,可使用表1。相似地,對於表,可基於PR1及PR2之值使用表1至表16。圖4C說明圖4B之實例表表1至表16。在一實施例中,可將該表視覺化為柵格且使用此柵格以針對特定寬度及空間界定偏置應為多少。如早先所提及,此等表,例如表1、表2、表3等等,可針對目標特徵之相同寬度及相同空間具有不同的偏置資訊,此係因為該目標特徵周圍之密度值係不同的。舉例而言,線(實例目標特徵)之中心的密度值可不同於線端處之密度值。因此,在目標特徵(例如10奈米線)之給定位置周圍,若在鄰域中存在更密集圖案,則可能存在表2而非表1。可基於量測區中之特徵之密度、一些核心或一些其他複雜函數來運算PR1及/或PR2之值。在一實施例中,可使用與量測區內之特徵(包括所關注特徵)廻旋之頂帽函數或矩形函數來運算密度。
在一實施例中,表結構可為起點,但其可為通用核心(例如低通濾波器),其可用以取決於核心之後果(例如值之範圍)來產生多個表。舉例而言,可藉由將核心與量測區之影像中之特徵廻旋來獲得後果。
在一實施例中,可使用依據第一維度、第二維度及屬性所擬合之模型來判定複數個偏置。
因此,一屬性或複數個屬性為在作出將目標圖案之一部分重定目標之決策之前,除了寬度及空間以外亦運算的額外變數。在一實施例中,針對給定寬度及空間之所選擇偏置為重定目標值,每一重定目標值係針對目標圖案之至少一個特徵之一部分。
工序P303包括判定目標圖案301之至少一個特徵上之複數個位置處的屬性之值303,其中每一位置係由量測區包圍。用於判定給定位置處之屬性之值303的工序P303之實例流程圖在圖3B中加以展示。
在圖3B中,工序P311包括在至少一個特徵處之給定位置周圍指派量測區。在一實施例中,量測區包括目標特徵之至少一部分。在一實施例中,量測區可為使用者定義的。在一實施例中,量測區可具有任何形狀。舉例而言,量測區可為矩形框、正方形框(例如參見圖5A中之R1及R2、圖10A及圖10B中之框)、圓形形狀(例如參見圖11A及圖11B)或其他邊界框形狀。在一實施例中,量測區橫越目標圖案301可移動。
工序P313包括識別量測區內之一或多個特徵。在一實施例中,一或多個特徵係指一或多個特徵之一部分。一或多個特徵可為所關注特徵之一部分或鄰近於所關注特徵之特徵。舉例而言,所關注特徵為應經重定目標之目標特徵。
工序P315包括經由使用者定義函數計算與量測區內之經識別一或多個特徵相關聯的屬性之值。舉例而言,使用者定義函數係密度。在一實施例中,密度之計算包括:判定所界定區域內之經識別一或多個特徵之總面積;判定量測區之總面積;及將密度值運算為量測區內之特徵之總面積與量測區之總面積的比率。
在一實施例中,使用者定義函數係將量測區內之一或多個特徵變換成特性值的幾何函數、信號處理函數或影像處理函數。該特性值對於所界定位置中之一或多個特徵係特定的。在一實施例中,幾何函數依據目標圖案301之至少一個特徵之形狀、大小、相對位置而變化。在一實施例中,信號處理函數為影像處理函數、正弦函數、餘弦函數或傅立葉變換。在一實施例中,影像處理函數為低通濾波器及/或邊緣偵測函數。
在一實施例中,屬性之值之計算包括在量測區與使用者定義函數(例如低通濾波器)之間應用廻旋運算。在一實施例中,將量測區表示為包含一或多個特徵之影像,且屬性之值係藉由將該影像與使用者定義函數(例如低通濾波器)廻旋來計算。
在一實施例中,工序P317包括選擇至少一個特徵處之另一位置,且使用P311中之量測區進一步執行步驟P313及P315,以判定目標圖案301之不同位置處之屬性值。在一實施例中,該位置可為目標特徵之中心、目標特徵之末端,或目標特徵處/附近之任何其他位置。
圖5A及圖5B說明判定目標圖案之位置處之屬性的實例。參看圖5A,目標圖案包括複數個特徵F1、F2及F3。於是在與具有給定寬度及空間之特徵F2相關聯的位置L1處判定屬性。在一實施例中,基於在位置L1周圍所界定之第一區R1來判定第一屬性PR1。可基於在位置L1周圍所界定之第二區R2來判定第二屬性PR2,其中該第二區R2大於第一區R1。因此,取決於區R1或R2,目標圖案將針對同一位置L1具有兩個不同的屬性值。在一實施例中,屬性PR1或PR2可為密度。
在一實施例中,第一區R1分別包括特徵F1、F2及F3之部分FP1、FP2及FP3。接著,可使用部分FP1、FP2及FP3之面積除以第一區R1之總面積來判定第一屬性PR1 (例如密度)。在實施例中,使用第一區R1在位置L1處之屬性值可為0.35。相似地,可將第二屬性PR2判定為區PR2內之特徵F1、F2及F3之部分的總面積除以第二區R2之總面積。在一實施例中,第二屬性值PR2可為0.5。因此,儘管目標特徵F2沿著特徵之長度具有相同的寬度及空間,但與給定目標特徵相關聯之位置L1具有兩個不同值0.35及0.5。因此,屬性PR1或PR2基於要修改或重定目標哪一目標特徵來提供額外資訊。
如早先所提及,屬性不限於密度。在一實施例中,可藉由將核心或使用者定義函數與量測區內之目標圖案(例如301)或目標圖案(例如301)之一部分廻旋來運算屬性。在一實施例中,核心之應用可不同於使用多個區(例如在不同位置處界定之每一區)。舉例而言,可將核心應用於在單個窗內覆蓋所有特徵(例如F1、F2、F3)的單個位置(例如L1)上。但可在目標特徵(例如F2)上之各個位置處獲得屬性值。舉例而言,可將傅立葉變換(FT)或快速傅立葉變換(FFT)應用於所有特徵上。FFT之所得係數或FFT之頻率項可為屬性值。
在另一實例中,可在y維度及/或x維度中應用正弦函數。在一實例中,目標特徵(例如F3)為沿著水平線(x方向)具有邊緣之水平多邊形,則圍繞該水平邊緣之部分將沿著「y」軸具有一階正弦之強信號,而其他位置將產生弱信號。此類弱信號區可為可修改目標圖案的潛在區。在一實施例中,可使用與量測區(例如R1)內之區(包括所關注特徵)廻旋之頂帽函數或矩形函數來運算密度。
如本文中所論述,量測區甚至不限於給定位置周圍的完全環繞窗(或框)。可以任何複雜方式選擇窗且密度運算可為定向的(外部對內部)或分離地運算每個或多個象限。窗亦可為同心環或環扇區等。在一實施例中,量測區在本文中亦被稱作窗或邊界框。
圖5B說明與目標特徵相關聯之屬性值隨著所關注點(例如目標特徵處之位置)改變而改變。在一實施例中,隨著目標圖案上之位置改變,窗亦移動,例如將所關注點保持處於窗之中心。因此,每一位置處之密度可改變。因此,改變目標圖案上之位置可提供改變針對目標特徵處之位置中的每一者之偏置的自由度。
在圖5B之實例中,目標圖案包括N個目標特徵F10、F20,…,Fn。在每一目標特徵處,可選擇複數個位置且可運算每一位置處之屬性值(例如密度)。在一實施例中,可以規則間隔選擇位置或隨機地置放位置。舉例而言,在沿著目標特徵F10某一距離處選擇位置L10、L11及L12。另外,分別將量測區(或窗) R10、R11及R12指派給每一位置L10、L11及L12,使得該位置處於窗之中心。在一實施例中,每一窗具有相同大小,例如100 nm×100 nm。接著,針對每一位置L10、L11及L12,可基於各別量測區R10、R11或R12內之特徵F10、F20及/或F30之部分運算密度值。
基於所運算之密度值,針對每一位置L10、L11及L12所選擇之偏置可為不同的。因此,本發明方法與現有基於規則之方法相比提供在目標特徵之不同位置處不同地偏置之更多靈活性。舉例而言,現有的基於規則之方法可在不同位置處推薦相同的偏置值,此係由於目標特徵之空間及寬度在此類位置(例如L10、L11及L12)處係相同的。此外,由於基於模型之偏置可在不同位置處推薦不同偏置,因此本發明方法提供與基於模型之偏置相當的結果。注意,本發明方法基於某些規則自表選擇偏置,且並不執行製程校正模型。因此,該方法提供基於規則之重定目標以及基於模型之重定目標兩個優點。
工序P305包括基於屬性之值自複數個偏置規則304選擇針對至少一個特徵上之複數個位置之偏置之子集305。在一實施例中,將偏置規則表示為針對屬性中之每一者之第一維度及第二維度的表。在一實施例中,例如參看圖4B,選擇偏置包括:識別屬性之給定值所屬之範圍;針對屬性之經識別之範圍,自複數個偏置規則304選擇一偏置規則;及針對第一維度及第二維度之給定值自該偏置規則選擇與至少一個特徵上之複數個位置之給定位置相關聯的偏置值。
在一實施例中,複數個偏置中之每一偏置為以下中之至少一者:蝕刻補償,其待應用至ADI圖案使得蝕刻圖案在所要規格內;模型誤差補償,其與用於模擬圖案化製程之一或多個製程模型相關聯;光罩近接校正,其待應用至設計佈局以減少目標圖案之變化,該等變化係由於光罩製造而造成;或初始OPC偏置,其待應用至設計佈局以產生用於最佳近接校正之初始經重定目標佈局。
另外,工序P307包括藉由將所選擇之偏置子集305應用至目標圖案之至少一個特徵而產生用於目標圖案301之經重定目標圖案307。
在一實施例中,方法300進一步包括在工序P309中,將每一重定目標值應用至對應邊緣以產生經重定目標圖案;及將光學近接校正應用至經重定目標圖案以產生OPC後圖案309。
圖6A至圖7B說明本發明方法之實例結果。圖6A說明展示與相維度空間及寬度關聯之偏置值的現有偏置標繪圖600之實例。在該標繪圖中,X軸為目標圖案中之寬度之實例範圍,且Y軸為目標圖案中之空間之實例範圍。此處之顏色或灰度階表示偏置斜率之範圍。如所展示,對於相同的寬度及空間,若點具有亮顏色(例如白色),則此意謂具有幾乎相同寬度及空間的目標特徵可具有在自0至9nm之差之任何位置的偏置值。舉例而言,100 nm之寬度及100 nm之空間具有多於9nm之差且此不能僅基於寬度及空間組合來解釋。因此,對於相同的寬度及空間,吾人不能僅使用寬度空間表來界定適當偏置。然而,根據本文中之方法,使用額外變數(例如屬性),吾人可針對相同寬度及相同空間界定複數個偏置。
圖6B及圖6C為根據本文中所論述之方法應用偏置的實例結果。圖6B展示包括特徵F61、F62、F63,…F70等等之陣列的實例目標圖案60B。在目標圖案60B中,每一特徵係與寬度60 nm及空間65 nm相關聯。該特徵陣列包括可應用至目標特徵以產生經重定目標圖案的在不同位置處之不同偏置(目標特徵周圍之點線)。在一實例中,在該陣列之中心(例如605處之特徵部分),偏置大致為14.74 nm,而朝向線之末端(例如610處之部分),偏置較小。在一實施例中,當自中心(例如605)朝向末端(例如610)移動時,密度減小,因此一些位置具有為5 nm、6 nm及5.2 nm之偏置。為了較佳理解不同偏置,末端部分610之放大版本展示於圖6C中。因此儘管目標特徵具有相同的寬度及空間,但因為密度變化,所以可指派不同偏置。
與現有基於規則之方法相比,使用者可針對相同的寬度及空間指派相同偏置值。舉例而言,針對寬度60 nm及空間65 nm,偏置值可為14.75 nm。但若應用偏置14.75 nm,則在線端附近(例如在610處)可存在過度校正或過度偏置。在另一實例中,若使用較小偏置值,例如6nm,則在中心(例如在605處)可存在偏置不足。
另一方面,與僅使用寬度及空間相比,本發明方法提供與目標圖案(例如60B)有關之更多描述能力。舉例而言,屬性(例如密度)充當允許針對目標圖案之相同寬度及空間不同地偏置之額外資訊。舉例而言,605中之特徵之部分與610中之特徵之部分相比不同地偏置。在一實施例中,在圖6C中,點線與特徵之間的差指示執行目標特徵之多少移動。舉例而言,該差可為7nm或8nm。圖6B亦展示在陣列610之中心,偏置值為12.875 nm,且隨著朝向線端愈來愈近,偏置值為5.75nm。可藉由考慮諸如密度之屬性來展開此偏置資訊。
如早先所提及,可判定複數個屬性,例如第一屬性D100及第二屬性D750,且可將偏置定義為依據第一屬性(例如指示100 nm
2量測區之D100)及第二屬性(例如指示750 nm
2量測區之D750)而變化。在一實施例中,D100為小窗且D750為相對較大窗。小窗大小允許捕捉相鄰特徵之小範圍效應,且較大窗允許捕捉相鄰特徵之大範圍效應。圖7A展示依據屬性D100及D750而變化的偏置。圖7B展示與圖7A之偏置相關聯之誤差資料。在一實施例中,誤差資料展示關於與圖案化製程相關聯之校正模型的殘差之顯著改良。
在圖7A及圖7B之標繪圖中,對於空間65 nm及寬度60 nm,x軸展示使用D100量測區所運算之密度值,y軸展示偏置值,且顏色梯度指示使用D750量測區所運算之密度值。舉例而言,0.35指示100nm
2(例如D100)窗的35%或35nm
2由多邊形或目標特徵覆蓋且D100窗的其餘部分為空,值0.6指示100nm
2窗內的60%或60nm
2由目標特徵覆蓋。
