TWI841324B - Gamma voltage generator, source driver and display apparatus - Google Patents

Gamma voltage generator, source driver and display apparatus Download PDF

Info

Publication number
TWI841324B
TWI841324B TW112111691A TW112111691A TWI841324B TW I841324 B TWI841324 B TW I841324B TW 112111691 A TW112111691 A TW 112111691A TW 112111691 A TW112111691 A TW 112111691A TW I841324 B TWI841324 B TW I841324B
Authority
TW
Taiwan
Prior art keywords
voltage
gamma
mode
buffer
gamma voltage
Prior art date
Application number
TW112111691A
Other languages
Chinese (zh)
Other versions
TW202339492A (en
Inventor
羅吉逸
Original Assignee
聯詠科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202310272374.8A external-priority patent/CN116895231A/en
Application filed by 聯詠科技股份有限公司 filed Critical 聯詠科技股份有限公司
Priority to US18/128,687 priority Critical patent/US20230316975A1/en
Publication of TW202339492A publication Critical patent/TW202339492A/en
Application granted granted Critical
Publication of TWI841324B publication Critical patent/TWI841324B/en

Links

Abstract

A gamma voltage generator, a source driver and a display apparatus are provided. The gamma voltage generator includes a gamma voltage generating circuit and a plurality of buffers. The gamma voltage generating circuit has a plurality of voltage input end nodes and a plurality of voltage output end nodes for outputting the predetermined number of gamma voltages based on input voltages from the plurality of voltage input end nodes. Each buffer has an input end receive a corresponding gamma reference voltage, and an output end coupled to a corresponding voltage input end node. The gamma voltage generating circuit includes multiple resistor units connected in series, and each resistor unit is configured to have a second resistance value when operating in the second mode less than a first resistance value when operating in the first mode.

Description

伽瑪電壓產生器、源極驅動器和顯示裝置 Gamma voltage generator, source driver and display device

本申請總體上涉及顯示技術領域,更具體地,涉及伽瑪電壓產生器、包括伽瑪電壓產生器的源極驅動器和顯示裝置。 This application generally relates to the field of display technology, and more specifically, to a gamma voltage generator, a source driver including a gamma voltage generator, and a display device.

顯示裝置包括顯示面板和驅動器。顯示面板包括掃描線、資料線和像素。驅動器可以包括閘極驅動器和源極驅動器。每個像素可響應於通過對應的閘極線提供的閘極信號而發射與通過對應的資料線提供的資料電壓對應的亮度的光。源極驅動器中的伽瑪電壓產生器(例如,包括在源極驅動器積體電路IC中)可基於伽瑪參考電壓生成分別與多個灰階值對應的多個伽瑪電壓,並且可使用各個伽瑪電壓將顯示資料的灰階值轉換為資料電壓,從而每個像素基於對應的資料電壓進行顯示。 The display device includes a display panel and a driver. The display panel includes scan lines, data lines and pixels. The driver may include a gate driver and a source driver. Each pixel may emit light of brightness corresponding to a data voltage provided by a corresponding data line in response to a gate signal provided by a corresponding gate line. The gamma voltage generator in the source driver (for example, included in the source driver integrated circuit IC) can generate a plurality of gamma voltages corresponding to a plurality of grayscale values respectively based on the gamma reference voltage, and can convert the grayscale value of the display data into a data voltage using each gamma voltage, so that each pixel is displayed based on the corresponding data voltage.

因此,快速建立和穩定用於生成資料電壓的各個伽瑪電壓對於保證顯示效果是非常重要的。 Therefore, it is very important to quickly establish and stabilize the various gamma voltages used to generate data voltages to ensure the display effect.

根據本申請的一方面,提供了一種伽瑪電壓產生器,與所述伽瑪電壓產生器連接且用於輸出預定數量的伽瑪電壓,並且每個通道電路根據輸入的顯示資料選擇至少一個伽瑪電壓生成對應的資料電壓,其中,所述伽瑪電壓產生器包括:伽瑪電壓生成電路,具有多個第一電壓輸入端點、多個第二電壓輸 入端點、多個電壓輸出端點;多個基本緩衝器,每個基本緩衝器的輸入端接收對應的伽瑪參考電壓,輸出端連接到對應的第一電壓輸入端點;以及多個動態緩衝器,每個動態緩衝器的輸入端接收對應的伽瑪參考電壓,並且輸出端連接到對應的第二電壓輸入端點,並且被配置為在第一模式或第二模式下操作,其中每個動態緩衝器在第一模式時不輸出緩衝電壓,並且在第二模式時輸出緩衝電壓至所連接的第二電壓輸入端點,其中,所述多個動態緩衝器中的至少一部分緩衝器基於所述顯示資料的更新或改變而從第一模式切換到第二模式。 According to one aspect of the present application, a gamma voltage generator is provided, which is connected to the gamma voltage generator and is used to output a predetermined amount of gamma voltage, and each channel circuit selects at least one gamma voltage according to input display data to generate a corresponding data voltage, wherein the gamma voltage generator includes: a gamma voltage generating circuit having a plurality of first voltage input terminals, a plurality of second voltage input terminals, and a plurality of voltage output terminals; a plurality of basic buffers, each of which has an input terminal receiving a corresponding gamma reference voltage and an output terminal connected to a corresponding A first voltage input terminal; and a plurality of dynamic buffers, each of which receives a corresponding gamma reference voltage at its input terminal and is connected to a corresponding second voltage input terminal at its output terminal, and is configured to operate in a first mode or a second mode, wherein each dynamic buffer does not output a buffer voltage in the first mode, and outputs a buffer voltage to the connected second voltage input terminal in the second mode, wherein at least a portion of the plurality of dynamic buffers switches from the first mode to the second mode based on an update or change of the display data.

根據本申請的另一方面,還提供了一種伽瑪電壓產生器,包括:伽瑪電壓生成電路,具有多個電壓輸入端點和多個電壓輸出端點,所述多個電壓輸出端點輸出基於來自所述多個電壓輸入端點的輸入電壓的預定數量的伽瑪電壓;以及多個緩衝器,分別電性連接至所述多個電壓輸入端點,其中,所述伽瑪電壓生成電路包括串聯的多個電阻器單元,並且相鄰電阻器單元的連接節點連接到一個電壓輸出端點,每個電阻器單元被配置為在第二模式下操作時的第二電阻值小於在第一模式下操作時的第一電阻值。 According to another aspect of the present application, a gamma voltage generator is provided, comprising: a gamma voltage generating circuit having a plurality of voltage input terminals and a plurality of voltage output terminals, the plurality of voltage output terminals outputting a predetermined amount of gamma voltage based on input voltages from the plurality of voltage input terminals; and a plurality of buffers electrically connected to the plurality of voltage input terminals, respectively, wherein the gamma voltage generating circuit comprises a plurality of resistor units connected in series, and the connection nodes of adjacent resistor units are connected to one voltage output terminal, and each resistor unit is configured such that a second resistance value when operating in a second mode is less than a first resistance value when operating in a first mode.

根據本申請的另一方面,還提供了一種源極驅動器,包括:如上所述的伽瑪電壓產生器;以及多個通道電路,與所述伽瑪電壓產生器連接,用於利用所述伽瑪電壓產生器輸出的伽瑪電壓來生成與輸入的顯示資料對應的各個資料電壓。 According to another aspect of the present application, a source driver is also provided, comprising: a gamma voltage generator as described above; and a plurality of channel circuits connected to the gamma voltage generator, for generating respective data voltages corresponding to input display data using the gamma voltage output by the gamma voltage generator.

根據本申請的另一方面,還提供了一種顯示裝置,包括:顯示面板;如上所述的源極驅動器,用於對所述顯示面板進行驅動。 According to another aspect of the present application, a display device is also provided, comprising: a display panel; and a source driver as described above, used to drive the display panel.

根據本申請實施例的伽瑪電壓產生器通過引入動態緩衝器和/或可變電阻器單元,從而可以在需要重新建立和穩定伽瑪電壓(例如,顯示資料的更新或改變)時,可以降低所生成的伽瑪電壓相對於期望伽瑪電壓的偏移,並提高伽瑪電壓生成電路輸出的伽瑪電壓的驅動能力,同時加速建立和穩定伽瑪電 壓的過程,從而保證顯示效果。另外,通過在顯示資料改變時才改變動態緩衝器的工作模式,可以節省總功耗。此外,在多個源極驅動器電路驅動同一顯示面板的情況下,多個源極驅動器電路均採用本申請實施例的伽瑪電壓產生器,可以降低顯示色差,從而提高顯示效果。 According to the gamma voltage generator of the embodiment of the present application, by introducing a dynamic buffer and/or a variable resistor unit, when the gamma voltage needs to be reestablished and stabilized (for example, when display data is updated or changed), the offset of the generated gamma voltage relative to the expected gamma voltage can be reduced, and the driving capability of the gamma voltage output by the gamma voltage generation circuit can be improved, while the process of establishing and stabilizing the gamma voltage is accelerated, thereby ensuring the display effect. In addition, by changing the working mode of the dynamic buffer only when the display data changes, the total power consumption can be saved. In addition, when multiple source driver circuits drive the same display panel, multiple source driver circuits all use the gamma voltage generator of the embodiment of the present application, which can reduce the display color difference and thus improve the display effect.

10:顯示裝置 10: Display device

20:顯示驅動裝置 20: Display drive device

30:顯示面板 30: Display panel

22:源極驅動器 22: Source driver

21:閘極驅動器 21: Gate driver

23:時序控制器 23: Timing controller

201,400,1200,1400-1,1400-2,1500-1,1500-2:伽瑪電壓產生器 201,400,1200,1400-1,1400-2,1500-1,1500-2: Gamma voltage generator

VG,VGM:伽瑪電壓 VG, VGM: Gamma voltage

210:移位暫存器 210: Shift register

220:閂鎖電路 220: latch circuit

310,320:伽瑪參考電壓電路 310,320: Gamma reference voltage circuit

311,321,1220:緩衝器 311,321,1220: Buffer

312,322,410,1210,1411,1412,1511,1512:伽瑪電壓生成電路 312,322,410,1210,1411,1412,1511,1512: Gamma voltage generation circuit

31,32:源極驅動器電路 31,32: Source driver circuit

420:基本緩衝器 420: Basic buffer

430:動態緩衝器 430: Dynamic buffer

IN1:第一電壓輸入端點 IN1: First voltage input terminal

IN2:第二電壓輸入端點 IN2: Second voltage input terminal

O:電壓輸出端點 O: Voltage output terminal

IN:電壓輸入端點 IN: voltage input terminal

R1,R2,R3,R4:電阻器 R1, R2, R3, R4: resistors

SW,SW1,SW2,SW3:開關 SW, SW1, SW2, SW3: switch

OP:運算放大器 OP: Operational amplifier

EN:使能信號 EN: Enable signal

DET:電壓差檢測模組 DET: Voltage difference detection module

RVA:電阻器單元 RVA: Resistor unit

RS:多個電阻器單元 RS: Multiple resistor units

SWB:旁路開關 SWB: Bypass switch

P,P’:電力傳輸端子 P,P’: Power transmission terminal

包含附圖以提供對本公開的進一步理解,且附圖併入本說明書中並構成本說明書的一部分。附圖說明本公開的實施例,且與描述一起用於解釋本公開的原理。 The accompanying drawings are included to provide a further understanding of the present disclosure and are incorporated into and constitute a part of this specification. The accompanying drawings illustrate embodiments of the present disclosure and together with the description are used to explain the principles of the present disclosure.

圖1A-1B示出了根據本公開的實施例的顯示裝置的示意方塊圖。 Figures 1A-1B show schematic block diagrams of a display device according to an embodiment of the present disclosure.

圖2是包括在圖1A-1B的顯示裝置中的源極驅動器的示例性方塊圖。 FIG. 2 is an exemplary block diagram of a source driver included in the display device of FIGS. 1A-1B .

圖3A-3B是包括在圖2的源極驅動器中的伽瑪電壓產生器的示例性電路圖。 3A-3B are exemplary circuit diagrams of a gamma voltage generator included in the source driver of FIG. 2 .

圖4是根據本申請實施例的伽瑪電壓產生器的示例性電路圖。 FIG4 is an exemplary circuit diagram of a gamma voltage generator according to an embodiment of the present application.

圖5示出了根據本申請實施例的基於顯示資料的改變的模式切換時序圖。 FIG5 shows a mode switching timing diagram based on a change in display data according to an embodiment of the present application.

圖6示出了根據本申請實施例的基於顯示資料的更新的模式切換時序圖。 FIG6 shows a mode switching timing diagram based on the update of display data according to an embodiment of the present application.

圖7示出了根據本申請實施例的基於顯示資料的更新的另一模式切換時序圖。 FIG7 shows another mode switching timing diagram based on the update of display data according to an embodiment of the present application.

圖8-11示出了根據本申請實施例的動態緩衝器的示例結構。 Figures 8-11 show an example structure of a dynamic buffer according to an embodiment of the present application.

圖12A示出了根據本申請實施例的另一種伽瑪電壓產生器的示意圖。 FIG12A shows a schematic diagram of another gamma voltage generator according to an embodiment of the present application.

圖12B示出了電阻器單元的示例電路結構。 FIG12B shows an example circuit structure of a resistor unit.

圖13示出了根據本申請實施例的另一種伽瑪電壓產生器的示意圖。 FIG13 shows a schematic diagram of another gamma voltage generator according to an embodiment of the present application.

圖14-15示出了根據本申請實施例的包括兩個源極驅動器電路的源極驅動器的示意圖。 Figures 14-15 show schematic diagrams of a source driver including two source driver circuits according to an embodiment of the present application.

應理解,在不脫離本公開的範圍的情況下,可利用其它實施例,且可作出結構性改變。此外,應理解本文所使用的措詞和術語是出於描述的目的且不應被視為是限制性的。本文中使用“包含”、“包括”或“具有”和其變化形式意在涵蓋其後列出的項目和其等效物以及額外項目。除非另有限制,否則術語“連接”和其在本文中的變化形式是廣義上使用的並且涵蓋直接和間接的連接,並且可以包括電性或物理連接。 It should be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of this disclosure. In addition, it should be understood that the words and terms used herein are for descriptive purposes and should not be considered limiting. The use of "includes," "including," or "having" and variations thereof herein are intended to cover the items listed thereafter and their equivalents as well as additional items. Unless otherwise limited, the term "connected" and variations thereof herein are used in a broad sense and cover direct and indirect connections, and may include electrical or physical connections.

圖1A-1B示出了根據本公開的實施例的顯示裝置的示意方塊圖。參照圖1A,根據本發明構思的示例性實施例的顯示裝置10可包括顯示驅動裝置20和顯示面板30。在本公開的一些實施例中,顯示面板30可以是液晶顯示器(LCD)面板或有機發光二極管(OLED)面板,但顯示面板30不限於任何具體類型的顯示面板。 1A-1B show schematic block diagrams of a display device according to an embodiment of the present disclosure. Referring to FIG. 1A , a display device 10 according to an exemplary embodiment of the present invention may include a display drive device 20 and a display panel 30. In some embodiments of the present disclosure, the display panel 30 may be a liquid crystal display (LCD) panel or an organic light emitting diode (OLED) panel, but the display panel 30 is not limited to any specific type of display panel.

如圖1B所示,顯示驅動裝置20可包括:閘極驅動器21和源極驅動器22,用於將從外部處理器等接收的顯示資料輸入到顯示面板30;以及時序控制器23,用於控制閘極驅動器和源極驅動器。時序控制器23可根據垂直同步信號和水平同步信號控制閘極驅動器和源極驅動器。顯示面板30可包括沿多條閘極線G1至Gm和多條資料線S1至Sn設置的多個像素PX。 As shown in FIG. 1B , the display driver 20 may include: a gate driver 21 and a source driver 22 for inputting display data received from an external processor or the like to a display panel 30; and a timing controller 23 for controlling the gate driver and the source driver. The timing controller 23 may control the gate driver and the source driver according to a vertical synchronization signal and a horizontal synchronization signal. The display panel 30 may include a plurality of pixels PX arranged along a plurality of gate lines G1 to Gm and a plurality of data lines S1 to Sn.

