TWI843754B - 可測試性設計之適應性微電子電路的應用 - Google Patents
可測試性設計之適應性微電子電路的應用 Download PDFInfo
- Publication number
- TWI843754B TWI843754B TW108137059A TW108137059A TWI843754B TW I843754 B TWI843754 B TW I843754B TW 108137059 A TW108137059 A TW 108137059A TW 108137059 A TW108137059 A TW 108137059A TW I843754 B TWI843754 B TW I843754B
- Authority
- TW
- Taiwan
- Prior art keywords
- circuit
- test
- register
- output
- input
- Prior art date
Links
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 127
- 238000004377 microelectronic Methods 0.000 title claims abstract description 114
- 238000012360 testing method Methods 0.000 claims abstract description 199
- 238000012545 processing Methods 0.000 claims abstract description 79
- 238000000034 method Methods 0.000 claims abstract description 32
- 238000012512 characterization method Methods 0.000 claims description 19
- 238000005265 energy consumption Methods 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 8
- 230000003111 delayed effect Effects 0.000 claims description 7
- 238000003860 storage Methods 0.000 claims description 5
- 230000008014 freezing Effects 0.000 claims description 4
- 238000007710 freezing Methods 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 4
- 238000011017 operating method Methods 0.000 abstract 1
- 230000008901 benefit Effects 0.000 description 15
- 239000013256 coordination polymer Substances 0.000 description 10
- 238000012544 monitoring process Methods 0.000 description 8
- 230000000630 rising effect Effects 0.000 description 8
- 230000003213 activating effect Effects 0.000 description 5
- 238000003775 Density Functional Theory Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 230000001960 triggered effect Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/30—Marginal testing, e.g. by varying supply voltage
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3177—Testing of logic operation, e.g. by logic analysers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/31712—Input or output aspects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/31725—Timing aspects, e.g. clock distribution, skew, propagation delay
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3173—Marginal testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/3185—Reconfiguring for testing, e.g. LSSD, partitioning
- G01R31/318533—Reconfiguring for testing, e.g. LSSD, partitioning using scanning techniques, e.g. LSSD, Boundary Scan, JTAG
- G01R31/318583—Design for test
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/3185—Reconfiguring for testing, e.g. LSSD, partitioning
- G01R31/318533—Reconfiguring for testing, e.g. LSSD, partitioning using scanning techniques, e.g. LSSD, Boundary Scan, JTAG
- G01R31/318594—Timing aspects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/22—Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
- G06F11/2205—Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing using arrangements specific to the hardware being tested
- G06F11/2236—Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing using arrangements specific to the hardware being tested to test CPU or processors
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Quality & Reliability (AREA)
- Tests Of Electronic Circuits (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
可藉由讓運作參數假定運作參數數值而組構微電子電路的效能。運作方法包含選擇性設定該微電子電路進入與該微電子電路的正常運作模式不同的測試模式、以及利用該測試模式輸入由測試輸入數值所組成的測試輸入訊號進入該微電子電路內的一個或更多個適應性處理路徑。適應性處理路徑包含處理邏輯和暫存器電路,處理邏輯和暫存器電路組構成從輸入至處理邏輯和暫存器電路的輸入數值產生輸出數值。這種適應性處理路徑的效能可藉由讓運作參數假定運作參數數值而加以組構。該方法包含讓該一個或更多個適應性處理路徑根據輸入至它們的個別測試輸入數值形成測試輸出數值、以及藉由收集由該一個或更多個適應性處理路徑所給定的該測試輸出數值形成一組測試輸出訊號。該方法包含檢查該組測試輸出訊號、以及根據該檢查形成測試結果、以及使用該測試結果以選擇和設定用於該運作參數的運作參數數值。
Description
本發明大致上應用於微電子電路和電路元件的技術領域。特別地,本發明應用於可測試性設計的適應性微電子電路和電路元件。
微電子電路(例如,微處理器、微控制器及類似者)藉由以由程式化指令所決定的特別方式,讓大量的數位數值通過許多個處理路徑,而基本地運作。處理路徑典型地包含程式化邏輯的片段,在片段之間,有用於以由時脈訊號所定義的速率暫時地儲存數位數值的暫存器電路。微電子電路也可稱為微電子系統,但微電子系統的概念也可用來指包含數個微電子電路的裝置。