圖7A展示指派偏置值時之線性行為。換言之,隨著D100之密度增大,偏置值亦增大。基於指示D750之密度之顏色分級,可看到相似線性行為。換言之,隨著密度增大,偏置值增大。該標繪圖展現了屬性(例如密度)能夠在不同屬性中描述、展開與相同寬度及空間有關的偏置資訊。圖7A展示8 nm偏置範圍。在一實施例中,可基於偏置值及屬性值擬合線性回歸。圖7B展示經擬合模型之二階多項式誤差。該誤差在±0.75 nm或更小之範圍內,其與現有基於規則之方法相比極小。在一實施例中,現有基於規則之方法(其中偏置可為常數14.75 nm)可產生高達8 nm之誤差。換言之,對於尺寸D100及/或D750,可具有較大的描述能力,其允許自8 nm誤差範圍或相似偏置範圍混合直至小於0.75 nm。
熟習此項技術者可理解,本文所描述之方法(例如方法300)不限於特定圖案或與其相關聯之屬性。方法300可適用於任何類型之圖案。舉例而言,圖8A及圖8B展示針對線端之偏置且圖9展示針對接觸孔之偏置。
參看圖8A及圖8B,通常依據寬度及尖端至尖端空間來描述線端。如所展示,兩個目標圖案80A及80B具有相同的寬度及空間,但密度將為不同的。因此,在目標圖案80A中,線端可移動8.375 nm。在目標圖案80B中,線端可移動3.875 nm。相似地,參看圖9,接觸孔H1及H2具有相同第一維度(例如直徑)及間距,可經由基於模型之校正指派不同偏置值,例如5.875 nm及7.25 nm。此類偏置值可藉由與各別目標特徵相關聯之密度值解釋。
此外,如本文中所論述,方法300不限於特定量測區或窗。圖10A/10B及圖11A/11B解釋不同窗形狀之使用。圖10A至圖10B及圖11A至圖11B說明目標圖案T100及不同窗形狀。在一實施例中,目標圖案T100包括具有相同大小之四個接觸孔,但可將不同偏置應用至每一孔。
圖10A及圖10B展現了具有相同量測區域(例如80 nm
2)之兩個正方形框D80及D80'可能不適合於捕捉密度值。舉例而言,D80框用以判定目標圖案T100之第一位置處之第一密度值。D80'框用以判定目標圖案T100之第二位置處之第二密度值。然而,D80及D80'中之每一者內之特徵具有相同的確切面積(例如陰影區之面積),但至少兩個接觸孔具有不同的偏置,例如7.25 nm及5.875 nm。由於密度相同,因此框D80及D80'可不適合於區分偏置值。在一實施例中,不同大小的窗或不同形狀的窗可更有幫助。因此,在一實施例中,可使用圓形窗。
圖11A及圖11B展現了針對圖案T100,圓形窗呈現為具有密度差。舉例而言,當在第一位置處使用圓形窗C80 (例如具有80nm之直徑)時,判定第一密度值。當在第二位置處使用圓形窗C80' (例如具有80nm之相同直徑)時,判定第二密度值。此等第一及第二密度值係不同的。因此,此圓形窗C80可比正方形窗D80更適合。舉例而言,使用圓形窗C80'所獲得之第二密度低於第一密度。因此,舉例而言,基於C80',與圖11B之圓形窗C80中之接觸孔的偏置值(例如7.25)相比,可將較低偏置(例如5.875)應用至接觸孔。
圖12為用於判定用於待印刷於基板上之目標圖案之偏置規則之方法500的流程圖。在一實施例中,將基於模型之校正(例如蝕刻校正)用作用於判定偏置表之實況。舉例而言,在基於模型之蝕刻校正期間收集每片段之偏置。舉例而言,在基於模型之蝕刻校正期間針對每一片段計算每框大小之寬度、空間及密度。該方法包括如下解釋之工序。
工序P501包括獲得包含藉由第一維度及第二維度特性化之至少一個特徵之目標圖案502。舉例而言,第一維度為寬度且第二維度為空間。在一實施例中,可獲得與目標圖案502中之複數個特徵有關的空間及寬度。
工序P503包括經由執行製程校正模型506判定針對第一維度(例如寬度)及第二維度(例如空間)之複數個偏置。另外,工序P503包括將該複數個偏置中之每一者與屬性之值相關聯。在一實施例中,製程校正模型506使目標圖案502之至少一個特徵之第一維度及第二維度偏置。此外,使用製程校正模型506之校正製程經組態以運算與該至少一個特徵相關聯之屬性。舉例而言,蝕刻校正模型506可包括實施每目標圖案位置之該屬性或複數個屬性之運算的程式碼。本文中例如關於圖5A及圖5B論述了對屬性(例如密度)之實例運算。
在一實施例中,判定複數個偏置包括:經由使用目標圖案502執行製程校正模型506來產生包含針對至少一個圖案之第一維度及第二維度之偏置的經重定目標圖案;判定經重定目標圖案與目標圖案506之間的差;及基於該差判定目標圖案之複數個位置處之複數個偏置。
在一實施例中,製程校正模型506之執行包含判定針對目標圖案之至少一個圖案上之複數個位置的屬性之複數個值。運算屬性值之實例關於圖5A及圖5B及圖13加以論述。
在一實施例中,判定屬性之值包括:(a)在至少該特徵上之給定位置周圍指派量測區;(b)識別該量測區內之一或多個特徵;(c)經由使用者定義函數計算與量測區內之經識別一或多個特徵相關聯的屬性之值;及(d)選擇該至少一個特徵上之另一位置,及使用(a)中之量測區執行步驟(b)及(c)。
在一實施例中,在製程校正模型之執行期間收集每目標圖案502片段(或邊緣)之複數個偏置,一片段係該目標圖案502之一部分。
在一實施例中,在製程校正模型之執行期間每目標圖案502片段每量測區計算屬性之值,該量測區係目標圖案502之給定位置周圍的區(或窗)。
工序P505包括基於該複數個偏置定義依據第一維度、第二維度及與目標圖案502之至少一個特徵相關聯之屬性而變化的偏置規則510。在一實施例中,定義偏置規則510包括:基於屬性之值界定屬性之範圍;及針對屬性之每一範圍,自複數個偏置指派偏置集合。在一實施例中,該偏置集合之每一偏置係與第一維度及第二維度相關聯。
本發明方法不限於特定製程模型506。作為一實例,製程校正模型506係以下中之至少一者:蝕刻校正模型,其判定對與目標圖案相關聯之蝕刻圖案之校正;光學近接校正模型,其判定對目標圖案之修改;或光罩近接校正模型,其判定與光罩製造製程相關聯之校正。
圖13說明基於蝕刻圖案判定蝕刻偏置之實例。在一實施例中,可執行蝕刻校正模型以判定對經蝕刻圖案之校正。在一實施例中,蝕刻特徵702為希望待印刷於/蝕刻於基板上的目標特徵。在一實施例中,可經由蝕刻製程模型獲得蝕刻特徵702,該蝕刻製程模型經組態以自設計圖案、抗蝕劑影像或顯影後影像(ADI)產生蝕刻輪廓。在一實施例中,可自經蝕刻基板之SEM影像提取蝕刻特徵702。將蝕刻特徵702用作至蝕刻校正模型之輸入以產生至蝕刻製程之輸入圖案(例如經重定目標蝕刻圖案),使得所要蝕刻圖案712被印刷於基板上。舉例而言,輸入圖案為顯影後影像(ADI)圖案712。此ADI圖案712為經重定目標圖案之實例。
在一實施例中,藉由使蝕刻特徵702之邊緣偏置來產生ADI圖案。接著,ADI圖案712與蝕刻特徵702之間的差為由蝕刻校正模型應用使得蝕刻特徵702的偏置。在一實施例中,由蝕刻校正模型應用之偏置係基於圖案化製程之效能度量。舉例而言,由蝕刻校正模型判定之偏置會最小化蝕刻特徵702與設計特徵之間的邊緣置放誤差。在一實施例中,蝕刻特徵702之邊緣被偏置量B1。在實施例中,可將偏置B1判定為ADI圖案712與蝕刻特徵702之間的差。因此,產生關於目標圖案(例如蝕刻特徵702)之偏置資料。
此外,判定在蝕刻特徵702處之一或多個位置處的屬性(例如密度)資料,如本文中所論述。在一實施例中,屬性資料係指在蝕刻圖案之蝕刻特徵702處所判定之一或多個屬性。因此,偏置資料及屬性資料可用以建立屬性與偏置之間的關係。此外,蝕刻特徵702係藉由寬度及空間而特性化。因此,可建立寬度、空間、密度與偏置之間的關係。可在複數個蝕刻特徵中之每一者上之複數個位置處判定包括複數個偏置及複數個密度之相似資料,每一關聯蝕刻特徵係藉由空間及寬度而特性化。藉此,該資料可用以建立空間及寬度、複數個密度與複數個偏置之間的相關性。貫穿本發明例如在圖4A至圖4C中論述實例偏置表。
如早先所提及,將蝕刻校正模型用作實例,但本發明實施例不限於蝕刻。在一實施例中,模擬製程可使用與圖案化製程有關之任何製程校正模型(例如抗蝕劑製程、蝕刻製程、OPC等)且判定第一維度(例如寬度)、第二維度(例如空間)及屬性(例如密度)資訊,如本文中所論述。接著,可使由模型提議之校正與第一維度、第二維度及一或多個屬性相關以產生偏置表。該等屬性提供對判定用於目標圖案之經重定目標圖案之現有基於規則之重定目標方法的額外描述能力。舉例而言,基於密度資訊之偏置可指示在線之中心應用第一偏置且在線之末端處應用第二偏置。
在一實例中,應用可在光罩相關之校正中,例如OPC及在OPC後進行的質量近接校正。在OPC中,經由圖案化製程模擬最大化焦點曝光窗。舉例而言,可修改OPC製程以包括運算設計圖案之第一維度、設計圖案之第二維度、設計圖案之一或多個屬性,及OPC產生之光罩圖案之偏置資訊。
在執行OPC之後,亦可使用與光罩製造製程有關之模型來校正與光罩製造有關之效應。舉例而言,可產生偏置資訊以用於OPC產生之光罩圖案之進一步偏置。OPC後校正亦可為運算上密集型的。因此,偏置表亦可使光罩製造製程加速。
在一實施例中,方法300及/或方法500之一或多個工序可被實施為電腦系統之處理器(例如電腦系統100之製程104)中之指令(例如程式碼)。在一實施例中,工序可橫越複數個處理器而分佈(例如並行運算)以改良運算效率。在一實施例中,包含非暫時性電腦可讀媒體之電腦程式產品其上記錄有指令,該等指令在由一電腦執行時實施方法300或500。
根據本發明,所揭示元件之組合及子組合構成單獨實施例。舉例而言,第一組合包括將密度用作屬性來判定經重定目標圖案。子組合可包括將第一密度及第二密度用作屬性來判定經重定目標圖案。在另一實例中,組合包括判定將蝕刻圖案重定目標作為目標圖案,該重定目標系基於與蝕刻圖案相關聯之密度資料。在另一實例中,該組合包括基於屬性(例如密度)判定用於目標圖案之經重定目標光罩圖案。
在一實施例中,根據方法300或500所判定之校正及OPC後影像可用於最佳化圖案化製程或調整圖案化製程之參數。作為一實例,OPC解決如下事實:投影於基板上之設計佈局的影像之最終大小及置放將不相同於或簡單地僅取決於該設計佈局在圖案化器件上之大小及置放。應注意,可在本文中互換地利用術語「光罩」、「倍縮光罩」、「圖案化器件」。又,熟習此項技術者應認識到,尤其是在微影模擬/最佳化之內容背景中,術語「光罩」/「圖案化器件」及「設計佈局」可被互換地使用,此係因為:在微影模擬/最佳化中,未必使用實體圖案化器件,但可使用設計佈局以表示實體圖案化器件。對於存在於某一設計佈局上之小特徵大小及高特徵密度,給定特徵之特定邊緣之位置將在某種程度上受到其他鄰近特徵之存在或不存在影響。此等近接效應起因於自一個特徵耦接至另一特徵的微小量之輻射及/或諸如繞射及干涉之非幾何光學效應。相似地,近接效應可起因於在通常跟隨微影之曝光後烘烤(PEB)、抗蝕劑顯影及蝕刻期間之擴散及其他化學效應。
為了確保設計佈局之經投影影像係根據給定目標電路設計之要求,需要使用設計佈局之複雜數值模型、校正或預失真來預測及補償近接效應。論文「Full-Chip Lithography Simulation and Design Analysis - How OPC Is Changing IC Design」(C. Spence,Proc. SPIE,第5751卷,第1至14頁(2005年))提供當前「以模型為基礎」之光學近接校正製程的綜述。在典型高端設計中,設計佈局之幾乎每一特徵皆具有某種修改,以便達成經投影影像至目標設計之高保真度。此等修改可包括邊緣位置或線寬之移位或偏置,以及意欲輔助其他特徵之投影的「輔助」特徵之應用。
在一晶片設計中通常存在數百萬個特徵的情況下,將以模型為基礎之OPC應用於目標設計涉及良好的製程模型及相當大的運算資源。然而,應用OPC通常不為「嚴正科學(exact science)」,而為並不總是補償所有可能近接效應之經驗反覆製程。因此,需要藉由設計檢測(亦即,使用經校準數值製程模型之密集型全晶片模擬)來驗證OPC之效應(例如,在應用OPC及任何其他RET之後的設計佈局),以便最小化將設計瑕疵建置至圖案化器件圖案中的可能性。此情形係藉由如下各者驅使:製造高端圖案化器件之巨大成本,其在數百萬美元的範圍內;以及對產品製作時程之影響,其係因重工或修復實際圖案化器件(一旦其已被製造)而引起。
OPC及全晶片RET驗證兩者可基於如(例如)美國專利申請案第10/815,573號及Y. Cao等人之名為「Optimized Hardware and Software For Fast, Full Chip Simulation」(Proc. SPIE,第5754卷,405 (2005年))之論文中描述的數值模型化系統及方法。
