TWI839396B - 高階半導體製程優化及製造期間適應性控制 - Google Patents

高階半導體製程優化及製造期間適應性控制 Download PDF

Info

Publication number
TWI839396B
TWI839396B TW108136563A TW108136563A TWI839396B TW I839396 B TWI839396 B TW I839396B TW 108136563 A TW108136563 A TW 108136563A TW 108136563 A TW108136563 A TW 108136563A TW I839396 B TWI839396 B TW I839396B
Authority
TW
Taiwan
Prior art keywords
interest
data
wafers
wafer
dimensions
Prior art date
Application number
TW108136563A
Other languages
English (en)
Other versions
TW202038030A (zh
Inventor
沙莫 巴那
德莫特 坎特維爾
瓦希布 畢夏拉
利奧爾 恩格爾
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/155,779 external-priority patent/US10930531B2/en
Priority claimed from US16/155,773 external-priority patent/US10657214B2/en
Priority claimed from US16/214,550 external-priority patent/US10705514B2/en
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202038030A publication Critical patent/TW202038030A/zh
Application granted granted Critical
Publication of TWI839396B publication Critical patent/TWI839396B/zh

Links

Abstract

一空間模型經建立以預測一處理腔室的效能。該空間模型經使用以在製程發展階段更快地收斂至一期望製程。一種用於控制製造期間之元件效能變異性的系統包括製程平台、板上量測(OBM)工具、及基於機器學習之製程控制模型。該系統接收SEM量測資料,並利用機器學習技術定期地(例如晶圓到晶圓、批到批、腔室到腔室等等)更新該製程控制模型。對該製程控制模型的定期更新可解釋腔室到腔室變異性。

Description

高階半導體製程優化及製造期間適應性控制
本案概略有關建立空間模型以預測半導體處理設備的效能,以及利用該空間模型以在發展階段期間較快地收斂至一所欲製程,並在大量製造(HVM)期間獲得嚴密的製程控制。
隨著元件尺寸縮小,半導體晶圓處理的複雜度正在增加。典型的製程有多個不同步驟,而一些進階製程(諸如電漿蝕刻)可具有二十個或甚至更多步驟。各步驟關聯有眾多旋鈕以將效能優化。因此,要調校及優化一給定製程的可得空間理論上非常大。
製程工程師利用他們的經驗與專業來選擇一個初步基準製程,並基於專用於實驗設計(DoE)的有限個數之晶圓(或晶圓之部分,稱為試件(coupon))來精細調校該製程。DoE的目的是量身訂製該製程以在一晶圓上達到所欲的規格。然而,將完整晶圓或晶圓之部分專用於DoE資料收集耗費寶貴的資源。因此,往往經採用的製程可能是可行的製程,但不一定是最佳解決方案。
