TWI840189B - Pixel structure - Google Patents

Pixel structure Download PDF

Info

Publication number
TWI840189B
TWI840189B TW112113522A TW112113522A TWI840189B TW I840189 B TWI840189 B TW I840189B TW 112113522 A TW112113522 A TW 112113522A TW 112113522 A TW112113522 A TW 112113522A TW I840189 B TWI840189 B TW I840189B
Authority
TW
Taiwan
Prior art keywords
electrode
pixel structure
semiconductor
capacitor electrode
data line
Prior art date
Application number
TW112113522A
Other languages
Chinese (zh)
Inventor
翁嘉鴻
鍾岳宏
徐雅玲
廖烝賢
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW112113522A priority Critical patent/TWI840189B/en
Application granted granted Critical
Publication of TWI840189B publication Critical patent/TWI840189B/en

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

A pixel structure includes a substrate, a first metal pattern, a gate insulating layer, a semiconductor pattern, a second metal pattern and a pixel electrode. The first metal pattern includes a scan line, a gate and a common electrode. The gate insulating layer covers the first metal pattern. The semiconductor pattern is located on the gate insulating layer, and includes a semiconductor channel, a data line carrier part, a capacitor electrode, a first connection line and a second connection line. The second metal pattern is directly located on the semiconductor pattern and includes a data line, a source and a drain. The total capacitance of the pixel structure is C total, and the capacitance value of the metal-insulator-semiconductor (MIS) capacitor generated by a stack of the common electrode, the gate insulating layer, the semiconductor pattern and the drain is C MIS, and the ratio of C MISto C totalis R, 10% >R>0%.

Description

畫素結構Pixel structure

本發明是有關於一種畫素結構。 The present invention relates to a pixel structure.

隨著科技的進展,顯示裝置已經被廣泛地應用人們的生活中。一般而言,顯示裝置中包括許多的畫素結構,畫素結構中的薄膜電晶體(thin film transistor,TFT)被用於控制發光元件、液晶、電泳顆粒等,藉此使顯示裝置顯示出各種畫面。 With the advancement of technology, display devices have been widely used in people's lives. Generally speaking, a display device includes many pixel structures, and the thin film transistor (TFT) in the pixel structure is used to control light-emitting elements, liquid crystals, electrophoretic particles, etc., so that the display device can display various images.

在現有的技術中,利用微影製程與蝕刻製程來形成薄膜電晶體中的各個膜層。舉例來說,在沉積導電材料或半導體材料之後,利用微影製程於前述導電材料或半導體材料上形成圖案化的光阻層,接著以圖案化的光阻層為遮罩,蝕刻位於其下方的導電材料或半導體材料,藉此獲得圖案化的導電層或圖案化的半導體層。一般而言,微影製程需要利用光罩來進行。然而,光罩的設計與製作往往需要花費很多的時間與金錢。因此,為了節省薄膜電晶體的製造成本,許多廠商致力於減少製造薄膜電晶體所需的光罩的數量。 In the existing technology, lithography and etching processes are used to form each film layer in a thin film transistor. For example, after depositing a conductive material or a semiconductor material, a lithography process is used to form a patterned photoresist layer on the conductive material or the semiconductor material, and then the conductive material or the semiconductor material located below is etched using the patterned photoresist layer as a mask to obtain a patterned conductive layer or a patterned semiconductor layer. Generally speaking, the lithography process requires the use of a mask. However, the design and production of the mask often takes a lot of time and money. Therefore, in order to save the manufacturing cost of thin film transistors, many manufacturers are committed to reducing the number of masks required to manufacture thin film transistors.

本發明提供一種畫素結構,可以節省生產成本,且夠藉由調整CMIS與Ctotal的比值來減少顯示裝置的恰辨差值(Just Noticeable Difference,JND)。 The present invention provides a pixel structure that can save production costs and reduce the Just Noticeable Difference (JND) of a display device by adjusting the ratio of C MIS to C total .

本發明的至少一實施例提供一種畫素結構,其包括基板、第一金屬圖案、閘絕緣層、半導體圖案、第二金屬圖案以及畫素電極。第一金屬圖案位於基板之上,且包括掃描線、連接掃描線的閘極以及共用電極。閘絕緣層覆蓋第一金屬圖案。半導體圖案位於閘絕緣層上,且包括半導體通道、資料線承載部、電容電極、連接資料線承載部與半導體通道的第一連接線以及連接半導體通道與電容電極的第二連接線。半導體通道重疊於閘極。第二金屬圖案直接位於半導體圖案上,且包括資料線、源極以及汲極。資料線直接位於資料線承載部上。源極連接資料線,且直接位於半導體通道上。汲極直接位於半導體通道、第一連接線與電容電極上。畫素電極電性連接至汲極。畫素結構的總電容為Ctotal,且共用電極、閘絕緣層、半導體圖案與汲極的堆疊所產生的金屬-絕緣體-半導體(Metal-Insulator-Semiconductor,MIS)電容的電容值為CMIS,CMIS與Ctotal的比值為R,10%>R>0%。 At least one embodiment of the present invention provides a pixel structure, which includes a substrate, a first metal pattern, a gate insulating layer, a semiconductor pattern, a second metal pattern and a pixel electrode. The first metal pattern is located on the substrate and includes a scan line, a gate connecting the scan line and a common electrode. The gate insulating layer covers the first metal pattern. The semiconductor pattern is located on the gate insulating layer and includes a semiconductor channel, a data line carrying part, a capacitor electrode, a first connecting line connecting the data line carrying part and the semiconductor channel, and a second connecting line connecting the semiconductor channel and the capacitor electrode. The semiconductor channel overlaps the gate. The second metal pattern is directly located on the semiconductor pattern and includes a data line, a source and a drain. The data line is directly located on the data line carrier. The source is connected to the data line and is directly located on the semiconductor channel. The drain is directly located on the semiconductor channel, the first connection line and the capacitor electrode. The pixel electrode is electrically connected to the drain. The total capacitance of the pixel structure is C total , and the capacitance value of the metal-insulator-semiconductor (MIS) capacitor generated by the stacking of the common electrode, the gate insulation layer, the semiconductor pattern and the drain is C MIS , and the ratio of C MIS to C total is R, 10%>R>0%.

1:顯示裝置 1: Display device

10,20,30,40,50:畫素結構 10,20,30,40,50: Pixel structure

100:基板 100: Substrate

110:第一金屬圖案 110: The first metal pattern

112:掃描線 112: Scan line

114:閘極 114: Gate

116:共用電極 116: Shared electrode

116a:電極部 116a: Electrode part

116b:主幹部 116b: Main Branch

116c:第一分支部 116c: First branch

116d:第二分支部 116d: Second branch

116h:開口 116h: Opening

120:閘絕緣層 120: Gate insulation layer

130:半導體圖案 130: Semiconductor pattern

132:資料線承載部 132: Data line carrier

133:第一連接線 133: First connection line

134:半導體通道 134: Semiconductor channel

135:第二連接線 135: Second connection line

136:電容電極 136: Capacitor electrode

140:第二金屬圖案 140: Second metal pattern

142:資料線 142: Data line

144:源極 144: Source

146:汲極 146: Drainage

146a:延伸部 146a: Extension

146b:連接部 146b: Connection part

150:介電層 150: Dielectric layer

151:通孔 151:Through hole

160:畫素電極 160: Pixel electrode

B:黑區 B: Black Zone

D1:第一方向 D1: First direction

D2:第二方向 D2: Second direction

ND:法線方向 ND: Normal direction

W:白區 W: White area

圖1A是依照本發明的一實施例的一種畫素結構的上視示意 圖。 FIG1A is a top view schematic diagram of a pixel structure according to an embodiment of the present invention.

