TWI842101B - 增強顯影對比度之方法及基板處理設備 - Google Patents

增強顯影對比度之方法及基板處理設備 Download PDF

Info

Publication number
TWI842101B
TWI842101B TW111136067A TW111136067A TWI842101B TW I842101 B TWI842101 B TW I842101B TW 111136067 A TW111136067 A TW 111136067A TW 111136067 A TW111136067 A TW 111136067A TW I842101 B TWI842101 B TW I842101B
Authority
TW
Taiwan
Prior art keywords
composition
irradiated
contrast
development
contacting
Prior art date
Application number
TW111136067A
Other languages
English (en)
Other versions
TW202318103A (zh
Inventor
布萊恩 J 卡迪諾
彼特 德 謝佩
Original Assignee
美商英培雅股份有限公司
日商東京威力科創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商英培雅股份有限公司, 日商東京威力科創股份有限公司 filed Critical 美商英培雅股份有限公司
Publication of TW202318103A publication Critical patent/TW202318103A/zh
Application granted granted Critical
Publication of TWI842101B publication Critical patent/TWI842101B/zh

Links

Abstract

使用氣態對比度增強劑促進對有機金屬輻射敏感組成物之圖案化,對比度增強劑可包含羧酸、醯胺、磺酸、醇、二醇、矽烷基鹵化物、鹵化鍺、鹵化錫、胺、硫醇或其混合物。在對有機金屬組成物進行輻照以形成一潛影像之後,提供與對比度增強反應性化合物之接觸。可在物理圖案顯影前或之後遞送對比度增強劑,且使用對比度增強劑進行處理可包含在熱處理中移除一些或實質上所有的未輻照有機金屬組成物。可在乾式熱顯影步驟中使用對比度增強劑。闡述了利用對比度增強劑實行處理之設備。