不充足的產線內精確度量測資料導入了另一個瓶頸。為了精確度量測,通常使用了破壞性技術(諸如透射電子顯微鏡(TEM))。然而,由於TEM非常耗時,其通常沒有產生足夠的統計資料及跨於晶圓的足夠涵蓋範圍。還有,TEM因為是破壞性技術而無法被整併到生產線中。
為了提供對本揭示案之一些態樣的基本理解,以下是本揭示案的簡化摘要。此摘要並非本揭示案的廣泛概觀。其用意並非識別出本揭示案的重要或關鍵元件,也不是勾畫出本揭示案之特定實施方式的任何範疇或申請專利範圍的範疇。其唯一用途是以簡化形式呈現本揭示案的一些概念,作為稍後將提出之更詳細說明的序幕。
本揭示案的態樣描述的方法及系統用於建立一空間模型以預測半導體處理設備之效能,以及在製程發展階段期間利用該空間模型以更快速地收斂至一所欲製程。特定地,本案描述一種電腦實施方法,其藉由處理一有限個數的晶圓來產生來自處理設備之感測器的虛擬量測(VM)資料以及來自該等晶圓上之元件的板上量測(OBM)資料,以基於已知初始製程來進行實體實驗設計(DoE);從對該等元件之特徵進行三維輪廓剖析(profiling)的精確度掃描電子顯微鏡(SEM)獲得產線內量測資料;獲得用於給定製程及該給定處理設備的一實證製程模型;藉由利用該產線內量測資料作為對照來校準該實證製程模型;合併該VM、OBM及產線內量測資料以產生自訂量測資料;以及,由機器學習引擎將該實證製程模型精細化以建立預測模型,該機器學習引擎接收該自訂量測資料並輸出針對跨於該晶圓之一或更多個感興趣維度的該晶圓的一或更多個空間對映圖,其中該預測模型乃用以在沒有實體地處理任何其他晶圓下進行空間數位DoE,及其中該空間數位DoE包含針對該給定處理設備及針對跨於該晶圓之該一或更多個感興趣維度為該給定製程的多重限制條件優化。
本揭示案的進一步態樣描述一種用於在製造晶圓上之元件的期間控制晶圓到晶圓元件效能變異性的系統。該系統包含:製程平台,包含一或更多個處理腔室、板上量測(OBM)工具、及儲存基於機器學習之製程控制模型的第一伺服器。該第一伺服器用以接收在利用當前記錄製程(POR)於該一或更多個處理腔室中處理當前晶圓集合的期間從感測器收集的虛擬量測(VM)資料,且該第一伺服器也用以接收由該等OBM工具藉由量測在該晶圓上製造的元件中之一或更多個感興趣維度而產生的OBM資料,其中該一或更多個感興趣維度相關於元件效能。還有,該第一伺服器用以合併該VM資料及該OBM資料,及,基於該經合併資料,利用該製程控制模型來預測該一或更多個感興趣維度的空間分布。該系統進一步包含產線內量測工具來在晶圓子集合上量測該一或更多個感興趣維度以產生對應於該當前POR的對照產線內量測資料,該晶圓子集合是藉由對該當前晶圓集合取樣所選出的。額外地,該系統包含具有機器學習引擎的第二伺服器,用以從該第一伺服器接收基於VM及OBM的該一或更多個感興趣維度的該預測空間分布,及也用以從該產線內量測工具接收該對照產線內量測資料,其中該機器學習引擎藉由以下步驟定期地更新該製程控制模型:將該一或更多個感興趣維度的該預測空間分布與對應於該當前POR的該對照產線內量測資料做比較;以及,針對下一個晶圓集合建議新配方以修改該當前POR,該新配方調適於該當前晶圓集合與該下一個晶圓集合之間的處理條件中的改變,以最小化晶圓到晶圓元件效能變異性。
