TWI843497B - An acoustic output device - Google Patents

An acoustic output device Download PDF

Info

Publication number
TWI843497B
TWI843497B TW112110918A TW112110918A TWI843497B TW I843497 B TWI843497 B TW I843497B TW 112110918 A TW112110918 A TW 112110918A TW 112110918 A TW112110918 A TW 112110918A TW I843497 B TWI843497 B TW I843497B
Authority
TW
Taiwan
Prior art keywords
piezoelectric
elastic element
mass
output device
acoustic output
Prior art date
Application number
TW112110918A
Other languages
Chinese (zh)
Other versions
TW202341755A (en
Inventor
朱光遠
張磊
齊心
Original Assignee
大陸商深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210361137.4A external-priority patent/CN116939449A/en
Application filed by 大陸商深圳市韶音科技有限公司 filed Critical 大陸商深圳市韶音科技有限公司
Publication of TW202341755A publication Critical patent/TW202341755A/en
Application granted granted Critical
Publication of TWI843497B publication Critical patent/TWI843497B/en

Links

Abstract

The present disclosure may disclose an acoustic output device, including: piezoelectric elements for converting electrical signals into mechanical vibrations; the upper elastic element and the lower elastic element respectively comprise a plurality of rod structures, each of which comprises one or more bending regions; and the mass element, the upper elastic element and the lower elastic element are respectively connected with the mass element and the piezoelectric element, the upper elastic element and the lower elastic element are distributed up and down along the vibration direction of the mass element, and the upper elastic element or the lower elastic element along the vibration direction of the mass element has at least one axis of symmetry. By setting the shape and structure of the elastic element, the elastic element can provide the shear stress with opposite curl on the plane perpendicular to the vibration direction of the mass element, thus inhibiting the rotation mode generated by the rotation of the mass element and/or piezoelectric element in the plane, then the resonant valley in the frequency response curve of the acoustic output device is improved due to the rotational mode.

Description

聲學輸出裝置Acoustic output device

本發明涉及聲學技術領域,特別涉及一種聲學輸出裝置。The present invention relates to the field of acoustic technology, and in particular to an acoustic output device.

本發明案主張於2022年4月7日提交之申請號為202210361137.4的中國專利申請案的優先權,其全部內容通過引用的方式被包含於此。This invention claims priority to Chinese patent application No. 202210361137.4 filed on April 7, 2022, the entire contents of which are incorporated herein by reference.

壓電式揚聲器通常利用壓電陶瓷材料的逆壓電效應產生振動以向外輻射聲波,與傳動電磁式揚聲器相比,壓電式揚聲器可以具有機電換能效率高、能耗低、體積小、集成度高等優勢,在目前器件小型化和集成化的趨勢下,壓電式揚聲器具有極其廣闊的前景與未來。但是,與傳統的電磁式揚聲器對比,壓電式揚聲器由於壓電聲學器件的低頻響應較差,會使得壓電式揚聲器的低頻音質較差。同時,壓電式揚聲器在可聽域內的振動模態較多,也會導致其在無法形成較為平直的頻響曲線。Piezoelectric speakers usually use the reverse piezoelectric effect of piezoelectric ceramic materials to generate vibrations to radiate sound waves. Compared with transmission electromagnetic speakers, piezoelectric speakers have the advantages of high electromechanical energy conversion efficiency, low energy consumption, small size, and high integration. Under the current trend of device miniaturization and integration, piezoelectric speakers have extremely broad prospects and future. However, compared with traditional electromagnetic speakers, piezoelectric speakers have poor low-frequency sound quality due to the poor low-frequency response of piezoelectric acoustic devices. At the same time, piezoelectric speakers have many vibration modes in the audible domain, which also prevents them from forming a relatively flat frequency curve.

因此,有必要提出一種聲學輸出裝置,以減少可聽域內的振動模態,同時還能提高聲學輸出裝置的低頻回應。Therefore, it is necessary to propose an acoustic output device to reduce the vibration mode in the audible domain and at the same time improve the low-frequency response of the acoustic output device.

說明書實施例提供一種聲學輸出裝置,包括壓電元件,用於將電信號轉換為機械振動;上層彈性元件和下層彈性元件,所述上層彈性元件和所述下層彈性元件分別包括多個杆件結構,每個杆件結構包括一個或多個彎折區域;以及質量元件,所述上層彈性元件和所述下層彈性元件分別連接所述質量元件和所述壓電元件連接,所述質量元件接收所述機械振動以產生聲音信號,其中所述上層彈性元件和所述下層彈性元件沿所述質量元件的振動方向呈上下分佈,且所述上層彈性元件或所述下層彈性元件沿所述質量元件振動方向的投影具有至少一個對稱軸。The embodiment of the specification provides an acoustic output device, including a piezoelectric element for converting an electrical signal into mechanical vibration; an upper elastic element and a lower elastic element, wherein the upper elastic element and the lower elastic element respectively include a plurality of rod structures, each of which includes one or more bending regions; and a mass element, wherein the upper elastic element and the lower elastic element are respectively connected to the mass element and the piezoelectric element, and the mass element receives the mechanical vibration to generate a sound signal, wherein the upper elastic element and the lower elastic element are distributed up and down along the vibration direction of the mass element, and the projection of the upper elastic element or the lower elastic element along the vibration direction of the mass element has at least one symmetry axis.

為了更清楚地說明本發明實施例的技術方案,下面將對實施例描述中所需要使用的附圖作簡單的介紹。顯而易見地,下面描述中的附圖僅僅是本發明的一些示例或實施例,對於本領域的普通技術人員來講,在不付出創造性勞動的前提下,還可以根據這些附圖將本發明應用於其它類似情景。除非從語言環境中顯而易見或另做說明,圖中相同標號代表相同結構或操作。In order to more clearly explain the technical solutions of the embodiments of the present invention, the following will briefly introduce the drawings required for the description of the embodiments. Obviously, the drawings described below are only some examples or embodiments of the present invention. For ordinary technicians in this field, the present invention can also be applied to other similar scenarios based on these drawings without creative work. Unless it is obvious from the language environment or otherwise explained, the same reference numerals in the figures represent the same structure or operation.

應當理解,本文使用的“系統”、“裝置”、“單元”和/或“模組”是用於區分不同級別的不同元件、元件、部件、部分或裝配的一種方法。然而,如果其他詞語可實現相同的目的,則可通過其他表達來替換所述詞語。It should be understood that the "system", "device", "unit" and/or "module" used herein are a method for distinguishing different elements, components, parts, portions or assemblies at different levels. However, if other words can achieve the same purpose, the words can be replaced by other expressions.

如本發明和申請專利範圍書中所示,除非上下文明確提示例外情形,“一”、“一個”、“一種”和/或“該”等詞並非特指單數,也可包括複數。一般說來,術語“包括”與“包含”僅提示包括已明確標識的步驟和元素,而這些步驟和元素不構成一個排它性的羅列,方法或者設備也可能包含其它的步驟或元素。As shown in the present invention and patent application, unless the context clearly indicates an exception, the words "a", "an", "an" and/or "the" do not refer to the singular, but also include the plural. Generally speaking, the terms "include" and "comprise" only indicate that the steps and elements that have been clearly identified are included, and these steps and elements do not constitute an exclusive list. The method or apparatus may also include other steps or elements.

本本發明使用了流程圖用來說明根據本發明的實施例的系統所執行的操作。應當理解的是,前面或後面操作不一定按照順序來精確地執行。相反,可以按照倒序或同時處理各個步驟。同時,也可以將其他操作添加到這些流程中,或從這些流程移除某一步或數步操作。The present invention uses flow charts to illustrate the operations performed by the system according to the embodiments of the present invention. It should be understood that the previous or subsequent operations are not necessarily performed in exact order. Instead, the steps can be processed in reverse order or simultaneously. At the same time, other operations can be added to these processes, or one or more operations can be removed from these processes.

本說明書實施例提供的聲學輸出裝置可以包括但不限於骨傳導揚聲器、氣導揚聲器、骨傳導助聽器或氣導助聽器等。本說明書實施例提供的聲學輸出裝置可以包括壓電元件。壓電元件可以用於將電信號轉換為機械振動。壓電元件可以在逆壓電效應的作用下將輸入的電壓轉換為機械振動,從而輸出振動位移,因此,通過壓電元件輸出位移的聲學輸出裝置也稱為壓電式聲學輸出裝置。壓電式聲學輸出裝置中的壓電元件的工作模式通常採用d33工作模式和d31工作模式。壓電元件在d33工作模式下,壓電元件的極化方向與位移輸出方向相同。壓電元件在d31工作模式下,壓電元件的極化方向與位移輸出方向垂直。由於壓電元件通常具有較高的諧振頻率,因此壓電式聲學輸出裝置通常能夠提升高頻輸出,但壓電元件的低頻回應較差,在可聽域內(如20 Hz-20000 Hz)通常具有較多的振動模態,難以形成較平直的頻響曲線,從而影響聲學輸出裝置輸出的聲音音質。The acoustic output device provided in the embodiments of this specification may include but is not limited to bone conduction speakers, air conduction speakers, bone conduction hearing aids or air conduction hearing aids, etc. The acoustic output device provided in the embodiments of this specification may include piezoelectric elements. Piezoelectric elements can be used to convert electrical signals into mechanical vibrations. Piezoelectric elements can convert input voltage into mechanical vibrations under the action of the inverse piezoelectric effect, thereby outputting vibration displacement. Therefore, an acoustic output device that outputs displacement through a piezoelectric element is also called a piezoelectric acoustic output device. The working mode of the piezoelectric element in the piezoelectric acoustic output device usually adopts the D33 working mode and the D31 working mode. In the D33 working mode, the polarization direction of the piezoelectric element is the same as the displacement output direction. When the piezoelectric element is in the d31 working mode, the polarization direction of the piezoelectric element is perpendicular to the displacement output direction. Since piezoelectric elements usually have a higher resonant frequency, piezoelectric acoustic output devices can usually improve high-frequency output, but piezoelectric elements have poor low-frequency response and usually have more vibration modes in the audible range (such as 20 Hz-20000 Hz), making it difficult to form a relatively flat frequency response curve, thereby affecting the sound quality of the acoustic output device.

為了解決壓電式聲學輸出裝置的低頻回應較差以及可聽域頻率範圍內模態較多的問題,本說明書實施例中提供的聲學輸出裝置可以包括質量元件和彈性元件,利用彈性元件與質量元件的組合結構在低頻範圍內(例如,20 Hz-2000 Hz)構建第一諧振峰,同時利用壓電元件在較高的頻率範圍(例如,1000 Hz-20000 Hz)內構建第二諧振峰,可以使第一諧振峰和第二諧振峰之間形成平直曲線。同時,通過設置彈性元件的形狀和結構,使彈性元件在垂直於質量元件振動方向的平面上能夠提供旋度相反的切應力,從而抑制質量元件和/或壓電元件在該平面內轉動而產生的轉動模態,進而改善聲學輸出裝置的頻響曲線中因轉動模態產生的諧振穀。In order to solve the problem of poor low-frequency response of the piezoelectric acoustic output device and more modes in the audible frequency range, the acoustic output device provided in the embodiment of the present specification may include a mass element and an elastic element. The first resonance peak is constructed in the low-frequency range (for example, 20 Hz-2000 Hz) by using the combined structure of the elastic element and the mass element, and the second resonance peak is constructed in the higher frequency range (for example, 1000 Hz-20000 Hz) by using the piezoelectric element, so that a straight curve can be formed between the first resonance peak and the second resonance peak. At the same time, by setting the shape and structure of the elastic element, the elastic element can provide a shear stress with an opposite rotation on a plane perpendicular to the vibration direction of the mass element, thereby suppressing the rotation mode generated by the rotation of the mass element and/or the piezoelectric element in the plane, and further improving the resonant valley generated by the rotation mode in the frequency curve of the acoustic output device.

圖1是根據本說明書的一些實施例所示的聲學輸出裝置的示例性模組圖。在一些實施例中,聲學輸出裝置100可以包括壓電元件110、質量元件120以及彈性元件130。在一些實施例中,質量元件120可以通過彈性元件130與壓電元件110連接。在一些實施例中,彈性元件130可以是一個,質量元件120可以通過一個彈性元件130與壓電元件110連接。在一些實施例中,彈性元件130也可以是多個,質量元件120可以通過一個或多個彈性元件130與壓電元件110連接。在一些實施例中,壓電元件110可以是一個,也可以是多個。在一些實施例中,質量元件120可以與一個壓電元件110連接。在一些實施例中,質量元件120也可以分別與多個壓電元件110連接。在一些實施例中,多個壓電元件110之間可以相互連接。在一些實施例中,多個壓電元件110之間可以直接連接。在一些實施例中,多個壓電元件110之間也可以通過一個或多個彈性元件130連接。FIG. 1 is an exemplary module diagram of an acoustic output device according to some embodiments of the present specification. In some embodiments, the acoustic output device 100 may include a piezoelectric element 110, a mass element 120, and an elastic element 130. In some embodiments, the mass element 120 may be connected to the piezoelectric element 110 through the elastic element 130. In some embodiments, the elastic element 130 may be one, and the mass element 120 may be connected to the piezoelectric element 110 through one elastic element 130. In some embodiments, the elastic element 130 may be multiple, and the mass element 120 may be connected to the piezoelectric element 110 through one or more elastic elements 130. In some embodiments, the piezoelectric element 110 may be one or multiple. In some embodiments, the mass element 120 may be connected to one piezoelectric element 110. In some embodiments, the mass element 120 may also be connected to multiple piezoelectric elements 110 respectively. In some embodiments, multiple piezoelectric elements 110 may be connected to each other. In some embodiments, multiple piezoelectric elements 110 may be directly connected to each other. In some embodiments, multiple piezoelectric elements 110 may also be connected to each other through one or more elastic elements 130.

壓電元件110可以是具有壓電效應的元器件。在一些實施例中,壓電元件110可以由壓電陶瓷、壓電聚合物等具有壓電效應的材料組成。在一些實施例中,壓電元件110可以用於將電信號轉換為機械振動。例如,當給壓電元件110施加交變的電信號時,壓電元件110可以發生往復變形從而產生機械振動。在一些實施例中,壓電元件110的振動方向與壓電元件110的電學方向(也稱為極化方向)可以相同。在一些實施例中,壓電元件110的振動方向與壓電元件110的電學方向也可以相互垂直。The piezoelectric element 110 may be a component having a piezoelectric effect. In some embodiments, the piezoelectric element 110 may be composed of materials having a piezoelectric effect, such as piezoelectric ceramics and piezoelectric polymers. In some embodiments, the piezoelectric element 110 may be used to convert an electrical signal into a mechanical vibration. For example, when an alternating electrical signal is applied to the piezoelectric element 110, the piezoelectric element 110 may undergo a reciprocating deformation to generate a mechanical vibration. In some embodiments, the vibration direction of the piezoelectric element 110 may be the same as the electrical direction (also referred to as the polarization direction) of the piezoelectric element 110. In some embodiments, the vibration direction of the piezoelectric element 110 and the electrical direction of the piezoelectric element 110 may also be perpendicular to each other.

在一些實施例中,壓電元件110的數量可以是一個,也可以是多個。在一些實施例中,當壓電元件110的數量為多個時,多個壓電元件110可以通過彈性元件130進行連接。在一些實施例中,通過彈性元件130相互連接的壓電元件110中的任意一個可以再次通過另外的彈性元件130與質量元件120連接。在一些實施例中,多個壓電元件110也可以沿多個壓電元件110的振動方向串聯成一個整體,串聯而成的壓電元件110可以通過彈性元件130與質量元件120連接。In some embodiments, the number of the piezoelectric element 110 may be one or more. In some embodiments, when the number of the piezoelectric element 110 is more than one, the multiple piezoelectric elements 110 may be connected via the elastic element 130. In some embodiments, any one of the piezoelectric elements 110 connected to each other via the elastic element 130 may be connected to the mass element 120 via another elastic element 130. In some embodiments, the multiple piezoelectric elements 110 may also be connected in series along the vibration direction of the multiple piezoelectric elements 110 to form a whole, and the series-connected piezoelectric elements 110 may be connected to the mass element 120 via the elastic element 130.

在一些實施例中,壓電元件110可以具有規則(例如,圓形、環形、長方形等)或不規則形狀。例如,壓電元件110可以為環形結構,所述環形結構可以沿著軸線方向發生往復變形從而產生機械振動。再例如,壓電元件110可以包括壓電片和梁結構,所述壓電片可以沿著與壓電片的極化方向垂直的方向產生往復形變,從而帶動梁結構沿著所述壓電片的極化方向翹曲而產生機械振動。所述機械振動的方向可以與梁結構的長軸方向垂直。In some embodiments, the piezoelectric element 110 may have a regular (e.g., circular, annular, rectangular, etc.) or irregular shape. For example, the piezoelectric element 110 may be an annular structure, and the annular structure may be reciprocated along the axial direction to generate mechanical vibration. For another example, the piezoelectric element 110 may include a piezoelectric sheet and a beam structure, and the piezoelectric sheet may be reciprocated along a direction perpendicular to the polarization direction of the piezoelectric sheet, thereby driving the beam structure to bend along the polarization direction of the piezoelectric sheet to generate mechanical vibration. The direction of the mechanical vibration may be perpendicular to the long axis direction of the beam structure.

在一些實施例中,壓電元件110的電學方向(例如,極化方向)可以與壓電元件110的機械振動方向相同。例如,壓電元件110可以在電信號的作用下沿壓電元件110的極化方向產生振動。僅作為示例,壓電元件110可以包括環形結構,環形結構可以是具有環形端面的柱狀結構。在一些實施例中,壓電元件110的極化方向可以平行於環形結構的軸線方向,在電信號的作用下,壓電元件110可以沿壓電元件110的環形結構的軸線方向產生振動。環形結構的軸線可以是連接柱狀結構的兩個環形端面的形心以及連接平行於環形端面的任意截切面的形心的虛擬線條。在一些實施例中,環形結構的軸線方向垂直於環形結構的環形表面。在一些實施例中,環形結構環形端面的形狀可以包括但不限於圓環形、橢圓環形、曲線環形或多邊環形等。在一些實施例中,壓電元件110的極化方向與環形結構的軸線方向平行,在電信號的作用下,壓電元件110可以沿壓電元件110的環形結構的軸線方向產生振動。In some embodiments, the electrical direction (e.g., polarization direction) of the piezoelectric element 110 may be the same as the mechanical vibration direction of the piezoelectric element 110. For example, the piezoelectric element 110 may vibrate along the polarization direction of the piezoelectric element 110 under the action of an electrical signal. As an example only, the piezoelectric element 110 may include an annular structure, and the annular structure may be a columnar structure with an annular end face. In some embodiments, the polarization direction of the piezoelectric element 110 may be parallel to the axial direction of the annular structure, and the piezoelectric element 110 may vibrate along the axial direction of the annular structure of the piezoelectric element 110 under the action of an electrical signal. The axis of the annular structure can be a virtual line connecting the centroids of the two annular end faces of the columnar structure and connecting the centroids of any cross-sections parallel to the annular end faces. In some embodiments, the axial direction of the annular structure is perpendicular to the annular surface of the annular structure. In some embodiments, the shape of the annular end face of the annular structure can include but is not limited to a circular ring, an elliptical ring, a curved ring or a polygonal ring. In some embodiments, the polarization direction of the piezoelectric element 110 is parallel to the axial direction of the annular structure. Under the action of an electrical signal, the piezoelectric element 110 can vibrate along the axial direction of the annular structure of the piezoelectric element 110.

在一些實施例中,壓電元件110可以包括壓電片和基板。所述基板可以為梁結構,所述壓電片貼附在所述梁結構上。在電信號的作用下,所述壓電片可以發生往復形變,從而帶動梁結構振動。僅作為示例,壓電片可以在電信號的作用下沿著與壓電片的極化方向垂直的方向發生往復形變。所述往復形變可以進一步帶動梁結構沿著壓電片的極化方向發生翹曲,產生機械振動。所述機械振動的振動方向與所述壓電片的電學方向平行。In some embodiments, the piezoelectric element 110 may include a piezoelectric sheet and a substrate. The substrate may be a beam structure, and the piezoelectric sheet is attached to the beam structure. Under the action of an electrical signal, the piezoelectric sheet may undergo reciprocating deformation, thereby driving the beam structure to vibrate. As an example only, the piezoelectric sheet may undergo reciprocating deformation in a direction perpendicular to the polarization direction of the piezoelectric sheet under the action of an electrical signal. The reciprocating deformation may further drive the beam structure to warp along the polarization direction of the piezoelectric sheet, generating mechanical vibration. The vibration direction of the mechanical vibration is parallel to the electrical direction of the piezoelectric sheet.

質量元件120可以是具有一定質量的元件。在一些實施例中,質量元件120可以作為聲學輸出裝置100的振動板或者振膜,以使聲學輸出裝置100通過質量元件120輸出振動。在一些實施例中,質量元件120的材料可以是金屬材料或非金屬材料。金屬材料可以包括但不限於鋼材(例如,不銹鋼、碳素鋼等)、輕質合金(例如,鋁合金、鈹銅、鎂合金、鈦合金等)等,或其任意組合。非金屬材料可以包括但不限於高分子材料、玻璃纖維、碳纖維、石墨纖維、碳化矽纖維等。在一些實施例中,質量元件120沿質量元件120的振動方向的投影可以為圓形、環形、矩形、五邊形、六邊形等規則和/或不規則多邊形。The mass element 120 may be an element with a certain mass. In some embodiments, the mass element 120 may be used as a vibration plate or a diaphragm of the acoustic output device 100, so that the acoustic output device 100 outputs vibrations through the mass element 120. In some embodiments, the material of the mass element 120 may be a metal material or a non-metal material. The metal material may include but is not limited to steel (e.g., stainless steel, carbon steel, etc.), light alloy (e.g., aluminum alloy, cobalt, magnesium alloy, titanium alloy, etc.), etc., or any combination thereof. The non-metal material may include but is not limited to polymer materials, glass fibers, carbon fibers, graphite fibers, silicon carbide fibers, etc. In some embodiments, the projection of the mass element 120 along the vibration direction of the mass element 120 may be a regular and/or irregular polygon such as a circle, a ring, a rectangle, a pentagon, a hexagon, etc.

在一些實施例中,質量元件120可以通過彈性元件130與壓電元件110連接,質量元件120接收壓電元件110的機械振動以產生聲音信號。在一些實施例中,質量元件120和與其連接的彈性元件130諧振可以使聲學輸出裝置100產生第一諧振峰。第一諧振峰對應的第一諧振頻率的大小受質量元件120的質量和彈性元件130的彈性係數的影響。在一些實施例中,第一諧振峰的頻率(也稱為第一諧振頻率)可以用公式(1)表示: ,(1) 其中, f表示第一諧振頻率, m表示質量元件120的質量, k表示彈性元件120的彈性係數。根據公式(1)可知,可以通過調整質量元件120的質量和/或彈性元件120的彈性係數來調整第一諧振峰對應的第一諧振頻率的大小,從而使第一諧振峰位於所需的頻率範圍內。 In some embodiments, the mass element 120 can be connected to the piezoelectric element 110 through the elastic element 130, and the mass element 120 receives the mechanical vibration of the piezoelectric element 110 to generate an acoustic signal. In some embodiments, the resonance of the mass element 120 and the elastic element 130 connected thereto can cause the acoustic output device 100 to generate a first resonance peak. The magnitude of the first resonance frequency corresponding to the first resonance peak is affected by the mass of the mass element 120 and the elastic coefficient of the elastic element 130. In some embodiments, the frequency of the first resonance peak (also referred to as the first resonance frequency) can be expressed by formula (1): , (1) wherein f represents the first resonant frequency, m represents the mass of the mass element 120, and k represents the elastic coefficient of the elastic element 120. According to formula (1), the magnitude of the first resonant frequency corresponding to the first resonant peak can be adjusted by adjusting the mass of the mass element 120 and/or the elastic coefficient of the elastic element 120, so that the first resonant peak is located within the desired frequency range.

在一些實施例中,質量元件120可以通過彈性元件130與壓電元件110的內側連接。在一些實施例中,當壓電元件110基於電信號產生振動時,該振動通過彈性元件130傳遞至質量元件120,使質量元件120產生與壓電元件110的振動方向平行的振動。在一些實施例中,質量元件120與彈性元件130可以有一個或多個連接點。所述連接點沿壓電元件110的軸線方向的投影位於壓電元件110沿壓電元件110的軸線方向的投影以內。In some embodiments, the mass element 120 may be connected to the inner side of the piezoelectric element 110 through the elastic element 130. In some embodiments, when the piezoelectric element 110 vibrates based on an electrical signal, the vibration is transmitted to the mass element 120 through the elastic element 130, so that the mass element 120 vibrates parallel to the vibration direction of the piezoelectric element 110. In some embodiments, the mass element 120 and the elastic element 130 may have one or more connection points. The projection of the connection point along the axial direction of the piezoelectric element 110 is located within the projection of the piezoelectric element 110 along the axial direction of the piezoelectric element 110.

在一些實施例中,質量元件120可以通過彈性元件130與壓電元件110的外側連接。例如,質量元件120的至少一部分為環形結構,質量元件120可以通過該環形結構與壓電元件110連接。例如,該環形結構可以位於壓電元件110的外部,環形結構的內徑可以大於壓電元件110的環形結構的外徑,使得質量元件120的環形結構沿壓電元件110的軸線方向的投影可以位於壓電元件110沿壓電元件110的軸線方向的投影以外。In some embodiments, the mass element 120 may be connected to the outer side of the piezoelectric element 110 through the elastic element 130. For example, at least a portion of the mass element 120 is a ring structure, and the mass element 120 may be connected to the piezoelectric element 110 through the ring structure. For example, the ring structure may be located outside the piezoelectric element 110, and the inner diameter of the ring structure may be greater than the outer diameter of the ring structure of the piezoelectric element 110, so that the projection of the ring structure of the mass element 120 along the axial direction of the piezoelectric element 110 may be located outside the projection of the piezoelectric element 110 along the axial direction of the piezoelectric element 110.