圖1B是沿著圖1A的線A-A’的剖面示意圖。 FIG1B is a schematic cross-sectional view along line A-A’ of FIG1A .

圖2A是依照本發明的一實施例的一種畫素結構的上視示意圖。 Figure 2A is a top view schematic diagram of a pixel structure according to an embodiment of the present invention.

圖2B是沿著圖2A的線A-A’的剖面示意圖。 FIG2B is a schematic cross-sectional view along line A-A’ of FIG2A .

圖3A是依照本發明的一比較例的一種畫素結構的上視示意圖。 FIG3A is a top view schematic diagram of a pixel structure according to a comparative example of the present invention.

圖3B是沿著圖3A的線A-A’的剖面示意圖。 FIG3B is a schematic cross-sectional view along line A-A’ of FIG3A .

圖4A是依照本發明的一實施例的一種畫素結構的上視示意圖。 FIG4A is a top view schematic diagram of a pixel structure according to an embodiment of the present invention.

圖4B是沿著圖4A的線A-A’的剖面示意圖。 FIG4B is a schematic cross-sectional view along line A-A’ of FIG4A .

圖5A是依照本發明的一實施例的一種畫素結構的上視示意圖。 Figure 5A is a top view schematic diagram of a pixel structure according to an embodiment of the present invention.

圖5B是沿著圖5A的線A-A’的剖面示意圖。 FIG5B is a schematic cross-sectional view along line A-A’ of FIG5A .

圖6A與圖6B是依照本發明的一種顯示裝置的測試方法的上視示意圖。 Figures 6A and 6B are top-view schematic diagrams of a display device testing method according to the present invention.

圖7A、7B與圖8是包含了畫素結構的顯示裝置的顯示畫面的亮度與共用電極的電壓(Vcom)的數據圖。 Figures 7A, 7B and 8 are data graphs of the brightness of the display screen and the voltage of the common electrode (Vcom) of the display device including the pixel structure.

圖1A是依照本發明的一實施例的一種畫素結構的上視示意圖。圖1B是沿著圖1A的線A-A’的剖面示意圖。請參考圖1A 與圖1B,畫素結構10包括基板100、第一金屬圖案110、閘絕緣層120、半導體圖案130、第二金屬圖案140以及畫素電極160。在本實施例中,畫素結構10還包括介電層150。 FIG. 1A is a schematic top view of a pixel structure according to an embodiment of the present invention. FIG. 1B is a schematic cross-sectional view along line A-A' of FIG. 1A. Referring to FIG. 1A and FIG. 1B, the pixel structure 10 includes a substrate 100, a first metal pattern 110, a gate insulating layer 120, a semiconductor pattern 130, a second metal pattern 140, and a pixel electrode 160. In this embodiment, the pixel structure 10 further includes a dielectric layer 150.

基板100之材質可為玻璃、石英、有機聚合物或不透光/反射材料(例如:導電材料、金屬、晶圓、陶瓷或其他可適用的材料)或是其他可適用的材料。若使用導電材料或金屬時,則在基板100上覆蓋一層絕緣層(未繪示),以避免短路問題。 The material of the substrate 100 can be glass, quartz, organic polymer or opaque/reflective material (e.g., conductive material, metal, wafer, ceramic or other applicable material) or other applicable materials. If a conductive material or metal is used, an insulating layer (not shown) is covered on the substrate 100 to avoid short circuit problems.

第一金屬圖案110位於基板100之上。第一金屬圖案110為單層或多層結構。在一些實施例中,第一金屬圖案110的材料包括鉻、金、銀、銅、錫、鉛、鉿、鎢、鉬、釹、鈦、鉭、鋁、鋅、鎳等金屬、上述合金或其他合適的金屬材料。在一些實施例中,形成第一金屬圖案110的方法包括:沉積一層或多層金屬材料於基板100之上;利用微影製程於前述一層或多層金屬材料上形成圖案化的光阻層,接著以圖案化的光阻層為遮罩,蝕刻位於其下方的一層或多層金屬材料,藉此獲得第一金屬圖案110。 The first metal pattern 110 is located on the substrate 100. The first metal pattern 110 is a single-layer or multi-layer structure. In some embodiments, the material of the first metal pattern 110 includes metals such as chromium, gold, silver, copper, tin, lead, uranium, tungsten, molybdenum, neodymium, titanium, tantalum, aluminum, zinc, nickel, etc., the above alloys or other suitable metal materials. In some embodiments, the method of forming the first metal pattern 110 includes: depositing one or more layers of metal material on the substrate 100; using a lithography process to form a patterned photoresist layer on the aforementioned one or more layers of metal material, and then using the patterned photoresist layer as a mask to etch one or more layers of metal material located thereunder, thereby obtaining the first metal pattern 110.

第一金屬圖案110包括掃描線112、連接掃描線112的閘極114以及共用電極116。掃描線112與共用電極116彼此分離,且兩者皆沿著第一方向D1延伸。在本實施例中,共用電極116包括電極部116a、主幹部116b、兩個第一分支部116c以及兩個第二分支部116d。電極部116a位於共用電極116靠近閘極114的一側。主幹部116b的一端連接電極部116a,並自電極部116a沿著第二方向D2延伸。在一些實施例中,第一方向D1實質上垂直於第二 方向D2。兩個第一分支部116c分別從主幹部116b的兩側往外延伸,且兩個第一分支部116c實質上平行於第一方向D1。兩個第二分支部116d分別連接兩個第一分支部116c,且兩個第一分支部116c分別將兩個第二分支部116d連接至主幹部116b。兩個第二分支部116d實質上平行於第二方向D2。 The first metal pattern 110 includes a scan line 112, a gate 114 connected to the scan line 112, and a common electrode 116. The scan line 112 and the common electrode 116 are separated from each other, and both extend along the first direction D1. In this embodiment, the common electrode 116 includes an electrode portion 116a, a main trunk 116b, two first branch portions 116c, and two second branch portions 116d. The electrode portion 116a is located on a side of the common electrode 116 close to the gate 114. One end of the main trunk 116b is connected to the electrode portion 116a, and extends from the electrode portion 116a along the second direction D2. In some embodiments, the first direction D1 is substantially perpendicular to the second direction D2. The two first branches 116c extend outward from both sides of the main trunk 116b, and the two first branches 116c are substantially parallel to the first direction D1. The two second branches 116d are respectively connected to the two first branches 116c, and the two first branches 116c respectively connect the two second branches 116d to the main trunk 116b. The two second branches 116d are substantially parallel to the second direction D2.