本揭示案還有進一步態樣描述一種用於在製造晶圓上之元件的期間控制晶圓到晶圓元件效能變異性的電腦實施方法。該方法包含下列步驟:於第一伺服器處,獲得用於一當前晶圓集合的當前記錄製程(POR),該POR由基於機器學習之製程控制模型所建議,該基於機器學習之製程控制模型預測在該晶圓上製造之元件的感興趣維度的空間分布,該感興趣維度相關於該元件的效能;藉著對應於該當前POR的旋鈕設定來處理該當前晶圓集合;在處理該當前晶圓集合的期間從感測器接收虛擬量測(VM)資料;接收板上量測(OBM)資料,該OBM資料藉由量測在該晶圓上製造的該元件中的一或更多個感興趣維度所產生,其中該一或更多個感興趣維度相關於元件效能;合併該VM及OBM資料;基於該經合併資料,利用基於機器學習之製程控制模型來預測該一或更多個感興趣維度的空間分布;取樣該當前晶圓集合以選出要發送至產線內(in-line)量測工具的晶圓子集合;在該晶圓子集合上利用該產線內量測工具量測該一或更多個感興趣維度,以產生對應於該當前POR的對照量測資料;於具有機器學習引擎的第二伺服器處,接收由該第一伺服器基於該VM及OBM所預測的該一或更多個感興趣維度之該空間分布;於該第二伺服器處,接收該產線內對照量測資料;以及,利用該第二伺服器中的該機器學習引擎,藉由以下步驟定期地更新該製程控制模型:將該一或更多個感興趣維度的該預測空間分布與對應於該當前POR的該對照產線內量測資料做比較;以及,針對下一個晶圓集合建議一新配方以修改該當前POR,該新配方調適於該當前晶圓集合與該下一個晶圓集合之間的處理條件中的改變,以最小化晶圓到晶圓元件效能變異性。
本揭示案還有進一步態樣描述一種用於在製造晶圓上之元件的期間控制腔室到腔室變異性的方法及相應系統。特定地,描述了一種電腦實施方法,其中針對在多腔室處理平台中的各當前腔室,獲得用於晶圓的空間模型。該空間模型是由第一機器學習引擎基於在該元件中之一或更多個感興趣維度上的第一組量測資料所產生。該空間模型能為全域性的(涵蓋該製程的實體行為),或者可以是腔室特定的,負責了腔室變異性。該當前腔室的一或更多個參數被獲得。利用該空間模型及該當前腔室的該一或更多個參數,預測了跨於該晶圓該元件中之該一或更多個感興趣維度的空間量測。從一對照腔室(例如,經利用以校準不同腔室的黃金腔室)獲得跨於該晶圓的該元件中之該一或更多個感興趣維度的對照空間量測。在一些實施例中,可利用黃金腔室的模型以供校準。預測空間量測被與對照空間量測做比較以產生一度量,該度量指示出在該當前腔室與該對照腔室之間的效能變異。
基於由第二機器學習引擎對該度量進行的多重限制條件優化,針對該當前腔室之該一或更多個參數中至少一些的調整被建議,使得該當前腔室的效能大致匹配該對照腔室的效能。
在又另一態樣中,一種用於在晶圓上製造元件的期間控制腔室到腔室變異性的電腦實施方法,其中該方法包含下列步驟:獲得對照腔室的空間模型,其代表將在多腔室平台之複數個腔室內運行的製程的物理學;從該多腔室平台的不同腔室定期地取樣一或更多個晶圓;基於由機器學習引擎進行之多重限制條件優化來校準該對照腔室的該空間模型,該機器學習引擎接收由精確度量測工具從該經取樣一或更多個晶圓所獲得的實際及虛擬量測資料;以及,基於該經校準對照腔室空間模型,建議對一當前腔室之一或更多個參數的調整,使得該當前腔室的效能大致匹配對照腔室的效能,藉以調適地控制在該多腔室平台內該製程的腔室到腔室變異性。
概觀