在一些實施例中,質量元件120的至少一部分可以位於多個壓電元件110之間。在一些實施例中,壓電元件110可以包括直徑不同的第一壓電元件和第二壓電元件,第二壓電元件設置於第一壓電元件的內側,質量元件120的至少一部分可以位於第一壓電元件和第二壓電元件之間。在一些實施例中,質量元件120的至少一部分可以是環形結構,質量元件120的環形結構沿壓電元件110的軸線方向的投影可以位於第一壓電元件和第二壓電元件沿壓電元件110的軸線方向的投影之間。In some embodiments, at least a portion of the mass element 120 may be located between the plurality of piezoelectric elements 110. In some embodiments, the piezoelectric element 110 may include a first piezoelectric element and a second piezoelectric element having different diameters, the second piezoelectric element being disposed inside the first piezoelectric element, and at least a portion of the mass element 120 may be located between the first piezoelectric element and the second piezoelectric element. In some embodiments, at least a portion of the mass element 120 may be a ring structure, and the projection of the ring structure of the mass element 120 along the axial direction of the piezoelectric element 110 may be located between the projections of the first piezoelectric element and the second piezoelectric element along the axial direction of the piezoelectric element 110.

在一些實施例中,當質量元件120的形狀為環形時,質量元件120沿壓電元件110的軸線方向遠離壓電元件110的一側可以設置有蓋板。蓋板可以對質量元件120沿壓電元件110的軸線方向遠離壓電元件110的一側進行密封。例如,質量元件120的形狀為圓環形,蓋板可以為圓形結構,蓋板的周側與質量元件120沿壓電元件110的軸線方向遠離壓電元件110的一側連接。通過在質量元件120沿壓電元件110的軸線方向遠離壓電元件110的一側設置蓋板,可以將蓋板作為振動板用於傳遞振動信號。在一些實施例中,蓋板還可以用於連接質量元件120與聲學輸出裝置100的其他結構,例如,振膜,以便使聲學輸出裝置100通過質量元件120驅動振膜振動。In some embodiments, when the mass element 120 is in the shape of a ring, a cover plate may be provided on one side of the mass element 120 that is away from the piezoelectric element 110 along the axial direction of the piezoelectric element 110. The cover plate may seal the side of the mass element 120 that is away from the piezoelectric element 110 along the axial direction of the piezoelectric element 110. For example, when the mass element 120 is in the shape of a ring, the cover plate may be a circular structure, and the periphery of the cover plate is connected to the side of the mass element 120 that is away from the piezoelectric element 110 along the axial direction of the piezoelectric element 110. By arranging a cover plate on a side of the mass element 120 away from the piezoelectric element 110 along the axial direction of the piezoelectric element 110, the cover plate can be used as a vibration plate for transmitting a vibration signal. In some embodiments, the cover plate can also be used to connect the mass element 120 to other structures of the acoustic output device 100, such as a diaphragm, so that the acoustic output device 100 drives the diaphragm to vibrate through the mass element 120.

彈性元件130可以是在外部載荷的作用下能夠發生彈性形變的元件。在一些實施例中,彈性元件130可以為具有良好彈性(即易發生彈性形變)的材料,使得與其連接的質量元件120具有良好的振動回應能力。在一些實施例中,彈性元件130的材質可以包括但不限於金屬材料、高分子材料、膠類材料等中的一種或多種。在一些實施例中,彈性元件130的數量可以是一個,也可以是多個。在一些實施例中,質量元件120可以通過一個彈性元件130與壓電元件110連接。例如,彈性元件130的形狀可以是環形,質量元件120與壓電元件110可以通過環形的彈性元件130進行連接。在一些實施例中,質量元件120可以通過多個彈性元件130與壓電元件110連接。例如,彈性元件130可以包括杆件結構,多個彈性元件130沿壓電元件110的圓周分佈並與質量元件120連接。The elastic element 130 may be an element that can undergo elastic deformation under the action of an external load. In some embodiments, the elastic element 130 may be a material with good elasticity (i.e., easy to undergo elastic deformation), so that the mass element 120 connected thereto has good vibration response capability. In some embodiments, the material of the elastic element 130 may include but is not limited to one or more of metal materials, polymer materials, and gel materials. In some embodiments, the number of elastic elements 130 may be one or more. In some embodiments, the mass element 120 may be connected to the piezoelectric element 110 through an elastic element 130. For example, the shape of the elastic element 130 may be annular, and the mass element 120 and the piezoelectric element 110 may be connected through the annular elastic element 130. In some embodiments, the mass element 120 may be connected to the piezoelectric element 110 via a plurality of elastic elements 130. For example, the elastic element 130 may include a rod structure, and the plurality of elastic elements 130 are distributed along the circumference of the piezoelectric element 110 and connected to the mass element 120.

在一些實施例中,彈性元件130可以是傳振片。彈性元件130連接質量元件120與壓電元件110時,彈性元件130可以將壓電元件110產生的振動傳遞給質量元件120,以使質量元件120產生振動。在一些實施例中,彈性元件130也可以是傳振片上設置的連接杆,從而使得聲學輸出裝置100的加工過程更加簡便快捷。In some embodiments, the elastic element 130 may be a vibration-transmitting sheet. When the elastic element 130 connects the mass element 120 and the piezoelectric element 110, the elastic element 130 may transmit the vibration generated by the piezoelectric element 110 to the mass element 120, so that the mass element 120 vibrates. In some embodiments, the elastic element 130 may also be a connecting rod provided on the vibration-transmitting sheet, thereby making the processing of the acoustic output device 100 simpler and faster.

在一些實施例中,彈性元件130可以為單層結構,單層結構是指一個或多個彈性元件130位於垂直於壓電元件110軸線方向的同一平面內。在一些實施例中,彈性元件130可以為多層結構,多層結構是指多個彈性元件位於垂直於壓電元件110軸線方向的不同平面內。In some embodiments, the elastic element 130 may be a single-layer structure, which means that one or more elastic elements 130 are located in the same plane perpendicular to the axial direction of the piezoelectric element 110. In some embodiments, the elastic element 130 may be a multi-layer structure, which means that multiple elastic elements are located in different planes perpendicular to the axial direction of the piezoelectric element 110.

在一些實施例中,彈性元件130的形狀可以包括但不限於折線形、S形、樣條曲線形、弧形和直線形中的至少一種。彈性元件130的形狀可以根據聲學輸出裝置100的需求(例如,第一諧振峰的位置、加工聲學輸出裝置100的難易程度等)進行設置。In some embodiments, the shape of the elastic element 130 may include but is not limited to at least one of a zigzag shape, an S-shape, a spline curve shape, an arc shape, and a straight line shape. The shape of the elastic element 130 may be set according to the requirements of the acoustic output device 100 (for example, the position of the first resonance peak, the difficulty of processing the acoustic output device 100, etc.).

在一些實施例中,在聲學輸出裝置100的振動過程中,由於彈性元件130具有彎曲形狀,因此,在彎曲形狀所在的平面內,彈性元件130可能對質量元件120(和/或壓電元件110)提供切應力,當多個彈性元件130對質量元件120提供的切應力旋度相同時,質量元件120(和/或壓電元件110)可能存在繞其中心軸轉動的趨勢。切應力可以是彈性元件130向質量元件120(和/或壓電元件110)提供的與質量元件120上垂直於質量元件120的振動方向的任意截面相切的應力。在一些實施例中,在垂直於質量元件120振動方向的平面上,彈性元件130的至少兩個部分(例如,彈性元件中的上層彈性元件和下層彈性元件、杆件結構210中的第一彎折區域211和第二彎折區域212等)可以提供旋度相反的切應力。在一些實施例中,彈性元件130與質量元件120(和/或壓電元件110)連接,為了避免與彈性元件130連接的質量元件120(和/或壓電元件110)產生轉動趨勢,彈性元件130的至少兩個部分可以為質量元件120(和/或壓電元件110)提供旋度相反的切應力。旋度(也稱為旋度向量)可以為用於衡量切應力這一向量場的旋轉性質的向量運算元,該向量運算元的大小可以衡量切應力向量場的旋轉程度,該向量運算元的方向可以衡量切應力向量場的旋轉方向。旋度向量的方向可以根據旋轉方向、使用右手定則進行判斷。例如,壓電元件110在受到彈性元件130提供的切應力產生轉動時,根據右手定則,四指彎曲方向與環形結構的旋轉(或旋轉趨勢)方向一致,此時拇指的指向即為旋度向量的方向。在一些實施例中,彈性元件130可以包括至少兩個部分,所述至少兩個部分向質量元件120(和/或壓電元件110)提供的切應力的旋度可以相反,從而可以相互抵消,使得彈性元件130整體向質量元件120提供的切應力為零或接近為零,從而防止或者減小質量元件120的轉動。In some embodiments, during the vibration of the acoustic output device 100, since the elastic element 130 has a curved shape, the elastic element 130 may provide shear stress to the mass element 120 (and/or the piezoelectric element 110) in the plane where the curved shape is located. When the shear stress rotation provided by multiple elastic elements 130 to the mass element 120 is the same, the mass element 120 (and/or the piezoelectric element 110) may have a tendency to rotate around its central axis. The shear stress may be a stress provided by the elastic element 130 to the mass element 120 (and/or the piezoelectric element 110) that is tangential to any cross section of the mass element 120 that is perpendicular to the vibration direction of the mass element 120. In some embodiments, on a plane perpendicular to the vibration direction of the mass element 120, at least two parts of the elastic element 130 (for example, the upper elastic element and the lower elastic element in the elastic element, the first bending area 211 and the second bending area 212 in the rod structure 210, etc.) can provide shear stress with opposite rotation. In some embodiments, the elastic element 130 is connected to the mass element 120 (and/or the piezoelectric element 110). In order to prevent the mass element 120 (and/or the piezoelectric element 110) connected to the elastic element 130 from generating a rotational tendency, at least two parts of the elastic element 130 can provide shear stress with opposite rotation to the mass element 120 (and/or the piezoelectric element 110). The curl (also called the curl vector) can be a vector operator used to measure the rotational property of the shear stress vector field. The magnitude of the vector operator can measure the degree of rotation of the shear stress vector field, and the direction of the vector operator can measure the rotation direction of the shear stress vector field. The direction of the curl vector can be determined based on the rotation direction and the right-hand rule. For example, when the piezoelectric element 110 rotates due to the shear stress provided by the elastic element 130, according to the right-hand rule, the bending direction of the four fingers is consistent with the rotation (or rotation trend) direction of the annular structure. At this time, the direction of the thumb is the direction of the curl vector. In some embodiments, the elastic element 130 may include at least two parts, and the rotation of the shear stress provided by the at least two parts to the mass element 120 (and/or the piezoelectric element 110) may be opposite, so that they can offset each other, so that the shear stress provided by the elastic element 130 as a whole to the mass element 120 is zero or close to zero, thereby preventing or reducing the rotation of the mass element 120.

在一些實施例中,彈性元件130可以包括多個杆件結構,每個杆件結構包括一個或多個彎折區域(例如,圖2所示的第一彎折區域211、第二彎折區域212等),每個彎折區域提供的切應力對應一個旋度。在一些實施例中,一個或多個彎折區域中的每個彎折區域提供的切應力對應的旋度的方向可以相同或不同。在一些實施例中,每個彎折區域提供的切應力對應的旋度的方向可以相反。In some embodiments, the elastic element 130 may include a plurality of rod structures, each of which includes one or more bending regions (e.g., the first bending region 211, the second bending region 212, etc. shown in FIG. 2 ), and the shear stress provided by each bending region corresponds to a curl. In some embodiments, the directions of the curls corresponding to the shear stress provided by each bending region in the one or more bending regions may be the same or different. In some embodiments, the directions of the curls corresponding to the shear stress provided by each bending region may be opposite.

在一些實施例中,彈性元件130的數量為多個時,相鄰彈性元件130的彎折區域提供的切應力對應的旋度可以不同。在一些實施例中,當彈性元件130為單層結構時,多個彈性元件130沿質量元件120的振動方向的投影可以具有兩個相互垂直的對稱軸,以使得相鄰彈性元件130的彎折區域提供的切應力對應的旋度不同。In some embodiments, when there are multiple elastic elements 130, the curls corresponding to the shear stress provided by the bending regions of adjacent elastic elements 130 may be different. In some embodiments, when the elastic elements 130 are a single-layer structure, the projections of the multiple elastic elements 130 along the vibration direction of the mass element 120 may have two mutually perpendicular symmetry axes, so that the curls corresponding to the shear stress provided by the bending regions of adjacent elastic elements 130 are different.

在一些實施例中,當彈性元件130為多層結構時,不同層的彈性元件130的彎折區域提供的切應力對應的旋度可以不同。在一些實施例中,彈性元件130可以是雙層結構,所述雙層結構提供的切應力的旋度可以相反。僅作為示例,彈性元件130可以包括第一螺旋結構和第二螺旋結構,第一螺旋結構和第二螺旋結構分別在垂直於壓電元件110軸線方向的不同平面內連接質量元件120和壓電元件110。在一些實施例中,第一螺旋結構和第二螺旋結構的軸線可以相同,且螺旋方向相反。通過設置螺旋方向相反的第一螺旋結構和第二螺旋結構,可以使得不同層的彈性元件130對質量元件120(和/或壓電元件110)提供的切應力的旋度方向相反,從而使得不同層的彈性元件130對質量元件120提供的切應力可以相互抵消,進而避免質量元件120存在轉動趨勢。關於彈性元件130的彎折區域及其設置的更多描述可以參見本說明書圖2-圖8B及其相關描述。In some embodiments, when the elastic element 130 is a multi-layer structure, the curl corresponding to the shear stress provided by the bending regions of the elastic elements 130 of different layers may be different. In some embodiments, the elastic element 130 may be a double-layer structure, and the curl of the shear stress provided by the double-layer structure may be opposite. As an example only, the elastic element 130 may include a first spiral structure and a second spiral structure, and the first spiral structure and the second spiral structure respectively connect the mass element 120 and the piezoelectric element 110 in different planes perpendicular to the axis direction of the piezoelectric element 110. In some embodiments, the axes of the first spiral structure and the second spiral structure may be the same, and the spiral directions may be opposite. By setting the first spiral structure and the second spiral structure with opposite spiral directions, the shear stress provided by the elastic elements 130 of different layers to the mass element 120 (and/or the piezoelectric element 110) can have opposite curl directions, so that the shear stress provided by the elastic elements 130 of different layers to the mass element 120 can offset each other, thereby avoiding the mass element 120 from having a rotation tendency. For more descriptions of the bending area of the elastic element 130 and its setting, please refer to FIG. 2 to FIG. 8B and related descriptions of this specification.

在一些實施例中,聲學輸出裝置100在可聽域頻率範圍內可以形成至少兩個諧振峰。在一些實施例中,彈性元件130和質量元件120諧振可以產生第一諧振峰;壓電元件110諧振可以產生第二諧振峰。在一些實施例中,第一諧振峰對應的頻率(也可以稱為第一諧振頻率)可以位於低頻範圍(例如,小於2000Hz)內,第二諧振峰對應的頻率(也可以稱為第二諧振頻率)可以位於中高頻(例如,大於1000Hz)範圍內。在一些實施例中,第二諧振峰對應的第二諧振頻率可以高於第一諧振峰對應的第一諧振頻率。在一些實施例中,第二諧振峰和第一諧振峰之間不體現諧振穀,第一諧振峰和第二諧振峰之間可以形成較為平直的曲線,從而提高聲學輸出裝置100的輸出聲音的音質。In some embodiments, the acoustic output device 100 may form at least two resonance peaks within the audible frequency range. In some embodiments, the elastic element 130 and the mass element 120 may resonate to generate a first resonance peak; the piezoelectric element 110 may resonate to generate a second resonance peak. In some embodiments, the frequency corresponding to the first resonance peak (also referred to as the first resonance frequency) may be in the low frequency range (e.g., less than 2000 Hz), and the frequency corresponding to the second resonance peak (also referred to as the second resonance frequency) may be in the mid-high frequency range (e.g., greater than 1000 Hz). In some embodiments, the second resonance frequency corresponding to the second resonance peak may be higher than the first resonance frequency corresponding to the first resonance peak. In some embodiments, there is no resonance valley between the second resonance peak and the first resonance peak, and a relatively flat curve may be formed between the first resonance peak and the second resonance peak, thereby improving the sound quality of the output sound of the acoustic output device 100.

在一些實施例中,根據公式(1)可知,可以通過調整質量元件120的質量和/或彈性元件130的彈性係數來調整第一諧振峰對應的第一諧振頻率的頻率範圍。在一些實施例中,第一諧振峰對應的第一諧振頻率的頻率範圍可以為50 Hz-2000 Hz。在一些實施例中,為了提高聲學輸出裝置100在較低頻率範圍內的聲音輸出,第一諧振峰對應的第一諧振頻率的頻率範圍可以為50 Hz-1000 Hz。In some embodiments, according to formula (1), the frequency range of the first harmonic frequency corresponding to the first harmonic peak can be adjusted by adjusting the mass of the mass element 120 and/or the elastic coefficient of the elastic element 130. In some embodiments, the frequency range of the first harmonic frequency corresponding to the first harmonic peak can be 50 Hz-2000 Hz. In some embodiments, in order to improve the sound output of the acoustic output device 100 in a lower frequency range, the frequency range of the first harmonic frequency corresponding to the first harmonic peak can be 50 Hz-1000 Hz.

在一些實施例中,可以通過調整壓電元件110的結構參數(例如,尺寸、形狀、質量、材質等)來調整第二諧振峰對應的第二諧振頻率的頻率範圍。在一些實施例中,第二諧振頻率可以是壓電元件110的固有頻率。在一些實施例中,第二諧振峰對應的第二諧振頻率的頻率範圍可以為1000 Hz-50000 Hz。在一些實施例中,為了提高聲學輸出裝置100在較高頻率範圍內的聲音輸出,第二諧振峰對應的第二諧振頻率的頻率範圍可以為3000 Hz-10000 Hz。In some embodiments, the frequency range of the second harmonic frequency corresponding to the second harmonic peak can be adjusted by adjusting the structural parameters (e.g., size, shape, mass, material, etc.) of the piezoelectric element 110. In some embodiments, the second harmonic frequency can be the natural frequency of the piezoelectric element 110. In some embodiments, the frequency range of the second harmonic frequency corresponding to the second harmonic peak can be 1000 Hz-50000 Hz. In some embodiments, in order to improve the sound output of the acoustic output device 100 in a higher frequency range, the frequency range of the second harmonic frequency corresponding to the second harmonic peak can be 3000 Hz-10000 Hz.

在一些實施例中,為了使聲學輸出裝置100的頻響曲線在第一諧振峰和第二諧振峰之間有較大範圍的平坦區域,從而保證聲學輸出裝置100的低頻回應以及輸出聲音的音質,第二諧振峰對應的第二諧振頻率與第一諧振峰對應的第一諧振頻率的頻率比值範圍可以為20-200。在一些實施例中,第二諧振峰對應的第二諧振頻率與第一諧振峰對應的第一諧振頻率的頻率比值範圍可以為50-150。In some embodiments, in order to make the frequency curve of the acoustic output device 100 have a relatively large flat area between the first harmonic peak and the second harmonic peak, thereby ensuring the low-frequency response of the acoustic output device 100 and the sound quality of the output sound, the frequency ratio of the second harmonic frequency corresponding to the second harmonic peak to the first harmonic frequency corresponding to the first harmonic peak may be in the range of 20-200. In some embodiments, the frequency ratio of the second harmonic frequency corresponding to the second harmonic peak to the first harmonic frequency corresponding to the first harmonic peak may be in the range of 50-150.

在一些實施例中,彈性元件可以用於連接壓電元件與質量元件以傳遞振動。因此,彈性元件的結構設計可以影響聲學輸出裝置的振動特性。在一些實施例中,為了滿足彈性元件對於彈性係數的需求,可以將彈性元件設計成曲線形以增加彈性元件的長度,從而降低彈性元件的彈性係數。這種設置方式下,若彈性元件的形狀存在旋轉或非對稱構型,該構型可能會在垂直於質量元件振動方向的平面上為質量元件提供切應力,使聲學輸出裝置的質量元件在振動時產生轉動模態,從而影響聲學輸出裝置的輸出(在頻響曲線中可能表現為諧振穀),進而影響聲學輸出裝置的振動性能。因此,可以對彈性元件的結構進行合理的設計,以保證聲學輸出裝置的振動性能。In some embodiments, the elastic element can be used to connect the piezoelectric element and the mass element to transmit vibration. Therefore, the structural design of the elastic element can affect the vibration characteristics of the acoustic output device. In some embodiments, in order to meet the requirements of the elastic element for the elastic coefficient, the elastic element can be designed into a curved shape to increase the length of the elastic element, thereby reducing the elastic coefficient of the elastic element. In this setting, if the shape of the elastic element has a rotational or asymmetric configuration, the configuration may provide shear stress to the mass element on a plane perpendicular to the vibration direction of the mass element, causing the mass element of the acoustic output device to generate a rotational mode when vibrating, thereby affecting the output of the acoustic output device (which may appear as a harmonic valley in the frequency response curve), and further affecting the vibration performance of the acoustic output device. Therefore, the structure of the elastic element can be reasonably designed to ensure the vibration performance of the acoustic output device.

在一些實施例中,彈性元件可以包括多個杆件結構,質量元件與壓電元件之間通過多個杆件結構連接。多個杆件結構可以沿質量元件的周向分佈。在一些實施例中,多個杆件結構可以在質量元件的周向呈對稱分佈,以使聲學輸出裝置在可能產生轉動模態的情況下,可以利用彈性元件的對稱性(例如,彈性元件中多個杆件結構向質量元件提供的切應力的旋度相反)使轉動模態反相相消,從而減少或消除轉動模態產生的諧振穀。In some embodiments, the elastic element may include a plurality of rod structures, and the mass element and the piezoelectric element are connected via the plurality of rod structures. The plurality of rod structures may be distributed along the circumference of the mass element. In some embodiments, the plurality of rod structures may be distributed symmetrically around the circumference of the mass element, so that when the acoustic output device may generate a rotational mode, the symmetry of the elastic element may be utilized (for example, the rotation of the shear stress provided by the plurality of rod structures in the elastic element to the mass element is opposite) to cancel the rotational modes in anti-phase, thereby reducing or eliminating the resonance valley generated by the rotational mode.

在一些實施例中,杆件結構的形狀可以包括折線形、S形、樣條曲線形、弧形和直線形中的至少一種。在一些實施例中,杆件結構為不同形狀時,杆件結構可以具有不同的彎折區域,不同彎折區域向質量元件(和/或壓電元件)提供的切應力可以對應不同旋度。在一些實施例中,以杆件結構的兩端連線作為輔助線,杆件結構可以在輔助線的兩側交替連接形成子片段,多個子片段以相同的交替規律構成的片段即為杆件結構的彎折區域。以彈性元件的形狀是折線形為例,折線形可以先朝向輔助線的第一側彎折,再朝向輔助線的第二側彎折,之後再朝向第一側彎折,如此循環往復,當該迴圈規律改變時,折線段的彎折區域結束。In some embodiments, the shape of the rod structure may include at least one of a broken line, an S shape, a spline curve shape, an arc shape, and a straight line shape. In some embodiments, when the rod structure is in different shapes, the rod structure may have different bending regions, and the shear stress provided to the mass element (and/or piezoelectric element) by different bending regions may correspond to different curls. In some embodiments, the connecting line of the two ends of the rod structure is used as an auxiliary line, and the rod structure may be alternately connected on both sides of the auxiliary line to form sub-segments, and the segment formed by multiple sub-segments with the same alternating regularity is the bending region of the rod structure. Taking the shape of the elastic element as an example, the fold line may first bend toward the first side of the auxiliary line, then bend toward the second side of the auxiliary line, and then bend toward the first side again, and repeat this cycle. When the loop pattern changes, the bending area of the fold line segment ends.

圖2是根據本說明書的一些實施例所示的彈性元件的示例性結構圖。如圖2所示,在一些實施例中,彈性元件200可以包括多個杆件結構210,每個杆件結構包括一個或多個彎折區域,每個彎折區域提供的切應力對應一個旋度。例如,圖2中彈性元件200中的每個杆件結構210可以包括兩個彎折區域,分別為第一彎折區域211和第二彎折區域212,第一彎折區域211和第二彎折區域212首尾相連構成杆件結構210。在一些實施例中,第一彎折區域可以具有第一彎折方向,第二彎折區域可以具有第二彎折方向。彎折方向可以是表達多個子片段在輔助線的兩側的交替規律的方向。如圖2所示,第一彎折區域211的彎折方向可以為第一方向,第二彎折區域212的彎折方向為第二方向,第一方向和第二方向相對於杆件結構210的輔助線(如圖2中虛線201所示)的朝向相反。在一些實施例中,第一方向可以是沿壓電元件的振動方向的投影平面中相對於彈性元件的投影形狀中心的逆時針方向,第二方向可以是沿壓電元件的振動方向的投影平面中相對於彈性元件的投影形狀中心的順時針方向。FIG. 2 is an exemplary structural diagram of an elastic element according to some embodiments of the present specification. As shown in FIG. 2 , in some embodiments, the elastic element 200 may include a plurality of rod structures 210, each of which includes one or more bending regions, and the shear stress provided by each bending region corresponds to a curl. For example, each rod structure 210 in the elastic element 200 in FIG. 2 may include two bending regions, namely a first bending region 211 and a second bending region 212, and the first bending region 211 and the second bending region 212 are connected end to end to form the rod structure 210. In some embodiments, the first bending region may have a first bending direction, and the second bending region may have a second bending direction. The bending direction may be a direction that expresses the alternating regularity of the multiple sub-segments on both sides of the auxiliary line. As shown in FIG2 , the bending direction of the first bending region 211 may be a first direction, and the bending direction of the second bending region 212 may be a second direction, and the first direction and the second direction are opposite to the auxiliary line of the rod structure 210 (as shown by the dotted line 201 in FIG2 ). In some embodiments, the first direction may be a counterclockwise direction relative to the center of the projection shape of the elastic element in the projection plane along the vibration direction of the piezoelectric element, and the second direction may be a clockwise direction relative to the center of the projection shape of the elastic element in the projection plane along the vibration direction of the piezoelectric element.

在一些實施例中,彈性元件200的多個杆件結構210可以位於垂直於質量元件203振動方向的同一平面內。也可以理解為,彈性元件200的多個杆件結構210位於同一平面,該平面與質量元件203的振動方向垂直。In some embodiments, the multiple rod structures 210 of the elastic element 200 may be located in the same plane perpendicular to the vibration direction of the mass element 203. It can also be understood that the multiple rod structures 210 of the elastic element 200 are located in the same plane, which is perpendicular to the vibration direction of the mass element 203.