在一些實施例中,第一分支部116c延伸超過第二分支部116d,並連接相鄰的其他畫素結構(未繪出)的共用電極(未繪出)。 In some embodiments, the first branch portion 116c extends beyond the second branch portion 116d and is connected to a common electrode (not shown) of other adjacent pixel structures (not shown).

閘絕緣層120覆蓋第一金屬圖案110。在一些實施例中,閘絕緣層120的材料包括無機材料(例如:氧化矽、氮化矽、氮氧化矽、氧化鉿、氧化鋁、其他合適的材料、或上述至少二種材料的堆疊層)、有機材料或其他合適的材料或上述之組合。在一些實施例中,閘絕緣層120的厚度為0.2微米至0.3微米。 The gate insulating layer 120 covers the first metal pattern 110. In some embodiments, the material of the gate insulating layer 120 includes an inorganic material (e.g., silicon oxide, silicon nitride, silicon oxynitride, tantalum oxide, aluminum oxide, other suitable materials, or a stacked layer of at least two of the above materials), an organic material or other suitable materials or a combination thereof. In some embodiments, the thickness of the gate insulating layer 120 is 0.2 microns to 0.3 microns.

半導體圖案130位於閘絕緣層120上。半導體圖案130為單層或多層結構。在一些實施例中,半導體圖案130的材料包括非晶矽、多晶矽、微晶矽、單晶矽、有機半導體材料、氧化物半導體材料(例如:銦鋅氧化物、銦鎵鋅氧化物或是其他合適的材料、或上述材料之組合)或其他合適的材料或上述材料之組合。 The semiconductor pattern 130 is located on the gate insulating layer 120. The semiconductor pattern 130 is a single-layer or multi-layer structure. In some embodiments, the material of the semiconductor pattern 130 includes amorphous silicon, polycrystalline silicon, microcrystalline silicon, single crystal silicon, organic semiconductor material, oxide semiconductor material (for example: indium zinc oxide, indium gallium zinc oxide or other suitable materials, or a combination of the above materials) or other suitable materials or a combination of the above materials.

半導體圖案130包括資料線承載部132、第一連接線133、半導體通道134、第二連接線135以及電容電極136。資料線承載部132沿著第二方向D2延伸。半導體通道134在基板100的表面的法線方向ND上重疊於閘極114。第一連接線133從資料 線承載部132的一側往外延伸,並連接資料線承載部132與半導體通道134。在一些實施例中,第一連接線133的寬度小於或等於資料線承載部132的寬度,但本發明不以此為限。電容電極136在基板100的表面的法線方向ND上完全重疊或部分重疊於共用電極116的電極部116a。在本實施例中,電容電極136完全重疊於電極部116a。第二連接線135連接半導體通道134與電容電極136。在一些實施例中,第二連接線135的寬度小於半導體通道134的寬度與電容電極136的寬度,但本發明不以此為限。 The semiconductor pattern 130 includes a data line carrier 132, a first connection line 133, a semiconductor channel 134, a second connection line 135, and a capacitor electrode 136. The data line carrier 132 extends along the second direction D2. The semiconductor channel 134 overlaps the gate 114 in the normal direction ND of the surface of the substrate 100. The first connection line 133 extends outward from one side of the data line carrier 132 and connects the data line carrier 132 and the semiconductor channel 134. In some embodiments, the width of the first connection line 133 is less than or equal to the width of the data line carrier 132, but the present invention is not limited thereto. The capacitor electrode 136 completely overlaps or partially overlaps the electrode portion 116a of the common electrode 116 in the normal direction ND of the surface of the substrate 100. In this embodiment, the capacitor electrode 136 completely overlaps the electrode portion 116a. The second connection line 135 connects the semiconductor channel 134 and the capacitor electrode 136. In some embodiments, the width of the second connection line 135 is smaller than the width of the semiconductor channel 134 and the width of the capacitor electrode 136, but the present invention is not limited thereto.

第二金屬圖案140直接位於半導體圖案130上。第二金屬圖案140為單層或多層結構。在一些實施例中,第二金屬圖案140的材料包括鉻、金、銀、銅、錫、鉛、鉿、鎢、鉬、釹、鈦、鉭、鋁、鋅、鎳等金屬、上述合金或其他合適的金屬材料。 The second metal pattern 140 is directly located on the semiconductor pattern 130. The second metal pattern 140 is a single-layer or multi-layer structure. In some embodiments, the material of the second metal pattern 140 includes metals such as chromium, gold, silver, copper, tin, lead, uranium, tungsten, molybdenum, neodymium, titanium, tantalum, aluminum, zinc, nickel, etc., the above alloys or other suitable metal materials.

第二金屬圖案140包括資料線142、源極144以及汲極146。資料線142直接位於資料線承載部132上,且沿著第二方向D2延伸。資料線142的寬度小於或等於資料線承載部132的寬度。 The second metal pattern 140 includes a data line 142, a source 144, and a drain 146. The data line 142 is directly located on the data line carrier 132 and extends along the second direction D2. The width of the data line 142 is less than or equal to the width of the data line carrier 132.

源極144連接資料線142,且直接位於半導體通道134與第一連接線133上。汲極146直接位於半導體通道134、第二連接線135與電容電極136上。源極144與汲極146彼此分離。在本實施例中,汲極146包括直接位於半導體通道134與第二連接線135上的延伸部146a以及直接位於電容電極136上的連接部146b。連接部146b的寬度大於延伸部146a的寬度,且連接部146b在基板100的表面的法線方向ND上完全重疊或部分重疊於共用 電極116。 The source 144 is connected to the data line 142 and is directly located on the semiconductor channel 134 and the first connection line 133. The drain 146 is directly located on the semiconductor channel 134, the second connection line 135 and the capacitor electrode 136. The source 144 and the drain 146 are separated from each other. In this embodiment, the drain 146 includes an extension 146a directly located on the semiconductor channel 134 and the second connection line 135 and a connection portion 146b directly located on the capacitor electrode 136. The width of the connection portion 146b is greater than the width of the extension portion 146a, and the connection portion 146b completely overlaps or partially overlaps the common electrode 116 in the normal direction ND of the surface of the substrate 100.

在一些實施例中,形成半導體圖案130與第二金屬圖案140的方法包括:沉積一層或多層半導體材料於閘絕緣層120上;沉積一層或多層金屬材料於前述一層或多層半導體材料上;利用微影製程於前述一層或多層金屬材料上形成圖案化的光阻層,接著以圖案化的光阻層為遮罩,對位於其下方的一層或多層金屬材料以及一層或多層半導體材料進行一次或多次蝕刻,藉此獲得第二金屬圖案140與半導體圖案130。在一些實施例中,部分光阻層形成於對應源極144與汲極146之間的空隙處,藉由使對應源極144與汲極146之間的空隙處的光阻層的厚度小於光阻層的其他部分的厚度,可以控制蝕刻製程以在移除源極144與汲極146之間的金屬材料的同時保留源極144與汲極146之間半導體通道134。 In some embodiments, the method of forming the semiconductor pattern 130 and the second metal pattern 140 includes: depositing one or more layers of semiconductor material on the gate insulation layer 120; depositing one or more layers of metal material on the aforementioned one or more layers of semiconductor material; using a lithography process to form a patterned photoresist layer on the aforementioned one or more layers of metal material, and then using the patterned photoresist layer as a mask to etch one or more layers of metal material and one or more layers of semiconductor material located therebelow, thereby obtaining the second metal pattern 140 and the semiconductor pattern 130. In some embodiments, a portion of the photoresist layer is formed at the gap between the source 144 and the drain 146. By making the thickness of the photoresist layer at the gap between the source 144 and the drain 146 smaller than the thickness of other portions of the photoresist layer, the etching process can be controlled to remove the metal material between the source 144 and the drain 146 while retaining the semiconductor channel 134 between the source 144 and the drain 146.