本案之態樣針對建立空間模型以供利用空間數位DoE來預測半導體處理設備(也稱為「腔室」)的效能。該空間模型也能夠數位地產生用於製程空間內之任意條件組合的虛擬配方。用語「虛擬配方」意指利用一晶圓之空間數位模型(即虛擬晶圓)而非實體晶圓或試件所生成的製程配方。「虛擬晶圓」一詞不只涵蓋晶圓,還有其他物體,諸如用以進行基於遮罩之量測的遮罩。該空間模型利用機器學習以有效利用量測資料與各種旋鈕之間的綜效。用語「旋鈕」用以表示變數,該等變數能被控制以控制一製程。旋鈕有時也被稱為製程控制變數,或簡稱製程變數。本案揭露之作法加速了針對新的半導體處理設備及新技術(例如,5nm或更低)的製程量化,涵蓋無法實證探索的顯著較大的製程空間,並識別出製程窗及其與設備硬體、最終元件效能、及其他製程參數的相關性。在研究與發展階段期間,本案所揭露系統及方法在利用僅有限個數的測試晶圓之下提供了對目標製程配方更快速的收斂。在通往大量製造(high volume manufacturing)(HVM)的逐步量產期間,本案揭示之系統及方法使得能不只在晶圓之間、也能在單一批中的晶圓之間(晶圓到晶圓控制)、或在不同批的晶圓之間(批到批控制)對製程窗有更嚴密的控制。製程控制頻率與模型調適的頻率可依其為晶圓到晶圓(較高頻率)、批到批(中等頻率)或PM到PM(即每次定期維護(periodical maintenance,PM)一次)而異。
半導體處理設備的實例可包括(但不限於)進階電漿蝕刻器。作為一例,典型的電漿蝕刻製程可具有多於二十個步驟,而可有二十個以上的旋鈕可用以藉由控制能被改變的不同製程參數(也稱為製程變數)來控制各製程步驟 。能被一關聯旋鈕控制的用於蝕刻步驟的製程變數的實例可包括電漿射頻(RF)功率、壓力、溫度、被利用以產生電漿之氣體混合物中的氣體組成及比例。該些旋鈕的設定影響電漿中自由基或離子的濃度以及定義該製程的其他因素。本領域之通常知識者將立可理解可得以調校及優化一給定製程的製程空間非常大且實際上不可能在任何合理的製程量化時間框架內實證地探索整個製程空間,更不用說能夠進行作為抽象概念的多維製程空間優化。
此外,由於旋鈕之間的交互作用以及其在製程效能上的影響,非常難以預測由手動地一次掃描一個旋鈕而進行之同時旋鈕控制的合併效果。對於在單一製程中有龐大之步驟數者、或者當涉及多個製程時(各製程具有其相關聯步驟),此工作變得甚至更複雜。
製程工程師認知到巨大的操作窗無法被手動優化涵蓋。然而,為了達成可接受的效能水準,製程工程師仰賴先前的經驗來基於現存的知識選擇一初始製程,以及調整製程空間內的數個旋鈕(即,少於一整組可用旋鈕)以嘗試控制一或更多個特徵層級的感興趣維度的變異。基於知識的初始製程可為基準製程,但不一定要成為基準製程。
本案優點之一是藉由使能夠有基於機器學習之智慧製程優化而顯著地互補及擴充了製程工程師的能力,允許對跨於整個製程空間之一大組旋鈕的數位掃描。初始地,利用來自不同來源(例如工具上量測、及工具外量測)的量測資料建立模型。此模型被使用於研究及發展階段期間的製程優化。稍後,該模型在大量製造期間被利用以維持及控制嚴密的製程窗。
工具上量測能包括在一晶粒內該些元件本身上進行的量測或者在具有類似該些元件之特徵的測試結構上進行的量測。依照所使用的量測技術而異,該些測試結構可包括(但不限於)類似在晶圓上之邏輯或記憶體元件的結構。在元件或測試結構上進行的工具上量測合稱為「板上量測」(OBM)。OBM能基於光學量測(例如,從元件或測試結構原位(in-situ)收集光學發射光譜,或利用光學目標的巨觀2D對映)或其他類型的量測。這些光學或其他量測能在腔室內部(原位地)或腔室外部(移位地,ex-situ)但仍在真空下進行,或者,在具有多個腔室的製程平台上的工廠介面(不一定在真空下)處。一個此種實例是整合量測,諸如光學關鍵維度(OCD)。用語「平台」廣泛地涵蓋包括多個製程及/或量測工具的系統,該些製程及/或量測工具全部相同或者該些工具中的一些可與其他的不同。例如一個平台可具有進行相同製程的多個製程腔室,或者可具有在其中進行一個製程(例如蝕刻)的一些腔室而在其他腔室中進行不同製程(例如沉積)。在一些其他實施例中,一平台可包括不同類型的製程腔室(例如,導體或介電蝕刻)。一個平台也可包括量測工具。本領域之通常知識者將理解本揭示案的範疇不受限於腔室及/或平台的配置。