在一些實施例中,多個杆件結構210中的至少一個杆件結構可以包括多個分段,多個分段向質量元件203提供的切應力旋度相反。在一些實施例中,當杆件結構210包括兩個分段,即第一彎折區域211和第二彎折區域212時,第一彎折區域211和第二彎折區域212向質量元件203提供的切應力旋度可以相反。例如,彈性元件200在振動過程中,杆件結構210的第一彎折區域211使得質量元件120在垂直於振動方向的平面上存在轉動趨勢,轉動方向可以為第一方向。此時,第一彎折區域211可以向與其連接的質量元件203提供沿第一方向的切應力。第一彎折區域211向質量元件203提供的切應力可以具有第一旋度。類似地,彈性元件200在振動過程中,杆件結構210的第二彎折區域212也使得質量元件120在垂直於振動方向的平面上存在轉動趨勢,轉動方向可以是第二方向。此時,第二彎折區域212可以向與其連接的第一彎折區域211提供沿第二方向的切應力,使得質量元件203具有向第二方向轉動的趨勢,其等效於間接向質量元件203提供沿第二方向的切應力。為便於描述,在一些實施例中,彈性元件或其一部分間接向質量元件提供的切應力可以稱為彈性元件或其一部分向質量元件提供的切應力。因此,第二彎折區域212向質量元件203提供的切應力可以具有第二旋度。In some embodiments, at least one of the plurality of rod structures 210 may include a plurality of segments, and the plurality of segments provide opposite shear stress curls to the mass element 203. In some embodiments, when the rod structure 210 includes two segments, namely the first bending region 211 and the second bending region 212, the shear stress curls provided to the mass element 203 by the first bending region 211 and the second bending region 212 may be opposite. For example, during the vibration of the elastic element 200, the first bending region 211 of the rod structure 210 causes the mass element 120 to have a rotation tendency on a plane perpendicular to the vibration direction, and the rotation direction may be a first direction. At this time, the first bending region 211 may provide shear stress along the first direction to the mass element 203 connected thereto. The shear stress provided by the first bending region 211 to the mass element 203 may have a first rotation. Similarly, during the vibration of the elastic element 200, the second bending region 212 of the rod structure 210 also causes the mass element 120 to have a rotation tendency on a plane perpendicular to the vibration direction, and the rotation direction may be a second direction. At this time, the second bending region 212 may provide a shear stress along the second direction to the first bending region 211 connected thereto, so that the mass element 203 has a tendency to rotate in the second direction, which is equivalent to indirectly providing a shear stress along the second direction to the mass element 203. For ease of description, in some embodiments, the shear stress provided indirectly to the mass element by the elastic element or a part thereof may be referred to as the shear stress provided to the mass element by the elastic element or a part thereof. Therefore, the shear stress provided by the second bending region 212 to the mass element 203 can have a second rotation.

在一些實施例中,杆件結構210中不同彎折區域向質量元件203提供的切應力的旋度可以相反。如圖2所示,第一彎折區域211和第二彎折區域212的彎折方向相反,振動過程中,第一彎折區域211和第二彎折區域212在垂直於振動方向的平面上的轉動趨勢方向相反,可以使得第一彎折區域211向質量元件203提供的切應力與第二彎折區域212向質量元件203提供的切應力旋度相反。例如,第一彎折區域211向質量元件203提供的切應力的旋度指出紙平面,第二彎折區域212向質量元件203提供的切應力的旋度指向紙平面。In some embodiments, the curl of the shear stress provided by different bending regions in the rod structure 210 to the mass element 203 may be opposite. As shown in FIG2 , the bending directions of the first bending region 211 and the second bending region 212 are opposite. During the vibration process, the rotation trend directions of the first bending region 211 and the second bending region 212 on the plane perpendicular to the vibration direction are opposite, so that the shear stress provided by the first bending region 211 to the mass element 203 and the curl of the shear stress provided by the second bending region 212 to the mass element 203 may be opposite. For example, the curl of the shear stress provided by the first bending region 211 to the mass element 203 points to the paper plane, and the curl of the shear stress provided by the second bending region 212 to the mass element 203 points to the paper plane.

在一些實施例中,第一彎折區域211向質量元件203提供第一旋度的第一切應力,第二彎折區域212向質量元件203提供第二旋度的第二切應力,第一旋度和第二旋度方向相反,第一切應力與第二切應力之間的反向作用可以使質量元件203由於第一彎折區域211轉動產生的第一轉動模態和第二彎折區域211轉動產生的第二轉動模態能夠相互抵消,從而減少或消除轉動模態產生的諧振穀。In some embodiments, the first bending region 211 provides a first tangential stress of a first rotation to the mass element 203, and the second bending region 212 provides a second tangential stress of a second rotation to the mass element 203. The first rotation and the second rotation are in opposite directions. The reverse action between the first tangential stress and the second tangential stress can enable a first rotation mode of the mass element 203 generated by the rotation of the first bending region 211 and a second rotation mode generated by the rotation of the second bending region 211 to offset each other, thereby reducing or eliminating the resonant valley generated by the rotation mode.

在一些實施例中,杆件結構210包括的分段的數量為多個時,例如,杆件結構210不僅可以包括第一彎折區域211和第二彎折區域212,還可以包括更多彎折區域,例如,第三彎折區域、第四彎折區域等。杆件結構210包括多個分段時,多個分段中相鄰分段向質量元件203提供的切應力的旋度可以相反。In some embodiments, when the rod structure 210 includes a plurality of segments, for example, the rod structure 210 may include not only the first bending region 211 and the second bending region 212, but also more bending regions, for example, a third bending region, a fourth bending region, etc. When the rod structure 210 includes a plurality of segments, the curls of the shear stresses provided to the mass element 203 by adjacent segments among the plurality of segments may be opposite.

在一些實施例中,多個杆件結構210中的至少一個杆件結構沿質量元件203振動方向的投影可以具有至少一個對稱軸,位於對稱軸兩側的杆件結構向質量元件203提供的切應力旋度相反。例如,如圖2所示,當杆件結構210包括第一彎折區域211和第二彎折區域212時,杆件結構210沿質量元件203振動方向的投影可以具有對稱軸202。對稱軸202可以是過第一彎折區域211和第二彎折區域212的連接點A且垂直於杆件結構210的輔助線201的直線。位於對稱軸202兩側的杆件結構向質量元件203提供的切應力旋度相反。In some embodiments, the projection of at least one of the plurality of rod structures 210 along the vibration direction of the mass element 203 may have at least one symmetry axis, and the rod structures located on both sides of the symmetry axis provide opposite shear stress curls to the mass element 203. For example, as shown in FIG2 , when the rod structure 210 includes a first bending region 211 and a second bending region 212, the projection of the rod structure 210 along the vibration direction of the mass element 203 may have a symmetry axis 202. The symmetry axis 202 may be a straight line passing through a connection point A between the first bending region 211 and the second bending region 212 and perpendicular to the auxiliary line 201 of the rod structure 210. The rod structures located on both sides of the symmetry axis 202 provide opposite shear stress curls to the mass element 203.

在一些實施例中,彈性元件可以包括多個杆件結構。在一些實施例中,多個杆件結構位於垂直於質量元件振動方向的同一平面內時,多個杆件結構可以按照一定方式進行排列,使排列後的多個杆件結構沿質量元件振動方向的投影可以具有至少兩個相互垂直的對稱軸。In some embodiments, the elastic element may include a plurality of rod structures. In some embodiments, when the plurality of rod structures are located in the same plane perpendicular to the vibration direction of the mass element, the plurality of rod structures may be arranged in a certain manner so that the projections of the plurality of rod structures along the vibration direction of the mass element may have at least two mutually perpendicular symmetry axes.

圖3是根據本說明書的一些實施例所示的彈性元件的示例性結構圖。在一些實施例中,彈性元件300的多個杆件結構的數量可以為偶數(例如,4個、8個等)。如圖3所示,在一些實施例中,連接質量元件320和壓電元件330的杆件結構的數量可以為4個,例如,第一杆件結構311、第二杆件結構312、第三杆件結構313和第四杆件結構314。4個杆件結構進行排列可以構成X形。在一些實施例中,4個杆件結構中相鄰杆件結構向質量元件320提供的切應力旋度可以相反,相對杆件結構向質量元件320提供的切應力的旋度可以相同。例如,第一杆件結構311和第二杆件結構312向質量元件320提供的切應力的旋度相反,第三杆件結構313和第四杆件結構314向質量元件320提供的切應力的旋度相反;第一杆件結構311和第四杆件結構314向質量元件320提供的切應力的旋度相同,第二杆件結構312和第三杆件結構313向質量元件320提供的切應力的旋度相同。4個杆件結構排列成X形時,4個杆件結構沿質量元件320振動方向的投影可以具有兩個相互垂直的第一對稱軸301和第二對稱軸302。FIG. 3 is an exemplary structural diagram of an elastic element according to some embodiments of the present specification. In some embodiments, the number of the plurality of rod structures of the elastic element 300 may be an even number (e.g., 4, 8, etc.). As shown in FIG. 3 , in some embodiments, the number of rod structures connecting the mass element 320 and the piezoelectric element 330 may be 4, for example, a first rod structure 311, a second rod structure 312, a third rod structure 313, and a fourth rod structure 314. The four rod structures may be arranged to form an X shape. In some embodiments, the curl of the shear stress provided by the adjacent rod structures to the mass element 320 among the four rod structures may be opposite, and the curl of the shear stress provided by the relative rod structures to the mass element 320 may be the same. For example, the first rod structure 311 and the second rod structure 312 provide opposite curls of shear stress to the mass element 320, and the third rod structure 313 and the fourth rod structure 314 provide opposite curls of shear stress to the mass element 320; the first rod structure 311 and the fourth rod structure 314 provide the same curl of shear stress to the mass element 320, and the second rod structure 312 and the third rod structure 313 provide the same curl of shear stress to the mass element 320. When the four rod structures are arranged in an X shape, the projections of the four rod structures along the vibration direction of the mass element 320 may have two mutually perpendicular first symmetry axes 301 and second symmetry axes 302.

在一些實施例中,在彈性元件300中,單個杆件結構與對稱軸(例如,第一對稱軸301或第二對稱軸302)之間可以形成夾角,例如,第四杆件結構314與第一對稱軸301之間可以形成夾角 。通過調控夾角 的角度,可以控制聲學輸出裝置在振動時沿不同對稱軸的滾動模態。所述滾動可以指彈性元件300在振動時圍繞第一對稱軸301或第二對稱軸302進行的轉動。在一些實施例中,為了盡可能減少聲學輸出裝置振動時的滾動模態,夾角 的角度範圍可以為10°-30°。在一些實施例中,為了盡可能減少聲學輸出裝置振動時的滾動模態,夾角 的角度範圍可以為30°-60°。在一些實施例中,為了盡可能減少聲學輸出裝置振動時的滾動模態,夾角 的角度範圍可以為60°-80°。 In some embodiments, in the elastic element 300, a single rod structure and a symmetry axis (for example, the first symmetry axis 301 or the second symmetry axis 302) may form an angle. For example, an angle may be formed between the fourth rod structure 314 and the first symmetry axis 301. By adjusting the angle The angle of the acoustic output device can control the rolling modes along different symmetric axes when the acoustic output device is vibrating. The rolling may refer to the rotation of the elastic element 300 around the first symmetric axis 301 or the second symmetric axis 302 when the elastic element 300 is vibrating. In some embodiments, in order to minimize the rolling modes when the acoustic output device is vibrating, the angle of The angle range can be 10°-30°. In some embodiments, in order to minimize the rolling mode when the acoustic output device vibrates, the angle The angle range can be 30°-60°. In some embodiments, in order to minimize the rolling mode when the acoustic output device vibrates, the angle The angle range can be 60°-80°.

在一些實施例中,聲學輸出裝置中的壓電元件330可以為環形結構(如圖3所示),彈性元件300的多個杆件結構沿環形結構的周向分佈。質量元件320與壓電元件330之間通過多個杆件結構進行連接。需要說明的是,彈性元件成不同形狀分佈(例如,X形分佈)時,壓電元件330的結構不限於圖3中所示的環形結構,壓電元件330也可以是其他結構類型,例如,壓梁結構(如圖4所示)。關於壓電元件330的結構的具體描述可以參見本說明書圖9-圖24及其相關描述。In some embodiments, the piezoelectric element 330 in the acoustic output device may be an annular structure (as shown in FIG. 3 ), and the multiple rod structures of the elastic element 300 are distributed along the circumference of the annular structure. The mass element 320 and the piezoelectric element 330 are connected through multiple rod structures. It should be noted that when the elastic element is distributed in different shapes (for example, X-shaped distribution), the structure of the piezoelectric element 330 is not limited to the annular structure shown in FIG. 3 , and the piezoelectric element 330 may also be other structural types, for example, a piezoelectric beam structure (as shown in FIG. 4 ). For a specific description of the structure of the piezoelectric element 330, please refer to FIG. 9 to FIG. 24 of this specification and related descriptions.

圖4是根據本說明書的一些實施例所示的彈性元件的示例性結構圖。如圖4所示,聲學輸出裝置400還可以包括第一彈性元件431和第二彈性元件432。第二彈性元件432與第一彈性元件431分別與質量元件420連接。在一些實施例中,聲學輸出裝置400的壓電元件410可以包括梁結構,質量元件420可以連接於梁結構的中部。例如,質量元件420可以包括第一質量元件421和第二質量元件422,第二質量元件422連接於梁結構的中部。第二彈性元件432和第一彈性元件431分別與第一質量元件421連接。在一些實施例中,梁結構的其中一個表面或一組相對的表面可以貼附有壓電片(該一個或一組表面也稱為壓電表面),壓電片可以基於電信號發生伸縮變形,從而使梁結構可以基於電信號產生垂直於壓電表面的振動。在一些實施例中,梁結構的兩端設置有連接件411,梁結構通過兩端的連接件411與第一彈性元件431(和第二彈性元件432)的杆件結構的一端連接。第一彈性元件431(和第二彈性元件432)的杆件結構的另一端與質量元件420連接。FIG. 4 is an exemplary structural diagram of an elastic element according to some embodiments of the present specification. As shown in FIG. 4 , the acoustic output device 400 may further include a first elastic element 431 and a second elastic element 432. The second elastic element 432 and the first elastic element 431 are respectively connected to the mass element 420. In some embodiments, the piezoelectric element 410 of the acoustic output device 400 may include a beam structure, and the mass element 420 may be connected to the middle of the beam structure. For example, the mass element 420 may include a first mass element 421 and a second mass element 422, and the second mass element 422 is connected to the middle of the beam structure. The second elastic element 432 and the first elastic element 431 are respectively connected to the first mass element 421. In some embodiments, a piezoelectric sheet (the surface or the group of surfaces) may be attached to one of the surfaces of the beam structure or a group of opposite surfaces, and the piezoelectric sheet may be stretched and deformed based on an electrical signal, so that the beam structure may generate vibrations perpendicular to the piezoelectric surface based on the electrical signal. In some embodiments, connectors 411 are provided at both ends of the beam structure, and the beam structure is connected to one end of the rod structure of the first elastic element 431 (and the second elastic element 432) through the connectors 411 at both ends. The other end of the rod structure of the first elastic element 431 (and the second elastic element 432) is connected to the mass element 420.

在一些實施例中,第二彈性元件432與第一彈性元件431可以位於同一平面上,第二彈性元件432與第一彈性元件431所在的平面與質量元件420的振動方向垂直。在一些實施例中,當壓電元件410為梁結構時,第二彈性元件432與第一彈性元件431所在的平面可以與梁結構的壓電表面平行。在一些實施例中,壓電元件410也可以是環形結構,這種情況下,第二彈性元件432與第一彈性元件431所在的平面可以與環形結構的環形表面平行。In some embodiments, the second elastic element 432 and the first elastic element 431 may be located on the same plane, and the plane where the second elastic element 432 and the first elastic element 431 are located is perpendicular to the vibration direction of the mass element 420. In some embodiments, when the piezoelectric element 410 is a beam structure, the plane where the second elastic element 432 and the first elastic element 431 are located may be parallel to the piezoelectric surface of the beam structure. In some embodiments, the piezoelectric element 410 may also be an annular structure, in which case, the plane where the second elastic element 432 and the first elastic element 431 are located may be parallel to the annular surface of the annular structure.

在一些實施例中,彈性元件430包括的杆件結構的數量可以為8個,8個杆件結構可以構成雙X形。其中,第一彈性元件431中的4個杆件結構可以構成第一X形401,第二彈性元件432中的4個杆件結構構成第二X形402,第一X形401與第二X形402構成多個杆件結構的雙X形結構。在一些實施例中,多個杆件結構構成的雙X形結構可以是平行的雙X形(如圖4所示)、垂直的雙X形(如圖5所示)或者其他形式的反向對稱分佈的形狀。平行/垂直的雙X形可以是指第一X形401的兩個對稱軸與第二X形402的兩個對稱軸分別對應平行/垂直。在一些實施例中,圖4所示的雙X形結構中的任意一個X形結構可以與圖3所示的X形結構相同或相似。例如,在第一彈性元件431和/或第二彈性元件432中的4個杆件結構中,相鄰杆件結構向質量元件420提供的切應力旋度可以相反,相對杆件結構向質量元件420提供的切應力的旋度可以相同。In some embodiments, the number of rod structures included in the elastic element 430 may be 8, and the 8 rod structures may form a double X shape. Among them, the 4 rod structures in the first elastic element 431 may form a first X shape 401, and the 4 rod structures in the second elastic element 432 may form a second X shape 402, and the first X shape 401 and the second X shape 402 may form a double X shape structure of multiple rod structures. In some embodiments, the double X shape structure formed by multiple rod structures may be a parallel double X shape (as shown in FIG. 4 ), a vertical double X shape (as shown in FIG. 5 ), or other forms of reverse symmetrical distribution. The parallel/vertical double X shape may refer to that the two symmetry axes of the first X shape 401 and the two symmetry axes of the second X shape 402 are respectively parallel/vertical. In some embodiments, any one of the double X-shaped structures shown in Fig. 4 may be the same or similar to the X-shaped structure shown in Fig. 3. For example, among the four rod structures in the first elastic element 431 and/or the second elastic element 432, the curl of the shear stress provided by the adjacent rod structures to the mass element 420 may be opposite, and the curl of the shear stress provided by the opposite rod structures to the mass element 420 may be the same.

在一些實施例中,第二彈性元件432的中心軸與第一彈性元件431的中心軸可以平行設置。第一彈性元件431(和/或第二彈性元件432)的中心軸可以是經過4個杆件結構所在直線的延長線的交點,且垂直於第一彈性元件431(和/或第二彈性元件432)所在平面的軸線。在一些實施例中,第一彈性元件431(和/或第二彈性元件432)的中心軸可以與質量元件420的振動方向平行。在一些實施例中,通過設置第二彈性元件432的中心軸與第一彈性元件431的中心軸平行,可以使彈性元件430的多個杆件結構構成的雙X形結構為平行的雙X形結構。在一些實施例中,形成第一X形401的第一彈性元件431中的4個杆件結構可以通過連接件411與一個壓電元件410(例如,梁結構)連接,形成第二X形402的第二彈性元件432中的4個杆件結構通過連接件411與另一個壓電元件410(例如,梁結構)連接,兩個壓電元件410在同一個平面內相互平行設置。形成第一X形401的4個杆件結構和形成第二X形402的4個杆件結構還分別與質量元件420連接。在一些實施例中,質量元件420可以是一個,或者質量元件420也可以是多個,多個質量元件420可以通過剛性連接件(圖中未示出)相互連接。In some embodiments, the central axis of the second elastic element 432 and the central axis of the first elastic element 431 can be arranged in parallel. The central axis of the first elastic element 431 (and/or the second elastic element 432) can be the intersection of the extension lines of the straight lines where the four rod structures are located, and the axis perpendicular to the plane where the first elastic element 431 (and/or the second elastic element 432) is located. In some embodiments, the central axis of the first elastic element 431 (and/or the second elastic element 432) can be parallel to the vibration direction of the mass element 420. In some embodiments, by arranging the central axis of the second elastic element 432 to be parallel to the central axis of the first elastic element 431, the double X-shaped structure formed by the multiple rod structures of the elastic element 430 can be a parallel double X-shaped structure. In some embodiments, the four rod structures in the first elastic element 431 forming the first X-shape 401 can be connected to a piezoelectric element 410 (e.g., a beam structure) through a connector 411, and the four rod structures in the second elastic element 432 forming the second X-shape 402 can be connected to another piezoelectric element 410 (e.g., a beam structure) through a connector 411, and the two piezoelectric elements 410 are arranged parallel to each other in the same plane. The four rod structures forming the first X-shape 401 and the four rod structures forming the second X-shape 402 are also connected to the mass element 420 respectively. In some embodiments, the mass element 420 can be one, or the mass element 420 can also be multiple, and the multiple mass elements 420 can be connected to each other through a rigid connector (not shown in the figure).

圖5是根據本說明書的一些實施例所示的彈性元件的示例性結構圖。如圖5所示,在一些實施例中,第二彈性元件432與第一彈性元件431也可以共軸設置。即,第二彈性元件432的中心軸與第一彈性元件431的中心軸重合。在一些實施例中,彈性元件430的多個杆件結構構成的雙X形結構沿著振動方向的投影可以為相互垂直的雙X形。兩個X形相互垂直可以指兩個X形的對稱軸相互垂直。在一些實施例中,第二彈性元件432與第一彈性元件431可以位於垂直於振動方向的同一平面內。在一些實施例中,第二彈性元件432與第一彈性元件431可以位於垂直於振動方向的不同平面內。在一些實施例中,圖5所示的雙X形結構中的任意一個X形結構可以與圖3所示的X形結構相同或相似。例如,在第一彈性元件431和/或第二彈性元件432中的4個杆件結構中,相鄰杆件結構向質量元件420提供的切應力旋度可以相反,相對杆件結構向質量元件420提供的切應力的旋度可以相同。FIG. 5 is an exemplary structural diagram of an elastic element according to some embodiments of the present specification. As shown in FIG. 5 , in some embodiments, the second elastic element 432 and the first elastic element 431 may also be coaxially arranged. That is, the central axis of the second elastic element 432 coincides with the central axis of the first elastic element 431. In some embodiments, the projection of the double X-shaped structure formed by the multiple rod structures of the elastic element 430 along the vibration direction may be a double X-shape perpendicular to each other. Two X-shapes perpendicular to each other may mean that the symmetry axes of the two X-shapes are perpendicular to each other. In some embodiments, the second elastic element 432 and the first elastic element 431 may be located in the same plane perpendicular to the vibration direction. In some embodiments, the second elastic element 432 and the first elastic element 431 may be located in different planes perpendicular to the vibration direction. In some embodiments, any one of the double X-shaped structures shown in Fig. 5 may be the same or similar to the X-shaped structure shown in Fig. 3. For example, among the four rod structures in the first elastic element 431 and/or the second elastic element 432, the curl of the shear stress provided by the adjacent rod structures to the mass element 420 may be opposite, and the curl of the shear stress provided by the opposite rod structures to the mass element 420 may be the same.

在一些實施例中,形成第一X形401的4個杆件結構可以通過連接件411與一個壓電元件(例如,梁結構)連接,形成第二X形402的4個杆件結構與另一壓電元件連接,兩個壓電元件在同一平面內相互垂直設置。In some embodiments, the four rod structures forming the first X-shape 401 can be connected to a piezoelectric element (eg, a beam structure) via a connector 411, and the four rod structures forming the second X-shape 402 are connected to another piezoelectric element, and the two piezoelectric elements are arranged perpendicular to each other in the same plane.

在一些實施例中,彈性元件的形狀結構不同時,聲學輸出裝置的振動性能可能有所差異。彈性元件的反向對稱性的程度越高,彈性元件振動產生的轉動模態越少,聲學輸出裝置的振動性能越高。圖6是根據本說明書的一些實施例所示的聲學輸出裝置的頻響曲線圖。如圖6所示,橫坐標表示聲學輸出裝置的諧振頻率,單位是Hz,縱坐標表示聲學輸出裝置的加速度輸出強度,單位是dB。曲線601可以表示彈性元件為單X形(例如,圖3中的彈性元件300)時聲學輸出裝置的頻響曲線,曲線602可以表示彈性元件為平行雙X形(例如,圖4中的彈性元件430)時聲學輸出裝置的頻響曲線,曲線603可以表示彈性元件為非平行雙X形(例如,圖5中的彈性元件430)時聲學輸出裝置的頻響曲線。結合曲線601、曲線602和曲線603可知,彈性元件的構型為單X形、平行雙X形和其他類型的雙X形時,聲學輸出裝置的頻率回應效果較好。需要說明的是,彈性元件為單X形時,曲線601在1411Hz附近產生了諧振穀,該諧振穀不是彈性元件的轉動模態產生的,而是由於與壓電元件連接的質量元件以及該壓電元件形成的振動系統吸收了輸出端的振動導致的。例如,結合圖4,諧振穀可以是第二質量元件422以及壓電梁410形成的振動系統吸收了第一質量元件421的振動導致的。In some embodiments, when the shape structure of the elastic element is different, the vibration performance of the acoustic output device may be different. The higher the degree of the reverse symmetry of the elastic element, the fewer the rotational modes generated by the vibration of the elastic element, and the higher the vibration performance of the acoustic output device. FIG. 6 is a frequency curve diagram of the acoustic output device shown in some embodiments of the present specification. As shown in FIG. 6, the horizontal axis represents the resonant frequency of the acoustic output device, the unit is Hz, and the vertical axis represents the acceleration output intensity of the acoustic output device, the unit is dB. Curve 601 may represent the frequency response curve of the acoustic output device when the elastic element is a single X shape (e.g., the elastic element 300 in FIG. 3 ), curve 602 may represent the frequency response curve of the acoustic output device when the elastic element is a parallel double X shape (e.g., the elastic element 430 in FIG. 4 ), and curve 603 may represent the frequency response curve of the acoustic output device when the elastic element is a non-parallel double X shape (e.g., the elastic element 430 in FIG. 5 ). Combining curves 601, 602, and 603, it can be seen that when the elastic element is in a single X shape, a parallel double X shape, or other types of double X shapes, the frequency response effect of the acoustic output device is better. It should be noted that when the elastic element is a single X-shape, a resonant drum is generated in the curve 601 near 1411 Hz, and the resonant drum is not generated by the rotation mode of the elastic element, but is caused by the mass element connected to the piezoelectric element and the vibration system formed by the piezoelectric element absorbing the vibration of the output end. For example, in conjunction with FIG. 4 , the resonant drum may be caused by the vibration system formed by the second mass element 422 and the piezoelectric beam 410 absorbing the vibration of the first mass element 421.