為了確保微電子電路或系統適當地運作,必須有可能測試其運作。DFT(Designed For Testability,或Design-For-Test)的概念已經變成多個實務或事實上的標準的經建立的集合性定義,其告訴微電子電路的設計者如何能確保可測試性。作為一範例,應可能選擇性地將微電子電路內所含有的暫存器電路耦接進入主要地運作成移位暫存器的長鏈:一串數位數值可從一端點饋入,而從另一端點讀出。使已知測試圖案(test pattern)通
過這種鏈的暫存器電路並且在輸出核對其形狀,告訴鏈中的所有暫存器電路是否正在如所希望的改變它們的狀態、或是否有暫存器電路固定在一些特別數值(固定型故障測試(stuck-at fault test)。高速(at-speed)故障測試涉及以低時脈速度緩慢饋入測試圖案,之後以全運作速度給出一個或更多個時脈脈波,以致於測試圖案在鏈中以功能性邏輯速度進行與時脈脈波所具有一樣多的步驟,並且最終再次以低時脈速度結束測試圖案。高速測試可能會比預期慢給出關於暫存器電路的資訊。
雖然DFT方法對於接受製造電路的測試和對於微電子系統的正確運作的一些運行時間監視是好的,但它的已知應用並沒有給出關於電路和電路元件的性能最佳化或特性化的最佳化工具。
本發明的目的是提出方法、微電子電路和微電子電路元件,其讓使用DFT方法用於電路和電路元件的性能最佳化和特性化成為可能。
本發明的目的藉由微電子電路適應地配備適應性電路元件加以達成,以致於運作參數的數值的適應性可與DFT方法結合。
依據本發明的態樣,提供用於運作適應性微電子電路的方法。它的效能可藉由讓運作參數假定運作參數數值而加以組構。該方法包含選擇性設定該微電子電路進入與該微電子電路的正常運作模式不同的測試模式、以及利用該測試模式以輸入由測試輸入數值所組成的測試輸入訊號進入該微電子電路內的一個或更多個適應性處理路徑。適應性處理路徑包含處理邏輯和暫存器電路,其組構成從輸入至它們的輸入數值產生輸出數值。這種適應性處理路徑的效能可藉由讓運作參數假定運作參數數值而
加以組構。該方法包含讓該一個或更多個適應性處理路徑根據輸入至它們的該個別測試輸入數值形成測試輸出數值、以及藉由收集由該一個或更多個適應性處理路徑所給定的該測試輸出數值形成一組測試輸出訊號。該方法包含檢查該組測試輸出訊號、以及根據該檢查形成測試結果、以及使用該測試結果選擇和設定用於該運作參數的運作參數數值。
依據實施例,設定該運作參數數值以對該一個或更多個適應性處理路徑的效能作出影響。這具有以下優點:可在許多情況下利用電路的適應性,甚至在運作期間也可動態地利用。
依據實施例,該方法包含藉由接續地設定用於該運作參數的至少第一和第二運作參數數值、根據檢查於該運作參數具有該第一運作參數數值時所形成的第一組測試輸出訊號形成第一測試結果、根據檢查於該運作參數具有該第二運作參數數值時所形成的第二組測試輸出訊號形成第二測試結果、以及形成指示該第一與第二測試結果之間的差異的特性化數值,以特性化該微電子電路。這具有以下優點:可驗證並量化對於該微電子電路的運作和效能上的有利影響。
依據實施例,該方法包含藉由設定該第一和第二運作參數數值使得該第一運作參數數值在該適應性處理路徑的性能上與該第二運作參數數值有不同的效應,而特性化該微電子電路內的適應性處理路徑。這具有以下優點:可量化該運作參數數值的效應。
依據實施例,該方法包含根據該特性化數值而將該微電子電路分類至效能分類。這具有以下優點:可依據個別微電子電路滿足它們的預期規格的程度而設定個別微電子電路的數值。
依據實施例,該效能分類是下列的至少一個:用於微電子電路的電壓分類,對應的特性化數值針對該電壓分類指示對於給定時脈速度
的可接受最小運作電壓;用於微電子電路的時脈速度分類,對應的特性化數值針對該時脈速度分類指示在給定運作電壓下的可接受最大時脈速度;用於微電子電路的能量分類,對應的特性化數值針對該能量分類指示用於最小運作電壓和最大時脈速度的結合的可接受能量消耗。這具有以下優點:電子裝置的製造商可選擇最適合特別種類的電子裝置中的特別需求的微電子電路。
依據實施例,該適應性暫存器電路包含暫存器輸入、時脈輸入、暫存器輸出和時序事件輸出;該適應性暫存器電路包含在該暫存器輸入與該暫存器輸出之間的資料儲存器,用於暫時地儲存於與出現在該時脈輸入處的時脈訊號相關的可允許時間限制時出現在該暫存器輸入處的資料數值;該適應性暫存器電路包含時序事件觀察階段,其組構成在該時序事件輸出處輸出時序事件觀察訊號,以響應該資料數值在該暫存器輸入處的改變,該改變在與該時脈訊號相關的該可允許時間限制之後發生;以及形成一組測試輸出訊號的該方法步驟包含收集由該時序事件觀察階段給定的輸出數值。這具有以下優點:可依據DFT原理測試該時序事件觀察階段的運作。
依據實施例,該方法包含凍結該時序事件觀察訊號的數值達長於該時脈訊號中的一個時脈循環的期間,用於之後收集該時序事件觀察訊號的該凍結數值,以形成該組測試輸出訊號。這具有以下優點:在測試中收集時序事件觀察訊號不需要以完全時脈速度強制地運作。
依據實施例,該方法包含暫時地失能該時序事件觀察階段的運作、經由該暫存器輸入將該測試輸入數值輸入進入該資料儲存器、以及收集在該暫存器輸出處給出的該測試輸出數值;用於獨立於該時序事件觀
察階段的運作來測試該資料儲存器的運作。這具有以下優點:該資料儲存器的運作的測試可獨立於該時序事件觀察階段的運作。
依據實施例,該測試模式包含至少一個標準化DFT測試模式,包括但不限於固定型故障測試、實速故障測試。這具有以下優點:該方法可相容於共同使用的DFT原理。
依據另一個態樣,有提供包含處理路徑的微電子電路。該處理路徑包含電路元件,例如,處理邏輯和暫存器電路,而該處理路徑適應地響應於可用於該電路元件的運作參數的數值。該微電子電路包含測試輸入配置,其組構成受控地饋入由測試輸入數值所組成的測試輸入訊號進入該處理路徑的複數個電路元件。該微電子電路包含組構成受控地收集來自該處理路徑的該複數個電路元件的測試輸出數值的測試輸出配置、以及組構成根據該收集的測試輸出數值選擇該運作參數的該數值的運作參數數值選擇器。
依據實施例,該電路元件的一者是暫存器電路,其包含沿著資料傳播路徑串接的第一次暫存器階段和第二次暫存器階段;該暫存器電路包含用於接收觸發訊號的觸發事件輸入,該觸發訊號的觸發邊緣定義可允許時間限制,在可允許時間限制前,數位數值必需出現在該第一次暫存器階段的資料輸入處,以變成暫時地儲存的;並且該暫存器電路包含時序事件觀察階段,其與該資料傳播路徑耦接並且組構成在該暫存器電路的輸出處輸出時序事件觀察訊號,作為該數位數值在該資料輸入處的指示器,該數位數值已經在時間窗口內改變,該時間窗口從該可允許時間限制開始並且比該觸發訊號的一個循環短。這具有以下優點:可在這種暫存器電路中成功地完成時間借用並且所執行的時間借用的指示可用於進一步的處理和結論。
依據實施例,該測試輸出配置是組構成受控地收集來自該暫存器電路的資料輸出的測試輸出數值,該資料輸出是該第二次暫存器階段的輸出。這具有以下優點:可依據DFT原理測試該暫存器電路的正確運作。
依據實施例,該測試輸出配置是組構成受控地收集該時序事件觀察訊號的數值作為該測試輸出數值。這具有以下優點:可依據DFT原理測試該時序事件觀察階段的正確運作。
依據實施例,該運作參數包含下列的至少一者:運作電壓、時脈速度。這具有以下優點:可以各種方式適應該微電子電路的運作。
依據仍然另一個態樣,提供一種暫存器電路,用於暫時地儲存從微電子電路中的先前電路元件的輸出所獲得的數位數值。該暫存器電路包含用於接收數位數值用於暫時性儲存的資料輸入、以及用於輸出該暫時儲存的數位數值的資料輸出。該暫存器電路包含用於接收觸發訊號的觸發事件輸入,該觸發訊號的觸發邊緣定義可允許時間限制,在可允許時間限制前,數位數值必需出現在該資料輸入處,以變成暫時地儲存的,並且在該資料輸入與資料輸出之間的資料傳播路徑上,有一序列的第一次暫存器階段和第二次暫存器階段。該第一次暫存器階段是組構成相對於由該第二次暫存器階段所接收的該觸發訊號而延遲的該觸發訊號,該延遲的長度為該觸發訊號的循環的片段。該暫存器電路包含時序事件觀察邏輯,其組構成在該暫存器電路的輸出處輸出時序事件觀察訊號,作為該數位數值在該資料輸入處的指示器,該數位數值在時間窗口內已經改變,該時間窗口從該可允許時間限制開始並且比該觸發訊號的一個循環短。該暫存器電路是適應地響應於可用於該暫存器電路的運作參數的數值。
依據仍然另一個態樣,提供一種監視器電路,用於偵測微電子電路的暫存器電路中的時序事件。該監視器電路包含用於接收觸發訊號