Description

增強顯影對比度之方法及基板處理設備
本發明係關於有機金屬輻射圖案化組成物之沈積及輻照後處理,其可包含與一對比度增強劑接觸並在輻照後對一物理影像進行顯影。具體而言,本發明係關於反應性蒸氣處理,以提高影像對比度,潛在地促進熱材料移除,藉此促進圖案顯影及/或圖案化改善。本發明亦關於用於實行該處理之設備。
半導體圖案化需要高效能及高解析度之光阻以實現越來越小的特徵。半導體裝置之製造通常包含由沈積、圖案化及蝕刻構成之許多重複處理步驟,以達成所需的裝置。通常藉由使用微影製程來達成圖案化。在微影技術中,使用光阻及顯影製程將輻射之空中圖案(aerial pattern)轉換成物理圖案。
為進一步降低藉由微影獲得之圖案解析度作出之努力,為新型光阻化學之發展提供了動力。在此上下文中,已經開發了有機金屬輻射可圖案化組成物。隨著該等組成物引入新的化學物質,可潛在地利用諸多新的製程能力來進一步改善圖案化製程。
本發明之一個方案係關於利用包含一對比度增強劑之組成物對有機錫阻劑進行顯影之方法,其中該對比度增強劑可選自例如胺、矽烷基鹵化物、醇、醯胺、磺酸、羧酸、硫醇、鹵化錫、鹵化鍺及其混合物。在一些實施例中,對比度增強劑可與氣態酸性鹵化物、HF、HCl、HBr及/或HI結合使用,以促進反應。一些水蒸氣可能需要與其他反應物結合。
本發明之另一方案係關於一種利用包含三甲基矽烷基鹵化物之一對比度增強劑組成物對一有機錫阻劑進行顯影之方法。
本發明之另一方案係關於一種利用包含烷基之一組成物對有機錫阻劑進行顯影之方法。
在另一方案中,本發明係關於一種在初始顯影製程之後自一經圖案化的基板移除材料之方法,其中該方法包含使該經圖案化的基板與蒸氣形式之一對比度增強劑接觸。
在第一方案中,本發明係關於一種對具有一潛影像之一基板表面上之輻射敏感有機金屬組成物之輻照部分與未輻照部分之間的顯影對比度進行增強之方法,該方法包含: 在一隔離室中使該有機金屬組成物與一反應氣體接觸,以改變該輻照部分、該未輻照部分或所述二者之組成,其中該反應氣體包含醯胺、磺酸、醇、二醇、矽烷基鹵化物、鹵化鍺、鹵化錫、胺或其混合物。
在第二方案中,本發明係關於一種對一基板表面上之輻射敏感有機金屬組成物進行改質之方法,該基板表面具有分別由輻照部分及未輻照部分形成之一潛影像, 該方法包含在一隔離室中在約0.1托(torr)至約50托之一分壓下、在約100℃至約250℃之一溫度下、在約0.1標準立方公分/分鐘(sccm)至約5000 sccm之一流速下使有機金屬組成物與羧酸之蒸氣進行接觸,在約-45℃至約250℃之一溫度下移除相對量的未輻照部分((初始未輻照厚度-最終未輻照厚度)/初始未輻照厚度),其中被移除的相對量的未輻照部分為至少約10%,而被移除的相對量厚度的輻照部分((初始輻照厚度-最終輻照厚度)/初始輻照厚度)不超過被移除的相對量的未輻照部分之三分之一。
在第三方案中,本發明係關於一種提高一經圖案化的結構的品質之方法,該經圖案化的結構具有與一基板表面上之一輻照有機金屬組成物對應之一負型圖案(其中未輻照有機金屬組成物實質上被移除),或者具有與一基板表面上之未輻照有機金屬組成物對應之一正型圖案(其中輻照有機金屬組成物實質上被移除),該方法包含: 對一潛影像之一圖案進行顯影以形成一經圖案化的結構,該潛影像係藉由對一基板表面上之一輻射敏感有機金屬組成物進行照射而形成;以及 在完成顯影步驟後,在一隔離室中使經圖案化的結構與一反應氣體接觸,以自圖案移除浮渣(scum),其中反應氣體係選自水、羧酸、醯胺、磺酸、醇、二醇、矽烷基鹵化物、鹵化鍺、鹵化錫、胺、硫醇、鹵化氫或其混合物。
在第四方案中,本發明係關於一種對一輻射敏感有機金屬組成物進行乾式顯影之方法,該組成物在基板上具有一輻射圖案化潛影像,該方法包含: 使具有潛影像之組成物與一反應氣體接觸,以移除塗層之大部分未輻照區域,其中塗層之未輻照區域包含Sn-C鍵,並且反應氣體包含醯胺、磺酸、醇、二醇、矽烷基鹵化物、鹵化鍺、鹵化錫、胺、硫醇或其混合物。
在第五方案中,本發明係關於一種對在一基板上具有一輻射圖案化潛影像之輻射敏感有機金屬組成物進行顯影之方法,該方法包含: 將輻射圖案化材料與一第一反應氣體組成物接觸以對塗層之未輻照區域進行改質以形成一初始圖案,其中塗層之未輻照區域包含Sn-C鍵,並且第一反應氣體組成物包含羧酸、醯胺、磺酸、醇、二醇、矽烷基鹵化物、鹵化鍺、鹵化錫、胺、硫醇或其混合物;以及 使初始圖案與不同於第一反應氣體組成物之一第二反應氣體組成物接觸,以移除初始圖案之一部分,其中第二反應氣體組成物包含羧酸、醯胺、磺酸、醇、二醇、矽烷基鹵化物、鹵化鍺、鹵化錫、胺、硫醇或其混合物。
在第六方案中,本發明係關於一種設備,該設備包含: 一封閉室; 位於封閉室內之一基板支架,其中基板支架被配置成對一基板進行旋轉; 一氣體供應子系統,包含一氣體源貯存器、具有複數個開口之一氣體噴射分配器、一氣體流量控制器及氣體導管,該等開口被分佈以提供被導向安裝於基板支架上之一基板並在基板表面之範圍上之氣體分配,該等氣體導管連接氣體源貯存器及氣體噴射分配器,流經該等導管之流量由氣體流量控制器調節; 一液體供應子系統,包含一液體貯存器、一噴嘴、具有用於定位噴嘴之一可平移臂之一噴嘴支架、一流量控制器及在液體貯存器與噴嘴之間提供流動通道之管道,其中噴嘴支架具有一配置以將噴嘴配置成將液體沈積於安裝於基板支架上之一基板上; 一或多個離開室之排氣裝置;以及 一幫浦。
藉由乾式(即,蒸氣遞送)製程將化合物遞送至具有有機金屬圖案化組成物之一基板(其具有一潛影像)以促進物理圖案顯影。已經開發了在曝光區域與未曝光區域之間提供高對比度之有機金屬光阻。在一些實施態樣中,圖案化材料可包含有機錫組成物,該有機錫組成物形成具有錫-碳鍵之氧代-羥基網路(oxo-hydroxo network),從而形成對輻射敏感的金屬-配位基交互作用。儘管該等製程及輔助設備以及組成物可在更廣泛的範圍內有效,但論述主要集中在具有更直接的商業相關性之有機錫組成物上。此種高對比度可直接用於形成物理圖案,該等物理圖案可用於藉由使用經圖案化的阻劑作為一遮罩之添加或蝕刻將圖案轉移至一基板。然而,例如在本文中所述之製程改善可提供圖案化之效率,並改善圖案品質且減少圖案缺陷。在一些實施態樣中,使用對比度增強劑化合物來放大一有機金屬圖案化組成物之未輻照部分與相鄰輻照區域之間的化學差異。蒸氣處理步驟對於引入對比度增強劑並對由對比度增強劑誘導之反應之製程條件進行控制而言可為可取的。在一些實施態樣中,利用對比度增強劑進行處理會藉由轉化成化合物而提供對經處理的未輻照部分之熱顯影,該等化合物具有足以使被圖案化的基板進行適當熱顯影之蒸氣壓。在製程可能性之演變(continuum)中,對比度增強劑可與一潛影像之有機金屬組成物有差別地反應,以進一步增加組成物之輻照部分與未輻照部分之間的對比度,同時可能移除未輻照的材料,若該未輻照的材料被充分移除,便會產生圖案顯影。因此,在一個極端的演變中,對比度增強處理實際上產生乾式顯影製程。在一個相對的極端的演變中,對比度增強處理提高了對隨後的濕式或乾式顯影步驟之對比度,而在利用對比度增強劑進行處理期間並無顯著的材料移除。中間程度之處理係介於這些極端的演變之間。
在一步製程(one-step process)中,對比度增強反應與熱顯影係同時實行的以達成特別有效的顯影,且對此實施態樣而言,對比度增強劑可被稱為蒸氣反應性顯影劑。熱顯影提供一種替代的乾式顯影製程,其避免用於基於電漿之顯影之電漿產生。在替代的或另外的實施態樣中,在利用一對比度增強劑進行處理之後,可使用一濕式顯影或不同的乾式顯影。不同的乾式顯影可包含使用一不同的反應性氣體或使用一電漿驅動製程。在另外的或進一步的實施態樣中,可在更傳統的顯影製程之後應用對比度增強劑及/或熱顯影,以移除殘留物來減少缺陷。此外,在基於該等實施態樣其中之任一者之顯影之後,或者在一顯影步驟與一乾浮渣移除步驟之間,可使用一沖洗步驟,以減少圖案化缺陷之發生率。有機金屬圖案化組成物為高解析度圖案化提供了廣闊前景,尤其是在極紫外線(extreme ultraviolet;EUV)圖案化之環境背景下,且減少圖案化缺陷係為製程開發中之重要一步,以允許充分開發有機金屬化合物之潛力。
總而言之,對比度增強氣體可用於顯影,無論其是否直接導致對未輻照有機金屬組成物之移除,用於在一單獨的處理步驟中在完成顯影後達成圖案改善,或者分別用於通常使用不同的對比度增強氣體組成物之兩個不同的步驟。對於顯影,對比度增強劑可參與自改變未輻照有機金屬組成物之組成至在乾燥、熱顯影中有效移除實質上所有未輻照有機金屬組成物之連續作用中,或者參與介於不移除與實質上完全移除之間的任何程度。若未達成實質上完全移除未輻照有機金屬組成物,則完成顯影之後續步驟可為可被熱驅動或電漿驅動的任何濕式顯影或任何乾式顯影步驟。在完成顯影以實質上移除所有未輻照有機金屬組成物後,可實行圖案改善步驟。如下所述,可實行用於圖案改善之濕式處理。在一些實施態樣中,不管如何實行顯影,皆可在單獨的步驟中使用對比度增強氣體用於在一熱處理中達成圖案改善。使用對比度增強氣體之圖案改善係為使用該等試劑之單獨方案。該等製程與其他製程態樣整合將在下文進行闡釋。
對持續縮小經圖案化的半導體裝置之需求已經推動了能夠產生小且具有高保真度特徵之更高效能光阻材料之發展。光阻係為在輻射照射下經歷化學變化之材料。期望此類材料忠實地再現輻射之空間影像,作為輻照區域與未輻照區域之間的物理及化學影像。此種化學影像可藉由濕式方法或乾式方法移除光阻之選定區域來顯影。輻射源通常係為光子(例如,可見光、紫外線、極紫外線或x射線)或離子束(例如,電子束)之任何來源,該等光子或離子束可藉由使用光遮罩或藉由可控地在光阻上對輻射源進行光柵化(rastering)而被導向以形成一期望的圖案。對於先進應用而言,通常期望裝置及特徵尺寸盡可能小,並且通常特徵尺寸與輻射源波長之間呈現一直接關係。舉例而言,在當前先進商業微影處理中,使用波長為13.5奈米之極紫外(EUV)源。
晶圓處理通常包含基板或晶圓自塗佈/沈積至自基板移除一圖案遮罩所經歷之一系列各別製程。在一些實施態樣中,基板係為一半導體晶圓,例如具有可選的表面塗層或其他修飾之一矽晶圓。此外,可實施色調反轉製程(tone-reversal process)來使光阻圖案之色調反轉。一般而言,晶圓製程可包含塗佈、烘烤、轉移步驟、背面及邊緣珠狀物沖洗、輻射曝光、顯影、退火(annealing)及蝕刻等,並且每種類型常常具有多個步驟。為實行該等步驟,在半導體裝置製造期間常常使用液體、電漿及氣體/蒸氣製程。對於有機金屬光阻(例如,有機錫組成物)而言,使用氣體/蒸氣製程可提供有用的步驟,並且在本文中在整個製程進展之上下文中進行闡述。
最近,已示出有機錫化合物為能夠達成極高解析度之有效EUV光阻。為達成高解析度的圖案化,該等有機錫材料可被沈積為薄膜/塗層,並且相對於傳統聚合物光阻材料具有高的蝕刻對比度,因此使得能夠更高效地將圖案轉移至下伏基板(underlying substrate)中。如下文進一步所述,包含可水解配位基之前驅物可用於形成輻射敏感圖案化組成物。儘管旋塗有機錫阻劑目前可自尹普瑞公司(Inpria Corporation)(美國俄勒岡州)商購獲得,但可利用濕式或乾式製程實行有機錫沈積。本文中所述之輻照後處理係關於藉由與光阻之未輻照部分之選擇性反應來增加顯影對比度。
已示出金屬氧化物氫氧化物光阻(例如,有機錫光阻)作為用於微影圖案化之光阻具有優異的性質。金屬氧化物氫氧化物光阻之實例包含鉿及鋯之氧化物氫氧化物,其已在斯托爾斯(Stowers)等人標題為「經圖案化的無機層、基於輻射之圖案化組成物及相應之方法(Patterned Inorganic Layers, Radiation Based Patterning Compositions And Corresponding Methods)」之美國專利第9,176,377B2號及Stowers等人標題為「用於高解析度微影之可溶液處理之硬遮罩(Solution Processible Hardmasks for High Resolution Lithography)」之美國專利第9,281,207B2號中進行了闡述,所述兩個美國專利皆以引用方式併入本文中。具體而言,已示出有機錫氧化物氫氧化物光阻會達成高解析度及高靈敏度。可取的有機錫氧化物氫氧化物光阻包含如在以下專利中所述之有機錫材料:邁耶斯(Meyers)等人之標題為「基於有機金屬溶液之高解析度圖案化組成物(Organometallic Solution Based High Resolution Patterning Compositions)」之美國專利9,310,684B2('684專利)、Meyers等人之標題為「基於有機金屬溶液之高解析度圖案化組成物及相應之方法(Organometallic Solution Based High Resolution Patterning Compositions and Corresponding Methods)」之已公開美國專利申請案2016/0116839A1、以及標題為「有機錫氧化物氫氧化物圖案化組成物、前驅物及圖案化(Organotin Oxide Hydroxide Patterning Compositions, Precursors, and Patterning)」之美國專利10,228,618B2(以下稱為'618專利),所述美國專利全部以引用方式併入本文中。下文闡述了特定有機錫組成物之更多細節。
儘管不期望受理論之限制,但據信在暴露於游離輻射(例如,EUV光子、UV光子及離子束)期間,Sn-C鍵斷裂,從而可能形成具有R之物質。鍵斷裂導致烴基R基團之揮發,並產生具有未滿足配位數之高反應性Sn位點。然後,藉由與塗層中之其他部分反應,或者藉由與處理環境中之物質(例如,水)反應,可藉由Sn位點之間的交聯及/或縮合而發生緻密化(densification)。如此一來,塗層對一輻射圖案之照射產生了一潛影像,該潛影像在塗層中具有相應密度的圖案化,其中輻照區域通常較未輻照區域更緻密。在一典型的EUV微影製程中,在暴露於EUV輻射之後,塗層暴露於環境空氣中,其中在塗層之輻照區域內可發生與水及/或CO 2之進一步反應,以驅動縮合網路之形成,藉此在輻照區域與未輻照區域之間產生顯著的化學對比度。
為達成具有化學對比度之物理影像,通常在其中選擇性地移除未輻照材料之一負型製程、或者其中選擇性地移除輻照材料之一正型製程中對光阻進行顯影。有機錫光阻可以任一型式操作。有機錫氧化物氫氧化物塗層之輻照區域通常係為親水性的,且因此可溶於水性酸或鹼,但不溶於有機溶劑;相反,未輻照區域通常係為疏水的,且因此可溶於有機溶劑,但不溶於水性酸或鹼。用於該等有機錫氧化物光阻之一些有用的顯影劑組成物已經在江(Jiang)等人之標題為「有機金屬光阻顯影劑組成物及處理方法(Organometallic Photoresist Developer Compositions and Processing Methods)」之已公開美國專利申請案第2020/0326627號(以下稱為'627申請案)中進行了闡述,該美國專利申請案以引用方式併入本文中。本文中所述之處理提出了對比度增強劑,該等對比度增強劑被設計成藉由與塗層之未被輻照部分之優先反應來增加化學對比度,藉此使未被輻照的塗層部分更加疏水及/或更易揮發。在一些實施態樣中,對比度增強劑可形成具有顯著揮發性之產品塗層組成物,使得熱顯影可作為一乾式顯影製程被達成,而無需在乾式顯影中調用電漿輔助,電漿輔助會因電漿輝光而降低對比度。一步乾式顯影與作為蒸氣反應性顯影劑之對比度增強劑之同時反應可特別高效,乃因先前發生反應的塗層被移除,藉此提供了滲透通道。一般而言,對比度增強劑可對未輻照有機金屬圖案化組成物進行改質且可能對經輻照的有機金屬圖案化組成物進行改質,能移除一部分未輻照圖案化組成物,或實質上完全移除未輻照圖案化組成物。
亦可在一顯影步驟之後使用對比度增強劑。在此上下文中,對比度增強劑可用於例如藉由移除浮渣(即,未完全移除的殘餘圖案化材料等)來提高圖案品質,所述浮渣可導致微橋(microbridge),且其他圖案缺陷可使得裝置級組件由於品質控制問題而被廢棄。如在'627申請案中所述,可作為溶液沖洗之另一選擇來使用蒸氣對比度增強劑,或除溶液沖洗之外還使用蒸氣對比度增強劑來移除浮渣及其他缺陷,以提高負型圖案之品質。
在特雷克(Telecky)等人之標題為「無機阻劑圖案化之處理環境(Process Environment for Inorganic Resist Patterning)」之已公開美國專利申請案2021/0271170(以下稱為'170申請案)中闡述了利用反應性氣體進行處理以改變被輻照的有機錫圖案化組成物,該美國專利申請案以引用方式併入本文中。如在'170申請案中所述,反應性氣體可用作對比度增強劑,用於反應性處理被輻照的有機金屬塗層。在一些實施態樣中,在'170申請案中教示之化合物可在輻照後被遞送,以與塗層之被輻照部分反應,從而增加親水性。在'170申請案中之反應氣體包含CO 2、SO 2、H 2S、CH 3SH、CO、COS、HOOH、NH 3、H 2、O 3、氮氧化物、PH 3、SiH 4、CH 4、環氧乙烷或其組合。對塗層之輻照部分之此種處理可與本文中所述之對比度增強劑結合,以通常與塗層之未輻照部分反應。
還闡述了亦被稱為乾式顯影之無溶劑顯影可用於有機錫材料。乾式顯影可包含例如藉由將材料暴露於一適當的電漿或適當的流動氣體而選擇性地移除光阻之輻照區域或未輻照區域。有機錫阻劑之乾式顯影已在沃洛茨基(Volosskiy)等人標題為「阻劑之乾式顯影(Dry Development of Resists)」之PCT公開案第2020/132281A1中進行了闡述,該PCT公開案以引用方式併入本文中。另參見譚(Tan)等人標題為「利用鹵化物化學成分之光阻顯影(Photoresist Development With Halide Chemistries)」之已公開PCT專利申請案WO2020/264158,該PCT專利申請案以引用方式併入本文中。在此種乾式顯影製程中,可藉由以下方式來達成顯影:將被輻照的基板暴露於電漿或熱處理,同時流入包含路易斯酸之氣體,例如小分子R yZ x,其含有鹵化物(F、Cl、Br),例如BCl 3、甲基或氫,其中R係為B、Al、Si、C、S或SO。Tan公開案提及利用鹵化氫或其他含鹵化物之化學物質進行電漿或熱顯影。