顯示裝置10可以以幀為單位顯示圖像。可將顯示一幀所需的時間稱為垂直週期,並且可由顯示裝置10的幀頻率確定垂直週期。在一個垂直週期期間,閘極驅動器21可順序地掃描多條閘極線G1至Gm。可將閘極驅動器21掃描多條閘極線G1至Gm中的每一條閘極線的時間稱為水平週期。在一個水平週期期間(兩個水平同步信號(Hsync)的脈衝間距),源極驅動器22可將資料電壓輸入到各條資料線S1至Sn上的像素PX。資料電壓可以是源極驅動器22基於顯示資料輸出的電壓,並且每一個像素PX的亮度可由其對應的資料電壓確定。 The display device 10 can display images in units of frames. The time required to display one frame can be referred to as a vertical cycle, and the vertical cycle can be determined by the frame frequency of the display device 10. During one vertical cycle, the gate driver 21 can sequentially scan the plurality of gate lines G1 to Gm. The time for the gate driver 21 to scan each of the plurality of gate lines G1 to Gm can be referred to as a horizontal cycle. During one horizontal cycle (the pulse interval of two horizontal synchronization signals (Hsync)), the source driver 22 can input a data voltage to the pixels PX on each of the data lines S1 to Sn. The data voltage may be a voltage output by the source driver 22 based on display data, and the brightness of each pixel PX may be determined by its corresponding data voltage.

用於將顯示資料發送到顯示驅動裝置20的處理器在行動裝置的情況下可以是應用處理器(AP),或者在桌上型電腦、筆記型電腦、電視等的情況下可以是中央處理器(CPU)或單晶片系統(SoC)。詳細地,處理器可被理解為具有算術功能的處理裝置。處理器可產生將要通過顯示裝置10顯示的顯示資料,或者從記憶體、通信模組等接收顯示資料並將顯示資料發送到顯示驅動裝置20。 The processor for sending display data to the display drive device 20 may be an application processor (AP) in the case of a mobile device, or may be a central processing unit (CPU) or a single chip system (SoC) in the case of a desktop computer, a laptop computer, a television, etc. Specifically, the processor may be understood as a processing device having an arithmetic function. The processor may generate display data to be displayed by the display device 10, or receive display data from a memory, a communication module, etc. and send the display data to the display drive device 20.

圖2是包括在圖1A-1B的顯示裝置中的源極驅動器的示例性方塊圖。 FIG. 2 is an exemplary block diagram of a source driver included in the display device of FIGS. 1A-1B .

參照圖2,源極驅動器22可包括伽瑪電壓產生器201和多個通道電路CH。每個通道電路CH包括移位暫存器210、閂鎖電路220、數位-類比轉換器DAC 230、源極緩衝器BF 240等。包括在源極驅動器22中的每一個元件不限於圖2中所示的實施例,並且在其他實施例中可被各種修改。 2, the source driver 22 may include a gamma voltage generator 201 and a plurality of channel circuits CH. Each channel circuit CH includes a shift register 210, a latch circuit 220, a digital-to-analog converter DAC 230, a source buffer BF 240, etc. Each element included in the source driver 22 is not limited to the embodiment shown in FIG. 2, and may be variously modified in other embodiments.

伽瑪電壓產生器201產生多個伽瑪電壓VG,並向每個通道電路CH提供所述多個伽瑪電壓VG。伽瑪電壓產生器201可基於顯示資料的位元數確定所述多個伽瑪電壓VG的數量。例如,當顯示資料是8位元資料時,所述多個伽瑪電壓VG的數量可以是256或更少,並且當顯示資料是10位元資料時,所述多個伽瑪電壓VG的數量可以是1024或更少。換句話說,當顯示資料是具有n位元資料時,所述多個伽瑪電壓VG可具有最多2n個不同的電壓值。應瞭解,所述多個伽瑪電壓VG的具體數值可以根據實際情況選擇。 The gamma voltage generator 201 generates a plurality of gamma voltages VG and provides the plurality of gamma voltages VG to each channel circuit CH. The gamma voltage generator 201 may determine the number of the plurality of gamma voltages VG based on the number of bits of the display data. For example, when the display data is 8-bit data, the number of the plurality of gamma voltages VG may be 256 or less, and when the display data is 10-bit data, the number of the plurality of gamma voltages VG may be 1024 or less. In other words, when the display data is n-bit data, the plurality of gamma voltages VG may have a maximum of 2 n different voltage values. It should be understood that the specific values of the multiple gamma voltages VG can be selected according to actual circumstances.

移位暫存器210接收對應的顯示資料RGB並依時序擷取後,閂鎖電路220可根據移位暫存器210的移位順序對顯示資料進行採樣和保持。閂鎖電路220可將經鎖存的顯示資料RGB輸出到數位-類比轉換器DAC 230。 After the shift register 210 receives the corresponding display data RGB and captures it in time sequence, the latch circuit 220 can sample and hold the display data according to the shift sequence of the shift register 210. The latch circuit 220 can output the latched display data RGB to the digital-to-analog converter DAC 230.

每個通道電路CH中的數位-類比轉換器DAC 230可以從多個伽瑪電壓VG產生資料電壓Vdata。數位-類比轉換器DAC 230可以響應於來自閂鎖電路的經鎖存顯示資料RGB選擇多個伽瑪電壓VG中的至少一者,並且可以輸出所選擇的電壓作為資料電壓Vdata。數位-類比轉換器DAC 230可以包括用於選擇多個 伽瑪電壓中的至少一者的多個開關元件。例如,數位-類比轉換器DAC 230可通過使用限定有灰階值與多個伽瑪電壓之間的關係的單獨的查找表、或者通過對灰階值執行邏輯處理,來輸出與灰階值對應的資料電壓Vdata。例如,資料電壓Vdata可具有與8位元灰階值對應的256個電壓準位。每個灰階值對應的資料電壓Vdata可位於伽瑪曲線上。更具體地,數位-類比轉換器DAC 230可通過線性的多個伽瑪電壓的邏輯處理來輸出與伽瑪曲線對應的資料電壓Vdata。或者,在一些情況下,可以基於所選擇的兩個以上的伽瑪電壓來生成資料電壓。 The digital-to-analog converter DAC 230 in each channel circuit CH may generate a data voltage Vdata from a plurality of gamma voltages VG. The digital-to-analog converter DAC 230 may select at least one of the plurality of gamma voltages VG in response to the latched display data RGB from the latch circuit, and may output the selected voltage as the data voltage Vdata. The digital-to-analog converter DAC 230 may include a plurality of switch elements for selecting at least one of the plurality of gamma voltages. For example, the digital-to-analog converter DAC 230 may output a data voltage Vdata corresponding to a grayscale value by using a separate lookup table defining a relationship between the grayscale value and a plurality of gamma voltages, or by performing a logic process on the grayscale value. For example, the data voltage Vdata may have 256 voltage levels corresponding to an 8-bit grayscale value. The data voltage Vdata corresponding to each grayscale value may be located on a gamma curve. More specifically, the digital-to-analog converter DAC 230 may output a data voltage Vdata corresponding to a gamma curve by a linear logic process of a plurality of gamma voltages. Alternatively, in some cases, the data voltage may be generated based on more than two selected gamma voltages.

每個通道電路CH中的源極緩衝器240可連接到顯示面板中提供的對應的一條資料線。源極緩衝器240可以接收並放大來自數位-類比轉換器DAC 230的資料電壓Vdata,並且可以將經過放大的資料電壓Vdata施加到對應的資料線。後文提到的資料電壓Vdata均指放大後的資料電壓Vdata。 The source buffer 240 in each channel circuit CH can be connected to a corresponding data line provided in the display panel. The source buffer 240 can receive and amplify the data voltage Vdata from the digital-to-analog converter DAC 230, and can apply the amplified data voltage Vdata to the corresponding data line. The data voltage Vdata mentioned below refers to the amplified data voltage Vdata.

圖3A是包括在圖2的源極驅動器22中的一種伽瑪電壓產生器的示例性電路圖。源極驅動器可以包括一個源極驅動器電路,例如積體電路(IC)。 FIG. 3A is an exemplary circuit diagram of a gamma voltage generator included in the source driver 22 of FIG. 2 . The source driver may include a source driver circuit, such as an integrated circuit (IC).

如圖3A所示,該源極驅動器的伽瑪電壓產生器201包括多個緩衝器311和伽瑪電壓生成電路312,並且源極驅動器22還可以包括伽瑪參考電壓電路310。伽瑪參考電壓電路310可以在伽瑪電壓產生器201的內部或外部。 As shown in FIG. 3A , the gamma voltage generator 201 of the source driver includes a plurality of buffers 311 and a gamma voltage generating circuit 312, and the source driver 22 may further include a gamma reference voltage circuit 310. The gamma reference voltage circuit 310 may be inside or outside the gamma voltage generator 201.

伽瑪參考電壓電路310提供用於生成伽瑪電壓的多個伽瑪參考電壓,每個緩衝器的輸入端接收一個伽瑪參考電壓,輸出端輸出緩衝電壓到伽瑪電壓生成電路312。伽瑪電壓生成電路312根據該多個緩衝器輸出的多個緩衝電壓生成多個伽瑪電壓。每個緩衝器可以用運算放大器(OP)來實現,例如運算放大器的一個輸入端連接到其輸出端,另一個輸入端連接到伽瑪參考電壓電路310以接收對應的伽瑪參考電壓。 The gamma reference voltage circuit 310 provides multiple gamma reference voltages for generating gamma voltages, the input end of each buffer receives a gamma reference voltage, and the output end outputs the buffer voltage to the gamma voltage generating circuit 312. The gamma voltage generating circuit 312 generates multiple gamma voltages according to the multiple buffer voltages output by the multiple buffers. Each buffer can be implemented with an operational amplifier (OP), for example, one input end of the operational amplifier is connected to its output end, and the other input end is connected to the gamma reference voltage circuit 310 to receive the corresponding gamma reference voltage.

作為示例,伽瑪參考電壓電路310可以採用由多個電阻器串聯構成的電阻串(可以稱為源電阻串)的形式,以對輸入到該電阻串兩端的輸入電壓進 行分壓以得到該多個伽瑪參考電壓。同樣的,伽瑪電壓生成電路312也可以採用電阻串(可以稱為伽瑪電阻串)的形式,對輸入到該電阻串兩端的輸入電壓進行分壓,以生成多個伽瑪電壓,其中,多個緩衝器輸出的多個緩衝電壓被分別提供到該伽瑪電阻串的相鄰電阻器之間的部分連接節點,並且該伽瑪電阻串的至少一部分連接節點可以連接到或者作為伽瑪電壓生成電路312的輸出端點(也稱為輸出端節點或節點等,用於連接)。應注意,圖中示出的一個電阻器符號可以表示多個電阻器。 As an example, the gamma reference voltage circuit 310 may be in the form of a resistor string (which may be referred to as a source resistor string) composed of a plurality of resistors connected in series, so as to divide the input voltage input to both ends of the resistor string to obtain the plurality of gamma reference voltages. Similarly, the gamma voltage generating circuit 312 can also be in the form of a resistor string (which can be called a gamma resistor string), and the input voltage input to the two ends of the resistor string is divided to generate multiple gamma voltages, wherein the multiple buffer voltages output by the multiple buffers are respectively provided to part of the connection nodes between the adjacent resistors of the gamma resistor string, and at least part of the connection nodes of the gamma resistor string can be connected to or used as the output terminal (also called output terminal node or node, etc., for connection) of the gamma voltage generating circuit 312. It should be noted that one resistor symbol shown in the figure can represent multiple resistors.

如前面所述,快速建立並穩定各個伽瑪電壓對於保證顯示效果是至關重要的,因此需要相應的解決方案。例如,在高幀率顯示操作的情況下,分配給每一幀的顯示時間比較短,因此對伽瑪電壓的建立時間要求較高,並且穩定的各個伽瑪電壓也有利於生成準確的資料電壓。 As mentioned above, quickly establishing and stabilizing each gamma voltage is crucial to ensuring the display effect, so corresponding solutions are needed. For example, in the case of high frame rate display operation, the display time allocated to each frame is relatively short, so the requirement for the establishment time of the gamma voltage is relatively high, and stable gamma voltages are also conducive to generating accurate data voltages.

另外,隨著顯示面板的尺寸越來越大,可能需要使用兩個或更多個源極驅動器電路(例如,源極驅動器積體電路IC)來驅動同一顯示面板。然而,由於製造和設計製程的局限性,使得驅動同一顯示面板的兩個或更多個的源極驅動器電路各自包括的伽瑪電壓產生器生成的伽瑪電壓可能存在差異,從而可能引起顯示面板的顯示的非均勻性,例如,不同源極驅動器電路控制的顯示區域之間具有明顯的色差。 In addition, as the size of display panels becomes larger and larger, two or more source driver circuits (e.g., source driver integrated circuit ICs) may be used to drive the same display panel. However, due to the limitations of manufacturing and design processes, the gamma voltages generated by the gamma voltage generators included in the two or more source driver circuits driving the same display panel may be different, which may cause non-uniformity in the display of the display panel, for example, there is a significant color difference between the display areas controlled by different source driver circuits.

對此,圖3B中示出了通過在源極驅動器中包括兩個源極驅動器電路(例如,每個源極驅動器電路可以集成到一個IC中),以使這兩個源極驅動器電路共同驅動同一顯示面板的示例。當然,源極驅動器可以包括兩個以上的源極驅動器電路。 In this regard, FIG. 3B shows an example in which two source driver circuits are included in the source driver (for example, each source driver circuit can be integrated into one IC) so that the two source driver circuits drive the same display panel together. Of course, the source driver may include more than two source driver circuits.

如圖3B所示,第一源極驅動器電路31(IC1)和第二源極驅動器電路32(IC2)的電路結構相同,且各自的伽瑪電壓產生器201包括多個緩衝器(311;321)和伽瑪電壓生成電路(312;322)。每個源極驅動器電路(31;32)還可 以包括伽瑪參考電壓電路(310;320),例如源電阻串,用於分別向伽瑪電壓產生器201提供所需要的伽瑪參考電壓。 As shown in FIG3B , the first source driver circuit 31 (IC1) and the second source driver circuit 32 (IC2) have the same circuit structure, and their respective gamma voltage generators 201 include multiple buffers (311; 321) and gamma voltage generating circuits (312; 322). Each source driver circuit (31; 32) may also include a gamma reference voltage circuit (310; 320), such as a source resistor string, for providing the required gamma reference voltage to the gamma voltage generator 201, respectively.

第一源極驅動器電路31(IC1)的至少一個電力傳輸端子P電連接到第二源極驅動器電路32(IC2)的至少一個對應電力傳輸端子P’,以形成源極驅動器電路31(IC1)和源極驅動器電路32(IC2)之間的電連接。根據設計需要確定第一源極驅動器電路31(IC1)和第二源極驅動器電路32(IC2)的電力傳輸端子之間的電連接的數目,且本公開不限於具體數目。 At least one power transmission terminal P of the first source driver circuit 31 (IC1) is electrically connected to at least one corresponding power transmission terminal P' of the second source driver circuit 32 (IC2) to form an electrical connection between the source driver circuit 31 (IC1) and the source driver circuit 32 (IC2). The number of electrical connections between the power transmission terminals of the first source driver circuit 31 (IC1) and the second source driver circuit 32 (IC2) is determined according to design requirements, and the present disclosure is not limited to a specific number.

根據本公開實施例,第一源極驅動器電路31(IC1)作為主電路,並且第二源極驅動器電路32(IC2)作為從電路,第二源極驅動器電路32(IC2)中的所有緩衝器可以是關斷的,或者根據電路結構(例如源電阻串和伽瑪電阻串的連接方式)除了向第二伽瑪電壓生成電路提供最大伽瑪參考電壓和最小伽瑪參考電壓(與第一源極驅動器中的最大伽瑪參考電壓和最小伽瑪參考電壓相同)的緩衝器之外的所有緩衝器被關斷。在此情況下,第一源極驅動器電路31(IC1)包括的該至少一個電力傳輸端子P作為第一源極驅動器電路31(IC1)的輸出端子可以經由第一源極驅動器電路31(IC1)和第二源極驅動器電路32(IC2)的電力傳輸端子之間的電連接,向作為第二源極驅動器電路32(IC2)的輸入端子的該至少一個電力傳輸端子P’提供從第一源極驅動器電路31(IC1)的內部的至少一個緩衝器的輸出端輸出的緩衝電壓,以將這些緩衝電壓提供到第二源極驅動器電路32(IC2)內部的伽瑪電壓產生器;反之亦然。 According to the present disclosed embodiment, the first source driver circuit 31 (IC1) acts as a master circuit and the second source driver circuit 32 (IC2) acts as a slave circuit, all buffers in the second source driver circuit 32 (IC2) can be turned off, or according to the circuit structure (for example, the connection method of the source resistor string and the gamma resistor string), all buffers except the buffer that provides the maximum gamma reference voltage and the minimum gamma reference voltage (the same as the maximum gamma reference voltage and the minimum gamma reference voltage in the first source driver) to the second gamma voltage generating circuit are turned off. In this case, the at least one power transmission terminal P included in the first source driver circuit 31 (IC1) as the output terminal of the first source driver circuit 31 (IC1) can be connected to the power transmission terminal of the second source driver circuit 32 (IC2) through the electrical connection between the first source driver circuit 31 (IC1) and the power transmission terminal of the second source driver circuit 32 (IC2). The at least one power transmission terminal P' of the input terminal of the first source driver circuit 32 (IC2) provides the buffer voltage output from the output end of at least one buffer inside the first source driver circuit 31 (IC1) to provide these buffer voltages to the gamma voltage generator inside the second source driver circuit 32 (IC2); and vice versa.