的觸發事件輸入,該觸發訊號的觸發邊緣定義可允許時間限制,在該可允許時間限制前,數位數值必需出現在該暫存器電路的資料輸入處,以變成暫時地儲存在該暫存器電路。該監視器電路包含監視輸入,其用於在該數位數值出現在該暫存器電路的該資料輸入處的相同時間接收該數位數值的監視副本。該監視器電路包含時序事件觀察輸出、以及時序事件觀察邏輯,該時序事件觀察邏輯組構成在該時序事件觀察輸出處輸出時序事件觀察訊號,作為該數位數值在該資料輸入處的指示器,該數位數值在時間窗口內已經改變,該時間窗口從該可允許時間限制開始並且比該觸發訊號的一個循環短。該監視器電路包含輸出管理單元,組構成致能收集該時序事件觀察訊號的數值,用於該監視器電路外部的進一步處理。該監視器電路適應地響應於可用於該監視器電路的運作參數的數值。
依據實施例,該輸出管理單元包含用於接收輸出凍結命令的控制輸入,其中,該監視器電路是組構成藉由保持該時序事件觀察訊號的目前數值不變,而響應接收到的輸出凍結命令。這具有以下優點:時序事件觀察訊號在測試中的收集不需要以完全時脈速度強制地運作。
依據實施例,該輸出管理單元包含多工器,其組構成選擇性導引該時序事件觀察訊號的數值至該監視器電路外部的掃描鏈,以取代該暫存器電路的資料輸出數值。這具有以下優點:可利用單一掃描鏈用於兩者目的。
101:適應性處理路徑
102:第一開關
103:第二開關
104:運作參數數值選擇器
201:暫存器電路
202、302:資料輸入
203、303:資料輸出
204:第一開關、開關
205:第二開關、下開關、開關
206:第三開關、上開關、開關
207:監視器電路
301:暫存器電路
304:第一開關、開關
305:第二開關、開關
311:複製路徑
312:資料輸入
313:資料輸出
601:暫存器電路
602:適合的暫存器電路
603:時序事件觀察階段
604:資料輸入
605:資料輸出
606:TEO輸出
701:暫存器電路
702:適合的暫存器電路
703:時序事件觀察階段
704:資料輸入
705:資料輸出
706:TEO輸出
707:可控制緩衝器
801:多工器
802:時序事件觀察邏輯、監視器電路
803、903:AND閘
901:觸發訊號多工器
902:多工器
L1:第一閂鎖器、第一次暫存器階段
L2:第二閂鎖器、第二次暫存器階段
904:NOR閘
1801:NAND閘
包括隨附圖式以提供本發明的進一步了解並構成此說明書的一部分,隨附圖式例示本發明的實施例,配合描述有助於了解本發明的原理。在該圖式中:
第1圖例示微電子電路中的適應性和DFT的概念,
第2圖示意地例示適應性監視器電路的使用,
第3圖示意地例示複製路徑的使用,
第4圖例示適應性和DFT的一些有利使用,
第5圖例示適應性和DFT的一些有利使用,
第6圖示意地例示具有監視的暫存器電路,
第7圖示意地例示具有監視和TEO輸出數值保持的暫存器電路,
第8圖例示具有監視器和DFT特性的適應性暫存器電路,
第9圖例示具有監視器和DFT特性的適應性暫存器電路,
第10圖例示具有監視器和DFT特性的適應性暫存器電路,
第11圖例示具有監視器和DFT特性的適應性暫存器電路,
第12圖例示具有監視器和DFT特性的適應性暫存器電路,
第13圖例示具有監視器和DFT特性的適應性暫存器電路,
第14圖例示具有監視器和DFT特性的適應性暫存器電路,
第15圖例示具有監視器和DFT特性的適應性暫存器電路,
第16圖例示具有監視器和DFT特性的適應性暫存器電路,
第17圖例示具有監視器和DFT特性的適應性暫存器電路,以及
第18圖例示具有監視器和DFT特性的適應性暫存器電路。
適應性微電子電路或系統是其中的運作參數的數值在運作期間可以某種方式改變而最佳化效能的一種裝置。最重要的運作參數為運作電壓和時脈速度。最後提到的是確定出現在暫存器電路的輸入處的數位數值會被儲存並在該暫存器電路的輸出處可用的速率。
為了最小化該微電子電路的能量消耗,讓運作電壓儘可能地低是有利的。但運作電壓並不能作得任意地低,因為較低運作電壓在電路元件中的狀態之間引發較慢轉換,其接著可能引發時序錯誤和不確定狀態。然而,可以維持微電子電路的滿意效能的運作電壓的最小值不一定是恆定的,而是可隨著例如系統的溫度、將被處理的資料的重要性、應該實施的處理運作的本質、或類似者而加以變化。關於運作電壓的適應性意指該運作電壓的數值可動態地改變,但同時使用一些監視機制來確保特定測量或效能(像是處理錯誤或時序事件的發生)仍然在特定可接受的限制內。
可以許多方式使用適應性時脈速度,以最佳化效能。高時脈速度自然地讓處理較快,因為處理後的資料通過微電子電路的處理路徑而較快地移動。與此同時,高時脈速度已知增加能量消耗並讓時序事件更頻繁地發生。關於時脈速度的適應性可涉及需要快速處理時讓時脈速度變高,並於最小化能量消耗時優先降低時脈速度。運作電壓和時脈速度也可同時地適應,以發現最佳工作點,在該最佳工作點,該微電子電路的能量消耗相對於電路處理資料的速率是在最小值。
第1圖是適應性微電子電路的示意例示。該圖式也被檢查成用來運作適應性微電子電路的方法的示意例示。在此描述中,該微電子電路是適應性的事實意指該微電子電路的效能可藉由讓運作參數假定為運作
參數數值而加以組構。這些運作參數的範例包括、但不限於運作電壓和時脈速度。
適應性微電子電路包含一個或更多個適應性處理路徑101。處理路徑大致上包含處理邏輯和暫存器電路,並且組構成從輸入至它的輸入數值產生輸出數值。典型地在正常運作模式中,處理邏輯和暫存器電路以交錯方式配置,使得暫時地儲存在第一暫存器電路中的數位數值被饋入至第一片段的處理邏輯,所生成的處理數值被暫時地儲存在第二暫存器中然後從該第二暫存器被饋入至第二片段的處理邏輯,以此類推。處理路徑是適應性處理路徑,如果它的電路元件的一者或更多者是適應性的,使得該處理路徑變成適應地響應用於該一個或更多個電路元件的運作參數的數值。
第1圖的適應性微電子電路也是DFT,意指可測試性設計(Designed For Testability)。此意指它的適應性處理路徑101的一者或更多者可選擇性地設定進入與正常運作模式不同的測試模式。設定適應性處理路徑進入測試模式的範例包含耦接數個暫存器電路進入掃描鏈,使得它們一起運作像是在測試模式中的移位暫存器。
在第1圖的示意呈現中,藉由啟動測試致能(Test Enable)訊號而使設定進入測試模式。第1圖顯示啟動測試致能訊號的三個可能效應。首先,它可影響輸入訊號被供應至適應性處理路徑101的方式:取代在正常模式時輸入所謂功能性輸入訊號,利用該測試模式輸入由測試輸入數值所組成的測試輸入訊號進入該微電子電路內的一個或更多個適應性處理路徑101。其次,它可影響該測試輸入數值在該適應性處理路徑101內被管理(handled)的方式,讓該一個或更多個適應性處理路徑根據輸入至它們的個別測試輸入數值形成測試輸出數值。第三,它可影響由該一個或更多個
適應性處理路徑所給定的該測試輸出數值被收集和形成進入一組測試輸出訊號的方式。
適應性微電子電路包含測試輸入配置,其組構成受控地饋入由測試輸入數值所組成的測試輸入訊號進入適應性處理路徑101的複數個電路元件。第一開關102示意地例示啟動測試致能訊號是如何影響輸入訊號被提供的方式:不是像在正常運作模式時饋入功能訊號,而是饋入測試輸入訊號。測試輸入訊號可舉例來說是已知向量,也就是特別順序的已知序列的數位數值(0和1)。
適應性微電子電路包含測試輸出配置,其組構成受控地收集來自適應性處理路徑101的複數個電路元件的測試輸出數值。第二開關103示意地例示啟動測試致能訊號是如何影響輸出數值被管理的方式:不是將輸出數值引導到進一步的處理或是以其他方式於正常運作模式時使用它,而是收集該測試輸出數值以形成可被檢查的測試輸出訊號。根據這種檢查形成測試結果,以指示該測試如何進行,也就是該測試是否透露出適應性處理路徑101的運作中的任何異狀或錯誤。
啟動測試致能訊號如何影響測試輸入數值在適應性處理路徑101內被管理的方式的範例之後在此文本中會更詳細地描述。應注意到,即使第1圖例示僅例示單一測試致能訊號,此只是例示的簡化。第1圖中有顯示適應性微電子電路的不同部件的個別測試致能訊號,並且這些可彼此獨立或彼此僅有一些相關性而運作,視將作何種測試及將完成什麼而定。
在第1圖中所顯示的方案中,結合DFT和適應性的概念。此意指可使用測試結果以選擇和設定用於適應性微電子電路的一個或更多個運作參數的一個或更多個新數值。第1圖示意地顯示運作參數數值選擇器104,其組構成根據所收集的測試輸出數值選擇運作參數的數值。可使
選擇和設定的運作參數數值直接地影響從中收集測試輸出訊號的一個或更多個適應性處理路徑101的效能。此是以第1圖中的虛線例示。額外地或不同地,可使選擇和設定的運作參數數值影響適應性微電子電路的其它部件的效能。
第2和3圖例示一些稍微更詳細的範例,在該範例中,DFT和適應性是組合在電路元件的階層上。
第2圖示意地例示適應性暫存器電路,其可為適應性微電子電路中的適應性處理路徑的部件。適合的暫存器電路,也就是用於數位數值的暫時儲存,是顯示為201。它具有用來接收數位數值以暫時儲存的資料輸入202、以及用來輸出暫時儲存的數位數值的資料輸出203。適應性微電子電路的測試輸入配置由第一開關204表示,其可用來選擇性耦接功能性輸入訊號(在正常運作模式期間)或測試輸入訊號(在測試模式期間)至該資料輸入202。適應性微電子電路的測試輸出配置由第二開關205和第三開關206表示。這兩者均組構成受控地收集來自適應性暫存器電路的測試輸出數值,以形成測試輸出訊號。