在一些實施例中,彈性元件也可以設置為雙層結構,雙層彈性元件沿質量元件的振動方向呈上下分佈。在一些實施例中,上層彈性元件和下層彈性元件向質量元件提供的切應力的旋度可以相反。例如,上層彈性元件的多個彎折區域提供的切應力的旋度與下層彈性元件的多個彎折區域提供的切應力的旋度分別對應相反。在一些實施例中,雙層彈性元件中的每一層彈性元件向質量元件提供的切應力的旋度可以相反。例如,每一層彈性元件可以包括至少兩個部分,所述至少兩個部分可以向質量元件提供旋度相反的切應力,所述旋度相反的切應力可以相互抵消,使得每一層彈性元件向質量元件提供的切應力為零或接近為零。In some embodiments, the elastic element may also be configured as a double-layer structure, and the double-layer elastic elements are distributed up and down along the vibration direction of the mass element. In some embodiments, the curl of the shear stress provided by the upper elastic element and the lower elastic element to the mass element may be opposite. For example, the curl of the shear stress provided by the multiple bending regions of the upper elastic element is opposite to the curl of the shear stress provided by the multiple bending regions of the lower elastic element. In some embodiments, the curl of the shear stress provided by each layer of the elastic element in the double-layer elastic element to the mass element may be opposite. For example, each layer of elastic element may include at least two parts, and the at least two parts may provide shear stresses with opposite rotations to the mass element. The shear stresses with opposite rotations may offset each other, so that the shear stress provided by each layer of elastic element to the mass element is zero or close to zero.

在一些實施例中,雙層設置的彈性元件的形狀可以是雙層折線形、雙層S形、雙層樣條曲線形或雙層弧形等中的任意一種。例如,雙層設置的彈性元件中的第一層為沿第一方向設置的多個折線形杆件結構,第二層為沿第二方向設置的多個折線形杆件結構。第一方向和第二方向相對於杆件結構的輔助線方向相反。再例如,雙層設置的彈性元件中的每一層彈性元件可以包括多個杆件結構,每一層的多個杆件結構沿質量元件振動方向的投影可以具有兩個相互垂直的對稱軸(例如,雙層設置的彈性元件300)。In some embodiments, the shape of the double-layered elastic element can be any one of a double-layered zigzag shape, a double-layered S-shape, a double-layered spline curve shape, or a double-layered arc shape. For example, the first layer of the double-layered elastic element is a plurality of zigzag rod structures arranged along a first direction, and the second layer is a plurality of zigzag rod structures arranged along a second direction. The first direction and the second direction are opposite to the auxiliary line directions of the rod structure. For another example, each layer of the double-layered elastic element can include a plurality of rod structures, and the projection of the plurality of rod structures of each layer along the vibration direction of the mass element can have two mutually perpendicular symmetry axes (for example, the double-layered elastic element 300).

在一些實施例中,當彈性元件的結構為雙層結構時,位於同一層的彈性元件中的每個杆件結構包括的多個彎折區域中,相鄰彎折區域提供的切應力的旋度可以相反。在一些實施例中,沿質量元件的振動方向,不同層面上相對設置的兩個杆件結構提供的切應力的旋度也可以相反。In some embodiments, when the structure of the elastic element is a double-layer structure, in the multiple bending regions included in each rod structure in the elastic element on the same layer, the curls of the shear stress provided by the adjacent bending regions may be opposite. In some embodiments, along the vibration direction of the mass element, the curls of the shear stress provided by two rod structures arranged opposite to each other on different layers may also be opposite.

圖7A是根據本說明書的一些實施例所示的彈性元件的示例性結構圖。參見圖7A,彈性元件730可以包括第一螺旋結構731和第二螺旋結構732,第一螺旋結構731和第二螺旋結構732分別連接質量元件720和壓電元件710。在一些實施例中,第一螺旋結構731和第二螺旋結構732可以沿質量元件720振動方向上下排列。第一螺旋結構731與壓電元件710的連接位置可以是壓電元件710較為靠近質量元件720的一側。第二螺旋結構732與壓電元件710的連接位置可以是壓電元件710較為遠離質量元件720的一側。FIG. 7A is an exemplary structural diagram of an elastic element according to some embodiments of the present specification. Referring to FIG. 7A , the elastic element 730 may include a first spiral structure 731 and a second spiral structure 732, and the first spiral structure 731 and the second spiral structure 732 are connected to the mass element 720 and the piezoelectric element 710, respectively. In some embodiments, the first spiral structure 731 and the second spiral structure 732 may be arranged up and down along the vibration direction of the mass element 720. The connection position of the first spiral structure 731 and the piezoelectric element 710 may be a side of the piezoelectric element 710 that is closer to the mass element 720. The connection position of the second spiral structure 732 and the piezoelectric element 710 may be a side of the piezoelectric element 710 that is farther from the mass element 720.

在一些實施例中,第一螺旋結構731和第二螺旋結構732的軸線可以相同,且螺旋方向相反。螺旋方向可以是螺旋結構繞其軸線旋轉的方向。在一些實施例中,至少兩個彈性元件730可以沿同一軸線向相反方向進行旋轉以形成螺旋方向相反的第一螺旋結構731和第二螺旋結構732。In some embodiments, the axes of the first helical structure 731 and the second helical structure 732 may be the same, and the helical directions may be opposite. The helical direction may be the direction in which the helical structure rotates around its axis. In some embodiments, at least two elastic elements 730 may rotate in opposite directions along the same axis to form the first helical structure 731 and the second helical structure 732 with opposite helical directions.

在一些實施例中,通過將彈性元件730設置為雙層螺旋結構,可以減小聲學輸出裝置700-1振動過程中的彈性元件730的轉動幅度。同時,雙層螺旋結構還可以增加彈性元件730的彈性係數,從而使彈性元件730和質量元件720諧振產生的第一諧振峰右移(即向高頻移動),以滿足聲學輸出裝置700-1的振動性能的需求。In some embodiments, by configuring the elastic element 730 as a double-layer helical structure, the rotation amplitude of the elastic element 730 during the vibration of the acoustic output device 700-1 can be reduced. At the same time, the double-layer helical structure can also increase the elastic coefficient of the elastic element 730, thereby shifting the first resonance peak generated by the resonance of the elastic element 730 and the mass element 720 to the right (i.e., to a high frequency) to meet the vibration performance requirements of the acoustic output device 700-1.

圖7B是根據本說明書的一些實施例所示的彈性元件的示例性結構圖。圖7A中所示的彈性元件730的雙螺旋結構也可以適用於圖7B所示的聲學輸出裝置700-2。圖7B中的彈性元件的結構與圖7A中的彈性元件的結構大致相同,不同之處在於彈性元件排列方式不同。FIG7B is an exemplary structural diagram of an elastic element according to some embodiments of the present specification. The double helical structure of the elastic element 730 shown in FIG7A can also be applied to the acoustic output device 700-2 shown in FIG7B. The structure of the elastic element in FIG7B is substantially the same as that of the elastic element in FIG7A, except that the arrangement of the elastic element is different.

參見圖7B,在一些實施例中,彈性元件760可以包括第一螺旋結構761和第二螺旋結構762,第一螺旋結構761和第二螺旋結構762沿質量元件750的厚度方向上下排列。第一螺旋結構761和第二螺旋結構762的螺旋方向相反。7B , in some embodiments, the elastic element 760 may include a first helical structure 761 and a second helical structure 762, which are arranged up and down along the thickness direction of the mass element 750. The helical directions of the first helical structure 761 and the second helical structure 762 are opposite.

在一些實施例中,第一螺旋結構761和第二螺旋結構762的中心可以剛性連接。第一螺旋結構761和第二螺旋結構762可以通過剛性連接的中心與質量元件750連接。例如,第一螺旋結構761的中心和第二螺旋結構762的中心可以通過連接件(未示出)實現剛性連接。所述剛性連接的中心可以通過該連接件進一步與質量元件750連接。第一螺旋結構761和第二螺旋結構762可以通過外緣與壓電元件710連接。在一些實施例中,第一螺旋結構761和第二螺旋結構762的外緣也可以剛性連接。例如,第一螺旋結構761和第二螺旋結構762的外緣可以通過連接件711實現剛性連接。所述剛性連接的外緣可以進一步通過連接件711與壓電元件710連接。In some embodiments, the centers of the first spiral structure 761 and the second spiral structure 762 may be rigidly connected. The first spiral structure 761 and the second spiral structure 762 may be connected to the mass element 750 through the rigidly connected centers. For example, the centers of the first spiral structure 761 and the second spiral structure 762 may be rigidly connected through a connector (not shown). The rigidly connected centers may be further connected to the mass element 750 through the connector. The first spiral structure 761 and the second spiral structure 762 may be connected to the piezoelectric element 710 through the outer edges. In some embodiments, the outer edges of the first spiral structure 761 and the second spiral structure 762 may also be rigidly connected. For example, the outer edges of the first spiral structure 761 and the second spiral structure 762 may be rigidly connected through a connector 711. The outer edge of the rigid connection can be further connected to the piezoelectric element 710 via a connector 711.

在一些實施例中,彈性元件為螺旋結構時,螺旋結構的層數不同,對應的聲學輸出裝置的振動性能也可以不同。在一些實施例中,雙層螺旋結構的反向對稱性高於單層螺旋結構的反向對稱性,因此,彈性元件為雙螺旋結構的聲學輸出裝置的振動性能可以好於彈性元件是單層螺旋結構的聲學輸出裝置的振動性能。圖7C是根據本說明書的一些實施例所示的聲學輸出裝置的示例性頻響曲線圖。其中,曲線701可以表示彈性元件為單層螺旋結構的聲學輸出裝置的頻響曲線,曲線702可以表示彈性元件為雙層螺旋結構的聲學輸出裝置的頻響曲線。對比曲線701和曲線702可知,相對於彈性元件為單層螺旋結構而言,彈性元件為雙層螺旋結構時的聲學輸出裝置的頻響曲線702形成的諧振穀的峰值有較為明顯的提升。In some embodiments, when the elastic element is a spiral structure, the number of layers of the spiral structure is different, and the vibration performance of the corresponding acoustic output device may also be different. In some embodiments, the reverse symmetry of the double-layer spiral structure is higher than the reverse symmetry of the single-layer spiral structure. Therefore, the vibration performance of the acoustic output device whose elastic element is a double-layer spiral structure may be better than the vibration performance of the acoustic output device whose elastic element is a single-layer spiral structure. Figure 7C is an exemplary frequency response curve diagram of the acoustic output device shown in some embodiments of the present specification. Among them, curve 701 can represent the frequency response curve of the acoustic output device whose elastic element is a single-layer spiral structure, and curve 702 can represent the frequency response curve of the acoustic output device whose elastic element is a double-layer spiral structure. By comparing curve 701 and curve 702 , it can be seen that, compared with the case where the elastic element is a single-layer spiral structure, the peak value of the resonance valley formed by the frequency response curve 702 of the acoustic output device when the elastic element is a double-layer spiral structure is significantly improved.

圖8A是根據本說明書的一些實施例所示的彈性元件的示例性結構圖。參見圖8A,聲學輸出裝置800-1可以包括壓電元件810、質量元件820以及彈性元件830。其中,壓電元件810可以包括第一壓電元件811和第二壓電元件812,第二壓電元件812位於第一壓電元件811的內側。質量元件820位於第二壓電元件812內側。FIG8A is an exemplary structural diagram of an elastic element according to some embodiments of the present specification. Referring to FIG8A , an acoustic output device 800-1 may include a piezoelectric element 810, a mass element 820, and an elastic element 830. The piezoelectric element 810 may include a first piezoelectric element 811 and a second piezoelectric element 812, wherein the second piezoelectric element 812 is located inside the first piezoelectric element 811. The mass element 820 is located inside the second piezoelectric element 812.

在一些實施例中,彈性元件830可以包括內環彈性元件832以及外環彈性元件831。在一些實施例中,內環彈性元件832向質量元件820提供的切應力的旋度與外環彈性元件831向質量元件820提供的切應力的旋度可以相反,以使彈性元件830整體能夠向質量元件820提供相互抵消的切應力。在一些實施例中,內環彈性元件832和外環彈性元件831的形狀可以為S形,內環彈性元件832的S形的杆件結構向質量元件820提供的切應力對應的第一旋度與外環彈性元件831的S形的杆件結構向質量元件820提供的切應力對應的第二旋度相反。內環彈性元件832可以向質量元件820提供第一旋度的切應力,外環彈性元件831可以向質量元件820提供第二旋度的切應力,由於第一旋度與第二旋度相反,因此,彈性元件830整體可以向質量元件820提供相互抵消的切應力。In some embodiments, the elastic element 830 may include an inner ring elastic element 832 and an outer ring elastic element 831. In some embodiments, the curl of the shear stress provided by the inner ring elastic element 832 to the mass element 820 may be opposite to the curl of the shear stress provided by the outer ring elastic element 831 to the mass element 820, so that the elastic element 830 as a whole can provide mutually offsetting shear stresses to the mass element 820. In some embodiments, the inner ring elastic element 832 and the outer ring elastic element 831 may be S-shaped, and the first curl corresponding to the shear stress provided by the S-shaped rod structure of the inner ring elastic element 832 to the mass element 820 is opposite to the second curl corresponding to the shear stress provided by the S-shaped rod structure of the outer ring elastic element 831 to the mass element 820. The inner ring elastic element 832 can provide a shear stress of a first rotation to the mass element 820, and the outer ring elastic element 831 can provide a shear stress of a second rotation to the mass element 820. Since the first rotation is opposite to the second rotation, the elastic element 830 as a whole can provide the mass element 820 with shear stresses that offset each other.

在一些實施例中,內環彈性元件832向質量元件820提供的切應力的旋度與外環彈性元件831向質量元件820提供的切應力的旋度相反時,聲學輸出裝置800-1在振動過程中,內環彈性元件832產生的轉動模態與外環彈性元件831產生的轉動模態可以相反,從而使內環彈性元件832產生的轉動模態與外環彈性元件831產生的轉動模態相互抵消(或減弱),從而在整體上降低聲學輸出裝置800-1在振動過程中的轉動模態。In some embodiments, when the rotation of the tangential stress provided by the inner ring elastic element 832 to the mass element 820 is opposite to the rotation of the tangential stress provided by the outer ring elastic element 831 to the mass element 820, during the vibration of the acoustic output device 800-1, the rotational mode generated by the inner ring elastic element 832 and the rotational mode generated by the outer ring elastic element 831 may be opposite, so that the rotational mode generated by the inner ring elastic element 832 and the rotational mode generated by the outer ring elastic element 831 cancel each other (or weaken) to reduce the rotational mode of the acoustic output device 800-1 during the vibration process as a whole.

圖8B是根據本說明書的一些實施例所示的彈性元件的示例性結構圖。圖8B所示的彈性元件與圖8A所示的彈性元件的結構大致相同,區別之處在於彈性元件的形狀。聲學輸出裝置800-2的彈性元件830的形狀為弧形。內環彈性元件832的弧形提供的切應力的第一旋度與外環彈性元件831的弧形提供的切應力的第二旋度相反。FIG8B is an exemplary structural diagram of an elastic element according to some embodiments of the present specification. The elastic element shown in FIG8B is substantially the same in structure as the elastic element shown in FIG8A, except for the shape of the elastic element. The shape of the elastic element 830 of the acoustic output device 800-2 is an arc. The first rotation of the shear stress provided by the arc of the inner ring elastic element 832 is opposite to the second rotation of the shear stress provided by the arc of the outer ring elastic element 831.

在一些實施例中,彈性元件包括內環彈性元件以及外環彈性元件時,內/外環彈性元件的形狀可以不限於S形和弧形,還可以是其他形狀,例如,折線形或者樣條曲線形等。In some embodiments, when the elastic element includes an inner ring elastic element and an outer ring elastic element, the shape of the inner/outer ring elastic element may not be limited to S-shape and arc shape, but may also be other shapes, such as a broken line shape or a spline curve shape.

關於彈性元件包括內環彈性元件以及外環彈性元件的更多內容可以參見本說明書圖12-圖18及其相關描述。For more information about the elastic element including the inner ring elastic element and the outer ring elastic element, please refer to Figures 12 to 18 of this manual and their related descriptions.

圖9是根據本說明書的一些實施例所示的聲學輸出裝置的示例性結構圖。如圖9所示,聲學輸出裝置900可以包括一個或多個壓電元件910、質量元件920和一個或多個彈性元件930。其中,一個或多個彈性元件930中的至少一個可以用於連接質量元件920和壓電元件910。FIG9 is an exemplary structural diagram of an acoustic output device according to some embodiments of the present specification. As shown in FIG9 , the acoustic output device 900 may include one or more piezoelectric elements 910, a mass element 920, and one or more elastic elements 930. At least one of the one or more elastic elements 930 may be used to connect the mass element 920 and the piezoelectric element 910.

在一些實施例中,一個或多個壓電元件910可以包括第一壓電元件911,第一壓電元件911可以為環形結構。環形結構的軸線方向與質量元件920的振動方向平行。在一些實施例中,第一壓電元件911沿軸線方向的一端固定(也稱為固定端),質量元件920通過彈性元件930與第一壓電元件911上除這一端以外的其它位置連接。在本說明書實施例中,壓電元件(如第一壓電元件、第二壓電元件等)的一端是指從該壓電元件的環形結構的其中一個環形端面起,沿環形結構的軸線方向具有一定厚度(例如,占環形結構總厚度的0.1%、5%或0.1%~30%範圍內的任意厚度)的全部區域。例如,第一壓電元件911沿軸線方向的一端固定可以是第一壓電元件911的其中一個環形端面可以固定。又例如,第一壓電元件911沿軸線方向的一端固定也可以是第一壓電元件911的其中一個環形端面附近一定厚度區域的環形結構的內側面和/或外側面可以固定。在一些實施例中,彈性元件930可以連接於與固定端的環形端面相對的另一環形端面。在一些實施例中,彈性元件930也可以連接於環形結構的內側面,並且在內側面的連接位置不屬於固定端的區域。In some embodiments, one or more piezoelectric elements 910 may include a first piezoelectric element 911, and the first piezoelectric element 911 may be a ring-shaped structure. The axial direction of the ring-shaped structure is parallel to the vibration direction of the mass element 920. In some embodiments, one end of the first piezoelectric element 911 along the axial direction is fixed (also referred to as a fixed end), and the mass element 920 is connected to other positions of the first piezoelectric element 911 except this end through the elastic element 930. In the embodiments of the present specification, one end of a piezoelectric element (such as a first piezoelectric element, a second piezoelectric element, etc.) refers to the entire area having a certain thickness (for example, 0.1%, 5% or any thickness in the range of 0.1% to 30% of the total thickness of the annular structure) along the axial direction of the annular structure starting from one of the annular end faces of the annular structure of the piezoelectric element. For example, one end of the first piezoelectric element 911 along the axial direction can be fixed by one of the annular end faces of the first piezoelectric element 911. For another example, one end of the first piezoelectric element 911 along the axial direction can be fixed by the inner side and/or outer side of the annular structure in a certain thickness area near one of the annular end faces of the first piezoelectric element 911. In some embodiments, the elastic element 930 can be connected to another annular end surface opposite to the annular end surface of the fixed end. In some embodiments, the elastic element 930 can also be connected to the inner side surface of the annular structure, and the connection position on the inner side surface does not belong to the area of the fixed end.

在一些實施例中,質量元件的至少一部分可以位於壓電元件的內側。例如,質量元件與彈性元件的連接點沿壓電元件的軸線方向的投影位於壓電元件沿軸線方向的投影以內。例如,如圖9所示,壓電元件910、彈性元件930以及質量元件920沿壓電元件910的軸線方向的投影由外之內依次排布。在一些實施例中,質量元件920可以位於第一壓電元件911的內側時,質量元件920的形狀可以為柱狀(如圖9所示)、環形等。In some embodiments, at least a portion of the mass element may be located inside the piezoelectric element. For example, the projection of the connection point between the mass element and the elastic element along the axial direction of the piezoelectric element is located inside the projection of the piezoelectric element along the axial direction. For example, as shown in FIG9 , the projections of the piezoelectric element 910, the elastic element 930, and the mass element 920 along the axial direction of the piezoelectric element 910 are arranged in sequence from the outside to the inside. In some embodiments, when the mass element 920 may be located inside the first piezoelectric element 911, the shape of the mass element 920 may be cylindrical (as shown in FIG9 ), ring-shaped, etc.

在一些實施例中,連接質量元件920和第一壓電元件911的彈性元件930可以包括多個杆件結構,多個杆件結構沿環形結構的周向分佈。在一些實施例中,彈性元件930的一端可以連接於質量元件920沿軸線方向的任一表面(例如,靠近壓電元件910的表面)。在其他實施例中,彈性元件930的一端也可以連接於質量元件920的周側表面。在一些實施例中,彈性元件930的另一端可以連接於壓電元件910上的非固定端的任一表面。例如,在一些實施例中,彈性元件930的另一端可以連接於壓電元件910上靠近質量元件920的環形端面。又例如,在一些實施例中,彈性元件930的另一端也可以連接於壓電元件910的周側內表面。彈性元件930與質量元件920和/或壓電元件910的連接位置可以根據聲學輸出裝置900在結構上的可行性進行設置。In some embodiments, the elastic element 930 connecting the mass element 920 and the first piezoelectric element 911 may include a plurality of rod structures, and the plurality of rod structures are distributed along the circumference of the annular structure. In some embodiments, one end of the elastic element 930 may be connected to any surface of the mass element 920 along the axial direction (for example, a surface close to the piezoelectric element 910). In other embodiments, one end of the elastic element 930 may also be connected to the peripheral surface of the mass element 920. In some embodiments, the other end of the elastic element 930 may be connected to any surface of the non-fixed end on the piezoelectric element 910. For example, in some embodiments, the other end of the elastic element 930 may be connected to the annular end surface of the piezoelectric element 910 close to the mass element 920. For another example, in some embodiments, the other end of the elastic element 930 may also be connected to the inner surface of the circumference of the piezoelectric element 910. The connection position of the elastic element 930 and the mass element 920 and/or the piezoelectric element 910 may be set according to the structural feasibility of the acoustic output device 900.

在一些實施例中,彈性元件930可以包括至少兩個部分,所述至少兩個部分可以向質量元件920提供旋度相反的切應力,所述旋度相反的切應力可以相互抵消,使得彈性元件930向質量元件920提供的切應力為零或接近為零。例如,多個杆件結構中每個杆件結構可以包括一個或多個彎折區域,一個或多個彎折區域中相鄰彎折區域向質量元件920提供的切應力旋度可以相反,以使每個杆件結構整體向質量元件920提供的切應力為零或接近為零。在一些實施例中,彈性元件930的結構可以與圖2-圖5中所述的彈性元件的結構相同或相似,關於彈性元件結構的具體內容可以參見圖2-圖5及其相關描述。In some embodiments, the elastic element 930 may include at least two parts, and the at least two parts may provide shear stresses with opposite curls to the mass element 920, and the shear stresses with opposite curls may cancel each other out, so that the shear stress provided by the elastic element 930 to the mass element 920 is zero or close to zero. For example, each of the multiple rod structures may include one or more bending regions, and the curls of the shear stresses provided by the adjacent bending regions in the one or more bending regions to the mass element 920 may be opposite, so that the shear stress provided by each rod structure as a whole to the mass element 920 is zero or close to zero. In some embodiments, the structure of the elastic element 930 may be the same as or similar to the structure of the elastic element described in FIGS. 2 to 5 , and the specific contents of the structure of the elastic element may refer to FIGS. 2 to 5 and the related descriptions.

在一些實施例中,質量元件920和彈性元件930諧振可以產生第一諧振峰,第一壓電元件911諧振可以產生第二諧振峰。第一諧振峰的位置,也即是第一諧振峰對應的第一諧振頻率的大小可以由質量元件920的質量以及彈性元件930的彈性係數決定。第二諧振峰的位置,也即是第二諧振峰對應的第二諧振頻率的大小可以由壓電元件910的結構參數(例如,尺寸)決定。In some embodiments, the mass element 920 and the elastic element 930 may resonate to generate a first resonant peak, and the first piezoelectric element 911 may resonate to generate a second resonant peak. The position of the first resonant peak, that is, the magnitude of the first resonant frequency corresponding to the first resonant peak, may be determined by the mass of the mass element 920 and the elastic coefficient of the elastic element 930. The position of the second resonant peak, that is, the magnitude of the second resonant frequency corresponding to the second resonant peak, may be determined by the structural parameters (e.g., size) of the piezoelectric element 910.