在本實施例中,由於形成半導體圖案130與第二金屬圖案140的製程所需要的光罩數量僅為一個,可以大幅節省畫素結構10的製造成本。 In this embodiment, since the number of masks required for the process of forming the semiconductor pattern 130 and the second metal pattern 140 is only one, the manufacturing cost of the pixel structure 10 can be greatly saved.

在一些實施例中,由於蝕刻速率的不同,畫素結構10的半導體圖案130的外側側壁超出第二金屬圖案140的外側側壁。 In some embodiments, due to the difference in etching rate, the outer sidewall of the semiconductor pattern 130 of the pixel structure 10 exceeds the outer sidewall of the second metal pattern 140.

介電層150位於第二金屬圖案140上。介電層150具有重疊於汲極146以及電容電極136的通孔151。在一些實施例中,介電層150的材料包括無機材料(例如:氧化矽、氮化矽、氮氧化矽、氧化鉿、氧化鋁、其他合適的材料、或上述至少二種材料 的堆疊層)、有機材料或其他合適的材料或上述之組合。在一些實施例中,介電層150的厚度為0.2微米至0.3微米,但本發明不以此為限。在其他實施例中,為了防止電容耦合,可以將介電層150的厚度增加至3微米。 The dielectric layer 150 is located on the second metal pattern 140. The dielectric layer 150 has a through hole 151 overlapping the drain 146 and the capacitor electrode 136. In some embodiments, the material of the dielectric layer 150 includes an inorganic material (for example: silicon oxide, silicon nitride, silicon oxynitride, uranium oxide, aluminum oxide, other suitable materials, or a stacking layer of at least two of the above materials), an organic material or other suitable materials or a combination of the above. In some embodiments, the thickness of the dielectric layer 150 is 0.2 microns to 0.3 microns, but the present invention is not limited thereto. In other embodiments, in order to prevent capacitive coupling, the thickness of the dielectric layer 150 can be increased to 3 microns.

畫素電極160位於介電層150上,且透過介電層150的通孔151而電性連接至汲極146。畫素電極160包括透明材料或反射材料。在一些實施例中,畫素電極160包括金屬材料、金屬氧化物材料(例如銦錫氧化物、銦鋅氧化物、鋁錫氧化物、鋁鋅氧化物、銦鎵鋅氧化物等)、金屬氮化物材料、前述材料的組合或其他合適的材料。 The pixel electrode 160 is located on the dielectric layer 150 and is electrically connected to the drain 146 through the through hole 151 of the dielectric layer 150. The pixel electrode 160 includes a transparent material or a reflective material. In some embodiments, the pixel electrode 160 includes a metal material, a metal oxide material (such as indium tin oxide, indium zinc oxide, aluminum tin oxide, aluminum zinc oxide, indium gallium zinc oxide, etc.), a metal nitride material, a combination of the foregoing materials, or other suitable materials.

在本實施例中,畫素結構10的總電容為Ctotal。更具體地說,第一金屬圖案110、閘絕緣層120、半導體圖案130、第二金屬圖案140、介電層150與畫素電極160所產生的總電容為Ctotal。畫素結構10內各個導電層與導電層之間的介電層/絕緣層所構成的總電容值為CtotalIn this embodiment, the total capacitance of the pixel structure 10 is C total . More specifically, the total capacitance generated by the first metal pattern 110 , the gate insulating layer 120 , the semiconductor pattern 130 , the second metal pattern 140 , the dielectric layer 150 and the pixel electrode 160 is C total . The total capacitance value formed by the dielectric layer/insulating layer between each conductive layer in the pixel structure 10 is C total .

在本實施例中,共用電極116、閘絕緣層120、半導體圖案130與汲極146的堆疊所產生的金屬-絕緣體-半導體電容的電容值為CMIS。在本實施例中,CMIS包括共用電極116、閘絕緣層120、電容電極136與汲極146互相重疊的區域中的電容。在一些實施例中,共用電極上施加有接地電壓或其他定電壓,而掃描線112上則施加有閘極電壓。由於掃描線112上的電壓並非固定,掃描線112、資料線承載部132與資料線142的堆疊所產生的電容可以 被忽略。另外,由於共用電極116、資料線承載部132與資料線142的重疊區域很小,共用電極116、資料線承載部132與資料線142的堆疊所產生的電容可以被忽略。 In the present embodiment, the capacitance value of the metal-insulator-semiconductor capacitor generated by the stacking of the common electrode 116, the gate insulating layer 120, the semiconductor pattern 130 and the drain 146 is C MIS . In the present embodiment, C MIS includes the capacitance in the region where the common electrode 116, the gate insulating layer 120, the capacitor electrode 136 and the drain 146 overlap each other. In some embodiments, a ground voltage or other constant voltage is applied to the common electrode, and a gate voltage is applied to the scanning line 112. Since the voltage on the scan line 112 is not constant, the capacitance generated by the stack of the scan line 112, the data line carrier 132 and the data line 142 can be ignored. In addition, since the overlapping area of the common electrode 116, the data line carrier 132 and the data line 142 is very small, the capacitance generated by the stack of the common electrode 116, the data line carrier 132 and the data line 142 can be ignored.

由於半導體圖案130可能會因為長時間使用而出現電性上的變化,進而改變CMIS。一般而言,可以藉由減少CMIS來避免因為CMIS出現變化而影響畫素的儲存電容,進而避免因為儲存電容偏移而導致畫面產生問題。然而,若完全移除了CMIS,會造成儲存電容不足,使畫素電極160上的訊號容易受到串擾(cross talk)影響,還可能使顯示畫面容易在長時間使用後出現亮度不均勻的印痕(或例如產生影像殘留(image sticking)的問題)。 Since the semiconductor pattern 130 may change in electrical properties due to long-term use, thereby changing CMIS . Generally speaking, CMIS can be reduced to avoid the change in CMIS affecting the storage capacitor of the pixel, thereby avoiding the problem of the screen caused by the offset of the storage capacitor. However, if CMIS is completely removed, the storage capacitor will be insufficient, making the signal on the pixel electrode 160 susceptible to crosstalk, and the display screen may easily show uneven brightness marks (or, for example, image sticking problems) after long-term use.