在迪克特斯(Dictus)等人之標題為「利用有機蒸氣進行光阻顯影(Photoresist Development with Organic Vapor)」之已公開PCT申請案WO 2022/125388(以下稱為'388申請案)中闡述了又一種乾式蝕刻方法,該PCT申請案以引用方式併入本文中。在'388申請案中,闡述了可與酸性鹵化物HX(其中X=F、Cl、Br、I)結合之羧酸蒸氣用於乾式顯影。在'388申請案中未呈現實例,且未闡述適當的條件。在'388申請案中之製程被進一步教示可用於清潔室中之殘餘物,其中殘餘物作為阻劑材料之氣相沈積之副產物遍及室進行沈積。在'388申請案中較佳的有機酸被鹵化以增加酸度。如本文中所述,闡述了使用羧酸有區別地移除未輻照材料之適當的製程條件。'388申請案強調了全部蒸氣處理。
本揭露闡述了使用對比度增強劑來對有機錫塗層進行顯影,該等對比度增強劑可選擇性地與塗層之未輻照區域反應,以使所選區域更具揮發性並改善對材料之移除。對於對比度增強劑之適當選擇可例如藉由將低密度有機錫部分轉化為更具揮發性之低分子量物質而改善對未輻照區域之移除。
在一些實施態樣中,暴露於對比度增強劑可在一熱處理期間實行,在此種情形中,對比度增強劑可充當蒸氣反應性顯影劑。在一些實施態樣中,熱處理可包含在使對比度增強劑與基板接觸之前控制對比度增強劑之溫度。在其他實施態樣中,熱處理可包含在與對比度增強劑接觸期間控制基板之溫度。此種熱處理通常可包含冷卻或加熱,例如,若與對比度增強劑之反應係為放熱的並產生大量熱量,則可實行冷卻。具體而言,對於高反應性對比度增強劑(即,與塗層快速反應之試劑),為了更佳地控制移除速率及隨後的圖案保真度,在基板暴露於對比度增強劑期間對基板進行冷卻可為有益的。在其他實施態樣中,熱處理可包含對基板及/或對比度增強劑進行加熱,以提高移除速率。對比度增強劑可利用一惰性氣體進行遞送。
為改善對一經輻照有機錫塗層之顯影,將基板暴露於能夠選擇性地與塗層之未輻照區域進行反應之一對比度增強劑可係為有益的,以便於在顯影期間移除該材料。在一些實施態樣中,可在一隨後的顯影劑步驟之前將塗層暴露於一對比度增強劑。舉例而言,暴露於一對比度增強劑可將未輻照區域轉化為具有較低分子量及/或更易揮發之物質,但不會顯著立即移除(揮發)所述材料,該材料然後可在一隨後的顯影步驟中被移除,其中實質上自基板移除所述區域。在其他實施態樣中,可在顯影步驟期間將塗層暴露於一對比度增強劑。舉例而言,將基板暴露於揮發劑可能導致未輻照材料之大量揮發(即,移除及/或顯影)以提供一物理圖案。
圖案組成物及塗層形成
在特別感興趣之實施態樣中,有機金屬圖案化組成物係在基板表面上形成氧代-羥基網路之有機錫組成物。該等組成物可使用溶液塗佈或氣相沈積方法形成,且儘管氧代-羥基溶液可用於沈積,但替代實施態樣包含使用具有可水解配位基之前驅物,該等可水解配位基在沈積期間及/或沈積之後水解以形成氧代-羥基網路。具有有機錫氧代-羥基組成物之基板可選地可經受沈積後烘烤以使材料穩定。使用輻射將塗層圖案化以形成一潛影像。在下一節中,將論述輻照後處理及圖案顯影。
在一些實施態樣中,已經基於近似由式R zSnO( 2-z/2-x/2)(OH) x表示之烷基錫組成物(例如,烷基錫氧化物氫氧化物)開發了有機金屬輻射敏感阻劑,在該式中,0 < x < 3,0 < z ≤ 2,x + z ≤ 4,並且R係為與錫原子形成碳鍵之一烴基或有機基團,通常碳原子係為經sp 3或sp 2雜化的。z=1之組成物可為特別令人感興趣的,其中式簡化為RSnO( 3/2-x/2)(OH) x。在整個組成物中使用不同R基團之一摻合物可能具有圖案化優點,並且在上式中可理解,R可代表一材料中之複數個不同的R基團。該等組成物之特別有效的形式為單烷氧錫氧化物氫氧化物,其中在上式中z =1。具體而言,R可為具有1至31個碳原子之部分,其中一或多個碳原子可選地經一或多個雜原子官能基(例如,含有O、N、Si、Ge、Sn、Te及/或鹵素原子之基團、或烷基、或進一步用苯基或氰基官能化之環烷基)取代。在一些實施態樣中,R可包含≤10個碳原子,並且可為例如甲基、乙基、丙基、異丙基、丁基、三級丁基、異丁基或三級戊基。R基團可為直鏈、支鏈(即在金屬鍵結之碳原子上之二級或三級基團)或環狀烴基。每一R基團單獨且通常具有1至31個碳原子,對於具有二級鍵結碳原子之基團具有3至31個碳原子,且對於具有三級鍵結碳原子之基團具有4至31個碳原子。具體而言,支鏈烷基配位基對於一些圖案化組成物可為可取的,其中化合物可被表示為R 1R 2R 3CSn(NR') 3,其中R 1及R 2獨立地為具有1至10個碳原子之烷基,並且R 3係為氫或具有1至10個碳原子之烷基。如下所述,烷基配位基R之此種表示類似地適用於通常具有R 1R 2R 3CSn(X) 3之其他實施態樣,其中X對應於三烷氧化物(trialkoxide)或三醯胺部分。在一些實施態樣中,R 1及R 2可形成一環狀烷基部分(例如環己基、環戊基、環丁基及環丙基),並且R 3亦可加入一環狀部分中之其他基團。合適的支鏈烷基配位基可為例如異丙基(R 1及R 2為甲基,且R 3為氫)、三級丁基(R 1、R 2及R 3為甲基)、三級戊基(R 1及R 2為甲基,且R 3為-CH 2CH 3)、二級丁基(R 1為甲基,R 2為-CH 2CH 3,且R 3為氫)、新戊基(R 1及R 2為氫,且R 3為-C(CH 3) 3)。合適的環狀基團之實例包含例如1-金剛烷基(-C(CH 2) 3(CH) 3(CH 2) 3或在三級碳處鍵結至金屬之三環[3.3.1.1 3,7]癸烷)及2-金剛烷基(-CH(CH) 2(CH 2) 4(CH) 2(CH 2)或在二級碳處鍵結至金屬之三環(3.3.1.13,7)癸烷)。在其他實施態樣中,烴基可包含芳基或烯基(例如,苄基或烯丙基)或炔基。在其他實施態樣中,烴基配位基R可包含僅由C及H組成並含有1至31個碳原子之任何基團。總之,鍵結至錫之合適烷基之一些實例包含例如直鏈或支鏈烷基(i-Pr ((CH 3) 2CH-)、t-Bu ((CH 3) 3C-)、Me (CH 3-)、n-Bu (CH 3CH 2CH 2CH 2-))、環烷基(環丙基、環丁基、環戊基)、烯基(烯基、芳基、烯丙基)或炔基(通常sp碳不直接鍵結至錫)或其組合。在進一步之實施態樣中,合適的R基團可包含經雜原子官能基取代之烴基,該等雜原子官能基包含氰基、硫基、矽烷基、醚基、酮基、酯基或鹵代基團或其組合。
在一些實施態樣中,塗層可由包含RSnX 3(或通常為R nSnX 4-n,其中n = 1、2或3)之前驅物形成,其中X為可水解基團,例如鹵化物、醯胺或烷氧化物基團,但烷基錫氧化物氫氧化物組成物可直接沈積。合適的可水解配體可包含例如炔化物(R 0C≡C-)、烷氧化物(R 0O-)、羧酸鹽(R 0COO-)、鹵化物、二烷基醯胺或其組合,其中R 0基團可為前文針對R所述之相同部分其中之一。具體而言,有機錫三烷氧化物組成物可由式RSn(OR 0) 3表示。此外,有機錫三二烷基醯胺組成物可由式RSn(NR aR b) 3表示,其中R a及R b基團可為前文針對R所述之相同部分其中之一。在一些實施態樣中,有機錫組成物可存在於一摻和組成物中,使得該摻和組成物包含二或更多個不同的R基團。
適當選擇的具有可水解配位基之有機錫化合物在合理的氣相沈積溫度下具有合適的蒸氣壓。作為另外一種選擇,有機錫化合物可溶解在有機溶劑中例如藉由旋塗進行沈積。可使用水蒸氣或其他氧源來原位水解可水解配位基以形成氧代-羥基網路。可在塗佈製程期間、塗佈製程之後或其某種組合中進行水解。
對於基於溶液之沈積,塗層之厚度通常可隨前驅物溶液濃度、黏度及製程參數(例如,旋轉速度)而變化。對於例如氣相沈積等其他塗佈製程而言,通常亦可藉由選擇例如流速、循環時間、循環次數等沈積及塗佈參數來調整厚度。在一些實施態樣中,可能期望使用一薄塗層來促進小且高解析化之特徵之形成。在一些實施態樣中,塗層材料在顯影之前之一平均乾燥厚度可不超過約1微米,在進一步之實施態樣中可不超過約250奈米(nm),在另外的實施態樣中可為約1奈米(nm)至約100奈米,在進一步之實施態樣中可為約1奈米至約50奈米,在其他實施態樣中可為約1奈米至約40奈米,且在一些實施態樣中可為約1奈米至約25奈米。本領域具有通常知識者將認識到,在上述明確範圍內之厚度之額外範圍係可被設想到的,並且該等額外範圍在本揭露之範圍內。
通常可對所得塗層材料性質實行經驗評估,以選擇對圖案化製程有效之處理條件。儘管該製程之成功應用可能不需要加熱,但為使塗層緻密化、改善處理、提高製程之再現性及/或促進揮發性副產物之氣化,對經塗佈的基板進行加熱可為可取的。在其中在施加後烘烤(post-apply bake;PAB)中沈積之後將熱量施加至塗層材料之實施態樣中,塗層材料可被加熱至約45℃至約250℃、且在進一步之實施態樣中約55℃至約225℃之溫度。用於移除溶劑之加熱通常可實行至少約0.1分鐘,在進一步之實施態樣中約0.5分鐘至約30分鐘,並且在另外的實施態樣中約0.75分鐘至約10分鐘。最終膜厚度由烘烤溫度及時間以及前驅物之初始濃度決定。本領域具有通常知識者將認識到,在上述明確範圍內之加熱溫度及時間之額外範圍係可被設想到的,並且該等額外範圍在本揭露之範圍內。作為對塗層材料之熱處理、潛在水解及緻密化之結果,塗層材料可表現出折射率及輻射吸收之增加,而無溶解速率對比度之顯著損失。
合適的輻射源包含極紫外線(EUV)、紫外線(ultraviolet;UV)或電子束(electron beam;EB)輻射。對於半導體裝置之製造而言,EUV輻射可為可取的,乃因其相較於UV輻射具有更高的解析度,並且相較於基於電子束(EB)之處理具有更高的產量。輻射通常可經由一遮罩被引導至基板材料,或者一輻射束可在基板上進行可控地掃描,以在阻劑塗層內形成一潛影像。根據以引用方式併入本文中之國際標準ISO 21348(2007),紫外光在大於或等於100奈米且小於400奈米之波長之間延伸,而極紫外線(EUV)自大於或等於10奈米至小於121奈米之波長之間延伸。13.5奈米之EUV光已被用於微影技術,並且此種光由使用高能雷射或放電脈衝激發之Xe或Sn電漿源產生。EUV光子之商業來源包含由荷蘭阿斯麥股份有限公司(ASML Holding N.V.)製造之掃描儀。
使用對比度增強劑之輻照後處理及影像顯影
一旦藉由圖案化輻射曝光形成了潛影像,便可例如利用以下方式對結構進行進一步處理:利用可選的曝光後烘烤(進行老化或不進行老化)、利用對比度增強劑之蒸氣遞送、利用影像顯影、及/或利用圖案改善,例如利用浮渣移除。該等步驟可以任何合理之順序進行組織,並且一些步驟可混合在一起。若使用單獨的顯影步驟,則此種顯影可為基於液體的顯影,或使用熱或電漿處理的乾式顯影。對比度增強劑通常可為小分子反應物,該等小分子反應物可選擇性地擴散及/或遷移至塗層之低密度(例如,未輻照)區域中,以便於立即或隨後移除材料。此種對比度增強劑可例如藉由錯合作用、配位、酸/鹼化學反應、氧化還原化學反應或其組合與塗層之未輻照區域交互作用。在任何情況下,期望對比度增強劑在未輻照區域中具有與有機錫基質之必要反應性,使得氧代及羥基鍵(例如,Sn-O-Sn及Sn-OH鍵,或者更一般而言,M-O-M及M-OH)可斷裂或中斷,並且可形成更易揮發或更易溶之物質。
在暴露於輻射並形成一潛影像之後,通常實行後續的曝光後烘烤(post-exposure bake;PEB)。在一些實施態樣中,PEB可在周圍環境中實行,並且在另外的實施態樣中,PEB可在存在例如H 2O、CO 2、CO、SO 2、H 2S、膦類化合物、H 2或其他氣體等反應性氣體之情況下實行,如前文引用的'170申請案中所述。在一些實施態樣中,PEB可在約40℃至約350℃、在另外的實施態樣中約45℃至約300℃、在進一步之實施態樣中約60℃至約275℃、且在一些實施態樣中約100℃至約250℃之溫度下實行。曝光後加熱通常可實行至少約0.1分鐘,在進一步之實施態樣中約0.2分鐘至約5分鐘,在另外的實施態樣中約0.25分鐘至約3分鐘,且在其他實施態樣中約0.3分鐘至約2分鐘。本領域具有通常知識者將認識到,在明確範圍內之PEB溫度及時間之額外範圍以及上述上限與下限互換之範圍(例如0.1分鐘至約3分鐘)係可被設想到的,並且該等範圍在本揭露之範圍內。PEB可被設計成進一步使經曝光的區域緻密化及/或加固,而不會使未曝光區域分解成金屬氧化物。
此外,可能期望具有曝光後延遲(post exposure delay;PED),在該曝光後延遲中,經曝光的晶圓老化。曝光後延遲可用作曝光後烘烤之一替代選擇(儘管在一些實施態樣中可能不會使用所述二者中的任一者),或者曝光後延遲可在曝光後烘烤之前實行,或者曝光後延遲可在曝光後烘烤之後實行,或者曝光後烘烤可在第一曝光後延遲之後及第二曝光後烘烤之前實行。老化步驟與曝光後烘烤的區隔可能變得模糊,乃因溫度可能僅被允許以連續的時段冷卻至一老化溫度,及/或溫度可能被升高以自一老化步驟過渡至PEB步驟。若在曝光後延遲期間實行加熱,則加熱溫度通常低於曝光後烘烤之溫度,並且將使用一適當的溫度斜坡(temperature ramp)以在不同加熱域之間轉換。
曝光後延遲進行的時間可為至少約10分鐘,在進一步之實施態樣中可為至少約20分鐘,在另外的實施態樣中可為約25分鐘至約7天,在一些實施態樣中可為約30分鐘至約3天,且在其他實施態樣中可為約40分鐘至約2天,並且額外的範圍明確包含該等範圍之延遲終點之任何及所有組合。曝光後延遲(PED)可在晶圓之上在一特定氣氛(例如,空氣、氣體含量改變之空氣、N 2、氬氣或其他惰性氣體、或真空)下實行,如本文中所述。曝光後延遲通常可在約200托至約1200托之一壓力下實行,並且可在大致大氣壓下實行。以下進一步闡述製程壓力。曝光後延遲可在環境溫度或一升高的溫度下實行,此可加速處理時間以允許具有更短的延遲。曝光後延遲期間或曝光後延遲之一選定部分期間之溫度可為約30℃至約150℃,在另外的實施態樣中可為約40℃至約130℃,在進一步之實施態樣中可為約50℃至約120℃,且在一些實施態樣中可為約55℃至約95℃,以及明確包含基於該等溫度端點之額外範圍,例如30℃至95℃。本領域具有通常知識者將認識到,在上述明確範圍內之時間及溫度之額外範圍係可被設想到的,並且該等額外範圍在本揭露之範圍內。較高的溫度通常不會維持長的時間。但可基於本文中之教示內容來使各種製程參數最佳化,以在圖案化方面獲得可取的改善。
將有機金屬阻劑組成物暴露於輻射通常涉及鍵斷裂。在特別感興趣之阻劑組成物中,鍵斷裂通常涉及碳-金屬鍵之斷裂。碳金屬鍵之斷開可能會留下反應性物質,例如能夠形成另一配位基-金屬鍵之自由基及/或金屬原子。有機物質通常形成離開材料之氣態副產物,並且金屬氧化物氫氧化物向更類似金屬氧化物之結構縮合及/或形成緊密結合物質之一網路以緻密化,使得經圖案化的結構在輻照區域與未輻照區域之間具有一高蝕刻對比度。舉例而言,緻密化的輻照塗層變得更不溶於用於溶解原始有機金屬組成物之有機溶劑。
曝光後處理通常係關於促進及增強曝光塗層之網路形成及緻密化。加熱通常可加速晶格結構之固態重組,此通常係為緻密化製程之一部分,並且加熱還可促進某些反應。然而,過度加熱可對塗層之未輻照部分產生影響,此可能降低顯影對比度,因此應適當控制加熱。在潛影像顯影之前藉由曝光後延遲之進一步老化可為緻密化製程之發生提供更多的時間。在塗佈後處理期間,經塗佈的晶圓周圍之氣氛可能顯著影響處理效果。大氣可由組成及壓力來表徵。
緻密化製程涉及小的體積變化,因此壓力增加往往在熱力學上有利於緻密化。相反的情況通常同樣適用,因此降低壓力往往在熱力學上不利於緻密化。在曝光後延遲期間施加真空之'170申請案中展示之結果被示出為使得蝕刻對比度降低。同樣地,氣氛之化學性質可改變曝光後處理之效果。合適的氣體氣氛可包含例如空氣、空氣加上額外的氣體、氮氣、氬氣及其他惰性氣體以及反應性氣體。可與單獨的曝光後烘烤分開或一起在曝光後延遲期間施加一些熱量,該熱量可為較曝光後延遲期間之加熱還要高之一溫度,藉此區分開兩種製程方案。
無論在各種製程點處晶圓之上之氣氛之化學成分如何,皆可相應地對壓力進行調整。處理設施處之大氣壓力可充當一基線。由於大多數設施皆在海平面以上,因此實際平均大氣壓力低於標準大氣壓力,而且天氣會引起進一步短暫的變化。此外,可對通風系統進行設置以保持相對於外部壓力之輕微負壓,從而控制氣體流入或流出設施之相對流量。在一處理室內,可保持一輕微的過壓(overpressure)來翻轉室內之氣體。本領域具有通常知識者將認識到該等壓力問題,並且自實際角度來看,約600托至約800托之壓力可被視為大氣壓,並且在一些實施態樣中,800托至1200托之壓力對於保持與一晶圓接觸之大氣之一正壓流(positive pressure flow)可能係為感興趣的。其他壓力範圍對於處理異可能係有用的。另一可能感興趣之範圍包含至少約200托之壓力,且對於晶圓之處理而言,真空或低壓可被視為不超過約1托之任何壓力。本領域具有通常知識者將認識到,在上述明確範圍內之額外壓力範圍係可設想到的,並且該等額外壓力範圍在本揭露之範圍內。
對比度增強劑與有機錫基質之反應可形成更容易移除、或許更易揮發之物質,然後該等物質可立即或隨後自基板移除。由對比度增強劑媒介之反應通常可包含加成反應、取代反應及/或酸/鹼中和反應。在一些實施態樣中,與氧代及羥基鍵之反應通常可藉由利用網路形成傾向小得多之配位基來取代網路形成-O-及/或-OH配位基來達成。在一些實施態樣中,誘導有機錫基質中之配位基取代之反應可包含酸/鹼中和反應,例如: RSnOH + HX → RSnX + H 2O RSnO + XOH → RSnX + H 2O