如圖3B所示,以灰色示出關斷的緩衝器,白色示出導通的緩衝器,並且在第二源極驅動器電路32中,只有最上側和最下側兩個緩衝器被使能,其他緩衝器被關閉。這樣,通過上述兩個源極驅動器電路的電力傳輸端子之間的電連接,第一源極驅動器電路中的多個緩衝器的多個緩衝電壓也被提供至第二源極驅動器電路(或者更多的源極驅動器電路,如果有的話)的伽瑪電壓生成 電路。因此,這種方式可以實現減小了兩個源極驅動器電路所使用的伽瑪參考電壓之間的電壓差異以及生成的伽瑪電壓之間的電壓差異,因為第二源極驅動器電路可以使用與第一源極驅動器電路相同的多個緩衝電壓、最大伽瑪參考電壓和最小伽瑪參考電壓來生成多個伽瑪電壓,從而在兩個或更多個的源極驅動器積體電路(IC)驅動相同的顯示面板時,可以在一定程度上提高顯示均勻性,從而提高顯示效果。 As shown in FIG3B , the buffers that are turned off are shown in gray, the buffers that are turned on are shown in white, and in the second source driver circuit 32, only the uppermost and lowermost buffers are enabled, and the other buffers are turned off. In this way, through the electrical connection between the power transmission terminals of the above two source driver circuits, the multiple buffer voltages of the multiple buffers in the first source driver circuit are also provided to the gamma voltage generation circuit of the second source driver circuit (or more source driver circuits, if any). Therefore, this method can reduce the voltage difference between the gamma reference voltages used by the two source driver circuits and the voltage difference between the generated gamma voltages, because the second source driver circuit can use the same multiple buffer voltages, maximum gamma reference voltage and minimum gamma reference voltage as the first source driver circuit to generate multiple gamma voltages, so that when two or more source driver integrated circuits (ICs) drive the same display panel, the display uniformity can be improved to a certain extent, thereby improving the display effect.

由於在圖3A-3B的伽瑪電壓產生器中,通過多個緩衝器輸出的多個緩衝電壓來建立和穩定伽瑪電阻串中的部分輸出端點處的伽瑪電壓,由於對於伽瑪電阻串,該部分輸出端點處的伽瑪電壓通過部分緩衝器輸出的緩衝電壓來提供,因此在針對伽瑪電阻串兩端的輸入電壓進行分壓時,可以快速地得到各個分壓節點處的電壓,即可以盡可能快的建立和穩定所有輸出端點處的伽瑪電壓,並可以提高所生成的伽瑪電壓的驅動能力。但是由於根據灰階值的位元數,所需要生成的多個伽瑪電壓的數量一般很大,例如256、512或1024等,而緩衝器的數量相比而言會少的多(因為緩衝器由於製程不匹配也可能導致伽瑪電壓的誤差,因此過多的緩衝器會導致伽瑪電壓的大的誤差),因此伽瑪電壓的建立和穩定時間仍然會較長,這可能已經不能滿足目前的要求,特別是在高幀率顯示操作下。此外,即使圖3B中,兩個源極驅動器電路所使用的伽瑪參考電壓之間的電壓差異以及生成的伽瑪電壓之間的電壓差異可以被減小,但是由於連接在兩個源極驅動器電路的電力傳輸端子之間的導線的寄生電阻,電壓信號的傳遞需要時間,因此從電路中的伽瑪電壓的建立和穩定時間相對於主電路更慢,這也可能導致顯示圖像中的色差問題,尤其是在建立和穩定時間要求更嚴格的特別是在高幀率顯示操作下。 Since in the gamma voltage generator of Figures 3A-3B, the gamma voltage at some output terminals in the gamma resistor string is established and stabilized by multiple buffer voltages output by multiple buffers, and since for the gamma resistor string, the gamma voltage at some output terminals is provided by the buffer voltage output by some buffers, when the input voltage at both ends of the gamma resistor string is divided, the voltage at each voltage division node can be quickly obtained, that is, the gamma voltage at all output terminals can be established and stabilized as quickly as possible, and the driving capability of the generated gamma voltage can be improved. However, according to the number of bits of the grayscale value, the number of gamma voltages that need to be generated is generally large, such as 256, 512 or 1024, and the number of buffers is much smaller in comparison (because the buffers may also cause gamma voltage errors due to process mismatch, so too many buffers will cause large gamma voltage errors), so the gamma voltage establishment and stabilization time will still be relatively long, which may no longer meet current requirements, especially under high frame rate display operations. In addition, even though the voltage difference between the gamma reference voltages used by the two source driver circuits and the voltage difference between the generated gamma voltages can be reduced in FIG. 3B , the transmission of the voltage signal takes time due to the parasitic resistance of the wires connected between the power transmission terminals of the two source driver circuits, so the build-up and stabilization time of the gamma voltage in the slave circuit is slower than that of the master circuit, which may also cause color difference problems in the displayed image, especially under high frame rate display operation where the build-up and stabilization time requirements are more stringent.

因此,需要一種能夠快速建立和穩定伽瑪電壓以保證顯示面板的顯示效果的伽瑪電壓產生器。此外,還希望即使在兩個或更多個的源極驅動器電 路(對應包括兩個或更多個伽瑪電壓產生器)驅動同一顯示面板時,基於這樣的伽瑪電壓產生器能保證顯示面板的均勻顯示效果。 Therefore, a gamma voltage generator is needed that can quickly establish and stabilize the gamma voltage to ensure the display effect of the display panel. In addition, it is also hoped that even when two or more source driver circuits (corresponding to including two or more gamma voltage generators) drive the same display panel, such a gamma voltage generator can ensure a uniform display effect of the display panel.

圖4示出了根據本申請實施例的伽瑪電壓產生器的示意圖。 FIG4 shows a schematic diagram of a gamma voltage generator according to an embodiment of the present application.

如圖4所示,伽瑪電壓產生器400包括伽瑪電壓生成電路410、多個基本緩衝器(420-IN1/IN2、420-1、420-2、...、420-N1,下文中統稱為420)和多個動態緩衝器(430-1、430-2、...、430-N2,下文中統稱為430)。該伽瑪電壓產生器400可以被包括在一個源極驅動器電路(IC)中,如圖3B所示的IC1或IC2中。 As shown in FIG. 4 , the gamma voltage generator 400 includes a gamma voltage generating circuit 410, a plurality of basic buffers (420-IN1/IN2, 420-1, 420-2, ..., 420-N1, hereinafter collectively referred to as 420) and a plurality of dynamic buffers (430-1, 430-2, ..., 430-N2, hereinafter collectively referred to as 430). The gamma voltage generator 400 may be included in a source driver circuit (IC), such as IC1 or IC2 shown in FIG. 3B .

伽瑪電壓生成電路410具有多個第一電壓輸入端點IN1、多個第二電壓輸入端點IN2、多個電壓輸出端點O,該多個電壓輸出端點用於輸出預定數量的伽瑪電壓。可選地,該伽瑪電壓生成電路410可以是由串聯的多個電阻器構成的伽瑪電阻串,該伽瑪電阻串中的電阻器之間的每個連接節點可以作為或者連接到一個電壓輸出端點,並且該多個第一電壓輸入端點IN1和該多個第二電壓輸入端點IN2中的每個電壓輸入端點可以連接到對應的一個電壓輸出端點O,從而可以從對應的一個電壓輸出端點O輸出緩衝電壓(並且每個緩衝電壓可以作為一個伽瑪電壓)。圖4中為了說明,將該多個第一電壓輸入端點IN1和該多個第二電壓輸入端點IN2各自與對應的電壓輸出端點O分離示出,但是應理解,每個電壓輸入端點和對應的電壓輸出端點可以是同一個端點,例如,為伽瑪電阻串中相鄰電阻器之間的一個連接節點。另外,圖4中示出的相鄰的一對電壓輸入端點之間的一個電阻器符號僅僅是為了說明,其實際可以包括多個電阻器(例如,串聯)而不限於圖示的數量,以用於在由該多個電阻器的各個連接節點(連接到或作為多個電壓輸出端點)處輸出伽瑪電壓。 The gamma voltage generating circuit 410 has a plurality of first voltage input terminals IN1, a plurality of second voltage input terminals IN2, and a plurality of voltage output terminals O, and the plurality of voltage output terminals are used to output a predetermined amount of gamma voltage. Optionally, the gamma voltage generating circuit 410 can be a gamma resistor string composed of multiple resistors connected in series, each connection node between the resistors in the gamma resistor string can serve as or be connected to a voltage output terminal, and each of the multiple first voltage input terminals IN1 and the multiple second voltage input terminals IN2 can be connected to a corresponding voltage output terminal O, so that a buffer voltage can be output from a corresponding voltage output terminal O (and each buffer voltage can serve as a gamma voltage). For the purpose of illustration, the multiple first voltage input terminals IN1 and the multiple second voltage input terminals IN2 are shown separately from the corresponding voltage output terminals O in FIG4 , but it should be understood that each voltage input terminal and the corresponding voltage output terminal may be the same terminal, for example, a connection node between adjacent resistors in a gamma resistor string. In addition, the symbol of a resistor between a pair of adjacent voltage input terminals shown in FIG4 is only for illustration, and it may actually include multiple resistors (for example, in series) without being limited to the number shown in the figure, so as to output the gamma voltage at each connection node of the multiple resistors (connected to or as multiple voltage output terminals).

每個基本緩衝器420各自的輸入端接收對應的伽瑪參考電壓(例如,連接到伽瑪參考電壓電路的對應的一個輸出節點),輸出端連接至該多個第一電壓輸入端點中的對應的一個第一電壓輸入端點;以及每個動態緩衝器430的輸入 端接收對應的伽瑪參考電壓(例如,連接到伽瑪參考電壓電路的對應的一個輸出節點),輸出端連接至該多個第二電壓輸入端點中對應的一個第二電壓輸入端點,並且被配置為在第一模式或第二模式下操作。每個動態緩衝器在第一模式時,不輸出緩衝電壓,並且在第二模式時輸出緩衝電壓至所連接的第二電壓輸入端點。 Each basic buffer 420 receives a corresponding gamma reference voltage at its respective input terminal (e.g., connected to a corresponding output node of the gamma reference voltage circuit), and an output terminal is connected to a corresponding first voltage input terminal among the plurality of first voltage input terminals; and each dynamic buffer 430 receives a corresponding gamma reference voltage at its respective input terminal (e.g., connected to a corresponding output node of the gamma reference voltage circuit), and an output terminal is connected to a corresponding second voltage input terminal among the plurality of second voltage input terminals, and is configured to operate in the first mode or the second mode. Each dynamic buffer does not output a buffer voltage in the first mode, and outputs a buffer voltage to the connected second voltage input terminal in the second mode.

例如,對於動態緩衝器430-1,當在第一模式時,該動態緩衝器430-1關斷,其輸入端的電壓不會輸出到輸出端,因此其輸出端不會向所連接的第二電壓輸入端點IN2提供緩衝電壓;當在第二模式時,該動態緩衝器430-1導通,其輸入端的電壓會輸出到輸出端,因此其輸出端會向所連接的第二電壓輸入端點IN2提供緩衝電壓。其他動態緩衝器也與動態緩衝器430-1同步工作,因此在第一模式下,動態緩衝器可以視為不工作。 For example, for the dynamic buffer 430-1, when in the first mode, the dynamic buffer 430-1 is turned off, the voltage at its input end will not be output to the output end, so its output end will not provide a buffer voltage to the second voltage input terminal IN2 connected thereto; when in the second mode, the dynamic buffer 430-1 is turned on, the voltage at its input end will be output to the output end, so its output end will provide a buffer voltage to the second voltage input terminal IN2 connected thereto. Other dynamic buffers also work synchronously with the dynamic buffer 430-1, so in the first mode, the dynamic buffer can be regarded as not working.

這樣,在該伽瑪電壓產生器400不與其他伽瑪電壓產生器連接、或者該伽瑪電壓產生器400需要向其他伽瑪電壓產生器輸出緩衝電壓(如將在後文描述的兩個以上源極驅動器電路的情況時作為主電路)的情況下,該伽瑪電壓產生器400可以基於多個基本緩衝器的緩衝電壓和可選地多個動態緩衝器的緩衝電壓而在多個電壓輸出端點O處輸出多個伽瑪電壓VGM。並且,在該伽瑪電壓產生器400與其他伽瑪電壓產生器連接但不需要向其他伽瑪電壓產生器輸出緩衝電壓(如將在後文描述的兩個以上源極驅動器電路的情況時作為從電路)的情況下,不啟用該多個基本緩衝器、或者可以僅啟用提供最大伽瑪參考電壓和最低伽瑪參考電壓的兩個基本緩衝器。 In this way, when the gamma voltage generator 400 is not connected to other gamma voltage generators, or the gamma voltage generator 400 needs to output a buffer voltage to other gamma voltage generators (such as as a main circuit in the case of more than two source driver circuits described later), the gamma voltage generator 400 can output multiple gamma voltages VGM at multiple voltage output terminals O based on the buffer voltages of multiple basic buffers and optionally the buffer voltages of multiple dynamic buffers. Furthermore, when the gamma voltage generator 400 is connected to other gamma voltage generators but does not need to output buffer voltage to other gamma voltage generators (such as when more than two source driver circuits are described later as slave circuits), the multiple basic buffers are not enabled, or only the two basic buffers providing the maximum gamma reference voltage and the minimum gamma reference voltage may be enabled.

例如,第一模式為待機(standby)模式,第二模式為觸發(Boost)模式。所述觸發模式適用於所生成的所述預定數量的伽瑪電壓穩定前(即需要繼續多個緩衝電壓以建立和穩定伽瑪電壓產生器的輸出端點處的該多個伽瑪電壓)的時段,並且所述待機模式適用於所生成的所述預定數量的伽瑪電壓穩定 後的時段。 For example, the first mode is a standby mode, and the second mode is a boost mode. The boost mode is applicable to the period before the predetermined amount of gamma voltage generated is stabilized (i.e., multiple buffer voltages are required to establish and stabilize the multiple gamma voltages at the output terminals of the gamma voltage generator), and the standby mode is applicable to the period after the predetermined amount of gamma voltage generated is stabilized.

因此,基於圖4所示的伽瑪電壓產生器400,可以在需要建立和穩定伽瑪電壓時使多個動態緩衝器在第二模式操作,使得多個基本緩衝器和多個動態緩衝器均向伽瑪電壓生成電路410提供緩衝電壓,從而可以提高伽瑪電壓的建立和穩定速度,並且在伽瑪電壓建立和穩定之後,又使該多個動態緩衝器在第一模式操作,以避免過多的緩衝器引入不希望的伽瑪電壓的誤差。 Therefore, based on the gamma voltage generator 400 shown in FIG. 4 , when the gamma voltage needs to be established and stabilized, multiple dynamic buffers can be operated in the second mode, so that multiple basic buffers and multiple dynamic buffers provide buffer voltages to the gamma voltage generating circuit 410, thereby increasing the speed of establishing and stabilizing the gamma voltage, and after the gamma voltage is established and stabilized, the multiple dynamic buffers are operated in the first mode to avoid excessive buffers from introducing unwanted gamma voltage errors.