適應性暫存器電路可包含其它輸入,其為了圖式簡潔而沒有顯示在第2圖中。作為範例,適應性暫存器電路可包含觸發事件輸入和測試致能輸入。在這些當中,觸發事件輸入允許暫存器電路接收觸發訊號,該觸發訊號的觸發邊緣定義可允許時間限制(allowable time limit),在該可允許時間限制前,數位數值必需出現在該資料輸入處,以變成暫時地儲存的。觸發訊號通常是稱為時脈訊號。暫存器電路的類型可例如為在時脈訊號的各個升緣處被觸發的類型。在這種案例中,可允許時間限制意指在資料輸入202處的數位數值必需在特定時間窗口內設定妥當,其相關於時脈訊號的升緣而設定,以為了變成正確地暫時地儲存在適應性暫存器電路中。
資料輸入202處的數位數值改變過遲,也就是在可允許時間限制後才改變的情況稱為時序事件。為了用於時序事件的監視,第2圖的適應性暫存器電路包含監視器電路207。它被描述成時序事件觀察(TEO)邏輯,其組構成在暫存器電路的輸出處輸出時序事件觀察(TEO)訊號作為數位數值在資料輸入202處改變過遲的指示器。「過遲」的更精確定義在此方面為「在一個時間窗口內,該時間窗口從該可允許時間限制開始並且比該觸發訊號的一個循環短」。如何實作監視器電路207並不重要,只要它能夠實施此文本中所描述的運作即可。監視器電路如何實作的範例可例如先前提出的專利申請案第PCT/FI2017/050290號中發現者。
可使用在第2圖的適應性暫存器電路的輸出處的下開關205來選擇性地導引資料輸出203處的數位數值至正常運作模式下的正規使用(「功能性輸出」)或至測試數值的收集(「測試輸出」)。類似地,可使用第2圖的適應性暫存器電路的輸出處的上開關206來選擇性地導引TEO輸出處的數位數值至正常運作模式下的正規使用(「功能性TEO輸出」)或至測試數值的收集(「測試TEO輸出」)。
如第2圖的上部分中所例示的,可使用測試致能或其它對應輸入訊號來控制適應性暫存器電路的輸入和輸出連接(也就是開關204、205和206),並連同其內部運作。此意指適應性暫存器電路是DFT(Designed For Testability,或Design-For-Test)。如第2圖的下部分中所例示的,適應性微電子電路中的運作參數的選擇和設定的數值可影響運作電壓、時脈速度、以及也影響第2圖的適應性暫存器電路的其它運作參數數值。此解釋它為何是「適應性」暫存器電路。
使用監視器(或者:「組構成在暫存器電路的輸出處輸出TEO訊號的TEO邏輯,作為數位數值在資料輸入處已經過遲改變的指示器」)
並不是用來在電路元件的階層上結合DFT和適應性的唯一可能性。第3圖示意地例示不同者,也就是複製路徑的使用。
在第3圖中,適應性暫存器電路包含適合的暫存器電路,也就是暫時儲存用於數位數值,是顯示成301。它的資料輸入和資料輸出是分別顯示成302和303。適應性微電子電路的測試輸入配置由第一開關304表示,其可使用來選擇性地耦接功能性輸入訊號(在正常運作模式期間)或測試輸入訊號(在測試模式期間)至資料輸入302。適應性微電子電路的測試輸出配置由第二開關305表示,組構成受控地收集來自適應性暫存器電路的資料輸出303的測試輸出數值,以形成測試輸出訊號。在正常運作模式中,第二開關305導引資料輸出303處的數位數值,以正規使用。
複製路徑311設置在相同適應性微電子電路內。複製路徑311儘可能是適合的暫存器電路301的副本,除了它的資料輸入312是耦接成接收預定測試輸入數值並且它的資料輸出313是固定地耦接成傳送測試輸出數值至測試輸出訊號的形成外。使用複製路徑311的想法是它模仿真實部件的運作,以致於如果該複製路徑的運作開始引發事件,則有可能事件也發生在該真實部件的運作中。複製路徑的運作中的事件較容易偵測,因為至各個複製路徑的輸入數值是預定且已知的。由於沒有兩個電路元件是精確地相同的,因此,所謂的複製路徑限度(margin)可添加至該複製路徑311的運作。使用複製路徑限度意指該複製路徑311是故意地作得有一點較慢及/或相依於比真實部件有一點較高的運作電壓,以致於當時脈速度增加及/或運作電壓降低時,時序事件最可能在該複製路徑311的運作中先變成看得見。
如第3圖的上部分中所例示的,可使用測試致能或其它對應輸入訊號來控制適應性暫存器電路的輸入和輸出連接(也就是開關304和
305),並連同其內部運作,像是開啟或關閉該複製路徑311。此意指該適應性暫存器電路是DFT(Designed For Testability,或Design-For-Test)。如第3圖的下部分中所例示的,適應性微電子電路中的運作參數的選擇和設定數值可影響運作電壓、時脈速度、複製路徑限度、以及也影響第3圖的該適應性暫存器電路的其它運作參數數值。此解釋它為何是「適應性」暫存器電路。
可以許多方式利用DFT和適應性的結合。這種方式的範例例示在第4和5圖中。
第4圖的左手側例示用來動態地最佳化適應性微電子電路的性能的方法,首先沒有利用其DFT特性。此處,額外地假定該適應性微電子電路是配備有上方參考第2圖所解釋的類型的電路元件,以致於時序事件的發生可由監視TEO輸出處所出現的數值而加以監視。此方法於該適應性微電子電路運作在其正常運作模式中時執行。如果觀察到增加數目的時序事件,即使它意指增加能量消耗,則該適應性微電子電路的控制實體降低時脈速度、增加運作電壓、及/或採取一些其它預警動作用來約束時序事件的增加。因此,如果觀察到減少或零數目的時序事件,則該控制實體增加時脈速度、降低運作電壓、及/或採取一些其它有益動作以用來降低能量消耗、增加處理速度、或完成一些其它有利效能目標,同時持續監視時序事件的數目沒有增加至不可接受的程度。
第4圖的右手側例示用來特性化相同適應性微電子電路的方法,利用其DFT特性。該適應性微電子電路是運作在測試模式中,靠它自己(如果它能夠自己產生和分析測試訊號)或與測試裝置結合,舉例來說,在製造線的末端,應該對製造線中剛製造的微電子電路予以特性化。
左分支代表時間借用失能的運作。換言之,即使適應性微電子電路的暫存器電路配備有像第2圖中的監視器,它們是暫時地關閉或它們的TEO輸出沒有使用。嘗試用於運作參數的不同數值;更正式地它可說成至少第一和第二運作參數數值被接續地設定,以用於特別運作參數。根據檢查於該運作參數具有該第一運作參數數值時所形成的第一組測試輸出訊號,形成第一測試結果。根據檢查於該運作參數具有該第二運作參數數值時所形成的第二組測試輸出訊號,形成第二測試結果。可形成特性化數值,以指示該第一與第二測試結果之間的差異。
可重複此測試方式,變化運作參數數值,直到什麼範圍的運作參數數值分別導致可接受和不可接受效能變得清楚為止。舉例來說,運作參數可為時脈速度,而測試可以各種時脈速度重複,直到發現第一效能限制為止:超過某些重要時脈速度,適應性微電子電路會在該測試中作出非常多錯誤,以致於它的效能變得不可接受。由於時間借用是失能的,因此,可將所發現的第一效能限制記錄並文件化適應性微電子電路的「標準」或「正常」效能。
右分支代表時間借用致能的運作。現在暫存器電路的監視器開啟,並且它們的TEO輸出被使用。利用TEO輸出典型地允許適應性微電子電路適當地實施在較高時脈速度及/或較低運作電壓。因此,當重複相同測試時,有可能發現更有利的第二效能限制。此可記錄和文件化適應性微電子電路的「改進」效能,該改進是有效地利用適當地配備的暫存器電路中的時間借用的結果。
在上方,考量到的是整個微電子電路的特性化,但可使用類似方法以特性化較小部件,像是微電子電路內的個別適應性處理路徑。可設定第一和第二運作參數數值,使得該第一運作參數數值在適應性處理路
徑的效應上具有與該第二運作參數數值的不同效果。可注意、記錄和文件化效能中的差異作為適應性處理路徑的DFT和時間借用能力改進了多少其效能的特性化。
可利用第4圖中所例示的方式所作出的特性化來實施所謂的分類(binning)。適應性微電子電路的製造商可能想要根據其以上述方式獲得的電路特定之特性化數值將例如新製造的適應性微電子電路分類為效能分類。
效能分類可包含用於微電子電路的電壓分類,其對應的特性化數值針對電壓分類指示用於給定時脈速度的可接受最小運作電壓。換言之,如果有指定微電子電路應該可接受的時脈速度,則個別微電子電路單元可依據展現需要的效能時的最小運作電壓而放進電壓分類。分類至最低電壓分類的單元典型地為最有價值的。
效能分類可包含用於微電子電路的時脈速度分類,其對應的特性化數值針對時脈速度分類指示在給定運作電壓下的可接受最大時脈速度。相較於電壓分類,這是一種反向分類方法:如果有指定微電子電路應該可接受的特定運作電壓,則個別微電子電路單元可依據仍然展現需要的效能時的最大時脈速度而被放進時脈速度分類。分類至最高時脈速度分類的單元典型地為最有價值的。
效能分類可包含用於微電子電路的能量分類,其對應的特性化數值針對能量分類指示用於最小運作電壓和最大時脈速度的組合的可接受能量消耗。換言之,如果指定運作電壓和時脈速度兩者,則個別微電子電路單元可依據在運作參數的指定數值下展現的能量消耗而被放進能量分類。分類至最小能量分類的單元典型地為最有價值的。