一個RET係關於設計佈局之全域偏置之調整。全域偏置為設計佈局中之圖案與意欲印刷於基板上之圖案之間的差。舉例而言,25 nm直徑之圓形圖案可藉由設計佈局中之50 nm直徑圖案或藉由設計佈局中之20 nm直徑圖案但以高劑量印刷於基板上。
除了對設計佈局或圖案化器件之最佳化(例如,OPC)以外,亦可與圖案化器件最佳化聯合地抑或分離地最佳化照明源,以致力於改良總微影保真度。術語「照明源」及「源」在本文件中可被互換地使用。自1990年代以來,已引入諸如環形、四極及偶極之許多離軸照明源,且該等離軸照明源已提供針對OPC設計之更多自由度,藉此改良成像結果。如吾人所知,離軸照明為用以解析圖案化器件中含有之精細結構(亦即,目標特徵)的被證實方式。然而,相比於傳統照明源,離軸照明源通常提供針對空中影像(AI)之較小輻射強度。因此,變得需要試圖最佳化照明源以在較精細解析度與縮減之輻射強度之間達成最佳平衡。
舉例而言,可在Rosenbluth等人之名為「Optimum Mask and Source Patterns to Print A Given Shape」(Journal of Microlithography, Microfabrication, Microsystems 1(1),第13至20頁(2002年))之論文中找到眾多照明源最佳化途徑。將源分割成若干區,該等區中每一者對應於光瞳光譜之某一區。接著,將源分佈假定為在每一源區中均一,且針對製程窗來最佳化每一區之亮度。然而,源分佈在每一源區中均一之此假定並不總是有效,且結果,此途徑之有效性受損。在Granik之名為「Source Optimization for Image Fidelity and Throughput」(Journal of Microlithography, Microfabrication, Microsystems 3(4),第509至522頁(2004年))之論文中所闡述的另一實例中,綜述若干現有源最佳化途徑,且提議將源最佳化問題轉換成一系列非負最小平方最佳化的基於照明器像素之方法。儘管此等方法已證實一些成就,但其通常需要多次複雜反覆以進行收斂。另外,可難以判定用於一些額外參數(諸如,Granik方法中之γ)之適當/最佳值,此情形規定在最佳化用於基板影像保真度之源與該源之平滑度要求之間的取捨。
對於低k
1光微影,源及圖案化器件兩者之最佳化有用於確保用於臨界電路圖案之投影的可行製程窗。一些演算法(例如,Socha等人之Proc. SPIE,第5853卷,2005年,第180頁)在空間頻域中將照明離散化成獨立源點且將光罩離散化成繞射階,且基於可藉由光學成像模型自源點強度及圖案化器件繞射階而預測之製程窗度量(諸如,曝光寬容度)來分離地公式化成本函數(其被定義為選定設計變數之函數)。如本文所使用之術語「設計變數」包含微影投影裝置或微影製程之參數集合,例如,微影投影裝置之使用者可調整之參數,或使用者可藉由調整彼等參數而調整之影像特性。應瞭解,微影投影製程之任何特性(包括源、圖案化器件、投影光學件之特性,及/或抗蝕劑特性)可在最佳化中之設計變數當中。成本函數常常為設計變數之非線性函數。接著使用標準最佳化技術以最小化成本函數。
相關地,不斷減低設計規則之壓力已驅使半導體晶片製造者在現有193 nm ArF微影的情況下更深入於低k
1微影時代。朝向較低k
1之微影對RET、曝光工具及針對微影親和設計之需要提出了很高的要求。未來可使用1.35 ArF超數值孔徑(NA)曝光工具。為了幫助確保電路設計可以可工作製程窗而產生至基板上,源-圖案化器件最佳化(在本文中被稱作源-光罩最佳化(source-mask optimization)或SMO)正變為用於2x nm節點之顯著RET。
2009年11月20日申請且被公開為WO2010/059954之名為「Fast Freeform Source and Mask Co-Optimization Method」的共同讓渡之國際專利申請案第PCT/US2009/065359號中描述允許在無約束之情況下且在可實行之時間量內使用成本函數來同時地最佳化源及圖案化器件的源及圖案化器件(設計佈局)最佳化方法及系統,該專利申請案之全文係特此以引用方式併入。
2010年6月10日申請且被公開為美國專利申請公開案第2010/0315614號之名為「Source-Mask Optimization in Lithographic Apparatus」的共同讓渡之美國專利申請案第12/813456號中描述涉及藉由調整源之像素來最佳化源的另一源及光罩最佳化方法及系統,該專利申請案之全文係特此以引用方式併入本文中。
在微影投影裝置中,作為一實例,將成本函數表達為:
(方程式1)
其中(
z 1,
z 2,…,
z
N )為
N個設計變數或其值。
f
p (
z 1,
z 2,…,
z
N )可為設計變數(
z 1,
z 2,…,
z
N )之函數,諸如針對(
z 1,
z 2,…,
z
N )之設計變數之一組值在評估點處之特性之實際值與預期值之間的差。
w
p 為與
f
p (
z 1,
z 2,…,
z
N )相關聯之權重常數。可向比其他評估點或圖案更臨界之評估點或圖案指派較高
w
p 值。亦可向具有較大出現次數之圖案及/或評估點指派較高
w
p 值。評估點之實例可為基板上之任何實體點或圖案、虛擬設計佈局上之任何點,或抗蝕劑影像,或空中影像,或其組合。
f
p (
z 1,
z 2,…,
z
N )亦可為諸如LWR之一或多個隨機效應之函數,該一或多個隨機效應為設計變數(
z 1,
z 2,…,
z
N )之函數。成本函數可表示微影投影裝置或基板之任何合適的特性,例如特徵之失效率、焦點、CD、影像移位、影像失真、影像旋轉、隨機效應、產出量、CDU或其組合。CDU為局部CD變化(例如,局部CD分佈之標準偏置的三倍)。CDU可被互換地稱作LCDU。在一項實施例中,成本函數表示CDU、產出量及隨機效應(亦即,為CDU、產出量及隨機效應之函數)。在一項實施例中,成本函數表示EPE、產出量及隨機效應(亦即,為EPE、產出量及隨機效應之函數)。在一項實施例中,設計變數(
z 1,
z 2,…,
z
N )包含劑量、圖案化器件之全域偏置、來自源之照明之形狀,或其組合。由於抗蝕劑影像常常規定基板上之電路圖案,故成本函數常常包括表示抗蝕劑影像之一些特性之函數。舉例而言,此評估點之
f
p (
z 1,
z 2,…,
z
N )可僅僅為抗蝕劑影像中之一點與彼點之預期位置之間的距離(亦即,邊緣置放誤差
EPE
p (
z 1,
z 2,…,
z
N ))。設計變數可為任何可調整參數,諸如,源、圖案化器件、投影光學件、劑量、焦點等等之可調整參數。投影光學件可包括被集體地稱為「波前操控器」之組件,其可用以調整輻照光束之波前及強度分佈及/或相移之形狀。投影光學件較佳地可調整沿著微影投影裝置之光學路徑之任何位置處(諸如,在圖案化器件之前、在光瞳平面附近、在影像平面附近、在焦平面附近)之波前及強度分佈。投影光學件可用以校正或補償由(例如)源、圖案化器件、微影投影裝置中之溫度變化、微影投影裝置之組件之熱膨脹造成的波前及強度分佈之某些失真。調整波前及強度分佈可改變評估點及成本函數之值。可自模型模擬此等改變或實際上量測此等改變。當然,
CF(
z 1,
z 2,…,
z
N )不限於方程式1中之形式。
CF(
z 1,
z 2,…,
z
N )可呈任何其他合適形式。
應注意,
f
p (
z 1,
z 2,…,
z
N )之正常加權均方根(RMS)被定義為
,因此,最小化
f
p (
z 1,
z 2,…,
z
N )之加權RMS等效於最小化方程式1中所定義之成本函數
。因此,出於本文中之記法簡單起見,可互換地利用
f
p (
z 1,
z 2,…,
z
N )及方程式1之加權RMS。
另外,若考慮最大化製程窗(Process Window; PW),則吾人可將來自不同PW條件之同一實體位置認為(方程式1)中之成本函數之不同評估點。舉例而言,若考慮
N個PW條件,則吾人可根據評估點之PW條件來分類該等評估點且將成本函數書寫為:
(方程式1')
其中
為在第
uPW條件
u= 1,…,
U下之
f
p (
z 1,
z 2,…,
z
N )之值。當
f
p (
z 1,
z 2,…,
z
N )為EPE時,則最小化以上成本函數等效於最小化在各種PW條件下之邊緣移位,因此,此情形導致最大化PW。詳言之,若PW亦由不同光罩偏置組成,則最小化以上成本函數亦包括最小化光罩誤差增強因數(MEEF),該光罩誤差增強因數(MEEF)被定義為基板EPE與誘發性光罩邊緣偏置之間的比率。
設計變數可具有約束,可將該等約束表達為(
z 1,
z 2,…,
z
N )
Z,其中
Z為設計變數之可能值之集合。可藉由微影投影裝置之所要產出量來強加對設計變數之一個可能約束。所要產出量可限制劑量,且因此具有針對隨機效應之蘊涵(例如,對隨機效應強加下限)。較高產出量通常導致較低劑量、較短曝光時間及較大隨機效應。基板產出量及隨機效應最小化之考慮可約束設計變數之可能值,此係因為隨機效應為設計變數之函數。在無藉由所要產出量而強加之此約束的情況下,最佳化可得到不切實際的設計變數之值集合。舉例而言,若劑量係在設計變數當中,則在無此約束之情況下,最佳化可得到使產出量經濟上不可能的劑量值。然而,約束之有用性不應被解譯為必要性。產出量可受到對圖案化製程之參數之以失效率為基礎的調整影響。期望在維持高產出量的同時具有特徵之較低失效率。產出量亦可受到抗蝕劑化學反應影響。較慢抗蝕劑(例如要求適當地曝光較高量之光的抗蝕劑)導致較低產出量。因此,基於涉及由於抗蝕劑化學反應或波動引起的特徵之失效率以及針對較高產出量之劑量要求的最佳化製程,可判定圖案化製程之適當參數。
因此,最佳化製程應依據約束(
z 1,
z 2,…,
z
N ) ∈
Z而找到最小化成本函數之設計變數之值集合,亦即,找到:
(方程式2)
圖14中說明根據一實施例的最佳化微影投影裝置之一般方法。此方法包含定義複數個設計變數之多變數成本函數之步驟S1202。設計變數可包含選自照明源之特性(1200A) (例如,光瞳填充比率,即,傳遞通過光瞳或孔徑的源之輻射的百分比)、投影光學件之特性(1200B)及設計佈局之特性(1200C)的任何合適組合。舉例而言,設計變數可包括照明源之特性(1200A)及設計佈局之特性(1200C) (例如,全域偏置),但不包括投影光學件之特性(1200B),此情形導致SMO。替代地,設計變數可包括照明源之特性(1200A)、投影光學件之特性(1200B)及設計佈局之特性(1200C),此情形導致源-光罩-透鏡最佳化(SMLO)。在步驟S1204中,同時地調整設計變數,使得成本函數移動朝向收斂。在步驟S1206中,判定是否滿足預定義終止條件。預定終止條件可包括各種可能性,亦即,成本函數可被最小化或最大化(如由所使用之數值技術所需要)、成本函數之值已等於臨限值或已超越臨限值、成本函數之值已達到預設誤差極限內,或達到預設數目次反覆。若滿足步驟S1206中之條件中之任一者,則方法結束。若皆未滿足步驟S1206中之條件中之任一者,則反覆地重複步驟S1204及S1206直至獲得所要結果為止。最佳化未必導致用於設計變數之單一值集合,此係因為可存在由諸如失效率、光瞳填充因數、抗蝕劑化學反應、產出量等等之因素造成的實體抑制。最佳化可提供用於設計變數及關聯效能特性(例如,產出量)之多個值集合,且允許微影裝置之使用者拾取一或多個集合。
在微影投影裝置中,可交替地最佳化源、圖案化器件及投影光學件(被稱作交替最佳化),或可同時地最佳化源、圖案化器件及投影光學件(被稱作同時最佳化)。如本文所使用之術語「同時的」、「同時地」、「聯合的」及「聯合地」意謂源、圖案化器件、投影光學件之特性之設計變數及/或任何其他設計變數被允許同時改變。如本文所使用之術語「交替的」及「交替地」意謂並非所有設計變數皆被允許同時改變。
在圖15中,同時地執行所有設計變數之最佳化。此流程可被稱為同時流程或共同最佳化流程。替代地,交替地執行所有設計變數之最佳化,如圖15所說明。在此流程中,在每一步驟中,使一些設計變數固定,而最佳化其他設計變數以最小化成本函數;接著,在下一步驟中,使一不同變數集合固定,而最佳化其他變數集合經最佳化以最小化成本函數。交替地執行此等步驟直至符合收斂或某些終止條件為止。
