TWI844856B - 入光量調整光學系統及包含其的光學檢測系統 - Google Patents

入光量調整光學系統及包含其的光學檢測系統 Download PDF

Info

Publication number
TWI844856B
TWI844856B TW111119899A TW111119899A TWI844856B TW I844856 B TWI844856 B TW I844856B TW 111119899 A TW111119899 A TW 111119899A TW 111119899 A TW111119899 A TW 111119899A TW I844856 B TWI844856 B TW I844856B
Authority
TW
Taiwan
Prior art keywords
light
light source
objective lens
lens
light beam
Prior art date
Application number
TW111119899A
Other languages
English (en)
Other versions
TW202346996A (zh
Inventor
林伯聰
黃冠勳
李岳龍
黃建文
Original Assignee
由田新技股份有限公司
Filing date
Publication date
Application filed by 由田新技股份有限公司 filed Critical 由田新技股份有限公司
Priority to TW111119899A priority Critical patent/TWI844856B/zh
Priority to CN202310547942.0A priority patent/CN117128479A/zh
Publication of TW202346996A publication Critical patent/TW202346996A/zh
Application granted granted Critical
Publication of TWI844856B publication Critical patent/TWI844856B/zh

Links

Images

Abstract

本發明提供一種入光量調整光學系統及包含其的光學檢測系統,入光量調整光學系統包含一物鏡、一光源裝置、一光源鏡組、以及一控制裝置,使通過該光源鏡組的光束的直徑與該物鏡孔徑趨於一致,藉以提升光源使用效率。