第5圖顯示當微電子電路已經被使用以建立較大電子裝置時,即使在正常使用期間的運行時間中如何利用適應性微電子電路的DFT能力的比較。如第5圖的左手部分所例示的,電路可在正常運作模式中使用其時序事件觀察能力,以監視觀察的時序事件的平均數目。如果出現增加趨勢,也就是如果看起來出現更多時序事件,則它可能意指某些環境情況可能具有增加地不利的影響:舉例來說,周遭溫度可能上升中、或正在進行的太陽風暴可能引發電磁擾動的暫時增加。適應性的電路可藉由降低時脈速度、藉由增加運作電壓、或藉由採取一些其它預警措施,而作出反應。在對應的方式中,測試的時序事件中的減少趨勢可能允許該電路增加時脈速度、降低運作電壓、或以一些其它方式從先前所採取的預警中退出。
在右手側中,是顯示如何採取類似的動作,而不必要藉由觀察時序事件、或至少不用在正常運作模式期間觀察它們,而是藉由暫時地採用內建的測試模式。微電子電路可利用其內建的DFT能力,以實施運行時間測試(run-time test),其目的與上方所解釋的時序事件的觀察類似並引致類似的結果。內建的測試模式中的運作不需要花費很短的時間,因此,微電子電路具有內建DFT能力以及以此方式使用的事實可能會被使用者完全忽略。
第5圖的左方和右方所顯示的實施可以結合,舉例來說,以致於如果觀察到時序事件的數目的改變,則會觸發短暫(short excursion)進入內建測試模式,以便更精確地測量實際發生的情況。這樣,微電子電路可能達成更精確的結論,並且採用更有效和專注的措施,來滿足最初引發觀察到的改變的環境或其它條件的改變。
此處所說的觀察時序事件也可適用於觀察可能由時序事件所引發的錯誤。
第6圖例示暫存器電路601的範例,該暫存器電路601具有DFT特性並且可為適應性的,但不是強制的。暫存器電路601的功能性方塊為適合的暫存器電路602和監視器電路或時序事件觀察階段603。資料輸入604、資料輸出605和TEO輸出606以與第2圖中的對應地命名的部件相同的方式運作。作為額外輸入,有一個或更多個版本的觸發(「時脈」)訊號輸入和與測試模式的使用有關的一個或更多個控制訊號。觸發或時脈訊號的版本可包含舉例來說真實時脈訊號和延遲時脈訊號,以致於該真實和延遲時脈訊號中的升緣之間的時間中的差異定義TEO窗口。「TEO窗口」的概念是指早先已經參考第2圖而描述過的時間窗口:如果資料輸入604處的數位數值在該TEO窗口期間改變,則時序事件觀察階段603會注意到此並且在TEO輸出606處產生對應的TEO輸出訊號。
暫存器電路601的DFT特性包括導引資料輸出605和TEO輸出606至所謂掃描鏈的可能性。這種導引在測試模式中發生並且與DFT原理有關,其中,數個電路元件耦接在一起成為鏈,可從該鏈收集測試輸出數值成為測試輸出訊號。可能有不同掃描鏈用來從資料和TEO輸出收集測試輸出數值,或者可能選擇性地導引它們的任何一者至相同的掃描鏈。
第7圖例示另一個暫存器電路701的範例,該暫存器電路701具有DFT特性並且為適應性的(但不需要是)。暫存器電路701的功能性方塊為適合的暫存器電路702和監視器電路或時序事件觀察階段703。資料輸入704、資料輸出705和TEO輸出706基本上以與第2和6圖中對應命名的部件相同的方式運作。作為額外輸入,有一個或更多個版本的觸發(「時脈」)訊號輸入和與測試模式的使用有關的一個或更多個控制訊號。
與第6圖的差異是在於,暫存器電路701包含脈波(pulsing)或維持TEO輸出的數值的可能性。時序事件觀察階段703的輸出耦接至可
控制緩衝器707,其也接收控制訊號的一者(在第7圖的頂部看到)。響應這種控制訊號的數值,可控制緩衝器707不是讓來自時序事件觀察階段的各個暫態TE(時序事件)旗標以由時脈訊號所決定的速率通過,就是凍結TEO訊號的數值達長於時脈訊號中的一個時脈循環的期間。後者可能地致能稍後收集TEO訊號的凍結數值,以形成在此文本中早先所描述的該組測試輸出訊號。讓TEO數值以由時脈訊號所決定的速率通過是稱為脈波(pulsing),而凍結TEO數值達長於一個時脈循環的期間則稱為維持。
也有可能選擇性地維持TEO輸出的數值。上方所提到的控制訊號的數值可具有以下效應:如果可控制緩衝器707變高,則只凍結TEO訊號的數值。非選擇性維持也可能涉及凍結TEO訊號的低數值。
第8圖例示暫存器電路的範例,該暫存器電路用來暫時地儲存從微電子電路中的先前電路元件的輸出所獲得的數位數值。第8圖的暫存器電路是DFT和適應性的。它包含用來接收數位數值用於暫時儲存的資料輸入:該資料輸入配備有多工器801,其藉由耦接功能性輸入D或測試輸入TI進入暫存器電路而響應TE(測試致能)訊號。暫存器電路包含資料輸出D,用來輸出暫時地儲存的數位數值。額外地,它包含兩個觸發事件輸入CLK和CLKD,用來接收觸發訊號。CLKD輸入組構成在CLK輸入處接收延遲版本的訊號。CLK訊號中的觸發邊緣定義可允許時間限制,在該可允許時間限制前,數位數值必需出現在資料輸入處,以變成暫時地儲存的。在資料輸入與資料輸出之間的資料行進路徑上,有一序列的第一次暫存器階段L1和第二次暫存器階段L2。這些較佳是脈波致能或位準致能的閂鎖器。在下文中,術語閂鎖器是用於次暫存器階段的縮寫。也可使用脈波致能的次暫存器階段或位準致能的次暫存器階段。
CLKD訊號(或實際上:它的反向)行進進入第一閂鎖器L1的致能輸入。此意指第一閂鎖器L1組構成接收與由第二閂鎖器L2所接收的觸發訊號CLK有關而延遲的觸發訊號。該延遲的長度是觸發訊號CLK的循環的片段。
該暫存器電路包含時序事件觀察邏輯802,其組構成在暫存器電路的上輸出處輸出TEO訊號,以作為數位數值在資料輸入處的指示器,該數位數值在以可允許時間限制開始的時間窗口內已經改變且比觸發訊號CLK的一個循環短。此所謂TEO窗口的長度是CLK訊號中的升緣與CLKD訊號中的立即接續的升緣之間的差異。由於CLK訊號與CLKD訊號的反向CLKDn行進進入AND閘803的輸入,因此行進進入時序事件觀察邏輯802的CP輸入的致能訊號tep_win_cp僅在該兩個接續升緣期間是高的。
可以第8圖中所顯示的那種暫存器電路所實施的測試的範例是TEO固定1故障測試(TEO-stuck-at-one test)。測試的目標是核對微電子電路中是否有任何監視器電路(也就是時序事件觀察邏輯)會使它們的TEO輸出固定在邏輯數值1。此可藉由啟動TE訊號並且饋入數位數值沒有改變的測試圖案,而加以測試。由於如果在資料輸入處的數位數值過遲改變則監視器電路的TEO輸出應該只會變高,並且由於此種類的測試圖案涉及完全沒有改變,因此所有TEO輸出應該維持低。如果TEO輸出的任何一者給出高數值,則它識別出至少一個監視器電路是錯誤的,並且它的輸出是固定在高,也就是固定在邏輯數值「1」。
第8圖的暫存器電路可適應性響應用於它的運作參數的數值。舉例來說,可改變CLK(和CLKD)訊號的運作電壓及/或頻率以及該
CLKD訊號中定義窗口的長度的延遲,在該窗口期間,時序事件觀察邏輯802對遲來的資料作出反應。
第9圖例示稍微更精緻的暫存器電路,其是適應性和DFT。至第一閂鎖器L1的觸發訊號可為與觸發第二閂鎖器L2的時脈訊號相同的時脈訊號CP或其延遲版本的CPD(的反向),視控制觸發訊號多工器901的訊號TTBEN的數值而定。第8圖的TE訊號現在以類似地工作的SE(掃描致能(Scan Enable))訊號取代,其控制資料輸入中的多工器801。第8圖的TI訊號在本處重新命名為SI(掃描輸入(Scan Input))。
CP是第9圖中的正常觸發(也就是時脈)訊號,CPN是其反向,而CPD是其延遲版本。TTBEN訊號選擇時序事件觀察是否在使用中,因為TTBEN的數值「1」引發第一和第二閂鎖器L1和L2被精確地同時地觸發,以致於沒有作出時間借用。因此,使TTBEN的邏輯變為高,致能暫存器電路的運作的測試,彷彿它沒有包括任何時間借用。
TMSE(測試監視器掃描致能(Test Monitor Scan Enable))訊號在第二閂鎖器L2的輸入處控制多工器902。它的效應是導引來自第一閂鎖器L1的輸出的中介資料數值q1或來自監視器電路802的輸出的TEO訊號至第二閂鎖器L2。這使得能夠僅用一個測試輸出配置來實作微電子電路,該測試輸出配置組構成受控地收集來自複數個電路元件的測試輸出數值:視TMSE的數值而定,不是資料輸出、就是TEO輸出被收集。
可使用TMTEOH(測試模式時序事件觀察保持(Test Mode Timing Event Observation Hold))訊號來凍結TEO訊號的數值達比時脈訊號CP中的一個時脈循環還長的期間。此致能之後收集的TEO訊號的凍結數值,以形成所需組的測試輸出訊號。CDN訊號是非同步重置,其可用來重置第二閂鎖器L2的輸出。