如圖15之非限制性實例流程圖中所展示,首先,獲得設計佈局(步驟S1302),接著,在步驟S1304中執行源最佳化之步驟,其中最佳化(SO)照明源之所有設計變數以最小化成本函數,而使所有其他設計變數固定。接著在下一步驟S1306中,執行光罩最佳化(MO),其中最佳化圖案化器件之所有設計變數以最小化成本函數,同時使所有其他設計變數固定。交替地執行此兩個步驟,直至在步驟S1308中符合某些終止條件為止。可使用各種終止條件,諸如,成本函數之值變得等於臨限值、成本函數之值超越臨限值、成本函數之值達到預設誤差極限內,或達到預設數目次反覆,等等。應注意,SO-MO交替最佳化係用作該替代流程之實例。該替代流程可採取許多不同形式,諸如:SO-LO-MO交替最佳化,其中交替地且反覆地執行SO、LO(透鏡最佳化)及MO;或可執行第一SMO一次,接著交替地且反覆地執行LO及MO;等等。最後,在步驟S1310中獲得最佳化結果之輸出,且製程停止。
如之前所論述之圖案選擇演算法可與同時或交替最佳化整合。舉例而言,當採用交替最佳化時,首先可執行全晶片SO,識別「熱點」及/或「溫點」,接著執行MO。鑒於本發明,次最佳化之眾多排列及組合係可能的,以便達成所要最佳化結果。
圖16A展示一種例示性最佳化方法,其中最小化成本函數。在步驟S502中,獲得設計變數之初始值,包括設計變數之調諧範圍(若存在)。在步驟S504中,設置多變數成本函數。在步驟S506中,在圍繞用於第一反覆步驟(i=0)之設計變數之起點值的足夠小之鄰域內展開成本函數。在步驟S508中,應用標準多變數最佳化技術以最小化成本函數。應注意,最佳化問題可在S508中之最佳化製程期間或在最佳化製程中之後期施加約束,諸如,調諧範圍。步驟S520指示出針對用於已為了最佳化微影製程而選擇之經識別評估點之給定測試圖案(亦被稱為「量規」)進行每一反覆。在步驟S510中,預測微影回應。在步驟S512中,比較步驟S510之結果與步驟S522中獲得之所要或理想微影回應值。若在步驟S514中滿足終止條件,亦即,最佳化產生足夠接近於所要值之微影回應值,則在步驟S518中輸出設計變數之最終值。輸出步驟亦可包括使用設計變數之最終值來輸出其他函數,諸如,輸出光瞳平面(或其他平面)處之波前像差調整映像、經最佳化源映像,及經最佳化設計佈局等等。若未滿足終止條件,則在步驟S516中,運用第i反覆之結果來更新設計變數之值,且製程返回至步驟S506。下文詳細地闡述圖16A之製程。
在例示性最佳化製程中,未假定或近似設計變數(
z 1,
z 2,…,
z
N )與
f
p (
z 1,
z 2,…,
z
N )之間的關係,惟
f
p (
z 1,
z 2,…,
z
N )足夠平滑(例如,存在一階導數
(
n=1,2,…
N))除外,其通常在微影投影裝置中有效。可應用諸如高斯-牛頓(Gauss-Newton)演算法、雷文柏格-馬括特(Levenberg-Marquardt)演算法、梯度下降演算法、模擬退火、遺傳演算法之演算法以找到
。
此處,將高斯-牛頓演算法用作一實例。高斯-牛頓演算法為適用於一般非線性多變數最佳化問題之反覆方法。在設計變數(z
1, z
2,…, z
N)取值(z
1i, z
2i,…, z
Ni)之第
i次反覆中,高斯-牛頓演算法線性化(z
1i, z
2i,…, z
Ni)附近之f
p(z
1, z
2,…, z
N),且接著計算(z
1i, z
2i,…, z
Ni)附近之給出CF(z
1, z
2,…, z
N)之最小值(z
1 ( i + 1 ), z
2 ( i + 1 ),…, z
N ( i + 1 ))。設計變數(z
1, z
2,…, z
N)在第(i+1)次反覆中採取值(z
1 ( i + 1 ), z
2 ( i + 1 ),…, z
N ( i + 1 ))。此反覆繼續直至收斂(亦即,
CF(
z 1,
z 2,…,
z
N 不再縮減)或達到預設數目次反覆為止。
具體言之,在第
i反覆中,在(
z 1
i ,
z 2
i ,…,
z
Ni )附近,
(方程式3)
依據方程式3之近似,成本函數變為:
(方程式4)
其為設計變數(
z 1,
z 2,…,
z
N )之二次函數。每一項皆恆定,惟設計變數(
z 1,
z 2,…,
z
N )除外。
若設計變數(
z 1,
z 2,…,
z
N )不在任何約束下,則(
z 1(
i+1)
,
z 2(
i+1)
,…,
z
N (
i+1)
)可藉由由
N個線性方程式
(其中
n= 1,2,…
N)進行求解而導出。
若設計變數(
z 1,
z 2,…,
z
N )係在呈
J個不等式之形式(例如,(
z 1,
z 2,…,
z
N )之調諧範圍)之約束下
(其中
j=1,2,…
J);且在呈
K個等式之形式(例如,設計變數之間的相互相依性)之約束下
(其中
k=1,2,…
K);則最佳化製程變為經典二次規劃問題,其中
A
nj 、
B
j 、
C
nk 、
D
k 為常數。可針對每一反覆來強加額外約束。舉例而言,可引入「阻尼因數」Δ
D 以限制(
z 1(
i+1)
,
z 2(
i+1)
,…,
z
N (
i+1)
)與(
z 1
i ,
z 2
i ,…,
z
Ni )之間的差,使得方程式3之近似成立。可將此類約束表達為
z
ni-
Δ
D ≤
z
n ≤
z
ni+
Δ
D 。可使用(例如) Jorge Nocedal及Stephen J.Wright (Berlin New York: Vandenberghe. Cambridge University Press)之Numerical Optimization (第2版)中描述的方法來導出(
z 1(
i+1)
,
z 2(
i+1)
,…,
z
N (
i+1)
)。
代替最小化
f
p (
z 1,
z 2,…,
z
N )之RMS,最佳化製程可將評估點當中之最大偏置(最差缺陷)之量值最小化至其預期值。在此途徑中,可替代地將成本函數表達為
(方程式5),
其中
CL
p 為用於
f
p (
z 1,
z 2,…,
z
N )之最大允許值。此成本函數表示評估點當中之最差缺陷。使用此成本函數之最佳化會最小化最差缺陷之量值。反覆貪心演算法可用於此最佳化。
可將方程式5之成本函數近似為:
(方程式6),
其中
q為正偶數,諸如,至少4,較佳地為至少10。方程式6模仿方程式5之行為,同時允許藉由使用諸如最深下降方法、共軛梯度方法等等之方法來分析上執行最佳化且使最佳化加速。
最小化最差缺陷大小亦可與
f
p (
z 1,
z 2,…,
z
N )之線性化組合。具體言之,與在方程式3中一樣,近似
f
p (
z 1,
z 2,…,
z
N )。接著,將對最差缺陷大小之約束書寫為不等式
E
Lp ≤
f
p (
z 1,
z 2,…,
z
N ) ≤
E
Up ,其中
E
Lp 及
E
Up 為指定用於
f
p (
z 1,
z 2,…,
z
N )之最小偏置及最大允許偏置之兩個常數。插入方程式3,將此等約束變換至如下方程式(其中p=1,…P):
(方程式6')
及
(方程式6'')
由於方程式3通常僅在(
z 1
i ,
z 2
i ,…,
z
Ni )附近有效,故倘若在此附近不能達成所要約束
E
Lp ≤
f
p (
z 1,
z 2,…,
z
N ) ≤
E
Up (其可藉由該等不等式當中之任何衝突予以判定),則可放寬常數
E
Lp 及
E
Up 直至可達成該等約束為止。此最佳化製程最小化(
z 1
i ,
z 2
i ,…,
z
Ni )附近之最差缺陷大小。接著,每一步驟逐步地縮減最差缺陷大小,且反覆地執行每一步驟直至符合某些終止條件為止。此情形將導致最差缺陷大小之最佳縮減。
用以最小化最差缺陷之另一方式係在每一反覆中調整權重
w
p 。舉例而言,在第
i反覆之後,若第
r評估點為最差缺陷,則可在第(
i+1)反覆中增加
w
r ,使得向彼評估點之缺陷大小之縮減給出較高優先級。
另外,可藉由引入拉格朗日乘數來修改方程式4及方程式5中之成本函數,以達成對缺陷大小之RMS之最佳化與對最差缺陷大小之最佳化之間的折衷,亦即:
(方程式6''')
其中
λ為指定對缺陷大小之RMS之最佳化與對最差缺陷大小之最佳化之間的取捨之預設常數。詳言之,若
λ=0,則此方程式變為方程式4,且僅最小化缺陷大小之RMS;而若
λ=1,則此方程式變為方程式5,且僅最小化最差缺陷大小;若0<
λ<1,則在最佳化中考量以上兩種情況。可使用多種方法來解決此最佳化。舉例而言,相似於先前所描述之方法,可調整每一反覆中之加權。替代地,相似於自不等式最小化最差缺陷大小,方程式6'及6''之不等式可被視為在二次規劃問題之求解期間的設計變數之約束。接著,可遞增地放寬對最差缺陷大小之界限,或對最差缺陷大小之界限遞增地增加用於最差缺陷大小之權重、運算用於每一可達成最差缺陷大小之成本函數值,且選擇最小化總成本函數之設計變數值作為用於下一步驟之初始點。藉由反覆地進行此操作,可達成此新成本函數之最小化。
最佳化微影投影裝置可擴展製程窗。較大製程窗在製程設計及晶片設計方面提供更多靈活性。製程窗可被定義為使抗蝕劑影像在抗蝕劑影像之設計目標之某一極限內的焦點及劑量值集合。應注意,此處所論述之所有方法亦可擴展至可藉由除了曝光劑量及散焦以外之不同或額外基參數而建立的廣義製程窗定義。此等基參數可包括(但不限於)諸如NA、均方偏置、像差、偏振之光學設定,或抗蝕劑層之光學常數。舉例而言,如早先所描述,若PW亦由不同光罩偏置組成,則最佳化包括光罩誤差增強因數(MEEF)之最小化,該光罩誤差增強因數(MEEF)被定義為基板EPE與誘發性光罩邊緣偏置之間的比率。對焦點及劑量值所定義之製程窗在本發明中僅用作一實例。下文描述根據一實施例的最大化製程窗之方法。
在第一步驟中,自製程窗中之已知條件(
f 0,
ε 0)開始(其中
f 0為標稱焦點,且
ε 0為標稱劑量),最小化在(
f 0±Δ
f,
ε 0±Δ
ε)附近下方之成本函數中之一者:
(方程式7)。
或
(方程式7')
或
(方程式7'')
若允許標稱焦點
f 0及標稱劑量
ε 0移位,則其可與設計變數(
z 1,
z 2,…,
z
N )聯合地被最佳化。在下一步驟中,若可找到(
z 1,
z 2,…,
z
N ,
f,
ε)之值集合,則接受(
f 0±Δ
f,
ε 0±Δ
ε)作為製程窗之部分,以使得成本函數在預設極限內。
替代地,若不允許焦點及劑量移位,則在焦點及劑量固定於標稱焦點
f 0及標稱劑量
ε 0的情況下最佳化設計變數(
z 1,
z 2,…,
z
N )。在一替代實施例中,若可找到(
z 1,
z 2,…,
z
N )之值集合,則接受(
f 0±Δ
f,
ε 0±Δ
ε)作為製程窗之部分,使得成本函數係在預設極限內。
本發明中早先所描述之方法可用以最小化方程式7、7'或7''之各別成本函數。若設計變數為投影光學件之特性,諸如任尼克係數,則最小化方程式7、7'或7''之成本函數導致基於投影光學件最佳化(亦即LO)之製程窗最大化。若設計變數為除了投影光學件之特性以外的源及圖案化器件之特性,則最小化方程式7、7'或7''之成本函數會導致基於SMLO之製程窗最大化,如圖15所說明。若設計變數為源及圖案化器件之特性,則最小化方程式7、7'或7''之成本函數會導致基於SMO之製程窗最大化。方程式7、7'或7''之成本函數亦可包括至少一個
f
p (
z 1,
z 2,…,
z
N ),諸如在方程式7或方程式8中之
f
p (
z 1,
z 2,…,
z
N ),其為諸如2D特徵之LWR或局部CD變化以及產出量之一或多個隨機效應的函數。
圖17展示同時SMLO製程可如何使用高斯-牛頓演算法以用於最佳化之一項特定實例。在步驟S702中,識別設計變數之起始值。亦可識別用於每一變數之調諧範圍。在步驟S704中,使用設計變數來定義成本函數。在步驟S706中,圍繞用於設計佈局中之所有評估點之起始值而展開成本函數。在選用步驟S710中,執行全晶片模擬以覆蓋全晶片設計佈局中之所有臨界圖案。在步驟S714中獲得所要微影回應度量(諸如,CD或EPE),且在步驟S712中比較所要微影回應度量與彼等量之所預測值。在步驟S716中,判定製程窗。步驟S718、S720及S722相似於如關於圖16A所描述之對應步驟S514、S516及S518。如之前所提及,最終輸出可為光瞳平面中之波前像差映像,其經最佳化以產生所要成像效能。最終輸出亦可為經最佳化源映像及/或經最佳化設計佈局。
圖16B展示用以最佳化成本函數之例示性方法,其中設計變數(
z 1,
z 2,…,
z
N )包括可僅採取離散值之設計變數。
該方法藉由界定照明源之像素群組及圖案化器件之圖案化器件圖案塊而開始(步驟S802)。通常,像素群組或圖案化器件圖案塊亦可被稱作微影製程組件之劃分部。在一種例示性途徑中,將照明源劃分成117個像素群組,且針對圖案化器件界定94個圖案化器件圖案塊(大體上如上文所描述),從而引起總共211個劃分部。