在本發明的一些實施例中,可以更換不同的材料或改變膜層的厚度來調整CMIS。此外,透過改變共用電極116、閘絕緣層120、電容電極136與汲極146的重疊面積,也可以改變調整CMIS。共用電極116、閘絕緣層120、電容電極136與汲極146的重疊面積越小,則CMIS越小。 In some embodiments of the present invention, CMIS can be adjusted by replacing different materials or changing the thickness of the film layer. In addition, CMIS can also be changed and adjusted by changing the overlapping area of the common electrode 116, the gate insulating layer 120, the capacitor electrode 136 and the drain 146. The smaller the overlapping area of the common electrode 116, the gate insulating layer 120, the capacitor electrode 136 and the drain 146, the smaller the CMIS .

透過調整CMIS與Ctotal的比值R,可以改善顯示裝置經長時間使用後出現亮度不均勻的問題,且能減少顯示裝置的恰辨差值(Just Noticeable Difference,JND)。在一些實施例中,10%>R>0%,較佳為10%>R>5%。 By adjusting the ratio R of C MIS to C total , the problem of uneven brightness of the display device after long-term use can be improved, and the Just Noticeable Difference (JND) of the display device can be reduced. In some embodiments, 10%>R>0%, preferably 10%>R>5%.

圖2A是依照本發明的一實施例的一種畫素結構的上視示意圖。圖2B是沿著圖2A的線A-A’的剖面示意圖。在此必須說明的是,圖2A和圖2B的實施例沿用圖1A和圖1B的實施例的元 件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,在此不贅述。 FIG2A is a schematic top view of a pixel structure according to an embodiment of the present invention. FIG2B is a schematic cross-sectional view along line A-A' of FIG2A. It must be noted that the embodiments of FIG2A and FIG2B use the component numbers and partial contents of the embodiments of FIG1A and FIG1B, wherein the same or similar numbers are used to represent the same or similar components, and the description of the same technical contents is omitted. The description of the omitted parts can be referred to the aforementioned embodiments, which will not be elaborated here.

圖2A和圖2B的畫素結構20與圖1A和圖1B的畫素結構10的主要差異在於:畫素結構10的電容電極136完全重疊於共用電極116的電極部116a,而畫素結構20的電容電極136則是部分重疊於共用電極116的電極部116a。 The main difference between the pixel structure 20 of FIG. 2A and FIG. 2B and the pixel structure 10 of FIG. 1A and FIG. 1B is that the capacitor electrode 136 of the pixel structure 10 completely overlaps the electrode portion 116a of the common electrode 116, while the capacitor electrode 136 of the pixel structure 20 partially overlaps the electrode portion 116a of the common electrode 116.

在本實施例中,藉由減少電容電極136與共用電極116的重疊面積,可以減少CMIS,進而使CMIS與Ctotal的比值R減少。 In this embodiment, by reducing the overlapping area between the capacitor electrode 136 and the common electrode 116, C MIS can be reduced, thereby reducing the ratio R of C MIS to C total .

圖3A是依照本發明的一比較例的一種畫素結構的上視示意圖。圖3B是沿著圖3A的線A-A’的剖面示意圖。在此必須說明的是,圖3A和圖3B的比較例沿用圖1A和圖1B的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,在此不贅述。 FIG3A is a schematic top view of a pixel structure according to a comparative example of the present invention. FIG3B is a schematic cross-sectional view along line A-A' of FIG3A. It must be noted that the comparative examples of FIG3A and FIG3B use the component numbers and partial contents of the embodiments of FIG1A and FIG1B, wherein the same or similar numbers are used to represent the same or similar components, and the description of the same technical contents is omitted. The description of the omitted parts can be referred to the aforementioned embodiments, which will not be elaborated here.

圖3A和圖3B的畫素結構30與圖1A和圖1B的畫素結構10的主要差異在於:畫素結構10的電容電極136完全重疊於共用電極116的電極部116a,而畫素結構30的電容電極136則是完全不重疊於共用電極116。 The main difference between the pixel structure 30 of FIG. 3A and FIG. 3B and the pixel structure 10 of FIG. 1A and FIG. 1B is that the capacitor electrode 136 of the pixel structure 10 completely overlaps the electrode portion 116a of the common electrode 116, while the capacitor electrode 136 of the pixel structure 30 does not overlap the common electrode 116 at all.

在比較例中,電容電極136完全不重疊於共用電極116,且CMIS實質上為0。由於CMIS為0,畫素結構30的畫素電極160容易受到串擾(cross talk)影響,且包含畫素結構30的顯示裝置 的顯示畫面容易在長時間使用後出現亮度不均勻的印痕。 In the comparative example, the capacitor electrode 136 does not overlap the common electrode 116 at all, and C MIS is substantially 0. Since C MIS is 0, the pixel electrode 160 of the pixel structure 30 is easily affected by cross talk, and the display screen of the display device including the pixel structure 30 is prone to uneven brightness after long-term use.

圖4A是依照本發明的一實施例的一種畫素結構的上視示意圖。圖4B是沿著圖4A的線A-A’的剖面示意圖。在此必須說明的是,圖4A和圖4B的實施例沿用圖1A和圖1B的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,在此不贅述。 FIG4A is a schematic top view of a pixel structure according to an embodiment of the present invention. FIG4B is a schematic cross-sectional view along line A-A' of FIG4A. It must be noted that the embodiments of FIG4A and FIG4B use the component numbers and partial contents of the embodiments of FIG1A and FIG1B, wherein the same or similar numbers are used to represent the same or similar components, and the description of the same technical contents is omitted. The description of the omitted parts can be referred to the aforementioned embodiments, which will not be elaborated here.

圖4A和圖4B的畫素結構40與圖1A和圖1B的畫素結構10的主要差異在於:畫素結構10的電容電極136完全重疊於共用電極116的電極部116a,而畫素結構40的電容電極136則是部分重疊於共用電極116。 The main difference between the pixel structure 40 of FIG. 4A and FIG. 4B and the pixel structure 10 of FIG. 1A and FIG. 1B is that the capacitor electrode 136 of the pixel structure 10 completely overlaps the electrode portion 116a of the common electrode 116, while the capacitor electrode 136 of the pixel structure 40 partially overlaps the common electrode 116.

請參考圖4A與圖4B,在本實施例中,汲極146的連接部146b與半導體圖案130電容電極136部分重疊於共用電極116的電極部116a。共用電極116的電極部116a具有重疊於連接部146b與電容電極136的開口116h。在本實施例中,透過開口116h的設計,可以減少電容電極136與共用電極116的重疊面積,進而減少CMIS以及CMIS與Ctotal的比值R。 4A and 4B , in this embodiment, the connection portion 146b of the drain 146 and the capacitor electrode 136 of the semiconductor pattern 130 partially overlap the electrode portion 116a of the common electrode 116. The electrode portion 116a of the common electrode 116 has an opening 116h that overlaps the connection portion 146b and the capacitor electrode 136. In this embodiment, the design of the opening 116h can reduce the overlapping area of the capacitor electrode 136 and the common electrode 116, thereby reducing C MIS and the ratio R of C MIS to C total .