圖10是根據本說明書的一些實施例所示的聲學輸出裝置的頻響曲線圖。如圖10所示,橫坐標表示聲學輸出裝置的諧振頻率,單位是Hz,縱坐標表示聲學輸出裝置的加速度輸出強度,單位是dB。在一些實施例中,參見圖10,聲學輸出裝置(例如,聲學輸出裝置900)在可聽域(如20Hz-20KHz)頻率範圍內可以形成至少兩個諧振峰,其中,第一諧振峰1010可以是質量元件920和彈性元件930諧振產生的,第二諧振峰1020可以是壓電元件910諧振產生的。在一些實施例中,聲學輸出裝置900的第一諧振峰1010的頻率 f1的範圍可以位於50Hz-9000Hz。在一些實施例中,為了保證聲學輸出裝置900的低頻回應,聲學輸出裝置900的第一諧振峰1010的頻率 f1的範圍可以位於50 Hz-500 Hz。在一些實施例中,為了保證聲學輸出裝置900的低頻回應,聲學輸出裝置900的第一諧振峰1010的頻率 f1的範圍可以位於50 Hz-300 Hz。在一些實施例中,聲學輸出裝置900的第二諧振峰1020的頻率 f2的範圍可以位於1000 Hz-90000 Hz。在一些實施例中,為了保證聲學輸出裝置900的高頻回應,聲學輸出裝置900的第二諧振峰1020的頻率 f2的範圍可以位於9000 Hz-10000 Hz。在一些實施例中,為了保證聲學輸出裝置900在頻率回應範圍內輸出聲音的音質,聲學輸出裝置900的第二諧振峰1020的頻率 f2的範圍可以位於3000 Hz-7000 Hz。第一諧振峰1010和第二諧振峰1020之間的頻響曲線可以較為平直,在第一諧振頻率 f1至第二諧振頻率 f2之間的頻率範圍內,聲學輸出裝置900具有較高的輸出回應能力,當聲學輸出裝置900應用於聲學輸出裝置時,可以輸出音質較高的聲音。 FIG10 is a frequency response curve diagram of an acoustic output device according to some embodiments of the present specification. As shown in FIG10 , the horizontal axis represents the resonant frequency of the acoustic output device, the unit is Hz, and the vertical axis represents the acceleration output intensity of the acoustic output device, the unit is dB. In some embodiments, referring to FIG10 , the acoustic output device (e.g., the acoustic output device 900) can form at least two resonant peaks within the audible frequency range (e.g., 20 Hz-20 KHz), wherein the first resonant peak 1010 can be generated by the resonance of the mass element 920 and the elastic element 930, and the second resonant peak 1020 can be generated by the resonance of the piezoelectric element 910. In some embodiments, the frequency f1 of the first resonant peak 1010 of the acoustic output device 900 may be in the range of 50 Hz-9000 Hz. In some embodiments, in order to ensure the low-frequency response of the acoustic output device 900, the frequency f1 of the first resonant peak 1010 of the acoustic output device 900 may be in the range of 50 Hz-500 Hz. In some embodiments, in order to ensure the low-frequency response of the acoustic output device 900, the frequency f1 of the first resonant peak 1010 of the acoustic output device 900 may be in the range of 50 Hz-300 Hz. In some embodiments, the frequency f2 of the second resonant peak 1020 of the acoustic output device 900 may be in the range of 1000 Hz-90000 Hz. In some embodiments, in order to ensure the high frequency response of the acoustic output device 900, the frequency f2 of the second resonant peak 1020 of the acoustic output device 900 may be in the range of 9000 Hz-10000 Hz. In some embodiments, in order to ensure the sound quality of the sound output by the acoustic output device 900 within the frequency response range, the frequency f2 of the second resonant peak 1020 of the acoustic output device 900 may be in the range of 3000 Hz-7000 Hz. The frequency curve between the first harmonic peak 1010 and the second harmonic peak 1020 can be relatively flat. In the frequency range between the first harmonic frequency f1 and the second harmonic frequency f2 , the acoustic output device 900 has a higher output response capability. When the acoustic output device 900 is applied to an acoustic output device, it can output sound with higher sound quality.

在一些實施例中,質量元件的至少一部分可以位於壓電元件的外側。例如,質量元件的至少一部分可以為環形結構,質量元件的環形結構通過彈性元件與壓電元件連接。質量元件的環形結構沿著環形結構軸線方向的投影可以位於壓電元件沿所述軸線方向的投影以外。圖11A是根據本說明書的一些實施例所示的聲學輸出裝置的示例性結構圖。如圖11A所示,質量元件1120也可以位於第一壓電元件1111的外側,質量元件1120沿第一壓電元件1111的軸線方向的投影位於第一壓電元件1111沿軸線方向的投影以外,質量元件1120和第一壓電元件1111之間通過彈性元件1130連接。第一壓電元件1111、彈性元件1130以及質量元件1120沿第一壓電元件1111的軸線方向的投影由內之外依次排布。在一些實施例中,質量元件1120位於第一壓電元件1111的外側時,質量元件1120的形狀可以為環形。In some embodiments, at least a portion of the mass element may be located outside the piezoelectric element. For example, at least a portion of the mass element may be an annular structure, and the annular structure of the mass element is connected to the piezoelectric element through an elastic element. The projection of the annular structure of the mass element along the axial direction of the annular structure may be located outside the projection of the piezoelectric element along the axial direction. FIG. 11A is an exemplary structural diagram of an acoustic output device shown in some embodiments of the present specification. As shown in FIG. 11A , the mass element 1120 may also be located outside the first piezoelectric element 1111, and the projection of the mass element 1120 along the axial direction of the first piezoelectric element 1111 is located outside the projection of the first piezoelectric element 1111 along the axial direction, and the mass element 1120 and the first piezoelectric element 1111 are connected via the elastic element 1130. The projection of the first piezoelectric element 1111, the elastic element 1130, and the mass element 1120 along the axial direction of the first piezoelectric element 1111 are arranged in sequence from the inside to the outside. In some embodiments, when the mass element 1120 is located outside the first piezoelectric element 1111, the shape of the mass element 1120 may be a ring.

在一些實施例中,質量元件1120位於第一壓電元件1111的外側時,質量元件1120沿第一壓電元件1111的軸線方向遠離第一壓電元件1111的一側可以設置有蓋板1121。蓋板1121可以對質量元件1120沿第一壓電元件1111的軸線方向遠離第一壓電元件1111的一側進行密封。例如,蓋板1121可以為圓形結構,蓋板1121的周側與質量元件1120沿第一壓電元件1111的軸線方向遠離第一壓電元件1111的一側對齊設置並緊密連接。通過在質量元件1120沿第一壓電元件1111的軸線方向遠離第一壓電元件1111的一側設置蓋板1121,可以將蓋板1121作為振動板用於傳遞振動信號。蓋板1121還可以用於連接質量元件1120與聲學輸出裝置1100的其他結構,例如,振膜。In some embodiments, when the mass element 1120 is located outside the first piezoelectric element 1111, a cover plate 1121 may be provided on a side of the mass element 1120 that is away from the first piezoelectric element 1111 along the axis direction of the first piezoelectric element 1111. The cover plate 1121 may seal the side of the mass element 1120 that is away from the first piezoelectric element 1111 along the axis direction of the first piezoelectric element 1111. For example, the cover plate 1121 may be a circular structure, and the periphery of the cover plate 1121 is aligned and tightly connected with the side of the mass element 1120 that is away from the first piezoelectric element 1111 along the axis direction of the first piezoelectric element 1111. By arranging a cover plate 1121 on a side of the mass element 1120 away from the first piezoelectric element 1111 along the axial direction of the first piezoelectric element 1111, the cover plate 1121 can be used as a vibration plate to transmit vibration signals. The cover plate 1121 can also be used to connect the mass element 1120 to other structures of the acoustic output device 1100, such as a diaphragm.

圖11B是根據本說明書的一些實施例所示的聲學輸出裝置的頻響曲線圖。質量元件1120位於第一壓電元件1111的外側時,聲學輸出裝置1100的頻響曲線圖可以如圖11B所示。在一些實施例中,聲學輸出裝置1100的第一諧振峰1101的頻率 f1(也稱為第一諧振頻率)的範圍可以位於50Hz-11000Hz。在一些實施例中,為了保證聲學輸出裝置1100的低頻回應,聲學輸出裝置1100的第一諧振峰1101的頻率 f1的範圍可以位於50 Hz-500 Hz。在一些實施例中,為了保證聲學輸出裝置1100的低頻回應,聲學輸出裝置1100的第一諧振峰1101的頻率 f1的範圍可以位於50 Hz-300 Hz。在一些實施例中,聲學輸出裝置1100的第二諧振峰1102的頻率 f2(也稱為第二諧振頻率)的範圍可以位於1000 Hz-50000 Hz。在一些實施例中,為了保證聲學輸出裝置1100的高頻回應,聲學輸出裝置1100的第二諧振峰1102的頻率 f2的範圍可以位於1000 Hz-10000 Hz。在一些實施例中,為了保證聲學輸出裝置1100的高頻回應,聲學輸出裝置1100的第二諧振峰1102的頻率 f2的範圍可以位於4000 Hz-8000 Hz。 FIG11B is a frequency response curve diagram of an acoustic output device according to some embodiments of the present specification. When the mass element 1120 is located outside the first piezoelectric element 1111, the frequency response curve diagram of the acoustic output device 1100 may be as shown in FIG11B. In some embodiments, the frequency f1 (also referred to as the first harmonic frequency) of the first harmonic peak 1101 of the acoustic output device 1100 may be in the range of 50 Hz-11000 Hz. In some embodiments, in order to ensure the low-frequency response of the acoustic output device 1100, the frequency f1 of the first harmonic peak 1101 of the acoustic output device 1100 may be in the range of 50 Hz-500 Hz. In some embodiments, in order to ensure the low-frequency response of the acoustic output device 1100, the frequency f1 of the first resonant peak 1101 of the acoustic output device 1100 may be in the range of 50 Hz-300 Hz. In some embodiments, the frequency f2 (also referred to as the second resonant frequency) of the second resonant peak 1102 of the acoustic output device 1100 may be in the range of 1000 Hz-50000 Hz. In some embodiments, in order to ensure the high-frequency response of the acoustic output device 1100, the frequency f2 of the second resonant peak 1102 of the acoustic output device 1100 may be in the range of 1000 Hz-10000 Hz. In some embodiments, in order to ensure the high frequency response of the acoustic output device 1100, the frequency f2 of the second resonance peak 1102 of the acoustic output device 1100 may be in the range of 4000 Hz-8000 Hz.

圖12是根據本說明書的一些實施例所示的聲學輸出裝置的示例性結構圖。參見圖12,聲學輸出裝置1200可以包括一個或多個壓電元件1210、質量元件1220和一個或多個彈性元件1230。其中,一個或多個彈性元件1230中的至少一個可以用於連接質量元件1220和壓電元件1210。FIG12 is an exemplary structural diagram of an acoustic output device according to some embodiments of the present specification. Referring to FIG12 , the acoustic output device 1200 may include one or more piezoelectric elements 1210, a mass element 1220, and one or more elastic elements 1230. At least one of the one or more elastic elements 1230 may be used to connect the mass element 1220 and the piezoelectric element 1210.

在一些實施例中,一個或多個壓電元件1210可以包括第一壓電元件1211和第二壓電元件1212,第一壓電元件1211包括第一環形結構,第二壓電元件1212包括第二環形結構;第二壓電元件1212設置於第一環形結構內側。在一些實施例中,第一壓電元件1211沿軸線方向的一端(例如,遠離質量元件1220的一端)可以固定,第二壓電元件1212連接通過一個或多個彈性元件1230中的至少一個與第一壓電元件1211的固定端以外的其它位置連接;質量元件1220通過一個或多個彈性元件1230中的至少另一個與第二壓電元件1212連接。在一些實施例中,質量元件1220的至少一部分可以位於第二壓電元件1212的內部。例如,質量元件1220與彈性元件1230(例如,內環彈性元件1232)的連接點沿軸線方向的投影可以位於第二環形結構沿軸線方向的投影以內。In some embodiments, one or more piezoelectric elements 1210 may include a first piezoelectric element 1211 and a second piezoelectric element 1212, wherein the first piezoelectric element 1211 includes a first annular structure, and the second piezoelectric element 1212 includes a second annular structure; the second piezoelectric element 1212 is disposed inside the first annular structure. In some embodiments, one end of the first piezoelectric element 1211 along the axial direction (e.g., the end away from the mass element 1220) may be fixed, and the second piezoelectric element 1212 is connected to other positions other than the fixed end of the first piezoelectric element 1211 through at least one of the one or more elastic elements 1230; the mass element 1220 is connected to the second piezoelectric element 1212 through at least another of the one or more elastic elements 1230. In some embodiments, at least a portion of the mass element 1220 may be located inside the second piezoelectric element 1212. For example, the projection of the connection point between the mass element 1220 and the elastic element 1230 (e.g., the inner ring elastic element 1232) along the axial direction may be located within the projection of the second ring structure along the axial direction.

在一些實施例中,彈性元件1230可以包括外環彈性元件1231和內環彈性元件1232。外環彈性元件1231位於第一壓電元件1211和第二壓電元件1212之間,第一壓電元件1211和第二壓電元件1212之間通過外環彈性元件1231連接。內環彈性元件1232位於第二壓電元件1212和質量元件1220之間,第二壓電元件1212和質量元件1220之間通過內環彈性元件1232連接。In some embodiments, the elastic element 1230 may include an outer ring elastic element 1231 and an inner ring elastic element 1232. The outer ring elastic element 1231 is located between the first piezoelectric element 1211 and the second piezoelectric element 1212, and the first piezoelectric element 1211 and the second piezoelectric element 1212 are connected through the outer ring elastic element 1231. The inner ring elastic element 1232 is located between the second piezoelectric element 1212 and the mass element 1220, and the second piezoelectric element 1212 and the mass element 1220 are connected through the inner ring elastic element 1232.

在一些實施例中,內環彈性元件1232和外環彈性元件1231向質量元件1220提供的切應力旋度相反。在一些實施例中,內環彈性元件1232中的多個杆件結構與外環彈性元件1231的多個杆件結構向質量元件1220提供的切應力旋度可以分別對應相反。例如,內環彈性元件1232可以向質量元件1220提供第一旋度的切應力,外環彈性元件1231可以向質量元件1220提供第二旋度的切應力。在一些實施例中,如圖12所示,內環彈性元件1232和外環彈性元件1231可以包括多個杆件結構,每個杆件結構包括一個或多個彎折區域。通過設置內環彈性元件1232和外環彈性元件1231中杆件結構的彎折方向相反,可以使第一旋度與第二旋度相反,從而實現內環彈性元件1232和外環彈性元件1231向質量元件1220提供旋度相反的切應力。在一些實施例中,內環彈性元件1232和外環彈性元件1231的形狀可以不限於如圖12所示的S形,還可以是其他形狀,例如,折線形、樣條曲線形、弧形和直線形等。在一些實施例中,內環彈性元件1232和外環彈性元件1231還可以包括螺旋結構。通過設置內環彈性元件1232和外環彈性元件1231中螺旋結構的螺旋方向相反,可以使第一旋度與第二旋度相反,從而實現內環彈性元件1232和外環彈性元件1231向質量元件1220提供旋度相反的切應力。由此,內環彈性元件1232和外環彈性元件1231向質量元件1220提供的切應力可以相互抵消,使彈性元件1230向質量元件1220提供的切應力為零或接近為零,從而防止或者減小質量元件1220的轉動。In some embodiments, the shear stress curl provided by the inner ring elastic element 1232 and the outer ring elastic element 1231 to the mass element 1220 is opposite. In some embodiments, the shear stress curl provided by the multiple rod structures in the inner ring elastic element 1232 and the multiple rod structures in the outer ring elastic element 1231 to the mass element 1220 can be respectively opposite. For example, the inner ring elastic element 1232 can provide a shear stress of a first curl to the mass element 1220, and the outer ring elastic element 1231 can provide a shear stress of a second curl to the mass element 1220. In some embodiments, as shown in FIG. 12 , the inner ring elastic element 1232 and the outer ring elastic element 1231 can include a plurality of rod structures, each of which includes one or more bending regions. By setting the bending directions of the rod structures in the inner ring elastic element 1232 and the outer ring elastic element 1231 to be opposite, the first curl can be opposite to the second curl, so that the inner ring elastic element 1232 and the outer ring elastic element 1231 provide shear stress with opposite curls to the mass element 1220. In some embodiments, the shapes of the inner ring elastic element 1232 and the outer ring elastic element 1231 may not be limited to the S shape as shown in FIG. 12, but may also be other shapes, such as a broken line shape, a spline curve shape, an arc shape, and a straight line shape. In some embodiments, the inner ring elastic element 1232 and the outer ring elastic element 1231 may also include a spiral structure. By setting the spiral directions of the spiral structures in the inner ring elastic element 1232 and the outer ring elastic element 1231 to be opposite, the first curl can be opposite to the second curl, so that the inner ring elastic element 1232 and the outer ring elastic element 1231 provide shear stresses with opposite curls to the mass element 1220. Thus, the shear stresses provided by the inner ring elastic element 1232 and the outer ring elastic element 1231 to the mass element 1220 can offset each other, so that the shear stress provided by the elastic element 1230 to the mass element 1220 is zero or close to zero, thereby preventing or reducing the rotation of the mass element 1220.

在一些實施例中,通過在聲學輸出裝置1200中設置第二壓電元件1212,第二壓電元件1212與質量元件1220(以及連接第二壓電元件1212與質量元件1220的彈性元件)可以構成整體質量,當該整體質量與連接該整體質量與第一壓電元件1211的彈性元件諧振時,由於該整體質量大於質量元件的質量,從而使聲學輸出裝置1200的第一諧振峰向低頻移動,並且聲學輸出裝置1200在振動時,第一環形結構和第二環形結構構成的雙環形結構諧振還能夠產生位於第一諧振峰和第二諧振峰之間的第三諧振峰,在聲學輸出裝置1200的頻響曲線中可以表現為在第一諧振峰和第二諧振峰之間的位置額外形成一個諧振峰,即第三諧振峰。在一些實施例中,第三諧振峰對應的第三諧振頻率可以位於第一諧振峰對應的第一諧振頻率和第二諧振峰對應的第二諧振頻率之間。在一些實施例中,具有雙環形結構的聲學輸出裝置1200的第一諧振峰的頻率範圍可以為50Hz-2000Hz。在一些實施例中,為了保證聲學輸出裝置1200的低頻回應,具有雙環形結構的聲學輸出裝置1200的第一諧振峰的頻率範圍可以為50 Hz-1000 Hz。在一些實施例中,為了保證聲學輸出裝置1200的低頻回應,具有雙環形結構的聲學輸出裝置1200的第一諧振峰的頻率範圍可以為50 Hz-500 Hz。在一些實施例中,為了保證聲學輸出裝置1200的低頻回應,具有雙環形結構的聲學輸出裝置1200的第一諧振峰的頻率範圍可以為50 Hz-100 Hz。In some embodiments, by providing the second piezoelectric element 1212 in the acoustic output device 1200, the second piezoelectric element 1212 and the mass element 1220 (and the elastic element connecting the second piezoelectric element 1212 and the mass element 1220) can constitute an overall mass. When the overall mass resonates with the elastic element connecting the overall mass and the first piezoelectric element 1211, the overall mass is greater than the mass of the mass element, thereby The first resonance peak of the acoustic output device 1200 is moved to a low frequency, and when the acoustic output device 1200 vibrates, the double ring structure composed of the first ring structure and the second ring structure can also generate a third resonance peak between the first resonance peak and the second resonance peak through resonance, which can be shown as an additional resonance peak between the first resonance peak and the second resonance peak in the frequency curve of the acoustic output device 1200, i.e., the third resonance peak. In some embodiments, the third resonance frequency corresponding to the third resonance peak can be between the first resonance frequency corresponding to the first resonance peak and the second resonance frequency corresponding to the second resonance peak. In some embodiments, the frequency range of the first resonant peak of the acoustic output device 1200 with a dual ring structure may be 50 Hz-2000 Hz. In some embodiments, in order to ensure the low-frequency response of the acoustic output device 1200, the frequency range of the first resonant peak of the acoustic output device 1200 with a dual ring structure may be 50 Hz-1000 Hz. In some embodiments, in order to ensure the low-frequency response of the acoustic output device 1200, the frequency range of the first resonant peak of the acoustic output device 1200 with a dual ring structure may be 50 Hz-500 Hz. In some embodiments, in order to ensure the low-frequency response of the acoustic output device 1200, the frequency range of the first resonance peak of the acoustic output device 1200 with a double-ring structure may be 50 Hz-100 Hz.

圖13是根據本說明書的一些實施例所示的聲學輸出裝置的頻響曲線圖。其中,曲線1310可以表示只設置第一壓電元件的聲學輸出裝置(例如,聲學輸出裝置900)的頻響曲線,曲線1320、1330、1340以及1350表示設置第一壓電元件和第二壓電元件,且第一壓電元件與第二壓電元件所接收的電信號具有不同相位差時聲學輸出裝置(例如,聲學輸出裝置1200)的頻響曲線。對比曲線1310和曲線1320-1350可知,當聲學輸出裝置額外設置第二壓電元件時,聲學輸出裝置的頻響曲線1320中不僅可以形成第一諧振峰1301和第二諧振峰1302,還可以額外形成一個諧振峰,即第三諧振峰1303。FIG13 is a frequency response curve diagram of an acoustic output device according to some embodiments of the present specification. Curve 1310 may represent the frequency response curve of an acoustic output device (e.g., acoustic output device 900) provided with only the first piezoelectric element, and curves 1320, 1330, 1340, and 1350 represent the frequency response curves of an acoustic output device (e.g., acoustic output device 1200) provided with the first piezoelectric element and the second piezoelectric element, and when the electrical signals received by the first piezoelectric element and the second piezoelectric element have different phase differences. By comparing the curve 1310 and the curves 1320-1350, it can be seen that when the acoustic output device is additionally provided with a second piezoelectric element, the frequency response curve 1320 of the acoustic output device can form not only the first resonance peak 1301 and the second resonance peak 1302, but also an additional resonance peak, namely, the third resonance peak 1303.

在一些實施例中,聲學輸出裝置包括第一壓電元件和第二壓電元件時,質量元件的至少一部分可以位於第一壓電元件的外側。圖14是根據本說明書的一些實施例所示的聲學輸出裝置的示例性結構圖。如圖14所示,一個或多個壓電元件1410可以包括第一壓電元件1411和第二壓電元件1412,第一壓電元件1411包括第一環形結構,第二壓電元件1412包括第二環形結構;第二壓電元件1412設置於第一環形結構內側。在一些實施例中,第二壓電元件1412沿環形結構的軸線方向的一端可以固定,第一壓電元件1411通過一個或多個彈性元件1430中的至少一個(例如,內環彈性元件1432)與第二壓電元件1412的固定端以外的其它位置連接;質量元件1420的至少一部分可以為環形結構,質量元件1420的環形結構通過彈性元件1430中的外環彈性元件1431與第一環形結構連接,質量元件1420的環形結構沿軸線方向的投影可以位於第一環形結構沿軸線方向的投影以外。在一些實施例中,如圖14所示,內環彈性元件1432和外環彈性元件1431可以包括多個杆件結構,每個杆件結構包括一個或多個彎折區域。在一些實施例中,內環彈性元件1432和外環彈性元件1431的形狀可以不限於如圖14所示的S形,還可以是其他形狀,例如,折線形、樣條曲線形、弧形和直線形等。在一些實施例中,內環彈性元件1432和外環彈性元件1431還可以包括螺旋結構。在一些實施例中,內環彈性元件1432可以向質量元件1420提供第一旋度的切應力,外環彈性元件1431可以向質量元件1420提供第二旋度的切應力。通過設置內環彈性元件1432和外環彈性元件1431的結構(例如,杆件結構的彎折方向相反、螺旋結構的螺旋方向相反等),可以使第一旋度與第二旋度相反,從而實現內環彈性元件1432和外環彈性元件1431向質量元件1420提供旋度相反的切應力。從而能使彈性元件1430向質量元件1420提供的切應力為零或接近為零,從而防止或者減小質量元件1420的轉動。In some embodiments, when the acoustic output device includes a first piezoelectric element and a second piezoelectric element, at least a portion of the mass element may be located outside the first piezoelectric element. FIG. 14 is an exemplary structural diagram of an acoustic output device according to some embodiments of the present specification. As shown in FIG. 14 , one or more piezoelectric elements 1410 may include a first piezoelectric element 1411 and a second piezoelectric element 1412, the first piezoelectric element 1411 includes a first annular structure, and the second piezoelectric element 1412 includes a second annular structure; the second piezoelectric element 1412 is disposed inside the first annular structure. In some embodiments, one end of the second piezoelectric element 1412 along the axial direction of the annular structure can be fixed, and the first piezoelectric element 1411 is connected to a position other than the fixed end of the second piezoelectric element 1412 through at least one of the one or more elastic elements 1430 (for example, the inner annular elastic element 1432); at least a portion of the mass element 1420 can be an annular structure, and the annular structure of the mass element 1420 is connected to the first annular structure through the outer annular elastic element 1431 in the elastic element 1430, and the projection of the annular structure of the mass element 1420 along the axial direction can be located outside the projection of the first annular structure along the axial direction. In some embodiments, as shown in FIG. 14 , the inner ring elastic element 1432 and the outer ring elastic element 1431 may include a plurality of rod structures, each of which includes one or more bending regions. In some embodiments, the shapes of the inner ring elastic element 1432 and the outer ring elastic element 1431 may not be limited to the S-shape shown in FIG. 14 , but may also be other shapes, such as a broken line shape, a spline curve shape, an arc shape, and a straight line shape. In some embodiments, the inner ring elastic element 1432 and the outer ring elastic element 1431 may also include a spiral structure. In some embodiments, the inner ring elastic element 1432 may provide a shear stress of a first rotation to the mass element 1420, and the outer ring elastic element 1431 may provide a shear stress of a second rotation to the mass element 1420. By setting the structures of the inner ring elastic element 1432 and the outer ring elastic element 1431 (for example, the bending directions of the rod structure are opposite, the spiral directions of the spiral structure are opposite, etc.), the first curl can be opposite to the second curl, so that the inner ring elastic element 1432 and the outer ring elastic element 1431 provide shear stresses with opposite curls to the mass element 1420. Therefore, the shear stress provided by the elastic element 1430 to the mass element 1420 can be zero or close to zero, thereby preventing or reducing the rotation of the mass element 1420.

在一些實施例中,聲學輸出裝置1400包括第一壓電元件1411和第二壓電元件1412,且質量元件1420位於第一壓電元件1411的外側時,質量元件1420沿第一壓電元件1411的軸線方向遠離第一壓電元件1411的一側可以設置有蓋板。在一些實施例中,質量元件1420呈封閉狀的一側(即質量元件1420設置有蓋板的一側)可以向遠離未封閉一側的方向延伸,質量元件1420呈封閉狀的表面沿軸線方向的投影可以為多種形狀,例如,圓形、方形等。質量元件1420未封閉的一端與壓電元件1410(例如,第一壓電元件1411)連接,質量元件1420未封閉的一端的端面沿軸線方向的投影為環形。In some embodiments, the acoustic output device 1400 includes a first piezoelectric element 1411 and a second piezoelectric element 1412, and when the mass element 1420 is located outside the first piezoelectric element 1411, a cover plate may be provided on a side of the mass element 1420 that is away from the first piezoelectric element 1411 along the axial direction of the first piezoelectric element 1411. In some embodiments, a closed side of the mass element 1420 (i.e., a side of the mass element 1420 that is provided with a cover plate) may extend in a direction away from an unclosed side, and a projection of the closed surface of the mass element 1420 along the axial direction may be in a variety of shapes, such as a circle, a square, etc. The unsealed end of the mass element 1420 is connected to the piezoelectric element 1410 (eg, the first piezoelectric element 1411 ), and the projection of the end surface of the unsealed end of the mass element 1420 along the axial direction is a ring.