在步驟S804中,選擇一微影模型作為用於光微影模擬之基礎。光微影模擬產生用於計算光微影度量或回應之結果。將一特定光微影度量定義為待最佳化之效能度量(步驟S806)。在步驟S808中,設置用於照明源及圖案化器件之初始(預最佳化)條件。初始條件包括用於照明源之像素群組及圖案化器件之圖案化器件圖案塊的初始狀態,使得可參考初始照明形狀及初始圖案化器件圖案。初始條件亦可包括光罩偏置、NA,及焦點斜坡範圍。儘管步驟S802、S804、S806及S808被描繪為依序步驟,但應瞭解,在本發明之其他實施例中,可以其他順序執行此等步驟。
在步驟S810中,對像素群組及圖案化器件圖案塊順位。可使像素群組及圖案化器件圖案塊在順位中交錯。可使用各種順位方式,包括:依序地(例如,自像素群組1至像素群組117及自圖案化器件圖案塊1至圖案化器件圖案塊94)、隨機地、根據該等像素群組及圖案化器件圖案塊之實體位置(例如,將較接近於照明源之中心之像素群組順位較高),及根據該像素群組或圖案化器件圖案塊之變更如何影響效能度量。
一旦對像素群組及圖案化器件圖案塊順位,就調整照明源及圖案化器件以改良效能度量(步驟S812)。在步驟S812中,按順位之次序分析像素群組及圖案化器件圖案塊中之每一者,以判定像素群組或圖案化器件圖案塊之變更是否將引起效能度量改良。若判定效能度量將被改良,則相應地變更像素群組或圖案化器件圖案塊,且所得改良型效能度量及經修改照明形狀或經修改圖案化器件圖案形成基線以供比較以用於後續分析較低順位之像素群組及圖案化器件圖案塊。換言之,保持改良效能度量之變更。隨著進行及保持對像素群組及圖案化器件圖案塊之狀態之變更,初始照明形狀及初始圖案化器件圖案相應地改變,使得經修改照明形狀及經修改圖案化器件圖案由步驟S812中之最佳化製程引起。
在其他途徑中,亦在S812之最佳化製程內執行像素群組及/或圖案化器件圖案塊之圖案化器件多邊形形狀調整及成對輪詢。
在一替代實施例中,交錯式同時最佳化工序可包括變更照明源之像素群組,且在發現效能度量之改良的情況下,逐步升高及降低劑量以尋找進一步改良。在另外替代實施例中,可藉由用圖案化器件圖案之偏置改變來替換劑量或強度之逐步升高及降低,以尋找在同時最佳化工序之進一步改良。
在步驟S814中,進行關於效能度量是否已收斂之判定。舉例而言,若在步驟S810及S812之最後幾次反覆中已證明效能度量之很小改良或無改良,則效能度量可被認為已收斂。若效能度量尚未收斂,則在下一反覆中重複步驟S810及S812,其中自當前反覆之經修改之照明形狀及經修改之圖案化器件係用作用於下一反覆之初始照明形狀及初始圖案化器件(步驟S816)。
上文所描述之最佳化方法可用以增加微影投影裝置之產出量。舉例而言,成本函數可包括為曝光時間之函數的
f
p (
z 1,
z 2,…,
z
N )。此成本函數之最佳化較佳地受到隨機效應之量度或其他度量約束或影響。具體言之,用於增加微影製程之產出量之電腦實施方法可包括最佳化為微影製程之一或多個隨機效應之函數且為基板之曝光時間之函數的成本函數,以便最小化曝光時間。
在一項實施例中,成本函數包括為一或多個隨機效應之函數的至少一個
f
p (
z 1,
z 2,…,
z
N )。隨機效應可包括特徵之失效、如在圖3A之方法中所判定之量測資料(例如SEPE)、2D特徵之LWR或局部CD變化。在一項實施例中,隨機效應包括抗蝕劑影像之特性之隨機變化。舉例而言,此等隨機變化可包括特徵之失效率、線邊緣粗糙度(LER)、線寬粗糙度(LWR)及臨界尺寸均一性(CDU)。在成本函數中包括隨機變化會允許找到最小化隨機變化之設計變數之值,藉此縮減歸因於隨機效應之缺陷之風險。
圖18為說明可輔助實施本文所揭示之最佳化方法及流程之電腦系統100的方塊圖。電腦系統100包括用於傳達資訊之匯流排102或其他通信機構,及與匯流排102耦接以用於處理資訊之一處理器104 (或多個處理器104及105)。電腦系統100亦包括耦接至匯流排102以用於儲存待由處理器104執行之資訊及指令的主記憶體106,諸如,隨機存取記憶體(RAM)或其他動態儲存器件。主記憶體106亦可用於在待由處理器104執行之指令之執行期間儲存暫時性變數或其他中間資訊。電腦系統100進一步包括耦接至匯流排102以用於儲存用於處理器104之靜態資訊及指令的唯讀記憶體(ROM) 108或其他靜態儲存器件。提供諸如磁碟或光碟之儲存器件110,且儲存器件110耦接至匯流排102以用於儲存資訊及指令。
電腦系統100可經由匯流排102而耦接至用於向電腦使用者顯示資訊之顯示器112,諸如,陰極射線管(CRT)或平板顯示器或觸控面板顯示器。包括文數字按鍵及其他按鍵之輸入器件114耦接至匯流排102以用於將資訊及命令選擇傳達至處理器104。另一類型之使用者輸入器件為用於將方向資訊及命令選擇傳達至處理器104且用於控制顯示器112上之游標移動的游標控制件116,諸如,滑鼠、軌跡球或游標方向按鍵。此輸入器件通常具有在兩個軸線-第一軸(例如,x)及第二軸(例如,y)上之兩個自由度,從而允許該器件指定在平面中之位置。觸控面板(螢幕)顯示器亦可用作輸入器件。
根據一實施例,可由電腦系統100回應於處理器104執行主記憶體106中含有之一或多個指令之一或多個序列而執行最佳化製程之部分。可將此類指令自另一電腦可讀媒體(諸如儲存器件110)讀取至主記憶體106中。主記憶體106中所含有之指令序列之執行使處理器104執行本文中所描述之製程步驟。呈多處理配置之一或多個處理器亦可用以執行主記憶體106中含有之指令序列。在一替代實施例中,可代替或結合軟體指令而使用硬連線電路系統。因此,本文之描述不限於硬體電路及軟體之任何特定組合。
本文中所使用之術語「電腦可讀媒體」係指參與將指令提供至處理器104以供執行之任何媒體。此媒體可採取許多形式,包括但不限於非揮發性媒體、揮發性媒體及傳輸媒體。非揮發性媒體包括(例如)光碟或磁碟,諸如,儲存器件110。揮發性媒體包括動態記憶體,諸如主記憶體106。傳輸媒體包括同軸纜線、銅線及光纖,其包括包含匯流排102之電線。傳輸媒體亦可採取聲波或光波之形式,諸如,在射頻(RF)及紅外線(IR)資料通信期間產生之聲波或光波。電腦可讀媒體之常見形式包括例如軟碟、可撓性磁碟、硬碟、磁帶、任何其他磁性媒體、CD-ROM、DVD、任何其他光學媒體、打孔卡、紙帶、具有孔圖案之任何其他實體媒體、RAM、PROM及EPROM、FLASH-EPROM、任何其他記憶體晶片或卡匣、如下文所描述之載波,或可供電腦讀取之任何其他媒體。
可在將一或多個指令之一或多個序列攜載至處理器104以供執行時涉及電腦可讀媒體之各種形式。舉例而言,最初可將該等指令承載於遠端電腦之磁碟上。遠端電腦可將指令載入至其動態記憶體中,且使用數據機經由電話線而發送指令。在電腦系統100本端之數據機可接收電話線上之資料,且使用紅外線傳輸器將資料轉換成紅外線信號。耦接至匯流排102之紅外線偵測器可接收紅外線信號中所攜載之資料且將資料置放於匯流排102上。匯流排102將資料攜載至主記憶體106,處理器104自該主記憶體106擷取及執行指令。由主記憶體106接收之指令可視情況在由處理器104執行之前或之後儲存於儲存器件110上。
電腦系統100亦較佳包括耦接至匯流排102之通信介面118。通信介面118提供對網路鏈路120之雙向資料通信耦合,網路鏈路120連接至區域網路122。舉例而言,通信介面118可為整合式服務數位網路(ISDN)卡或數據機以提供至對應類型之電話線的資料通信連接。作為另一實例,通信介面118可為區域網路(LAN)卡以提供對相容LAN之資料通信連接。亦可實施無線鏈路。在任何此類實施中,通信介面118發送且接收攜載表示各種類型之資訊之數位資料串流的電信號、電磁信號或光信號。
網路鏈路120通常經由一或多個網路而向其他資料器件提供資料通信。舉例而言,網路鏈路120可經由區域網路122而向主機電腦124或向由網際網路服務提供者(ISP) 126操作之資料設備提供連接。ISP 126又經由全球封包資料通信網路(現在通常被稱作「網際網路」) 128而提供資料通信服務。區域網路122及網際網路128兩者皆使用攜載數位資料串流之電信號、電磁信號或光信號。經由各種網路之信號及在網路鏈路120上且經由通信介面118之信號(該等信號將數位資料攜載至電腦系統100及自電腦系統100攜載數位資料)為輸送資訊的載波之例示性形式。
電腦系統100可經由網路、網路鏈路120及通信介面118而發送訊息且接收資料(包括程式碼)。在網際網路實例中,伺服器130可能經由網際網路128、ISP 126、區域網路122及通信介面118而傳輸用於應用程式之經請求程式碼。一個此類經下載應用程式可提供(例如)實施例之照明最佳化。所接收程式碼可在其被接收時由處理器104執行,及/或儲存於儲存器件110或其他非揮發性儲存器中以供稍後執行。以此方式,電腦系統100可獲得呈載波之形式的應用程式碼。
圖19示意性地描繪可利用本文所描述之方法而最佳化照明源的例示性微影投影裝置LA。該裝置包含:
- 照明系統IL,其用以調節輻射光束B。在此特定狀況下,照明系統亦包含輻射源SO;
- 第一物件台(例如,光罩台) MT,其具備用以固持圖案化器件MA (例如,倍縮光罩)之圖案化器件固持器,且連接至用以相對於物件PS來準確地定位該圖案化器件之第一定位器;
- 第二物件台(基板台) WT,其具備用以固持基板W (例如,抗蝕劑塗佈矽晶圓)之基板固持器,且連接至用以相對於物件PS來準確地定位該基板之第二定位器;
- 投影系統(「透鏡」) PS (例如折射、反射或反射折射光學系統),其用以將圖案化器件MA之經輻照部分成像至基板W之目標部分C (例如包含一或多個晶粒)上。
如本文中所描繪,該裝置屬於透射類型(亦即具有透射光罩)。然而,一般而言,其亦可屬於例如反射類型(具有反射光罩)。替代地,裝置可使用另一種類之圖案化器件作為對經典光罩之使用的替代例;實例包括可程式化鏡面陣列或LCD矩陣。
源SO (例如,水銀燈或準分子雷射)產生輻射光束。舉例而言,此光束係直接地抑或在已橫穿諸如光束擴展器Ex之調節構件之後饋入至照明系統(照明器) IL中。照明器IL可包含調整構件AD以用於設定光束中之強度分佈之外部徑向範圍及/或內部徑向範圍(通常分別被稱作σ外部及σ內部)。另外,照明器IL通常將包含各種其他組件,諸如,積光器IN及聚光器CO。以此方式,照射於圖案化器件MA上之光束B在其橫截面中具有所要均一性及強度分佈。
關於圖19應注意,源SO可在微影投影裝置之外殼內(此常常為源SO為(例如)水銀燈時之狀況),但其亦可遠離微影投影裝置,其產生之輻射光束經導引至該裝置中(例如,憑藉合適導向鏡);此後一情境常常為當源SO為準分子雷射(例如,基於KrF、ArF或F
2雷射作用)時之狀況。
光束B隨後截取被固持於圖案化器件台MT上之圖案化器件MA。在已橫穿圖案化器件MA的情況下,光束B傳遞通過透鏡PL,該透鏡PS將光束B聚焦至基板W之目標部分C上。憑藉第二定位構件(及干涉量測構件IF),可準確地移動基板台WT,例如以便使不同目標部分C定位於光束B之路徑中。相似地,第一定位構件可用以(例如)在自圖案化器件庫機械地擷取圖案化器件MA之後或在掃描期間相對於光束B之路徑來準確地定位圖案化器件MA。一般而言,將憑藉未在圖19中明確地描繪之長衝程模組(粗略定位)及短衝程模組(精細定位)來實現物件台MT、WT之移動。然而,在晶圓步進器(相對於步進掃描工具)之狀況下,圖案化器件台MT可僅連接至短衝程致動器,或可固定。
可在兩種不同模式中使用所描繪工具:
- 在步進模式中,將圖案化器件台MT保持基本上靜止,且將整個圖案化器件影像一次性投影((亦即,單次「閃光」)至目標部分C上。接著使基板台WT在x方向及/或y方向上移位,使得可由光束B輻照不同目標部分C;
- 在掃描模式中,基本上相同情境適用,惟單次「閃光」中不曝光給定目標部分C除外。取而代之,圖案化器件台MT可在給定方向(所謂「掃描方向」,例如,y方向)上以速度v移動,使得造成投影光束B遍及圖案化器件影像進行掃描;同時發生地,基板台WT以速度V=Mv在相同或相對方向上同時地移動,其中M為透鏡PS之放大率(通常,M=1/4或=1/5)。以此方式,可在不必損害解析度的情況下曝光相對較大目標部分C。
圖20示意性地描繪可利用本文所描述之方法而最佳化照明源的另一例示性微影投影裝置LA。
微影投影裝置LA包括:
-源收集器模組SO;