對比度增強劑與-O-或-OH配位基反應並取代-O-或-OH配位基之傾向通常可取決於其pKa。在一些實施態樣中,對比度增強劑可為質子性的,並且可驅動-O-及/或-OH配位基之質子化,以破壞有機錫氧代-羥基網路,並產生在顯影中容易移除之具有較低分子量之物質。在其他實施態樣中,對比度增強劑可為非質子性的。
在一些實施態樣中,對比度增強劑可包含能夠經受取代反應之化合物,其中在有機錫基質中達成配位基取代,例如: RSnOH + AX → RSnX + AOH
在一些實施態樣中,對比度增強劑可包含能夠經受加成反應之親核化合物,其中對比度增強劑可與有機錫基質錯合、配位或以類似方式發生交互作用,從而產生一新的組成物,例如: RSnOH + X → RSnXOH
對於上述一般反應,在一熱顯影製程中,以一連續或脈衝流引入對比度增強劑可有利於藉由連續移除產物(例如,H 2O)、同時連續供應一或多種反應物來推動反應平衡向前。類似地,若錫產物在一步製程中以類似方式氣化,則此將進一步推動平衡向前發展,同時達成顯影目標,無論顯影是否以此種方式被驅動完成,或者是否實行進一步的單獨顯影。還應理解,上述反應旨在為說明性的而非限制性的。
對比度增強劑之使用可用於處理流程中之一或多個角色。舉例而言,其可在照射後及一可選的曝光後烘烤後使用,以有差別地對圖案進行修改。在此處理階段,對比度增強劑可部分或實質上完全移除未輻照有機金屬組成物。此處理可跨越該等邊界之一連續範圍:自無顯著的錫移除至自未輻照區域實質上完全移除錫。如下所述,可相應地選擇進一步的處理。在另外的或替代的實施態樣中,可在不同的顯影步驟之後遞送對比度增強劑,該不同的顯影步驟可為一液體顯影步驟或一乾式顯影步驟,例如使用不同對比度增強劑之一蒸氣顯影(熱乾式顯影)或作為乾式顯影之一電漿蝕刻、以及使用如本文中所述之對比度增強劑之一乾式顯影步驟。使用對比度增強劑之一顯影後步驟可提供圖案改善,例如清除浮渣、微橋移除及類似改善。在任何情況下,錫反應產物可被原位移除,即在反應過程中被移除,以促進圖案顯影。
對於對比度增強劑之恰當選擇亦可取決於輻照材料與未輻照材料之間的相對密度差異。對於負型顯影而言,可能期望對比度增強劑選擇性地擴散至未輻照區域中,以便於移除該區域中之材料。因此,可能期望對比度增強劑具有空間體積(steric bulk)與酸度之間的平衡。換言之,可能期望對比度增強劑選擇性地在未輻照區域中黏合及擴散,使得其實質上僅在該區域中反應。取決於有機錫塗層之組成及處理,塗層中可能存在一定範圍之材料密度。舉例而言,對於具有如上定義之體積較大的R基團之有機錫組成物而言,相較於具有較小R基團之組成物,輻射誘導之分解可能導致較大的體積損失。
有機錫光阻塗層之密度通常可取決於相關塗層之化學組成及處理二者。一般而言,在輻射之前,具有較大或體積較大的R基團之有機錫組成物,(例如,三級丁基(CH 3) 3C-)相較於具有較小R基團之組成物(例如,甲基CH 3)具有一較小的錫數密度。密度可粗略地與一給定體積內之Sn-O-Sn及/或Sn-OH鍵之數量相關,並且體積較大的R基團通常增加此類鍵之間的距離。在利用一適當的輻射源(例如,EUV光子)照射後,由於輻照區域中抑制縮合之R基團之耗盡,輻照材料能夠較未輻照材料在更大程度上縮合。
塗層之處理亦可影響其密度,特別是增加Sn-O-Sn及/或Sn-OH鍵濃度之製程或步驟。舉例而言,在較高溫度下烘烤基板通常會使塗層緻密化縮合,且因此增加Sn-O-Sn及/或Sn-OH鍵之濃度。Sn-O-Sn及Sn-OH鍵可為末端鍵或橋接鍵,例如藉由O及/或OH連接基團來橋接二或更多個Sn原子。材料之密度通常隨著橋接O及OH連接基團之濃度而增加,且藉此使得對比度增強劑及其他反應物更難擴散至基質中。如上所述,輻照材料之密度通常高於未輻照材料。
有機錫塗層之疏水性及/或極性亦可影響對比度增強劑之恰當選擇。含碳較多之塗層(例如,R基團含有較多C原子之組成物)通常較含碳較少之塗層極性低。類似地,在暴露於輻射後,未輻照區域通常包含實質上完整的Sn-C鍵,即包含完整的R基團,而輻照區域通常包含顯著較少的Sn-C鍵,即顯著較少的C含量。如此一來,可藉由有機錫塗層之處理及化學組成來具體控制塗層之極性。極性較低之反應物通常會更多地滲透至塗層之極性較低之未輻照部分。
合適的對比度增強劑例如可包含胺(例如,RNH 2、R 2NH、R 3N)、矽及矽烷基鹵化物(例如,SiX 4、R nSiX 4-n)、醇(例如,ROH)及硫醇(例如,RSH)、二醇(例如,ROHR’OH)、羧酸(例如,RCOOH)及醯胺衍生物(例如,RCONH 2)、磺酸(例如,RSO 2OH)以及其組合及混合物,其中R及R’獨立地為具有1至10個碳之直鏈、支鏈或環狀烴基。對於蒸氣遞送而言,對比度增強劑在製程溫度下應具有足夠的蒸氣壓。在一些實施態樣中,基板可同時或分別暴露於該等試劑其中之一或多者。
在一些實施態樣中,可使用驅動加成反應之對比度增強劑,例如胺。具體而言,合適的胺可包含氨NH 3及/或烷基胺及其具有含1至4個碳之烷基鏈之異構體,例如三甲胺、三乙胺、三丙胺、三丁胺、二甲胺、二乙胺、二丙胺、二異丙胺、二丁胺、二異丁胺、甲胺、乙胺、丙胺、丁胺、吡啶、吡咯啶等及其混合物。合適的胺之進一步實例可包含矽烷基衍生物,例如三甲基矽烷基胺,例如三甲基矽烷基三(二甲胺) (CH 3) 3Si(NMe 2) 3及三甲基矽烷基三(二乙胺) (CH 3) 3Si(NEt 2) 3。在一些實施態樣中,可使用矽烷基醯亞胺與烷基胺之混合物。如以下進一步闡述,一對比度增強劑可與一惰性氣體一起遞送。
在一些實施態樣中,可使用驅動取代反應之對比度增強劑,例如14族鹵化物,例如矽及/或矽烷基鹵化物、鹵化鍺及/或鹵化錫。合適的14族鹵化物可包含例如由式R nMX 4-n表示之組成物,其中M=Si、Ge或Sn,R=CH 3或CH 3CH 2,n=0至3,且X=Cl或Br。其中M=Si之合適的組成物可為例如三甲基氯矽烷(CH 3) 3SiCl、三甲基溴矽烷(CH 3) 3SiBr、二甲基氯矽烷(CH 3) 2SiCl 2、二甲基溴矽烷(CH 3) 2SiBr 2、單甲基氯矽烷(CH 3)SiCl 3、單甲基溴矽烷(CH 3)SiBr 3、四氯矽烷SiCl 4、四溴矽烷SiBr 4及其組合。亦可使用相似的Ge及Sn鹵化物組成物。14族鹵化物之空間體積通常可與M原子之烷基化程度相關,例如,(CH 3) 3SiCl通常較(CH 3)SiCl 3體積更大。此外,14族鹵化物之酸性通常與M原子之烷基化程度間接相關,例如,(CH 3) 3SiCl通常較(CH 3)SiCl 3酸性低。對14族鹵化物之適當選擇可由光阻塗層之輻照區域與未輻照區域之間的密度及/或疏水性差異以及14族鹵化物之pKa來驅動。
在一些實施態樣中,可使用醇來驅動加成反應、取代反應或其組合。合適的醇可包含R-OH,其中R係為具有1至10個碳之直鏈、支鏈或環狀烷基,例如但不限於甲醇、乙醇、正丙醇、異丙醇、1-丁醇、異丁醇、三級丁醇、1-戊醇、4-甲基-2-戊醇、環戊醇、1-己醇、環己醇、苯酚等及其組合。在一些實施態樣中,烷基可包含經鹵素(例如,F、Cl、I、Br)取代之氫原子,例如九氟三級丁醇((CF 3) 3COH)、五氟苯酚(C6F5OH)等。對醇對比度增強劑之適當選擇可由-OH基團之疏水性及/或立體阻礙來驅動,使得試劑至塗層之未輻照區域中之擴散最佳。舉例而言,一級醇通常較二級醇立體阻礙小,而二級醇通常較三級醇立體阻礙小。在一些實施態樣中,可使用醇之硫醇衍生物,例如甲硫醇、乙硫醇、丙硫醇、異丙硫醇、丁硫醇、異丁硫醇、三級丁基硫醇等及其組合。醇可經鹵化,例如經氟化。在一些實施態樣中,可使用醇與硫醇之一混合物。在一些實施態樣中,對醇之選擇可部分地基於含錫反應產物之揮發性。
在一些實施態樣中,可使用二醇。合適的二醇可包含具有1至10個碳原子之組成物及其異構體、以及其環狀及醚類似物,例如但不限於亞甲基二醇、乙二醇、二乙二醇、丙二醇、二丙二醇、環己二醇、其混合物等。
在一些實施態樣中,可使用羧酸。合適的羧酸可包含具有含1至10個碳原子之烷基鏈之化合物及其異構體,例如甲酸HCOOH、乙酸CH 3COOH、丙酸CH 3CH 2COOH、丁酸CH 3(CH 2) 2COOH、異丁酸(CH 3) 2CHOOH、苯甲酸(C 6H 5)COOH等及其組合。在一些實施態樣中,烷基鏈可包含經鹵素(例如,F、Cl、I、Br)取代之氫原子,例如三氟乙酸(CF 3COOH)、三氯乙酸(CCl 3COOH)等。在一些實施態樣中,可使用羧酸之醯胺衍生物,並且此種醯胺可包含例如甲醯胺、N-甲基甲醯胺、乙醯胺、尿素、丙醯胺、丁醯胺、異丁醯胺等及其組合。在一些實施態樣中,可使用羧酸與醯胺之混合物。
在一些實施態樣中,可使用磺酸。合適的磺酸可包含由通式RSO 2OH表示之組成物,其中R係為具有1至10個碳原子之直鏈、支鏈或環狀烷基鏈,例如甲磺酸、乙磺酸、丙磺酸、苯磺酸、對甲苯磺酸(C 7H 7SO 2OH)等及其組合。在一些實施態樣中,R可包含具有經鹵素(例如,F、Cl、I、Br)取代之氫原子之烷基鏈,例如三氟甲磺酸(CF 3SO 2OH)。在其他實施態樣中,R可包含官能基,例如胺(-NH 2)、硫醇(-SH)及醇(-OH)。
在一些實施態樣中,對比度增強劑組成物可更包含水。對於一些對比度增強劑(例如,羧酸)而言,可能難以自源頭完全消除水,並且其可能進一步促進對比度增強劑向基板表面之遞送。除了水之外或者作為水之替代物,還可期望包含鹵化氫(HF、HCl、HBr、HI或其混合物)氣體作為反應物助劑,用於與本文中所述之對比度增強劑一起遞送。作為反應促進劑之水及鹵化氫可在與對比度增強劑相同之分壓範圍內遞送。類似地,可能期望使用可同時、依序或以其某種組合方式遞送之對比度增強劑之混合物。
本領域具有通常知識者將認識到,對於對比度增強劑之可取選擇可取決於特定的有機錫組成物及處理變數,並且常規實驗可基於本文中之教示內容來決定恰當的選擇。如上所述,給定對比度增強劑之pKa可影響顯影期間之反應速率。儘管不期望受理論之限制,但通常預期具有低pKa之對比度增強劑(例如,羧酸及磺酸),或者相對於有機錫基質具有高pKa之對比度增強劑可驅動酸/鹼中和反應,以促進中和物質之移除。因此,對於對比度增強劑之適當選擇可由期望的pKa以及本文中論述之其他因素來決定。
空間體積亦為關於對比度增強劑擴散至反應表面及有機錫基質中之一個因素。舉例而言,儘管不期望受理論之限制,但據信包含三甲基矽烷基(trimethylsilyl;TMS)基團之組成物因TMS基團之大小及其與H取代基之一般類似行為而可用於調節特定的對比度增強劑組成物,且其因此提供了獨特的機會,以適當調節用於給定的有機錫組成物顯影之對比度增強劑之組成物。在其他實態樣中,利用體積更大的基團來取代對比度增強劑之R基團可因擴散至緻密有機錫氧代-氫氧基基質中之能力更低而降低輻照區域中之反應速率。在一些實施態樣中,可同時或依序使用複數種對比度增強劑。在一些實施態樣中,對比度增強劑可在存在惰性氣體(例如,N 2、He、Ne、Ar、Kr及/或Xe)之情況下或與惰性氣體一起遞送,此通常涉及穿過系統之脈衝流或連續流。
通常可在暴露於輻射之後引入對比度增強劑(其可充當揮發性氣體)來與被輻照的塗層反應。在一些實施態樣中,對被輻照的基板實行曝光後烘烤(PEB)以對塗層進行加熱並進一步使輻照區域縮合可為有益的,藉此增加輻照區域與未輻照區域之間的化學(例如,疏水性)及/或物理(例如,密度)對比度。以上進一步闡述了曝光後烘烤之應用。曝光後烘烤之具體條件可被調整為與對比度增強劑之選擇一致,以藉由對比度增強劑達成期望的效能。在暴露於輻射之後,輻照區域通常較未輻照區域具有更少的碳含量,且因此通常可被驅動至相對於未輻照區域更高的密度。
無論是否實行了曝光後烘烤,皆可期望在顯影及/或暴露於對比度增強劑的同時施加熱量。熱量可用於使反應產物揮發,以允許自處理室中移除反應產物,以及促進與對比度增強劑之反應。晶圓/基板、氣體及/或室本身可被加熱或冷卻,以提供所需的處理溫度。該溫度可為約-45℃至約350℃,在進一步之實施態樣中可為約-10℃至約300℃,且在另外的實施態樣中可為約0℃至約250℃。反應時間可為至少約0.1分鐘,在進一步之實施態樣中可為約10秒至約5分鐘,且在另外的實施態樣中可為約20秒至約3分鐘。在一些實施態樣中,室壓可為約100托至約1200托,並且在進一步之實施態樣中可為約200托至約大氣壓(大約為760托),但如下所述,室中之氣體通常為氣體流,並且流速亦係為顯著的。鑑於反應氣體之較低分壓,為保持該等壓力,一惰性稀釋氣體可與對比度增強劑一起遞送。在替代實施態樣中,可不使用惰性氣體,使得室壓近似等於對比度增強劑之分壓,如下所述。本領域具有通常知識者將認識到,在上述明確範圍內之反應/加熱時間、壓力及溫度之額外範圍係可設想到的,並且該等額外範圍在本揭露之範圍內。
藉由使氣化的對比度增強劑以期望的流速及/或恆定之壓力流入含有基板之處理室中,可將對比度增強劑引入該處理室中。若在該製程中使用多於一種對比度增強劑及/或惰性氣體,則可控制每種各別對比度增強劑或惰性氣體之分壓及/或流速。在一些實施態樣中,室中每種對比度增強劑及/或惰性氣體之分壓在一些實施態樣中可在約1毫托(mTorr)與約10托之間,在其他實施態樣中可為約10毫托至約8托,在其他實施態樣中可為約50毫托至約7托,且在進一步之實施態樣中可為約100毫托至約5托。藉由改變進入處理室之每種各別反應氣體之流速,可利用特定的幫浦輸送速率來控制壓力,該等流速例如在一些實施態樣中為約0.5 sccm至約1000 sccm,在其他實施態樣中為約1 sccm至約500 sccm,且在進一步之實施態樣中為約2 sccm至約200 sccm。無論使用更高或更低的室壓,皆可根據需要在處理過程期間改變室壓。若使用惰性氣體,則可以較高的速率來遞送該等惰性氣體,並且可使用該等惰性氣體來保持較高的室壓,而不改變反應性氣體之選定流速。惰性氣體流速可為約0.5標準升/分鐘(SLM)至約30 SLM,在進一步之實施態樣中可為約1 SLM至約20 SLM,且在另外的實施態樣中可為約3 SLM至約15 SLM。本領域具有通常知識者通常應理解,可取的氣體流速可取決於用於實行處理之室之大小。通常,較小的室可使用較低的氣體流速,而較大的室可使用較高的流速。舉例而言,對於包含大小約為1升且氣體流速為1-100  sccm的室之製程而言,可預期較大的50升的室將需要相應高約50倍之為50-5000 sccm之流速。本領域具有通常知識者將理解,在上述範圍內之壓力及流速之額外範圍係可設想到的,並且該等額外範圍在本揭露之範圍內。
在三幅圖中方便地呈現了使用對比度增強劑之處理流程,以示出與一些目前可取的實施方式相關的更具體的實施態樣。第1圖示出一經圖案化的有機錫塗層之潛影像處理之流程圖,其中在利用一乾式顯影劑進行處理之前使用對比度增強劑,但替代實施態樣可包含液體顯影劑。第2圖示出一經圖案化的有機錫塗層之潛影像處理之流程圖,其中在一顯影步驟之後使用對比度增強劑以達成圖案改善。第3圖示出一經圖案化的有機錫塗層之潛影像處理之流程圖,其中對比度增強劑被用作蒸氣反應性顯影劑。
在第1圖之流程圖中,將有機錫組成物沈積於一基板上100。沈積可使用基於溶液之方法(例如,旋塗)或者基於蒸氣之方法(例如,物理氣相沈積(physical vapor deposition;PVD)、化學氣相沈積(chemical vapor deposition;CVD)、原子層沈積(atomic layer deposition;ALD)或其修改形式)。在可選的曝光前烘烤102之後,將經塗佈的基板暴露於輻射(例如,EUV輻射)104,以形成具有一潛影像之一塗層。在可選的曝光後烘烤(PEB)及/或延遲106之後,在一合適的室內利用基於蒸氣之對比度增強劑/乾式顯影劑對經圖案化的塗佈基板實行處理108。與對比度增強劑一起使用的一可選加熱方案可包含控制對比度增強劑之溫度、控制基板之溫度及/或實行處理後烘烤。在與對比度增強劑接觸選定的一段時間後,在一選定的流速/室壓下,將經塗佈的基板與不同於對比度增強劑之基於蒸氣之乾式顯影劑接觸。可選的加熱方案可包含控制乾式顯影劑之溫度、控制基板之溫度或實行顯影後烘烤。可重複利用基於蒸氣之對比度增強劑108進行的處理。
影像之部分顯影(換言之,未輻照材料之移除)可與利用對比度增強劑進行處理的同時進行。在處理步驟期間可自室中移除包含揮發性物質在內之反應產物。在一些實施態樣中,使用反應氣體流自塗層表面及/或自室中移除揮發性物質。在一些實施態樣中,可使用吹掃氣體之脈衝。揮發性物質之移除在利用對比度增強劑及/或乾式顯影劑進行處理期間可連續進行,或者在處理期間以不連續的週期進行。在其他實施態樣中,例如在利用對比度增強劑進行處理之後及利用乾式顯影劑進行處理之前,利用一沖洗液來移除反應產物,但替代實施態樣可包含使用液體顯影劑。可在一選定的溫度(例如,室溫)下遞送沖洗液。若使用不同的顯影步驟,則可使用先前確定的用於熱顯影之反應氣體或使用電漿來實行乾式顯影。本文中所述之對比度增強劑可有效促進顯影製程,充當乾式顯影反應物及/或充當在單獨的顯影後進行圖案改善之有效試劑,作為液體沖洗之替代物。
顯影後,使基板經受可選的沖洗/清除浮渣110,以例如藉由清除浮渣、微橋移除或其他特徵增強來提供經改善的圖案化基板。沖洗/清除浮渣110可移除一部分顯影塗層,以控制圖案尺寸。在一些實施態樣中,沖洗/清除浮渣110可移除與對比度增強劑反應之產物。沖洗/清除浮渣110可包含利用作為顯影塗層之溶劑之一液體進行沖洗及/或利用一基於蒸氣之對比度增強劑進行清除浮渣,可選地包含乾燥步驟或烘烤步驟。用於圖案改善/清除浮渣之基於蒸氣之對比度增強劑之使用條件可在上述顯影前對比度增強之相同範圍內,並且可基於本文中之教示內容作出調整以獲得期望的結果。在柯奇士(Kocsis)等人之標題為「經圖案化的有機金屬光阻及圖案化方法(Patterned Organometallic Photoresists and Methods of Patterning)」之已公開美國專利申請案2020/0124970(以下稱為'970申請案)中進一步闡述了用於圖案改善之一沖洗溶液之用途,該美國專利申請案以引用方式併入本文中。
