TWI843814B - Modified zirconium tungstate phosphate, negative thermal expansion filler and polymer composition - Google Patents

Modified zirconium tungstate phosphate, negative thermal expansion filler and polymer composition Download PDF

Info

Publication number
TWI843814B
TWI843814B TW109106984A TW109106984A TWI843814B TW I843814 B TWI843814 B TW I843814B TW 109106984 A TW109106984 A TW 109106984A TW 109106984 A TW109106984 A TW 109106984A TW I843814 B TWI843814 B TW I843814B
Authority
TW
Taiwan
Prior art keywords
zwp
modified
zirconium tungstate
tungstate phosphate
thermal expansion
Prior art date
Application number
TW109106984A
Other languages
Chinese (zh)
Other versions
TW202033444A (en
Inventor
深沢純也
畠透
加藤拓馬
Original Assignee
日商日本化學工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日本化學工業股份有限公司 filed Critical 日商日本化學工業股份有限公司
Publication of TW202033444A publication Critical patent/TW202033444A/en
Application granted granted Critical
Publication of TWI843814B publication Critical patent/TWI843814B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/372Phosphates of heavy metals of titanium, vanadium, zirconium, niobium, hafnium or tantalum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本發明的課題在於提供一種改質磷酸鎢酸鋯,其即便在與水接觸情況下,亦有效地抑制磷離子的溶出,可表現出作為負熱膨脹材的優異的性能,可分散於樹脂等高分子化合物中,可順利地製造包含負熱膨脹填料的低熱膨脹性材料。一種改質磷酸鎢酸鋯,其中磷酸鎢酸鋯粒子的表面由無機化合物被覆,所述無機化合物含有一種或兩種以上的選自Zn、Si、Al、Ba、Ca、Mg、Ti、V、Sn、Co、Fe及Zr中的元素(M)。所述磷酸鎢酸鋯粒子的BET比表面積較佳為0.1 m2 /g~50 m2 /g。The subject of the present invention is to provide a modified zirconium tungstate phosphate, which can effectively inhibit the dissolution of phosphorus ions even when in contact with water, can show excellent performance as a negative thermal expansion material, can be dispersed in polymer compounds such as resins, and can smoothly produce low thermal expansion materials containing negative thermal expansion fillers. A modified zirconium tungstate phosphate, wherein the surface of the zirconium tungstate phosphate particles is coated with an inorganic compound, and the inorganic compound contains one or more elements (M) selected from Zn, Si, Al, Ba, Ca, Mg, Ti, V, Sn, Co, Fe and Zr. The BET specific surface area of the zirconium tungstate phosphate particles is preferably 0.1 m2 /g to 50 m2 /g.

Description

改質磷酸鎢酸鋯、負熱膨脹填料和高分子組成物Modified zirconium tungstate phosphate, negative thermal expansion filler and polymer composition

本發明是有關於一種改質磷酸鎢酸鋯、使用其的負熱膨脹填料和高分子組成物。 The present invention relates to a modified zirconium tungstate phosphate, a negative thermal expansion filler and a polymer composition using the same.

一般而言,物質具有若溫度上升,則因熱膨脹而長度或體積增大的性質。另一方面,已知有具有藉由熱的賦予而相反地體積變小的性質的顯示負的熱膨脹的材料(以下亦有時稱為「負熱膨脹材」)。顯示負的熱膨脹的材料例如可與其他材料一併使用,用於抑制由溫度變化引起的材料的熱膨脹所導致的體積變化。 Generally speaking, a substance has the property of increasing in length or volume due to thermal expansion when the temperature rises. On the other hand, there are known materials that exhibit negative thermal expansion (hereinafter sometimes referred to as "negative thermal expansion materials") and have the property of decreasing in volume by the addition of heat. Materials that exhibit negative thermal expansion can be used together with other materials to suppress volume changes caused by thermal expansion of materials due to temperature changes, for example.

作為顯示負的熱膨脹的材料,例如已知有β-鋰霞石(β-eucryptite)、鎢酸鋯(ZrW2O8)、磷酸鎢酸鋯(Zr2WO4(PO4)2)、ZnxCd1-x(CN)2、氮化錳、鉍-鎳-鐵氧化物等。 As materials showing negative thermal expansion, for example, β-eucryptite, zirconium tungstate (ZrW 2 O 8 ), zirconium tungstate phosphate (Zr 2 WO 4 (PO 4 ) 2 ), Zn x Cd 1-x (CN) 2 , manganese nitride, bismuth-nickel-iron oxide, and the like are known.

已知磷酸鎢酸鋯粒子的線膨脹係數於0℃~400℃的溫度範圍內為-3.4ppm/℃~-3.0ppm/℃,負熱膨脹性大。藉由將該磷酸鎢酸鋯粒子與顯示正的熱膨脹的材料(以下亦有時稱為「正熱膨脹材」)併用,可製造低熱膨脹的材料(參照專利文獻1~專利文獻3)。另外,亦提出有將作為正熱膨脹材的樹脂等高分子化 合物與負熱膨脹材併用(專利文獻4~專利文獻5)。 It is known that the linear expansion coefficient of zirconium tungstate phosphate particles is -3.4ppm/℃~-3.0ppm/℃ in the temperature range of 0℃~400℃, and the negative thermal expansion is large. By using the zirconium tungstate phosphate particles together with a material showing positive thermal expansion (hereinafter sometimes referred to as "positive thermal expansion material"), a low thermal expansion material can be produced (see Patent Documents 1~3). In addition, it is also proposed to use a polymer compound such as a resin as a positive thermal expansion material together with a negative thermal expansion material (Patent Documents 4~5).

[現有技術文獻] [Prior art literature]

[專利文獻] [Patent Literature]

[專利文獻1]日本專利特開2005-35840號公報 [Patent document 1] Japanese Patent Publication No. 2005-35840

[專利文獻2]日本專利特開2015-10006號公報 [Patent Document 2] Japanese Patent Publication No. 2015-10006

[專利文獻3]國際公開第2017/61403號手冊 [Patent Document 3] International Publication No. 2017/61403 Manual

[專利文獻4]日本專利特開2015-38197號公報 [Patent Document 4] Japanese Patent Publication No. 2015-38197

[專利文獻5]日本專利特開2016-113608號公報 [Patent Document 5] Japanese Patent Publication No. 2016-113608

但是,磷酸鎢酸鋯若與水接觸,則結構中的磷等會以離子的形式溶出,存在由此而產生的以下問題:作為負熱膨脹材的性能的降低、與樹脂等材料混合而製成樹脂成型品時的電氣可靠性的降低、以及與樹脂成型品接觸的金屬製零件的腐蝕等。 However, if zirconium tungstate phosphate comes into contact with water, phosphorus and other substances in the structure will dissolve in the form of ions, which may cause the following problems: reduced performance as a negative thermal expansion material, reduced electrical reliability when mixed with materials such as resins to make resin molded products, and corrosion of metal parts in contact with resin molded products.

因此,本發明的目的在於提供一種抑制磷酸鎢酸鋯中的磷離子向水中的溶出,可適宜用作高分子化合物所含有的負熱膨脹填料的改質磷酸鎢酸鋯、使用其的負熱膨脹填料和高分子組成物。 Therefore, the purpose of the present invention is to provide a modified zirconium tungstate phosphate that inhibits the dissolution of phosphorus ions in zirconium tungstate phosphate into water and can be suitably used as a negative thermal expansion filler contained in a polymer compound, and a negative thermal expansion filler and a polymer composition using the same.

本發明者等人鑒於所述課題而反覆進行努力研究,結果發現:藉由利用含有特定元素的無機化合物被覆磷酸鎢酸鋯粒子的表面來進行改質,即便在與水接觸的情況下,亦可有效地抑制磷離子的溶出。另外發現,改質的磷酸鎢酸鋯分散於樹脂等高分子 化合物中,可製造含有負熱膨脹填料的低熱膨脹性材料,從而完成本發明。 The inventors of the present invention have repeatedly conducted diligent research on the above-mentioned topic and found that by modifying the surface of zirconium tungstate phosphate particles by coating them with inorganic compounds containing specific elements, the elution of phosphorus ions can be effectively suppressed even when in contact with water. In addition, it was found that the modified zirconium tungstate phosphate is dispersed in a polymer compound such as a resin to produce a low thermal expansion material containing a negative thermal expansion filler, thereby completing the present invention.

即,本發明提供一種改質磷酸鎢酸鋯,其中磷酸鎢酸鋯粒子的表面由無機化合物被覆,所述無機化合物含有一種或兩種以上的選自Zn、Si、Al、Ba、Ca、Mg、Ti、V、Sn、Co、Fe及Zr中的元素(M)。 That is, the present invention provides a modified zirconium tungstate phosphate, wherein the surface of the zirconium tungstate phosphate particles is coated with an inorganic compound, and the inorganic compound contains one or more elements (M) selected from Zn, Si, Al, Ba, Ca, Mg, Ti, V, Sn, Co, Fe and Zr.

另外,本發明提供一種包含所述改質磷酸鎢酸鋯的負熱膨脹填料。 In addition, the present invention provides a negative thermal expansion filler comprising the modified zirconium tungstate phosphate.

另外,本發明提供一種含有所述負熱膨脹填料及高分子化合物的高分子組成物。 In addition, the present invention provides a polymer composition containing the negative thermal expansion filler and a polymer compound.

根據本發明的改質磷酸鎢酸鋯,即便在與水接觸情況下,亦可有效地抑制磷離子的溶出,表現出作為負熱膨脹材的優異的性能。另外,本發明的改質磷酸鎢酸鋯可分散於樹脂等高分子化合物中,可順利地製造包含負熱膨脹填料的低熱膨脹性材料。 According to the modified zirconium tungstate phosphate of the present invention, even when in contact with water, the dissolution of phosphorus ions can be effectively suppressed, showing excellent performance as a negative thermal expansion material. In addition, the modified zirconium tungstate phosphate of the present invention can be dispersed in polymer compounds such as resins, and low thermal expansion materials containing negative thermal expansion fillers can be smoothly manufactured.

圖1是表示磷酸鎢酸鋯粒子試樣1的形狀的掃描式式電子顯微鏡圖像。 FIG1 is a scanning electron microscope image showing the shape of the zirconium tungstate phosphate particle sample 1.

圖2是表示磷酸鎢酸鋯粒子試樣2的形狀的掃描式電子顯微鏡圖像。 Figure 2 is a scanning electron microscope image showing the shape of the zirconium tungstate phosphate particle sample 2.

圖3是硝酸鋅六水合物的熱重分析(Thermogravimetry,TG)曲線。 Figure 3 is the thermogravimetry (TG) curve of zinc nitrate hexahydrate.

圖4是檸檬酸鋅二水合物的TG曲線。 Figure 4 is the TG curve of zinc citrate dihydrate.

以下,基於較佳實施形態對本發明進行說明。本發明的改質磷酸鎢酸鋯(以下亦將其稱為「改質ZWP」)為磷酸鎢酸鋯粒子(以下亦將其稱為「ZWP粒子」)的表面由含有一種或兩種以上的選自Zn、Si、Al、Ba、Ca、Mg、Ti、V、Sn、Co、Fe及Zr中的元素(M)的無機化合物(以下有時將其稱為「無機化合物」)被覆者。即,本發明的改質ZWP包含以ZWP粒子為芯材,且於該粒子的表面形成有包含無機化合物的層的粒子。以下的說明中,於記載為「N1~N2」(N1及N2分別為任意的數字)的情況下,只要並無特別說明則是指「N1以上且N2以下」。 The present invention is described below based on a preferred embodiment. The modified zirconium tungstate phosphate (hereinafter also referred to as "modified ZWP") of the present invention is a zirconium tungstate phosphate particle (hereinafter also referred to as "ZWP particle") whose surface is coated with an inorganic compound (hereinafter sometimes referred to as "inorganic compound") containing one or more elements (M) selected from Zn, Si, Al, Ba, Ca, Mg, Ti, V, Sn, Co, Fe and Zr. That is, the modified ZWP of the present invention includes particles having a ZWP particle as a core material and a layer containing an inorganic compound formed on the surface of the particle. In the following description, when "N1~N2" (N1 and N2 are arbitrary numbers respectively) is recorded, it means "N1 or more and N2 or less" unless otherwise specified.