另一類型的工具上量測被稱為「虛擬量測」(VM),其包括從腔室中或腔室外部(但在相同平台內)之不同感測器收集的資料。VM能包括對不同製程變數(諸如壓力、溫度、RF功率、電流、電壓、流量控制位置等等)的時間描跡。
工具外量測可包括產線內量測(例如電子束檢測及量測)。「產線內量測」廣泛地涵蓋可在處理腔室外部進行,但不須將晶圓帶離生產線的量測。產線內量測的一例是掃描電子顯微鏡(SEM),其進階版本可提供高精確度及廣泛的形式。進階的SEM除了二次發射偵測器外可包括背散射電子(BSE)感測器,以及量測各不同傾斜角及不同著陸能量(範圍從數百電子伏特到幾萬電子伏特)的電子發射的能力。SEM有以非破壞性方式建立廣大量測資料資料庫的能力。經自訂而具有電子束模擬、資料收集、影像特徵化及特徵擷取還有統計分析的基於SEM之產線內量測可稱為「自訂量測」。進階的SEM工具可經使用作為高精準度、非破壞性三維特徵層級輪廓剖析(其位於自訂量測的心臟)的基礎。
工具外量測可也包括從任何額外的非產線內或離線量測(諸如TEM)取得的資料,該非產線內或離線量測乃先前在一組類似元件上進行。這些工具上和工具外量測乃進行在專用於DoE的有限個數的晶圓上。該模型利用機器學習演算法以合併全部資料並擷取在對感興趣維度之量測結果與控制製程之各不同旋鈕之間有意義的關係。如以下將進一步討論,也可利用機器學習來將電性測試資料(諸如用於參數良率估計的資料)與各不同旋鈕建立相關性。
一旦測試並驗證了基於機器學習之空間模型,該模型經用於發展用於實際製造晶圓的一優化製程。於此階段,專用實體DoE晶圓不是必要的。相反地,該模型經用以進行空間數位DoE,其涵蓋跨於整個製程空間變化的完整旋鈕集合。 建造及建立空間模型
本揭示案的核心是利用機器學習技術建立一個實證空間模型來預測跨於完整晶圓或晶圓的一部分的一或更多個感興趣維度的變異性。用語「空間」指跨於晶圓的多個站點(site),例如位於晶圓的中心、位於晶圓的邊緣、等等。典型的站點個數可從數十個到數千個不等。感興趣維度可為晶圓上實體特徵的幾何維度,例如線寬、結構高度、側壁角度、頂部關鍵維度(TCD)、底部關鍵維度(BCD)或任何其他特徵層級三維輪廓線資訊。然而,本揭示案的範疇不限於僅幾何維度的空間分布。空間製程量測的不受限範例包括跨於晶圓的特定物種之摻雜濃度、跨於晶圓的孔隙度等等。量測對於量測空間製程變異也是個強大的工具。
1A 是按照本案一些實施例之範例方法10的流程圖,用以致能一空間模型的產生及使用。方法10能由處理邏輯進行,該處理邏輯能包括硬體(例如,處理裝置、電路系統、專用邏輯、可程式化邏輯、微代碼、元件的硬體、積體電路、等等)、軟體(例如在處理裝置上運行或執行的指令)、或以上之組合。儘管以特定串列或順序顯示,但方法10或以下藉例示流程圖所述的其他方法中程序的順序能經修改,除非有相反指明。因此,所圖示實施例應當僅作為範例理解,且所圖示程序能以不同順序進行,而有些程序能併行進行。額外地,不同實施例中能省略一或更多個程序。因此,不是在每個實施例中都必須有全部的程序。其他程序流程為可能的。
回到 1A ,於方塊20,製程經輪廓剖析。製程輪廓剖析涉及了解配方結構以達成晶圓上製造之元件的特定維度及輪廓線。一有限個數的DoE晶圓或試件(第一組DoE晶圓)經歷圍繞給定基準配方的實際DoE製程。實際DoE晶圓或試件的個數可依針對配方將使用之旋鈕個數而定。