參照第2圖之流程圖,將有機錫組成物沈積於一基板上120。沈積可使用一基於溶液之方法(例如,旋塗)或者基於蒸氣之方法(例如,物理氣相沈積(PVD)、化學氣相沈積(CVD)、原子層沈積(ALD)或其修改形式)。在可選的曝光前烘烤122之後,將經塗佈的基板暴露於輻射(例如,EUV輻射)124,以形成具有一潛影像之一塗層。在可選的曝光後烘烤(PEB)及/或延遲126以及利用基於蒸氣之對比度增強劑進行的可選的處理128之後,使經圖案化的塗佈基板經受顯影130。顯影130可為基於液體或基於蒸氣之製程。以下舉例說明基於蒸氣之顯影。一般而言,利用一對比度增強劑進行處理可包含未輻照有機錫圖案化組成物之一些揮發以及化學改質。任何程度的材料移除皆可係為有益的。就對比度增強劑使得未輻照有機錫組成物全部或基本上被移除而言,對比度增強劑可被視為乾式顯影劑。以下進一步闡述可選的濕式顯影或替代的乾式顯影製程。
在顯影130之後,可在合適的室內利用基於蒸氣之對比度增強劑對經圖案化的塗佈基板進行處理132,以提供經改善的圖案化基板。可對處理時間、對比度增強劑蒸氣之流速及/或室壓進行調整,並且適當的參數範圍在以上已詳細論述。可選的加熱方案可包含控制對比度增強劑之溫度、控制基板之溫度、實行顯影後乾燥及/或烘烤步驟、及/或實行處理後烘烤。作為進一步的選擇,可在利用基於蒸氣之對比度增強劑進行處理132之後實行沖洗/清除浮渣步驟。在利用基於蒸氣之對比度增強劑進行處理132期間,可自室中移除包含揮發性物質在內之反應產物。在一些實施態樣中,在蒸氣處理製程期間或視情況使用一吹掃氣體自塗層表面及/或自室中移除揮發性物質。在一些實施態樣中,可使用吹掃氣體之脈衝。在其他實施態樣中,在利用基於蒸氣之對比度增強劑進行處理132之後,利用一沖洗液來移除反應產物,並且該沖洗液可作為另一選擇被視為一液體顯影劑。可在一選定的溫度(例如,室溫)下遞送沖洗液。根據第2圖之製程可藉由依序進行以下步驟來實行:使用合適的室將有機錫沈積於基板上120,利用基於蒸氣之對比度增強劑進行可選的處理128,顯影130,以及利用基於蒸氣之對比度增強劑進行處理132。作為另外一種選擇,根據第2圖之製程可在一多功能室處理系統中實行,該多功能室處理系統被設計為適應基於液體之製程及基於蒸氣之製程兩者,例如以下關於第6圖中之實例所述。
參照第3圖之流程圖,在概述的過程中,將有機錫組成物沈積於一基板上140。沈積可使用一基於溶液之方法(例如,旋塗)或者基於蒸氣之方法(例如,物理氣相沈積(PVD)、化學氣相沈積(CVD)、原子層沈積(ALD)或其修改形式)。在可選的曝光前烘烤142之後,將經塗佈的基板暴露於輻射(例如,EUV輻射)144,以形成具有一潛影像之一塗層。在可選的曝光後烘烤(PEB)及/或延遲146之後,在一合適的室內利用蒸氣反應性顯影劑對經圖案化的塗佈基板進行處理148,以在基板上提供以物理方式圖案化的塗層。在利用蒸氣反應性顯影劑進行處理148期間,可控制蒸氣反應性顯影劑之溫度、基板之溫度及揮發性物質自室之外流。可在處理步驟期間自室中移除包含揮發性物質在內之反應產物。在一些實施態樣中,使用反應氣體流或單獨使用一吹掃氣體自塗層表面及/或自室中移除揮發性物質。在一些實施態樣中,可使用吹掃氣體之脈衝。揮發性物質之移除可在處理148期間連續進行,或者在處理148期間以不連續的週期進行。在其他實施態樣中,在處理148之後,可使用一沖洗液來移除反應產物及/或殘留材料。可在一選定的溫度(例如,室溫)下遞送沖洗液。在可選的與一沖洗液之接觸期間,對基板實行沖洗/清除浮渣150,以例如藉由清除浮渣、移除微橋或其他特徵增強來提供經改善的圖案化基板。沖洗/清除浮渣150可移除一部分顯影塗層,以控制圖案尺寸。在一些實施態樣中,沖洗/清除浮渣150可移除與由處理148產生之蒸氣反應性顯影劑之反應產物。沖洗/清除浮渣150可包含利用作為顯影塗層之一溶劑之液體進行沖洗及/或利用一基於蒸氣之對比度增強劑進行清除浮渣,視情況包含乾燥步驟或烘烤步驟。在替代的或另外的實施態樣中,可在顯影148之後使用不同的對比度增強組成物遞送對比度增強劑,以實行圖案改善之製程。
可能期望控制顯影製程之溫度,以有助於在例如輻照區域與未輻照區域之間、或者在阻劑之任何區域與可能至少部分地暴露於對比度增強劑及/或電漿離子及/或自由基之其他層之間,選擇性地對蝕刻進行調節。在一些實施態樣中,各種加熱及/或冷卻元件以及相關的控制器可存在於室內或室周圍。在一些實施態樣中,基板底架可包含能夠對室內之晶圓進行加熱之一加熱元件。在其他實施態樣中,基板底架可包含能夠對室內之晶圓進行冷卻之一冷卻元件。在其他實施態樣中,基板底架可包含能夠對晶圓進行加熱或冷卻之一元件。
在處理之一些實施態樣中,可將多個入口及出口附接至室,以將期望的氣體遞送至室中,並藉由真空或氣流自室中移除物質。包含需要被顯影之光阻之用於一基板之一底架可存在於室內,或者緊鄰室,使得對比度增強劑及/或相關的由電漿產生的離子及/或自由基可到達基板表面上之光阻。
在第4圖中呈現了用於一基於蒸氣的處理之一合適的處理系統300之示意性佈局。處理系統300具有蒸氣遞送系統301及處理室314。在一些實施態樣中,蒸氣遞送系統301具有製程氣體302。在一些實施態樣中,蒸氣遞送系統301具有用於蒸氣遞送之製程液體303之一貯存器。製程氣體302及/或製程液體303包含如上所述之對比度增強劑。在一些實施態樣中,蒸氣遞送系統301具有一惰性氣體304之供應源。製程液體303可藉由液體流量控制器305遞送至一氣化單元306。混合單元307接收製程氣體302、氣化的製程液體及/或惰性氣體304之一受控流,製程氣體302、氣化的製程液體及/或惰性氣體304其中之每一者藉由一或多個入口閥308進行控制。在一些實施態樣中,蒸氣遞送系統301具有電漿單元309。提供溫度控制器310來控制進入處理室314之製程蒸氣312之溫度。
處理室314具有蒸氣分配單元316。蒸氣分配單元316可自各種合適的形狀及設計中進行選擇。在一些實施態樣中,蒸氣分配單元316具有包含一多埠設計之一蓮蓬頭形狀,其一個實施態樣示出於第5圖中。處理室314具有支架318。基板320位於蒸氣分配單元316之下方,並放置於支架318上。在一些實施態樣中,支架318可藉由加熱/冷卻單元322實行溫度控制。支架318可連接至一馬達以旋轉支架318進行基板處理。支架318可手動或遙控升高或降低,以調整基板320與蒸氣分配單元316之間的距離。壓力閥324控制處理室314中揮發性反應產物之壓力及濃度。壓力閥324可連接至一幫浦,例如一真空幫浦。在一些實施態樣中,提供控制器326來遙控處理系統300之元件。
第5圖示出作為處理系統300之簡化闡述之一部分的蒸氣分配單元316之一個實施態樣。處理系統400被示出為具有蒸氣遞送系統402及具有壓力閥412之處理室404。位於處理室404內的係為蓮蓬頭蒸氣分配單元406、基板408及支架410。蓮蓬頭蒸氣分配單元406被示出為具有一可選的閘控奈米通道柵格(gated nano-channel grid),以在基板表面上提供更均勻的蒸氣接觸。
第6圖示出一合適的多功能室處理系統600之示意性佈局。處理系統600具有蒸氣遞送系統601及處理室614。在一些實施態樣中,蒸氣遞送系統601具有製程氣體602之一貯存器。在一些實施態樣中,蒸氣遞送系統601具有製程液體603之一貯存器。製程氣體602之貯存器及/或製程液體603之貯存器包含如前文所述之對比度增強劑。在一些實施態樣中,蒸氣遞送系統601具有惰性氣體604之一貯存器。製程液體603可經由液體流量控制器605遞送至氣化單元606。混合單元607接收製程氣體602、氣化的製程液體及/或惰性氣體604之一受控流,製程氣體602、氣化的製程液體及/或惰性氣體604其中之每一者藉由一或多個入口閥608進行控制。在一些實施態樣中,蒸氣遞送系統601具有電漿單元609。提供溫度控制器610來控制進入處理室614之製程蒸氣612之溫度。
處理室614具有蒸氣分配單元616。蒸氣分配單元616可自各種合適的形狀及設計中進行選擇。在一些實施態樣中,蒸氣分配單元616具有包含一多埠設計之一蓮蓬頭形狀,其一個實施態樣示出於第6圖中。處理室614具有支架618。基板620位於蒸氣分配單元616下方,並放置於支架618上。在一些實施態樣中,支架618可藉由加熱/冷卻單元622進行溫度控制。流體遞送噴嘴628接收來自製程液體貯存器630、製程液體貯存器632或製程液體貯存器634之一受控流,製程液體貯存器630、製程液體貯存器632或製程液體貯存器634分別藉由入口閥636、638及640以及入口閥642進行控制。在一些實施態樣中,製程液體貯存器630儲存一有機錫前驅物溶液。在一些實施態樣中,製程液體貯存器632儲存一顯影劑液體。在一些實施態樣中,製程液體貯存器634儲存一沖洗液體。提供可縮回的臂644來支撐流體遞送噴嘴628,並使得能夠調整流體遞送噴嘴628之位置,此亦可對流體遞送噴嘴628進行移動使其不妨礙蒸氣遞送。支架618連接至馬達646,以旋轉支架618進行基板處理,例如藉由旋塗將一膜沈積至一基板上、進行基於液體之顯影及/或沖洗/清除浮渣。提供排水管648以移除處理液體。支架618可手動或遙控升高或降低,以調整基板620與蒸氣分配單元616之間的距離。壓力閥624控制處理室614中揮發性反應產物之壓力及濃度。壓力閥624可連接至一真空幫浦。在一些實施態樣中,提供控制器626來遙控處理系統600之元件。
更具體而言,顯影製程通常可包含在一熱處理及/或電漿處理中在基板上引入經處理的塗層並與之接觸。在一些實施態樣中,熱處理可包含在對比度增強劑與塗佈基板接觸之前控制對比度增強劑之溫度。在另外的或替代的實施態樣中,熱處理可包含在與對比度增強劑接觸期間控制基板之溫度。此種熱處理通常可包含冷卻或加熱。在具有高反應性對比度增強劑(即,具有顯著高pKa或低pKa之對比度增強劑)之一些實施態樣中,在基板暴露於對比度增強劑期間對基板進行冷卻可為有益的,以便更佳地控制移除速率並改善後續的圖案保真度。在其中使用冷卻之實施態樣中,熱處理可為約-80℃至約0℃,在其他實施態樣中可為約-60℃至約-20℃,並且在進一步之實施態樣中可為約-50℃至約-30℃。對於一些冷卻實施態樣而言,液態氮可為一特別有用的冷卻劑。在其他實施態樣中,熱處理可包含對基板進行加熱。在一些實施態樣中,適於進行熱處理之溫度範圍可為約20℃至約400℃,在其他實施態樣中可為約40℃至300℃,且在進一步之實施態樣中可為約50℃至200℃。熱處理之持續時間在一些實施態樣中可為約0.1分鐘至約10分鐘,在進一步之實施態樣中可為約0.2分鐘至約5分鐘,且在又一些實施態樣中可為約0.3分鐘至約2分鐘。本領域具有通常知識者將理解,在上述範圍內之溫度及持續時間之額外範圍係可設想到的,並且該等額外範圍在本揭露之範圍內。
如在第1圖至第3圖之製程流程之上下文中所論述,在一些實施態樣中,可圍繞並支持一單獨的顯影步驟來使用對於對比度增強劑之使用。關於單獨的顯影步驟,可使用一液體顯影步驟或一乾式顯影步驟。乾式顯影步驟可基於在一熱處理中及/或藉由使用電漿來對未輻照材料進行顯影之氣體。如上所述,可相對於使用對比度增強劑在選定的處理位置中使用顯影步驟。
在一些實施態樣中,作為與利用一氣體/蒸氣對比度增強劑進行處理分開之步驟,可能期望使被輻照的基板與電漿接觸以實行顯影。在一電漿乾式顯影製程中,將光阻暴露於包含一或多種氣體之離子及/或自由基之合適的化學物質。乾式顯影製程可發生在一電漿產生室中或一電漿產生室附近,使得離子及/或自由基可到達光阻材料。電漿產生室可包含任何合適的電漿反應器,例如電感耦合電漿(inductively coupled plasma;ICP)反應器、變壓器耦合電漿(transformer-coupled plasma;TCP)反應器或電容耦合電漿(capacitively-coupled plasma;CCP)反應器。可利用本領域已知的適當技術及設備來配置此種反應器。使用電漿之乾式顯影連同用於電漿產生之合適化合物之概述已在上文進行進一步闡述。
儘管本文中所述之有機錫組成物通常可利用用於負型圖案化或正型圖案化之溶液進行圖案化,但本文側重於負型圖案化。已在江(Jiang)等人之標題為「有機金屬光阻顯影劑組成物及處理方法(Organometallic Photoresist Developer Compositions and Processing Methods)」之已公開的美國專利申請案第2020/0326627號中闡述了用於該等有機錫氧化物光阻的有用的顯影劑組成物,該美國專利申請案以引用方式倂入本文中。一般而言,當使用一有機溶劑作為一顯影劑時,會達成負型圖案化,其中未曝光材料被溶解掉,而曝光材料保留下來。
具體而言,對於負型成像而言,顯影劑可包含一有機溶劑,例如用於形成前驅物溶液之溶劑。一般而言,選擇合適的顯影劑溶劑組成物可受到與塗層材料(輻照塗層材料及未輻照塗層材料二者)有關的溶解度參數、以及顯影劑揮發性、易燃性、毒性、黏度及與其他製程材料之潛在化學交互作用的影響。具體而言,合適的顯影劑溶劑包含例如芳香族化合物(例如,苯、二甲苯、甲苯)、酯(例如,丙二醇單甲酯乙酸酯、乙酸乙酯、乳酸乙酯、乙酸正丁酯、丁內酯)、醇(例如,4-甲基-2-戊醇、1-丁醇、異丙醇、1-丙醇、甲醇)、酮(例如,甲乙酮、丙酮、環己酮、2-庚酮、2-辛酮)、醚(例如,四氫呋喃、二[口咢]烷、大茴香醚)等。顯影可實行約5秒至約30分鐘,在進一步之實施態樣中約8秒至約10分鐘,且在另外的實施態樣中約10秒至約10分鐘。本領域具有通常知識者將認識到,在上述明確範圍內之額外範圍係可設想到的,並且該等額外範圍處於本揭露之範圍內。
在一初始顯影期間,基於上述論述,例如在負型或正型顯影製程中自基板移除大量材料。然而,在某些情形中,由於例如不完全顯影、材料不均勻性及隨機性效應(stochastic effect),一初始顯影製程可能產生具有非期望的高線寬粗糙度(line-width roughness;LWR)及/或缺陷(例如,存留在基板上之浮渣、殘留物、微橋等)之圖案。在一些實施態樣中,因此可能期望進行進一步的處理(例如,液體處理、熱處理或電漿處理),以移除可能更易受包含本文中所述之對比度增強劑組成物之顯影化學物質影響的不需要的材料。在前文第1圖至第3圖之說明中,在各種製程流程中論述了使用對比度增強劑來進行圖案改善。因此,可將對比度增強劑之遞送及經對比度增強劑改質的塗層之熱顯影或其他後續顯影應用於最初顯影的圖案,以進行圖案改善。前文闡述的使用對比度增強劑之所有製程選擇可以類似方式應用於最初顯影的基板上。
作為另外一種選擇或另外,在一些實施態樣中,可能期望進行包含液體化學物質之一後續顯影步驟或沖洗步驟以移除不需要的材料。舉例而言,在利用一對比度增強劑實行一顯影步驟(例如,一乾式顯影步驟(熱或電漿))之後,可提供一負型液體顯影劑,例如一合適的有機溶劑。此外,已經發現沖洗步驟可有效地顯著降低缺陷率。沖洗步驟可包含利用例如一鹼性水溶液進行處理,以移除部分輻照材料以及圖案之邊緣。
在以上論述中,本領域具有通常知識者將理解,應如本領域中通常使用般對術語「基板」及「晶圓」進行解釋。如在本領域中所理解,「基板」本身可由多層構成,其中至少一些層可被圖案化,並且裝置之形成可包含多個連續的微影步驟以建立分層的經圖案化的結構。對於一特定的微影步驟而言,先前處理的結構成為該製程步驟之基板。上述實施態樣旨在為例示性的而非限制性的。額外的實施態樣位於申請專利範圍之範圍內。此外,儘管已參照特定實施態樣闡述了本發明,但熟習此項技術者將認識到,在不背離本發明之精神及範圍之情況下,可作出形式及細節上的改變。以引用方式對上述文獻之任何併入皆受限制,使得不會併入與本文中之明確揭露內容相反之標的物。就在本文中利用組件、元件、成分或其他劃分來闡述具體的結構、組成物及/或製程而言,應理解,除非另外具體指出,否則本文中之揭露內容涵蓋具體的實施態樣、包含具體組件、元件、成分、其他劃分或其組合之實施態樣、以及本質上由此種具體組件、成分或其他劃分或其組合組成的實施態樣,該等實施態樣如在論述中所建議可包含不改變標的物之基本性質之附加特徵。如本領域具有通常知識者將理解,除非另外明確指出,否則在本文中使用術語「約」係指特定參數之量測誤差。
顯影後處理
在對光阻進行顯影以形成一經圖案化的塗層材料、以及任意可選的圖案改善步驟之後,可實行後續退火以進一步對圖案化特徵進行固化及穩定。如同其他處理步驟一樣,此退火可在具有特定濃度的特定反應性氣體的環境中實行。可期望在此退火中存在先前步驟中不存在的反應性氣體。由於已經實行了輻射圖案化,因此不需要保持材料之光敏性,而是可將材料轉化成新的組成物,以便於進一步處理,例如蝕刻。舉例而言,在此退火期間,可存在還原性反應氣體(例如,一氧化碳、氫氣、甲烷等及其混合物),以將至少一部分材料轉化為新的組成物。在此退火步驟期間存在的反應性氣體可藉由將至少一部分經圖案化的材料轉換成新的組成物來實現後續的蝕刻步驟或其他處理。以此方式能夠實現處理後技術,該等處理後技術可藉由對後續蝕刻或其他製程步驟進行修整,來與由圖案化材料與反應性氣體反應而形成的組成物進行交互作用,從而減少或減輕浮渣、微橋接或其他缺陷。在以上引用的'170申請案中進一步闡述了利用一反應性氣體進行的顯影後熱處理。
此退火之溫度不受特別限制,只要輔助層或輔助材料能夠保持其各自的性質(例如,足夠的蝕刻對比度)並且所選的一或多種反應性氣體之反應性足夠即可。在一些實施態樣中,退火可在100℃與500℃之間,在其他實施態樣中為200℃至500℃,且在進一步之實施態樣中為300℃至400℃。本領域具有通常知識者將認識到,在上述明確範圍內之溫度之額外範圍係可被設想到的,並且該等額外範圍在本揭露之範圍內。