Description

入光量調整光學系統及包含其的光學檢測系統
本發明係有關於一種光學系統,尤指一種調整物鏡入光量的光學系統及包含其的光學檢測系統。
隨著全自動化工業的進展,在電子產業中,電路板組裝生產線的外觀檢查已普遍利用自動光學檢測(Automatic Optical Inspection, AOI)進行作業,藉以取代以往需要使用大量人工進行目檢作業(Visual Inspection)的方式。
自動光學辨識系統是工業製程中屬常見方式,主要是利用攝影裝置拍攝待測物的影像,再通過電腦對前述的待測物影像進行影像處理,進而檢測出待測物是存在異物或圖案異常等瑕疵問題,由於採用非接觸式檢查,因此在產線過程中可以用以檢查半成品。
因應IC產品對於低功耗、高效能、薄型尺寸的需求,先進封裝技術充分應用了半導體IC線路尺寸微縮、同質及異質整合、立體晶片堆疊的特性。順應著摩爾定律,先進封裝內的邏輯閘元件持續進行微型化是必然趨勢,對於自動光學檢測而言亦是一大挑戰。因應待測物對於高精確度檢測的需求,一般自動光學檢測系統會依據實際需求選用不同倍率的物鏡進行觀看與檢測,由於物鏡依照不同的制定標準於物鏡孔徑規格上不盡相同,在傳統自動光學檢測系統皆提供相同光徑之光路的情況下,所提供的燈光無法被有效利用,不僅造成燈光使用上的浪費亦有損檢測結果。
本發明的主要目的,在於提供一種入光量調整光學系統,包含一物鏡、一光源裝置、一光源鏡組、以及一控制裝置。該光源裝置,經由一照明光路,透過該物鏡投射一光束至一目標物上,使該光束於一影像感測裝置上產生一目標物影像。該光源鏡組,經由該照明光路,接收並傳遞自該光源裝置輸出的該光束。該控制裝置耦合至該光源裝置與該光源鏡組之間,根據該物鏡的物鏡孔徑,調整該光源鏡組的焦距,使通過該光源鏡組的該光束的直徑與該物鏡孔徑趨於一致。
本發明的另一目的,在於提供一種光學檢測系統,包含一物鏡、一光源裝置、一影像感測裝置、一光源鏡組、一控制裝置、以及一影像檢測裝置。該光源裝置,經由一照明光路,透過該物鏡投射一光束至一目標物上。該影像感測裝置,經由一成像光路,接收自該目標物的該光束,以產生該目標物之影像。該光源鏡組,經由該照明光路,接收並傳遞自該光源裝置輸出的該光束。該控制裝置,耦合至該光源裝置與該光源鏡組之間,根據該物鏡的物鏡孔徑,調整該光源鏡組的焦距,使通過該光源鏡組的該光束的直徑與該物鏡孔徑趨於一致。該影像檢測裝置,連接至該影像感測裝置,用以接收並分析該目標物之影像,以獲得一檢測結果。
本發明基於不同檢測環境下,需要使用不同孔徑之物鏡,在照明光路相同的情況下,將投射於目標物的光束的直徑調整至與照明光路上物鏡的物鏡孔徑趨於一致,藉此提升光源的使用效率。
有關本發明之詳細說明及技術內容,現就配合圖式說明如下。再者,本發明中之圖式,為說明方便,其比例未必按實際比例繪製,而有誇大之情況,該等圖式及其比例非用以限制本發明之範圍。
以下針對本發明入光量調整光學系統其中一實施例進行說明,請先參閱「圖1」至「圖2」,係為本發明入光量適應性調整光學系統的方塊示意圖(一)、以及雷射光源裝置的側面示意圖,如圖所示。
本實施例揭示一種入光量調整光學系統100,包含一物鏡10、一光源裝置20、一光源鏡組30、以及一控制裝置40,「圖1」表示該些裝置之間的相對配置關係,並非用以限制該些裝置彼此間的上下、左右或前後的位置關係,在此先行敘明。
所述的光源裝置20,經由一照明光路R,透過該物鏡10投射一光束L至一目標物上,使該光束L於一影像感測裝置(圖未示)上產生一目標物影像。關於所述的影像感測裝置於後面段落進行詳述,在此先行敘明。所述的「照明光路R」具體為該光源裝置20提供的光束L投射至一目標物(圖未示)上的光傳輸路徑,上述的目標物,例如但不限於,包括半導體裝置、半導體晶圓、半導體晶片、電路板、顯示面板或其他含有有機物的物體。於實務上,所述的照明光路R係可以為如「圖1」中的直線路徑,或是通過設置光學元件(例如反射鏡及/或半反射鏡等)的所形成的轉折路徑,上述實施例的變化均屬本發明所欲保護的範圍,在此先行敘明。