此外,在一些實施例中,在需要建立和穩定伽瑪電壓時,也可以僅使多個動態緩衝器中的一部分在第二模式操作,而無需使所有動態緩衝器均在第二模式下操作。例如,在一個實施例中,對於特定的圖像模式,僅開啟輸出具有較低值的伽瑪電壓的動態緩衝器。另外,雖然在圖4中示出了動態緩衝器和基本緩衝器交替配置,但這僅僅是示例性的,每兩個基本緩衝器之間可以不配置動態緩衝器,或者可以配置一個或多個動態緩衝器,使得伽瑪電壓生成電路的多個第一電壓輸入端點中的每對相鄰第一電壓輸入端點之間存在至少一個第二電壓輸入端點,或者不存在第二電壓輸入端點。可以根據系統要求以適當的方式確定動態緩衝器的部署和需要在第二模式下操作的動態緩衝器的數量。 In addition, in some embodiments, when the gamma voltage needs to be established and stabilized, only a portion of the multiple dynamic buffers can be operated in the second mode without having to operate all dynamic buffers in the second mode. For example, in one embodiment, for a specific image mode, only the dynamic buffer that outputs a gamma voltage with a lower value is turned on. In addition, although FIG. 4 shows that the dynamic buffer and the basic buffer are alternately configured, this is only exemplary, and no dynamic buffer may be configured between every two basic buffers, or one or more dynamic buffers may be configured so that there is at least one second voltage input terminal between each pair of adjacent first voltage input terminals in the multiple first voltage input terminals of the gamma voltage generating circuit, or there is no second voltage input terminal. The deployment of the dynamic buffer and the number of dynamic buffers that need to operate in the second mode can be determined in an appropriate manner according to system requirements.

如參考圖2描述的,伽瑪電壓產生器會和多個通道電路連接,每個通道電路根據當前施加到該通道電路的用於某個像素的顯示資料(稱為像素資料)從伽瑪電壓產生器輸出的多個伽瑪電壓中選擇至少一個伽瑪電壓生成資料電壓。每個通道電路用於向一條資料線上的一行(column)像素按照列(row)掃描的順序依次提供資料電壓。例如,針對第一列像素的資料寫入,多個通道電路需要向各自對應的資料線輸出Vdata1、Vdata2、...。這樣,例如,為了生成Vdata1,第一個通道電路需要根據用於第一列第一行的像素(像素PX(1,1))的顯示資料(例如,灰階值或資料代碼,也稱為像素資料)而選擇至少一個伽瑪電壓,從而得到對應的資料電壓Vdata1;為了生成Vdata2,第二個通道電路需要根據用 於第一列第二行的像素(像素PX(1,2))的顯示資料(像素資料)而選擇至少一個伽瑪電壓,從而得到對應的資料電壓Vdata2。針對第一列的像素的其他通道電路的工作過程也是類似的。針對其他列的像素的資料寫入時多個通道電路的工作過程也是類似的。 As described with reference to FIG. 2 , the gamma voltage generator is connected to a plurality of channel circuits, and each channel circuit selects at least one gamma voltage from a plurality of gamma voltages output by the gamma voltage generator to generate a data voltage according to the display data (referred to as pixel data) for a certain pixel currently applied to the channel circuit. Each channel circuit is used to sequentially provide data voltages to a row (column) of pixels on a data line in the order of row scanning. For example, for data writing of the first row of pixels, a plurality of channel circuits need to output Vdata1, Vdata2, ... to their respective corresponding data lines. Thus, for example, to generate Vdata1, the first channel circuit needs to select at least one gamma voltage according to the display data (e.g., grayscale value or data code, also referred to as pixel data) for the first row and first column of the pixel (pixel PX(1,1)), thereby obtaining the corresponding data voltage Vdata1; to generate Vdata2, the second channel circuit needs to select at least one gamma voltage according to the display data (pixel data) for the second row and first column of the pixel (pixel PX(1,2)), thereby obtaining the corresponding data voltage Vdata2. The operation process of the other channel circuits for the pixels of the first column is similar. The operation process of multiple channel circuits when writing data for the pixels of other columns is also similar.

因此,在本申請的上下文中提及的顯示資料的更新或改變可以指加載到某個或某些通道電路的像素資料的更新或改變。例如,在當前列像素的掃描週期結束之後,用於下一列像素的顯示資料被加載到該多個通道電路中以輸出多個資料電壓(數量與通道電路的數量相同)到面板上的該下一列像素。對於每個通道電路來說,加載到該通道電路的用於像素的顯示資料(即像素資料)被更新(該像素資料的值還可能改變)。也就是說,顯示資料的更新可以指在加載到任一個通道電路的用於同一行的兩個相鄰像素的兩個像素資料之間發生切換,而不管該兩個像素資料是否有改變;並且,顯示資料的改變可以指在加載到任一個通道電路的用於同一行的兩個相鄰像素的兩個像素資料之間發生切換,並且該兩個像素資料有改變,例如,該兩個像素資料對應的兩個灰階值發生改變。 Therefore, the update or change of display data mentioned in the context of this application may refer to the update or change of pixel data loaded into one or more channel circuits. For example, after the scanning cycle of the current column of pixels ends, the display data for the next column of pixels is loaded into the multiple channel circuits to output multiple data voltages (the number is the same as the number of channel circuits) to the next column of pixels on the panel. For each channel circuit, the display data for the pixel (i.e., pixel data) loaded into the channel circuit is updated (the value of the pixel data may also change). That is, the updating of display data may refer to the switching between two pixel data for two adjacent pixels in the same row loaded into any channel circuit, regardless of whether the two pixel data have changed; and the changing of display data may refer to the switching between two pixel data for two adjacent pixels in the same row loaded into any channel circuit, and the two pixel data have changed, for example, the two grayscale values corresponding to the two pixel data have changed.

在顯示過程中,如果顯示資料改變,則一個或多個通道電路輸出的資料電壓發生改變。由於多個通道電路是與伽瑪電壓產生器的電壓輸出端點連接的,因此伽瑪電壓產生器輸出的多個伽瑪電壓會受到資料電壓的改變的影響,例如,通道電路需要從生成該多個伽瑪電壓的伽瑪電阻串汲取電流,因此該多個伽瑪電壓會受到干擾,而如果顯示資料即使更新但是沒有改變時,伽瑪電壓產生器輸出的多個伽瑪電壓可能不會受到影響。 During the display process, if the display data changes, the data voltage output by one or more channel circuits changes. Since multiple channel circuits are connected to the voltage output terminal of the gamma voltage generator, the multiple gamma voltages output by the gamma voltage generator will be affected by the change of the data voltage. For example, the channel circuit needs to draw current from the gamma resistor string that generates the multiple gamma voltages, so the multiple gamma voltages will be disturbed. If the display data is updated but not changed, the multiple gamma voltages output by the gamma voltage generator may not be affected.

也就是說,在顯示資料改變時,即施加到任何通道電路的像素資料發生改變(會引起資料電壓的改變從而該多個伽瑪電壓會受到干擾)時,需要重新快速地建立和穩定伽瑪電壓產生器輸出的多個伽瑪電壓。因此,對於圖4所 示的伽瑪電壓產生器,可以在顯示資料改變時,使多個動態緩衝器中的至少一部分在第二模式操作,使得多個動態緩衝器中的該至少一部分也可以向伽瑪電壓生成電路410提供緩衝電壓,從而可以和由多個基本緩衝器(包括在同一伽瑪電壓產生器內或者其他伽瑪電壓產生器內)輸出的緩衝電壓結合,進而可以提高伽瑪電壓產生器輸出的該多個伽瑪電壓的建立和穩定速度,並且在該多個伽瑪電壓建立和穩定之後(例如,持續預定時間段之後,該預定時間可以根據伽瑪電壓生成電路的結構以及經驗值確定,只要能允許該多個伽瑪電壓建立和穩定),又使該多個動態緩衝器中的該至少一部分返回到第一模式操作,以避免過多的緩衝器引入不希望的伽瑪電壓的誤差。 That is, when the display data changes, that is, when the pixel data applied to any channel circuit changes (causing the data voltage to change and thus the multiple gamma voltages to be disturbed), the multiple gamma voltages output by the gamma voltage generator need to be quickly re-established and stabilized. Therefore, for the gamma voltage generator shown in FIG. 4 , when the display data changes, at least a portion of the multiple dynamic buffers can be operated in the second mode, so that the at least a portion of the multiple dynamic buffers can also provide a buffer voltage to the gamma voltage generating circuit 410, so that the buffer voltage can be combined with the buffer voltage output by the multiple basic buffers (included in the same gamma voltage generator or in other gamma voltage generators), thereby increasing the gamma voltage. The speed of establishing and stabilizing the multiple gamma voltages output by the generator, and after the multiple gamma voltages are established and stabilized (for example, after a predetermined period of time, the predetermined time can be determined according to the structure of the gamma voltage generating circuit and the empirical value, as long as the multiple gamma voltages can be allowed to establish and stabilize), at least a portion of the multiple dynamic buffers are returned to the first mode operation to avoid excessive buffers introducing unwanted gamma voltage errors.

圖5示出了基於顯示資料的改變的模式切換時序圖。 Figure 5 shows the mode switching timing diagram based on the change of display data.

如圖5所示,如果更新的顯示資料(例如像素資料)與其先前的顯示資料的值相同,例如,用於第i(i為大於等於1的整數)列第1行像素(像素PX(i,1))的顯示資料D2與用於第i+1列第1行像素(像素PX(i+1,1))的顯示資料D3相同,即顯示資料未改變,則該多個動態緩衝器可以不從第一模式切換到第二模式,而是保持在第一模式下操作(即不輸出緩衝電壓)。 As shown in FIG5 , if the updated display data (e.g., pixel data) has the same value as the previous display data, for example, the display data D2 for the pixel in the 1st row of the i-th column (i is an integer greater than or equal to 1) is the same as the display data D3 for the pixel in the 1st row of the i+1-th column (pixel PX(i+1,1)), that is, the display data has not changed, then the multiple dynamic buffers may not switch from the first mode to the second mode, but may remain in the first mode (i.e., do not output the buffer voltage).

例如,這種實現方式對於息屏顯示(AOD)模式是非常有利的,在AOD模式下,只有一小部分屏幕顯示AOD圖像,其餘不顯示圖像的區域的像素在被寫入資料時,可以視為用於該區域的同一行的兩個相鄰像素的兩個顯示資料之間沒發生改變,因此在該區域的這些像素對應的掃描週期中該多個動態緩衝器可以保持在第一模式下操作,可以節省總功耗。 For example, this implementation is very beneficial for the AOD mode. In the AOD mode, only a small part of the screen displays the AOD image, and when data is written to the pixels in the remaining area that does not display the image, it can be regarded as that there is no change between the two display data of two adjacent pixels in the same row of the area. Therefore, in the scanning cycle corresponding to these pixels in the area, the multiple dynamic buffers can be kept operating in the first mode, which can save total power consumption.

因此,動態緩衝器可以僅在顯示資料改變時才在第二模式下操作以輸出緩衝電壓,這節省了總功耗,因為對於顯示資料不改變的情況(例如,大面積黑色圖像),動態緩衝器在第一模式下操作從而不輸出緩衝電壓。 Therefore, the dynamic buffer can operate in the second mode to output the buffer voltage only when the display data changes, which saves the overall power consumption because for the case where the display data does not change (for example, a large area black image), the dynamic buffer operates in the first mode and does not output the buffer voltage.

另外,在一些情況下,即使顯示資料改變,伽瑪電壓產生器輸出的 多個伽瑪電壓可能受到的影響也比較小,可能也不需要重新建立和穩定該多個伽瑪電壓。在這些情況下,可以根據一些伽瑪電壓的實際值與期望值之間的差異來確定多個動態緩衝器是否需要在第二模式下操作。例如,由於伽瑪參考電壓電路能夠在該多個緩衝器的輸入端提供準確的電壓值(期望值),因此該多個動態緩衝器中的至少一部分動態緩衝器可以被配置為響應於任意一個動態緩衝器的輸入端的電壓與所連接的第二電壓輸入端點IN2處的電壓(也是一個電壓輸出節點處所輸出的一個實際伽瑪電壓)不同,切換到在所述第二模式下操作,並在持續預定時間段後,或者響應於該多個動態緩衝器的輸入端的電壓與所述第二電壓輸入端點IN2處的電壓均相同切換到在所述第一模式下操作。 In addition, in some cases, even if the display data changes, the multiple gamma voltages output by the gamma voltage generator may be less affected and may not need to be reestablished and stabilized. In these cases, it can be determined whether the multiple dynamic buffers need to operate in the second mode based on the difference between the actual value and the expected value of some gamma voltages. For example, since the gamma reference voltage circuit can provide an accurate voltage value (expected value) at the input of the multiple buffers, at least a portion of the multiple dynamic buffers can be configured to switch to the second mode in response to the voltage at the input of any dynamic buffer being different from the voltage at the connected second voltage input terminal IN2 (also an actual gamma voltage output at a voltage output node), and switch to the first mode after a predetermined period of time, or in response to the voltage at the input of the multiple dynamic buffers being the same as the voltage at the second voltage input terminal IN2.

此外,在另一些實施方式中,為了更容易地控制多個動態緩衝器的模式切換,可以使得該多個動態緩衝器根據顯示資料的更新來從第一模式切換到第二模式,也就是說,只要顯示資料更新,即使其沒有發生變化,該多個動態緩衝器(或其一部分)也可以進行模式切換。顯示資料的更新是與水平同步信號(Hsync)或者掃描信號的移位同步的,即顯示資料的更新週期與掃描週期相同。 In addition, in other embodiments, in order to more easily control the mode switching of multiple dynamic buffers, the multiple dynamic buffers can be switched from the first mode to the second mode according to the update of the display data, that is, as long as the display data is updated, even if it does not change, the multiple dynamic buffers (or part of them) can also perform mode switching. The update of the display data is synchronized with the horizontal synchronization signal (Hsync) or the shift of the scanning signal, that is, the update cycle of the display data is the same as the scanning cycle.

圖6示出了根據本申請實施例的基於顯示資料的更新的模式切換時序圖。 FIG6 shows a mode switching timing diagram based on the update of display data according to an embodiment of the present application.

如圖6所示,從第一模式(待機模式)切換到第二模式(觸發模式)是與顯示資料的更新同步的,即當顯示資料被更新時,例如,從顯示資料D1更新為顯示資料D2,或者從顯示資料D2更新為顯示資料D3,或從顯示資料D3更新為顯示資料D4時,多個動態緩衝器可以進入第二模式,然後在一時間段之後退出第二模式並進入第一模式。該時間段可以具有預定持續時間,該預定持續時間被配置為允許伽瑪電壓生成電路輸出的多個伽瑪電壓在第二模式下被建立且穩定。 As shown in FIG6 , switching from the first mode (standby mode) to the second mode (trigger mode) is synchronized with the update of the display data, that is, when the display data is updated, for example, from display data D1 to display data D2, or from display data D2 to display data D3, or from display data D3 to display data D4, multiple dynamic buffers can enter the second mode, and then exit the second mode and enter the first mode after a period of time. The period of time can have a predetermined duration, which is configured to allow multiple gamma voltages output by the gamma voltage generating circuit to be established and stabilized in the second mode.

在這種情況下,由於顯示資料的更新是與水平同步信號(Hsync)或者掃描信號的移位同步的,因此可以根據水平同步信號(Hsync)或者掃描信號來對該多個動態緩衝器的模式切換進行控制。 In this case, since the update of the display data is synchronized with the shift of the horizontal synchronization signal (Hsync) or the scanning signal, the mode switching of the multiple dynamic buffers can be controlled according to the horizontal synchronization signal (Hsync) or the scanning signal.

圖7示出了根據本申請實施例的基於顯示資料的更新的另一種模式切換時序圖。 FIG7 shows another mode switching timing diagram based on the update of display data according to an embodiment of the present application.

在該實施例中,從第一模式(待機模式)切換到第二模式(觸發模式)是在顯示資料的更新之前完成的,以提前進行所需要的多個伽瑪電壓建立和穩定。應注意,由於顯示資料的更新可能涉及到顯示資料的值改變,從而會引起資料電壓的轉換,而在資料電壓轉換時對該多個伽瑪電壓具有較大的影響,因此第二模式的預定持續時間優選地與用於對應於顯示資料的更新或改變的資料電壓轉換的時間重疊,即該第二模式的預定持續時間至少持續到資料電壓轉換時間完成。 In this embodiment, the switch from the first mode (standby mode) to the second mode (trigger mode) is completed before the display data is updated, so as to establish and stabilize the required multiple gamma voltages in advance. It should be noted that since the update of the display data may involve a change in the value of the display data, which will cause the conversion of the data voltage, and the data voltage conversion has a greater impact on the multiple gamma voltages, the predetermined duration of the second mode preferably overlaps with the time for the data voltage conversion corresponding to the update or change of the display data, that is, the predetermined duration of the second mode at least lasts until the data voltage conversion time is completed.