-照明系統(照明器) IL,其經組態以調節輻射光束B (例如,EUV輻射);
-支撐結構(例如,光罩台) MT,其經建構以支撐圖案化器件(例如,光罩或倍縮光罩) MA,且連接至經組態以準確地定位該圖案化器件之第一定位器PM;
-基板台(例如,晶圓台) WT,其經建構以固持基板(例如,抗蝕劑塗佈晶圓) W,且連接至經組態以準確地定位該基板之第二定位器PW;及
-投影系統(例如,反射投影系統) PS,其經組態以將由圖案化器件MA賦予至輻射光束B之圖案投影至基板W之目標部分C (例如,包含一或多個晶粒)上。
如此處所描繪,裝置LA屬於反射類型(例如使用反射光罩)。應注意,因為大多數材料在EUV波長範圍內具吸收性,所以光罩可具有包含例如鉬與矽之多堆疊的多層反射器。在一項實例中,多堆疊反射器具有鉬與矽之40個層對,其中每一層之厚度為四分之一波長。可運用X射線微影來產生更小波長。因為大多數材料在EUV及x射線波長下具吸收性,所以圖案化器件構形(topography)上之經圖案化吸收材料薄片段(例如,多層反射器之頂部上之TaN吸收器)界定特徵將印刷(正型抗蝕劑)或不印刷(負型抗蝕劑)之處。
參看圖20,照明器IL自源收集器模組SO接收極紫外線輻射光束。用以產生EUV輻射之方法包括但未必限於:運用在EUV範圍內之一或多個發射譜線將具有至少一個元素(例如氙、鋰或錫)之材料轉換成電漿狀態。在一種此類方法(常常被稱為雷射產生電漿「LPP」)中,可藉由運用雷射光束來輻照燃料(諸如具有譜線發射元素之材料小滴、串流或叢集)而產生電漿。源收集器模組SO可為包括雷射(圖20中未繪示)之EUV輻射系統之部分,該雷射用於提供激發燃料之雷射光束。所得電漿發射輸出輻射,例如EUV輻射,該輻射係使用安置於源收集器模組中之輻射收集器予以收集。舉例而言,當使用CO
2雷射以提供用於燃料激發之雷射光束時,雷射與源收集器模組可為單獨實體。
在此類狀況下,不認為雷射形成微影裝置之部件,且輻射光束係憑藉包含(例如)合適導向鏡及/或光束擴展器之光束遞送系統而自雷射傳遞至源收集器模組。在其他狀況下,舉例而言,當源為放電產生電漿EUV產生器(常常被稱為DPP源)時,源可為源收集器模組之整體部件。
照明器IL可包含用於調整輻射光束之角強度分佈之調整器。通常,可調整照明器之光瞳平面中之強度分佈之至少外部徑向範圍及/或內部徑向範圍(通常分別被稱作σ外部及σ內部)。另外,照明器IL可包含各種其他組件,諸如琢面化場鏡面器件及琢面化光瞳鏡面器件。照明器可用以調節輻射光束,以在其橫截面中具有所要均一性及強度分佈。
輻射光束B入射於被固持於支撐結構(例如光罩台) MT上之圖案化器件(例如光罩) MA上,且係由該圖案化器件而圖案化。在自圖案化器件(例如,光罩) MA反射之後,輻射光束B傳遞通過投影系統PS,投影系統PS將該光束聚焦至基板W之目標部分C上。憑藉第二定位器PW及位置感測器PS2 (例如,干涉器件、線性編碼器或電容性感測器),可準確地移動基板台WT,例如,以便使不同目標部分C定位於輻射光束B之路徑中。相似地,第一定位器PM及另一位置感測器PS1可用以相對於輻射光束B之路徑來準確地定位圖案化器件(例如,光罩) MA。可使用圖案化器件對準標記M1、M2及基板對準標記P1、P2來對準圖案化器件(例如光罩) MA及基板W。
所描繪裝置LA可用於以下模式中之至少一者中:
1. 在步進模式中,在將被賦予至輻射光束之整個圖案一次性投影至目標部分C上時,使支撐結構(例如光罩台) MT及基板台WT保持基本上靜止(亦即,單次靜態曝光)。接著,使基板台WT在X及/或Y方向上移位,使得可曝光不同目標部分C。
2. 在掃描模式中,在將被賦予至輻射光束之圖案投影至目標部分C上時,同步地掃描支撐結構(例如,光罩台) MT及基板台WT (亦即,單次動態曝光)。可藉由投影系統PS之放大率(縮小率)及影像反轉特性來判定基板台WT相對於支撐結構(例如,光罩台) MT之速度及方向。
3. 在另一模式中,在將被賦予至輻射光束之圖案投影至目標部分C上時,使支撐結構(例如,光罩台) MT保持基本上靜止,從而固持可程式化圖案化器件,且移動或掃描基板台WT。在此模式中,通常使用脈衝式輻射源,且在基板台WT之每一移動之後或在掃描期間之順次輻射脈衝之間根據需要而更新可程式化圖案化器件。此操作模式可易於應用於利用可程式化圖案化器件(諸如,上文所提及之類型之可程式化鏡面陣列)之無光罩微影。
圖21更詳細地展示裝置LA,其包括源收集器模組SO、照明系統IL及投影系統PS。源收集器模組SO經建構及配置成使得可將真空環境維持於源收集器模組SO之圍封結構220中。可由放電產生電漿源形成EUV輻射發射電漿210。可藉由氣體或蒸汽(例如,Xe氣體、Li蒸汽或Sn蒸汽)而產生EUV輻射,其中產生極熱電漿210以發射在電磁光譜之EUV範圍內之輻射。舉例而言,藉由造成至少部分離子化電漿之放電來產生極熱電漿210。為了有效地產生輻射,可需要為(例如) 10帕斯卡之分壓之Xe、Li、Sn蒸汽或任何其他合適氣體或蒸汽。在一實施例中,提供受激發錫(Sn)電漿以產生EUV輻射。
由熱電漿210發射之輻射係經由經定位於源腔室211中之開口中或後方的選用氣體障壁或污染物截留器230 (在一些狀況下,亦被稱作污染物障壁或箔片截留器)而自源腔室211傳遞至收集器腔室212中。污染物截留器230可包括通道結構。污染截留器230亦可包括氣體障壁,或氣體障壁與通道結構之組合。如在此項技術中已知,本文中進一步指示之污染物截留器或污染物障壁230至少包括通道結構。
收集器腔室212可包括可為所謂的掠入射收集器之輻射收集器CO。輻射收集器CO具有上游輻射收集器側251及下游輻射收集器側252。橫穿收集器CO之輻射可自光柵光譜濾光器240反射以沿著由點虛線「O」指示之光軸而聚焦於虛擬源點IF中。虛擬源點IF通常被稱作中間焦點,且源收集器模組經配置以使得中間焦點IF位於圍封結構220中之開口221處或附近。虛擬源點IF為輻射發射電漿210之影像。
隨後,輻射橫穿照明系統IL,照明系統IL可包括琢面化場鏡面器件22及琢面化光瞳鏡面器件24,琢面化場鏡面器件22及琢面化光瞳鏡面器件24經配置以提供在圖案化器件MA處輻射光束21之所要角度分佈,以及在圖案化器件MA處之輻射強度之所要均一性。在由支撐結構MT固持之圖案化器件MA處的輻射光束21之反射後,即形成經圖案化光束26,且由投影系統PS將經圖案化光束26經由反射元件28、30而成像至由基板台WT固持之基板W上。
比所展示元件多的元件通常可存在於照明光學件單元IL及投影系統PS中。取決於微影裝置之類型,可視情況存在光柵光譜濾光器240。另外,可存在比諸圖所展示之鏡面多的鏡面,例如,在投影系統PS中可存在比圖21所展示之反射元件多1至6個的額外反射元件。
圖21所說明之收集器光學件CO被描繪為具有掠入射反射器253、254及255之巢套式收集器,僅僅作為收集器(或收集器鏡面)之實例。掠入射反射器253、254及255經安置成圍繞光軸O軸向地對稱,且此類型之收集器光學件CO係較佳地結合放電產生電漿源(其常常被稱為DPP源)而使用。
替代地,源收集器模組SO可為如圖22所展示之LPP輻射系統之部件。雷射LA經配置以將雷射能量沈積至諸如氙(Xe)、錫(Sn)或鋰(Li)之燃料中,從而產生具有數十電子伏特之電子溫度之高度離子化電漿210。在此等離子之去激發及再結合期間產生之高能輻射係自電漿發射、由近正入射收集器光學件CO收集,且聚焦至圍封結構220中之開口221上。
本文中所揭示之概念可模擬或數學上模型化用於使子波長特徵成像之任何通用成像系統,且可尤其供能夠產生愈來愈短波長之新興成像技術使用。已經在使用中之新興技術包括能夠藉由使用ArF雷射來產生193 nm波長且甚至能夠藉由使用氟雷射來產生157 nm波長之極紫外線(EUV)、DUV微影。此外,EUV微影能夠藉由使用同步加速器或藉由運用高能電子來撞擊材料(固體或電漿)而產生在20 nm至5 nm之範圍內的波長,以便產生在此範圍內之光子。
可藉由以下條項進一步描述本發明之實施例。
1. 一種用於產生用於待印刷於一基板上之一目標圖案之一經重定目標圖案的方法,該方法包含:
獲得(i)包含至少一個特徵之該目標圖案,該至少一個特徵具有包括一第一維度及一第二維度之幾何形狀;及(ii)複數個偏置規則,其被定義為依據該第一維度、該第二維度及與一量測區內之該目標圖案之特徵相關聯的一屬性而變化;
判定該目標圖案之該至少一個特徵上之複數個位置處的該屬性之值,其中每一位置係由該量測區包圍;
基於該屬性之該等值自該複數個偏置規則選擇針對該至少一個特徵上之該複數個位置的一偏置子集;及
藉由將該所選擇偏置子集應用至該目標圖案之該至少一個特徵而產生用於該目標圖案之該經重定目標圖案。
2. 如條項1之方法,其中該判定一給定位置處之該屬性之該等值包含:
(a)在該至少一個特徵處之該給定位置周圍指派一量測區;
(b)識別該量測區內之一或多個特徵;
(c)經由一使用者定義函數計算與該量測區內之經識別之該一或多個特徵相關聯的該屬性之一值;及
(d)選擇該至少一個特徵處之另一位置,且使用(a)中之該量測區執行步驟(b)及(c)。
3. 如條項1至2中任一項之方法,其中該屬性係一密度或一核心。
4. 如條項3之方法,其中該計算該密度包含:
判定該量測區內之經識別之該一或多個特徵的一總面積;
判定該量測區之一總面積;及
將一密度值運算為該量測區內之特徵之該總面積與該量測區之該總面積的一比率。
5. 如條項2至4中任一項之方法,其中該計算該屬性之該值包含:
在該量測區與該使用者定義函數之間應用廻旋運算。
6. 如條項5之方法,其中將該量測區表示為包含該一或多個特徵之一影像,且該屬性之該值係藉由將該影像與該使用者定義函數廻旋來計算。
7. 如條項1至6中任一項之方法,其中該量測區橫越該目標圖案可移動。
8. 如條項1至7中任一項之方法,其中該第一維度係該至少一個特徵之一寬度,且該第二維度係該至少一個特徵與一相鄰特徵之間的一空間。
9. 如條項1至8中任一項之方法,其中該目標圖案係一設計圖案、一顯影後影像圖案及/或一蝕刻圖案。
10. 如條項1至9中任一項之方法,其中針對一給定寬度及空間之該等所選擇偏置係重定目標值,每一重定目標值係針對該目標圖案之該至少一個特徵之一部分。
11. 如條項10之方法,其進一步包含:
將每一重定目標值應用至對應邊緣以產生該經重定目標圖案;及
將光學近接校正應用至該經重定目標圖案以產生一OPC後圖案。
12. 如條項1至11中任一項之方法,其中該複數個偏置中之每一偏置係以下中之至少一者:
蝕刻補償,其待應用至一ADI圖案使得一蝕刻圖案在所要規格內;
一模型誤差補償,其與用於模擬一圖案化製程之一或多個製程模型相關聯;
一光罩近接校正,其待應用至一設計佈局以減少該目標圖案之變化,該等變化係由於光罩製造而造成;或
一初始OPC偏置,其待應用至該設計佈局以產生用於最佳近接校正之一初始經重定目標佈局。
13. 如條項1至12中任一項之方法,其中將該等偏置規則表示為針對每個該屬性的該第一維度及該第二維度之一表。
14. 如條項13之方法,其中取決於應用用以判定該屬性之該核心之一後果而在複數個表中表示該等偏置規則。
15. 如條項1至14中任一項之方法,其中該選擇偏置包含:
(a)識別該屬性之一給定值所屬之一範圍;
(b)針對該屬性之經識別之該範圍,自該複數個偏置規則選擇一偏置規則;及
(c)針對該第一維度及該第二維度之一給定值自該偏置規則選擇與該至少一個特徵上之該複數個位置之該給定位置相關聯的一偏置值。
16. 如條項2至15中任一項之方法,其中該使用者定義函數係將該量測區內之該一或多個特徵變換成一特性值的一幾何函數、一信號處理函數或一影像處理函數,該特性值對於該所界定位置中之該一或多個特徵係特定的。
17. 如條項16之方法,其中該幾何函數依據該目標圖案之該至少一個特徵之一形狀、大小、相對位置而變化。
18. 如條項16之方法,其中該信號處理函數係一影像處理函數、一正弦函數、餘弦函數或一傅立葉變換。
19. 如條項16之方法,其中該影像處理函數係一低通濾波器及/或一邊緣偵測函數。
20. 一種用於判定用於待印刷於一基板上之一目標圖案之偏置規則的方法,該方法包含:
獲得包含由一第一維度及一第二維度界定之至少一個特徵的該目標圖案;
經由執行製程校正模型判定針對該第一維度及該第二維度之複數個偏置,且將該複數個偏置中之每一者與該屬性之一值相關聯,其中該製程校正模型使該至少一個特徵之該第一維度及該第二維度偏置,且運算與該至少一個特徵相關聯之該屬性;及
基於該複數個偏置定義依據該第一維度、該第二維度及與該至少一個特徵相關聯之該屬性而變化的該等偏置規則。