為有助於對顯影進行評估,可將晶圓圖案化以評估隨EUV劑量而變化之圖案形成。首先,成像被視為係照明區域與非照明區域之階梯函數(step function)。圖案化結構可使用自動成像設備來評估,並且一般使用掃描電子顯微鏡成像器。舉例而言,特定的商用CD-SEM儀器可量測臨界線尺寸(線寬),且亦可評估缺陷,例如微橋接。在一些實施態樣中,使用等效顯影、塗層形成及輻照,本文中所述之改善處理可導致臨界尺寸增加。在一些實施態樣中,臨界尺寸之增加可為至少約0.25奈米,在進一步之實施態樣中可為至少約0.50奈米,在進一步之實施態樣中可為至少約0.75奈米。本領域具有通常知識者將認識到,在上述明確範圍內的臨界尺寸增加之額外範圍係可被設想到的,並且該等額外範圍處於本揭露之範圍內。自另一個角度來看,臨界尺寸之概念可表示為達尺寸之劑量(dose-to-size)值,即用於獲得一特定特徵大小的輻射劑量。因此臨界尺寸之增加對應於達尺寸之劑量值之減小。
在形成一經圖案化的塗層材料之後,可對塗層材料進行進一步的處理以促進所選裝置之形成。此外,一般可實行進一步的材料沈積、蝕刻及/或圖案化來完成結構。塗層材料可最終被移除,也可最終不被移除。在任何情況下,經圖案化的塗層材料之品質皆可用於形成改善的裝置,例如具有較小腳印(foot print)等的裝置。若該層未被移除,則經圖案化的塗層(光阻)材料被併入結構中。對於其中經圖案化的塗層(光阻)材料被併入結構中的實施態樣,可對塗層(光阻)材料之性質進行選擇,以提供期望的圖案化性質以及結構內材料之性質。
實施例:利用反應性蒸氣對一有機錫光阻進行乾式顯影
此實施例例示利用一羧酸蒸氣對一有機錫光阻進行顯影之有效性。此實施例亦證明各種處理條件可能對於對比度增強產生之影響。
一般塗佈及處理步驟
將具有10奈米旋塗玻璃(spin-on-glass;SOG)層之矽晶圓用作基板。藉由以1394轉/分鐘(rpm)之速度進行旋塗而將一有機錫阻劑組成物沈積於每一晶圓上,以獲得藉由橢圓偏振技術(ellipsometry)所量測的厚度大約為15奈米之一層。在本實施例中使用之有機錫阻劑組成物係為由Inpria公司製造之YATU1011,其組成如在以上引用的'618專利中所述。將經塗佈的晶圓在100℃下烘烤60秒。然後,使用開放式(open-frame)曝光條件在一室中將晶圓暴露於劑量為50毫焦耳/平方公分之KrF輻射,以形成一組在晶圓表面上具有一輻射圖案化層之晶圓樣品,該輻射圖案化層具有輻照區域及非輻照區域。作為曝光後烘烤,將選定的晶圓樣品進一步在200℃下進行額外烘烤90秒。
利用乙酸蒸氣進行處理
使用與以上所述且在第4圖中所示之設備類似之設備,將每一晶圓樣品暴露於乙酸蒸氣中。將每一晶圓樣本(基板320)安裝於室314內之支架318上,並將每一晶圓樣本(基板320)配置成將顯影劑氣體流(製程蒸氣312)遞送至晶圓表面。在具有不同室壓及晶圓溫度條件之乙酸蒸氣氣氛下,對已經經受了額外烘烤之晶圓樣品(第7圖中之A組)及未經受額外烘烤之晶圓樣品(第7圖中之B組)進行處理。將乙酸之蒸氣流速在5標準立方公分/分鐘(sccm)與10 sccm之間的值進行調整,以提供約0.5托或約5托之一測得室壓。將晶圓樣品加熱至120℃或180℃之一溫度。將經加熱的晶圓樣品暴露於流動的乙酸蒸氣達介於0秒至600秒之不同時間。在選定的乙酸蒸氣的處理條件下,實行橢圓偏振量測以量測每一晶圓樣品之輻照區域及未輻照區域之膜厚度。
第7圖示出每一晶圓樣品之未輻照區域(標記為「a」)及每一晶圓樣品之輻照區域(標記為「b」)之膜厚度與時間之函數關係。在與乙酸蒸氣接觸之前(例如,在t = 0時),晶圓溫度為120℃時進行的處理使得輻照區域(「b」)通常較未輻照區域(「a」)薄。未輻照區域與輻照區域之間初始厚度之此種差異歸因於由於輻射誘導之Sn-C鍵斷裂所導致之有機物含量之損失,此在Meyers等人之標題為「有機錫氧化物氫氧化物圖案化組成物、前驅物及圖案化(Organotin Oxide Hydroxide Patterning Compositions, Precursors, And Patterning)」之美國專利10,732,505中進行了進一步闡述,該美國專利以引用方式併入本文中。第7圖還示出,在180℃下加熱的晶圓樣品之未輻照區域(「a」)之初始厚度小於在120℃下加熱的晶圓樣品之未輻照區域(「a」)之初始厚度。此種差異歸因於未輻照層之由溫度誘導的預收縮。
如第7圖所示,較高的室壓(即,較高的乙酸蒸氣流速)使得對未輻照材料之移除得到改善。舉例而言,在180℃下之A組中,未輻照材料之厚度在5托之室壓下在125秒時減小至約1奈米,而在0.5托之室壓下減小至約4奈米。獨立地,較高的晶圓溫度使得對未輻照材料之移除得到改善。舉例而言,在5托下之A組中,未輻照材料之厚度在180℃之晶圓溫度下在125秒時減小至約1奈米,而在120℃之晶圓溫度下減小至約9奈米。將A組與B組進行比較,基於輻照區域之厚度在測試之持續期間相對恆定,提供給A組晶圓樣品之額外高溫曝光後烘烤似乎提高了輻照區域之穩定性。相比之下,B組晶圓樣品之厚度在測試持續期間通常略有下降。更高的室壓與更高的晶圓溫度之結合使得最快速地選擇性移除未輻照材料。舉例而言,在5托及180℃下,未輻照材料之厚度在約125秒內自約9奈米減小至約1奈米(在A組中),並且在約125秒內自約10.5奈米減小至約0.5奈米(在B組中)。
此實例表明,將晶圓樣品暴露於乙酸蒸氣可隨時間而選擇性地移除未輻照材料,從而達成成功的熱圖案顯影。該等結果與在使用羧酸組成物之液體顯影製程中所見的負型顯影行為一致。結果表明,經圖案化的有機金屬阻劑之基於蒸氣之顯影、沖洗及/或對比度增強可相對於標準處理獲得經改善的處理,包含藉由對溫度、壓力及蒸氣組成物進行調整而對處理進行精細調節之能力。
本申請案主張於2021年9月24日提出申請之卡迪諾(Cardineau)等人之標題為「高解析度潛影像處理及熱顯影(High Resolution Latent Image Processing and Thermal Development)」之美國臨時專利申請案63/247,885之優先權,該美國臨時專利申請案以引用方式併入本文中。
進一步的發明概念
1、一種對一基板表面上之輻射敏感有機金屬組成物進行改質之方法,該基板表面具有分別由輻照部分及未輻照部分形成之一潛影像, 該方法包含在一隔離室中在約0.1托至約50托之一分壓下、及/或在約1 sccm至約5000 sccm之一流速下使有機金屬組成物與羧酸之蒸氣進行接觸,在約-45℃至約250℃之一溫度下移除相對量的未輻照部分((初始未輻照厚度-最終未輻照厚度)/初始未輻照厚度),其中被移除的相對量的未輻照部分為至少約10%,而被移除的相對量厚度的輻照部分((初始輻照厚度-最終輻照厚度)/初始輻照厚度)不超過被移除的相對量的未輻照部分之三分之一。
2、如發明概念1所述之方法,其中未輻照部分包含Sn-C鍵。
3、如發明概念1所述之方法,其中有機金屬組成物包含由式R zSnO( 2-z/2-x/2)(OH) x表示之一氧代-羥基組成物(oxo-hydroxo composition),其中0 < x < 3,0 < z ≤ 2,x + z ≤ 4, 其中R係為具有1至31個碳原子之烴基或有機基團,其中一個碳原子鍵結至Sn,並且一或多個碳原子可選地經一或多個雜原子官能基取代。
4、如發明概念1所述之方法,其中羧酸包含具有1至10個碳原子之烷基鏈之化合物、其異構體、其鹵代衍生物及/或其醯胺衍生物。
5、如發明概念1所述之方法,其中羧酸包含甲酸、乙酸、丙酸、丁酸、異丁酸、苯甲酸、甲醯胺、N-甲基甲醯胺、乙醯胺、尿素、丙醯胺、丁醯胺、異丁醯胺及其組合。
6、如發明概念1所述之方法,其中羧酸包含乙酸。
7、如發明概念1所述之方法,其中有機金屬組成物包含氧代-羥基網路。
8、如發明概念1所述之方法,其中接觸使得揮發性物質自有機金屬組成物中釋放。
9、如發明概念1所述之方法,其中該方法移除10%至約90%之未輻照部分。
10、如發明概念1所述之方法,其中在接觸有機金屬組成物後,未輻照部分基本上被完全移除。
11、如發明概念1所述之方法,其中接觸實行約10秒至約15分鐘,並且其中流速為約1 sccm至約5000 sccm。
12、如發明概念1所述之方法,其中接觸在約0.001托至約10托之一室壓下實行至少約10秒,其中至少一種氣體之流速為約1 sccm至約5000 sccm。
13、如發明概念1所述之方法更包含,在接觸之前,在約45℃至約300℃之一溫度下將有機金屬組成物加熱至少約0.1分鐘,及/或使輻射敏感有機金屬組成物老化至少約10分鐘。
14、一種提高一經圖案化的結構的品質之方法,該經圖案化的結構具有與一基板表面上之一輻照有機金屬組成物對應之一負型圖案(其中未輻照有機金屬組成物實質上被移除),或者具有與一基板表面上之未輻照有機金屬組成物對應之一正型圖案(其中輻照有機金屬組成物實質上被移除),該方法包含: 對一潛影像之一圖案進行顯影以形成一經圖案化的結構,該潛影像藉由對一基板表面上之一輻射敏感有機金屬組成物進行照射而形成;以及 在完成顯影步驟後,在一隔離室中使經圖案化的結構與一反應氣體接觸,以自圖案移除浮渣,其中反應氣體選自水、羧酸、醯胺、磺酸、醇、二醇、矽烷基鹵化物、鹵化鍺、鹵化錫、胺、硫醇、鹵化氫或其混合物。
15、如發明概念14所述之方法,其中經圖案化的材料包含Sn-C鍵及/或Sn-O鍵。
16、如發明概念14所述之方法,其中浮渣包含與一負型圖案相關的未完全移除的未輻照有機金屬組成物、與一正型圖案相關的未完全移除的輻照有機金屬組成物、被部分輻照的有機金屬組成物或其混合物。
17、如發明概念14所述之方法,其中浮渣包含微橋。
18、如發明概念14所述之方法,其中接觸會改變浮渣之組成以自浮渣中釋放揮發性物質。
19、如發明概念14所述之方法,其中反應氣體包含具有1至10個碳原子之化合物。
20、如發明概念14所述之方法,其中反應氣體包含甲醯胺、N-甲基甲醯胺、乙醯胺、尿素、丙醯胺、丁醯胺、異丁醯胺、甲磺酸、乙磺酸、丙磺酸、苯磺酸、對甲苯磺酸、甲醇、乙醇、正丙醇、異丙醇、1-丁醇、異丁醇、三級丁醇、1-戊醇、4-甲基-2-戊醇、環戊醇、1-己醇、環己醇、苯酚、甲硫醇、乙硫醇、丙硫醇、異丙硫醇、丁硫醇、異丁硫醇、三級丁基硫醇、亞甲基二醇、乙二醇、二乙二醇、丙二醇、二丙二醇、環己二醇、三甲基氯矽烷、三甲基溴矽烷、二甲基氯矽烷、二甲基溴矽烷、單甲基氯矽烷、單甲基溴矽烷、四氯矽烷、四溴矽烷、及其組合。
21、如發明概念14所述之方法,其中接觸在約-45℃至約350℃之一溫度及至少約0.001托之一室壓下實行至少約3秒。
22、如發明概念14所述之方法,其中接觸係利用同時或依序使用之複數種反應氣體實行的。
23、一種對一輻射敏感有機金屬組成物進行乾式顯影之方法,該組成物在基板上具有一輻射圖案化潛影像,該方法包含: 使具有潛影像之組成物與一反應氣體接觸,以移除塗層之大部分未輻照區域,其中塗層之未輻照區域包含Sn-C鍵,並且反應氣體包含醯胺、磺酸、醇、二醇、矽烷基鹵化物、鹵化鍺、鹵化錫、胺、硫醇或其混合物。
24、如發明概念23所述之方法,其中塗層之未輻照區域包含Sn-C鍵,並且反應氣體包含選自羧酸、醯胺、磺酸、醇、二醇、矽烷基鹵化物、鹵化鍺、鹵化錫、胺或硫醇之至少二種氣體之一混合物。
25、如發明概念23所述之方法,其中塗層之未輻照區域包含Sn-C鍵,並且反應氣體包含至少二種羧酸、至少二種醯胺、至少二種磺酸、至少二種醇、至少二種二醇、至少二種矽烷基鹵化物、至少二種鹵化鍺、至少二種鹵化錫、至少二種胺或至少二種硫醇之一混合物。
26、如發明概念23所述之方法,其中組成物包含由式R zSnO( 2-z/2-x/2)(OH) x表示之一氧代-羥基組成物,其中0 < x < 3,0 < z ≤ 2,x + z ≤ 4, 其中R係為具有1至31個碳原子之烴基或有機基團,其中一個碳原子鍵結至Sn,並且一或多個碳原子可選地經一或多個雜原子官能基取代。
27、如發明概念23所述之方法,其中反應氣體包含具有1至10個碳原子且可選地經一或多個雜原子官能基取代之化合物。
28、如發明概念23所述之方法,其中反應氣體包含甲醯胺、N-甲基甲醯胺、乙醯胺、尿素、丙醯胺、丁醯胺、異丁醯胺、甲磺酸、乙磺酸、丙磺酸、苯磺酸、對甲苯磺酸、甲醇、乙醇、正丙醇、異丙醇、1-丁醇、異丁醇、三級丁醇、1-戊醇、4-甲基-2-戊醇、環戊醇、1-己醇、環己醇、苯酚、甲硫醇、乙硫醇、丙硫醇、異丙硫醇、丁硫醇、異丁硫醇、三級丁基硫醇、亞甲基二醇、乙二醇、二乙二醇、丙二醇、二丙二醇、環己二醇、三甲基氯矽烷、三甲基溴矽烷、二甲基氯矽烷、二甲基溴矽烷、單甲基氯矽烷、單甲基溴矽烷、四氯矽烷、四溴矽烷、及其組合。
29、如發明概念23所述之方法,其中反應氣體更包含水。
30、如發明概念23所述之方法,其中接觸使得塗層之未輻照區域中之Sn-O-Sn鍵及/或Sn-OH鍵斷裂。
31、如發明概念23所述之方法,其中接觸使得揮發性物質自組成物中釋放。
32、如發明概念23所述之方法,其中接觸以約1 sccm至約5000 sccm之反應氣體流速實行。
33、如發明概念23所述之方法,其中接觸實行約3秒至約15分鐘。
34、如發明概念23所述之方法,其中接觸在一隔離室中在約0.001托至約50托之一壓力下實行。
35、如發明概念34所述之方法,其中藉由改變反應氣體進入隔離室之流速來調整壓力。
36、如發明概念34所述之方法,其中接觸係在約-45℃至約350℃之溫度下實行的。
37、如發明概念34所述之方法更包含,在接觸之前,在約45℃至約300℃之一溫度下將有機金屬組成物加熱至少約0.1分鐘,及/或使有機金屬組成物老化至少約10分鐘。
38、一種對在一基板上具有一輻射圖案化潛影像之輻射敏感有機金屬組成物進行顯影之方法,該方法包含: 將輻射圖案化材料與一第一反應氣體組成物接觸以對塗層之未輻照區域進行改質以形成一初始圖案,其中塗層之未輻照區域包含Sn-C鍵,並且第一反應氣體組成物包含羧酸、醯胺、磺酸、醇、二醇、矽烷基鹵化物、鹵化鍺、鹵化錫、胺、硫醇或其混合物;以及 使初始圖案與不同於第一反應氣體組成物之一第二反應氣體組成物接觸,以移除初始圖案之一部分,其中第二反應氣體組成物包含羧酸、醯胺、磺酸、醇、二醇、矽烷基鹵化物、鹵化鍺、鹵化錫、胺、硫醇或其混合物。
39、如發明概念38所述之方法,其中使初始圖案與一第二反應氣體接觸實質上移除了塗層之未輻照區域,以形成一顯影圖案。
40、如發明概念38所述之方法更包含,在使初始圖案與一第二反應氣體組成物接觸之前,將初始圖案在約45℃至約300℃之一溫度下加熱至少約0.1分鐘,及/或使初始圖案老化至少約10分鐘。
41、如發明概念38所述之方法,其中第一反應氣體及/或第二反應氣體更包含水。
42、如發明概念38所述之方法,其中組成物包含由式R zSnO( 2-z/2-x/2)(OH) x表示之一氧代-羥基組成物,其中0 < x < 3,0 < z ≤ 2,x + z ≤ 4, 其中R係為具有1至31個碳原子之烴基或有機基團,其中一個碳原子鍵結至Sn,並且一或多個碳原子可選地經一或多個雜原子官能基取代。
43、如發明概念42所述之方法,其中與第一反應氣體及/或第二反應氣體接觸使得塗層之未輻照區域中之Sn-O-Sn鍵及/或Sn-OH鍵斷裂。
44、如發明概念38所述之方法,其中第一反應氣體及/或第二反應氣體包含氟化羧酸及/或氟化醇。
上述實施態樣旨在為例示性的而非限制性的。額外的實施態樣處於申請專利範圍內。此外,儘管已參照特定實施態樣闡述了本發明,但熟習此項技術者將認識到,在不背離本發明之精神及範圍的情況下,可作出形式及細節上的改變。以引用方式對上述文獻之任何併入皆受限制,使得不會併入與本文中之明確揭露內容相反之標的物。就在本文中利用組件、元件、成分或其他劃分來闡述具體的結構、組成物及/或製程而言,應理解,除非另外具體指出,否則本文中之揭露內容涵蓋該等具體的實施態樣、包含具體組件、元件、成分、其他劃分或其組合之實施態樣、以及本質上由此種具體組件、成分或其他劃分或其組合組成的實施態樣,該等實施態樣如在論述中所建議可包含不改變標的物之基本性質之附加特徵。如本領域具有通常知識者在特定上下文中將理解,在本文中使用術語「約」係指相關值之預期不確定性。
100、102、104、106、108、110、120、122、124、126、128、130、132、140、142、144、146、148、150:步驟 300、400、600:處理系統 301、402、601:蒸氣遞送系統 302、602:製程氣體 303、603:製程液體 304、604:惰性氣體 305、605:液體流量控制器 306、606:氣化單元 307、607:混合單元 308、608、636、638、640、642:入口閥 309、609:電漿單元 310、610:溫度控制器 312、612:製程蒸氣 314、404、614:處理室 316、616:蒸氣分配單元 318、410、618:支架 320、408、620:基板 322、622:加熱/冷卻單元 324、412、624:壓力閥 326、626:控制器 406:蓮蓬頭蒸氣分配單元 628:遞送噴嘴 630、632、634:製程液體貯存器 644:臂 646:馬達 648:排水管 a:未輻照區域 b:輻照區域
第1圖係為藉由利用一對比度增強劑及一乾式顯影劑進行處理,對一經圖案化的有機錫塗層進行潛影像處理之流程圖。 第2圖係為藉由在顯影後利用一對比度增強劑進行處理,對一經圖案化的有機錫塗層進行潛影像處理之流程圖。 第3圖係為使用一對比度增強劑作為蒸氣反應性顯影劑對一經圖案化的有機錫塗層進行潛影像處理之流程圖。 第4圖係為一處理系統之示意圖,其中示出一蒸氣遞送系統連接至一處理室。 第5圖係為具有一蓮蓬頭(showerhead)蒸氣分配單元之一處理系統之示意圖。 第6圖係為一處理系統之示意圖,其中示出一蒸氣遞送系統及一液體遞送系統連接至一處理室。 第7圖係為在各種處理條件下經受對比度增強劑處理之經圖案化的塗佈基板之輻照區域及未輻照區域之塗層厚度相對於時間之一系列曲線圖。
a:未輻照區域
b:輻照區域