改質ZWP中所含的無機化合物可無遺漏地連續被覆ZWP粒子的整個表面,或者亦可僅被覆該粒子表面的一部分。於前者的情況下,改質ZWP成為ZWP粒子的表面整個區域由無機化合物完全被覆,該粒子的表面不露出的狀態。於後者的情況下,改質ZWP的表面包括作為基底的包含磷酸鎢酸鋯的部位、及包含無機化合物的部位。於無機化合物僅被覆ZWP粒子的表面的一部分的情況下,被覆部位可連續,亦可呈海島狀不連續地被覆,或者可為該些的組合。 The inorganic compound contained in the modified ZWP may cover the entire surface of the ZWP particle without omission or only a portion of the surface of the particle. In the former case, the modified ZWP is in a state where the entire surface area of the ZWP particle is completely covered by the inorganic compound and the surface of the particle is not exposed. In the latter case, the surface of the modified ZWP includes a portion containing zirconium tungstate phosphate as a base and a portion containing the inorganic compound. In the case where the inorganic compound covers only a portion of the surface of the ZWP particle, the covered portion may be continuous, may be discontinuously covered in an island shape, or may be a combination of these.

構成本發明的ZWP粒子的磷酸鎢酸鋯為由下述通式(1)所表示者。 The zirconium tungstate phosphate constituting the ZWP particles of the present invention is represented by the following general formula (1).

Zrx(WO4)y(PO4)z (1) Zr x (WO 4 ) y (PO 4 ) z (1)

(式中,x為1.7≦x≦2.3,較佳為1.8≦x≦2.2,y為0.85≦y≦1.15,較佳為0.90≦y≦1.10,z為1.7≦z≦2.3,較佳為1.8≦z≦2.2) (In the formula, x is 1.7≦x≦2.3, preferably 1.8≦x≦2.2, y is 0.85≦y≦1.15, preferably 0.90≦y≦1.10, z is 1.7≦z≦2.3, preferably 1.8≦z≦2.2)

本發明中使用的被覆ZWP粒子的無機化合物為含有一種或兩種以上的選自Zn、Si、Al、Ba、Ca、Mg、Ti、V、Sn、Co、Fe及Zr中的元素(M)的無機化合物。作為該無機化合物,可列舉含有元素(M)的氧化物、氫氧化物、碳酸鹽、硝酸鹽、硫酸鹽、矽酸鹽等,該些無機化合物可使用一種或兩種以上。該些中,就不溶於水、且溶出的磷離子的抑制效果變高的觀點而言,特佳為含有元素(M)的氧化物或氫氧化物。 The inorganic compound used in the present invention to coat the ZWP particles is an inorganic compound containing one or more elements (M) selected from Zn, Si, Al, Ba, Ca, Mg, Ti, V, Sn, Co, Fe and Zr. As the inorganic compound, oxides, hydroxides, carbonates, nitrates, sulfates, silicates, etc. containing the element (M) can be listed, and one or more of these inorganic compounds can be used. Among these, oxides or hydroxides containing the element (M) are particularly preferred from the viewpoint of being insoluble in water and having a higher inhibitory effect on eluted phosphorus ions.

另外,作為所述元素(M),該些中,較佳為Zn、Al、Ca、Ba,特佳為含有Zn的無機化合物。其原因在於,含有Zn的化合物的被膜有效地抑制ZWP與水分的接觸,進而磷離子的吸附性能亦優異,因此藉由被膜中的含有Zn的化合物而吸附自ZWP溶出的磷離子,從而有效地抑制磷離子自改質ZWP的溶出。 In addition, as the element (M), among these, Zn, Al, Ca, and Ba are preferred, and inorganic compounds containing Zn are particularly preferred. The reason is that the film containing the Zn compound effectively inhibits the contact between ZWP and water, and the adsorption performance of phosphorus ions is also excellent. Therefore, the phosphorus ions eluted from ZWP are adsorbed by the Zn-containing compound in the film, thereby effectively inhibiting the elution of phosphorus ions from the modified ZWP.

無機化合物可為含有兩種以上的元素(M)的複合氧化物、複合氫氧化物或複合鹽。 The inorganic compound may be a complex oxide, complex hydroxide or complex salt containing two or more elements (M).

本發明的改質ZWP中,相對於ZWP粒子,所述無機化合物的被覆量(存在量)以無機化合物中所含的元素(M)計較佳為0.1質量%~10質量%,更佳為0.3質量%~5.0質量%,進而佳為0.5質量%~3.0質量%。藉由被覆量為此種範圍,可有效地抑制磷離子自改質ZWP的溶出,提高作為負熱膨脹材的性能,當用作負熱膨脹填料時,在樹脂等正熱膨脹材中的分散性變得良好。 In the modified ZWP of the present invention, the coating amount (existence amount) of the inorganic compound relative to the ZWP particles is preferably 0.1 mass% to 10 mass%, more preferably 0.3 mass% to 5.0 mass%, and further preferably 0.5 mass% to 3.0 mass%, based on the element (M) contained in the inorganic compound. By having the coating amount in this range, the dissolution of phosphorus ions from the modified ZWP can be effectively suppressed, and the performance as a negative thermal expansion material can be improved. When used as a negative thermal expansion filler, the dispersibility in positive thermal expansion materials such as resins becomes good.

關於無機化合物的被覆量,於元素(M)為Zn、Si、Al、Ba、Ca、Mg、Ti、V、Sn、Co或Fe的情況下,可藉由以下方式求出:以該些元素不包含在ZWP粒子中為前提,對利用硝酸或鹽酸等溶解的溶液進行感應耦合電漿(Inductively Coupled Plasma,ICP)發光分光分析,對選自Zn、Si、Al、Ba、Ca、Mg、Ti、V、Sn、Co、Fe中的元素的量進行測定。ZWP粒子中所含的副成分元素與被覆ZWP粒子的無機元素可使用掃描式電子顯微鏡(Scanning Electron Microscope,SEM)-能量色散X射線分析(energy-dispersion X-ray analysis,EDX)、電子探針顯微分析(electron probe micro analysis,EPMA)等方法加以區別而進行定量。 Regarding the coating amount of inorganic compounds, when the element (M) is Zn, Si, Al, Ba, Ca, Mg, Ti, V, Sn, Co or Fe, it can be obtained by the following method: On the premise that these elements are not contained in the ZWP particles, the solution dissolved by nitric acid or hydrochloric acid is subjected to inductively coupled plasma (ICP) emission spectrometry to measure the amount of elements selected from Zn, Si, Al, Ba, Ca, Mg, Ti, V, Sn, Co and Fe. The accessory component elements contained in the ZWP particles and the inorganic elements coating the ZWP particles can be distinguished and quantified using scanning electron microscope (SEM)-energy-dispersion X-ray analysis (EDX), electron probe micro analysis (EPMA) and other methods.

就提高對於正熱膨脹材的分散性或填充特性的觀點而言,於作為原料的ZWP粒子中,較佳為含有除作為所述通式(1)中所含的元素的P、W、Zr及O以外的元素(以下亦將其稱為「副成分元素」)。 From the perspective of improving the dispersibility or filling properties of the positive thermal expansion material, the ZWP particles as the raw material preferably contain elements other than P, W, Zr and O as the elements contained in the general formula (1) (hereinafter also referred to as "subsidiary component elements").

作為副成分元素,例如可列舉:Li、Na、K等鹼金屬元 素;Mg、Ca、Sr、Ba等鹼土金屬元素;Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Y、Nb、Mo、Ag、Hf、Ta等過渡金屬元素;La、Ce、Nd、Sm、Eu、Tb、Dy、Ho、Yb等稀土類元素;Al、Zn、Ga、Cd、In、Sn、Pb、Bi等過渡金屬以外的其他金屬元素;B、Si、Ge、Sb、Te等半金屬元素;S等非金屬元素:F、Cl、Br、I等鹵素元素等。該些元素於所述粒子中可含有一種或兩種以上。該些中,就進一步提高對於正熱膨脹材的分散性或填充特性的觀點而言,所述粒子較佳為包含Mg、Al及V中的至少一種副成分元素。 As the secondary component elements, for example, there can be listed: alkali metal elements such as Li, Na, and K; alkali earth metal elements such as Mg, Ca, Sr, and Ba; transition metal elements such as Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Nb, Mo, Ag, Hf, and Ta; rare earth elements such as La, Ce, Nd, Sm, Eu, Tb, Dy, Ho, and Yb; other metal elements other than transition metals such as Al, Zn, Ga, Cd, In, Sn, Pb, and Bi; semi-metal elements such as B, Si, Ge, Sb, and Te; non-metal elements such as S; halogen elements such as F, Cl, Br, and I, etc. These elements can be contained in the particles alone or in combination. Among these, from the viewpoint of further improving the dispersibility or filling characteristics of the positive thermal expansion material, the particles preferably contain at least one accessory element of Mg, Al and V.

就製成具有優異的負熱膨脹性、且在正熱膨脹材中的分散性及填充特性優異者的觀點而言,相對於ZWP粒子,ZWP粒子中的副成分元素的含量較佳為0.1質量%~3質量%,進而佳為0.2質量%~2質量%。於含有兩種以上的副成分元素的情況下,副成分元素的含量基於副成分元素的合計質量來算出。另外,改質ZWP中的副成分元素的含量可設為與所述同樣的範圍。副成分元素的含量例如可使用螢光X射線分析裝置等測定裝置,藉由粉末壓製法、熔融玻璃珠法等方法進行測定。 From the perspective of producing a material having excellent negative thermal expansion and excellent dispersibility and filling characteristics in positive thermal expansion materials, the content of the accessory element in the ZWP particles is preferably 0.1 mass% to 3 mass%, and more preferably 0.2 mass% to 2 mass%, relative to the ZWP particles. When two or more accessory elements are contained, the content of the accessory element is calculated based on the total mass of the accessory element. In addition, the content of the accessory element in the modified ZWP can be set to the same range as described above. The content of the accessory element can be measured, for example, by a measuring device such as a fluorescent X-ray analyzer, by a powder pressing method, a molten glass bead method, or the like.

改質ZWP的粒子形狀並無特別限制,例如可為球狀、粒狀、板狀、鱗片狀、晶須狀、棒狀、絲(filament)狀、具有一條或兩條以上的稜線的不規則碎石狀(以下亦將其稱為「破碎狀」)、或者該些的組合。 The particle shape of the modified ZWP is not particularly limited, and may be, for example, spherical, granular, plate-like, scaly, whisker-like, rod-like, filament-like, irregular gravel-like with one or more edges (hereinafter also referred to as "crushed"), or a combination thereof.

根據利用含有一種或兩種以上的選自Zn、Si、Al、Ba、Ca、Mg、Ti、V、Sn、Co、Fe及Zr中的元素(M)的無機化合物 被覆磷酸鎢酸鋯粒子的表面的本發明的改質磷酸鎢酸鋯,即便在與水接觸的情況下,亦可有效地抑制磷以離子的形式自磷酸鎢酸鋯溶出,可表現出作為負熱膨脹材的優異的性能。另外,本發明的改質磷酸鎢酸鋯可均勻地分散於樹脂等高分子化合物中,其結果,可順利地製造低熱膨脹性的材料。 The modified zirconium tungstate phosphate of the present invention, which covers the surface of zirconium tungstate phosphate particles with an inorganic compound containing one or more elements (M) selected from Zn, Si, Al, Ba, Ca, Mg, Ti, V, Sn, Co, Fe and Zr, can effectively inhibit phosphorus from eluting from zirconium tungstate phosphate in the form of ions even when in contact with water, and can exhibit excellent performance as a negative thermal expansion material. In addition, the modified zirconium tungstate phosphate of the present invention can be uniformly dispersed in a polymer compound such as a resin, and as a result, a low thermal expansion material can be smoothly manufactured.