固定1故障測試在第9圖中可以與第8圖中的上方相同方式作出。在第9圖中,有發現的額外可能性,暫存器電路使其監視器輸出固定在高數值。也就是說,如果掃描鏈的暫存器電路中的所有監視器的TEO輸出均只是行進至OR樹(tree),則它們的輸出在至少一個TEO輸出變高的情況下會變高,但沒有方式得知哪個會變高。在第9圖的配置中,設定TMTEOH為高會凍結各個TEO輸出訊號的數值,並且由於它們是經由多工器902和第二閂鎖器L2而被擷取,並且在具有高數值的一點處(也就是自從在掃描鏈中的那個暫存器電路)退出(clocked out),可從出來的測試訊號而被計數。此也致能決定該問題是否在監視器或在用來結合該監視器的TEO輸出的OR樹中。
第9圖的配置也允許實施TEO固定0故障測試(TEO-stuck-at-zero test)。為了此目的,使用TCPDG(測試時脈脈波延遲閘(Test Clock Pulse Delay Gated))。通常,它的數值是零,因此,AND閘903的輸出採用CPD訊號的數值。使用AND閘903的輸出和反向時脈訊號CPN作為其輸入的NOR閘904產生高脈波在CP訊號的各個升緣和CPD脈波的立即地接續高緣之間,因此定義用於監視器電路802的TEO窗口。如果TCPDG訊號假定高數值,則AND閘903的輸出會保持固定低,而CKP訊號主要是CPN訊號的反向,也就是等於直接時脈訊號CP。此接著意指當TCPDG為高時,由監視器電路802所應用的監視窗口是時脈循環的一半長,也就是與時脈訊號CP中的各個高脈波一樣長。視測試中所使用的時脈速率而定,此一半的時脈循環可比功能性模式中的時脈周期長。以只有一個位元在高數值而所有其餘位元為低的方式傳播測試向量應該現在在掃描鏈中一次觸發各個監視器電路。如果它們的其中一者固定至零,則將在從掃描鏈所收集的測試輸出訊號中會注意到對應的異常。
第10圖例示第9圖的暫存器電路的變體,這次沒有TMTEOH輸入訊號;如果對應的功能性不視為強制的,則它就不必要。第11圖例示出在其他方面類似的變體,但至監視器電路的資料輸入是來自暫存器電路的功能性資料輸入D,以取代如第9和10圖中的資料輸入多工器的輸出。第12圖例示變體,其中,該第一閂鎖器L1和該第二閂鎖器L2兩者均可以根據TTBEN訊號的數值而用CP或CPD訊號選擇性地提供時脈。額外地在第12圖中,輸出多工器1201是放置在第二閂鎖器L2之後,而不是像先前實施例放在該第二閂鎖器L2之前。第13圖例示變體,其中,出現TMTEOH訊號,但資料和TEO輸出沒有一起被多工;兩者均被導引至它們自己的掃描鏈。
第14圖例示變體,其中,沒有使用TMTEOH訊號,也沒有輸出多工器。第15圖例示變體,其中,以簡單方式產生至監視器電路802的時脈脈波訊號,使得它只是CP和反向CPD訊號的AND結果。第16圖例示相同,但沒有TMTEOH訊號,而第17圖例示變體,其中,使用SE訊號以取代TTBEN訊號來控制在輸入處多工的時脈訊號。第18圖例示變體,其中,SE訊號的此使用是相同,並且額外地,使用該SE訊號作為至NAND閘1801的輸入,TMSE訊號是至NAND閘1801的另一輸入。NAND閘1801的輸出作為至最終形成CKP訊號的邏輯中的AND閘903的一個輸入;至該AND閘903的另一輸入是CPD訊號。
所有第9至18圖的共有的特徵是它們揭露用於偵測微電子電路的暫存器電路中的時序事件的監視器電路。在各個案例中,監視器電路包含觸發事件輸入,用來接收觸發訊號,像是時脈訊號或脈波式時脈訊號。這種觸發訊號的觸發邊緣定義可允許時間限制,在可允許時間限制之前,數位數值必需出現在暫存器電路的資料輸入處,以變成暫時地儲存在
該暫存器電路中。觸發事件輸入在圖式中被標註為CP。也在各個案例中,監視器電路包含監視輸入,用來於該數位數值出現在該暫存器電路的該資料輸入處的同時接收討論中的該數位數值的監視副本。該監視輸入在該圖式中被標註為D。
也在各個案例中,該監視器電路包含時序事件觀察輸出,被標註成TEO。該監視器電路內的時序事件觀察邏輯組構成在該TEO輸出處輸出時序事件觀察訊號,作為該數位數值在該暫存器電路的該資料輸入處已經過遲(too late)改變的指示器。此處,「過遲」的定義是「在從該可允許時間限制開始並且比該觸發訊號的一個循環短的時間窗口內」。
在各個案例中,該監視器電路包含輸出管理單元,其組構成致能收集該時序事件觀察訊號的數值,用於該監視器電路外部的進一步處理。在各個案例中,該監視器電路也是適應性的,意指它是適應地響應於可用於該監視器電路的運作參數的數值。
第9至18圖中所顯示的實施例在輸出管理單元或輸出管理功能的實作方式方面彼此之間有些微不同。在該監視器電路中的輸入是用於TMTEOH訊號的實施例中,該輸出管理單元可說是包含用來接收輸出凍結命令的控制輸入,而該監視器電路可說是組構成藉由保持該時序事件觀察訊號的目前數值不變而響應接收到的輸出凍結命令。在第9至12、17和18圖中,該輸出管理單元包含多工器,其組構成選擇性地導引該時序事件觀察訊號的數值至該監視器電路外部的掃描鏈,以取代適合的暫存器電路的資料輸出數值。
對於本領域中具有先進技術的熟習技術者而言是明顯的,本發明的基本想法可以各種方式加以實作。本發明及其實施例因此不限定於所描述的範例,而是它們可在申請專利範圍的範疇內變化。
101:適應性處理路徑
102:第一開關
103:第二開關
104:運作參數數值選擇器
Claims (19)
- 一種用於運作適應性微電子電路之方法,該適應性微電子電路的效能可藉由讓運作參數假定運作參數數值而加以組構,該方法包含:選擇性設定該微電子電路進入測試模式,該測試模式不同於該微電子電路的正常運作模式,利用該測試模式輸入由測試輸入數值所組成的測試輸入訊號進入該微電子電路內的一個或更多個適應性處理路徑,其中,適應性處理路徑包含處理邏輯和暫存器電路,該處理邏輯和該暫存器電路組構成從輸入至該處理邏輯和該暫存器電路的輸入數值產生輸出數值,並且其中,這種適應性處理路徑的效能可藉由讓運作參數假定運作參數數值而加以組構,讓該一個或更多個適應性處理路徑根據輸入至它們的個別測試輸入數值形成測試輸出數值,並且藉由收集由該一個或更多個適應性處理路徑所給定的該測試輸出數值形成一組測試輸出訊號,檢查該組測試輸出訊號,並且根據該檢查形成測試結果,以及使用該測試結果來選擇和設定用於該運作參數的運作參數數值。
- 如申請專利範圍第1項所述之方法,其中,設定該運作參數數值以影響該一個或更多個適應性處理路徑的效能。
- 如申請專利範圍第1或2項所述之方法,包含藉由以下步驟特性化該微電子電路:接續地設定用於該運作參數的至少第一和第二運作參數數值,根據檢查於該運作參數具有該第一運作參數數值時所形成的第一組測試輸出訊號,形成第一測試結果,根據檢查於該運作參數具有該第二運作參數數值時所形成的第二組測試輸出訊號,形成第二測試結果,以及 形成指示該第一與第二測試結果之間的差異的特性化數值。
- 如申請專利範圍第3項所述之方法,包含藉由設定該第一和第二運作參數數值使得該第一運作參數數值在該適應性處理路徑的效能上具有與該第二運作參數數值不同的效應,而特性化該微電子電路內的適應性處理路徑。
- 如申請專利範圍第3項所述之方法,包含根據該特性化數值將該微電子電路分類至效能分類。
- 如申請專利範圍第5項所述之方法,其中,該效能分類為下列的至少一者:用於微電子電路的電壓分類,對應的特性化數值針對該電壓分類指示用於給定時脈速度的可接受最小運作電壓,用於微電子電路的時脈速度分類,對應的特性化數值針對該時脈速度分類指示在給定運作電壓下的可接受最大時脈速度,用於微電子電路的能量分類,對應的特性化數值針對該能量分類指示用於最小運作電壓和最大時脈速度的結合的可接受能量消耗。
- 如申請專利範圍第1項所述之方法,其中:該適應性暫存器電路包含暫存器輸入、時脈輸入、暫存器輸出和時序事件輸出,該適應性暫存器電路包含在該暫存器輸入與該暫存器輸出之間的資料儲存器,用於暫時地儲存在與出現在該時脈輸入處的時脈訊號相關的可允許時間限制時在該暫存器輸入處出現的資料數值,該適應性暫存器電路包含時序事件觀察階段,其組構成在該時序事件輸出處輸出時序事件觀察訊號,以響應在該暫存器輸入處的該資料數值的改變,該改變比與該時脈訊號相關的該可允許時間限制晚發生,以及 形成一組測試輸出訊號的該方法步驟包含收集由該時序事件觀察階段所給定的輸出數值。
- 如申請專利範圍第7項所述之方法,包含:凍結該時序事件觀察訊號的該數值達長於該時脈訊號中的一個時脈循環的期間,用於之後收集該時序事件觀察訊號的凍結數值,以形成該組測試輸出訊號。
- 如申請專利範圍第7或8項所述之方法,包含:暫時地失能該時序事件觀察階段的運作,經由該暫存器輸入將該測試輸入數值輸入至該資料儲存器,以及收集在該暫存器輸出處所給定的該測試輸出數值;用於獨立於該時序事件觀察階段的運作來測試該資料儲存器的運作。
- 如申請專利範圍第1項所述之方法,在該方法中,該測試模式包含至少一個標準化DFT測試模式,包括但不限於固定型故障測試、實速故障測試。
- 一種微電子電路,包含:處理路徑,該處理路徑包含例如處理邏輯和暫存器電路的電路元件,並且該處理路徑係適應性響應可用於該電路元件的運作參數的數值,測試輸入配置,組構成受控地饋入由測試輸入數值所組成的測試輸入訊號進入該處理路徑的複數個電路元件,測試輸出配置,組構成從該處理路徑的該複數個電路元件受控地收集測試輸出數值,以及運作參數數值選擇器,組構成根據該收集的測試輸出數值選擇該運作參數的該數值。