所述的光源裝置20,例如但不限於,白光LED強光燈、鹵素燈、螢光燈、RGB燈等任何一種用於提供符合檢測需求之光源的裝置種類。於本實施例中,光源裝置20具體為如「圖2」所示的雷射光源裝置110,雷射光源裝置110包括發光單元112、勻化光纖114以及一高頻振盪器116。經由照明光路R,發光單元112用以提供雷射光L’至目標物上。其中,雷射光L’可為紅光、綠光、藍光、UV光、IR光或其他色光。於一實施例中,雷射光源裝置110包括高斯分布的雷射光源,因此,雷射光L’通過勻化光纖120後形成能量均勻的平頂光型,除了降低光斑的影響,且能量損耗可低於10%以下。在本實施例中,勻化光纖114連接至發光單元112。經由照明光路R,勻化光纖114自發光單元112接收並傳輸雷射光L’。高頻振盪器116設置在勻化光纖114的入光端1141,並振動勻化光纖114,藉以降低目標物影像上的光斑。其中,勻化光纖114可為多模光纖(Multi-mode Fiber)、或在入光端1141或出光端1142施加粗化處理的光纖、或由不同直徑的子光纖接合起來的光纖。高頻振盪器116可為由壓電材料(piezoelectric material)製成的振盪器,但本發明不以此為限。
基於上述,在本發明的一實施例的入光量調整光學系統100中,除了利用勻化光纖114將雷射光L’進行勻化,還利用高頻振盪器116使雷射光L’在勻化光纖114內的傳遞路徑不固定,以抑制雷射光L’的干涉效應,進一步抑制了目標物影像上的光斑。
於一選擇實施例,所述的入光量調整光學系統100更包含一光源濾鏡M1,設置於該光源裝置20與該光源鏡組30之間,於該照明光路R上過濾該光束L。所述的光源濾鏡M1,例如但不限於,RGB濾鏡、激發光濾鏡、偏振片或其他任何一種濾鏡種類,用以使特定的光束L通過該光源鏡組30。
所述的光源鏡組30,經由該照明光路R ,接收並傳遞自該光源裝置20輸出的該光束L。所述的光源鏡組30,例如但不限於,單凸透鏡、單凹透鏡、雙凸透鏡、雙凹透鏡、平面透鏡或其他種類的透鏡的其中一個或複數個的排列組合,利用該光源鏡組30輸出特定的光束L以照射於目標物(圖未示)上。
所述的控制裝置40,耦合至該光源裝置20與該光源鏡組30之間,根據該物鏡10的物鏡孔徑,調整該光源鏡組30的焦距,使通過該光源鏡組30的該光束L的直徑 與該物鏡10的物鏡孔徑趨於一致。所述的控制裝置40例如可以為中央處理器(Central Processing Unit;CPU),或是其他可程式化之一般用途或特殊用途的微處理器(Microprocessor)、數位訊號處理器(Digital Signal Processor;DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuits;ASIC)、可程式化邏輯裝置(Programmable Logic Device;PLD)或其他類似裝置或這些裝置的組合。
以下針對本發明入光量調整光學系統另一實施例進行說明,請一併參閱「圖3」,係為本發明入光量適應性調整光學系統的方塊示意圖(二),如圖所示。
本實施例揭示一種入光量調整光學系統200,除了包含前述圖1的入光量調整光學系統100(包含物鏡10、光源裝置20、光源鏡組30、以及控制裝置40)之外,還包含物鏡切換裝置50、以及影像感測裝置60。「圖3」表示該些裝置之間的相對配置關係,並非用以限制該些裝置彼此間的上下、左右或前後的位置關係,在此先行敘明。關於所述的影像感測裝置60於後面段落進行詳述,在此先行敘明。