以下,說明本發明的改質ZWP的較佳製造方法。改質ZWP的製造方法大致分為使鋯源、鎢源及磷源反應而獲得ZWP粒子的步驟、以及利用無機化合物對所獲得的ZWP粒子的表面進行被覆處理的步驟這兩個步驟。 The following describes a preferred method for producing the modified ZWP of the present invention. The method for producing the modified ZWP is roughly divided into two steps: a step of obtaining ZWP particles by reacting a zirconium source, a tungsten source, and a phosphorus source, and a step of coating the surface of the obtained ZWP particles with an inorganic compound.

首先,使鋯源、鎢源及磷源反應而獲得ZWP粒子。本發明中使用的ZWP粒子的製造方法並無特別限制,例如可列舉:(i)對利用濕式球磨機將磷酸鋯、氧化鎢及MgO等反應促進劑混合而得的混合物進行煆燒的方法(例如參照日本專利特開2005-35840號公報);(ii)將氯化鋯等鋯源、鎢酸銨等鎢源及磷酸銨等磷源進行濕式混合,對所獲得的混合物進行煆燒的方法(例如參照日本專利特開2015-10006號公報);(iii)對包含氧化鋯、氧化鎢及磷酸二氫銨的混合物進行煆燒的方法(例如參照「材料研究公報(Materials Research Bulletin)」,44(2009),p.2045-2049);或者(iv)將鎢化合物與包含磷及鋯的非晶質化合物的混合物作為反應前驅物,對該反應前驅物進行煆燒的方法(例如參照國際公開第2017/061402號手冊)等。 First, a zirconium source, a tungsten source, and a phosphorus source are reacted to obtain ZWP particles. The method for producing the ZWP particles used in the present invention is not particularly limited, and examples thereof include: (i) a method of calcining a mixture obtained by mixing zirconium phosphate, tungsten oxide, and a reaction accelerator such as MgO using a wet ball mill (for example, see Japanese Patent Publication No. 2005-35840); (ii) a method of calcining a mixture obtained by wet mixing a zirconium source such as zirconium chloride, a tungsten source such as ammonium tungstate, and a phosphorus source such as ammonium phosphate (for example, see Japanese Patent Publication No. 2015-10006); (iii) a method of calcining a mixture containing zirconium oxide, tungsten oxide, and diammonium dihydrogen phosphate (for example, see Materials Research Bulletin). Bulletin), 44 (2009), p.2045-2049); or (iv) a method of using a mixture of a tungsten compound and an amorphous compound containing phosphorus and zirconium as a reaction precursor and calcining the reaction precursor (for example, refer to the manual of International Publication No. 2017/061402).

就使將改質ZWP用作相對於正熱膨脹材的填料時的處 理變得容易的觀點而言,ZWP粒子的BET比表面積較佳為0.1m2/g~50m2/g,進而佳為0.1m2/g~20m2/g。另外,改質ZWP的BET比表面積可設為與所述相同的範圍。BET比表面積可利用BET單點法進行測定,例如使用BET比表面積測定裝置(康塔儀器(Quantachrome Instruments)股份有限公司製造,AUTOSORB-1)進行測定。 From the viewpoint of facilitating the handling of the modified ZWP as a filler relative to a positive thermal expansion material, the BET specific surface area of the ZWP particles is preferably 0.1 m 2 /g to 50 m 2 /g, and more preferably 0.1 m 2 /g to 20 m 2 /g. The BET specific surface area of the modified ZWP can be set in the same range as described above. The BET specific surface area can be measured by the BET single point method, for example, using a BET specific surface area measuring device (manufactured by Quantachrome Instruments Co., Ltd., AUTOSORB-1).

就同樣的觀點而言,ZWP粒子的平均粒徑較佳為0.02μm~50μm,進而佳為0.5μm~30μm。另外,改質ZWP的平均粒徑可設為與所述相同的範圍。平均粒徑可使用掃描式電子顯微鏡觀察任意的100個粒子,作為掃描式電子顯微鏡圖像中的粒子的最大長度的算術平均值求出。此處所謂最大長度是指橫穿粒子圖像的線段中最長線段的長度。作為觀察倍率,較佳為以進入一個視野的粒子數為100個~200個的方式進行調整。 From the same point of view, the average particle size of ZWP particles is preferably 0.02μm~50μm, and more preferably 0.5μm~30μm. In addition, the average particle size of the modified ZWP can be set to the same range as described above. The average particle size can be obtained by observing any 100 particles using a scanning electron microscope and taking the arithmetic mean of the maximum length of the particles in the scanning electron microscope image. The maximum length here refers to the length of the longest line segment among the line segments that cross the particle image. As the observation magnification, it is better to adjust the number of particles entering one field of view to 100~200.

ZWP粒子的粒子形狀並無特別限制,例如可為球狀、粒狀、板狀、鱗片狀、晶須狀、棒狀、絲狀、破碎狀、或該些的組合。ZWP粒子可為造粒顆粒,亦可為未造粒的粉末。 There is no particular limitation on the shape of ZWP particles, and they may be spherical, granular, plate-like, scaly, whisker-like, rod-like, filament-like, crushed, or a combination thereof. ZWP particles may be granulated particles or ungranulated powder.

就容易藉由工業上有利的方法來控制所述粒徑、比表面積、粒子形狀等各種特性,且獲得負熱膨脹性優異的改質ZWP的觀點而言,作為ZWP粒子的製造方法,較佳為使用藉由所述方法(iv)而製造的ZWP粒子。 From the perspective of being able to easily control various properties such as the particle size, specific surface area, and particle shape by an industrially advantageous method and obtaining a modified ZWP having excellent negative thermal expansion, it is preferred to use ZWP particles produced by the method (iv) as a method for producing ZWP particles.

繼而,利用無機化合物對藉由所述方法而獲得的ZWP粒子的表面進行被覆處理。本步驟可藉由濕式法或乾式法進行。 Next, the surface of the ZWP particles obtained by the above method is coated with an inorganic compound. This step can be performed by a wet method or a dry method.

於藉由濕式法進行無機化合物的被覆處理的情況下,例如可使以所期望的濃度含有所述無機化合物的分散液(亦包括溶解液)中含有ZWP粒子而製成漿料,並將該漿料噴霧乾燥,或者將該漿料固液分離,並對所獲得的固體成分加以乾燥,藉此獲得目標改質ZWP。分散液(亦包括溶解液)中的所述無機化合物的含量只要以改質ZWP中的無機化合物的被覆量為所述範圍的方式適當調整即可。分散液(亦包括溶解液)中的所述無機化合物的濃度只要考慮作業性而適當調整即可。 When the inorganic compound coating treatment is performed by a wet method, for example, a dispersion (including a dissolved solution) containing the inorganic compound at a desired concentration may contain ZWP particles to prepare a slurry, and the slurry may be spray dried, or the slurry may be solid-liquid separated and the obtained solid component may be dried to obtain the target modified ZWP. The content of the inorganic compound in the dispersion (including a dissolved solution) may be appropriately adjusted so that the coating amount of the inorganic compound in the modified ZWP is within the above range. The concentration of the inorganic compound in the dispersion (including a dissolved solution) may be appropriately adjusted in consideration of workability.

於藉由乾式法進行無機化合物的被覆處理的情況下,例如可使用亨舍爾混合機(Henschel mixer)、氣流式粉碎機等混合裝置將ZWP粒子與固體的所述無機化合物混合,或者將ZWP粒子與利用溶劑稀釋所述無機化合物而得的稀釋液混合,其後根據需要進行加熱乾燥,藉此獲得目標改質ZWP。於乾式法中,直接使用ZWP粒子與所述無機化合物的混合物來製造改質ZWP,因此所述無機化合物的添加量與被覆量大致一致。 When the inorganic compound coating treatment is performed by a dry method, for example, a mixing device such as a Henschel mixer or an air flow mill can be used to mix ZWP particles with the solid inorganic compound, or ZWP particles can be mixed with a dilution obtained by diluting the inorganic compound with a solvent, and then heated and dried as needed to obtain the target modified ZWP. In the dry method, the mixture of ZWP particles and the inorganic compound is directly used to produce the modified ZWP, so the amount of the inorganic compound added is roughly the same as the coating amount.

所述乾式法或濕式法中的被覆處理方法亦可為使用作為無機化合物的前驅物的含有元素(M)的有機化合物或無機鹽,藉由後述的加熱處理,加熱處理至該有機化合物或無機鹽的分解溫度以上,將有機化合物或無機鹽轉換為成氧化物的方法。作為該有機化合物,只要為可藉由加熱處理轉換為氧化物者,則並無特別限制,例如可列舉元素(M)的羧酸鹽、元素(M)的醇鹽等。例如,作為羧酸鹽的羧酸,可為一元羧酸及多元羧酸的任一種, 可列舉乙酸、檸檬酸、葡萄糖酸、甲酸、乳酸等。作為無機鹽,例如可列舉元素(M)的硝酸鹽、碳酸鹽等。再者,有機化合物或無機鹽的使用量只要以改質ZWP中的無機化合物的被覆量為所述範圍的方式適當調整即可。 The coating treatment method in the dry method or wet method may also be a method of using an organic compound or inorganic salt containing the element (M) as a precursor of an inorganic compound, and converting the organic compound or inorganic salt into an oxide by heat treatment to a temperature above the decomposition temperature of the organic compound or inorganic salt in the heat treatment described below. The organic compound is not particularly limited as long as it can be converted into an oxide by heat treatment, and examples thereof include carboxylates of the element (M), alcoholates of the element (M), etc. For example, the carboxylic acid as the carboxylate may be any of a monocarboxylic acid and a polycarboxylic acid, and examples thereof include acetic acid, citric acid, gluconic acid, formic acid, lactic acid, etc. As inorganic salts, examples thereof include nitrates and carbonates of the element (M), etc. Furthermore, the amount of organic compound or inorganic salt used can be appropriately adjusted so that the coating amount of the inorganic compound in the modified ZWP is within the above range.

另外,於藉由濕式法進行無機化合物的被覆處理的情況下,亦可為於使ZWP粒子分散於水中而得的漿料中,添加含有元素(M)的水溶性無機鹽及鹼劑,將pH調整為6~10,使含有元素(M)的氫氧化物析出至ZWP粒子的粒子表面來進行被覆的方法。再者,漿料中的含有元素(M)的水溶性無機鹽的含量只要以改質ZWP中的無機化合物的被覆量為所述範圍的方式適當調整即可。 In addition, when the inorganic compound coating treatment is performed by a wet method, a water-soluble inorganic salt and an alkaline agent containing the element (M) are added to the slurry obtained by dispersing ZWP particles in water, and the pH is adjusted to 6-10, so that the hydroxide containing the element (M) is precipitated on the particle surface of the ZWP particles for coating. Furthermore, the content of the water-soluble inorganic salt containing the element (M) in the slurry can be appropriately adjusted so that the coating amount of the inorganic compound in the modified ZWP is within the above range.

以該方式製造的本發明的改質ZWP是即便在水的存在下,亦抑制磷離子自改質ZWP溶出,適宜用作負熱膨脹材者。關於本發明的改質ZWP,當利用85℃的水70mL對1g的改質ZWP進行1小時加熱處理,繼而冷卻至25℃並靜置24小時時,每1g改質磷酸鎢酸鋯中,溶出的磷離子量為100μg以下,較佳為70μg以下。磷離子量作為如上所述靜置24小時而得的溶出液中存在的總磷量來測定,例如可使用ICP發光分光裝置進行測定。 The modified ZWP of the present invention manufactured in this way suppresses the elution of phosphorus ions from the modified ZWP even in the presence of water, and is suitable for use as a negative thermal expansion material. Regarding the modified ZWP of the present invention, when 1 g of the modified ZWP is heat-treated with 70 mL of water at 85°C for 1 hour, then cooled to 25°C and left to stand for 24 hours, the amount of phosphorus ions eluted per 1 g of modified zirconium tungstate phosphate is 100 μg or less, preferably 70 μg or less. The amount of phosphorus ions is measured as the total amount of phosphorus present in the eluate obtained by standing for 24 hours as described above, for example, using an ICP emission spectrometer.