圖5A是依照本發明的一實施例的一種畫素結構的上視示意圖。圖5B是沿著圖5A的線A-A’的剖面示意圖。在此必須說明的是,圖5A和圖5B的實施例沿用圖1A和圖1B的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說 明可參考前述實施例,在此不贅述。 FIG5A is a schematic top view of a pixel structure according to an embodiment of the present invention. FIG5B is a schematic cross-sectional view along line A-A' of FIG5A. It must be noted that the embodiments of FIG5A and FIG5B use the component numbers and partial contents of the embodiments of FIG1A and FIG1B, wherein the same or similar numbers are used to represent the same or similar components, and the description of the same technical contents is omitted. The description of the omitted parts can be referred to the aforementioned embodiments, which will not be elaborated here.

圖5A和圖5B的畫素結構50與圖1A和圖1B的畫素結構10的主要差異在於:畫素結構10的半導體圖案130的外側側壁超出第二金屬圖案140的外側側壁,而畫素結構50的半導體圖案130的外側側壁對齊第二金屬圖案140的外側側壁。 The main difference between the pixel structure 50 of FIG. 5A and FIG. 5B and the pixel structure 10 of FIG. 1A and FIG. 1B is that the outer sidewall of the semiconductor pattern 130 of the pixel structure 10 exceeds the outer sidewall of the second metal pattern 140, while the outer sidewall of the semiconductor pattern 130 of the pixel structure 50 is aligned with the outer sidewall of the second metal pattern 140.

圖6A與圖6B是依照本發明的一種顯示裝置的測試方法的上視示意圖。具體地說,將多個前述任一實施例或比較例所揭露的畫素結構結合至背光模組(未繪出)、液晶層(未繪出)、對向基板(未繪出)以及對向基板上的對象電極(未繪出)以組成顯示裝置1。請參考圖6A,利用顯示裝置1顯示包含多個白區W以及多個黑區B的畫面。白區W例如為亮度L255的區域,而黑區B例如為亮度L0的區域。在使顯示裝置1顯示包含多個白區W以及多個黑區B的情況下,長時間對顯示裝置1的白區W以及黑區B進行高溫處理(例如為在攝氏50度至60度的溫度中96小時)。接著,將顯示裝置1的所有白區W以及所有黑區B切換成灰階畫面,如圖6B所示。接著測量高溫處理對白區W以及黑區B的亮度所造成的影響。 6A and 6B are top views of a method for testing a display device according to the present invention. Specifically, a plurality of pixel structures disclosed in any of the aforementioned embodiments or comparative examples are combined with a backlight module (not shown), a liquid crystal layer (not shown), an opposing substrate (not shown), and an object electrode (not shown) on the opposing substrate to form a display device 1. Referring to FIG. 6A , the display device 1 is used to display a screen including a plurality of white areas W and a plurality of black areas B. The white area W is, for example, an area with a brightness of L255, and the black area B is, for example, an area with a brightness of L0. When the display device 1 is made to display a screen including a plurality of white areas W and a plurality of black areas B, the white areas W and the black areas B of the display device 1 are subjected to a high temperature treatment for a long time (for example, at a temperature of 50 to 60 degrees Celsius for 96 hours). Next, all white areas W and all black areas B of the display device 1 are switched to a grayscale screen, as shown in FIG6B . Then, the effect of the high temperature treatment on the brightness of the white areas W and the black areas B is measured.

圖7A與圖7B是包含了畫素結構的顯示裝置的顯示畫面的亮度(單位:尼特(Nit))與共用電極的電壓(Vcom)的數據圖。圖7A對應的顯示裝置中的畫素結構與圖3A與圖3B的比較例中的畫素結構類似,且CMIS約為0。圖7B對應的顯示裝置中的畫素結構與圖1A與圖1B的實施例中的畫素結構類似,差異僅在 於將CMIS與Ctotal的比值R調整至60%。 FIG. 7A and FIG. 7B are data diagrams of the brightness (unit: Nit) of the display screen of the display device including the pixel structure and the voltage (Vcom) of the common electrode. The pixel structure in the display device corresponding to FIG. 7A is similar to the pixel structure in the comparative example of FIG. 3A and FIG. 3B, and C MIS is approximately 0. The pixel structure in the display device corresponding to FIG. 7B is similar to the pixel structure in the embodiment of FIG. 1A and FIG. 1B, and the difference is only that the ratio R of C MIS to C total is adjusted to 60%.

由圖7A可以得知,若CMIS約為0(或者是說CMIS與Ctotal的比值R為0)的顯示裝置,在經過圖6A與圖6B所示意的測試方法之後,黑區會變得相對更黑(亮度更暗)而白區會變得相對更白(亮度更亮),使顯示畫面出現亮度不均勻的痕跡。 As can be seen from FIG7A, if the display device has a C MIS of approximately 0 (or a ratio R of C MIS to C total of 0), after undergoing the test method illustrated in FIGS. 6A and 6B, the black area will become relatively darker (darker) and the white area will become relatively whiter (brighter), causing traces of uneven brightness to appear on the display screen.

由圖7B可以得知,若使用CMIS與Ctotal的比值R較高的顯示裝置,在經過圖6A與圖6B所示意的測試方法之後,反而可以使黑區會變得相對更白(亮度更亮),而白區變得相對更黑(亮度更暗)。 As can be seen from FIG. 7B , if a display device with a higher ratio R of C MIS to C total is used, after the test method illustrated in FIGS. 6A and 6B , the black area can become relatively whiter (brighter) and the white area can become relatively blacker (darker).

綜合圖7A與圖7B,可以合理的預測,可以藉由調整CMIS與Ctotal的比值R,使顯示裝置的黑區與白區在經過圖6A與圖6B所示意測試方法之後不會出現亮度不均勻的問題。在本發明的一些實施例中,當10%>R>0%(較佳為10%>R>5%)時,可以改善前述顯示畫面亮度不均勻的問題。 Combining FIG. 7A and FIG. 7B , it can be reasonably predicted that by adjusting the ratio R of C MIS to C total , the black area and the white area of the display device will not have uneven brightness after the test method shown in FIG. 6A and FIG. 6B . In some embodiments of the present invention, when 10%>R>0% (preferably 10%>R>5%), the aforementioned uneven brightness problem of the display screen can be improved.

圖8是包含了畫素結構的顯示裝置的顯示畫面的亮度與共用電極的電壓(Vcom)的數據圖。圖8與圖7B類似,差異在於圖8在圖6B的測試步驟中,於亮度較低的顯示畫面進行測試。由圖8可以得知,在經過圖6A與圖6B所示意的顯示裝置的測試方法之後,黑區變白以及白區變黑的情況會隨著提高共用電極的電壓而逐漸收斂,甚至是反轉成黑區變得較黑且白區變得較白。基於圖8的結果可以得知,可以選擇適當的共用電極的電壓,使黑區與白區具有相同的亮度。 FIG8 is a data graph of the brightness of the display screen of a display device including a pixel structure and the voltage of the common electrode (Vcom). FIG8 is similar to FIG7B, except that FIG8 is tested on a display screen with lower brightness in the test step of FIG6B. FIG8 shows that after the test method of the display device shown in FIG6A and FIG6B, the black area becomes white and the white area becomes black gradually converges as the voltage of the common electrode is increased, and even reverses to the black area becoming darker and the white area becoming whiter. Based on the results of FIG8, it can be seen that the appropriate voltage of the common electrode can be selected to make the black area and the white area have the same brightness.