所述的物鏡切換裝置50連接至該控制裝置40,用以切換複數個物鏡10中的任一個物鏡10移動至該照明光路R上。所述的物鏡切換裝置50包括複數個物鏡10、以及一承載複數個物鏡10的旋轉盤(圖未示),其中每一個物鏡10具有不同的物鏡孔徑,藉以利用旋轉盤切換複數個物鏡10中的任一個移動至該照明光路R上(未移動至該照明光路R上的其他物鏡10移動到至少一物鏡預備位置上)。所述的物鏡10的設置數量與個別倍率非屬本發明所欲限制的範圍,可以依照實際上的使用需求進行變更或配置。
於一實施例中,承載複數個物鏡10的旋轉盤例如可以為經由手動旋轉或自動旋轉切換複數個該物鏡10以調整倍率,其中該旋轉盤係可以通過步進馬達、伺服馬達、或其他類似的裝置配合連動機構(例如齒輪)以實現控制該旋轉盤自動旋轉,本發明中對此並不予以限制。為實現該物鏡10自動對焦的功能,於一實施例中,所述的物鏡切換裝置50係可以為設置於一線性載台(圖未示)上,該線性載台依據移動控制指令調整該物鏡切換裝置50相對該目標物W升降,用以控制設置於該照明光路R上的該物鏡10與該目標物W之間的距離。於另一實施例中,前述的移動載台係可以為利用齒輪與齒條的配合實現調整該物鏡切換裝置50升降的功能,該移動載台的實施方式可依實際需求而變更,本發明中對此並不予以限制。
所述的入光量調整光學系統200可更包含一準直透鏡M2 (如「圖4」所示),設置於該光源裝置20的出光口,使該光束L由擴散光轉換為準直光束。所述的準直透鏡M2,例如但不限於,單凸透鏡、單凹透鏡、雙凸透鏡、雙凹透鏡、平面透鏡或其他種類的透鏡的其中一個或複數個的排列組合。於一選擇實施例,依據不同的光學設計需求,可以調整準直透鏡M2相對於光源裝置20的配置關係。
所述的入光量調整光學系統200 可更包含一擴束鏡M3 (如「圖4」所示),設置於該光源裝置20的出光口,經過準直透鏡M2將光束L準直並稍微擴束後,先經過該光源鏡組30調整焦距再經過擴束鏡M3微調該光束L的直徑。所述的擴束鏡M3,例如但不限於,單凸透鏡、單凹透鏡、雙凸透鏡、雙凹透鏡、平面透鏡或其他種類的透鏡的其中一個或複數個的排列組合。所述的「光源裝置20的出光口」是指該光源裝置20提供的光束L的光指向方向與該目標物W之間的任意位置,在此先行敘明。
本發明中所述的準直透鏡M2與擴束鏡M3係可以包含於該光源鏡組30,利用該光源裝置20輸出的光束L穿過該光源鏡組30後輸出特定且直徑經過調整的光束L,實現本發明讓直徑與該物鏡10的物鏡孔徑趨於一致的光束L照射於目標物W上的效果。
所述的入光量調整光學系統200可更包含一分光鏡M4,該分光鏡M4經由該照明光路R,引導自該光源鏡組30通過的該光束L至該物鏡10,以將該光束L投射至該目標物W上。於另一實施例中,該分光鏡M4的表面與該光源裝置20的出光口之間的夾角為45度角,通過該分光鏡M4將該光源裝置20提供的光束L轉折且投射至該目標物W上。
於一選擇實施例中,所述的光源鏡組30包括一可形變透鏡31A,其中該控制裝置40調整該可形變透鏡31A的曲率,使通過該光源鏡組30的該光束L的直徑D與該物鏡10的物鏡孔徑趨於一致,該控制裝置40依據接收的控制訊號調整該可形變透鏡31A的曲率,藉以調整該光束L的直徑D,具體來說,當曲率越大(小)則焦距越短(長)。所述的可形變透鏡31A例如為具有光學級液體的光學元件,該控制裝置40通過電子控制的方式對該光學級液體施加電壓及/或電流,藉以改變光學級液體的形狀,進而實現調整焦距的作用。
如圖4(a)所示,光源裝置20輸出的光束L,可先透過一準直鏡(圖未示)調整為準直光束後,穿過該可形變透鏡31A(曲率為C1)聚焦於焦點P1,該光束L再通過擴束鏡M3擴大光束L的直徑後投射於分光鏡M4轉折以對準至照明光路R上的物鏡10,形成直徑D1與該物鏡10的物鏡孔徑H1趨於一致的光束L。