較佳為於利用濕式法及乾式法中的任一種方法進行被覆處理的情況下,均在被覆處理後進一步進行加熱處理。加熱處理的溫度較佳為250℃~600℃,進而佳為300℃~450℃,加熱處理的時間較佳為30分鐘以上,進而佳為1小時~10小時。另外, 加熱處理的環境可為真空、惰性氣體環境或者大氣環境的任一種。藉由實施加熱處理,存在於ZWP粒子的表面的所述無機化合物成為緻密的結構,可進一步抑制水的存在下的磷離子自改質ZWP的溶出。其結果,可獲得負熱膨脹性優異的改質ZWP。 It is preferred that a heat treatment be further performed after the coating treatment, whether the coating treatment is performed by a wet method or a dry method. The temperature of the heat treatment is preferably 250°C to 600°C, more preferably 300°C to 450°C, and the time of the heat treatment is preferably more than 30 minutes, more preferably 1 hour to 10 hours. In addition, the environment of the heat treatment can be any of a vacuum, an inert gas environment, or an atmospheric environment. By performing the heat treatment, the inorganic compound present on the surface of the ZWP particles becomes a dense structure, which can further inhibit the dissolution of phosphorus ions from the modified ZWP in the presence of water. As a result, a modified ZWP with excellent negative thermal expansion can be obtained.

作為所述無機化合物的前驅物的含有元素(M)的有機化合物及元素(M)的無機鹽,藉由該加熱處理,可轉換為元素(M)的氧化物。存在於ZWP粒子的表面的已轉換的元素(M)的氧化物成為緻密的結構,進一步抑制水的存在下的磷離子自改質ZWP的溶出。其結果,可獲得負熱膨脹性優異的改質ZWP。 The organic compound containing the element (M) and the inorganic salt of the element (M) as the precursor of the inorganic compound can be converted into the oxide of the element (M) by the heat treatment. The converted oxide of the element (M) existing on the surface of the ZWP particles forms a dense structure, further suppressing the elution of phosphorus ions from the modified ZWP in the presence of water. As a result, a modified ZWP with excellent negative thermal expansion can be obtained.

於進行加熱處理的情況下,加熱處理的溫度特佳為於使用氧化物及氫氧化物以外的物質、或含有元素(M)的有機化合物製成含有元素(M)的無機化合物的情況下,為高於該些化合物的分解溫度的溫度。再者,於含水鹽的情況下,分解溫度是指成為氧化物的溫度。藉由以此種溫度進行加熱處理,而將存在於ZWP粒子的表面的被覆層中含有元素(M)的化合物轉換為元素(M)的氧化物,與此相伴,存在於ZWP粒子的表面的被覆層成為更緻密的結構,可進一步抑制該水的存在下的磷離子自改質ZWP的溶出。 When heat treatment is performed, the temperature of the heat treatment is preferably a temperature higher than the decomposition temperature of the inorganic compound containing the element (M) when using a substance other than oxides and hydroxides or an organic compound containing the element (M). Furthermore, in the case of a water-containing salt, the decomposition temperature refers to the temperature at which the oxide is formed. By heat treatment at such a temperature, the compound containing the element (M) in the coating layer on the surface of the ZWP particles is converted into an oxide of the element (M), and the coating layer on the surface of the ZWP particles becomes a denser structure, which can further suppress the dissolution of phosphorus ions from the modified ZWP in the presence of water.

另外,本發明的改質ZWP可以進一步抑制磷離子自ZWP的溶出、進一步提高對高分子化合物的分散性或密接性為目的,並且以防止因磷離子溶出引起的樹脂成型品的電氣可靠性的降低及金屬製零件的腐蝕為目的,利用疏水性的化合物對該改質 ZWP的粒子表面進一步進行表面處理。作為該疏水性的化合物,可列舉偶合劑、高級脂肪酸或高級脂肪酸的金屬鹽等,該些中,就可進一步減少磷離子自ZWP的溶出,另外進一步提高對於高分子化合物的分散性或密接性的效果亦高的方面而言,較佳為偶合劑。 In addition, the modified ZWP of the present invention can further suppress the elution of phosphorus ions from ZWP, further improve the dispersibility or adhesion to polymer compounds, and prevent the reduction of electrical reliability of resin molded products and corrosion of metal parts caused by phosphorus ion elution. The surface of the modified ZWP particles is further treated with a hydrophobic compound. As the hydrophobic compound, coupling agents, higher fatty acids or metal salts of higher fatty acids can be listed. Among these, coupling agents are preferred in terms of further reducing the elution of phosphorus ions from ZWP and further improving the dispersibility or adhesion to polymer compounds.

再者,以下為方便起見,有時將磷酸鎢酸鋯粒子的表面由含有一種或兩種以上的選自Zn、Si、Al、Ba、Ca、Mg、Ti、V、Sn、Co、Fe及Zr中的元素(M)的無機化合物被覆的改質磷酸鎢酸鋯稱為「改質ZWP(1)」。 In addition, for the sake of convenience, modified zirconium tungstate phosphate in which the surface of zirconium tungstate phosphate particles is coated with an inorganic compound containing one or more elements (M) selected from Zn, Si, Al, Ba, Ca, Mg, Ti, V, Sn, Co, Fe and Zr is sometimes referred to as "modified ZWP (1)".

另外,以下有時將進一步由偶合劑被覆改質ZWP(1)的粒子表面者稱為「改質ZWP(2)」。 In addition, below, the particle surface of ZWP (1) that has been further modified by coating with a coupling agent may be referred to as "modified ZWP (2)".

作為可用於改質ZWP(2)的偶合劑,可列舉矽烷系偶合劑、鋁系偶合劑、鈦酸酯系偶合劑及鋯酸酯系偶合劑,該些偶合劑可使用一種或兩種以上。 As coupling agents that can be used to modify ZWP (2), there can be listed silane-based coupling agents, aluminum-based coupling agents, titanium ester-based coupling agents, and zirconate-based coupling agents. One or more of these coupling agents can be used.

作為矽烷系偶合劑,例如可列舉:六甲基二矽氮烷等矽氮烷類;三甲基矽烷等氫化矽烷類;三甲基氯矽烷、二甲基二氯矽烷、甲基三氯矽烷、烯丙基二甲基氯矽烷、苄基二甲基氯矽烷等鹵代矽烷類;甲基三甲氧基矽烷、甲基三乙氧基矽烷、異丁基三甲氧基矽烷、二甲基二甲氧基矽烷、二甲基二乙氧基矽烷、三甲基甲氧基矽烷、羥基丙基三甲氧基矽烷、苯基三甲氧基矽烷、正丁基三甲氧基矽烷、正十六烷基三甲氧基矽烷、正十八烷基三甲氧基矽烷等烷基烷氧基矽烷類;乙烯基三甲氧基矽烷、乙烯基 三乙氧基矽烷等乙烯基烷氧基矽烷類;γ-甲基丙烯酸氧基丙基三甲氧基矽烷、γ-甲基丙烯酸氧基丙基甲基二甲氧基矽烷等含甲基丙烯醯基的烷氧基矽烷類;γ-(2-胺基乙基)胺基丙基三甲氧基矽烷、γ-(2-胺基乙基)胺基丙基甲基二甲氧基矽烷、γ-胺基丙基三乙氧基矽烷、N-(2-胺基乙基)3-胺基丙基三甲氧基矽烷、N-β-(N-乙烯基苄基胺基乙基)-γ-胺基丙基三甲氧基矽烷等含胺基的烷氧基矽烷類;β-(3,4-環氧環己基)乙基三甲氧基矽烷、γ-縮水甘油氧基丙基三甲氧基矽烷、γ-縮水甘油氧基丙基甲基二甲氧基矽烷、γ-縮水甘油氧基丙基三乙氧基矽烷等含環氧基的烷氧基矽烷類;乙烯基三乙醯氧基矽烷、γ-氯丙基三甲氧基矽烷、γ-巰基丙基三甲氧基矽烷、N-β-(胺基乙基)-γ-胺基丙基三甲氧基矽烷、γ-脲基丙基三乙氧基矽烷、胺基氟矽烷等。 Examples of the silane coupling agent include silazanes such as hexamethyldisilazane; hydridosilanes such as trimethylsilane; halogenated silanes such as trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, allyldimethylchlorosilane, benzyldimethylchlorosilane; methyltrimethoxysilane, methyltriethoxysilane, isobutyltrimethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane, hydroxy Alkyl alkoxysilanes such as propyltrimethoxysilane, phenyltrimethoxysilane, n-butyltrimethoxysilane, n-hexadecyltrimethoxysilane, n-octadecyltrimethoxysilane; vinyl alkoxysilanes such as vinyltrimethoxysilane and vinyltriethoxysilane; methacryloyl-containing alkoxysilanes such as γ-methacryloxypropyltrimethoxysilane and γ-methacryloxypropylmethyldimethoxysilane ; γ-(2-aminoethyl)aminopropyltrimethoxysilane, γ-(2-aminoethyl)aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, N-(2-aminoethyl)3-aminopropyltrimethoxysilane, N-β-(N-vinylbenzylaminoethyl)-γ-aminopropyltrimethoxysilane and other amino-containing alkoxysilanes; β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, γ-Glyceryloxypropyl trimethoxysilane, γ-Glyceryloxypropyl methyl dimethoxysilane, γ-Glyceryloxypropyl triethoxysilane and other alkoxysilanes containing epoxy groups; vinyl triethoxysilane, γ-chloropropyl trimethoxysilane, γ-butyl propyl trimethoxysilane, N-β-(aminoethyl)-γ-aminopropyl trimethoxysilane, γ-ureidopropyl triethoxysilane, aminofluorosilane, etc.

作為鋁系偶合劑,例如可列舉:乙醯乙酸乙酯二異丙醇鋁、乙醯乙酸甲酯二異丙醇鋁、乙醯乙酸乙酯二丁醇鋁、乙醯乙酸烷基酯二異丙醇鋁等鋁醇化物類;單乙醯丙酮酸雙(乙醯乙酸乙酯)鋁等鋁螯合物類等。 As aluminum coupling agents, for example, aluminum alcoholates such as ethyl acetylacetate aluminum diisopropoxide, methyl acetylacetate aluminum diisopropoxide, ethyl acetylacetate aluminum dibutyloxide, alkyl acetylacetate aluminum diisopropoxide, and aluminum chelates such as monoacetylacetylacetate bis(ethyl acetylacetate)aluminum, etc. can be cited.

作為鈦酸酯系偶合劑,可列舉:異丙基三異硬脂醯基鈦酸酯、異丙基三-十二烷基苯磺醯基鈦酸酯、異丙基三(焦磷酸二辛酯)鈦酸酯、四異丙基(亞磷酸二辛酯)鈦酸酯、四辛基雙(亞磷酸二-十三烷基酯)鈦酸酯、四(2,2-二烯丙氧基甲基-1-丁基)雙(二-十三烷基)亞磷酸鈦酸酯、雙(焦磷酸二辛酯)氧基乙酸酯鈦酸酯、雙(焦磷酸二辛酯)乙烯鈦酸酯等烷氧基鈦酸酯等。 As titanium ester coupling agents, there are: isopropyl triisostearate titanium ester, isopropyl tri-dodecylbenzenesulfonyl titanium ester, isopropyl tri(dioctyl pyrophosphate) titanium ester, tetraisopropyl(dioctyl phosphite) titanium ester, tetraoctyl di(di-tridecyl phosphite) titanium ester, tetrakis(2,2-diallyloxymethyl-1-butyl)di(di-tridecyl) titanium phosphite, bis(dioctyl pyrophosphate)oxyacetate titanium ester, bis(dioctyl pyrophosphate)ethylene titanium ester and other alkoxy titanium esters, etc.