表1至表3供了包含具有不同R值(CMIS與Ctotal的比值)的畫素結構的顯示裝置經過不同的高溫處理時間(如圖6A與圖6B的相關說明所述的高溫處理)後所獲得的顯示畫面的熱恰辨差值(JND)。表1是以顯示裝置未經高溫處理前會產生灰階亮度為L40的畫面的方式操作經高溫處理後顯示裝置,表2是以顯示裝置未經高溫處理前會產生灰階亮度為L128的畫面的方式操作經高溫處理後顯示裝置,表3是以顯示裝置未經高溫處理前會產生灰階亮度為L180的畫面的方式操作經高溫處理後顯示裝置。一般而言,顯示裝置的亮度越高,顯示畫面越不容易出現亮度分布不均勻的問題。消失灰階指的是顯示裝置剛好不會產生亮度分布不均勻時的亮度。消失灰階越低,代表顯示裝置中亮度分布不均勻的問題越不明顯。表4是顯示裝置經高溫處理後的消失灰階值,其中消失灰階較佳為小於180。 Tables 1 to 3 provide the JND values of the display screen obtained after different high temperature treatment times (such as the high temperature treatment described in the relevant description of FIG . 6A and FIG. 6B) of the display device having a pixel structure with different R values (ratio of C MIS to C total). Table 1 is operated in a manner that the display device after high temperature treatment will produce a picture with a grayscale brightness of L40 before the high temperature treatment, Table 2 is operated in a manner that the display device after high temperature treatment will produce a picture with a grayscale brightness of L128 before the high temperature treatment, and Table 3 is operated in a manner that the display device after high temperature treatment will produce a picture with a grayscale brightness of L180 before the high temperature treatment. Generally speaking, the higher the brightness of the display device, the less likely the display screen will have the problem of uneven brightness distribution. Vanishing grayscale refers to the brightness of the display device when it just does not produce uneven brightness distribution. The lower the vanishing grayscale, the less obvious the problem of uneven brightness distribution in the display device. Table 4 shows the vanishing grayscale value of the display device after high temperature treatment, where the vanishing grayscale is preferably less than 180.

Figure 112113522-A0305-02-0017-1
Figure 112113522-A0305-02-0017-1

Figure 112113522-A0305-02-0018-2
Figure 112113522-A0305-02-0018-2

Figure 112113522-A0305-02-0018-3
Figure 112113522-A0305-02-0018-3

Figure 112113522-A0305-02-0018-4
Figure 112113522-A0305-02-0018-4

由表1至表3可以得知,當CMIS與Ctotal的比值為6.1%時,可以獲得較低的熱恰辨差值。另外,由表4可以得知,當CMIS 與Ctotal的比值為6.1%時,即使顯示裝置經高溫處理169小時,消失灰階仍小於180。然而,若CMIS與Ctotal的比值太高(例如為14.3%或20.4%),會導致消失灰階上升。 From Tables 1 to 3, it can be seen that when the ratio of C MIS to C total is 6.1%, a lower thermal discrimination difference can be obtained. In addition, from Table 4, it can be seen that when the ratio of C MIS to C total is 6.1%, even if the display device is subjected to high temperature treatment for 169 hours, the vanishing gray level is still less than 180. However, if the ratio of C MIS to C total is too high (for example, 14.3% or 20.4%), the vanishing gray level will increase.

綜上所述,本發明藉由將CMIS與Ctotal的比值R調整至0%~10%,可以改善顯示裝置經長時間使用後出現亮度不均勻的問題,且能減少顯示裝置的恰辨差值。 In summary, the present invention can improve the problem of uneven brightness of the display device after long-term use by adjusting the ratio R of C MIS to C total to 0%~10%, and can reduce the recognition error of the display device.

10:畫素結構 10: Pixel structure

110:第一金屬圖案 110: The first metal pattern

112:掃描線 112: Scan line

114:閘極 114: Gate

116:共用電極 116: Shared electrode

116a:電極部 116a: Electrode part

116b主幹部 116b Main Branch

116c:第一分支部 116c: First branch

116d:第二分支部 116d: Second branch

130:半導體圖案 130: Semiconductor pattern

132:資料線承載部 132: Data line carrier

133:第一連接線 133: First connection line

134:半導體通道 134: Semiconductor channel

135:第二連接線 135: Second connection line

136:電容電極 136: Capacitor electrode

140:第二金屬圖案 140: Second metal pattern

142:資料線 142: Data line

144:源極 144: Source

146:汲極 146: Drainage

146a:延伸部 146a: Extension

146b:連接部 146b: Connection part

151:通孔 151:Through hole

160:畫素電極 160: Pixel electrode

D1:第一方向 D1: First direction

D2:第二方向 D2: Second direction

Claims (10)