在圖7所示的實施例中,在顯示資料更新之前的預定時間長度的時間點處從第一模式切換到第二模式。因為源極驅動器處理顯示資料更新的時序,所以可以很好地控制模式切換,並且第二模式的持續時間可以是固定的,或者可以根據資料電壓轉換是否完成而控制第二模式的持續時間(第二模式的持續時間不固定),例如,可以如前面所述的通過檢測動態緩衝器的輸入端和輸出端的電壓差來判斷資料電壓轉換是否完成,因為資料電壓轉換完成後,伽瑪電壓受到的影響將很小,即檢測到的電壓差較小。 In the embodiment shown in FIG. 7 , the mode is switched from the first mode to the second mode at a predetermined time point before the display data is updated. Because the source driver processes the timing of the display data update, the mode switching can be well controlled, and the duration of the second mode can be fixed, or the duration of the second mode can be controlled according to whether the data voltage conversion is completed (the duration of the second mode is not fixed). For example, as described above, the data voltage conversion can be determined by detecting the voltage difference between the input and output ends of the dynamic buffer, because after the data voltage conversion is completed, the gamma voltage will be less affected, that is, the detected voltage difference is smaller.

以下結合圖8-11針對動態緩衝器的幾種示例結構進行介紹。 The following introduces several example structures of dynamic buffers in combination with Figures 8-11.

在一些實施方式中,每個動態緩衝器包括緩衝器和切換模組,同一個動態緩衝器包括的各個元件可以視為相互對應。每個切換模組被配置為在第一模式下禁止對應的緩衝器輸出緩衝電壓,以及在第二模式下允許對應的緩衝器輸出緩衝電壓。 In some embodiments, each dynamic buffer includes a buffer and a switching module, and the various components included in the same dynamic buffer can be considered to correspond to each other. Each switching module is configured to prohibit the corresponding buffer from outputting a buffer voltage in a first mode, and to allow the corresponding buffer to output a buffer voltage in a second mode.

可選地,動態緩衝器包括的緩衝器可以與一般的緩衝器的結構相同,也可以與基本緩衝器的結構相同,例如由運算放大器構成,但不限於此。 Optionally, the buffer included in the dynamic buffer may have the same structure as a general buffer or the same structure as a basic buffer, for example, composed of an operational amplifier, but not limited thereto.

在圖8中,每個切換模組包括一個開關SW,並且開關SW的第一端連接到對應的運算放大器(OP)的輸出端,第二端連接到包括該運算放大器的動態緩衝器的輸出端所連接的對應的第二電壓輸入端點,其中開關SW在所述第一模式下關斷從而該動態緩衝器不輸出緩衝電壓,並且在所述第二模式下導通從而該動態緩衝器輸出緩衝電壓。 In FIG8 , each switching module includes a switch SW, and a first end of the switch SW is connected to the output end of the corresponding operational amplifier (OP), and a second end is connected to the corresponding second voltage input terminal to which the output end of the dynamic buffer including the operational amplifier is connected, wherein the switch SW is turned off in the first mode so that the dynamic buffer does not output the buffer voltage, and is turned on in the second mode so that the dynamic buffer outputs the buffer voltage.

在圖9中,每個切換模組包括第一開關SW1、第二開關SW2和第三開關SW3,其中:第一開關SW1的第一端連接到對應的運算放大器的輸出端,第二端連接到包括該運算放大器的對應的動態緩衝器的對應的第二電壓輸入端點;所述第二開關SW2的第一端和所述第三開關SW3的第一端共同連接至對應的運算放大器的一個輸入端,所述第二開關SW2的第二端連接到對應的運算放大器的輸出端,所述第三開關SW3的第二端連接到所述對應的第二電壓輸入端點(對應的運算放大器的另一個輸入端用於接收伽瑪參考電壓)。在所述第一模式下,所述第一開關SW1和所述第三開關SW3同時關斷從而該動態緩衝器不輸出緩衝電壓(第二開關SW2導通或關斷均可),並且在所述第二模式下,所述第一開關SW1和所述第三開關SW3同時導通,所述第二開關SW2關斷,從而該動態緩衝器輸出緩衝電壓。在這種實施方式中,動態緩衝器的回授控制(運算放大器的輸入端與輸出端的連接迴路所構成)可以不受連接在運算放大器的輸出端和伽瑪電壓生成電路之間的開關SW1的寄生電阻的影響,從而允許伽瑪電壓更準確和快速地建立和穩定。 In FIG9 , each switching module includes a first switch SW1, a second switch SW2 and a third switch SW3, wherein: a first end of the first switch SW1 is connected to the output end of the corresponding operational amplifier, and a second end is connected to a corresponding second voltage input end of the corresponding dynamic buffer of the operational amplifier; a first end of the second switch SW2 and a first end of the third switch SW3 are commonly connected to an input end of the corresponding operational amplifier, a second end of the second switch SW2 is connected to the output end of the corresponding operational amplifier, and a second end of the third switch SW3 is connected to the corresponding second voltage input end (the other input end of the corresponding operational amplifier is used to receive a gamma reference voltage). In the first mode, the first switch SW1 and the third switch SW3 are turned off at the same time, so that the dynamic buffer does not output the buffer voltage (the second switch SW2 can be turned on or off), and in the second mode, the first switch SW1 and the third switch SW3 are turned on at the same time, and the second switch SW2 is turned off, so that the dynamic buffer outputs the buffer voltage. In this implementation, the feedback control of the dynamic buffer (composed of the connection loop between the input and output of the operational amplifier) can be unaffected by the parasitic resistance of the switch SW1 connected between the output of the operational amplifier and the gamma voltage generation circuit, thereby allowing the gamma voltage to be established and stabilized more accurately and quickly.

在圖10中,每個動態緩衝器包括緩衝器,其中,緩衝器用於根據使能信號在啟用和禁用狀態之間切換,以使得動態緩衝器在第一模式和第二模式之間切換。例如,運算放大器可以響應於來自例如是IC內的控制器的使能信號 EN而啟用或禁用,從而該動態緩衝器輸出或不輸出緩衝電壓。 In FIG. 10 , each dynamic buffer includes a buffer, wherein the buffer is used to switch between an enabled and disabled state according to an enable signal, so that the dynamic buffer switches between a first mode and a second mode. For example, an operational amplifier can be enabled or disabled in response to an enable signal EN from a controller such as within an IC, so that the dynamic buffer outputs or does not output a buffer voltage.

另外,如前面所述,在動態緩衝器可以響應於任意一個動態緩衝器的輸入端的電壓與所連接的第二電壓輸入端點處(即,一個電壓輸出端點處)的電壓不同而從第一模式切換到第二模式的情況下,動態緩衝器除了緩衝器(例如,運算放大器)和切換模組之外,還可以包括電壓差檢測模組。可選地,電壓差檢測模組可以包括比較器。 In addition, as described above, in the case where the dynamic buffer can switch from the first mode to the second mode in response to the voltage at the input terminal of any dynamic buffer being different from the voltage at the connected second voltage input terminal (i.e., at a voltage output terminal), the dynamic buffer may include a voltage difference detection module in addition to the buffer (e.g., operational amplifier) and the switching module. Optionally, the voltage difference detection module may include a comparator.

如圖11所示,每個電壓差檢測模組DET的第一檢測端與對應的運算放大器的第一輸入端連接,第二檢測端與對應的動態緩衝器所連接的第二電壓輸入端點連接,每個電壓差檢測模組的輸出端輸出切換控制信號。 As shown in Figure 11, the first detection end of each voltage difference detection module DET is connected to the first input end of the corresponding operational amplifier, the second detection end is connected to the second voltage input end connected to the corresponding dynamic buffer, and the output end of each voltage difference detection module outputs a switching control signal.

每個切換模組被配置為基於對應的電壓差檢測模組的切換控制信號或其他電壓差檢測模組的切換控制信號,在所述第二模式下允許或在所述第一模式下禁止對應的運算放大器的輸出端向對應的動態緩衝器所連接的一個第二電壓輸入端點輸出緩衝電壓。 Each switching module is configured to allow the output terminal of the corresponding operational amplifier to output a buffer voltage to a second voltage input terminal connected to the corresponding dynamic buffer in the second mode or prohibit the output terminal of the corresponding operational amplifier in the first mode based on the switching control signal of the corresponding voltage difference detection module or the switching control signal of other voltage difference detection modules.

例如,如果任意一個或多個動態緩衝器中的電壓差檢測模組檢測到其兩個輸入端的輸入電壓不相同,例如,電壓差超過預定閾值(0或其他數值),則指示伽瑪電壓生成電路生成的多個伽瑪電壓可能不準確,此時需要重新建立和穩定伽瑪電壓,因此電壓差檢測模組可以輸出切換控制信號,從而控制這些動態緩衝器或其一部分共同工作在第二模式,以重新建立和穩定伽瑪電壓。 For example, if the voltage difference detection module in any one or more dynamic buffers detects that the input voltages of its two input terminals are different, for example, the voltage difference exceeds a predetermined threshold (0 or other values), it indicates that the multiple gamma voltages generated by the gamma voltage generation circuit may be inaccurate, and the gamma voltage needs to be reestablished and stabilized. Therefore, the voltage difference detection module can output a switching control signal to control these dynamic buffers or part of them to work together in the second mode to reestablish and stabilize the gamma voltage.

在圖11中,動態緩衝器的切換模組也可以採用如前面參考圖8-10中所示的切換模組的結構,例如,一個開關、三個開關的實施方式,以及動態緩衝器響應於使能信號的實施方式,如圖8-10所示。 In FIG11 , the switching module of the dynamic buffer may also adopt the structure of the switching module shown in the previous reference FIG8-10 , for example, an implementation of one switch, three switches, and an implementation of the dynamic buffer responding to an enable signal, as shown in FIG8-10 .

這樣,由電壓差檢測模組通過檢測出實際伽瑪電壓與期望伽瑪電壓的不同來控制動態緩衝器的模式切換。因此,第二模式的持續時間(例如,圖8中的開關SW的導通時間)可以基於伽瑪電壓產生器輸出的各個伽瑪電壓的穩定 表現來調整。例如,如果資料電壓以更大的準位變化,使得從伽瑪電壓生成電路的電阻器串汲取更多的電流,因此導致實際伽瑪電壓偏離期望伽瑪電壓更多,則可能需要控制使動態緩衝器操作在第二模式的持續時間更長,以提供更高的驅動能力,使得實際伽瑪電壓與期望伽瑪電壓相同。 In this way, the voltage difference detection module controls the mode switching of the dynamic buffer by detecting the difference between the actual gamma voltage and the expected gamma voltage. Therefore, the duration of the second mode (for example, the conduction time of the switch SW in FIG8 ) can be adjusted based on the stable performance of each gamma voltage output by the gamma voltage generator. For example, if the data voltage changes at a larger level, causing more current to be drawn from the resistor string of the gamma voltage generating circuit, thus causing the actual gamma voltage to deviate more from the desired gamma voltage, it may be necessary to control the dynamic buffer to operate in the second mode for a longer duration to provide higher drive capability so that the actual gamma voltage is the same as the desired gamma voltage.

可選地,雖然在很多情況下在每個源極驅動器電路中的每個動態緩衝器的結構是相同的,但是在另一些情況下並不需要如此,只要這些動態緩衝器能夠同步地進行模式切換即可。例如,並不需要在每個動態緩衝器中均設置電壓差檢測模組,某些動態緩衝器可以採用如例如圖8-10所述的結構。 Optionally, although in many cases the structure of each dynamic buffer in each source driver circuit is the same, in other cases this is not necessary, as long as the dynamic buffers can switch modes synchronously. For example, it is not necessary to set a voltage difference detection module in each dynamic buffer, and some dynamic buffers can adopt a structure such as described in Figures 8-10.

以上參考圖4以及圖5-11描述的伽瑪電壓產生器通過引入動態緩衝器,從而在需要重新建立和穩定伽瑪電壓時,通過使動態緩衝器輸出緩衝電壓,可以提高伽瑪電壓生成電路輸出的伽瑪電壓的驅動能力以及伽瑪電壓的建立和穩定速度,並且在伽瑪電壓建立和穩定之後使動態緩衝器不輸出緩衝電壓以避免引入伽瑪電壓的不希望的誤差。另外,通過在顯示資料改變時才改變動態緩衝器的工作模式,即從第一模式切換到第二模式,而在顯示資料未改變時不改變動態緩衝器的工作模式,因此可以節省總功耗。 The gamma voltage generator described in the above reference Figures 4 and 5-11 introduces a dynamic buffer, so that when the gamma voltage needs to be re-established and stabilized, the dynamic buffer is made to output the buffer voltage, thereby improving the driving ability of the gamma voltage output by the gamma voltage generating circuit and the speed of establishing and stabilizing the gamma voltage, and after the gamma voltage is established and stabilized, the dynamic buffer is made not to output the buffer voltage to avoid introducing unwanted errors in the gamma voltage. In addition, by changing the working mode of the dynamic buffer only when the display data changes, that is, switching from the first mode to the second mode, and not changing the working mode of the dynamic buffer when the display data does not change, the total power consumption can be saved.

以上引入動態緩衝器的實施例可以被認為是使伽瑪電壓生成電路輸出的伽瑪電壓的驅動能力增大,這在伽瑪電壓生成電路包括電阻串的另一些實施例中,也可以通過將電阻串的電阻值減小來等效實現。 The above embodiments of introducing a dynamic buffer can be considered to increase the driving capability of the gamma voltage output by the gamma voltage generating circuit. This can also be equivalently achieved by reducing the resistance value of the resistance string in other embodiments where the gamma voltage generating circuit includes a resistor string.

圖12A示出了根據本申請實施例的另一種伽瑪電壓產生器的示意圖。 FIG12A shows a schematic diagram of another gamma voltage generator according to an embodiment of the present application.

如圖12A所示,伽瑪電壓產生器1200(可以是圖2中的伽瑪電壓產生器)包括伽瑪電壓生成電路1210、多個緩衝器(1220-1、1220-2、...、1220-N,以下統稱為1220)。該伽瑪電壓產生器1200可以被包括在一個源極驅動器的積體電路(IC)中。 As shown in FIG. 12A , the gamma voltage generator 1200 (which may be the gamma voltage generator in FIG. 2 ) includes a gamma voltage generating circuit 1210 and a plurality of buffers (1220-1, 1220-2, ..., 1220-N, hereinafter collectively referred to as 1220). The gamma voltage generator 1200 may be included in an integrated circuit (IC) of a source driver.

伽瑪電壓生成電路1210具有多個電壓輸入端點IN和多個電壓輸出端 點O,該多個電壓輸出端點用於輸出基於來自該多個電壓輸入端點IN的輸入電壓的預定數量的伽瑪電壓。在一些伽瑪電壓生成電路為伽瑪電阻串的實施例(本實施例中的串聯的多個電阻器單元)中,每個電壓輸入端點可以連接到一個對應的電壓輸出端點,每個電壓輸入端點和對應的電壓輸出端點可以是同一個端點,例如,為伽瑪電阻串中相鄰電阻器單元之間的一個連接節點。 The gamma voltage generating circuit 1210 has a plurality of voltage input terminals IN and a plurality of voltage output terminals O, and the plurality of voltage output terminals are used to output a predetermined amount of gamma voltage based on the input voltage from the plurality of voltage input terminals IN. In some embodiments where the gamma voltage generating circuit is a gamma resistor string (a plurality of resistor units connected in series in this embodiment), each voltage input terminal can be connected to a corresponding voltage output terminal, and each voltage input terminal and the corresponding voltage output terminal can be the same terminal, for example, a connection node between adjacent resistor units in the gamma resistor string.

多個緩衝器1220(1220-1、1220-2、...、1220-N)分別電連接至該多個電壓輸入端點IN。這樣,在該伽瑪電壓產生器1200不與其他伽瑪電壓產生器連接、或者該伽瑪電壓產生器1200需要向其他伽瑪電壓產生器輸出緩衝電壓的情況下(如將在後文描述的兩個以上源極驅動器電路的情況時作為主電路),該伽瑪電壓產生器1200可以基於多個緩衝器的緩衝電壓而在多個電壓輸出端點O處輸出多個伽瑪電壓。並且,在該伽瑪電壓產生器1200與其他伽瑪電壓產生器連接但不需要向其他伽瑪電壓產生器輸出緩衝電壓的情況下(如將在後文描述的兩個以上源極驅動器電路的情況時作為從電路),該多個緩衝器可以不啟用或者僅啟用提供最大參考電壓和最低參考電壓的兩個緩衝器。 A plurality of buffers 1220 (1220-1, 1220-2, ..., 1220-N) are electrically connected to the plurality of voltage input terminals IN, respectively. Thus, when the gamma voltage generator 1200 is not connected to other gamma voltage generators, or the gamma voltage generator 1200 needs to output a buffer voltage to other gamma voltage generators (such as when the two or more source driver circuits described later are used as a main circuit), the gamma voltage generator 1200 can output a plurality of gamma voltages at a plurality of voltage output terminals O based on the buffer voltages of the plurality of buffers. Furthermore, when the gamma voltage generator 1200 is connected to other gamma voltage generators but does not need to output buffer voltage to other gamma voltage generators (such as when more than two source driver circuits are described later as slave circuits), the multiple buffers may not be enabled or only the two buffers providing the maximum reference voltage and the minimum reference voltage may be enabled.