作為鋯酸酯系偶合劑,例如可列舉硬脂酸乙氧基鋯等鋯烷氧化物類;四乙醯丙酮鋯或α-羥基羧酸鋯等鋯螯合物化合物、鋯皂類、乙酸鋯等。 Examples of zirconate coupling agents include zirconium alkoxides such as ethoxyzirconium stearate, zirconium chelate compounds such as zirconium tetraacetylacetonate or zirconium α-hydroxycarboxylate, zirconium soaps, zirconium acetate, etc.

於本發明中,該些偶合劑中,就將所獲得的改質ZWP(2)用作負熱膨脹材填料的情況下,對於高分子化合物的分散性或密接性優異、進一步降低磷離子自ZWP的溶出的效果高的觀點而言,較佳為矽烷系偶合劑或鈦酸酯系偶合劑。 In the present invention, among these coupling agents, when the obtained modified ZWP (2) is used as a negative thermal expansion material filler, silane-based coupling agents or titanium ester-based coupling agents are preferred from the viewpoint of excellent dispersibility or adhesion of polymer compounds and high effect of reducing the elution of phosphorus ions from ZWP.

相對於改質ZWP(1),改質ZWP(2)中的偶合劑的被覆量較佳為0.05質量%~30質量%,進而佳為0.1質量%~10質量%。藉由被覆量為此種範圍,可有效地抑制鋯離子、鎢離子及磷離子自改質ZWP的溶出,提高作為負熱膨脹材的性能。 The coating amount of the coupling agent in the modified ZWP (2) is preferably 0.05 mass% to 30 mass%, and more preferably 0.1 mass% to 10 mass%, relative to the modified ZWP (1). By having the coating amount in this range, the elution of zirconium ions, tungsten ions and phosphorus ions from the modified ZWP can be effectively suppressed, thereby improving the performance as a negative thermal expansion material.

作為利用偶合劑對改質ZWP(2)的粒子表面進行被覆處理的方法,可藉由濕式法或乾式法來進行。 As a method for coating the surface of modified ZWP (2) particles with a coupling agent, it can be carried out by a wet method or a dry method.

於藉由濕式法進行偶合劑的被覆處理的情況下,例如將改質ZWP(1)浸漬於以所期望的濃度包含所述偶合劑的分散液(亦包括溶解液)中而製成漿料,將該漿料噴霧乾燥,或者將該漿料固液分離而對固體成分加以乾燥,使偶合劑水解及縮合。藉此,可獲得目標改質ZWP(2)。分散液中的偶合劑的濃度只要以改質ZWP(2)中的被覆量為所述範圍的方式適當調整即可。 When the coupling agent is coated by a wet method, for example, the modified ZWP (1) is immersed in a dispersion (including a dissolved solution) containing the coupling agent at a desired concentration to prepare a slurry, and the slurry is spray-dried, or the slurry is solid-liquid separated and the solid component is dried to hydrolyze and condense the coupling agent. In this way, the target modified ZWP (2) can be obtained. The concentration of the coupling agent in the dispersion can be appropriately adjusted so that the coating amount in the modified ZWP (2) is within the above range.

於藉由乾式法進行偶合劑的被覆處理的情況下,例如使用亨舍爾混合機、氣流式粉碎機等混合裝置將改質ZWP(1)與偶合劑混合,或者將改質ZWP(1)與利用溶劑稀釋偶合劑而得的稀 釋液混合,其後根據需要在所述條件下進行加熱處理,使偶合劑水解及縮合。藉此,可獲得目標改質ZWP(2)。於乾式法中,直接使用改質ZWP(1)與偶合劑的混合物來製造改質ZWP(2),因此偶合劑的被覆量與理論上由偶合劑的添加量算出的值大致一致。 When the coupling agent coating treatment is performed by a dry method, the modified ZWP (1) and the coupling agent are mixed using a mixing device such as a Henschel mixer or an air flow mill, or the modified ZWP (1) is mixed with a dilution obtained by diluting the coupling agent with a solvent, and then a heat treatment is performed under the above conditions as needed to hydrolyze and condense the coupling agent. In this way, the target modified ZWP (2) can be obtained. In the dry method, the mixture of the modified ZWP (1) and the coupling agent is directly used to produce the modified ZWP (2), so the coating amount of the coupling agent is roughly consistent with the value theoretically calculated from the amount of the coupling agent added.

經過以上步驟而獲得的本發明的改質ZWP可將其直接以粉末等乾燥狀態,或者以使該粉末分散於溶媒中的濕潤狀態,適宜用作用於製造低熱膨脹性材料的負熱膨脹填料。 The modified ZWP of the present invention obtained through the above steps can be directly used as a negative thermal expansion filler for manufacturing low thermal expansion materials in a dry state such as powder, or in a wet state such as by dispersing the powder in a solvent.

本發明的負熱膨脹填料為包含所述改質ZWP者,藉由將該負熱膨脹填料與高分子化合物混合,可製造高分子組成物。由於改質ZWP所具備的高負熱膨脹性,該高分子組成物成為熱膨脹率得到抑制的材料。 The negative thermal expansion filler of the present invention is a material containing the modified ZWP, and a polymer composition can be produced by mixing the negative thermal expansion filler with a polymer compound. Due to the high negative thermal expansion property of the modified ZWP, the polymer composition becomes a material with suppressed thermal expansion coefficient.

作為本發明的高分子組成物中使用的高分子化合物,並無特別限制,較佳為具有正熱膨脹性的樹脂等。作為此種樹脂,例如可列舉:橡膠、聚烯烴樹脂、聚環烯烴樹脂、聚苯乙烯樹脂、丙烯腈-丁二烯-苯乙烯(Acrylonitrile Butadiene Styrene,ABS)樹脂、聚丙烯酸酯樹脂、聚苯硫醚樹脂、酚樹脂、聚醯胺樹脂、聚醯亞胺樹脂、環氧樹脂、矽酮樹脂、聚碳酸酯樹脂、聚乙烯樹脂、聚丙烯樹脂、聚對苯二甲酸乙二酯(polyethylene terephthalate)樹脂(PET樹脂)及聚氯乙烯樹脂等。該些可單獨使用或組合使用多種。 The polymer compound used in the polymer composition of the present invention is not particularly limited, but preferably a resin having positive thermal expansion. Examples of such resins include rubber, polyolefin resins, polycycloolefin resins, polystyrene resins, acrylonitrile-butadiene-styrene (ABS) resins, polyacrylate resins, polyphenylene sulfide resins, phenol resins, polyamide resins, polyimide resins, epoxy resins, silicone resins, polycarbonate resins, polyethylene resins, polypropylene resins, polyethylene terephthalate resins (PET resins), and polyvinyl chloride resins. These can be used individually or in combination.

高分子組成物中的負熱膨脹填料的含量可根據所使用 的高分子化合物的種類、製造的材料的用途或目的適當變更,相對於高分子組成物,較佳為1體積%~90體積%。同樣地,相對於高分子組成物,高分子組成物中的高分子化合物的含量較佳為10體積%~99體積%。 The content of the negative thermal expansion filler in the polymer composition can be appropriately changed according to the type of polymer compound used, the purpose or purpose of the manufactured material, and is preferably 1 volume % to 90 volume % relative to the polymer composition. Similarly, the content of the polymer compound in the polymer composition is preferably 10 volume % to 99 volume % relative to the polymer composition.

除負熱膨脹填料及高分子化合物以外,高分子組成物可更含有添加劑。作為添加劑,例如可列舉:抗氧化劑、熱穩定劑、紫外線吸收劑、潤滑劑、剝離劑、包含染料、顏料的著色劑、阻燃劑、交聯劑、軟化劑、分散劑、硬化劑、聚合起始劑、無機填料等。相對於高分子組成物,添加物的含量較佳為10體積%~90體積%。 In addition to negative thermal expansion fillers and polymer compounds, the polymer composition may further contain additives. Examples of additives include: antioxidants, heat stabilizers, ultraviolet absorbers, lubricants, stripping agents, colorants including dyes and pigments, flame retardants, crosslinking agents, softeners, dispersants, hardeners, polymerization initiators, inorganic fillers, etc. The content of additives is preferably 10% to 90% by volume relative to the polymer composition.

本發明的高分子組成物可藉由公知的方法進行製造。例如,於使用硬化性樹脂作為高分子化合物的情況下,可列舉:將負熱膨脹填料、硬化性樹脂(或者預聚物)以及根據需要的添加物同時混合而製成成形體的方法;或者預先將負熱膨脹填料及根據需要的添加劑與樹脂成分的一種混合而製成混合物,繼而,將該混合物與硬化性樹脂(或者預聚物)混合而製成成形體的方法等。 The polymer composition of the present invention can be manufactured by a known method. For example, when a curable resin is used as a polymer compound, the following methods can be cited: a method of mixing a negative thermal expansion filler, a curable resin (or a prepolymer) and an additive as required to form a molded body; or a method of pre-mixing a negative thermal expansion filler and an additive as required with one of the resin components to form a mixture, and then mixing the mixture with a curable resin (or a prepolymer) to form a molded body, etc.

另外,於使用熱塑性樹脂作為高分子化合物的情況下,可列舉:利用擠壓機(extruder)將負熱膨脹填料與熱塑性樹脂熔融混合而製成成形體的方法;或者使用射出成形機將負熱膨脹填料與熱塑性樹脂以固體狀態混合而得的混合物製成成形體的方法等。 In addition, when a thermoplastic resin is used as a polymer compound, there are the following methods: a method of using an extruder to melt and mix a negative thermal expansion filler and a thermoplastic resin to form a molded body; or a method of using an injection molding machine to mix a negative thermal expansion filler and a thermoplastic resin in a solid state to form a molded body.

以該方式製造的本發明的高分子組成物藉由用作負熱膨脹填料的改質ZWP所具備的高負熱膨脹性,有效地抑制熱膨脹率,成為不易產生由熱引起的變形的材料。另外,離子自用作負熱膨脹填料的改質ZWP的溶出少,因此可特佳地用作電子零件的封裝材料等精密儀機器的材料。 The polymer composition of the present invention manufactured in this way effectively suppresses the thermal expansion rate due to the high negative thermal expansion of the modified ZWP used as a negative thermal expansion filler, making it a material that is not easily deformed by heat. In addition, the ion dissolution from the modified ZWP used as a negative thermal expansion filler is small, so it can be particularly used as a material for precision instruments such as packaging materials for electronic parts.

[實施例] [Implementation example]

以下藉由實施例來說明本發明,但本發明並不限定於該些實施例。 The present invention is described below by using examples, but the present invention is not limited to these examples.

<磷酸鎢酸鋯粒子(ZWP粒子)的製備> <Preparation of Zirconium Tungstate Phosphate Particles (ZWP Particles)>

(1.ZWP粒子試樣1) (1. ZWP particle sample 1)

將市售的三氧化鎢(WO3;平均粒徑1.2μm)15質量份放入燒杯中,進而添加純水84質量份,並添加1質量份的聚羧酸銨鹽作為分散劑,製成分散液。將該分散液於室溫(25℃)下使用三一馬達(three-one motor)攪拌機攪拌120分鐘,製備包含三氧化鎢的15質量%漿料。漿料中的固體成分的平均粒徑為1.2μm。 15 parts by mass of commercially available tungsten trioxide (WO 3 ; average particle size 1.2 μm) was placed in a beaker, and then 84 parts by mass of pure water and 1 part by mass of ammonium polycarboxylate salt were added as a dispersant to prepare a dispersion. The dispersion was stirred at room temperature (25°C) for 120 minutes using a three-one motor stirrer to prepare a 15% by mass slurry containing tungsten trioxide. The average particle size of the solid component in the slurry was 1.2 μm.