可基於製程工程師的經驗來完成初步DoE篩選。為了例示初步DoE篩選,考慮具有多於10個步驟且每個步驟有多於20個旋鈕的範例電漿蝕刻製程。此製程可生成幾億個配方組合。能利用初步DoE篩選及製程知識來減少組合的個數。藉由做初步DoE篩選,跨於配方空間識別出少於一完整集合的旋鈕。簡言之,於方塊20,在複查了來自實際晶圓或試件的資料之後立即識別出關鍵旋鈕,也就是對感興趣維度具有最大影響的旋鈕。
於方塊40(稱為實體DoE設計),所使用之實際晶圓個數能經優化。按照實施例中之一,能利用確定性篩選或其他統計技巧(例如表面回應或其他)來識別出不同旋鈕之間的一階相依性及交互作用及/或哪些旋鈕是正交的。簡言之,於方塊40,DoE經設計以涵蓋方塊20中所識別出之關鍵旋鈕交互作用,而圍繞基準配方的製程窗經探索。例如,對於15個經識別出關鍵旋鈕而言,DoE經設計為具有50個左右的實際晶圓。然而,即使在藉由確定性篩選或其他技巧達成了製程步驟及旋鈕的減少之後,仍留有巨大的製程空間需要覆蓋,此是本揭示案之空間數位DoE模型要解決的目標。
於方塊60,建立一製程模型。該模型的建立是基於下列的建造模塊:1)機器學習引擎,其處理來自實際DoE晶圓之有限集合的工具上及工具外自訂量測資料70;2)基於對製程設備(例如腔室)設計及該設備內之製程的物理學及化學(例如反應器內電漿的屬性及行為)之基礎理解的輸入;3)基於設備硬體規格及操作之經許可範圍的輸入(包括製程配方創造規則);及 4)符合模型預測中之信賴水平的懲罰函數。
沒有來自製程設備的輸入限制條件、製程本身、及懲罰函數之下,機器學習引擎能生成大量的數學上可行之解決方案,其不一定相容於該特定半導體處理設備。因此,對於製程模型要提供經量身訂製的解決方案、而非僅是處理從量測可得的大量資料而言,對製程物理學及化學、設備設計及處理經驗的知識是關鍵。
在製程模型的訓練階段期間,利用圍繞基準配方的一有限個數之配方來處理實體DoE晶圓(例如20~100個晶圓)的子集合。在一例中,選擇了至少三個配方。經選擇配方中之一可完全相同於經識別出的基準配方。經處理晶圓接著經利用如以上討論的不同工具上及工具外量測資料而特徵化。製程模型的目標包括,揭露對於旋鈕的製程敏感度,找出量測對旋鈕的相關性,以及最終生成一空間模型。該空間模型能為每個站點的(即晶圓上每個位置的),或者是匯聚該晶圓上所有位置之結果的最終空間模型。 1A 的步驟60能由 1B 中的系統100實施。
接著於方塊80,利用該空間模型以在製程邊界內產生空間數位DoE空間。如下討論的,該模型能在不使用實體晶圓之下生成虛擬配方。該模型進行多重限制條件優化以產生配方空間,該配方空間符合所欲的維度規格。
1B 顯示輸出最終空間模型112的系統100。給系統100的輸入包括來自利用圍繞基準配方之配方的實體DoE晶圓的特徵化資料。特徵化資料包括工具上量測資料101(包括VM原始資料103a及OBM原始資料103b),還有工具外資料102(包括產線內量測資料104a及非產線內量測資料104b)。
該特徵化資料接著被饋入至機器學習引擎108。該資料被在機器學習引擎108之前的額外資料過濾及特徵擷取模組106過濾。模組106是一關鍵模組,其自資料集合擷取有意義的特徵並得出推論以優化機器學習引擎效能。模組106的輸出是來自當前利用之DoE晶圓的多輸入量測資料107a(自工具上及工具外量測資料得出)。模組106的輸出也可具有從先前值得信賴之量測結果獲得的一些對照量測107b。這些對照量測結果(有時稱為「黃金輪廓線」)可不被利用在空間模型建立及製程優化階段期間,但往往利用在後續運行時期製程控制期間。