21. 如條項20之方法,其中該執行該製程校正模型包含判定針對該目標圖案之該至少一個圖案上之複數個位置的該屬性之複數個值。
22. 如條項21之方法,其中該判定該屬性之該等值包含:
(a)在該至少一個特徵上之一給定位置周圍指派一量測區;
(b)識別該量測區內之一或多個特徵;
(c)經由一使用者定義函數計算與該量測區內之經識別之該一或多個特徵相關聯的該屬性之一值;及
(d)選擇該至少一個特徵上之另一位置,且使用(a)中之該量測區執行步驟(b)及(c)。
23. 如條項20至22中任一項之方法,其中該判定該複數個偏置包含:
經由使用該目標圖案執行該製程校正模型,產生包含針對該至少一個圖案之該第一維度及該第二維度之偏置的一經重定目標圖案;
判定該經重定目標圖案與該目標圖案之間的一差;及
基於該差判定該目標圖案之該複數個位置處之該複數個偏置。
24. 如條項20至23中任一項之方法,其中該定義該等偏置規則包含:
基於該屬性之該等值界定該屬性之範圍;及
針對該屬性之每一範圍,自該複數個偏置指派一偏置集合,其中該偏置集合之每一偏置係與該第一維度及該第二維度相關聯。
25. 如條項20至24中任一項之方法,其中該製程校正模型係以下中之至少一者:
一蝕刻校正模型,其判定對與該目標圖案相關聯之一經蝕刻圖案之校正;
一光學近接校正模型,其判定對該目標圖案之修改;或
一光罩近接校正模型,其判定與光罩製造製程相關聯之校正。
26. 如條項20至25中任一項之方法,其中在該製程校正模型之執行期間,對該目標圖案之每片段收集該複數個偏置,一片段係該目標圖案之一部分。
27. 如條項20至26中任一項之方法,其中在該製程校正模型之執行期間,對該目標圖案每片段每所界定區域計算該屬性之該值,該所界定區域係該目標圖案之一給定位置周圍的一區。
28. 一種電腦程式產品,其包含其上經記錄有指令之一非暫時性電腦可讀媒體,該等指令在由一電腦執行時實施如以上條項中任一項之方法。
雖然本文中所揭示之概念可用於在諸如矽晶圓之基板上的成像,但應理解,所揭示之概念可與任何類型之微影成像系統一起使用,例如,用於在不同於矽晶圓的基板上之成像的微影成像系統。
以上描述意欲為說明性,而非限制性的。因此,對於熟習此項技術者將顯而易見,可在不脫離下文所闡明之申請專利範圍之範疇的情況下如所描述進行修改。
10A:微影投影裝置
12A:輻射源
14A:光學件/組件
16Aa:光學件/組件
16Ab:光學件/組件
16Ac:透射光學件/組件
20A:可調整濾光器或孔徑
21:輻射光束
22:琢面化場鏡面器件
22A:基板平面
24:琢面化光瞳鏡面器件
26:經圖案化光束
28:反射元件
30:反射元件
31:源模型
32:投影光學件模型
35:設計佈局模型
36:空中影像
37:抗蝕劑模型
38:抗蝕劑影像
60B:目標圖案
80A:目標圖案
80B:目標圖案
100:電腦系統
102:匯流排
104:處理器
105:處理器
106:主記憶體
108:唯讀記憶體(ROM)
110:儲存器件
112:顯示器
114:輸入器件
116:游標控制件
118:通信介面
120:網路鏈路
122:區域網路
124:主機電腦
126:網際網路服務提供者(ISP)
128:網際網路
130:伺服器
210:極紫外線(EUV)輻射發射電漿
211:源腔室
212:收集器腔室
220:圍封結構
221:開口
230:選用氣體障壁或污染物截留器/污染截留器/污染物障壁
240:光柵光譜濾光器
251:上游輻射收集器側
252:下游輻射收集器側
253:掠入射反射器
254:掠入射反射器
255:掠入射反射器
300:方法
303:屬性之值
304:偏置規則
305:偏置之子集
307:重定目標圖案
309:光學近接校正(OPC)後圖案
402:偏置表
404:偏置表
406:偏置表
408:偏置表
500:方法
502:目標圖案
506:製程校正模型/蝕刻校正模型
510:偏置規則
600:現有偏置標繪圖
605:中心
610:末端部分
702:蝕刻特徵
712:顯影後影像(ADI)圖案
1200A:照明源之特性
1200B:投影光學件之特性
1200C:設計佈局之特性
AD:調整構件
B:輻射光束
B1:量/偏置
BD:光束遞送系統
C:目標部分
CO:聚光器/輻射收集器/近正入射收集器光學件
C80:圓形窗
C80':圓形窗
D1:第一維度
D2:第二維度
D80:正方形框/正方形窗
D80':正方形框
F1:特徵
F2:特徵
F3:特徵
F10:特徵
F20:特徵
F30:特徵
F61:特徵
F62:特徵
F63:特徵
F64:特徵
F70:特徵
Fn:特徵
FP1:特徵之部分
FP2:特徵之部分
FP3:特徵之部分
H1:接觸孔
H2:接觸孔
IF:干涉量測構件/虛擬源點/中間焦點
IL:照明系統/照明器/照明光學件單元
IN:積光器
LA:微影投影裝置
L1:位置
L10:位置
L11:位置
L12:位置
M1:圖案化器件對準標記
M2:圖案化器件對準標記
MA:圖案化器件
MT:第一物件台/圖案化器件台/支撐結構
O:光軸
P1:基板對準標記
P2:基板對準標記
PM:第一定位器
PR1:第一屬性/屬性值
PR2:第二屬性/第二屬性值
PS:物件/投影系統
PS2:位置感測器
PW:第二定位器
P301:工序
P303:工序
P305:工序
P307:工序
P309:工序
P311:工序
P313:工序/步驟
P315:工序/步驟
P317:工序
P501:工序
P503:工序
P505:工序
R1:第一區
R2:第二區
R10:量測區
SO:源收集器模組
S502:步驟
S504:步驟
S506:步驟
S508:步驟
S510:步驟
S512:步驟
S514:步驟
S516:步驟
S518:步驟
S520:步驟
S522:步驟
S702:步驟
S704:步驟
S706:步驟
S710:步驟
S712:步驟
S714:步驟
S716:步驟
S718:步驟
S720:步驟
S722:步驟
S802:步驟
S804:步驟
S806:步驟
S808:步驟
S810:步驟
S812:步驟
S814:步驟
S816:步驟
S1202:步驟
S1204:步驟
S1206:步驟
S1302:步驟
S1304:步驟
S1306:步驟
S1308:步驟
S1310:步驟
T100:目標圖案
W:基板
現在將參看隨附圖式而僅作為實例來描述實施例,在該等圖式中:
圖1為根據一實施例之微影系統之各種子系統的方塊圖;
圖2為根據一實施例之對應於圖1中之子系統之模擬模型的方塊圖;
圖3A為根據一實施例的用於產生用於待成像於基板上之目標圖案之經重定目標圖案之方法的流程圖;
圖3B為根據一實施例的用於判定給定位置處之屬性之值的實例工序之流程圖;
圖4A說明根據一實施例之針對一屬性之實例偏置表,該等表中之每一胞元包括一偏置值;
圖4B及圖4C說明針對複數個屬性之實例偏置表;
圖5A及圖5B說明根據一實施例的判定關於目標圖案之給定位置之屬性的實例;
圖6A為根據一實施例之根據現有基於規則之方法的實例偏置範圍;
圖6B及圖6C說明根據一實施例的基於線陣列內之特徵之屬性的實例偏置;
圖7A為根據一實施例的使用第一屬性及第二屬性所描述之偏置之實例範圍;
圖7B為在根據圖7A應用偏置之後之模型的殘差;
圖8A及圖8B說明根據一實施例之用於線端之實例偏置;
圖9說明根據一實施例之包括接觸孔及每一孔之對應偏置的實例圖案;
圖10A及圖10B說明根據一實施例之使用正方形窗之實例密度運算;
圖11A及圖11B說明根據一實施例之使用圓形窗之實例密度運算;
圖12為根據一實施例的用於判定用於待印刷於基板上之目標圖案之偏置規則之方法的流程;
圖13為根據一實施例之使用蝕刻校正模型而判定之實例偏置;
圖14為說明根據一實施例之聯合最佳化之實例方法之態樣的流程圖;
圖15展示根據一實施例之另一最佳化方法之實施例;
圖16A、圖16B及圖17展示根據一實施例之各種最佳化製程之實例流程圖;
圖18為根據一實施例之實例電腦系統的方塊圖;
圖19為根據一實施例之微影投影裝置的示意圖;
圖20為根據一實施例之另一微影投影裝置的示意圖;
圖21為根據一實施例之圖20中之裝置的更詳細視圖;
圖22為根據一實施例之圖20及圖21之裝置的源收集器模組SO之更詳細視圖。
現在將參看圖式詳細地描述實施例,該等圖式被提供為說明性實例以便使熟習此項技術者能夠實踐該等實施例。值得注意地,以下之諸圖及實例不意欲將範疇限於單一實施例,而是借助於所描述或所說明元件中之一些或全部之互換而使其他實施例係可能的。在任何方便之處,將遍及該等圖式使用相同元件符號來指相同或類似部分。在可部分地或完全地使用已知組件來實施此等實施例之某些元件的情況下,將僅描述理解該等實施例所必需之此等已知組件之彼等部分,且將省略此等已知組件之其他部分之詳細描述以便不混淆實施例之描述。在本說明書中,展示單數組件之實施例不應被視為限制性的;實情為,除非本文中另有明確陳述,否則範疇意欲涵蓋包括複數個相同組件之其他實施例,且反之亦然。此外,申請人不意欲使本說明書或申請專利範圍中之任何術語歸結於不常見或特殊涵義,除非如此明確闡述。另外,範疇涵蓋本文中借助於說明而提及之組件的目前及未來已知等效者。
300:方法
303:屬性之值
304:偏置規則
305:偏置之子集
307:重定目標圖案
309:光學近接校正(OPC)後圖案
P301:工序
P303:工序
P305:工序
P307:工序
P309:工序
Claims (15)
- 一種用於判定用於待印刷於一基板上之一目標圖案之複數個偏置規則(biasing rules)的方法,該方法包含:獲得包含由一第一維度及一第二維度界定之至少一個特徵的該目標圖案;經由執行製程校正模型判定針對該第一維度及該第二維度之複數個偏置,且將該複數個偏置中之每一者與一屬性(property)之一值相關聯,其中該製程校正模型使該至少一個特徵之該第一維度及該第二維度偏置,且運算與該至少一個特徵相關聯之該屬性;及基於該複數個偏置定義依據該第一維度、該第二維度及與該至少一個特徵相關聯之該屬性而變化的該等偏置規則。
- 如請求項1之方法,其中該執行該製程校正模型包含判定針對該目標圖案之該至少一個圖案上之複數個位置的該屬性之複數個值。
- 如請求項2之方法,其中該判定該屬性之該等值包含:(a)在該至少一個特徵上之一給定位置周圍指派一量測區;(b)識別該量測區內之一或多個特徵;(c)經由一使用者定義函數計算與該量測區內之經識別之該一或多個特徵相關聯的該屬性之一值;及(d)選擇該至少一個特徵上之另一位置,且使用(a)中之該量測區執行步驟(b)及(c)。
- 如請求項2或3之方法,其中該判定該複數個偏置包含:經由使用該目標圖案執行該製程校正模型,產生包含針對該至少一個圖案之該第一維度及該第二維度之偏置的一經重定目標圖案;判定該經重定目標圖案與該目標圖案之間的一差;及基於該差判定該目標圖案之該複數個位置處之該複數個偏置。
- 如請求項1至3中任一項之方法,其中該定義該等偏置規則包含:基於該屬性之該等值界定該屬性之範圍;及針對該屬性之每一範圍,自該複數個偏置指派一偏置集合,其中該偏置集合之每一偏置係與該第一維度及該第二維度相關聯。
- 如請求項1至3中任一項之方法,其中該製程校正模型係以下中之至少一者:一蝕刻校正模型,其判定對與該目標圖案相關聯之一經蝕刻圖案之校正;一光學近接校正模型,其判定對該目標圖案之修改;或一光罩近接校正模型,其判定與光罩製造製程相關聯之校正。
- 如請求項1至3中任一項之方法,其中在該製程校正模型之執行期間,對該目標圖案之每一片段收集該複數個偏置,每一片段係該目標圖案之一部分。
- 如請求項1至3中任一項之方法,其中在該製程校正模型之執行期間,對該目標圖案每片段每一所界定區域計算該屬性之該值,該所界定區域係該目標圖案之一給定位置周圍的一區。
- 如請求項1至3中任一項之方法,其中該屬性係一密度或一核心(kernel)。
- 如請求項9之方法,其中計算該密度包含:判定該量測區內之經識別之該一或多個特徵的一總面積(total area);判定該量測區之一總面積;及將一密度值運算為該量測區內之特徵之該總面積與該量測區之該總面積的一比率。
- 如請求項3之方法,其中該計算該屬性之該值包含:在該量測區與該使用者定義函數之間應用廻旋運算(convolution operation)。
- 如請求項11之方法,其中將該量測區表示為包含該一或多個特徵之一影像,且該屬性之該值係藉由將該影像與該使用者定義函數廻旋來計算。
- 如請求項3之方法,其中該量測區可橫越該目標圖案移動。