Claims (34)

  1. 一種對具有一潛影像之一基板表面上之輻射敏感有機金屬組成物之輻照部分與未輻照部分之間的顯影對比度進行增強之方法,該方法包含:在該潛影像進行顯影之前,在一隔離室中使該有機金屬組成物與一反應氣體接觸,以改變該輻照部分、該未輻照部分或所述二者之組成,其中該反應氣體包含醯胺、磺酸、醇、二醇、矽烷基鹵化物、鹵化鍺、鹵化錫、胺或其混合物。
  2. 如請求項1所述之方法,其中該未輻照部分包含Sn-C鍵。
  3. 如請求項1所述之方法,其中該有機金屬組成物包含由式RzSnO(2-z/2-x/2)(OH)x表示之一氧代-羥基組成物(oxo-hydroxo composition),其中0<x<3,0<z
    Figure 111136067-A0305-02-0062-1
    2,x+z
    Figure 111136067-A0305-02-0062-2
    4,其中R係為具有1至31個碳原子之烴基或有機基團,其中一個碳原子鍵結至Sn,並且一或多個碳原子可選地經一或多個雜原子官能基取代。
  4. 如請求項1所述之方法,其中該有機金屬組成物包含氧代-羥基網路。
  5. 如請求項1所述之方法,其中該反應氣體包含具有1至10個碳原子之化合物。
  6. 如請求項1所述之方法,其中該反應氣體包含甲醯胺、N-甲基甲醯胺、乙醯胺、尿素、丙醯胺、丁醯胺、異丁醯胺、甲磺酸、乙磺酸、丙磺酸、苯磺酸、對甲苯磺酸、甲醇、乙醇、正丙醇、異丙醇、1-丁 醇、異丁醇、三級丁醇、1-戊醇、4-甲基-2-戊醇、環戊醇、1-己醇、環己醇、苯酚、甲硫醇、乙硫醇、丙硫醇、異丙硫醇、丁硫醇、異丁硫醇、三級丁基硫醇、亞甲基二醇、乙二醇、二乙二醇、丙二醇、二丙二醇、環己二醇、三甲基氯矽烷、三甲基溴矽烷、二甲基氯矽烷、二甲基溴矽烷、單甲基氯矽烷、單甲基溴矽烷、四氯矽烷、四溴矽烷、及前述之組合。
  7. 如請求項1所述之方法,其中該反應氣體更包含水。
  8. 如請求項1所述之方法,其中該接觸使得該有機金屬組成物中的M-O-M鍵及/或M-OH鍵斷裂。
  9. 如請求項1所述之方法,其中該接觸係形成可立即或隨後自該有機金屬組成物中移除之更具揮發性的物質。
  10. 如請求項9所述之方法,其中該更具揮發性的物質包含錫產物。
  11. 如請求項1所述之方法,其中該未輻照部分具有初始厚度,並且其中該接觸使得該未輻照部分具有經調整的厚度,其中該經調整的厚度小於該初始厚度。
  12. 如請求項11所述之方法,其中該經調整的厚度不超過該初始厚度之90%。
  13. 如請求項11所述之方法,其中該經調整的厚度不超過該初始厚度之50%。
  14. 如請求項1所述之方法,其中在接觸不超過10分鐘以形成一顯影結構之後,該未輻照部分實質上被完全移除。
  15. 如請求項14所述之方法,更包含使用液體沖洗及/或圖案改善反應性氣體來對該顯影結構進行處理以改善所得圖案。
  16. 如請求項15所述之方法,其中該圖案改善反應性氣體包含水、羧酸、醯胺、磺酸、醇、二醇、矽烷基鹵化物、鹵化氫、鹵化鍺、鹵化錫、胺或前述之混合物。
  17. 如請求項1所述之方法,其中該基板包含一半導體晶圓。
  18. 如請求項1所述之方法,其中使用具有一選定流速之一反應氣體來進行該接觸。
  19. 如請求項18所述之方法,其中該選定流速為1標準立方公分/分鐘(sccm)至1000標準立方公分/分鐘。
  20. 如請求項19所述之方法,其中一惰性氣體流速為0.5標準升/分鐘(SLM)至30標準升/分鐘。
  21. 如請求項20所述之方法,其中該接觸在100托(Torr)至1200托之一室壓下實行。
  22. 如請求項1所述之方法,其中該接觸實行3秒至15分鐘。
  23. 如請求項1所述之方法,其中該接觸在0.001托至10托之一室壓下實行。
  24. 如請求項1所述之方法,其中藉由改變進入該隔離室中之氣體流速來調整室壓,並且可在該接觸之一段時間中改變該室壓。
  25. 如請求項1所述之方法,其中在該接觸期間,該基板、該反應氣體及/或該隔離室處於-45℃至350℃之溫度。
  26. 如請求項1所述之方法,其中在100℃至250℃之一溫度及至少0.1托之一室壓下實行該接觸達至少10秒。
  27. 如請求項1所述之方法,其中在一顯影製程之前實行該接觸。
  28. 如請求項1所述之方法,其中在一顯影製程之後實行該接觸。
  29. 如請求項28所述之方法,其中該顯影製程係為一基於液體之顯影製程。
  30. 如請求項28所述之方法,其中該顯影製程係為利用一顯影反應性氣體或利用電漿實行之一乾式顯影製程。
  31. 如請求項28所述之方法,其中該顯影製程形成了實質上保留該有機金屬組成物之輻照部分之一負型圖案。
  32. 如請求項28所述之方法,其中該顯影製程形成了實質上保留該有機金屬組成物之未輻照部分之一正型圖案。
  33. 如請求項1所述之方法,其中該接觸係利用同時或依序使用之複數種反應氣體實行的。
  34. 如請求項1所述之方法,更包含在該接觸之前,在45℃至300℃之一溫度下將該有機金屬組成物加熱至少0.1分鐘,及/或使該有機金屬組成物老化至少10分鐘。
TW111136067A 2021-09-24 2022-09-23 增強顯影對比度之方法及基板處理設備 TWI842101B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163247885P 2021-09-24 2021-09-24
US63/247,885 2021-09-24