參考圖4(b),當位於照明光路R上的物鏡10的物鏡孔徑H2小於前述的物鏡孔徑H1,該控制裝置40調整該可形變透鏡31A的表面為曲率C2(小於前述的曲率C1),讓該光源裝置20輸出的光束L穿過該可形變透鏡31A聚焦於焦點P2(比前述焦點P1靠近該擴束鏡M3,即至該擴束鏡M3的焦距變短),該光束L再通過擴束鏡M3擴大光束L的直徑後照射於分光鏡M4轉折以對準至該物鏡10,形成直徑D2與該物鏡10的物鏡孔徑H2趨於一致的光束L。反之,該控制裝置40調整該可形變透鏡31A,讓該光源裝置20輸出的光束L聚焦於比焦點P1遠離該擴束鏡M3的位置時(即增加至該擴束鏡M3的焦距),能夠於該照明光路上R形成直徑大於前述直徑D1的光束L。
接續,請參閱「圖5(a)-(b)」,於另一選擇實施例,所述的光源鏡組30包括一移動式透鏡31B,其中該控制裝置40調整該移動式透鏡31B的位置,使通過該光源鏡組30的該光束L的直徑與該物鏡10的物鏡孔徑趨於一致,該控制裝置40依據接收的控制訊號移動該移動式透鏡31B的位置,藉以調整該光束L的直徑D。所述的移動式透鏡31B,例如但不限於,玻璃、樹脂、水晶或其他透明材料所製成的光學元件,該控制裝置40係可以連接或耦接至一驅動該移動式透鏡31B移動其位置的步進馬達、伺服馬達或其他類型的馬達,藉以於該光源裝置20與該物鏡10之間調整移動式透鏡31B的位置,本發明中對此並不予以限制。
如圖5(a)所示,該光源裝置20輸出的光束L穿過該移動式透鏡31B聚焦於焦點P3,再通過擴束鏡M3轉為準直光後投射於分光鏡M4且轉折為與工作光路R平行,形成直徑D3與該工作光路R上的物鏡10的物鏡孔徑H3趨於一致的光束L。
參考如圖5(b),當位於該工作光路R上的物鏡10的物鏡孔徑H4小於前述的物鏡孔徑H3,該控制裝置40移動該移動式透鏡31B,讓該光源裝置20輸出的光束L穿過該移動式透鏡31B聚焦於焦點P4(比前述的焦點P3靠近該擴束鏡M3,即至該擴束鏡M3的焦距變短),再通過擴束鏡M3擴大光束L的直徑後照射於分光鏡M4轉折以對準至該物鏡10,形成直徑D4與該物鏡10的物鏡孔徑H4趨於一致的光束L。反之,該控制裝置40移動該移動式透鏡31B,讓該光源裝置20輸出的光束L聚焦於比焦點P3遠離該擴束鏡M3的位置時(即增加至該擴束鏡M3的焦距),能夠於該照明光路上R形成直徑大於前述直徑D3的光束L。
本發明通過該光源鏡組30以及該控制裝置40調整投射於該照明光路R上的光束L的直徑(例如前述的D1至D4),讓該照明光路R上的該物鏡10得以趨於完全接收該光源裝置20所輸出的出光量,能夠因應於該照明光路R上設置具有不同物鏡孔徑(例如前述的H1至H4)的物鏡10,有效地解決入光量減損或浪費的情況,提升光源裝置20使用效率約達10%~50%。
本發明中所述的物鏡10、該光源裝置20、該光源鏡組30、該控制裝置40、該物鏡切換裝置50、以及該影像感測裝置60係可以共同設置於一設備支架(圖未示)上,該設備支架例如可以是任意檢測平台或加工機床上的支架,例如側面支架、龍門架、懸臂架、豎直架等,或是該些裝置分別設置於不同的支架(圖未示)上,藉由將該些支架依序排列且組裝為本發明的入光量調整光學系統200,上述實施例的變化均屬本發明所欲保護的範圍,本發明中對此並不予以限制,在此先行敘明。
接續,以下針對本發明光學檢測系統進行說明,請參閱「圖6」至「圖7」,係為本發明光學檢測系統的方塊示意圖與側面示意圖,並請復參閱「圖1」至「圖5」,如圖所示。
本實施例揭示一種光學檢測系統300,該光學檢測系統300包含前述圖3的入光量調整光學系統200的組成元件(包含物鏡10、光源裝置20、光源鏡組30、控制裝置40、物鏡切換裝置50、以及影像感測裝置60),以及一影像檢測裝置70。