繼而,以漿料中的Zr:W:P的莫耳比為2.00:1.00:2.00的方式,於室溫(25℃)下向漿料中添加氫氧化鋯及85質量%磷酸水溶液,製成反應液。使用該反應液,於室溫(25℃)下,於攪拌下使其反應2小時。將反應結束後的反應液的總量於大氣下以200℃進行24小時乾燥,獲得反應前驅物。對所獲得的反應前驅物進行X射線繞射分析,結果僅觀察到三氧化鎢的繞射峰值。 Next, zirconium hydroxide and 85 mass% phosphoric acid aqueous solution were added to the slurry at room temperature (25°C) in such a manner that the molar ratio of Zr:W:P in the slurry was 2.00:1.00:2.00 to prepare a reaction solution. The reaction solution was reacted for 2 hours at room temperature (25°C) under stirring. The total amount of the reaction solution after the reaction was dried at 200°C for 24 hours in the atmosphere to obtain a reaction precursor. The obtained reaction precursor was subjected to X-ray diffraction analysis, and only the diffraction peak of tungsten trioxide was observed.

繼而,將所獲得的反應前驅物於大氣中以950℃進行2 小時煆燒,作為煆燒品而獲得白色的ZWP粒子試樣1。對所獲得的ZWP粒子試樣1進行X射線繞射分析,結果,該試樣1為單相的Zr2(WO4)(PO4)2。將ZWP粒子試樣1的平均粒徑及BET比表面積示於表1中。另外,進行掃描式電子顯微鏡觀察,結果所獲得的ZWP粒子試樣1的粒子形狀如圖1所示為破碎狀。 Then, the obtained reaction precursor was calcined at 950°C for 2 hours in the atmosphere to obtain a white ZWP particle sample 1 as a calcined product. X-ray diffraction analysis was performed on the obtained ZWP particle sample 1, and the result showed that the sample 1 was a single-phase Zr 2 (WO 4 )(PO 4 ) 2 . The average particle size and BET specific surface area of the ZWP particle sample 1 are shown in Table 1. In addition, scanning electron microscope observation was performed, and the particle shape of the obtained ZWP particle sample 1 was a broken state as shown in FIG. 1 .

(2.ZWP粒子試樣2) (2. ZWP particle sample 2)

將市售的三氧化鎢(WO3;平均粒徑1.2μm)15質量份放入燒杯中,進而添加純水84質量份,製成分散液。將該分散液於室溫(25℃)下攪拌120分鐘,製備包含三氧化鎢的15質量%漿料。漿料中的固體成分的平均粒徑為1.2μm。 15 parts by mass of commercially available tungsten trioxide (WO 3 ; average particle size 1.2 μm) was placed in a beaker, and 84 parts by mass of pure water was added to prepare a dispersion. The dispersion was stirred at room temperature (25°C) for 120 minutes to prepare a 15% by mass slurry containing tungsten trioxide. The average particle size of the solid component in the slurry was 1.2 μm.

繼而,以漿料中的Zr:W:P:Mg的莫耳比為2.00:1.00:2.00:0.1的方式,於室溫(25℃)下向漿料中添加氫氧化鋯、85質量%磷酸水溶液及氫氧化鎂,製成反應液。將該反應液升溫至80℃,於攪拌下進行4小時反應。其後,向反應結束後的反應液中添加1質量份的聚羧酸銨鹽作為分散劑,一邊對其進行攪拌,一邊將直徑0.5mm的氧化鋯珠供給至介質攪拌型珠磨機(蘆澤精細科技(Ashizawa Finetech)製造,LMZ2),以2000rpm進行15分鐘濕式粉碎。濕式粉碎後的反應液中的固體成分的平均粒徑為0.3μm。 Next, zirconia hydroxide, 85 mass % phosphoric acid aqueous solution and magnesium hydroxide were added to the slurry at room temperature (25°C) so that the molar ratio of Zr:W:P:Mg in the slurry was 2.00:1.00:2.00:0.1 to prepare a reaction solution. The reaction solution was heated to 80°C and reacted for 4 hours under stirring. Thereafter, 1 mass part of ammonium polycarboxylate salt was added to the reaction solution after the reaction as a dispersant, and while stirring the solution, zirconia beads with a diameter of 0.5 mm were supplied to a media stirring bead mill (LMZ2 manufactured by Ashizawa Finetech) and wet pulverized at 2000 rpm for 15 minutes. The average particle size of the solid component in the reaction solution after wet grinding is 0.3μm.

繼而,以2.4L/h的供給速度將濕式粉碎後的反應液供給至設定為220℃的噴霧乾燥器(spray dryer),獲得反應前驅物。對所獲得的反應前驅物進行X射線繞射分析,結果僅觀察到三氧 化鎢的繞射峰值。 Then, the wet-crushed reaction liquid was fed to a spray dryer set at 220°C at a feed rate of 2.4 L/h to obtain a reaction precursor. X-ray diffraction analysis of the obtained reaction precursor revealed that only the diffraction peak of tungsten trioxide was observed.

最後,將所獲得的反應前驅物於大氣中以960℃煆燒2小時,作為煆燒品而獲得白色的ZWP粒子試樣2。對所獲得的ZWP粒子試樣2進行X射線繞射分析,結果,該試樣2為單相的Zr2(WO4)(PO4)2。將ZWP粒子試樣2的平均粒徑及BET比表面積示於表1中。另外,進行掃描式電子顯微鏡觀察,結果所獲得的ZWP粒子試樣2的粒子形狀如圖2所示為球狀。 Finally, the obtained reaction precursor was calcined at 960°C for 2 hours in the atmosphere to obtain a white ZWP particle sample 2 as a calcined product. X-ray diffraction analysis of the obtained ZWP particle sample 2 showed that the sample 2 was a single-phase Zr 2 (WO 4 )(PO 4 ) 2 . The average particle size and BET specific surface area of the ZWP particle sample 2 are shown in Table 1. In addition, scanning electron microscope observation was performed, and the particle shape of the obtained ZWP particle sample 2 was spherical as shown in FIG. 2 .

Figure 109106984-A0305-02-0021-1
Figure 109106984-A0305-02-0021-1

(實施例1) (Implementation Example 1)

利用氣流式粉碎機(清新(SEISHIN)企業製造,A-O噴射磨機)將50g的ZWP粒子試樣1與使用硝酸鋅六水合物製備的40質量%的硝酸鋅水溶液3.5g粉碎混合,製成粉體混合物,將該混合物於大氣環境中以400℃加熱處理1小時,獲得ZWP粒子的表面由氧化鋅被覆的改質ZWP。該改質ZWP為破碎狀的粒子。氣流式粉碎機的條件設為粉體供給速度:3g/分鐘,推進壓力:0.6MPa,噴射壓力:0.6MPa。 50 g of ZWP particle sample 1 and 3.5 g of 40 mass % zinc nitrate aqueous solution prepared using zinc nitrate hexahydrate were ground and mixed using an air flow mill (manufactured by Seishin Enterprise, A-O jet mill) to prepare a powder mixture, and the mixture was heated at 400°C for 1 hour in an atmospheric environment to obtain a modified ZWP in which the surface of the ZWP particles was covered with zinc oxide. The modified ZWP was in the form of crushed particles. The conditions of the air flow mill were set as powder feed rate: 3 g/min, thrust pressure: 0.6 MPa, and jet pressure: 0.6 MPa.

將藉由以下方法對所使用的硝酸鋅六水合物進行測定而得的TG曲線示於圖3中。如圖3的TG曲線所示,可知硝酸鋅六水合物(分子量297.49)在310℃下分解而成為氧化鋅(分子量81.40)。 The TG curve obtained by measuring the zinc nitrate hexahydrate used by the following method is shown in Figure 3. As shown in the TG curve of Figure 3, it can be seen that zinc nitrate hexahydrate (molecular weight 297.49) decomposes at 310°C to form zinc oxide (molecular weight 81.40).

因此可知,存在於ZWP粒子的表面的硝酸鋅藉由400℃下的加熱處理而轉換為氧化鋅。 Therefore, it can be seen that the zinc nitrate present on the surface of the ZWP particles is converted into zinc oxide by the heat treatment at 400°C.

<TG曲線的測定方法> <TG curve measurement method>

求出於大氣環境下以10℃/分鐘自25℃升溫至700℃時的TG曲線。樣品量設為5.6mg。 Calculate the TG curve when the temperature is increased from 25℃ to 700℃ at 10℃/min in an atmospheric environment. The sample size is set to 5.6mg.

(實施例2) (Example 2)

使用檸檬酸鋅二水合物粉末1.63g來代替40質量%的硝酸鋅水溶液3.5g,將粉體混合物的加熱處理的溫度設為430℃,除此以外,藉由與實施例1相同的方法進行,獲得ZWP粒子的表面由氧化鋅被覆的改質ZWP。該改質ZWP為破碎狀的粒子。 1.63 g of zinc citrate dihydrate powder was used to replace 3.5 g of 40 mass % zinc nitrate aqueous solution, and the temperature of the powder mixture was set to 430°C. In addition, the same method as Example 1 was used to obtain a modified ZWP in which the surface of the ZWP particles was covered with zinc oxide. The modified ZWP was a crushed particle.

將藉由所述方法對所使用的檸檬酸鋅二水合物進行測定而得的TG曲線示於圖4中。如圖4的TG曲線所示,可知檸檬酸鋅二水合物(分子量610.43)在430℃下分解而成為氧化鋅(分子量81.40)。 The TG curve obtained by measuring the zinc citrate dihydrate used by the above method is shown in Figure 4. As shown in the TG curve of Figure 4, it can be seen that zinc citrate dihydrate (molecular weight 610.43) decomposes at 430°C to form zinc oxide (molecular weight 81.40).

因此可知,存在於ZWP粒子的表面的檸檬酸鋅二水合物藉由430℃下的加熱處理而轉換為氧化鋅。 Therefore, it can be seen that zinc citrate dihydrate existing on the surface of ZWP particles is converted into zinc oxide by heat treatment at 430°C.

(實施例3) (Implementation Example 3)

加入50g的ZWP粒子試樣2及檸檬酸鋅二水合物粉末1.63g,利用混合機(實驗室用混合機:Labo Milser)以20000rpm混合1分鐘,製成粉體混合物,將該混合物於大氣環境中以430℃加熱處理30分鐘,獲得ZWP粒子的表面由氧化鋅被覆的改質ZWP。該改質ZWP為球狀的粒子。 Add 50g of ZWP particle sample 2 and 1.63g of zinc citrate dihydrate powder, use a mixer (laboratory mixer: Labo Milser) to mix at 20000rpm for 1 minute to make a powder mixture, heat the mixture at 430℃ in an atmospheric environment for 30 minutes to obtain a modified ZWP with the surface of the ZWP particles covered with zinc oxide. The modified ZWP is a spherical particle.

(比較例1及比較例2) (Comparison Example 1 and Comparison Example 2)

僅將ZWP粒子試樣1作為比較例1,僅將ZWP粒子試樣2作為比較例2。即,各比較例為僅使用ZWP粒子,該粒子表面未由鋅化合物被覆者。 Only ZWP particle sample 1 is used as comparative example 1, and only ZWP particle sample 2 is used as comparative example 2. That is, each comparative example uses only ZWP particles, and the surface of the particles is not coated with a zinc compound.

<物性的評價> <Evaluation of physical properties>

(粉體的線膨脹係數的評價) (Evaluation of linear expansion coefficient of powder)

對於實施例及比較例中所獲得的粒子,利用帶有升溫功能的X射線繞射(X-Ray Diffraction,XRD)裝置(理學(Rigaku)製造的Ultima IV),以升溫速度20℃/分鐘,自25℃起將目標溫度設為100℃來升溫,到達目標溫度後10分鐘後,測定試樣相對於a軸、b軸、c軸的晶格常數。繼而,將目標溫度設為200℃、300℃及400℃依次升溫,與所述方法同樣地測定各溫度下的試樣相對於a軸、b軸、c軸的晶格常數。對所獲得的晶格體積變化(長方體)進行線換算,求出線膨脹係數(ppm/℃)(參照材料科學雜誌(J.Mat.Sci.)(2000)35,p.2451-2454)。將其結果示於表2中。 The particles obtained in the Examples and Comparative Examples were heated at a rate of 20°C/min using an X-ray Diffraction (XRD) device (Ultima IV manufactured by Rigaku) with a heating function, starting from 25°C and increasing the temperature to 100°C. Ten minutes after reaching the target temperature, the lattice constants of the sample with respect to the a-axis, b-axis, and c-axis were measured. Subsequently, the target temperature was set to 200°C, 300°C, and 400°C and the temperature was increased in sequence, and the lattice constants of the sample with respect to the a-axis, b-axis, and c-axis were measured at each temperature in the same manner as the above method. The obtained lattice volume change (cuboid) was linearly converted to obtain the linear expansion coefficient (ppm/°C) (refer to Journal of Materials Science (J.Mat.Sci.) (2000) 35, p.2451-2454). The results are shown in Table 2.