在一些實施例中,第一壓電元件1411與質量元件1420(以及連接第一壓電元件1411與質量元件1420的彈性元件)可以構成整體質量,當該整體質量與連接該整體質量與第二壓電元件1412的彈性元件諧振時,可以使得聲學輸出裝置1400的第一諧振峰向低頻移動,並且聲學輸出裝置1400的雙環形結構諧振還能夠產生位於第一諧振峰和第二諧振峰之間的第三諧振峰。In some embodiments, the first piezoelectric element 1411 and the mass element 1420 (and the elastic element connecting the first piezoelectric element 1411 and the mass element 1420) can constitute an overall mass. When the overall mass resonates with the elastic element connecting the overall mass and the second piezoelectric element 1412, the first resonance peak of the acoustic output device 1400 can be moved to a low frequency, and the dual-ring structure resonance of the acoustic output device 1400 can also generate a third resonance peak between the first resonance peak and the second resonance peak.

圖15是根據本說明書的一些實施例所示的聲學輸出裝置的頻響曲線圖。其中,曲線1510可以表示只設置第一壓電元件的聲學輸出裝置(例如,聲學輸出裝置900)的頻響曲線,曲線1520、1530、1540以及1550表示設置第一壓電元件和第二壓電元件,且第一壓電元件與第二壓電元件所接收的電信號具有不同相位差時聲學輸出裝置(例如,聲學輸出裝置1400)的頻響曲線。對比曲線1510和曲線1520-1550可知,當聲學輸出裝置額外設置第二壓電元件時,聲學輸出裝置的頻響曲線1520中不僅可以形成第一諧振峰1501和第二諧振峰1502,還可以形成第三諧振峰1503。FIG15 is a frequency response curve diagram of an acoustic output device according to some embodiments of the present specification. Curve 1510 may represent the frequency response curve of an acoustic output device (e.g., acoustic output device 900) provided with only the first piezoelectric element, and curves 1520, 1530, 1540, and 1550 represent the frequency response curves of an acoustic output device (e.g., acoustic output device 1400) provided with the first piezoelectric element and the second piezoelectric element, and when the electrical signals received by the first piezoelectric element and the second piezoelectric element have different phase differences. By comparing the curve 1510 and the curves 1520-1550, it can be seen that when the acoustic output device is additionally provided with a second piezoelectric element, not only the first resonant peak 1501 and the second resonant peak 1502 but also the third resonant peak 1503 can be formed in the frequency response curve 1520 of the acoustic output device.

在一些實施例中,聲學輸出裝置包括第一壓電元件和第二壓電元件時,質量元件的至少一部分可以位於第一壓電元件與第二壓電元件之間。圖16是根據本說明書的一些實施例所示的聲學輸出裝置的示例性結構圖。如圖16所示,在一些實施例中,質量元件1620的至少一部分可以為環形結構,質量元件1620的環形結構位於第一壓電元件1611的第一環形結構與第二壓電元件1612的第二環形結構之間。質量元件1620的環形結構沿軸線方向的投影可以位於第一環形結構和第二環形結構沿軸線方向的投影之間。質量元件1620的環形結構通過一個或多個彈性元件1630中的至少一個(例如,外環彈性元件1631)與第一壓電元件1611連接,質量元件1620通過一個或多個彈性元件中的至少另一個(例如,內環彈性元件1632)與第二壓電元件1612連接。在一些實施例中,彈性元件1630(例如,外環彈性元件1631和/或內環彈性元件1632)的形狀可以是S形,相鄰S形的彈性元件1630的彎曲方向可以相反,使得相鄰S形的彈性元件1630可以為質量元件1620提供旋度相反的切應力,從而避免質量元件1620產生繞軸線方向旋轉的轉動趨勢,進而避免聲學輸出裝置1600產生轉動模態。在一些實施例中,彈性元件1630沿質量元件1620振動方向(即軸線方向)的投影可以具有至少一個對稱軸(例如,圖16所示的第一對稱軸1601和/或第二對稱軸1601),以使得沿對稱軸對稱的S形提供的切應力對應的旋度不同(例如,相反),使得對稱軸兩側的S形的彈性元件1630可以為質量元件1620提供旋度相反的切應力,從而避免質量元件1620產生繞軸線方向旋轉的轉動趨勢,進而避免聲學輸出裝置1600產生轉動模態。在一些實施例中,參見圖16,相鄰S形的彈性元件1630在質量元件1620或壓電元件1610(例如,第一壓電元件1611和/或第二壓電元件1612)上的連接位置可以相同。在另一些實施例中,相鄰S形的彈性元件1630在質量元件1620或壓電元件1610(例如,第一壓電元件1611和/或第二壓電元件1612)上的連接位置也可以不相同。在一些實施例中,內環彈性元件1632和外環彈性元件1631的形狀可以不限於如圖16所示的S形,還可以是其他形狀,例如,折線形、樣條曲線形、弧形和直線形等。在一些實施例中,內環彈性元件1632和外環彈性元件1631還可以包括螺旋結構。通過設置內環彈性元件1632和外環彈性元件1631的結構(例如,杆件結構的彎折方向相反、螺旋結構的螺旋方向相反等),可以使內環彈性元件1632和外環彈性元件1631向質量元件1620提供旋度相反的切應力。從而能使彈性元件1630向質量元件1620提供的切應力為零或接近為零,從而防止或者減小質量元件1620的轉動。In some embodiments, when the acoustic output device includes a first piezoelectric element and a second piezoelectric element, at least a portion of the mass element may be located between the first piezoelectric element and the second piezoelectric element. FIG. 16 is an exemplary structural diagram of an acoustic output device according to some embodiments of the present specification. As shown in FIG. 16 , in some embodiments, at least a portion of the mass element 1620 may be an annular structure, and the annular structure of the mass element 1620 may be located between the first annular structure of the first piezoelectric element 1611 and the second annular structure of the second piezoelectric element 1612. The projection of the annular structure of the mass element 1620 along the axial direction may be located between the projection of the first annular structure and the projection of the second annular structure along the axial direction. The annular structure of the mass element 1620 is connected to the first piezoelectric element 1611 through at least one of the one or more elastic elements 1630 (for example, the outer ring elastic element 1631), and the mass element 1620 is connected to the second piezoelectric element 1612 through at least another one of the one or more elastic elements (for example, the inner ring elastic element 1632). In some embodiments, the shape of the elastic element 1630 (for example, the outer ring elastic element 1631 and/or the inner ring elastic element 1632) can be S-shaped, and the bending directions of adjacent S-shaped elastic elements 1630 can be opposite, so that the adjacent S-shaped elastic elements 1630 can provide shear stress with opposite rotation to the mass element 1620, thereby avoiding the mass element 1620 from generating a rotational tendency around the axial direction, and further avoiding the acoustic output device 1600 from generating a rotational mode. In some embodiments, the projection of the elastic element 1630 along the vibration direction (i.e., axial direction) of the mass element 1620 may have at least one symmetry axis (e.g., the first symmetry axis 1601 and/or the second symmetry axis 1601 shown in FIG. 16 ), so that the curl corresponding to the tangential stress provided by the S-shape symmetrical along the symmetry axis is different (e.g., opposite), so that the S-shaped elastic elements 1630 on both sides of the symmetry axis can provide the mass element 1620 with tangential stress with opposite curl, thereby preventing the mass element 1620 from generating a rotational tendency around the axial direction, and further preventing the acoustic output device 1600 from generating a rotational mode. In some embodiments, referring to FIG. 16 , the connection positions of adjacent S-shaped elastic elements 1630 on the mass element 1620 or the piezoelectric element 1610 (e.g., the first piezoelectric element 1611 and/or the second piezoelectric element 1612) may be the same. In other embodiments, the connection positions of adjacent S-shaped elastic elements 1630 on the mass element 1620 or the piezoelectric element 1610 (e.g., the first piezoelectric element 1611 and/or the second piezoelectric element 1612) may also be different. In some embodiments, the shapes of the inner ring elastic element 1632 and the outer ring elastic element 1631 may not be limited to the S shape as shown in FIG. 16 , but may also be other shapes, such as a broken line shape, a spline curve shape, an arc shape, and a straight line shape. In some embodiments, the inner ring elastic element 1632 and the outer ring elastic element 1631 may further include a spiral structure. By setting the structures of the inner ring elastic element 1632 and the outer ring elastic element 1631 (for example, the bending directions of the rod structure are opposite, the spiral directions of the spiral structure are opposite, etc.), the inner ring elastic element 1632 and the outer ring elastic element 1631 can provide shear stress with opposite rotation to the mass element 1620. Thereby, the shear stress provided by the elastic element 1630 to the mass element 1620 can be zero or close to zero, thereby preventing or reducing the rotation of the mass element 1620.

在一些實施例中,第一壓電元件1611或第二壓電元件1612可以具有沿軸線方向的固定端。在一些實施例中,第一壓電元件1611沿軸線方向的一端固定時,第二壓電元件1612沿軸線方向的兩端面自由設置,第二壓電元件1612可以作為壓電自由環,第一壓電元件1611可以作為壓電固定環。或者第二壓電元件1612沿軸線方向的一端固定時,第一壓電元件1611沿軸線方向的兩端面自由設置,第一壓電元件1611可以作為壓電自由環,第二壓電元件1612可以作為壓電固定環。在一些實施例中,至少一個壓電元件1610中不同壓電元件具有沿軸線方向的固定端時,聲學輸出裝置1600可以具有不同的頻響曲線。壓電自由環與質量元件1620(以及連接壓電自由環與質量元件1620的彈性元件)構成的整體質量可以與連接這一整體質量與壓電固定環的彈性元件諧振,可以使第一諧振峰向低頻移動,並且壓電自由環和壓電固定環間接連接(即通過外環彈性元件1631、質量元件1620和內環彈性元件1632連接),使得聲學輸出裝置1600在振動時,壓電自由環和壓電固定環諧振可以在頻響曲線中形成第三諧振峰。第三諧振峰對應的第三諧振頻率可以位於第一諧振峰對應的第一諧振頻率和第二諧振峰對應的第二諧振頻率之間。在一些實施例中,聲學輸出裝置1600的第一諧振峰的頻率範圍可以與聲學輸出裝置1200的第一諧振峰的頻率範圍相似,此處不再贅述。In some embodiments, the first piezoelectric element 1611 or the second piezoelectric element 1612 may have a fixed end along the axial direction. In some embodiments, when one end of the first piezoelectric element 1611 is fixed along the axial direction, the two end surfaces of the second piezoelectric element 1612 along the axial direction are freely arranged, and the second piezoelectric element 1612 can be used as a piezoelectric free ring, and the first piezoelectric element 1611 can be used as a piezoelectric fixed ring. Or when one end of the second piezoelectric element 1612 is fixed along the axial direction, the two end surfaces of the first piezoelectric element 1611 along the axial direction are freely arranged, and the first piezoelectric element 1611 can be used as a piezoelectric free ring, and the second piezoelectric element 1612 can be used as a piezoelectric fixed ring. In some embodiments, when different piezoelectric elements in at least one piezoelectric element 1610 have fixed ends along an axial direction, the acoustic output device 1600 may have different frequency response curves. The overall mass formed by the piezoelectric free ring and the mass element 1620 (and the elastic element connecting the piezoelectric free ring and the mass element 1620) can resonate with the elastic element connecting the overall mass and the piezoelectric fixed ring, so that the first resonance peak can be moved to a low frequency, and the piezoelectric free ring and the piezoelectric fixed ring are indirectly connected (i.e., connected through the outer ring elastic element 1631, the mass element 1620 and the inner ring elastic element 1632), so that when the acoustic output device 1600 vibrates, the piezoelectric free ring and the piezoelectric fixed ring resonance can form a third resonance peak in the frequency curve. The third harmonic frequency corresponding to the third harmonic peak may be between the first harmonic frequency corresponding to the first harmonic peak and the second harmonic frequency corresponding to the second harmonic peak. In some embodiments, the frequency range of the first harmonic peak of the acoustic output device 1600 may be similar to the frequency range of the first harmonic peak of the acoustic output device 1200, which will not be described in detail herein.

圖17是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖。圖17中除曲線1710之外的頻響曲線可以是第一壓電元件(例如,第一壓電元件1611)具有沿軸線方向的固定端的聲學輸出裝置(例如,聲學輸出裝置1600)的頻響曲線。參見圖17,曲線1710可以表示只設置第一壓電元件的聲學輸出裝置(例如,聲學輸出裝置900)的頻響曲線,曲線1720、1730以及1740表示設置第一壓電元件和第二壓電元件,且第一壓電元件與第二壓電元件所接收的電信號具有不同相位差時聲學輸出裝置的頻響曲線。對比曲線1710和曲線1720-1740可知,當聲學輸出裝置設置第一壓電元件和第二壓電元件時,聲學輸出裝置的頻響曲線1720中也可以形成除第一諧振峰1701和第二諧振峰1702之外的第三諧振峰1703。FIG. 17 is a frequency response curve diagram of an acoustic output device according to some embodiments of the present specification. The frequency response curves except curve 1710 in FIG. 17 may be frequency response curves of an acoustic output device (e.g., acoustic output device 1600) in which a first piezoelectric element (e.g., first piezoelectric element 1611) has a fixed end along an axial direction. Referring to FIG. 17 , curve 1710 may represent a frequency response curve of an acoustic output device (e.g., acoustic output device 900) in which only the first piezoelectric element is provided, and curves 1720, 1730, and 1740 represent frequency response curves of an acoustic output device in which a first piezoelectric element and a second piezoelectric element are provided, and the electrical signals received by the first piezoelectric element and the second piezoelectric element have different phase differences. By comparing the curve 1710 and the curves 1720-1740, it can be seen that when the acoustic output device is provided with the first piezoelectric element and the second piezoelectric element, a third resonant peak 1703 in addition to the first resonant peak 1701 and the second resonant peak 1702 can also be formed in the frequency response curve 1720 of the acoustic output device.

圖18是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖。圖18中除曲線1810之外頻響曲線可以是第二壓電元件(例如,第二壓電元件1612)具有沿軸線方向的固定端的聲學輸出裝置的頻響曲線。其中,曲線1810可以表示只設置第一壓電元件的聲學輸出裝置(例如,振動裝置900)的頻響曲線,曲線1820、1830以及1840表示設置第一壓電元件和第二壓電元件,且第一壓電元件與第二壓電元件所接收的電信號具有不同相位差時聲學輸出裝置(例如,聲學輸出裝置1600)的頻響曲線。對比曲線1810和曲線1820-1840可知,當聲學輸出裝置設置第一壓電元件和第二壓電元件時,聲學輸出裝置的頻響曲線1820中也可以形成除第一諧振峰1801和第二諧振峰1802之外的第三諧振峰1803。FIG. 18 is a frequency response curve diagram of an acoustic output device according to some embodiments of the present specification. In FIG. 18 , the frequency response curves except curve 1810 may be frequency response curves of an acoustic output device in which the second piezoelectric element (e.g., the second piezoelectric element 1612) has a fixed end along the axial direction. Curve 1810 may represent the frequency response curve of an acoustic output device (e.g., the vibration device 900) in which only the first piezoelectric element is provided, and curves 1820, 1830, and 1840 represent the frequency response curves of an acoustic output device (e.g., the acoustic output device 1600) in which the first piezoelectric element and the second piezoelectric element are provided, and the electrical signals received by the first piezoelectric element and the second piezoelectric element have different phase differences. By comparing the curve 1810 and the curves 1820-1840, it can be seen that when the acoustic output device is provided with the first piezoelectric element and the second piezoelectric element, a third resonant peak 1803 in addition to the first resonant peak 1801 and the second resonant peak 1802 can also be formed in the frequency response curve 1820 of the acoustic output device.

圖19是根據本說明書的一些實施例所示的聲學輸出裝置的示例性結構圖。參見圖19,聲學輸出裝置1900可以包括一個或多個壓電元件1910、質量元件1920以及一個或多個彈性元件1930。在一些實施例中,一個或多個壓電元件1910可以包括兩個第一壓電元件1911,兩個第一壓電元件1911可以沿軸線方向上下分佈並相互連接。兩個第一壓電元件1911沿軸線方向上下分佈形成壓電元件1910的雙層單環形結構。FIG19 is an exemplary structural diagram of an acoustic output device according to some embodiments of the present specification. Referring to FIG19 , the acoustic output device 1900 may include one or more piezoelectric elements 1910, a mass element 1920, and one or more elastic elements 1930. In some embodiments, the one or more piezoelectric elements 1910 may include two first piezoelectric elements 1911, and the two first piezoelectric elements 1911 may be arranged vertically along the axial direction and connected to each other. The two first piezoelectric elements 1911 are arranged vertically along the axial direction to form a double-layer single-ring structure of the piezoelectric element 1910.

在一些實施例中,質量元件1920可以通過一個或多個彈性元件1930分別與兩個第一壓電元件1911連接。在一些實施例中,一個或多個彈性元件1930可以雙層設置,雙層彈性元件1930包括兩層第一彈性元件1931,兩層第一彈性元件1931沿壓電元件1910的軸線方向上下排布。在一些實施例中,兩層第一彈性元件1931可以分別連接於兩個第一壓電元件1911的周向。質量元件1920分別通過兩層第一彈性元件1931與兩個壓電元件1911對應連接。在一些實施例中,兩層第一彈性元件1931可以向質量元件1920提供旋度相反的切應力。在一些實施例中,兩層第一彈性元件1931可以分別包括多個杆件結構,第一層的多個杆件結構的彎折方向與第二層的多個杆件結構的彎折方向可以反向設置,使得第一層彈性元件向質量元件1920提供的切應力的第一旋度與第二層彈性元件向質量元件1920提供的切應力的第二旋度相反,從而使得兩層第一彈性元件1931向質量元件1920提供的切應力為零或接近為零,從而防止或者減小質量元件1920的轉動。在一些實施例中,兩層第一彈性元件1931也可以包括第一螺旋結構和第二螺旋結構,第一螺旋結構與第二螺旋結構的軸線相同且螺旋方向相反,使得第一螺旋結構與第二螺旋結構可以向質量元件1920提供旋度相反的切應力。In some embodiments, the mass element 1920 can be connected to the two first piezoelectric elements 1911 through one or more elastic elements 1930. In some embodiments, the one or more elastic elements 1930 can be provided in double layers, and the double-layer elastic element 1930 includes two layers of first elastic elements 1931, and the two layers of first elastic elements 1931 are arranged up and down along the axis direction of the piezoelectric element 1910. In some embodiments, the two layers of first elastic elements 1931 can be connected to the circumference of the two first piezoelectric elements 1911. The mass element 1920 is connected to the two piezoelectric elements 1911 through the two layers of first elastic elements 1931. In some embodiments, the two layers of first elastic elements 1931 can provide shear stress with opposite rotation to the mass element 1920. In some embodiments, the two layers of first elastic elements 1931 can include multiple rod structures respectively, and the bending directions of the multiple rod structures of the first layer and the bending directions of the multiple rod structures of the second layer can be set oppositely, so that the first rotation of the shear stress provided by the first layer of elastic elements to the mass element 1920 is opposite to the second rotation of the shear stress provided by the second layer of elastic elements to the mass element 1920, so that the shear stress provided by the two layers of first elastic elements 1931 to the mass element 1920 is zero or close to zero, thereby preventing or reducing the rotation of the mass element 1920. In some embodiments, the two-layer first elastic element 1931 may also include a first spiral structure and a second spiral structure, the first spiral structure and the second spiral structure have the same axis and opposite spiral directions, so that the first spiral structure and the second spiral structure can provide shear stress with opposite rotation to the mass element 1920.

在一些實施例中,第一壓電元件1911的數量為兩個時,兩個第一壓電元件1911在振動過程中沿軸線方向的位移變化可以相反。即,兩個第一壓電元件1911中的其中一個在振動過程中沿軸線方向位移變大(即伸長),兩個第一壓電元件1911中的其中另一個在振動過程中沿軸線方向位移變小(即收縮)。在一些實施例中,第一壓電元件1911在振動過程中沿軸線方向的位移變化可以通過第一壓電元件1911的極化方向以及電信號的電極極性進行調控,具體可以參見本說明書圖20A和圖20B的相關描述。In some embodiments, when there are two first piezoelectric elements 1911, the displacement changes of the two first piezoelectric elements 1911 along the axial direction during the vibration process may be opposite. That is, the displacement of one of the two first piezoelectric elements 1911 along the axial direction during the vibration process becomes larger (i.e., elongated), and the displacement of the other of the two first piezoelectric elements 1911 along the axial direction during the vibration process becomes smaller (i.e., contracted). In some embodiments, the displacement change of the first piezoelectric element 1911 along the axial direction during the vibration process can be regulated by the polarization direction of the first piezoelectric element 1911 and the electrode polarity of the electrical signal. For details, please refer to the relevant description of Figures 20A and 20B of this specification.

在一些實施例中,壓電元件1910包括的第一壓電元件1911的數量可以為多個,例如,4個、6個、8個等。多個第一壓電元件1911沿軸線方向可以依次連接,質量元件1920分別通過多個彈性元件1930(例如,分為多層)與多個第一壓電元件1911中的每一個連接。多層彈性元件中相鄰層面的彈性元件可以向質量元件1920提供旋度相反的切應力。在一些實施例中,質量元件1920的數量也可以是多個,多個質量元件1920中的每一個可以通過多個彈性元件1930與一個第一壓電元件1911連接。In some embodiments, the piezoelectric element 1910 may include a plurality of first piezoelectric elements 1911, for example, 4, 6, 8, etc. The plurality of first piezoelectric elements 1911 may be connected in sequence along the axial direction, and the mass element 1920 is connected to each of the plurality of first piezoelectric elements 1911 through a plurality of elastic elements 1930 (for example, divided into multiple layers). The elastic elements of adjacent layers in the multi-layer elastic element may provide the mass element 1920 with a shear stress with an opposite rotation. In some embodiments, the number of mass elements 1920 may also be multiple, and each of the plurality of mass elements 1920 may be connected to one first piezoelectric element 1911 through a plurality of elastic elements 1930.

圖20A是根據本說明書的一些實施例所示的第一壓電元件的示例性電路圖。參見圖20A,兩個第一壓電元件1911的連接面的極性可以相同,連接面的電信號的電極極性可以相同。為方便描述,兩個第一壓電元件1911可以分別記為上層壓電元件19111和下層壓電元件19112。在一些實施例中,上層壓電元件19111與下層壓電元件19112連接時,上層壓電元件19111可以具有上層連接面2010,下層壓電元件19112可以具有下層連接面2020。在一些實施例中,上層壓電元件19111的極化方向與下層壓電元件19112的極化方向相同(如圖20A中箭頭所示)時,上層連接面2010接入電信號的電極極性(例如,正極或負極)與下層連接面2020接入電信號的電極極性可以相同。這種設置方式下,上層壓電元件19111內部的電勢方向與下層壓電元件19112內部的電勢方向可以相反。FIG. 20A is an exemplary circuit diagram of a first piezoelectric element according to some embodiments of the present specification. Referring to FIG. 20A , the polarity of the connection surface of the two first piezoelectric elements 1911 may be the same, and the electrode polarity of the electrical signal of the connection surface may be the same. For the convenience of description, the two first piezoelectric elements 1911 may be respectively recorded as an upper piezoelectric element 19111 and a lower piezoelectric element 19112. In some embodiments, when the upper piezoelectric element 19111 is connected to the lower piezoelectric element 19112, the upper piezoelectric element 19111 may have an upper connection surface 2010, and the lower piezoelectric element 19112 may have a lower connection surface 2020. In some embodiments, when the polarization direction of the upper piezoelectric element 19111 is the same as the polarization direction of the lower piezoelectric element 19112 (as shown by the arrow in FIG. 20A ), the electrode polarity (e.g., positive or negative) of the upper connection surface 2010 connected to the electrical signal can be the same as the electrode polarity of the lower connection surface 2020 connected to the electrical signal. In this configuration, the potential direction inside the upper piezoelectric element 19111 can be opposite to the potential direction inside the lower piezoelectric element 19112.

通過設置上層壓電元件19111與下層壓電元件19112的極化方向相同,當上層壓電元件19111與下層壓電元件19112接入相反方向的電勢(或電信號)時,上層壓電元件19111與下層壓電元件19112可以產生方向相反的位移。By setting the polarization directions of the upper piezoelectric element 19111 and the lower piezoelectric element 19112 to be the same, when the upper piezoelectric element 19111 and the lower piezoelectric element 19112 are connected to electric potentials (or electric signals) in opposite directions, the upper piezoelectric element 19111 and the lower piezoelectric element 19112 can generate displacements in opposite directions.

圖20B是根據本說明書的一些實施例所示的第一壓電元件的另一示例性電路圖。參見圖20B,兩個第一壓電元件的連接面的極性可以相反,連接面的電信號的電極極性可以相反。在一些實施例中,上層壓電元件19113與下層壓電元件19114連接時,上層壓電元件19113可以具有上層連接面2030,下層壓電元件19114可以具有下層連接面2040。上層壓電元件19112的極化方向與下層壓電元件19114的極化方向相反(如圖20B中箭頭所示)時,上層連接面2030接入電信號的電極極性(例如,正極或負極)與下層連接面2040接入電信號的電極極性可以相反。這種設置方式下,上層壓電元件19111內部的電勢方向與下層壓電元件19112內部的電勢方向可以相同。FIG. 20B is another exemplary circuit diagram of the first piezoelectric element according to some embodiments of the present specification. Referring to FIG. 20B , the polarities of the connection surfaces of the two first piezoelectric elements may be opposite, and the electrode polarities of the electrical signals of the connection surfaces may be opposite. In some embodiments, when the upper piezoelectric element 19113 is connected to the lower piezoelectric element 19114, the upper piezoelectric element 19113 may have an upper connection surface 2030, and the lower piezoelectric element 19114 may have a lower connection surface 2040. When the polarization direction of the upper piezoelectric element 19112 is opposite to the polarization direction of the lower piezoelectric element 19114 (as shown by the arrow in FIG. 20B ), the electrode polarity (e.g., positive or negative) of the upper connection surface 2030 connected to the electrical signal can be opposite to the electrode polarity of the lower connection surface 2040 connected to the electrical signal. In this configuration, the potential direction inside the upper piezoelectric element 19111 can be the same as the potential direction inside the lower piezoelectric element 19112.