所述的影像感測裝置60,經由一成像光路I,接收自該目標物W的該光束L,以產生該目標物W之影像。所述的「成像光路I」具體為該影像感測裝置60接收之投射於該目標物W上的光束L的光傳輸路徑。於實務上,所述的成像光路I係可以為如「圖6」中的直線路徑,或是於該影像感測裝置60與該目標物W之間通過設置光學元件(例如反射鏡及/或半反射鏡等)而形成轉折路徑,上述實施例的變化均屬本發明所欲保護的範圍,在此先行敘明。所述的影像感測裝置60的類型包括線掃描攝影機(Line Scan Camera)或面掃描攝影機(Area Scan Camera)。於一實施例中,所述的影像感測裝置60係可以包括設置於檢測流水線前端的線掃描攝影機、以及設置於檢測流水線後端的面掃描攝影機,藉以通過線掃描攝影機進行高精確度的檢測,再通過面掃描攝影機進行複檢程序,達到於同一設備上實現影像檢測以及影像複檢的功能。
所述的影像檢測裝置70連接至該影像感測裝置60,用以接收並分析該目標物W之影像,以獲得一檢測結果。所述的影像檢測裝置70例如可以是包括處理器的任意裝置,處理器例如可以是中央處理單元(Central Processing Unit,CPU)、微處理器(Microprocessor)、數位訊號處理器(Digital Signal Processor,DSP)、可程式化控制器、可程式化邏輯裝置(Programmable Logic Device,PLD)或其他類似裝置或這些裝置的組合,本發明中對此並不予以限制。所述的檢測結果例如可以是目標物W的瑕疵檢出、目標物W的瑕疵種類、目標物W的結構尺寸量測、目標物W的特性分析、或目標物W的結構特徵還原,本發明中對此並不予以限制。所述的影像檢測的方式例如可以是傳統影像演算法、或是經由類神經網路(包括機器學習(Machine Learning)、深度學習(Deep Learning)等)執行檢測,關於影像檢測的技術非屬本發明所欲限制的範圍,在此未進一步針對執行影像檢測的演算法進行說明。
所述的光學檢測系統300更包含有感測裝置濾鏡M5,該感測裝置濾鏡M5設置於該影像感測裝置60,於該成像光路I上過濾該光束L。所述的感測裝置濾鏡M5,例如但不限於,RGB濾鏡、激發光濾鏡、偏振片或其他任何一種濾鏡種類,用以使該影像感測裝置60接收特定的光束L。於一選擇實施例,為因應不同的光學設計環境要求,感測裝置濾鏡M5可包含一設置於分光鏡M4與影像感測裝置60之間的透鏡組(圖未示),例如但不限於,單凸透鏡、單凹透鏡、雙凸透鏡、雙凹透鏡、平面透鏡或其他種類的透鏡的其中一個或複數個的排列組合。
綜上所述,本發明基於不同檢測環境下,需要使用不同孔徑之物鏡,在照明光路相同的情況下,將投射於目標物的光束的直徑調整至與照明光路上物鏡的物鏡孔徑趨於一致,藉此提升光源的使用效率。
以上已將本發明做一詳細說明,惟以上所述者,僅為本發明之一較佳實施例而已,當不能以此限定本發明實施之範圍,即凡依本發明申請專利範圍所作之均等變化與修飾,皆應仍屬本發明之專利涵蓋範圍內。
100:入光量調整光學系統 10:物鏡 20:光源裝置 30:光源鏡組 40:控制裝置 R:照明光路 L:光束 M1:光源濾鏡 110:雷射光束裝置 112:發光單元 114:勻化光纖 1141:入光端 1142:出光端 116:高頻振盪器 L’:雷射光 200:入光量調整光學系統 31A:可形變透鏡 31B:移動式透鏡 50:物鏡切換裝置 60:影像感測裝置 M2:準直透鏡 M3:擴束鏡 M4:分光鏡 W:目標物 D:直徑 D1至D4:直徑 H1至H4:物鏡孔徑 P1至P4:焦點 C1至C2:曲率 300:光學檢測系統 70:影像檢測裝置 I:成像光路 M5:感測裝置濾鏡
圖1,為本發明入光量調整光學系統的方塊示意圖(一)。
圖2,為本發明雷射光源裝置的側面示意圖。
圖3,為本發明入光量調整光學系統的方塊示意圖(二)。
圖4,(a)至(b)為本發明光學鏡組的工作示意圖。
圖5,(a)至(b)為本發明光學鏡組工作示意圖。
圖6,為本發明光學檢測系統的方塊示意圖。
圖7,為本發明光學檢測系統的側面示意圖。
100:入光量調整光學系統
10:物鏡
20:光源裝置
30:光源鏡組
40:控制裝置
R:照明光路
L:光束
M1:光源濾鏡