(溶出P離子量的評價) (Evaluation of the amount of dissolved P ions)

將實施例及比較例中所獲得的粒子1g添加至純水70mL中製成試驗液,以85℃將該試驗液加熱處理1小時後,冷卻至室溫(25℃),利用純水以試驗液為100mL的方式進行調整。將該試驗液於25℃下靜置24小時後,藉由過濾而將該試驗液固液分離,利用ICP發光分光裝置測定濾液中的總P離子量,換算為每1g改質ZWP中溶出的總P離子量,將其結果示於表2中。 1 g of the particles obtained in the examples and comparative examples was added to 70 mL of pure water to prepare a test solution. The test solution was heated at 85°C for 1 hour, cooled to room temperature (25°C), and adjusted with pure water so that the test solution was 100 mL. The test solution was allowed to stand at 25°C for 24 hours, and then filtered to separate the solid and liquid of the test solution. The total P ion amount in the filtrate was measured using an ICP spectrophotometer and converted to the total P ion amount dissolved in 1 g of modified ZWP. The results are shown in Table 2.

Figure 109106984-A0305-02-0024-2
Figure 109106984-A0305-02-0024-2

如表2所示,可知與比較例的粒子相比較,各實施例的改質ZWP具有相同水準的負的線膨脹係數,並且抑制了離子自粒子的溶出。 As shown in Table 2, it can be seen that the modified ZWP of each embodiment has the same level of negative linear expansion coefficient compared with the particles of the comparative example, and the elution of ions from the particles is suppressed.

(實施例4~實施例6) (Example 4 to Example 6)

使用實施例1~實施例3中所獲得的改質ZWP作為負熱膨脹填料,製造高分子組成物。詳細而言,使用真空混合機(新基(Thinky)製造的去泡攪拌太郎ARV-310),以旋轉速度2000rpm將5.8g的負熱膨脹填料與作為高分子化合物的4.2g的環氧樹脂(三菱化學製造的jER807,環氧當量160~175)混合,製作30體積%的糊劑。 The modified ZWP obtained in Examples 1 to 3 was used as a negative thermal expansion filler to produce a polymer composition. Specifically, a vacuum mixer (Thinky Defoaming Mixer ARV-310) was used to mix 5.8 g of a negative thermal expansion filler with 4.2 g of an epoxy resin (jER807 manufactured by Mitsubishi Chemical, epoxy equivalent 160~175) as a polymer compound at a rotation speed of 2000 rpm to produce a 30 volume % paste.

繼而,向所述糊劑中加入100μL的硬化劑(四國化成製造的固澤爾(Curezol)),使用所述真空混合機,以旋轉速度1500rpm進行混合,以150℃歷時1小時使其硬化,獲得目標高分子組成物。利用掃描式電子顯微鏡觀察所獲得的高分子組成物的剖面,結果,任一實施例中均可確認到作為負熱膨脹填料的改質ZWP 均勻地分散於高分子組成物中。 Next, 100 μL of a curing agent (Curezol manufactured by Shikoku Chemical) was added to the paste, mixed at a rotation speed of 1500 rpm using the vacuum mixer, and cured at 150°C for 1 hour to obtain the target polymer composition. The cross-section of the obtained polymer composition was observed using a scanning electron microscope, and it was confirmed that the modified ZWP as a negative thermal expansion filler was uniformly dispersed in the polymer composition in any embodiment.

(參考例1) (Reference Example 1)

使用3.3g的球狀熔融二氧化矽(平均粒徑10μm、線膨脹係數5×10-7/℃)來代替5.8g的改質ZWP作為負熱膨脹填料,製作30體積%的糊劑,除此之外,藉由與實施例6相同的方法,獲得目標高分子組成物。利用掃描式電子顯微鏡觀察所獲得的高分子組成物的剖面,結果可確認到球狀熔融二氧化矽粒子均勻地分散於高分子組成物中。 The target polymer composition was obtained by the same method as in Example 6 except that 3.3 g of spherical fused silica (average particle size 10 μm, linear expansion coefficient 5×10 -7 /°C) was used instead of 5.8 g of modified ZWP as a negative thermal expansion filler to prepare a 30 volume % paste. The cross section of the obtained polymer composition was observed using a scanning electron microscope, and it was confirmed that the spherical fused silica particles were uniformly dispersed in the polymer composition.

<組成物的線膨脹係數的評價> <Evaluation of the linear expansion coefficient of the composition>

將實施例及參考例中所獲得的高分子組成物切成5mm×5mm×10mm的長方體狀,作為測定樣品。對該測定樣品,使用熱機械分析裝置(thermomechanical analyzer)(TMA;耐馳(NETZSCH)公司製造,4000SE),以升溫速度1℃/分鐘測定30℃~120℃的線膨脹係數。將其結果示於表3中。 The polymer composition obtained in the embodiment and reference example was cut into a 5mm×5mm×10mm rectangular parallelepiped as a measurement sample. The measurement sample was measured using a thermomechanical analyzer (TMA; manufactured by NETZSCH, 4000SE) at a heating rate of 1°C/min to measure the linear expansion coefficient from 30°C to 120°C. The results are shown in Table 3.

Figure 109106984-A0305-02-0025-3
Figure 109106984-A0305-02-0025-3

如表3所示,可知使用本發明的改質ZWP作為負熱膨脹填料的各實施例的高分子組成物為線膨脹係數低,不易發生由熱引起的變形的材料。 As shown in Table 3, it can be seen that the polymer composition of each embodiment using the modified ZWP of the present invention as a negative thermal expansion filler is a material with a low linear expansion coefficient and is not easily deformed by heat.

(實施例7) (Implementation Example 7)

相對於實施例1中所獲得的改質ZWP(改質ZWP(1))50g,加入鈦酸酯系偶合劑(異丙基三異硬脂醯基鈦酸酯)0.75g,利用氣流式粉碎機(清新(SEISHIN)企業製造,A-O噴射磨機)進行粉碎混合,製成粉體混合物,將該混合物於大氣環境中以110℃加熱處理4小時,獲得改質ZWP粒子的表面由鈦酸酯系偶合劑被覆的改質ZWP(2)試樣。該改質ZWP(2)試樣為破碎狀的粒子。氣流式粉碎機的條件設為粉體供給速度:3g/分鐘,推進壓力:0.6MPa,噴射壓力:0.6MPa。 0.75 g of a titanium ester coupling agent (isopropyl triisostearyl titanium ester) was added to 50 g of the modified ZWP (modified ZWP (1)) obtained in Example 1, and the mixture was pulverized and mixed using an air flow mill (A-O jet mill manufactured by Seishin Corporation) to prepare a powder mixture. The mixture was heated at 110°C for 4 hours in an atmospheric environment to obtain a modified ZWP (2) sample in which the surface of the modified ZWP particles was coated with a titanium ester coupling agent. The modified ZWP (2) sample was a crushed particle. The conditions of the air flow mill were set as powder feed rate: 3 g/min, thrust pressure: 0.6 MPa, and jet pressure: 0.6 MPa.

另外,與實施例1~實施例3同樣地測定自所獲得的改質ZWP(2)試樣溶出的P離子量。將其結果示於表4中。 In addition, the amount of P ions eluted from the obtained modified ZWP (2) sample was measured in the same manner as in Examples 1 to 3. The results are shown in Table 4.

(實施例8) (Implementation Example 8)

相對於實施例1中所獲得的改質ZWP(改質ZWP(1))50g,加入矽烷系偶合劑(3-縮水甘油氧基丙基三甲氧基矽烷)0.75g,利用氣流式粉碎機(清新(SEISHIN)企業製造,A-O噴射磨機)進行粉碎混合,製成粉體混合物,將該混合物於大氣環境中以110℃加熱處理4小時,獲得改質ZWP粒子的表面由矽烷系偶合劑被覆的改質ZWP(2)試樣。該改質ZWP(2)試樣為破碎狀的粒子。氣流式粉碎機的條件設為粉體供給速度:3g/分鐘,推進壓力:0.6MPa,噴射壓力:0.6MPa。 0.75 g of silane coupling agent (3-glycidyloxypropyltrimethoxysilane) was added to 50 g of the modified ZWP (modified ZWP (1)) obtained in Example 1, and the mixture was pulverized and mixed using an air flow mill (A-O jet mill manufactured by Seishin Corporation) to prepare a powder mixture. The mixture was heated at 110°C for 4 hours in an atmospheric environment to obtain a modified ZWP (2) sample in which the surface of the modified ZWP particles was coated with a silane coupling agent. The modified ZWP (2) sample was a crushed particle. The conditions of the air flow mill were set as powder feed rate: 3 g/min, thrust pressure: 0.6 MPa, and jet pressure: 0.6 MPa.

另外,與實施例1~實施例3同樣地測定自所獲得的改質ZWP(2)試樣溶出的P離子量。將其結果示於表4中。 In addition, the amount of P ions eluted from the obtained modified ZWP (2) sample was measured in the same manner as in Examples 1 to 3. The results are shown in Table 4.

Figure 109106984-A0305-02-0027-4
Figure 109106984-A0305-02-0027-4

如表4所示,可知進一步進行了偶合劑處理的改質ZWP(2)中,進一步抑制了離子自粒子的溶出。 As shown in Table 4, it can be seen that in the modified ZWP (2) that was further treated with a coupling agent, the elution of ions from the particles was further suppressed.

(實施例9及實施例10) (Example 9 and Example 10)

使用實施例7及實施例8中所獲得的改質ZWP(2)試樣作為負熱膨脹填料,製造高分子組成物。詳細而言,使用真空混合機(新基(Thinky)製造的去泡攪拌太郎ARV-310),以旋轉速度2000rpm將5.8g的負熱膨脹填料與作為高分子化合物的4.2g的環氧樹脂(三菱化學製造的jER807,環氧當量160~175)混合,製作30體積%的糊劑。 The modified ZWP (2) samples obtained in Examples 7 and 8 were used as negative thermal expansion fillers to prepare polymer compositions. Specifically, 5.8 g of negative thermal expansion fillers and 4.2 g of epoxy resin (jER807 manufactured by Mitsubishi Chemical, epoxy equivalent 160-175) as a polymer compound were mixed at a rotation speed of 2000 rpm using a vacuum mixer (Thinky Defoaming Mixer ARV-310) to prepare a 30 volume % paste.

繼而,向所述糊劑中加入100μL的硬化劑(四國化成製造的固澤爾(Curezol)),使用所述真空混合機,以旋轉速度1500rpm進行混合,以150℃歷時1小時使其硬化,獲得目標高分子組成物。利用掃描式電子顯微鏡觀察所獲得的高分子組成物的剖面,結果,任一實施例中均可確認到作為負熱膨脹填料的改質ZWP(2)試樣均勻地分散於高分子組成物中。 Next, 100 μL of a curing agent (Curezol manufactured by Shikoku Chemical) was added to the paste, mixed at a rotation speed of 1500 rpm using the vacuum mixer, and cured at 150°C for 1 hour to obtain the target polymer composition. The cross-section of the obtained polymer composition was observed using a scanning electron microscope. As a result, it was confirmed that the modified ZWP (2) sample as a negative thermal expansion filler was uniformly dispersed in the polymer composition in any embodiment.