為了提高伽瑪電壓的驅動能力,伽瑪電壓生成電路包括串聯的多個電阻器單元RVA,並且相鄰電阻器單元RVA的連接節點連接到或作為一個電壓輸出端點,每個電阻器單元被配置為在第一模式下具有第一電阻值,在第二模式下具有第二電阻值,且第二電阻值小於第一電阻值。圖中示意性地示出了用一個電阻器符號RS來表示多個電阻器單元RVA的組合。每個電阻器符號RS所表示的串聯的電阻器單元RVA的數量可以根據需要輸出的伽瑪電壓的數量來確定而不限於圖示的數量。 In order to improve the driving capability of the gamma voltage, the gamma voltage generating circuit includes a plurality of resistor units RVA connected in series, and the connection nodes of the adjacent resistor units RVA are connected to or used as a voltage output terminal, and each resistor unit is configured to have a first resistance value in the first mode and a second resistance value in the second mode, and the second resistance value is less than the first resistance value. The figure schematically shows a combination of a plurality of resistor units RVA represented by a resistor symbol RS. The number of resistor units RVA connected in series represented by each resistor symbol RS can be determined according to the number of gamma voltages to be output and is not limited to the number shown in the figure.

這樣,所述伽瑪電壓生成電路在每個電阻器單元RVA具有第一電阻值時輸出所述預定數量的伽瑪電壓所需要的第一時長大於在每個電阻器單元RVA具有第二電阻值時輸出所述預定數量的伽瑪電壓所需要的第二時長。 In this way, the first time required for the gamma voltage generating circuit to output the predetermined amount of gamma voltage when each resistor unit RVA has a first resistance value is greater than the second time required for outputting the predetermined amount of gamma voltage when each resistor unit RVA has a second resistance value.

與前面動態緩衝器的第一模式和第二模式相對應的,本實施例中的電阻器單元的第一模式也為待機模式,並且第二模式為觸發模式。例如,當需要重新建立和穩定伽瑪電壓產生器輸出的伽瑪電壓的情況下,電阻器單元工作在觸發模式,並且在伽瑪電壓產生器輸出的伽瑪電壓建立和穩定之後亦即不需要建立和穩定伽瑪電壓時,電阻器單元工作在待機模式。 Corresponding to the first mode and the second mode of the dynamic buffer described above, the first mode of the resistor unit in this embodiment is also the standby mode, and the second mode is the trigger mode. For example, when the gamma voltage output by the gamma voltage generator needs to be reestablished and stabilized, the resistor unit works in the trigger mode, and after the gamma voltage output by the gamma voltage generator is established and stabilized, that is, when the gamma voltage does not need to be established and stabilized, the resistor unit works in the standby mode.

這樣,在觸發模式(第二模式)中,伽瑪電壓生成電路中的每個電阻器單元RVA可以被配置為具有較小的電阻值,使得更多的電流可以快速流過串聯的多個電阻器單元,以更快地建立和穩定伽瑪電壓。在待機模式(第一模式)下,每個電阻器單元RVA可以被配置為具有較大的電阻值,因此可以降低整體功耗。 In this way, in the trigger mode (second mode), each resistor unit RVA in the gamma voltage generating circuit can be configured to have a smaller resistance value, so that more current can quickly flow through the multiple resistor units in series to establish and stabilize the gamma voltage more quickly. In the standby mode (first mode), each resistor unit RVA can be configured to have a larger resistance value, so the overall power consumption can be reduced.

可選地,圖12B示出了一個電阻器單元的示例電路結構。可選地,伽瑪電壓生成電路中的所有電阻器單元在第一模式下的電阻值都是相同的,並且在第二模式下的電阻值也是相同的,例如,所有電阻器單元可以具有相同的電路結構。 Optionally, FIG. 12B shows an example circuit structure of a resistor unit. Optionally, all resistor units in the gamma voltage generating circuit have the same resistance value in the first mode and the same resistance value in the second mode, for example, all resistor units may have the same circuit structure.

如圖12B所示,電阻器單元可以包括旁路開關SWB和串聯的多個電阻器,所述旁路開關SWB與所述多個電阻器中的至少一個電阻器(圖中示出為兩個)並聯連接,其中,所述旁路開關被配置為在所述第二模式導通,並且在所述第一模式下關斷。可見,在第二模式時電阻器單元中串聯的電阻器的電阻值(第二電阻值)小於在第一模式時電阻器單元中串聯的電阻器的電阻值(第一電阻值)。 As shown in FIG. 12B , the resistor unit may include a bypass switch SWB and a plurality of resistors connected in series, wherein the bypass switch SWB is connected in parallel with at least one resistor (two resistors are shown in the figure) of the plurality of resistors, wherein the bypass switch is configured to be turned on in the second mode and turned off in the first mode. It can be seen that in the second mode, the resistance value (second resistance value) of the resistor connected in series in the resistor unit is less than the resistance value (first resistance value) of the resistor connected in series in the resistor unit in the first mode.

可選地,與前面參考圖4-11描述的類似,從第一模式切換到第二模式也可以根據顯示資料的更新或者改變來控制。 Optionally, similar to the description above with reference to Figures 4-11, switching from the first mode to the second mode can also be controlled based on the update or change of the displayed data.

例如,在輸入到多個通道電路的顯示資料被更新時,串聯的多個電阻器單元可以切換到在第二模式下操作以快速的重新建立和穩定伽瑪電壓,並 持續預定時間段後串聯的多個電阻器單元返回到在第一模式下操作。 For example, when the display data input to the multiple channel circuit is updated, the multiple resistor units connected in series can be switched to operate in the second mode to quickly re-establish and stabilize the gamma voltage, and after a predetermined period of time, the multiple resistor units connected in series return to operate in the first mode.

可替換地,如前面所述,輸入到多個通道電路的顯示資料是週期性更新的(例如,基於水平同步信號Hsync或者掃描信號),因此在每個更新週期的起始點之前預定時長的時間點處,串聯的多個電阻器單元可以切換到在第二模式下操作以快速的重新建立和穩定伽瑪電壓,並持續預定時間段後串聯的多個電阻器單元返回到在第一模式下操作。 Alternatively, as described above, the display data input to the multiple channel circuits is updated periodically (for example, based on the horizontal synchronization signal Hsync or the scanning signal), so at a predetermined time point before the start point of each update cycle, the multiple resistor units connected in series can be switched to operate in the second mode to quickly re-establish and stabilize the gamma voltage, and after a predetermined period of time, the multiple resistor units connected in series return to operate in the first mode.

可替換地,如前面所述,在輸入到多個通道電路的顯示資料改變時,所述多個電阻器單元切換到所述第二模式下操作,並持續預定時間段後所述多個電阻器單元返回到所述第一模式下操作。這樣,可以進一步降低總功耗。在一些實施例中,源極驅動器內部的處理器可以確定顯示資料之間的改變。 Alternatively, as described above, when the display data input to the multiple channel circuits changes, the multiple resistor units switch to operate in the second mode, and after a predetermined period of time, the multiple resistor units return to operate in the first mode. In this way, the total power consumption can be further reduced. In some embodiments, the processor inside the source driver can determine the change between the display data.

因此,在參考圖12A-12B描述的伽瑪電壓產生器中,通過使得電阻器單元在第一模式下的電阻值大於第二模式下的電阻值,從而在第二模式中,伽瑪電壓生成電路中更多的電流可以快速流過串聯的多個電阻器單元,以更快地建立和穩定伽瑪電壓,並且在伽瑪電壓建立和穩定之後,又返回到在第一模式下操作,可以降低整體功耗。 Therefore, in the gamma voltage generator described with reference to FIGS. 12A-12B , by making the resistance value of the resistor unit in the first mode greater than the resistance value in the second mode, more current in the gamma voltage generating circuit can quickly flow through the multiple resistor units connected in series in the second mode to establish and stabilize the gamma voltage more quickly, and after the gamma voltage is established and stabilized, it returns to the operation in the first mode, which can reduce the overall power consumption.

根據另外一些實施例,可以將如前文描述的多個動態緩衝器和具有可變電阻值的多個電阻器單元共同結合到同一伽瑪電壓產生器中,例如,如圖13所示,伽瑪電壓產生器1200不僅包括多個動態緩衝器(用灰色圖案示出)和多個基本緩衝器(用白色示出),並且其包括的伽瑪電路生成電路1210包括串聯的多個電阻器單元RVA(具有可變電阻值)。動態緩衝器以及電阻器單元的工作時序以及具體結構已經在前文進行詳細描述,因此這裡不再重複。 According to some other embodiments, multiple dynamic buffers and multiple resistor units with variable resistance values as described above can be combined into the same gamma voltage generator. For example, as shown in FIG. 13 , the gamma voltage generator 1200 includes not only multiple dynamic buffers (shown in gray) and multiple basic buffers (shown in white), but also the gamma circuit generating circuit 1210 includes multiple resistor units RVA (with variable resistance values) connected in series. The working timing and specific structure of the dynamic buffer and the resistor unit have been described in detail above, so they will not be repeated here.

因此,在第二模式中,該多個動態緩衝器可以連同基本緩衝器一起連接到伽瑪電壓生成電路1210(包括串聯的多個電阻器單元),同時伽瑪電壓生成電路1210包括的多個電阻器單元可以具有較小的電阻值(例如旁路開關被接 通)。這樣,將動態緩衝器和具有可變電阻值的電阻器單元的結合的方案可以進一步減少伽瑪電壓的建立和穩定時間,並提高伽瑪電壓產生器輸出的伽瑪電壓的驅動能力。這種實施方式可以允許顯示裝置以超高的幀率運行。 Therefore, in the second mode, the multiple dynamic buffers can be connected to the gamma voltage generating circuit 1210 (including multiple resistor units connected in series) together with the basic buffer, and the multiple resistor units included in the gamma voltage generating circuit 1210 can have a smaller resistance value (for example, the bypass switch is turned on). In this way, the combination of the dynamic buffer and the resistor unit with a variable resistance value can further reduce the establishment and stabilization time of the gamma voltage and improve the driving capability of the gamma voltage output by the gamma voltage generator. This implementation method can allow the display device to operate at an ultra-high frame rate.

根據本申請的另一方面,提供了一種源極驅動器,該源極驅動器可以包括一個如前面所述的伽瑪電壓產生器(例如,參考圖4-13所述的),例如,該伽瑪電壓產生器可以被集成到一個源極驅動器電路(IC)中。 According to another aspect of the present application, a source driver is provided, which may include a gamma voltage generator as described above (e.g., as described with reference to FIG. 4-13), for example, the gamma voltage generator may be integrated into a source driver circuit (IC).

另外,在一些其他應用場景中,例如具有軟性顯示面板的折疊手機,顯示面板的尺寸越來越大,因此源極驅動器可以包括兩個以上的源極驅動器電路(各自包括伽瑪電壓產生器)來驅動相同的顯示面板,例如如圖3B所示的那樣。 In addition, in some other application scenarios, such as a foldable mobile phone with a flexible display panel, the size of the display panel is getting larger and larger, so the source driver may include more than two source driver circuits (each including a gamma voltage generator) to drive the same display panel, such as shown in FIG. 3B .

在源極驅動器可以包括兩個以上的源極驅動器電路時,其中的至少一個源極驅動器中的伽瑪電壓產生器可以採用如參考圖4描述的伽瑪電壓產生器的結構,並且相應地可以利用參考圖5-11描述的模式切換時序以及切換方式等等。經由源極驅動器電路的電力傳輸端子之間的導線向其他源極驅動器電路提供緩衝電壓的源極驅動器電路可以視為是主電路,而其他源極驅動器電路可以視為是從電路。 When the source driver may include more than two source driver circuits, the gamma voltage generator in at least one of the source drivers may adopt the structure of the gamma voltage generator described in reference to FIG. 4, and correspondingly, the mode switching timing and switching method described in reference to FIG. 5-11 may be used. The source driver circuit that provides a buffer voltage to other source driver circuits via the wires between the power transmission terminals of the source driver circuit may be regarded as a master circuit, and the other source driver circuits may be regarded as slave circuits.

例如,在基於動態緩衝器的方案中,如圖14所示,源極驅動器1400可以包括第一源極驅動器電路(IC1)和第二源極驅動器電路(IC2)。第一源極驅動器電路可以視為主電路,並且第二源極驅動器電路可以視為從電路。 For example, in a dynamic buffer-based solution, as shown in FIG14 , the source driver 1400 may include a first source driver circuit (IC1) and a second source driver circuit (IC2). The first source driver circuit may be regarded as a master circuit, and the second source driver circuit may be regarded as a slave circuit.

第一源極驅動器電路(IC1)包括的伽瑪電壓產生器1400-1(第一伽瑪電壓產生器)和第二源極驅動器(IC2)包括的第二伽瑪電壓產生器1400-2中的至少一者可以採用參考圖4描述的伽瑪電壓產生器400的結構。 At least one of the gamma voltage generator 1400-1 (first gamma voltage generator) included in the first source driver circuit (IC1) and the second gamma voltage generator 1400-2 included in the second source driver (IC2) may adopt the structure of the gamma voltage generator 400 described with reference to FIG. 4.

在圖14中示例性地示出了第一伽瑪電壓產生器1400-1採用參考圖4描述的伽瑪電壓產生器400的結構,同時第二伽瑪電壓產生器1400-2可以採用參 考圖4描述的伽瑪電壓產生器201的結構或者採用其他結構(例如,如相關技術中那樣所採用的緩衝器全部都為基本緩衝器的結構)的情況。但是應理解,在其他實施例中,也可以是第二伽瑪電壓產生器1400-2採用參考圖4描述的伽瑪電壓產生器201的結構,而第一伽瑪電壓產生器1400-1採用參考圖4描述的伽瑪電壓產生器201的結構或者其他結構。根據本公開實施例,兩個伽瑪電壓產生器可能結構不同,但是它們輸出的伽瑪電壓的數量和電壓值應該是相同的。可選地,作為從電路的源極驅動器電路由於可以從作為主電路的源極驅動器電路接收緩衝電壓,其甚至可以不包括基本緩衝器(或者只包括向其包括的伽瑪電壓生成電路提供最大伽瑪參考電壓和最小伽瑪參考電壓的兩個基本緩衝器)。考慮到在兩個源極驅動器電路的伽瑪電壓產生器的結構不同的情況下,兩個源極驅動器電路中的伽瑪電壓產生器輸出的伽瑪電壓的建立和穩定時間可能不一致,這可能導致顯示圖像中的色差問題;此外,考慮到生產成本和設計複雜度,一般各個源極驅動器電路的伽瑪電壓產生器採用相同結構,因此,第一伽瑪電壓產生器1400-1和第二伽瑪電壓產生器1400-2可以採用相同的伽瑪電壓產生器的結構。 FIG14 exemplarily shows a case where the first gamma voltage generator 1400-1 adopts the structure of the gamma voltage generator 400 described with reference to FIG4 , and the second gamma voltage generator 1400-2 may adopt the structure of the gamma voltage generator 201 described with reference to FIG4 or adopt other structures (for example, all buffers used are basic buffer structures as in the related art). However, it should be understood that in other embodiments, the second gamma voltage generator 1400-2 may adopt the structure of the gamma voltage generator 201 described with reference to FIG4 , and the first gamma voltage generator 1400-1 may adopt the structure of the gamma voltage generator 201 described with reference to FIG4 or other structures. According to the disclosed embodiment, the two gamma voltage generators may have different structures, but the number and voltage value of the gamma voltages they output should be the same. Optionally, the source driver circuit as a slave circuit can receive the buffer voltage from the source driver circuit as a master circuit, and it may not even include a basic buffer (or only include two basic buffers that provide the maximum gamma reference voltage and the minimum gamma reference voltage to the gamma voltage generating circuit included therein). Considering that the structures of the gamma voltage generators of the two source driver circuits are different, the establishment and stabilization time of the gamma voltage output by the gamma voltage generators in the two source driver circuits may be inconsistent, which may cause color difference problems in the displayed image; in addition, considering the production cost and design complexity, the gamma voltage generators of each source driver circuit generally adopt the same structure, so the first gamma voltage generator 1400-1 and the second gamma voltage generator 1400-2 can adopt the same gamma voltage generator structure.