Claims (16)

  1. 一種入光量調整光學系統,包含: 一物鏡; 一光源裝置,經由一照明光路,透過該物鏡投射一光束至一目標物上,使該光束於一影像感測裝置上產生一目標物影像; 一光源鏡組,經由該照明光路,接收並傳遞自該光源裝置輸出的該光束;以及 一控制裝置,耦合至該光源裝置與該光源鏡組之間,根據該物鏡的物鏡孔徑,調整該光源鏡組的焦距,使通過該光源鏡組的該光束的直徑與該物鏡的物鏡孔徑趨於一致。
  2. 如請求項1所述的入光量調整光學系統,其中,該光源鏡組包括一可形變透鏡,該控制裝置調整該可形變透鏡的曲率,使通過該光源鏡組的該光束的直徑與該物鏡孔徑趨於一致。
  3. 如請求項1所述的入光量調整光學系統,其中,該光源鏡組包括一移動式透鏡,該控制裝置調整該移動式透鏡的位置,使通過該光源鏡組的該光束的直徑與該物鏡孔徑趨於一致。
  4. 如請求項1所述的入光量調整光學系統,更包含: 一準直透鏡,設置於該光源裝置的出光口,使該光束由擴散光轉換為準直光束。
  5. 如請求項1所述的入光量調整光學系統,更包含: 一光源濾鏡,設置於該光源裝置與該光源鏡組之間,於該照明光路上過濾該光束。
  6. 如請求項1所述的入光量調整光學系統,更包含: 一物鏡切換裝置,連接至該控制裝置,用以切換複數個物鏡中的任一個物鏡移動至該照明光路上。
  7. 如請求項5所述的入光量調整光學系統,其中該物鏡切換裝置包括: 複數個該物鏡,其中每一個該物鏡具有不同的物鏡孔徑;以及 一旋轉盤,承載複數個該物鏡,藉以切換複數個物鏡中的任一個該物鏡移動至該照明光路上。
  8. 如請求項1所述的入光量調整光學系統,更包含: 一分光鏡,經由該照明光路,引導自該光源鏡組通過的該光束至該物鏡。
  9. 如請求項1所述的入光量調整光學系統,其中該光源裝置係一雷射光源裝置,包括: 一發光單元,用以提供該雷射光; 一勻化光纖,連接至該發光單元,接收並傳輸該雷射光;以及 一高頻振盪器,設置在該勻化光纖的入光端,藉以振動該勻化光纖。
  10. 如請求項9所述的入光量調整光學系統,其中該發光單元包括高斯分布的雷射光源。
  11. 如請求項1所述的入光量調整光學系統,其中該目標物包括半導體裝置、半導體晶圓、半導體晶片、電路板、顯示面板或其他含有有機物的物體。
  12. 如請求項1所述的入光量調整光學系統,其中該影像感測裝置的類型包括線掃描攝影機(Line Scan Camera)或面掃描攝影機(Area Scan Camera)。
  13. 一種光學檢測系統,包含: 一物鏡; 一光源裝置,經由一照明光路,透過該物鏡投射一光束至一目標物上; 一影像感測裝置,經由一成像光路,接收自該目標物的該光束,以產生該目標物之影像; 一光源鏡組,經由該照明光路,接收並傳遞自該光源裝置輸出的該光束; 一控制裝置,耦合至該光源裝置與該光源鏡組之間,根據該物鏡的物鏡孔徑,調整該光源鏡組的焦距,使通過該光源鏡組的該光束的直徑與該物鏡孔徑趨於一致;以及 一影像檢測裝置,連接至該影像感測裝置,用以接收並分析該目標物之影像,以獲得一檢測結果。
  14. 如請求項13所述的光學檢測系統,其中該影像感測裝置的類型包括線掃描攝影機或面掃描攝影機。
  15. 如請求項13所述的光學檢測系統,其中該目標物包括半導體裝置、半導體晶圓、半導體晶片、電路板、顯示面板或其他含有有機物的物體。
  16. 如請求項14所述的光學檢測系統,更包含: 一光源濾鏡,設置於該光源裝置與該光源鏡組之間,於該照明光路上過濾該光束;以及 一感測裝置濾鏡,設置於該影像感測裝置,於該成像光路上過濾該光束。
TW111119899A 2022-05-27 2022-05-27 入光量調整光學系統及包含其的光學檢測系統 TWI844856B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111119899A TWI844856B (zh) 2022-05-27 入光量調整光學系統及包含其的光學檢測系統
CN202310547942.0A CN117128479A (zh) 2022-05-27 2023-05-16 入光量调整光学系统及包含其的光学检测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111119899A TWI844856B (zh) 2022-05-27 入光量調整光學系統及包含其的光學檢測系統