<組成物的線膨脹係數的評價> <Evaluation of the linear expansion coefficient of the composition>

將實施例9及實施例10中所獲得的高分子組成物切成5 mm×5mm×10mm的長方體狀,作為測定樣品。對該測定樣品,使用熱機械分析裝置(TMA;耐馳(NETZSCH)公司製造,4000SE),以升溫速度1℃/分鐘測定30℃~120℃的線膨脹係數。將其結果示於表5中。 The polymer composition obtained in Example 9 and Example 10 was cut into a 5 mm × 5 mm × 10 mm rectangular parallelepiped as a measurement sample. The measurement sample was measured using a thermomechanical analyzer (TMA; manufactured by NETZSCH, 4000SE) at a heating rate of 1°C/min to measure the linear expansion coefficient from 30°C to 120°C. The results are shown in Table 5.

Figure 109106984-A0305-02-0028-5
Figure 109106984-A0305-02-0028-5

如表5所示,可知使用本發明的改質ZWP(2)作為負熱膨脹填料的各實施例的高分子組成物為線膨脹係數低,不易發生由熱引起的變形的材料。 As shown in Table 5, it can be seen that the polymer composition of each embodiment using the modified ZWP (2) of the present invention as a negative thermal expansion filler is a material with a low linear expansion coefficient and is not easily deformed by heat.

Claims (10)

一種改質磷酸鎢酸鋯,其中磷酸鎢酸鋯粒子的表面由無機化合物被覆,所述無機化合物含有一種或兩種以上的選自Zn、Si、Al、Ba、Ca、Mg、Ti、V、Sn、Co、Fe及Zr中的元素(M),其中相對於所述磷酸鎢酸鋯粒子,所述無機化合物的被覆量以無機化合物中所含的元素(M)計為0.1質量%~10質量%,當利用85℃的水70mL對所述改質磷酸鎢酸鋯1g進行1小時加熱處理,繼而冷卻至25℃並靜置24小時時,每1g改質磷酸鎢酸鋯中,溶出的磷離子量為100μg以下。 A modified zirconium tungstate phosphate, wherein the surface of the zirconium tungstate phosphate particles is coated with an inorganic compound, wherein the inorganic compound contains one or more elements (M) selected from Zn, Si, Al, Ba, Ca, Mg, Ti, V, Sn, Co, Fe and Zr, wherein the coating amount of the inorganic compound relative to the zirconium tungstate phosphate particles is 0.1 mass% to 10 mass% based on the element (M) contained in the inorganic compound, and when 1 g of the modified zirconium tungstate phosphate is heated for 1 hour using 70 mL of water at 85°C, then cooled to 25°C and left to stand for 24 hours, the amount of phosphorus ions dissolved in 1 g of the modified zirconium tungstate phosphate is less than 100 μg. 如請求項1所述的改質磷酸鎢酸鋯,其中所述磷酸鎢酸鋯粒子的BET比表面積為0.1m2/g~50m2/g。 The modified zirconium tungstate phosphate as described in claim 1, wherein the BET specific surface area of the zirconium tungstate phosphate particles is 0.1 m 2 /g to 50 m 2 /g. 如請求項1或請求項2所述的改質磷酸鎢酸鋯,其中所述磷酸鎢酸鋯粒子的平均粒徑為0.02μm~50μm。 The modified zirconium tungstate phosphate as described in claim 1 or claim 2, wherein the average particle size of the zirconium tungstate phosphate particles is 0.02μm~50μm. 如請求項1或請求項2所述的改質磷酸鎢酸鋯,其中所述磷酸鎢酸鋯粒子更含有副成分元素。 The modified zirconium tungstate phosphate as described in claim 1 or claim 2, wherein the zirconium tungstate phosphate particles further contain accessory element. 如請求項1或請求項2所述的改質磷酸鎢酸鋯,其中所述無機化合物為含有元素(M)的氧化物及/或氫氧化物。 The modified zirconium tungstate phosphate as described in claim 1 or claim 2, wherein the inorganic compound is an oxide and/or hydroxide containing the element (M). 如請求項5所述的改質磷酸鎢酸鋯,其中所述元素(M)為Zn。 The modified zirconium tungstate phosphate as described in claim 5, wherein the element (M) is Zn. 如請求項1或請求項2所述的改質磷酸鎢酸鋯,其中所述磷酸鎢酸鋯粒子的表面進而由偶合劑被覆。 The modified zirconium tungstate phosphate as described in claim 1 or claim 2, wherein the surface of the zirconium tungstate phosphate particles is further coated with a coupling agent. 如請求項7所述的改質磷酸鎢酸鋯,其中所述偶合 劑為矽烷系偶合劑或鈦酸酯系偶合劑。 The modified zirconium tungstate phosphate as described in claim 7, wherein the coupling agent is a silane-based coupling agent or a titanium ester-based coupling agent. 一種負熱膨脹填料,包含如請求項1至請求項8中任一項所述的改質磷酸鎢酸鋯。 A negative thermal expansion filler comprising modified zirconium tungstate phosphate as described in any one of claims 1 to 8. 一種高分子組成物,含有如請求項9所述的負熱膨脹填料及高分子化合物。 A polymer composition comprising a negative thermal expansion filler and a polymer compound as described in claim 9.
TW109106984A 2019-03-07 2020-03-04 Modified zirconium tungstate phosphate, negative thermal expansion filler and polymer composition TWI843814B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-041281 2019-03-07
JP2019041281 2019-03-07
JP2019228647A JP6907295B2 (en) 2019-03-07 2019-12-18 Modified Zirconium Tungate Phosphate, Negative Thermal Expansion Filler and Polymer Composition
JP2019-228647 2019-12-18

Publications (2)

Publication Number Publication Date
TW202033444A TW202033444A (en) 2020-09-16
TWI843814B true TWI843814B (en) 2024-06-01

Family

ID=72430333

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109106984A TWI843814B (en) 2019-03-07 2020-03-04 Modified zirconium tungstate phosphate, negative thermal expansion filler and polymer composition

Country Status (4)

Country Link
JP (1) JP6907295B2 (en)
KR (1) KR20210135237A (en)
CN (1) CN113544089B (en)
TW (1) TWI843814B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114634663A (en) * 2022-02-25 2022-06-17 武汉材料保护研究所有限公司 Low-thermal-expansion-coefficient wear-resistant ultra-high molecular weight polyethylene material and preparation method thereof
CN115094520B (en) * 2022-07-11 2023-11-03 中国科学院合肥物质科学研究院 Negative thermal expansion material (Ni 1-x Fe x ) 1-δ S and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137635A (en) * 2004-11-12 2006-06-01 Nippon Electric Glass Co Ltd Filler powder, and powder and paste for sealing
TW201713781A (en) * 2015-10-07 2017-04-16 Nippon Chemical Ind Production method for zirconium tungsten phosphate
TW201731764A (en) * 2015-10-07 2017-09-16 Nippon Chemical Industrial Co Ltd Negative thermal expansion material and composite material including same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4498765B2 (en) * 2004-01-30 2010-07-07 日本山村硝子株式会社 Sealing composition
JP2005264135A (en) * 2004-02-20 2005-09-29 Fuji Photo Film Co Ltd Organic and inorganic complex composition, plastic base plate, gas barrier laminated film, and image display element
JP5311274B2 (en) * 2008-07-14 2013-10-09 日本電気硝子株式会社 Bismuth glass composition and sealing material
JP5717462B2 (en) * 2011-02-18 2015-05-13 株式会社トクヤマ Method for producing surface-treated inorganic oxide particles
CN103078081B (en) * 2013-01-15 2016-04-06 宁德新能源科技有限公司 Surface coated anode active material of lithium ion battery particle and preparation method thereof
JP2015024945A (en) * 2013-07-29 2015-02-05 サムソン エレクトロ−メカニックス カンパニーリミテッド. Inorganic filler, and insulating resin composition, insulating film, prepreg and printed circuit board including the same
CN104347853B (en) * 2014-09-24 2017-04-12 秦皇岛中科远达电池材料有限公司 Lithium manganate composite positive electrode material, a preparing method thereof and a lithium-ion battery
JP6501570B2 (en) * 2015-03-20 2019-04-17 テイカ株式会社 Filler comprising aluminum phosphate composition fixed or coated with inorganic compound, method for producing the same, and thermally conductive composition containing the filler
JP6190023B1 (en) * 2015-10-07 2017-08-30 日本化学工業株式会社 Method for producing zirconium tungstate phosphate
JP2017088642A (en) * 2015-11-02 2017-05-25 住友化学株式会社 filler
JP6428588B2 (en) * 2015-12-08 2018-11-28 信越化学工業株式会社 Surface-treated inorganic oxide particles, dispersion containing the particles, and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137635A (en) * 2004-11-12 2006-06-01 Nippon Electric Glass Co Ltd Filler powder, and powder and paste for sealing
TW201713781A (en) * 2015-10-07 2017-04-16 Nippon Chemical Ind Production method for zirconium tungsten phosphate
TW201731764A (en) * 2015-10-07 2017-09-16 Nippon Chemical Industrial Co Ltd Negative thermal expansion material and composite material including same

Also Published As

Publication number Publication date
JP2020147486A (en) 2020-09-17
CN113544089A (en) 2021-10-22
KR20210135237A (en) 2021-11-12
JP6907295B2 (en) 2021-07-21
TW202033444A (en) 2020-09-16
CN113544089B (en) 2024-06-18

Similar Documents

Publication Publication Date Title
JP6553831B1 (en) Modified zirconium tungstate phosphate, negative thermal expansion filler and polymer composition
JP5016993B2 (en) Magnesium oxide particle aggregate and method for producing the same
TWI843814B (en) Modified zirconium tungstate phosphate, negative thermal expansion filler and polymer composition
JP2009114008A (en) Zirconium oxide fine powder, method for producing the same, and resin composition comprising the same
CN112384471B (en) Negative thermal expansion material, method for producing the same, and composite material
WO2010090229A1 (en) Surface treated rare earth magnetic powder, bonded magnet resin composition that includes the rare earth magnetic powder, and bonded magnet
WO2020179703A1 (en) Modified zirconium phosphate tungstate, negative thermal expansion filler and polymer composition
TW201731764A (en) Negative thermal expansion material and composite material including same
WO2011013169A1 (en) Oil content adsorbent material and method for producing oil content adsorbent material
CN112752732A (en) Spherical magnesium oxide, method for producing same, thermally conductive filler, and resin composition
EP3187483B1 (en) Novel magnesium hydroxide-based solid solution, and resin composition and precursor for highly active magnesium oxide which include same
JPWO2019017305A1 (en) Coated inorganic fine particles and method for producing the same
JP7239608B2 (en) Modified zirconium tungstate phosphate, negative thermal expansion filler and polymer composition
US20230038575A1 (en) Coated zirconia fine particle and method for producing the same
JP7472129B2 (en) Modified zirconium tungstate phosphate, negative thermal expansion filler and polymer composition
JP6028420B2 (en) Hollow particles and method for producing the same
JP5344119B2 (en) Surface-treated Sm-Fe-N-based magnetic particle powder, resin composition for bonded magnet containing the Sm-Fe-N-based magnetic particle powder, and bonded magnet
JP2006232980A (en) Method for producing surface coated flame-retardant particle
WO2023181781A1 (en) Negative thermal expansion material, method for manufacturing same, and composite material
JPWO2018182021A1 (en) Ferrite powder, resin composition and molded body
WO2023063413A1 (en) Spherical magnesium oxide and method for producing same, resin filler, and resin composition
CN118715181A (en) Negative thermal expansion material and composite material
TW202340097A (en) Negative thermal expansion material and composite material
US20240112838A1 (en) METHOD OF PRODUCING PHOSPHATE-COATED SmFeN-BASED ANISOTROPIC MAGNETIC POWDER
JP2021062994A (en) Thermal expansion suppressing filler, method for producing the same and composite material comprising the same