因此,作為示例,在第一伽瑪電壓產生器1400-1和第二伽瑪電壓產生器1400-2均採用參考圖4描述的伽瑪電壓產生器的結構時,第一伽瑪電壓產生器1400-1包括的多個基本緩衝器可以向對應的多個第一電壓輸入端點輸出第一組緩衝電壓,並且向第二伽瑪電壓產生器1400-2傳遞,然後第二伽瑪電壓產生器1400-2可以被配置為從第一伽瑪電壓產生器1400-1接收第一組緩衝電壓(例如,經由如前面所述的電力傳輸端子P-P’之間的電連接),用於輸出第二預定數量的伽瑪電壓。由於第一伽瑪電壓產生器1400-1包括的多個基本緩衝器是保持輸出第一組緩衝電壓的,因此可以持續向第二伽瑪電壓產生器1400-2提供該第一組緩衝電壓。應注意,第一源極驅動器電路(IC1)的每個電力傳輸端子P(作為輸出端子)連接到伽瑪電壓生成電路1411的對應的電壓輸出端點以及對應的第一電 壓輸入節點,從而可以從對應的一個基本緩衝器接收緩衝電壓,並將該緩衝電壓作為該電力傳輸端子P處的輸出電壓。 Therefore, as an example, when the first gamma voltage generator 1400-1 and the second gamma voltage generator 1400-2 both adopt the structure of the gamma voltage generator described with reference to FIG. 4, the multiple basic buffers included in the first gamma voltage generator 1400-1 can output a first group of buffer voltages to the corresponding multiple first voltage input terminals, and transmit them to the second gamma voltage generator 1400-2, and then the second gamma voltage generator 1400-2 can be configured to receive the first group of buffer voltages from the first gamma voltage generator 1400-1 (for example, via the electrical connection between the power transmission terminals P-P’ as described above) for outputting a second predetermined amount of gamma voltage. Since the first gamma voltage generator 1400-1 includes a plurality of basic buffers that keep outputting the first group of buffer voltages, the first group of buffer voltages can be continuously provided to the second gamma voltage generator 1400-2. It should be noted that each power transmission terminal P (as an output terminal) of the first source driver circuit (IC1) is connected to the corresponding voltage output terminal of the gamma voltage generating circuit 1411 and the corresponding first voltage input node, so that the buffer voltage can be received from the corresponding basic buffer and used as the output voltage at the power transmission terminal P.

所述第二伽瑪電壓產生器1400-2與第一伽瑪電壓產生器1400-1的結構相同,包括:第二伽瑪電壓生成電路1412、多個基本緩衝器(即,第二集合的基本緩衝器)和多個動態緩衝器(即,第二集合的動態緩衝器)。其中,第二伽瑪電壓生成電路1412具有第二集合的第一電壓輸入端點、第二集合的第二電壓輸入端點、第二集合的電壓輸出端點;第二集合的基本緩衝器的輸入端分別接收對應的伽瑪參考電壓,輸出端分別連接至所述第二集合的第一電壓輸入端點;以及第二集合的動態緩衝器的輸入端分別接收對應的伽瑪參考電壓,輸出端分別連接至所述第二集合的第二電壓輸入端點,並且被配置為與第一伽瑪電壓產生器1400-1中的所述多個動態緩衝器同步地在第一模式或第二模式下操作。應注意,本申請使用“第二集合”的某種元件的表述是為了與第一伽瑪電壓生成電路1411中包括的多個相應元件(即,“第一集合”的某種元件)的表述進行區分。 The second gamma voltage generator 1400-2 has the same structure as the first gamma voltage generator 1400-1, including: a second gamma voltage generating circuit 1412, a plurality of basic buffers (ie, a second set of basic buffers) and a plurality of dynamic buffers (ie, a second set of dynamic buffers). Among them, the second gamma voltage generating circuit 1412 has a first voltage input terminal of a second set, a second voltage input terminal of a second set, and a voltage output terminal of a second set; the input terminals of the basic buffers of the second set respectively receive corresponding gamma reference voltages, and the output terminals are respectively connected to the first voltage input terminals of the second set; and the input terminals of the dynamic buffers of the second set respectively receive corresponding gamma reference voltages, and the output terminals are respectively connected to the second voltage input terminals of the second set, and are configured to operate in the first mode or the second mode synchronously with the multiple dynamic buffers in the first gamma voltage generator 1400-1. It should be noted that the present application uses the expression of a certain element of the "second set" to distinguish it from the expression of a plurality of corresponding elements included in the first gamma voltage generating circuit 1411 (i.e., a certain element of the "first set").

第二伽瑪電壓產生器1400-2包括的第二伽瑪電壓生成電路1412的所述第二集合的第一電壓輸入端點接收來自第一伽瑪電壓產生器1400-1的所述第一組緩衝電壓,並且所述第二集合的動態緩衝器在第二模式下向所述第二集合的第二電壓輸入端點輸出第二組緩衝電壓,在第一模式時不輸出所述第二組緩衝電壓,並且第二伽瑪電壓生成電路1412基於所述第一組緩衝電壓和所述第二組緩衝電壓(在第二模式下)或者基於所述第一組緩衝電壓(在第一模式下),在第二伽瑪電壓產生器1400-2的所述第二集合的電壓輸出端點處輸出所述第二預定數量的伽瑪電壓。 The second gamma voltage generator 1400-2 includes a second gamma voltage generating circuit 1412, the second set of first voltage input terminals receiving the first set of buffer voltages from the first gamma voltage generator 1400-1, and the second set of dynamic buffers outputs a second set of buffer voltages to the second voltage input terminals of the second set in the second mode. The second group of buffer voltages is not output when the second group of buffer voltages is in the second mode, and the second gamma voltage generating circuit 1412 outputs the second predetermined amount of gamma voltage at the voltage output terminal of the second set of the second gamma voltage generator 1400-2 based on the first group of buffer voltages and the second group of buffer voltages (in the second mode) or based on the first group of buffer voltages (in the first mode).

也就是說,在需要重新建立和穩定伽瑪電壓的情況下,第一伽瑪電壓產生器1400-1和第二伽瑪電壓產生器1400-2中的動態緩衝器(全部或者一部 分,根據系統要求而設置)在第二模式下工作,以輸出緩衝電壓,並且第一伽瑪電壓產生器1400-1的基本緩衝器輸出的第一組緩衝電壓被提供到第二伽瑪電壓產生器1400-2,使得第二伽瑪電壓產生器1400-2可以基於自己包括的動態緩衝器輸出的第二組緩衝電壓以及來自第一伽瑪電壓產生器1400-1的第一組緩衝電壓來生成伽瑪電壓,從而相對於僅基於來自第一伽瑪電壓產生器1400-1的第一組緩衝電壓的情況第二伽瑪電壓產生器1400-2可以在一定程度上加快伽瑪電壓的建立和穩定速度,因此兩個源極驅動器電路中的伽瑪電壓的建立和穩定時間可以接近,因此可以降低顯示色差,從而提高顯示效果。 That is, in the case where the gamma voltage needs to be reestablished and stabilized, the dynamic buffers (all or part thereof, set according to system requirements) in the first gamma voltage generator 1400-1 and the second gamma voltage generator 1400-2 operate in the second mode to output the buffer voltage, and the first group of buffer voltages output by the basic buffer of the first gamma voltage generator 1400-1 is provided to the second gamma voltage generator 1400-2, so that the second gamma voltage generator 1400-2 can be based on the second gamma voltage generator 1400-1. The second group of buffer voltages output by the dynamic buffer and the first group of buffer voltages from the first gamma voltage generator 1400-1 are used to generate the gamma voltage, so that the second gamma voltage generator 1400-2 can accelerate the establishment and stabilization speed of the gamma voltage to a certain extent compared with the case of only based on the first group of buffer voltages from the first gamma voltage generator 1400-1, so the establishment and stabilization time of the gamma voltages in the two source driver circuits can be close, so the display color difference can be reduced, thereby improving the display effect.

又例如圖15,在基於具有可變電阻值的電阻器單元的方案中,第一源極驅動器電路(IC1)包括的伽瑪電壓產生器1500-1(第一伽瑪電壓產生器)和第二源極驅動器(IC2)包括的第二伽瑪電壓產生器1500-2中的至少一者可以採用參考圖12A-12B描述的伽瑪電壓產生器201的結構,並且相應地可以利用參考圖5-11描述的模式切換時序以及切換方式等等。經由源極驅動器電路的電力傳輸端子之間的導線向其他源極驅動器電路提供緩衝電壓的源極驅動器電路可以視為是主電路,而其他源極驅動器電路可以視為是從電路。 As another example, in FIG15 , in a solution based on a resistor unit with a variable resistance value, at least one of a gamma voltage generator 1500-1 (first gamma voltage generator) included in the first source driver circuit (IC1) and a second gamma voltage generator 1500-2 included in the second source driver (IC2) can adopt the structure of the gamma voltage generator 201 described in reference FIGS. 12A-12B , and correspondingly can utilize the mode switching timing and switching method described in reference FIGS. 5-11 , etc. A source driver circuit that provides a buffer voltage to other source driver circuits via wires between power transmission terminals of the source driver circuit can be regarded as a master circuit, and other source driver circuits can be regarded as slave circuits.

在圖15中示例性地示出了第一伽瑪電壓產生器1500-1採用參考圖12A-12B描述的伽瑪電壓產生器1200的結構,同時第二伽瑪電壓產生器1500-2可以採用參考圖12A-12B描述的伽瑪電壓產生器1200的結構,或者採用其他結構的情況。但是應理解,在其他實施例中,第二伽瑪電壓產生器1500-2可以採用參考圖12A-12B描述的伽瑪電壓產生器1200的結構,而第一伽瑪電壓產生器1500-1採用參考圖12A-12R描述的伽瑪電壓產生器1200的結構或者其他結構(例如,如相關技術中那樣所採用的電阻串結構)。兩個伽瑪電壓產生器可能結構不同,但是它們輸出的伽瑪電壓的數量和電壓值應該是相同的。可選地,作為從電路的源極驅動器電路由於可以從作為主電路的源極驅動器電路接收緩衝電壓,其甚至 可以不包括緩衝器(或者只包括向其包括的伽瑪電壓生成電路提供最大伽瑪參考電壓和最小伽瑪參考電壓的兩個緩衝器)。 FIG15 exemplarily shows that the first gamma voltage generator 1500-1 adopts the structure of the gamma voltage generator 1200 described with reference to FIGS. 12A-12B , while the second gamma voltage generator 1500-2 may adopt the structure of the gamma voltage generator 1200 described with reference to FIGS. 12A-12B , or adopt other structures. However, it should be understood that in other embodiments, the second gamma voltage generator 1500-2 may adopt the structure of the gamma voltage generator 1200 described with reference to FIGS. 12A-12B , while the first gamma voltage generator 1500-1 may adopt the structure of the gamma voltage generator 1200 described with reference to FIGS. 12A-12R or other structures (e.g., a resistor string structure as used in the related art). The two gamma voltage generators may have different structures, but the number and voltage value of the gamma voltages they output should be the same. Alternatively, the source driver circuit as a slave circuit can receive the buffer voltage from the source driver circuit as a master circuit, and it may not even include a buffer (or only include two buffers that provide the maximum gamma reference voltage and the minimum gamma reference voltage to the gamma voltage generating circuit included therein).

類似地,如前面所述,出於顯示效果以及生產成本和設計複雜度的考慮,因此,第一伽瑪電壓產生器1500-1和第二伽瑪電壓產生器1500-2可以採用相同的伽瑪電壓產生器的結構。 Similarly, as mentioned above, considering the display effect, production cost and design complexity, the first gamma voltage generator 1500-1 and the second gamma voltage generator 1500-2 can adopt the same gamma voltage generator structure.

因此,作為示例,在第一伽瑪電壓產生器1500-1和第二伽瑪電壓產生器1500-2均採用參考圖12A-12B描述的伽瑪電壓產生器的結構時,第一伽瑪電壓產生器1500-1包括的多個緩衝器可以向對應的多個電壓輸入端點輸出第一組緩衝電壓,然後第二伽瑪電壓產生器1500-2可以被配置為從第一伽瑪電壓產生器1500-1接收該第一組緩衝電壓,用於輸出第二預定數量的伽瑪電壓。 Therefore, as an example, when the first gamma voltage generator 1500-1 and the second gamma voltage generator 1500-2 both adopt the structure of the gamma voltage generator described with reference to FIGS. 12A-12B, the first gamma voltage generator 1500-1 includes a plurality of buffers that can output a first set of buffer voltages to the corresponding plurality of voltage input terminals, and then the second gamma voltage generator 1500-2 can be configured to receive the first set of buffer voltages from the first gamma voltage generator 1500-1 for outputting a second predetermined amount of gamma voltage.

所述第二伽瑪電壓產生器1500-2與第一伽瑪電壓產生器1500-1的結構相同,包括:第二伽瑪電壓生成電路、第二集合的緩衝器,其中,第二伽瑪電壓生成電路具有第二集合的電壓輸入端點和第二集合的電壓輸出端點;第二集合的緩衝器的輸入端分別接收對應的伽瑪參考電壓,輸出端分別連接至所述第二集合的電壓輸入端點;所述第二集合的電壓輸入端點接收來自第一伽瑪電壓產生器1500-1的所述緩衝電壓,並且其中,所述第二伽瑪電壓生成電路1512包括串聯的第二集合的電阻器單元,並且相鄰電阻器單元的連接節點連接到或作為一個電壓輸出端點,每個電阻器單元被配置與第一伽瑪電壓產生器1500-1中的電阻器單元同步地在第一模式和第二模式之間切換。 The second gamma voltage generator 1500-2 has the same structure as the first gamma voltage generator 1500-1, including: a second gamma voltage generating circuit, a second set of buffers, wherein the second gamma voltage generating circuit has a second set of voltage input terminals and a second set of voltage output terminals; the input terminals of the second set of buffers respectively receive corresponding gamma reference voltages, and the output terminals are respectively connected to the voltage input terminals of the second set; the second The voltage input terminal of the set receives the buffer voltage from the first gamma voltage generator 1500-1, and wherein the second gamma voltage generating circuit 1512 includes a second set of resistor units connected in series, and the connection nodes of adjacent resistor units are connected to or serve as a voltage output terminal, and each resistor unit is configured to switch between the first mode and the second mode synchronously with the resistor unit in the first gamma voltage generator 1500-1.

也就是說,在需要重新建立和穩定伽瑪電壓的情況下,第二伽瑪電壓產生器1500-2中的電阻器單元在第二模式下操作,以在較小的電阻值的情況下基於來自第一伽瑪電壓產生器1500-1的緩衝電壓來生成伽瑪電壓,從而相對於不設置具有可變電阻值的電阻器單元的情況第二伽瑪電壓產生器1500-2可以在一定程度上加快伽瑪電壓的建立和穩定速度,因此兩個源極驅動器電路中的伽瑪 電壓的建立和穩定時間可以接近,因此可以降低顯示色差,使得顯示更均勻,從而提高顯示效果。 That is, when the gamma voltage needs to be reestablished and stabilized, the resistor unit in the second gamma voltage generator 1500-2 operates in the second mode to generate the gamma voltage based on the buffer voltage from the first gamma voltage generator 1500-1 at a smaller resistance value, so that the second gamma voltage generator 1500-2 can speed up the establishment and stabilization speed of the gamma voltage to a certain extent compared to the case where the resistor unit with a variable resistance value is not provided, so the establishment and stabilization time of the gamma voltage in the two source driver circuits can be close, so the display color difference can be reduced, the display is more uniform, and the display effect is improved.

此外,應注意,雖然在圖14-15中以示例的方式描述了在源極驅動器可以包括兩個源極驅動器電路時,其中的至少一個源極驅動器電路採用基於動態緩衝器的方案或者基於可變電阻器單元的方案,但是應理解,源極驅動器可以包括更多個源極驅動器電路,並且其中的至少一個源極驅動器電路採用基於動態緩衝器的方案或者基於可變電阻器單元的方案。此外,該至少一個源極驅動器電路可以採用基於動態緩衝器的方案和基於可變電阻器單元的方案兩者,例如該至少一個源極驅動器電路可以包括如圖13所示的伽瑪電壓產生器。 In addition, it should be noted that although it is described in an exemplary manner in FIGS. 14-15 that when the source driver may include two source driver circuits, at least one of the source driver circuits adopts a solution based on a dynamic buffer or a solution based on a variable resistor unit, it should be understood that the source driver may include more source driver circuits, and at least one of the source driver circuits adopts a solution based on a dynamic buffer or a solution based on a variable resistor unit. In addition, the at least one source driver circuit may adopt both a solution based on a dynamic buffer and a solution based on a variable resistor unit, for example, the at least one source driver circuit may include a gamma voltage generator as shown in FIG. 13.