- 如請求項1至3中任一項之方法,其中將該等偏置規則表示為針對每個該屬性的該第一維度及該第二維度之一表。
- 一種電腦程式產品,其包含其上經記錄有指令之一非暫時性電腦可讀媒體,該等指令在由一電腦執行時實施如請求項1至14中任一項之方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962925463P | 2019-10-24 | 2019-10-24 | |
US62/925,463 | 2019-10-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202215169A TW202215169A (zh) | 2022-04-16 |
TWI845880B true TWI845880B (zh) | 2024-06-21 |
Family
ID=72709338
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109134894A TWI753600B (zh) | 2019-10-24 | 2020-10-08 | 用於目標圖案之基於規則之重定目標的方法 |
TW110149433A TWI845880B (zh) | 2019-10-24 | 2020-10-08 | 用於目標圖案之基於規則之重定目標的方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109134894A TWI753600B (zh) | 2019-10-24 | 2020-10-08 | 用於目標圖案之基於規則之重定目標的方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240126183A1 (zh) |
KR (1) | KR20220069075A (zh) |
CN (1) | CN114600047A (zh) |
TW (2) | TWI753600B (zh) |
WO (1) | WO2021078460A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230050743A1 (en) * | 2021-08-10 | 2023-02-16 | Innolux Corporation | Electronic device and method for manufacturing the same |
WO2024182080A1 (en) * | 2023-02-28 | 2024-09-06 | Synopsys, Inc. | Photolithography mask generation for metalens |
CN117434785B (zh) * | 2023-12-21 | 2024-03-01 | 华芯程(杭州)科技有限公司 | 一种掩膜图案校正方法、装置、电子设备和可读存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080195996A1 (en) * | 2007-02-09 | 2008-08-14 | Juan Andres Torres Robles | Pre-bias optical proximity correction |
US20090094710A1 (en) * | 2003-03-18 | 2009-04-09 | Kyowa Hakko Kogyo Co., Ltd. | Mouse in Which Genome is Modified |
US20110202892A1 (en) * | 2010-02-16 | 2011-08-18 | Samsung Electronics Co., Ltd. | Retarget process modeling method, method of fabricating mask using the retarget process modeling method, computer readable storage medium, and imaging system |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5523193A (en) | 1988-05-31 | 1996-06-04 | Texas Instruments Incorporated | Method and apparatus for patterning and imaging member |
JP2938568B2 (ja) | 1990-05-02 | 1999-08-23 | フラウンホファー・ゲゼルシャフト・ツール・フォルデルング・デル・アンゲバンテン・フォルシュング・アインゲトラーゲネル・フェライン | 照明装置 |
US5229872A (en) | 1992-01-21 | 1993-07-20 | Hughes Aircraft Company | Exposure device including an electrically aligned electronic mask for micropatterning |
EP0824722B1 (en) | 1996-03-06 | 2001-07-25 | Asm Lithography B.V. | Differential interferometer system and lithographic step-and-scan apparatus provided with such a system |
WO1998028665A1 (en) | 1996-12-24 | 1998-07-02 | Koninklijke Philips Electronics N.V. | Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device |
KR100982135B1 (ko) | 2005-09-09 | 2010-09-14 | 에이에스엠엘 네델란즈 비.브이. | 개별 마스크 오차 모델을 사용하는 마스크 검증 방법 및시스템 |
CN102224459B (zh) | 2008-11-21 | 2013-06-19 | Asml荷兰有限公司 | 用于优化光刻过程的方法及设备 |
US8786824B2 (en) | 2009-06-10 | 2014-07-22 | Asml Netherlands B.V. | Source-mask optimization in lithographic apparatus |
US8751976B2 (en) * | 2012-06-27 | 2014-06-10 | Cheng-Lung Tsai | Pattern recognition for integrated circuit design |
US10520829B2 (en) * | 2017-09-26 | 2019-12-31 | Taiwan Semiconductor Manufacturing Co., Ltd. | Optical proximity correction methodology using underlying layer information |
-
2020
- 2020-09-24 KR KR1020227013746A patent/KR20220069075A/ko not_active Application Discontinuation
- 2020-09-24 CN CN202080074277.2A patent/CN114600047A/zh active Pending
- 2020-09-24 WO PCT/EP2020/076639 patent/WO2021078460A1/en active Application Filing
- 2020-09-24 US US17/769,107 patent/US20240126183A1/en active Pending
- 2020-10-08 TW TW109134894A patent/TWI753600B/zh active
- 2020-10-08 TW TW110149433A patent/TWI845880B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090094710A1 (en) * | 2003-03-18 | 2009-04-09 | Kyowa Hakko Kogyo Co., Ltd. | Mouse in Which Genome is Modified |
US20080195996A1 (en) * | 2007-02-09 | 2008-08-14 | Juan Andres Torres Robles | Pre-bias optical proximity correction |
US20110202892A1 (en) * | 2010-02-16 | 2011-08-18 | Samsung Electronics Co., Ltd. | Retarget process modeling method, method of fabricating mask using the retarget process modeling method, computer readable storage medium, and imaging system |
Also Published As
Publication number | Publication date |
---|---|
WO2021078460A1 (en) | 2021-04-29 |
TW202215169A (zh) | 2022-04-16 |
TW202121064A (zh) | 2021-06-01 |
TWI753600B (zh) | 2022-01-21 |
US20240126183A1 (en) | 2024-04-18 |
CN114600047A (zh) | 2022-06-07 |
KR20220069075A (ko) | 2022-05-26 |
WO2021078460A9 (en) | 2021-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210405538A1 (en) | Model for calculating a stochastic variation in an arbitrary pattern | |
TWI745863B (zh) | 訓練機器學習模型以判定光罩的光學接近校正的方法及相關聯電腦程式產品 | |
US20220179321A1 (en) | Method for determining pattern in a patterning process | |
US9934346B2 (en) | Source mask optimization to reduce stochastic effects | |
JP7438275B2 (ja) | デバイス製造方法の制御パラメータを決定する方法 | |
CN107430347B (zh) | 图像对数斜率(ils)优化 | |
TWI806002B (zh) | 用於判定遮罩圖案及訓練機器學習模型之非暫時性電腦可讀媒體 | |
TWI749522B (zh) | 用於判定光罩之特徵校正之方法 | |
KR20210117332A (ko) | 프린트된 패턴들의 확률적 변동을 결정하는 방법 | |
TWI845880B (zh) | 用於目標圖案之基於規則之重定目標的方法 | |
TWI822578B (zh) | 用於基於缺陷而判定圖案化程序之特性以減少熱點的方法 | |
US20230333483A1 (en) | Optimization of scanner throughput and imaging quality for a patterning process | |
TW202240280A (zh) | 用於判定光罩圖案及訓練機器學習模型之方法 | |
TW202215168A (zh) | 在裝置製程中的方法、非暫態電腦可讀媒體、及組態以執行該方法的系統 |