Publications (2)

Publication Number Publication Date
TW202318103A TW202318103A (zh) 2023-05-01
TWI842101B true TWI842101B (zh) 2024-05-11

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200223877A1 (en) 2017-08-02 2020-07-16 Seastar Chemicals Ulc Organometallic compounds and purification of such organometallic compounds

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200223877A1 (en) 2017-08-02 2020-07-16 Seastar Chemicals Ulc Organometallic compounds and purification of such organometallic compounds

Similar Documents

Publication Publication Date Title
JP7179816B2 (ja) 有機スズオキシドヒドロキシドのパターン形成組成物、前駆体およびパターン形成
US20220244645A1 (en) Photoresist development with halide chemistries
US20220308454A1 (en) Bake strategies to enhance lithographic performance of metal-containing resist
US11947262B2 (en) Process environment for inorganic resist patterning
EP4235757A2 (en) Integrated dry processes for patterning radiation photoresist patterning
TWI842101B (zh) 增強顯影對比度之方法及基板處理設備
TW202323261A (zh) 有機錫前驅物溶液及其應用
US20230100995A1 (en) High resolution latent image processing, contrast enhancement and thermal development
US20230408916A1 (en) Gas-based development of organometallic resist in an oxidizing halogen-donating environment
US11886116B2 (en) Multiple patterning with organometallic photopatternable layers with intermediate freeze steps
TWI845848B (zh) 用於圖案化輻射光阻圖案化的整合型乾式處理系統
US12002675B2 (en) Photoresist layer outgassing prevention
WO2023215136A1 (en) Post-development treatment of metal-containing photoresist
TW202321819A (zh) 半導體基板的製造方法