另外,如果每個源極驅動器電路內部的伽瑪電壓產生器建立和穩定伽瑪電壓的速度都足夠快,那麽源極驅動器電路的伽瑪電壓產生器之間建立和穩定伽瑪電壓的時間的差異也很小,可以視為是一致的。因此在源極驅動器可以包括至少兩個源極驅動器電路時,每個源極驅動電路可以隨機地被設置為基於動態緩衝器的方案(例如圖4)、基於可變電阻器單元的方案(例如圖12)以及基於動態緩衝器和可變電阻器單元的方案(例如圖13)中的任何一種。 In addition, if the speed of the gamma voltage generator inside each source driver circuit to establish and stabilize the gamma voltage is fast enough, then the difference in the time for establishing and stabilizing the gamma voltage between the gamma voltage generators of the source driver circuit is also small and can be considered to be consistent. Therefore, when the source driver can include at least two source driver circuits, each source driver circuit can be randomly set to any one of a dynamic buffer-based solution (such as Figure 4), a variable resistor unit-based solution (such as Figure 12), and a dynamic buffer and a variable resistor unit-based solution (such as Figure 13).

應瞭解,源極驅動器進一步可以包含其它電路,所述其它電路配置成與源極驅動器中的每個源極驅動器電路的伽瑪電壓產生器協作以產生伽瑪電壓且以驅動顯示面板。本領域具通常知識者將瞭解如圖2到圖15中所示出的其它電路的結構和操作,因此本文省略關於其它電路的詳細描述。 It should be understood that the source driver may further include other circuits configured to cooperate with the gamma voltage generator of each source driver circuit in the source driver to generate a gamma voltage and drive the display panel. A person skilled in the art will understand the structure and operation of the other circuits as shown in Figures 2 to 15, so a detailed description of the other circuits is omitted herein.

相應地,本申請的另一方面還提供了一種顯示裝置,該顯示裝置可以是如圖1所示的顯示裝置,並且包括顯示面板以及源極驅動器,其中該源極驅動器可以包括如參考圖4-13描述的一個伽瑪電壓產生器,或者包括至少兩個伽瑪電壓產生器,其中所述至少兩個伽瑪電壓產生器中的至少一個伽瑪電壓產生器是如參考圖4-13描述的伽瑪電壓產生器或者均是如參考圖4-13描述的伽瑪電壓 產生器。 Correspondingly, another aspect of the present application further provides a display device, which may be a display device as shown in FIG. 1, and includes a display panel and a source driver, wherein the source driver may include a gamma voltage generator as described in reference to FIG. 4-13, or include at least two gamma voltage generators, wherein at least one of the at least two gamma voltage generators is a gamma voltage generator as described in reference to FIG. 4-13, or both are gamma voltage generators as described in reference to FIG. 4-13.

本領域具通常知識者將明白,在不脫離本公開的範圍或精神的情況下,可對所公開的實施例的結構進行各種修改和變化。鑒於前述內容,希望本公開涵蓋屬於所附發明申請專利範圍和其等效物的範圍內的本公開的修改和變化。 Those with ordinary knowledge in the art will understand that various modifications and changes can be made to the structure of the disclosed embodiments without departing from the scope or spirit of this disclosure. In view of the foregoing, it is hoped that this disclosure will cover modifications and changes of this disclosure that fall within the scope of the attached invention application and its equivalents.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above is only the preferred embodiment of the present invention. All equivalent changes and modifications made within the scope of the patent application of the present invention shall fall within the scope of the present invention.

1200:伽瑪電壓產生器 1200: Gamma voltage generator

310:伽瑪參考電壓電路 310: Gamma reference voltage circuit

1220:緩衝器 1220: Buffer

1210:伽瑪電壓生成電路 1210: Gamma voltage generation circuit

O:電壓輸出端點 O: Voltage output terminal

IN:電壓輸入端點 IN: voltage input terminal

RVA:電阻器單元 RVA: Resistor unit

RS:多個電阻器單元 RS: Multiple resistor units

Claims (13)

一種伽瑪電壓產生器,包括:伽瑪電壓生成電路,具有多個電壓輸入端點和多個電壓輸出端點,所述多個電壓輸出端點輸出基於來自所述多個電壓輸入端點的輸入電壓的預定數量的伽瑪電壓;以及多個緩衝器,每個緩衝器的輸入端接收對應的伽瑪參考電壓,並且輸出端連接到對應的電壓輸入端點,其中,所述伽瑪電壓生成電路包括串聯的多個電阻器單元,並且相鄰電阻器單元的連接節點作為或連接到一個電壓輸出端點,每個電阻器單元被配置為在第二模式下操作時的第二電阻值小於在第一模式下操作時的第一電阻值,其中,所述第一模式是待機模式,並且第二模式是觸發模式,其中,所述觸發模式適用於所生成的所述預定數量的伽瑪電壓穩定前的時段,並且所述待機模式適用於所生成的所述預定數量的伽瑪電壓穩定後的時段。 A gamma voltage generator comprises: a gamma voltage generating circuit having a plurality of voltage input terminals and a plurality of voltage output terminals, the plurality of voltage output terminals outputting a predetermined amount of gamma voltage based on input voltages from the plurality of voltage input terminals; and a plurality of buffers, each buffer having an input terminal receiving a corresponding gamma reference voltage and an output terminal connected to the corresponding voltage input terminal, wherein the gamma voltage generating circuit comprises a plurality of resistor units connected in series, and adjacent resistor units are connected to each other. The connection node of the resistor unit serves as or is connected to a voltage output terminal, and each resistor unit is configured to have a second resistance value when operating in a second mode that is less than a first resistance value when operating in a first mode, wherein the first mode is a standby mode, and the second mode is a trigger mode, wherein the trigger mode is applicable to a period before the predetermined amount of gamma voltage generated is stabilized, and the standby mode is applicable to a period after the predetermined amount of gamma voltage generated is stabilized. 根據請求項1所述的伽瑪電壓產生器,其中,每個電阻器單元包括旁路開關和串聯的多個電阻器,所述旁路開關與所述多個電阻器中的至少一個電阻器並聯連接,其中,所述旁路開關被配置為在所述第二模式導通,並且在所述第一模式下關斷。 A gamma voltage generator according to claim 1, wherein each resistor unit comprises a bypass switch and a plurality of resistors connected in series, the bypass switch being connected in parallel with at least one of the plurality of resistors, wherein the bypass switch is configured to be turned on in the second mode and turned off in the first mode. 根據請求項1所述的伽瑪電壓產生器,其中,所述伽瑪電壓生成電路與多個通道電路連接,每個通道電路用於根據輸入的顯示資料選擇所述預定數量的伽瑪電壓中的至少一者生成對應的資料 電壓。 According to the gamma voltage generator described in claim 1, the gamma voltage generating circuit is connected to a plurality of channel circuits, and each channel circuit is used to select at least one of the predetermined number of gamma voltages according to the input display data to generate a corresponding data voltage. 根據請求項3所述的伽瑪電壓產生器,其中,在輸入到所述多個通道電路的顯示資料被更新時所述多個電阻器單元切換到所述第二模式下操作,並在持續預定時間段後切換到在所述第一模式下操作。 A gamma voltage generator according to claim 3, wherein the plurality of resistor units switch to operate in the second mode when the display data input to the plurality of channel circuits is updated, and switch to operate in the first mode after a predetermined period of time. 根據請求項3所述的伽瑪電壓產生器,其中,輸入到所述多個通道電路的顯示資料是週期性更新的,所述多個電阻器單元在每個更新週期的起始點之前預定時長的時間點處切換到所述第二模式下操作,並且在持續預定時間段後切換到在所述第一模式下操作。 According to the gamma voltage generator described in claim 3, the display data input to the multiple channel circuits is updated periodically, and the multiple resistor units are switched to operate in the second mode at a time point predetermined time before the start point of each update cycle, and are switched to operate in the first mode after a predetermined time period. 根據請求項3所述的伽瑪電壓產生器,其中,所述多個電阻器單元在輸入到所述多個通道電路的顯示資料改變時切換到所述第二模式下操作,並且在持續預定時間後切換到在所述第一模式下操作。 A gamma voltage generator according to claim 3, wherein the plurality of resistor units switch to operate in the second mode when the display data input to the plurality of channel circuits changes, and switch to operate in the first mode after a predetermined period of time. 根據請求項1所述的伽瑪電壓產生器,其中,所述伽瑪電壓生成電路包括的所述多個電阻器單元同步地在所述第一模式和第二模式之間切換。 A gamma voltage generator according to claim 1, wherein the plurality of resistor units included in the gamma voltage generating circuit are synchronously switched between the first mode and the second mode. 根據請求項1所述的伽瑪電壓產生器,其中,所述伽瑪電壓生成電路還具有多個第二電壓輸入端點;所述伽瑪電壓產生器還包括: 多個動態緩衝器,每個動態緩衝器的輸入端接收對應的伽瑪參考電壓,並且輸出端連接到對應的第二電壓輸入端點,並且其中每個動態緩衝器在所述多個電阻器單元在第一模式下操作時不輸出緩衝電壓,並且在所述多個電阻器單元在第二模式下操作時輸出緩衝電壓至所連接的第二電壓輸入端點。 According to the gamma voltage generator of claim 1, the gamma voltage generating circuit also has a plurality of second voltage input terminals; the gamma voltage generator further comprises: A plurality of dynamic buffers, each of which receives a corresponding gamma reference voltage at its input terminal and is connected to a corresponding second voltage input terminal at its output terminal, and each of which does not output a buffer voltage when the plurality of resistor units operate in the first mode, and outputs a buffer voltage to the connected second voltage input terminal when the plurality of resistor units operate in the second mode. 根據請求項8所述的伽瑪電壓產生器,其中,每個動態緩衝器包括緩衝器和切換模組,每個動態緩衝器的切換模組被配置為:在所述多個電阻器單元在第一模式下操作時禁止並且在所述多個電阻器單元在第二模式下操作時允許所述動態緩衝器包括的緩衝器向所述動態緩衝器所連接的第二電壓輸入端點輸出緩衝電壓。 A gamma voltage generator according to claim 8, wherein each dynamic buffer comprises a buffer and a switching module, and the switching module of each dynamic buffer is configured to: prohibit when the plurality of resistor units operate in the first mode and allow the buffer included in the dynamic buffer to output a buffer voltage to the second voltage input terminal to which the dynamic buffer is connected when the plurality of resistor units operate in the second mode. 根據請求項8所述的伽瑪電壓產生器,其中,每個動態緩衝器包括緩衝器、切換模組和電壓差檢測模組,每個動態緩衝器的電壓差檢測模組的第一檢測端與所述動態緩衝器包括的緩衝器的第一輸入端連接,第二檢測端與所述動態緩衝器所連接的第二電壓輸入端點連接,輸出端輸出切換控制信號;以及每個動態緩衝器的切換模組被配置為基於所述動態緩衝器包括的電壓差檢測模組或其他電壓差檢測模組的切換控制信號,在所述多個電阻器單元在第二模式下操作時允許或在所述多個電阻器單元在第一模式下操作時禁止對應的緩衝器向所述動態緩衝器所連接的第二電壓輸入端點輸出緩衝電壓,其中,所述多個電阻器單元響應於每個動態緩衝器的電壓差檢測模組的切換 控制信號而在第二模式和第一模式之間切換。 The gamma voltage generator according to claim 8, wherein each dynamic buffer includes a buffer, a switching module and a voltage difference detection module, the first detection end of the voltage difference detection module of each dynamic buffer is connected to the first input end of the buffer included in the dynamic buffer, the second detection end is connected to the second voltage input end connected to the dynamic buffer, and the output end outputs a switching control signal; and the switching module of each dynamic buffer is configured to be based on the dynamic buffer package The switching control signal of the voltage difference detection module or other voltage difference detection modules included in the embodiment of the present invention allows the corresponding buffer to output the buffer voltage to the second voltage input terminal connected to the dynamic buffer when the multiple resistor units operate in the second mode or prohibits the corresponding buffer from outputting the buffer voltage to the second voltage input terminal connected to the dynamic buffer when the multiple resistor units operate in the first mode, wherein the multiple resistor units switch between the second mode and the first mode in response to the switching control signal of the voltage difference detection module of each dynamic buffer. 根據請求項8所述的伽瑪電壓產生器,每個動態緩衝器包括緩衝器,其中,所述緩衝器根據使能信號在啟用和禁用狀態之間切換,以向所述動態緩衝器所連接的第二電壓輸入端點輸出或不輸出緩衝電壓。 According to the gamma voltage generator described in claim 8, each dynamic buffer includes a buffer, wherein the buffer switches between an enabled and disabled state according to an enable signal to output or not output a buffer voltage to a second voltage input terminal to which the dynamic buffer is connected. 一種源極驅動器,包括:根據請求項1所述的伽瑪電壓產生器;以及多個通道電路,與所述伽瑪電壓產生器連接,用於利用所述伽瑪電壓產生器輸出的伽瑪電壓來生成與輸入的顯示資料對應的各個資料電壓。 A source driver, comprising: a gamma voltage generator according to claim 1; and a plurality of channel circuits connected to the gamma voltage generator, for generating data voltages corresponding to input display data using the gamma voltage output by the gamma voltage generator. 一種顯示裝置,包括:顯示面板;如請求項12所述的源極驅動器,用於對所述顯示面板進行驅動。 A display device, comprising: a display panel; and a source driver as described in claim 12, used to drive the display panel.
TW112111691A 2022-03-30 2023-03-28 Gamma voltage generator, source driver and display apparatus TWI841324B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/128,687 US20230316975A1 (en) 2022-03-30 2023-03-30 Gamma voltage generator, source driver and display apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202263325152P 2022-03-30 2022-03-30
US63/325,152 2022-03-30
CN202310272374.8A CN116895231A (en) 2022-03-30 2023-03-20 Gamma voltage generator, source driver and display device
CN2023102723748 2023-03-20

Publications (2)

Publication Number Publication Date
TW202339492A TW202339492A (en) 2023-10-01
TWI841324B true TWI841324B (en) 2024-05-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444153A (en) 2018-05-03 2019-11-12 三星电子株式会社 Gamma voltage generation circuit and display drive apparatus including it

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444153A (en) 2018-05-03 2019-11-12 三星电子株式会社 Gamma voltage generation circuit and display drive apparatus including it

Similar Documents

Publication Publication Date Title
JP6258279B2 (en) Driving device for video display device
JP2007310234A (en) Data line driving circuit, display device and data line driving method
KR101048994B1 (en) Organic electroluminescence display device and driving method thereof
US20020027541A1 (en) Driving arrangements for active matrix LCDs
KR20210083644A (en) OLED display device and driving method therefor
JP4501525B2 (en) Display device and drive control method thereof
JP2005266346A (en) Reference voltage generation circuit, data driver, display device and electronic equipment
KR102539963B1 (en) Gamma voltage generating circuit and display driving device including the same
US11004379B2 (en) Display apparatus and method for generating enable signal used in the same
KR102081357B1 (en) Display panel, device for controlling display panel, display device, and method for driving display panel
US9368083B2 (en) Liquid crystal display device adapted to partial display
US7508363B2 (en) Data driver circuit for display device and drive method thereof
JP3744924B2 (en) Display controller, display system, and display control method
US20190043410A1 (en) System and method for display power reduction
JP6768598B2 (en) Display panel control device, display device and display panel drive method
TWI841324B (en) Gamma voltage generator, source driver and display apparatus
JP2003036054A (en) Display device
TW202338765A (en) Gamma voltage generator, source driver and display apparatus
TW202339492A (en) Gamma voltage generator, source driver and display apparatus
US20230316975A1 (en) Gamma voltage generator, source driver and display apparatus
JP2010145709A (en) Image display device
CN116895231A (en) Gamma voltage generator, source driver and display device
US10770022B2 (en) Source driver and a display driver integrated circuit
JP7433377B2 (en) Display device and driving method for the same
KR100629177B1 (en) Organic electro-luminescence display