- 如申請專利範圍第11項所述之微電子電路,其中: 該電路元件的一者為暫存器電路,該暫存器電路包含沿著資料傳播路徑串接的第一次暫存器階段和第二次暫存器階段,該暫存器電路包含用於接收觸發訊號的觸發事件輸入,該觸發訊號的觸發邊緣定義可允許時間限制,在該可允許時間限制前,數位數值必須出現在該第一次暫存器階段的資料輸入處,以變成暫時地儲存的,以及該暫存器電路包含時序事件觀察階段,該時序事件觀察階段與該資料傳播路徑耦接並且組構成在該暫存器電路的輸出處輸出時序事件觀察訊號,作為該資料輸入處的該數位數值在時間窗口內已經改變之指示器,該時間窗口從該可允許時間限制時開始並且比該觸發訊號的一個循環短。
- 如申請專利範圍第12項所述之微電子電路,其中,該測試輸出配置組構成從該暫存器電路的資料輸出受控地收集測試輸出數值,該暫存器電路的該資料輸出是該第二次暫存器階段的輸出。
- 如申請專利範圍第12或13項所述之微電子電路,其中,該測試輸出配置組構成受控地收集該時序事件觀察訊號的數值,作為該測試輸出數值。
- 如申請專利範圍第11項所述之微電子電路,其中,該運作參數包含運作電壓和時脈速度的至少一者。
- 一種暫存器電路,用於暫時地儲存從微電子電路中的先前電路元件的輸出所獲得的數位數值,該暫存器電路包含:資料輸入,用於接收該數位數值用於暫時儲存,資料輸出,用於輸出該暫時儲存的數位數值,觸發事件輸入,用於接收觸發訊號,該觸發訊號的觸發邊緣定義可允許時間限制,在該可允許時間限制前,數位數值必須出現在該資料輸入處,以變成暫時地儲存的,以及 一序列的第一次暫存器階段和第二次暫存器階段,在該資料輸入與資料輸出之間的該資料傳播路徑上,其特徵在於,該第一次暫存器階段組構成接收相對於由該第二次暫存器階段所接收的該觸發訊號而延遲的該觸發訊號,該延遲的長度是該觸發訊號的循環的片段,該暫存器電路包含時序事件觀察邏輯,該時序事件觀察邏輯組構成在該暫存器電路的輸出處輸出時序事件觀察訊號,作為在該資料輸入處的該數位數值在時間窗口內已經改變的指示器,該時間窗口從該可允許時間限制時開始並且比該觸發訊號的一個循環短,以及該暫存器電路係適應性響應於可用於該暫存器電路的運作參數的數值。
- 一種監視器電路,用於偵測微電子電路的暫存器電路中的時序事件,該監視器電路包含:觸發事件輸入,用於接收觸發訊號,該觸發訊號的觸發邊緣定義可允許時間限制,在該可允許時間限制前,數位數值必須出現在該暫存器電路的資料輸入處,以變成暫時地儲存在該暫存器電路中,監視輸入,用於在與該數位數值出現在該暫存器電路的該資料輸入處的相同時序,接收該數位數值的監視副本,時序事件觀察輸出,時序事件觀察邏輯,組構成在該時序事件觀察輸出處輸出時序事件觀察訊號,作為在該資料輸入處的該數位數值在時間窗口內已經改變的指示器,該時間窗口從該可允許時間限制時開始並且比該觸發訊號的一個循環短, 其特徵在於:該監視器電路包含輸出管理單元,該輸出管理單元組構成致能收集該時序事件觀察訊號的數值,用於該監視器電路外部的另外處理,以及該監視器電路係適應地響應於可用於該監視器電路的運作參數的數值。
- 如申請專利範圍第17項所述之監視器電路,其中,該輸出管理單元包含用於接收輸出凍結命令的控制輸入,其中,該監視器電路組構成藉由保持該時序事件觀察訊號的目前數值不變而響應接收到的輸出凍結命令。
- 如申請專利範圍第17或18項所述之監視器電路,其中,該輸出管理單元包含多工器,該多工器組構成選擇性導引該時序事件觀察訊號的數值至該監視器電路外部的掃描鏈,以取代該暫存器電路的資料輸出數值。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/FI2018/050753 WO2020079321A1 (en) | 2018-10-16 | 2018-10-16 | Applications of adaptive microelectronic circuits that are designed for testability |
WOPCT/FI2018/050753 | 2018-10-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202026877A TW202026877A (zh) | 2020-07-16 |
TWI843754B true TWI843754B (zh) | 2024-06-01 |
Family
ID=64049283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108137059A TWI843754B (zh) | 2018-10-16 | 2019-10-15 | 可測試性設計之適應性微電子電路的應用 |
Country Status (5)
Country | Link |
---|---|
US (1) | US12085611B2 (zh) |
EP (1) | EP3867657B1 (zh) |
CN (1) | CN112969927B (zh) |
TW (1) | TWI843754B (zh) |
WO (1) | WO2020079321A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020115352A1 (en) * | 2018-12-05 | 2020-06-11 | Minima Processor Oy | Register circuit with detection of data events, and method for detecting data events in a register circuit |
US20220237353A1 (en) * | 2021-01-27 | 2022-07-28 | Taiwan Semiconductor Manufacturing Company Limited | Fault detection of circuit based on virtual defects |
CN115312110A (zh) * | 2021-05-08 | 2022-11-08 | 瑞昱半导体股份有限公司 | 芯片验证系统及其验证方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1486506A (zh) * | 2000-12-01 | 2004-03-31 | 株式会社日立制作所 | 半导体集成电路装置及其识别和制造方法以及半导体芯片 |
US7072781B1 (en) * | 2004-07-06 | 2006-07-04 | Advanced Micro Devices, Inc. | Architecture for generating adaptive arbitrary waveforms |
WO2007038033A2 (en) * | 2005-09-23 | 2007-04-05 | Intel Corporation | Method and apparatus for late timing transition detection |
US20080052585A1 (en) * | 2006-08-02 | 2008-02-28 | Micron Technology, Inc. | Integrated testing apparatus, systems, and methods |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1424615B1 (en) * | 2002-11-28 | 2006-03-08 | Infineon Technologies AG | Semiconductor device for detecting and adjusting a threshold value variation |
TW200819769A (en) | 2006-06-08 | 2008-05-01 | Koninkl Philips Electronics Nv | Testing of a circuit that has an asynchronous timing circuit |
JP2009140130A (ja) * | 2007-12-05 | 2009-06-25 | Nec Electronics Corp | データ処理装置及びデータ処理装置の制御方法 |
US8185791B2 (en) | 2009-05-22 | 2012-05-22 | Arm Limited | Providing tuning limits for operational parameters in data processing apparatus |