通過設置上層壓電元件19113與下層壓電元件19114的極化方向相反,當上層壓電元件19113與下層壓電元件19114接入相同方向的電勢(或電信號)時,上層壓電元件19113與下層壓電元件19114可以產生方向相反的位移。By setting the polarization directions of the upper piezoelectric element 19113 and the lower piezoelectric element 19114 to be opposite, when the upper piezoelectric element 19113 and the lower piezoelectric element 19114 are connected to the same direction of electric potential (or electric signal), the upper piezoelectric element 19113 and the lower piezoelectric element 19114 can generate displacements in opposite directions.

圖21是根據本說明書的一些實施例所示的聲學輸出裝置的示例性結構圖。圖21所示的聲學輸出裝置2100的結構與圖12所示的聲學輸出裝置1200的結構類似,不同之處在於壓電元件的結構不同。聲學輸出裝置1200的壓電元件1210為單層雙環形結構,聲學輸出裝置2100的壓電元件2110為雙層雙環形結構。FIG21 is an exemplary structural diagram of an acoustic output device according to some embodiments of the present specification. The structure of the acoustic output device 2100 shown in FIG21 is similar to the structure of the acoustic output device 1200 shown in FIG12 , except that the structure of the piezoelectric element is different. The piezoelectric element 1210 of the acoustic output device 1200 is a single-layer double-ring structure, and the piezoelectric element 2110 of the acoustic output device 2100 is a double-layer double-ring structure.

參見圖21,在一些實施例中,一個或多個壓電元件2110可以包括兩個第一壓電元件2111和兩個第二壓電元件2112,兩個第一壓電元件2111沿軸線方向上下分佈並相互連接,兩個第二壓電元件2112位於第一環形結構的內側並沿軸線方向上下分佈並相互連接。兩個第二壓電元件2112的軸線與兩個第一壓電元件2111的軸線可以重合,兩個第二壓電元件2112沿軸線方向的投影位於兩個第一壓電元件2111的第一環形結構沿軸線方向的投影內側。Referring to FIG. 21 , in some embodiments, one or more piezoelectric elements 2110 may include two first piezoelectric elements 2111 and two second piezoelectric elements 2112, the two first piezoelectric elements 2111 are arranged vertically along the axis direction and connected to each other, and the two second piezoelectric elements 2112 are located inside the first annular structure and are arranged vertically along the axis direction and connected to each other. The axes of the two second piezoelectric elements 2112 may coincide with the axes of the two first piezoelectric elements 2111, and the projections of the two second piezoelectric elements 2112 along the axis direction are located inside the projections of the first annular structure of the two first piezoelectric elements 2111 along the axis direction.

在一些實施例中,兩個第二壓電元件2112可以通過一個或多個彈性元件中的至少一個與兩個第一壓電元件2111連接。在一些實施例中,彈性元件可以包括外環彈性元件2132,外環彈性元件2132位於第一環形結構與第二環形結構之間。外環彈性元件2132可以包括兩個彈性元件,兩個第一壓電元件2111與兩個第二壓電元件2112分別通過外環彈性元件2132中的兩個彈性元件進行連接。在一些實施例中,外環彈性元件2132也可以沿第二環形結構的軸線方向具有一定的厚度,兩個第一壓電元件2111與兩個第二壓電元件2112可以通過一個外環彈性元件2132進行連接。In some embodiments, the two second piezoelectric elements 2112 may be connected to the two first piezoelectric elements 2111 through at least one of the one or more elastic elements. In some embodiments, the elastic element may include an outer ring elastic element 2132, and the outer ring elastic element 2132 is located between the first ring structure and the second ring structure. The outer ring elastic element 2132 may include two elastic elements, and the two first piezoelectric elements 2111 and the two second piezoelectric elements 2112 are connected through two elastic elements in the outer ring elastic element 2132, respectively. In some embodiments, the outer ring elastic element 2132 may also have a certain thickness along the axial direction of the second ring structure, and the two first piezoelectric elements 2111 and the two second piezoelectric elements 2112 may be connected through one outer ring elastic element 2132 .

在一些實施例中,參見圖21,質量元件2120的至少一部分可以位於第二壓電元件2112的第二環形結構的內側(如圖21所示)。質量元件2120可以通過一個或多個彈性元件2130中的至少一個與兩個第二壓電元件2112分別連接。例如,彈性元件2130可以包括內環彈性元件2131,內環彈性元件2131位於第二環形結構與質量元件的至少一部分2120之間。質量元件2120與內環彈性元件2131的連接點沿軸線方向的投影位於第二環形結構沿軸線方向的投影以內。內環彈性元件2131可以包括兩個沿軸線方向排列的彈性元件,質量元件2120通過內環彈性元件2131中兩個彈性元件分別與兩個第二壓電元件2112進行連接。在一些實施例中,內環彈性元件2131也可以沿第一環形結構的軸線方向具有一定的厚度,質量元件2120與兩個第二壓電元件2112可以通過一個內環彈性元件2131進行連接。In some embodiments, referring to FIG. 21 , at least a portion of the mass element 2120 may be located inside the second annular structure of the second piezoelectric element 2112 (as shown in FIG. 21 ). The mass element 2120 may be connected to the two second piezoelectric elements 2112 respectively through at least one of the one or more elastic elements 2130. For example, the elastic element 2130 may include an inner annular elastic element 2131, which is located between the second annular structure and at least a portion of the mass element 2120. The projection of the connection point between the mass element 2120 and the inner annular elastic element 2131 along the axial direction is located within the projection of the second annular structure along the axial direction. The inner ring elastic element 2131 may include two elastic elements arranged along the axial direction, and the mass element 2120 is connected to the two second piezoelectric elements 2112 respectively through the two elastic elements in the inner ring elastic element 2131. In some embodiments, the inner ring elastic element 2131 may also have a certain thickness along the axial direction of the first ring structure, and the mass element 2120 and the two second piezoelectric elements 2112 may be connected through one inner ring elastic element 2131.

在一些實施例中,內環彈性元件2131和外環彈性元件2132的形狀可以不限於如圖21所示的S形,還可以是其他形狀,例如,折線形、樣條曲線形、弧形和直線形等。在一些實施例中,內環彈性元件2131和外環彈性元件2132還可以包括螺旋結構。在一些實施例中,內環彈性元件2131向質量元件2120提供的切應力的旋度與外環彈性元件2132向質量元件2120提供的切應力的旋度之間的設置方式,以及內環彈性元件2131和/或外環彈性元件2132中的兩個彈性元件向質量元件2120提供的切應力旋度的設置方式可以參考本說明書的其他地方,在此不再贅述。In some embodiments, the shapes of the inner ring elastic element 2131 and the outer ring elastic element 2132 may not be limited to the S-shape as shown in FIG. 21 , but may be other shapes, such as a zigzag shape, a spline curve shape, an arc shape, a straight line shape, etc. In some embodiments, the inner ring elastic element 2131 and the outer ring elastic element 2132 may also include a spiral structure. In some embodiments, the setting manner between the rotation of the shear stress provided by the inner ring elastic element 2131 to the mass element 2120 and the rotation of the shear stress provided by the outer ring elastic element 2132 to the mass element 2120, as well as the setting manner of the shear stress rotation provided by the two elastic elements in the inner ring elastic element 2131 and/or the outer ring elastic element 2132 to the mass element 2120 can be referred to other places in this specification and will not be repeated here.

在一些實施例中,質量元件2120的至少一部分位於第二壓電元件2112的內側時,第一壓電元件2111沿軸線方向的一端可以固定,另一端通過外環彈性元件2132與第二壓電元件2112連接。例如,外環彈性元件2132也可以包括兩個沿軸線方向排列的彈性元件,兩個第一壓電元件2111通過外環彈性元件2132中兩個彈性元件分別與兩個第二壓電元件2112進行連接。這種情況下,第二壓電元件2112可以作為壓電自由環,第一壓電元件2111作為壓電固定環。In some embodiments, when at least a portion of the mass element 2120 is located inside the second piezoelectric element 2112, one end of the first piezoelectric element 2111 along the axial direction may be fixed, and the other end may be connected to the second piezoelectric element 2112 through the outer ring elastic element 2132. For example, the outer ring elastic element 2132 may also include two elastic elements arranged along the axial direction, and the two first piezoelectric elements 2111 are respectively connected to the two second piezoelectric elements 2112 through the two elastic elements in the outer ring elastic element 2132. In this case, the second piezoelectric element 2112 may be used as a piezoelectric free ring, and the first piezoelectric element 2111 may be used as a piezoelectric fixed ring.

在一些實施例中,質量元件2120的至少一部分也可以位於第一壓電元件2111的第一環形結構的外側。例如,質量元件2120的至少一部分可以包括環形結構。質量元件2120的環形結構沿軸線方向的投影可以位於第一環形結構沿軸線方向的投影以外。質量元件2120可以通過一個或多個彈性元件2130中的至少一個與兩個第一壓電元件2111分別連接。例如,質量元件2120可以通過外環彈性元件2132中的兩個彈性元件分別與兩個第一壓電元件2111進行連接。In some embodiments, at least a portion of the mass element 2120 may also be located outside the first annular structure of the first piezoelectric element 2111. For example, at least a portion of the mass element 2120 may include an annular structure. The projection of the annular structure of the mass element 2120 along the axial direction may be located outside the projection of the first annular structure along the axial direction. The mass element 2120 may be connected to the two first piezoelectric elements 2111 respectively through at least one of the one or more elastic elements 2130. For example, the mass element 2120 may be connected to the two first piezoelectric elements 2111 respectively through two elastic elements in the outer annular elastic element 2132.

在一些實施例中,質量元件2120位於第一壓電元件2111的外側時,第二壓電元件2112沿軸線方向的一端可以固定,另一端通過內環彈性元件2131與第一壓電元件2111連接。這種情況下,第二壓電元件2112可以作為壓電固定環,第一壓電元件2111作為壓電自由環。In some embodiments, when the mass element 2120 is located outside the first piezoelectric element 2111, one end of the second piezoelectric element 2112 along the axial direction can be fixed, and the other end is connected to the first piezoelectric element 2111 through the inner ring elastic element 2131. In this case, the second piezoelectric element 2112 can be used as a piezoelectric fixed ring, and the first piezoelectric element 2111 can be used as a piezoelectric free ring.

在一些實施例中,質量元件2120的至少一部分也可以位於第一壓電元件2111的第一環形結構與第二壓電元件2112的第二環形結構之間。質量元件2120的環形結構沿軸線方向的投影可以位於第一環形結構和第二環形結構沿軸線方向的投影之間。質量元件2120可以通過一個或多個彈性元件2130與兩個第一壓電元件2111以及兩個第二壓電元件2112分別連接。例如,質量元件2120可以通過外環彈性元件2132分別與兩個第一壓電元件2111連接,質量元件2120通過內環彈性元件2131分別與兩個第二壓電元件2112連接。In some embodiments, at least a portion of the mass element 2120 may also be located between the first annular structure of the first piezoelectric element 2111 and the second annular structure of the second piezoelectric element 2112. The projection of the annular structure of the mass element 2120 along the axial direction may be located between the projections of the first annular structure and the second annular structure along the axial direction. The mass element 2120 may be connected to the two first piezoelectric elements 2111 and the two second piezoelectric elements 2112 respectively through one or more elastic elements 2130. For example, the mass element 2120 may be connected to the two first piezoelectric elements 2111 respectively through the outer annular elastic element 2132, and the mass element 2120 may be connected to the two second piezoelectric elements 2112 respectively through the inner annular elastic element 2131.

在一些實施例中,質量元件2120位於第二壓電元件2112和第一壓電元件2111之間時,第一壓電元件2111或第二壓電元件2112具有沿軸線方向的固定端。這種情況下,第一壓電元件2111和第二壓電元件2112中的一個可以作為壓電自由環,另一個作為壓電固定環。In some embodiments, when the mass element 2120 is located between the second piezoelectric element 2112 and the first piezoelectric element 2111, the first piezoelectric element 2111 or the second piezoelectric element 2112 has a fixed end along the axial direction. In this case, one of the first piezoelectric element 2111 and the second piezoelectric element 2112 can be used as a piezoelectric free ring, and the other can be used as a piezoelectric fixed ring.

需要說明的是,壓電元件2110為雙層結構時,壓電元件2110也可以不具有沿軸線方向的固定端,從而可以使振動裝置2100在難以找到嚴格固定邊界的骨傳導耳機中具有更好的易用性。It should be noted that when the piezoelectric element 2110 has a double-layer structure, the piezoelectric element 2110 may not have a fixed end along the axial direction, so that the vibration device 2100 can be more user-friendly in a bone conduction headset where it is difficult to find a strict fixed boundary.

需要說明的是,壓電元件2110為雙層結構時,彈性元件也可以為雙層結構,且彈性元件的雙層結構中兩層彈性元件提供的切應力的旋度可以相反。在一些實施例中,壓電元件還可以為多層多環結構,例如,4層4環結構等。多層多環結構的壓電元件與雙層雙環結構的壓電元件類似,在此不再贅述。It should be noted that when the piezoelectric element 2110 is a double-layer structure, the elastic element can also be a double-layer structure, and the curl of the shear stress provided by the two layers of elastic elements in the double-layer structure of the elastic element can be opposite. In some embodiments, the piezoelectric element can also be a multi-layer multi-ring structure, for example, a 4-layer 4-ring structure. The piezoelectric element with a multi-layer multi-ring structure is similar to the piezoelectric element with a double-layer double-ring structure, and will not be repeated here.

圖22是根據本說明書的一些實施例所示的聲學輸出裝置的頻響曲線圖。其中,曲線2210可以表示壓電元件為單層單環形結構時的聲學輸出裝置的頻響曲線,曲線2220表示壓電元件為單層雙環形結構,且第一壓電元件具有沿軸線方向的固定端的聲學輸出裝置的頻響曲線。在一些實施例中,通過在聲學輸出裝置中設置壓電自由環,可以使聲學輸出裝置的頻響曲線中形成除第一諧振峰和第二諧振峰以外的第三諧振峰。例如,對比曲線2210和曲線2220,曲線2220可以形成除第一諧振峰和第二諧振峰以外的第三諧振峰,且第三諧振峰的頻率位於第一諧振峰的頻率和第二諧振峰的頻率之間。FIG22 is a frequency response curve diagram of an acoustic output device according to some embodiments of the present specification. Curve 2210 may represent the frequency response curve of the acoustic output device when the piezoelectric element is a single-layer single-ring structure, and curve 2220 represents the frequency response curve of the acoustic output device when the piezoelectric element is a single-layer double-ring structure and the first piezoelectric element has a fixed end along the axial direction. In some embodiments, by providing a piezoelectric free ring in the acoustic output device, a third resonance peak in addition to the first resonance peak and the second resonance peak may be formed in the frequency response curve of the acoustic output device. For example, comparing curve 2210 and curve 2220, curve 2220 may form a third resonant peak in addition to the first resonant peak and the second resonant peak, and the frequency of the third resonant peak is between the frequency of the first resonant peak and the frequency of the second resonant peak.

繼續參見圖22,曲線2230表示壓電元件為雙層雙環形結構,且第一壓電元件具有沿軸線方向的固定端的聲學輸出裝置的頻響曲線,曲線2240表示壓電元件為雙層雙環形結構,且壓電元件不具有沿軸線方向的固定端的聲學輸出裝置的頻響曲線。在一些實施例中,通過設置雙層反向振動結構的壓電元件,可以提高聲學輸出裝置在可聽域頻率範圍內的靈敏度。例如,對比曲線2220和曲線2230,相較於曲線2220,曲線2230整體向上偏移,曲線2230的靈敏度高於曲線2220的靈敏度。在一些實施例中,通過設置第一壓電元件和第二壓電元件均為自由環狀態,第一壓電元件和第二壓電元件(以及用於連接的彈性元件)與質量元件一起構成整體質量,從而使聲學輸出裝置的低頻諧振峰右移。例如,對比曲線2230和曲線2240,曲線2240的第一諧振峰相對於曲線2230的第一諧振峰向右偏移,且曲線2240的第一諧振峰的幅值以及第一諧振峰之前頻段的幅值提高,從而提升低頻性能。Continuing to refer to FIG22 , curve 2230 represents the frequency response curve of the acoustic output device in which the piezoelectric element is a double-layer double-ring structure and the first piezoelectric element has a fixed end along the axial direction, and curve 2240 represents the frequency response curve of the acoustic output device in which the piezoelectric element is a double-layer double-ring structure and the piezoelectric element does not have a fixed end along the axial direction. In some embodiments, by providing a piezoelectric element with a double-layer reverse vibration structure, the sensitivity of the acoustic output device in the audible frequency range can be improved. For example, comparing curve 2220 with curve 2230, curve 2230 is shifted upward as a whole compared to curve 2220, and the sensitivity of curve 2230 is higher than that of curve 2220. In some embodiments, by setting the first piezoelectric element and the second piezoelectric element to be in a free ring state, the first piezoelectric element and the second piezoelectric element (and the elastic element used for connection) together with the mass element constitute an overall mass, so that the low-frequency resonant peak of the acoustic output device is shifted to the right. For example, comparing curve 2230 with curve 2240, the first resonant peak of curve 2240 is shifted to the right relative to the first resonant peak of curve 2230, and the amplitude of the first resonant peak of curve 2240 and the amplitude of the frequency band before the first resonant peak are increased, thereby improving the low-frequency performance.

在一些實施例中,壓電元件設置成雙層結構時,兩層壓電元件的結構可以相同。例如,壓電元件可以包括沿軸線方向依次排列的兩個第一壓電元件,兩個壓電元件的結構都為環形結構。在一些實施例中,壓電元件設置成雙層結構時,兩層壓電元件的結構也可以不同。例如,兩層壓電元件中的任意一層的壓電元件可以為環形結構,另一層壓電元件為壓電梁結構。In some embodiments, when the piezoelectric element is arranged in a double-layer structure, the structures of the two layers of piezoelectric elements may be the same. For example, the piezoelectric element may include two first piezoelectric elements arranged in sequence along the axial direction, and the structures of the two piezoelectric elements are both ring structures. In some embodiments, when the piezoelectric element is arranged in a double-layer structure, the structures of the two layers of piezoelectric elements may also be different. For example, the piezoelectric element of any one layer of the two layers of piezoelectric elements may be a ring structure, and the piezoelectric element of the other layer may be a piezoelectric beam structure.

圖23是根據本說明書的一些實施例所示的聲學輸出裝置的示例性結構圖。如圖23所示,聲學輸出裝置2300可以包括一個或多個壓電元件2310、質量元件2320以及一個或多個彈性元件2330。在一些實施例中,一個或多個壓電元件2310可以包括壓電梁(或梁結構)2340。壓電梁2340可以包括基板2343和壓電片(例如,壓電片2341和壓電片2342)。在一些實施例中,壓電梁2340可以與質量元件2320連接。在一些實施例中,壓電梁2340可以位於質量元件2320沿壓電元件2310的環形結構的軸線方向遠離壓電元件2310的一側並與質量元件2320連接。在一些實施例中,壓電梁2340可以為板狀結構,板狀結構板面(即面積最大的表面)與壓電元件2310的環形結構的環形端面平行設置。FIG23 is an exemplary structural diagram of an acoustic output device according to some embodiments of the present specification. As shown in FIG23 , the acoustic output device 2300 may include one or more piezoelectric elements 2310, a mass element 2320, and one or more elastic elements 2330. In some embodiments, one or more piezoelectric elements 2310 may include a piezoelectric beam (or beam structure) 2340. The piezoelectric beam 2340 may include a substrate 2343 and a piezoelectric sheet (e.g., a piezoelectric sheet 2341 and a piezoelectric sheet 2342). In some embodiments, the piezoelectric beam 2340 may be connected to the mass element 2320. In some embodiments, the piezoelectric beam 2340 may be located on a side of the mass element 2320 away from the piezoelectric element 2310 along the axial direction of the annular structure of the piezoelectric element 2310 and connected to the mass element 2320. In some embodiments, the piezoelectric beam 2340 may be a plate-shaped structure, and the plate surface (i.e., the surface with the largest area) of the plate-shaped structure is arranged parallel to the annular end surface of the annular structure of the piezoelectric element 2310.

在一些實施例中,壓電片可以包括至少一個第一壓電片2341和至少一個第二壓電片2342。第一壓電片2341和第二壓電片2342分別設置於壓電梁2340沿壓電元件2310的環形結構的軸線方向的兩側。例如,第一壓電片2341可以設置於壓電梁2340沿軸線方向遠離壓電元件2310的一側,第二壓電片2342設置於壓電梁2340沿軸線方向靠近壓電元件2310的一側。In some embodiments, the piezoelectric sheet may include at least one first piezoelectric sheet 2341 and at least one second piezoelectric sheet 2342. The first piezoelectric sheet 2341 and the second piezoelectric sheet 2342 are respectively disposed on both sides of the piezoelectric beam 2340 along the axial direction of the ring structure of the piezoelectric element 2310. For example, the first piezoelectric sheet 2341 may be disposed on a side of the piezoelectric beam 2340 that is far from the piezoelectric element 2310 along the axial direction, and the second piezoelectric sheet 2342 may be disposed on a side of the piezoelectric beam 2340 that is close to the piezoelectric element 2310 along the axial direction.

在一些實施例中,第一壓電片2341和/或第二壓電片2342可以用於基於電信號產生形變,形變的方向(也叫位移輸出方向)與第一壓電片2341和/或第二壓電片2342的電學方向垂直。第一壓電片2341(和/或第二壓電片2342)的電學方向與第一壓電片2341(和/或第二壓電片2342)的電學方向平行。在一些實施例中,基板2343可以基於壓電片的形變沿著所述壓電片的電學方向翹曲而產生機械振動。所述機械振動的方向與第一壓電片2341(和/或第二壓電片2342)的電學方向平行。In some embodiments, the first piezoelectric sheet 2341 and/or the second piezoelectric sheet 2342 can be used to generate deformation based on an electrical signal, and the direction of the deformation (also called the displacement output direction) is perpendicular to the electrical direction of the first piezoelectric sheet 2341 and/or the second piezoelectric sheet 2342. The electrical direction of the first piezoelectric sheet 2341 (and/or the second piezoelectric sheet 2342) is parallel to the electrical direction of the first piezoelectric sheet 2341 (and/or the second piezoelectric sheet 2342). In some embodiments, the substrate 2343 can generate mechanical vibration by warping along the electrical direction of the piezoelectric sheet based on the deformation of the piezoelectric sheet. The direction of the mechanical vibration is parallel to the electrical direction of the first piezoelectric sheet 2341 (and/or the second piezoelectric sheet 2342).

在一些實施例中,第一壓電片2341和第二壓電片2342的電學方向可以沿環形結構的軸線方向反向設置。即,在壓電元件2310的環形結構的軸線方向上,第一壓電片2341的電學方向與第二壓電片2342的電學方向相反。第一壓電片2341和第二壓電片2342的位移輸出方向可以與各自的電學方向垂直。在一些實施例中,設置第一壓電片2341的電學方向與第二壓電片2342的電學方向相反,且第一壓電片2341和第二壓電片2342同時接入相同方向的電壓信號時,第一壓電片2341和第二壓電片2342可以產生方向相反的位移,從而使壓電梁2340產生振動。壓電梁2340的振動方向與第一壓電片2341和第二壓電片2342的位移輸出方向垂直。例如,第一壓電片2341可以沿垂直於環形結構的軸線方向收縮,第二壓電片2342可以沿垂直於環形結構的軸線方向伸長,從而使得壓電梁2340產生沿環形結構的軸線方向的振動。在一些實施例中,壓電梁2340可以與質量元件2320連接,並通過質量元件2320輸出振動。在一些實施例中,壓電梁2340可以與質量元件2320直接連接,從而使聲學輸出裝置2300的諧振峰包括由壓電梁2340諧振產生的高頻諧振峰(例如,頻率範圍為2kHz-20kHz),即壓電梁2340構成聲學輸出裝置2300的高頻單元。In some embodiments, the electrical directions of the first piezoelectric sheet 2341 and the second piezoelectric sheet 2342 may be arranged opposite to each other along the axial direction of the ring structure. That is, in the axial direction of the ring structure of the piezoelectric element 2310, the electrical direction of the first piezoelectric sheet 2341 is opposite to the electrical direction of the second piezoelectric sheet 2342. The displacement output directions of the first piezoelectric sheet 2341 and the second piezoelectric sheet 2342 may be perpendicular to their respective electrical directions. In some embodiments, the electrical direction of the first piezoelectric sheet 2341 is set opposite to the electrical direction of the second piezoelectric sheet 2342, and when the first piezoelectric sheet 2341 and the second piezoelectric sheet 2342 are simultaneously connected to a voltage signal of the same direction, the first piezoelectric sheet 2341 and the second piezoelectric sheet 2342 can generate displacements in opposite directions, thereby vibrating the piezoelectric beam 2340. The vibration direction of the piezoelectric beam 2340 is perpendicular to the displacement output direction of the first piezoelectric sheet 2341 and the second piezoelectric sheet 2342. For example, the first piezoelectric sheet 2341 can shrink along the axis direction perpendicular to the ring structure, and the second piezoelectric sheet 2342 can stretch along the axis direction perpendicular to the ring structure, so that the piezoelectric beam 2340 generates vibration along the axis direction of the ring structure. In some embodiments, the piezoelectric beam 2340 can be connected to the mass element 2320 and output vibration through the mass element 2320. In some embodiments, the piezoelectric beam 2340 can be directly connected to the mass element 2320, so that the resonance peak of the acoustic output device 2300 includes a high-frequency resonance peak (for example, a frequency range of 2 kHz-20 kHz) generated by the resonance of the piezoelectric beam 2340, that is, the piezoelectric beam 2340 constitutes a high-frequency unit of the acoustic output device 2300.