Publications (2)

Publication Number Publication Date
TW202346996A TW202346996A (zh) 2023-12-01
TWI844856B true TWI844856B (zh) 2024-06-11

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180188518A1 (en) 2014-06-11 2018-07-05 Olympus Corporation Laser microscope apparatus including photodetector having a plurality of detection elements

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180188518A1 (en) 2014-06-11 2018-07-05 Olympus Corporation Laser microscope apparatus including photodetector having a plurality of detection elements

Similar Documents

Publication Publication Date Title
US7564544B2 (en) Method and system for inspecting surfaces with improved light efficiency
US9250432B2 (en) Microscope illumination system, microscope and oblique incident illumination method
KR101612535B1 (ko) 웨이퍼 검사 시스템 및 방법
KR101638883B1 (ko) 웨이퍼 검사 시스템 및 방법
KR100945206B1 (ko) 광학측정장치 및 이를 포함하는 검사장치
JP5911865B2 (ja) 照明システム
JP6670561B2 (ja) テレセントリック明視野および環状暗視野のシームレス融合型照明
CN106290390B (zh) 缺陷检测装置及方法
TWI844856B (zh) 入光量調整光學系統及包含其的光學檢測系統
KR101643326B1 (ko) Lcd 패널 결함 검출 장치 및 방법
JP7274312B2 (ja) 自動光学検査のための光学系
TW202346996A (zh) 入光量調整光學系統及包含其的光學檢測系統
JPH05322783A (ja) 基板観察装置
KR102011417B1 (ko) 3중 배율형 머신 비전 검사모듈
KR102129239B1 (ko) 다중 초점식 광학 검사장치
JP2006326629A (ja) レーザー加工装置およびそれを用いたレーザー加工方法
JP2012055910A (ja) レーザ加工装置
TWI814365B (zh) 基於雷射光源之光學檢測系統及雷射光學系統
TWI812161B (zh) 整合型光學檢測設備
KR0130866B1 (ko) 인쇄 회로 기판 검사용 시각 인식장치
WO2023171142A1 (ja) 蛍光検査装置
US20230105145A1 (en) Fluorescent optical system and fluorescent image inspection system
JP2009074815A (ja) レンズ欠陥検査装置
US20240044741A1 (en) Photomask inspection apparatus and method of inspecting photomask using the same
TWM608800U (zh) 表面檢驗裝置