US8549369B2 (en) | 2011-05-26 | 2013-10-01 | GlobalFoundries, Inc. | Semiconductor-based test device that implements random logic functions |
US9679664B2 (en) * | 2012-02-11 | 2017-06-13 | Samsung Electronics Co., Ltd. | Method and system for providing a smart memory architecture |
JP2014109453A (ja) | 2012-11-30 | 2014-06-12 | Renesas Electronics Corp | 半導体装置 |
US9046573B1 (en) * | 2013-10-04 | 2015-06-02 | Altera Corporation | Addressable test arrays for characterizing integrated circuit device parameters |
EP3102956B1 (fr) | 2014-02-07 | 2018-04-04 | Commissariat à l'Énergie Atomique et aux Énergies Alternatives | Procédé de caractérisation du fonctionnement d'un circuit électronique numérique et circuit électronique numérique |
US9453879B2 (en) | 2014-12-01 | 2016-09-27 | Apple Inc. | On-die system for monitoring and predicting performance |
EP3613142A4 (en) | 2017-04-18 | 2020-12-09 | Minima Processor Oy | SEQUENTIAL CIRCUIT WITH DETECTION OF TIME EVENTS AND METHOD FOR DETECTION OF TIME EVENTS |
-
2018
- 2018-10-16 WO PCT/FI2018/050753 patent/WO2020079321A1/en active Search and Examination
- 2018-10-16 CN CN201880098721.7A patent/CN112969927B/zh active Active
- 2018-10-16 EP EP18795698.2A patent/EP3867657B1/en active Active
- 2018-10-16 US US17/285,614 patent/US12085611B2/en active Active
-
2019
- 2019-10-15 TW TW108137059A patent/TWI843754B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1486506A (zh) * | 2000-12-01 | 2004-03-31 | 株式会社日立制作所 | 半导体集成电路装置及其识别和制造方法以及半导体芯片 |
US7072781B1 (en) * | 2004-07-06 | 2006-07-04 | Advanced Micro Devices, Inc. | Architecture for generating adaptive arbitrary waveforms |
WO2007038033A2 (en) * | 2005-09-23 | 2007-04-05 | Intel Corporation | Method and apparatus for late timing transition detection |
US20080052585A1 (en) * | 2006-08-02 | 2008-02-28 | Micron Technology, Inc. | Integrated testing apparatus, systems, and methods |
Also Published As
Publication number | Publication date |
---|---|
TW202026877A (zh) | 2020-07-16 |
EP3867657A1 (en) | 2021-08-25 |
CN112969927B (zh) | 2024-07-19 |
US12085611B2 (en) | 2024-09-10 |
EP3867657B1 (en) | 2024-03-27 |
CN112969927A (zh) | 2021-06-15 |
WO2020079321A1 (en) | 2020-04-23 |
US20210318377A1 (en) | 2021-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI843754B (zh) | 可測試性設計之適應性微電子電路的應用 | |
KR101592042B1 (ko) | 스캔 체인을 분석하고, 스캔 체인에서의 홀드 타임 결함의 수 또는 위치를 판정하는 방법 | |
US9222979B2 (en) | On-chip controller and a system-on-chip | |
US20160091566A1 (en) | Integrated circuit wth low power scan flip-flop | |
US20160349318A1 (en) | Dynamic Clock Chain Bypass | |
TWI824055B (zh) | 基於覆蓋率之微電子電路及用於提供微電子電路之設計的方法 | |
US8140923B2 (en) | Test circuit and method for testing of infant mortality related defects | |
US12032460B2 (en) | Systems and methods to test an asynchronous finite machine | |
TWI650566B (zh) | 積體電路測試裝置 | |
US7882454B2 (en) | Apparatus and method for improved test controllability and observability of random resistant logic | |
US9869718B1 (en) | Scan test architecture and method for scan testing | |
US7039842B1 (en) | Measuring propagation delays of programmable logic devices | |
US7334172B2 (en) | Transition fault detection register with extended shift mode | |
JP5540740B2 (ja) | クロック生成回路、半導体集積回路およびその試験システム | |
US20070011529A1 (en) | Semiconductor device and test method thereof | |
US10048315B2 (en) | Stuck-at fault detection on the clock tree buffers of a clock source | |
US20230258714A1 (en) | Icg test coverage with no timing overhead | |
KR20090047027A (ko) | 반도체 회로 테스트를 위한 클럭 제어 회로, 반도체 회로테스트를 위한 클럭 제어 방법 및 클럭 제어 회로를 구비한반도체 장치 | |
US7902856B2 (en) | Semiconductor integrated circuit | |
Hay | Testing low power designs with power-aware test | |
US7676716B2 (en) | Testable tristate bus keeper | |
Vemula | Scan based delay testing |