在一些實施例中,環形結構的壓電元件210也可以包括壓電片,壓電片呈塊狀(例如,環形塊狀)。壓電片可以基於電信號產生機械振動,壓電片機械振動的方向與壓電片的電學方向平行。在一些實施例中,當壓電片接入沿環形結構的軸線方向的電壓信號時,壓電片可以沿環形結構的軸線方向進行振動,從而產生沿環形結構軸線方向的位移輸出。In some embodiments, the piezoelectric element 210 of the annular structure may also include a piezoelectric sheet, which is in a block shape (e.g., an annular block shape). The piezoelectric sheet may generate mechanical vibration based on an electrical signal, and the direction of the mechanical vibration of the piezoelectric sheet is parallel to the electrical direction of the piezoelectric sheet. In some embodiments, when the piezoelectric sheet is connected to a voltage signal along the axial direction of the annular structure, the piezoelectric sheet may vibrate along the axial direction of the annular structure, thereby generating a displacement output along the axial direction of the annular structure.

在一些實施例中,聲學輸出裝置2300中彈性元件2330的結構可以是如圖23所示的雙X形結構,也可以是其他具有反向對稱性的結構類型,例如,單X形、平行雙X形、螺旋結構等。In some embodiments, the structure of the elastic element 2330 in the acoustic output device 2300 may be a double X-shaped structure as shown in FIG. 23 , or may be other structures with reverse symmetry, such as a single X-shaped, a parallel double X-shaped, a spiral structure, etc.

圖24是根據本說明書的一些實施例所示的聲學輸出裝置的示例性結構圖。圖24中的聲學輸出裝置2400的結構與圖23中的聲學輸出裝置2300的結構大致相同,不同之處在於質量元件的結構和數量,以及質量元件與壓電梁的連接方式。FIG24 is an exemplary structural diagram of an acoustic output device according to some embodiments of the present specification. The structure of the acoustic output device 2400 in FIG24 is substantially the same as the structure of the acoustic output device 2300 in FIG23 , except for the structure and number of mass elements, and the connection method between the mass element and the piezoelectric beam.

參見圖24,在一些實施例中,質量元件可以包括第一質量元件2421和第二質量元件2422。其中,第一質量元件2421可以通過一個或多個彈性元件2330與壓電梁2340的中部連接。在一些實施例中,第一質量元件2421還可以通過彈性元件2330與一個或多個壓電元件2310連接,壓電元件2310包括環形結構,且壓電元件2310的振動方向平行於環形結構的軸線方向。在一些實施例中,壓電梁2340的兩端可以分別連接有第二質量元件2422。聲學輸出裝置2400的振動可以通過壓電梁2340端部的第二質量元件2422輸出。在一些實施例中,聲學輸出裝置2400的振動也可以通過第一質量元件2421輸出。在一些實施例中,聲學輸出裝置2400中第一質量元件2421通過一個或多個彈性元件2330與壓電梁2340的連接部分可以構成聲學輸出裝置2400的低頻單元,具有環形結構的壓電元件2310可以構成聲學輸出裝置2400的高頻單元。Referring to FIG. 24 , in some embodiments, the mass element may include a first mass element 2421 and a second mass element 2422. The first mass element 2421 may be connected to the middle of the piezoelectric beam 2340 through one or more elastic elements 2330. In some embodiments, the first mass element 2421 may also be connected to one or more piezoelectric elements 2310 through the elastic element 2330, and the piezoelectric element 2310 includes an annular structure, and the vibration direction of the piezoelectric element 2310 is parallel to the axial direction of the annular structure. In some embodiments, the two ends of the piezoelectric beam 2340 may be connected to the second mass element 2422 respectively. The vibration of the acoustic output device 2400 may be output through the second mass element 2422 at the end of the piezoelectric beam 2340. In some embodiments, the vibration of the acoustic output device 2400 can also be output through the first mass element 2421. In some embodiments, the first mass element 2421 in the acoustic output device 2400 can constitute a low-frequency unit of the acoustic output device 2400 through the connection portion of one or more elastic elements 2330 and the piezoelectric beam 2340, and the piezoelectric element 2310 with a ring structure can constitute a high-frequency unit of the acoustic output device 2400.

在一些實施例中,第一質量元件2421也可以通過一個或多個彈性元件2330與壓電梁2340的其他位置(例如,靠近壓電梁2340端部位置)連接。在一些實施例中,壓電梁2340的兩端可以也可以通過一個或多個彈性元件2330與第二質量元件2422。In some embodiments, the first mass element 2421 may also be connected to other positions of the piezoelectric beam 2340 (e.g., near the end position of the piezoelectric beam 2340) through one or more elastic elements 2330. In some embodiments, both ends of the piezoelectric beam 2340 may also be connected to the second mass element 2422 through one or more elastic elements 2330.

上文已對基本概念做了描述,顯然,對於所屬技術領域中具有通常知識者來說,上述詳細揭露內容僅僅作為示例,而並不構成對本發明的限定。雖然此處並沒有明確說明,所屬技術領域中具有通常知識者可能會對本發明進行各種修改、改進和修正。該類修改、改進和修正在本發明中被建議,所以該類修改、改進、修正仍屬於本發明示範實施例的精神和範圍。The basic concepts have been described above. Obviously, for those with ordinary knowledge in the art, the above detailed disclosure is only for example and does not constitute a limitation of the present invention. Although not explicitly stated here, those with ordinary knowledge in the art may make various modifications, improvements and amendments to the present invention. Such modifications, improvements and amendments are suggested in the present invention, so such modifications, improvements and amendments still belong to the spirit and scope of the exemplary embodiments of the present invention.

同時,本發明案使用了特定詞語來描述本發明的實施例。如“一個實施例”、“一實施例”、和/或“一些實施例”意指與本發明至少一個實施例相關的某一特徵、結構或特點。因此,應強調並注意的是,本說明書中在不同位置兩次或多次提及的“一實施例”或“一個實施例”或“一個替代性實施例”並不一定是指同一實施例。此外,本發明的一個或多個實施例中的某些特徵、結構或特點可以進行適當的組合。At the same time, the present invention uses specific words to describe the embodiments of the present invention. For example, "one embodiment", "an embodiment", and/or "some embodiments" refer to a certain feature, structure or characteristic related to at least one embodiment of the present invention. Therefore, it should be emphasized and noted that "one embodiment" or "an embodiment" or "an alternative embodiment" mentioned twice or more in different places in this specification does not necessarily refer to the same embodiment. In addition, certain features, structures or characteristics in one or more embodiments of the present invention can be appropriately combined.

最後,應當理解的是,本發明中所述實施例僅用以說明本發明實施例的原則。其他的變形也可能屬於本發明的範圍。因此,作為示例而非限制,本發明實施例的替代配置可視為與本發明的教導一致。相應地,本發明的實施例不僅限於本發明明確介紹和描述的實施例。Finally, it should be understood that the embodiments described in the present invention are only intended to illustrate the principles of the embodiments of the present invention. Other variations may also fall within the scope of the present invention. Therefore, as an example and not a limitation, alternative configurations of the embodiments of the present invention may be considered consistent with the teachings of the present invention. Accordingly, the embodiments of the present invention are not limited to the embodiments explicitly introduced and described herein.

100:聲學輸出裝置 110:壓電元件 120:質量元件 130:彈性元件 200:彈性元件 201:虛線 202:對稱軸 203:質量元件 210:杆件結構 211:第一彎折區域 212:第二彎折區域 300:彈性元件 301:第一對稱軸 302:第二對稱軸 311:第一杆件結構 312:第二杆件結構 313:第三杆件結構 314:第四杆件結構 320:質量元件 330:壓電元件 400:聲學輸出裝置 401:第一X形 402:第二X形 410:壓電元件 411:連接件 420:質量元件 421:第一質量元件 422:第二質量元件 430:彈性元件 431:第一彈性元件 432:第二彈性元件 601:曲線 602:曲線 603:曲線 700-1:聲學輸出裝置 700-2:聲學輸出裝置 701:曲線 702:曲線 710:壓電元件 711:連接件 720:質量元件 730:彈性元件 731:第一螺旋結構 732:第二螺旋結構 750:質量元件 760:彈性元件 761:第一螺旋結構 762:第二螺旋結構 800-1:聲學輸出裝置 800-2:聲學輸出裝置 810:壓電元件 811:第一壓電元件 812:第二壓電元件 820:質量元件 830:彈性元件 831:外環彈性元件 832:內環彈性元件 900:聲學輸出裝置 910:壓電元件 911:第一壓電元件 920:質量元件 930:彈性元件 1010:第一諧振峰 1020:第二諧振峰 1100:聲學輸出裝置 1101:第一諧振峰 1102:第二諧振峰 1111:第一壓電元件 1120:質量元件 1121:蓋板 1130:彈性元件 1200:聲學輸出裝置 1210:壓電元件 1211:第一壓電元件 1212:第二壓電元件 1220:質量元件 1230:彈性元件 1231:外環彈性元件 1232:內環彈性元件 1301:第一諧振峰 1302:第二諧振峰 1303:第三諧振峰 1310:曲線 1320:曲線 1330:曲線 1340:曲線 1350:曲線 1400:聲學輸出裝置 1410:壓電元件 1411:第一壓電元件 1412:第二壓電元件 1420:質量元件 1430:彈性元件 1431:外環彈性元件 1432:內環彈性元件 1501:第一諧振峰 1502:第二諧振峰 1503:第三諧振峰 1510:曲線 1520:曲線 1530:曲線 1540:曲線 1550:曲線 1600:聲學輸出裝置 1601:第一對稱軸 1602:第二對稱軸 1610:壓電元件 1611:第一壓電元件 1612:第二壓電元件 1620:質量元件 1630:彈性元件 1631:外環彈性元件 1632:內環彈性元件 1701:第一諧振峰 1702:第二諧振峰 1703:第三諧振峰 1710:曲線 1720:曲線 1730:曲線 1740:曲線 1801:第一諧振峰 1802:第二諧振峰 1803:第三諧振峰 1810:曲線 1820:曲線 1830:曲線 1840:曲線 1900:聲學輸出裝置 1910:壓電元件 1911:第一壓電元件 19111:上層壓電元件 19112:下層壓電元件 19113:上層壓電元件 19114:下層壓電元件 1920:質量元件 1930:彈性元件 1931:第一彈性元件 2010:上層連接面 2020:下層連接面 2030:上層連接面 2040:下層連接面 2100:聲學輸出裝置 2110:壓電元件 2111:第一壓電元件 2112:第二壓電元件 2120:質量元件 2131:內環彈性元件 2132:外環彈性元件 2210:曲線 2220:曲線 2230:曲線 2240:曲線 2300:聲學輸出裝置 2310:壓電元件 2320:質量元件 2330:彈性元件 2340:壓電梁 2341:第一壓電片 2342:第二壓電片 2343:基板 2400:聲學輸出裝置 2421:第一質量元件 2422:第二質量元件 100: Acoustic output device 110: Piezoelectric element 120: Mass element 130: Elastic element 200: Elastic element 201: Dashed line 202: Symmetric axis 203: Mass element 210: Rod structure 211: First bending region 212: Second bending region 300: Elastic element 301: First symmetric axis 302: Second symmetric axis 311: First rod structure 312: Second rod structure 313: Third rod structure 314: Fourth rod structure 320: Mass element 330: Piezoelectric element 400: Acoustic output device 401: First X-shape 402: Second X-shape 410: piezoelectric element 411: connector 420: mass element 421: first mass element 422: second mass element 430: elastic element 431: first elastic element 432: second elastic element 601: curve 602: curve 603: curve 700-1: acoustic output device 700-2: acoustic output device 701: curve 702: curve 710: piezoelectric element 711: connector 720: mass element 730: elastic element 731: first spiral structure 732: second spiral structure 750: mass element 760: elastic element 761: first spiral structure 762: Second spiral structure 800-1: Acoustic output device 800-2: Acoustic output device 810: Piezoelectric element 811: First piezoelectric element 812: Second piezoelectric element 820: Mass element 830: Elastic element 831: Outer ring elastic element 832: Inner ring elastic element 900: Acoustic output device 910: Piezoelectric element 911: First piezoelectric element 920: Mass element 930: Elastic element 1010: First resonance peak 1020: Second resonance peak 1100: Acoustic output device 1101: First resonance peak 1102: Second resonance peak 1111: first piezoelectric element 1120: mass element 1121: cover plate 1130: elastic element 1200: acoustic output device 1210: piezoelectric element 1211: first piezoelectric element 1212: second piezoelectric element 1220: mass element 1230: elastic element 1231: outer ring elastic element 1232: inner ring elastic element 1301: first resonance peak 1302: second resonance peak 1303: third resonance peak 1310: curve 1320: curve 1330: curve 1340: curve 1350: curve 1400: acoustic output device 1410: piezoelectric element 1411: first piezoelectric element 1412: second piezoelectric element 1420: mass element 1430: elastic element 1431: outer ring elastic element 1432: inner ring elastic element 1501: first resonance peak 1502: second resonance peak 1503: third resonance peak 1510: curve 1520: curve 1530: curve 1540: curve 1550: curve 1600: acoustic output device 1601: first symmetry axis 1602: second symmetry axis 1610: piezoelectric element 1611: first piezoelectric element 1612: Second piezoelectric element 1620: Mass element 1630: Elastic element 1631: Outer ring elastic element 1632: Inner ring elastic element 1701: First resonance peak 1702: Second resonance peak 1703: Third resonance peak 1710: Curve 1720: Curve 1730: Curve 1740: Curve 1801: First resonance peak 1802: Second resonance peak 1803: Third resonance peak 1810: Curve 1820: Curve 1830: Curve 1840: Curve 1900: Acoustic output device 1910: Piezoelectric element 1911: first piezoelectric element 19111: upper piezoelectric element 19112: lower piezoelectric element 19113: upper piezoelectric element 19114: lower piezoelectric element 1920: mass element 1930: elastic element 1931: first elastic element 2010: upper connection surface 2020: lower connection surface 2030: upper connection surface 2040: lower connection surface 2100: acoustic output device 2110: piezoelectric element 2111: first piezoelectric element 2112: second piezoelectric element 2120: mass element 2131: inner ring elastic element 2132: outer ring elastic element 2210: curve 2220: curve 2230: curve 2240: curve 2300: acoustic output device 2310: piezoelectric element 2320: mass element 2330: elastic element 2340: piezoelectric beam 2341: first piezoelectric sheet 2342: second piezoelectric sheet 2343: substrate 2400: acoustic output device 2421: first mass element 2422: second mass element

本發明將以示例性實施例的方式進一步說明,這些示例性實施例將通過附圖進行詳細描述。這些實施例並非限制性的,在這些實施例中,相同的編號表示相同的結構,其中:The present invention will be further described in the form of exemplary embodiments, which will be described in detail by the accompanying drawings. These embodiments are not restrictive, and in these embodiments, the same number represents the same structure, wherein:

[圖1]係根據本發明的一些實施例所示的聲學輸出裝置的示例性模組圖;FIG. 1 is an exemplary module diagram of an acoustic output device according to some embodiments of the present invention;

[圖2]係根據本發明的一些實施例所示的彈性元件的示例性結構圖;FIG. 2 is an exemplary structural diagram of an elastic element according to some embodiments of the present invention;

[圖3]係根據本發明的一些實施例所示的彈性元件的示例性結構圖;FIG. 3 is an exemplary structural diagram of an elastic element according to some embodiments of the present invention;

[圖4]係根據本發明的一些實施例所示的彈性元件的示例性結構圖;FIG. 4 is an exemplary structural diagram of an elastic element according to some embodiments of the present invention;

[圖5]係根據本發明的一些實施例所示的彈性元件的示例性結構圖;FIG. 5 is an exemplary structural diagram of an elastic element according to some embodiments of the present invention;

[圖6]係根據本發明的一些實施例所示的聲學輸出裝置的頻響曲線圖;FIG. 6 is a frequency response curve diagram of an acoustic output device according to some embodiments of the present invention;

[圖7A]係根據本發明的一些實施例所示的彈性元件的示例性結構圖;FIG. 7A is an exemplary structural diagram of an elastic element according to some embodiments of the present invention;

[圖7B]係根據本發明的一些實施例所示的彈性元件的示例性結構圖;FIG. 7B is an exemplary structural diagram of an elastic element according to some embodiments of the present invention;

[圖7C]係根據本發明的一些實施例所示的聲學輸出裝置的頻響曲線圖;FIG. 7C is a frequency curve diagram of an acoustic output device according to some embodiments of the present invention;

[圖8A]係根據本發明的一些實施例所示的彈性元件示例性結構圖;FIG. 8A is an exemplary structural diagram of an elastic element according to some embodiments of the present invention;

[圖8B]係根據本發明的一些實施例所示的彈性元件示例性結構圖;FIG. 8B is an exemplary structural diagram of an elastic element according to some embodiments of the present invention;

[圖9]係根據本發明的一些實施例所示的聲學輸出裝置的示例性結構圖;FIG. 9 is an exemplary structural diagram of an acoustic output device according to some embodiments of the present invention;

[圖10]係根據本發明一些實施例所示的聲學輸出裝置的頻響曲線圖;FIG. 10 is a frequency curve diagram of an acoustic output device according to some embodiments of the present invention;

[圖11A]係根據本發明的一些實施例所示的聲學輸出裝置的示例性結構圖;FIG. 11A is an exemplary structural diagram of an acoustic output device according to some embodiments of the present invention;

[圖11B]係根據本發明一些實施例所示的聲學輸出裝置的頻響曲線圖;FIG. 11B is a frequency curve diagram of an acoustic output device according to some embodiments of the present invention;

[圖12]係根據本發明的一些實施例所示的聲學輸出裝置的示例性結構圖;FIG. 12 is an exemplary structural diagram of an acoustic output device according to some embodiments of the present invention;

[圖13]係根據本發明的一些實施例所示的聲學輸出裝置的頻響曲線圖;FIG. 13 is a frequency response curve diagram of an acoustic output device according to some embodiments of the present invention;

[圖14]係根據本發明的一些實施例所示的聲學輸出裝置的示例性結構圖;FIG. 14 is an exemplary structural diagram of an acoustic output device according to some embodiments of the present invention;

[圖15]係根據本發明的一些實施例所示的聲學輸出裝置的頻響曲線圖;FIG. 15 is a frequency response curve diagram of an acoustic output device according to some embodiments of the present invention;

[圖16]係根據本發明的一些實施例所示的聲學輸出裝置的示例性結構圖;FIG. 16 is an exemplary structural diagram of an acoustic output device according to some embodiments of the present invention;

[圖17]係根據本發明的一些實施例所示的聲學輸出裝置的頻響曲線圖;FIG. 17 is a frequency curve diagram of an acoustic output device according to some embodiments of the present invention;

[圖18]係根據本發明的一些實施例所示的聲學輸出裝置的頻響曲線圖;FIG. 18 is a frequency curve diagram of an acoustic output device according to some embodiments of the present invention;

[圖19]係根據本發明的一些實施例所示的聲學輸出裝置的示例性結構圖;FIG. 19 is an exemplary structural diagram of an acoustic output device according to some embodiments of the present invention;

[圖20A]係根據本發明的一些實施例所示的第一壓電元件的示例性電路圖;FIG. 20A is an exemplary circuit diagram of a first piezoelectric element according to some embodiments of the present invention;

[圖20B]係根據本發明的一些實施例所示的第一壓電元件的另一示例性電路圖;FIG. 20B is another exemplary circuit diagram of the first piezoelectric element according to some embodiments of the present invention;

[圖21]係根據本發明的一些實施例所示的聲學輸出裝置的示例性結構圖;FIG. 21 is an exemplary structural diagram of an acoustic output device according to some embodiments of the present invention;

[圖22]係根據本發明的一些實施例所示的聲學輸出裝置的頻響曲線圖;FIG. 22 is a frequency response curve diagram of an acoustic output device according to some embodiments of the present invention;

[圖23]係根據本發明的一些實施例所示的聲學輸出裝置的示例性結構圖;FIG. 23 is an exemplary structural diagram of an acoustic output device according to some embodiments of the present invention;

[圖24]係根據本發明的一些實施例所示的聲學輸出裝置的示例性結構圖。[Figure 24] is an exemplary structural diagram of an acoustic output device shown in some embodiments of the present invention.

100:聲學輸出裝置 100:Acoustic output device

110:壓電元件 110: Piezoelectric components

120:質量元件 120:Mass element

130:彈性元件 130: Elastic element

Claims (10)

一種聲學輸出裝置,包括: 壓電元件,用於將電信號轉換為機械振動; 上層彈性元件和下層彈性元件,所述上層彈性元件和所述下層彈性元件分別包括多個杆件結構,每個杆件結構包括一個或多個彎折區域;以及 質量元件,所述上層彈性元件和所述下層彈性元件分別連接所述質量元件和所述壓電元件,所述質量元件接收所述機械振動以產生聲音信號,其中 所述上層彈性元件和所述下層彈性元件沿所述質量元件的振動方向呈上下分佈,且所述上層彈性元件或所述下層彈性元件沿所述質量元件振動方向的投影具有至少一個對稱軸。 An acoustic output device comprises: a piezoelectric element for converting an electrical signal into mechanical vibration; an upper elastic element and a lower elastic element, wherein the upper elastic element and the lower elastic element respectively comprise a plurality of rod structures, each of which comprises one or more bending regions; and a mass element, wherein the upper elastic element and the lower elastic element are respectively connected to the mass element and the piezoelectric element, and the mass element receives the mechanical vibration to generate an acoustic signal, wherein the upper elastic element and the lower elastic element are distributed vertically along the vibration direction of the mass element, and the projection of the upper elastic element or the lower elastic element along the vibration direction of the mass element has at least one symmetry axis. 如請求項1之聲學輸出裝置,其中,所述多個杆件結構的數量為4個。An acoustic output device as claimed in claim 1, wherein the number of the multiple rod structures is 4. 如請求項2之聲學輸出裝置,其中,所述上層彈性元件或所述下層彈性元件沿所述質量元件振動方向的投影具有兩個相互垂直的對稱軸。An acoustic output device as claimed in claim 2, wherein the projection of the upper elastic element or the lower elastic element along the vibration direction of the mass element has two mutually perpendicular symmetry axes. 如請求項1之聲學輸出裝置,其中,所述上層彈性元件或所述下層彈性元件的多個杆件結構中相鄰杆件結構的彎折方向相反。An acoustic output device as claimed in claim 1, wherein the bending directions of adjacent rod structures in the multiple rod structures of the upper elastic element or the lower elastic element are opposite. 如請求項1之聲學輸出裝置,其中,所述杆件結構的形狀包括折線形、S形、樣條曲線形、弧形和直線形中的至少一種。An acoustic output device as claimed in claim 1, wherein the shape of the rod structure includes at least one of a broken line shape, an S shape, a spline curve shape, an arc shape and a straight line shape. 如請求項1之聲學輸出裝置,其中,所述多個杆件結構中的至少一個杆件結構包括多個分段,所述多個分段的彎折方向相反。An acoustic output device as claimed in claim 1, wherein at least one of the plurality of rod structures comprises a plurality of segments, and the bending directions of the plurality of segments are opposite. 如請求項1之聲學輸出裝置,其中,所述彈性元件和所述質量元件諧振產生第一諧振峰;所述壓電元件諧振產生第二諧振峰。An acoustic output device as claimed in claim 1, wherein the elastic element and the mass element resonate to produce a first resonance peak; and the piezoelectric element resonates to produce a second resonance peak. 如請求項7之聲學輸出裝置,其中,所述第一諧振峰的頻率範圍為50 Hz-2000 Hz。An acoustic output device as claimed in claim 7, wherein the frequency range of the first resonance peak is 50 Hz-2000 Hz. 如請求項7之聲學輸出裝置,其中,所述第二諧振峰的頻率範圍為1000 Hz-50000 Hz。An acoustic output device as claimed in claim 7, wherein the frequency range of the second resonance peak is 1000 Hz-50000 Hz. 如請求項1之聲學輸出裝置,其中,所述壓電元件包括: 壓電片,用於基於所述電信號產生所述機械振動,其中,所述壓電片的電學方向與所述機械振動方向平行。 As in claim 1, the piezoelectric element comprises: A piezoelectric sheet for generating the mechanical vibration based on the electrical signal, wherein the electrical direction of the piezoelectric sheet is parallel to the mechanical vibration direction.
TW112110918A 2022-04-07 2023-03-23 An acoustic output device TWI843497B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2022103611374 2022-04-07
CN202210361137.4A CN116939449A (en) 2022-04-07 2022-04-07 Acoustic output device

Publications (2)

Publication Number Publication Date
TW202341755A TW202341755A (en) 2023-10-16
TWI843497B true TWI843497B (en) 2024-05-21

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112840673A (en) 2019-02-28 2021-05-25 谷歌有限责任公司 Modal frequency transfer for loudspeaker device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112840673A (en) 2019-02-28 2021-05-25 谷歌有限责任公司 Modal frequency transfer for loudspeaker device

Similar Documents

Publication Publication Date Title
JP4768949B2 (en) converter
JP2019114958A (en) Electro-acoustic transducer
TWI843497B (en) An acoustic output device
JPWO2016017632A1 (en) Electroacoustic transducer film and electroacoustic transducer
TWI843496B (en) An acoustic output device
TW515220B (en) Loudspeakers
JP2008509587A (en) Panel acoustic transducer and actuator for generating and / or recording sound having an actuator for operating the panel
TW202341751A (en) An acoustic output device
TW202341755A (en) An acoustic output device
TW202341754A (en) An acoustic output device
TW202341753A (en) An acoustic output device
WO2023193194A1 (en) Acoustic output apparatus
WO2020029958A1 (en) Rectangular rounded-corner centering disk and loudspeaker
TW202341756A (en) A vibrating device
TW202341757A (en) A vibrating device
TW202341758A (en) A vibrating device
WO2023193186A1 (en) Vibration apparatus
TWI843481B (en) A driving device and an acoustic output device comprising the driving device
WO2023197290A1 (en) Driving device and acoustic output device comprising same
TW202343432A (en) A driving device and an acoustic output device comprising the driving device
TWI820888B (en) Acoustic device
Wang et al. A Novel Piezoelectric Micromachined Ultrasonic Transducer with Adjustable Broad and Flat Frequency Band
TWI815634B (en) Acoustic device
US20230353948A1 (en) Acoustic output devices
WO2023015485A1 (en) Microphone