一種畫素結構,包括:一基板;一第一金屬圖案,位於該基板之上,且包括:一掃描線;一閘極,連接該掃描線;以及一共用電極;一閘絕緣層,覆蓋該第一金屬圖案;一半導體圖案,位於該閘絕緣層上,且包括:一半導體通道、一資料線承載部以及一電容電極,其中該半導體通道重疊於該閘極;一第一連接線,連接該資料線承載部與該半導體通道;以及一第二連接線,連接該半導體通道與該電容電極;以及一第二金屬圖案,直接位於該半導體圖案上,且包括:一資料線,直接位於該資料線承載部上;一源極,連接該資料線,且直接位於該半導體通道上;以及一汲極,直接位於該半導體通道、該第一連接線與該電容電極上;以及一畫素電極,電性連接至該汲極,其中該畫素結構的總電容為Ctotal,且該共用電極、該閘絕緣層、該半導體圖案與該汲極的 堆疊所產生的金屬-絕緣體-半導體電容的電容值為CMIS,CMIS與Ctotal的比值為R,10%>R>0%。 A pixel structure includes: a substrate; a first metal pattern located on the substrate and including: a scan line; a gate connected to the scan line; and a common electrode; a gate insulating layer covering the first metal pattern; a semiconductor pattern located on the gate insulating layer and including: a semiconductor channel, a data line carrying portion, and a capacitor electrode, wherein the semiconductor channel overlaps the gate; a first connecting line connecting the data line carrying portion and the semiconductor channel ; and a second connection line connecting the semiconductor channel and the capacitor electrode; and a second metal pattern directly located on the semiconductor pattern and including: a data line directly located on the data line carrying portion; a source connected to the data line and directly located on the semiconductor channel; and a drain directly located on the semiconductor channel, the first connection line and the capacitor electrode; and a pixel electrode electrically connected to the drain, wherein the total capacitance of the pixel structure is C total , and the capacitance value of the metal-insulator-semiconductor capacitance generated by the stacking of the common electrode, the gate insulating layer, the semiconductor pattern and the drain is C MIS , and the ratio of C MIS to C total is R, 10%>R>0%. 如請求項1所述的畫素結構,更包括:一介電層,位於該第二金屬圖案上,且該畫素電極位於該介電層上,其中該第一金屬圖案、該閘絕緣層、該半導體圖案、該第二金屬圖案、該介電層與該畫素電極所產生的總電容為CtotalThe pixel structure as described in claim 1 further comprises: a dielectric layer located on the second metal pattern, and the pixel electrode is located on the dielectric layer, wherein the total capacitance generated by the first metal pattern, the gate insulation layer, the semiconductor pattern, the second metal pattern, the dielectric layer and the pixel electrode is C total . 如請求項1所述的畫素結構,其中該資料線的寬度小於或等於該資料線承載部的寬度。 A pixel structure as described in claim 1, wherein the width of the data line is less than or equal to the width of the data line carrier. 如請求項1所述的畫素結構,其中10%>R>5%。 The pixel structure as described in claim 1, wherein 10%>R>5%. 如請求項1所述的畫素結構,其中CMIS包含該共用電極、該閘絕緣層、該電容電極與該汲極互相重疊的區域中的電容。 The pixel structure as described in claim 1, wherein the CMIS includes a capacitor in a region where the common electrode, the gate insulating layer, the capacitor electrode and the drain overlap each other. 如請求項1所述的畫素結構,其中該汲極包括直接位於該第二連接線上的一延伸部與直接位於該電容電極上的一連接部,該連接部的寬度大於該延伸部的寬度,且其中該連接部與該電容電極完全重疊或部分重疊於該共用電極。 A pixel structure as described in claim 1, wherein the drain includes an extension portion directly located on the second connection line and a connection portion directly located on the capacitor electrode, the width of the connection portion is greater than the width of the extension portion, and wherein the connection portion and the capacitor electrode completely overlap or partially overlap on the common electrode. 如請求項6所述的畫素結構,其中該連接部與該電容電極部分重疊於該共用電極,且該共用電極具有重疊於該連接部與該電容電極的一開口。 A pixel structure as described in claim 6, wherein the connecting portion and the capacitor electrode partially overlap the common electrode, and the common electrode has an opening that overlaps the connecting portion and the capacitor electrode. 如請求項1所述的畫素結構,其中該源極直接位於該第一連接線上。 A pixel structure as described in claim 1, wherein the source is directly located on the first connection line. 如請求項1所述的畫素結構,其中該共用電極包括:一電極部,完全重疊或部分重疊於該電容電極; 一主幹部,其中該主幹部的一端連接該電極部;兩個第一分支部,該兩個第一分支部分別從該主幹部的兩側往外延伸,其中該兩個第一分支部平行於一第一方向;以及兩個第二分支部,其中該兩個第一分支部分別連接該兩個第二分支部至該主幹部,且該主幹部與該兩個第二分支部平行於一第二方向。 The pixel structure as described in claim 1, wherein the common electrode comprises: an electrode portion, which completely overlaps or partially overlaps the capacitor electrode; a main trunk, wherein one end of the main trunk is connected to the electrode portion; two first branches, the two first branches respectively extend outward from both sides of the main trunk, wherein the two first branches are parallel to a first direction; and two second branches, wherein the two first branches are respectively connected to the two second branches to the main trunk, and the main trunk and the two second branches are parallel to a second direction. 如請求項9所述的畫素結構,其中該汲極包括直接位於該電容電極上的一連接部,其中該電極部具有重疊於該連接部與該電容電極的一開口。A pixel structure as described in claim 9, wherein the drain includes a connecting portion directly located on the capacitor electrode, wherein the electrode portion has an opening overlapping the connecting portion and the capacitor electrode.
TW112113522A 2023-04-11 2023-04-11 Pixel structure TWI840189B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112113522A TWI840189B (en) 2023-04-11 2023-04-11 Pixel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112113522A TWI840189B (en) 2023-04-11 2023-04-11 Pixel structure

Publications (1)

Publication Number Publication Date
TWI840189B true TWI840189B (en) 2024-04-21

Family

ID=91618793

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112113522A TWI840189B (en) 2023-04-11 2023-04-11 Pixel structure

Country Status (1)

Country Link
TW (1) TWI840189B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201027213A (en) * 2009-01-09 2010-07-16 Century Display Shenxhen Co Structure of pixel thin film transistor (TFT)
CN102097051A (en) * 2010-11-03 2011-06-15 友达光电股份有限公司 Pixel structure
TW201209799A (en) * 2010-08-19 2012-03-01 Au Optronics Corp Memory circuit, pixel circuit, and data accessing method thereof
TW201329940A (en) * 2011-11-02 2013-07-16 Sharp Kk Color display device
US20140104151A1 (en) * 2012-10-12 2014-04-17 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201027213A (en) * 2009-01-09 2010-07-16 Century Display Shenxhen Co Structure of pixel thin film transistor (TFT)
TW201209799A (en) * 2010-08-19 2012-03-01 Au Optronics Corp Memory circuit, pixel circuit, and data accessing method thereof
CN102097051A (en) * 2010-11-03 2011-06-15 友达光电股份有限公司 Pixel structure
TW201329940A (en) * 2011-11-02 2013-07-16 Sharp Kk Color display device
US20140104151A1 (en) * 2012-10-12 2014-04-17 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device

Similar Documents

Publication Publication Date Title
US8202770B2 (en) Semiconductor structure of a display device and method for fabricating the same
CN108649016B (en) Manufacturing method of array substrate
US7754541B2 (en) Display device and method of producing the same
US11087985B2 (en) Manufacturing method of TFT array substrate
KR0141774B1 (en) Liquid crystal display device and its manufacturing method
US7573538B2 (en) Liquid crystal display device and method for manufacturing the same
US7973317B2 (en) Array substrate for liquid crystal display and method for fabricating the same
US7678619B2 (en) Method of manufacturing a thin film transistor matrix substrate
CN100539193C (en) Tft array substrate, its manufacture method and display unit
WO2020093442A1 (en) Method for manufacturing array substrate, and array substrate
US8304266B2 (en) Manufacturing method of thin film transistor substrate of liquid crystal display panel
US6998640B2 (en) Thin film transistor structure
JP2002190598A (en) Thin-film transistor array substrate and method of manufacturing the same
US11424273B2 (en) Electrical connection structure and thin film transistor substrate each having alternating yttrium oxide and silicon oxide films
WO2017147973A1 (en) Method of manufacturing array panel and array panel manufactured thereby
TWI840189B (en) Pixel structure
CN111090196B (en) Pixel array substrate
WO2019006821A1 (en) Method for manufacturing array substrate
KR100303348B1 (en) Data line formation method of liquid crystal display device
CN106773398A (en) Dot structure, array base palte and display panel
TWI671913B (en) Semiconductor device and manufacturing method thereof
WO2020042258A1 (en) Display panel and manufacturing method therefor
TWI453835B (en) Pixel structure and manufacturing method thereof
WO2019019438A1 (en) Array substrate, display panel, and preparation method of array substrate
JPH11119251A (en) Production of active matrix substrate