機器學習引擎108使用的機器學習方法能基於神經網路、深度學習或任何其他使用於迴歸分析的已知技術(例如,線性、偏最小平方法、高斯、多項式、用於迴歸的卷積式神經網路、迴歸樹及其他)。除了量測資料之外,機器學習引擎108也接收關於各不同配方及旋鈕的資訊111,還有關於製程及設備的資訊113。機器學習引擎108接著針對晶圓上的各量測結果產生中間空間模型109。各量測結果能具有關於一或更多個感興趣維度的資料。模型的效能是由評估模組110所評估。模型的效能經利用一懲罰函數或成本函數105來優化,諸如均方根誤差(root mean square error,rMSE)或任何其他適當的度量。成本函數有時被稱為「目的函數」,其經設計以允許對一或更多個感興趣維度的優化。該成本函數能為針對一晶圓上的各位置,或者僅一個成本函數用於整個晶圓。成本函數也能為用於各DoE條件。優化例行程序(包括、但不限於群體優化或群體變體)經設計以最小化非凸多極小值超表面。可將誤差懲罰或正規化條件加入該成本函數以在高維度非凸多極小值超表面中找到更高機率的解決方案。一旦獲得了成本函數的所欲數值,該空間模型可經利用來自另一組實體DoE晶圓的量測資料來進一步驗證。測試及驗證晶圓的個數可在幾十或二十幾的範圍中,但可有差異。依照如何選擇成本函數而定,測試及驗證製程能空間地針對跨於一晶圓之各資料點重複,針對該各資料點曾進行了量測。替代地,該空間模型能經優化以達到跨於該晶圓的平均尺寸一致性。最終空間模型112能合併來自晶圓上對其曾進行量測之全部資料點的結果。
一旦建立了空間模型,能針對跨於該晶圓之一感興趣維度的平均值以及跨於該晶圓的該值的範圍之中一者或兩者來決定對旋鈕的製程敏感度。此種敏感度結果對正在發展新製程的製程工程師提供了很大的啟示,幫助他們了解不同旋鈕之間的交互作用如何影響效能。此外,其允許將各旋鈕自身的貢獻以及各不同旋鈕組合的總和效果獨立。基準製程的多次(常見為三次或更多)重複經包括在DoE中以捕捉製程變異性及量測變異性。
有了從量測資料所獲得的對控制旋鈕之敏感度的知識,對於使用實際晶圓的需要有限。此階段被稱為「數位」DoE階段,其中製程優化大部分發生在虛擬場域中。注意數位DoE的結果是晶圓的一空間模型,因此數位DoE也稱為空間數位DoE。能進行極大個數的空間數位DoE(例如幾萬個以上)以得到統計上可行的分布。一旦通過空間數位DoE建立了一製程空間,就能識別出穩定的處理條件而沒有運行真正晶圓的需要。製程模型也能在「反向空間」模式中操作,即該製程模型採用跨於該晶圓的可信對照維度作為輸入,而幾乎立即提議將在所欲製程窗內給出可預測效能的虛擬配方。並行地或循序地優化空間模式及反向空間模式是可能的。還有,設若該模型被用以進行空間數位DoE,可實際處理有限個數的實體DoE晶圓來測試該模型所預測之結果的功效。
2 3 顯示該基於機器學習之模型的兩基本能力。當利用量測資料202來生成(一或多個)最終空間模型112時,該基於機器學習之模型能基於各不同製程配方及控制旋鈕資訊211來預測空間感興趣維度215。另一方面,當對照空間量測(有時稱為「黃金輪廓線」)302被使用作為輸入時,當製程/設備資訊313被饋入至反向空間模型312時反向空間模型312能針對給定製程及給定設備(從用於製程及設備的資料庫選出)建議配方315。在模型訓練及校準階段期間還有運行時期晶圓到晶圓變異性控制階段期間能利用該兩個功能之一者或兩者。空間量測結果預測在校準程序期間較有用,而配方預測在晶圓到晶圓控制階段期間較有用(例如維護及/或優化用於HVM階段的記錄製程(POR)),如以下在說明書中進一步討論的。
空間模型允許製程工程師在製程效能上定義多重限制條件(即製程規格),諸如在跨於晶圓之每個維度的所欲空間輪廓線、所欲均勻度範圍、跨於該晶圓的所欲平均值等等。此稱為多輸入多輸出(MIMO)製程優化。
4 顯示按照本揭示案之一實施例基於一典型製程配方的例示性DoE範圍。該DoE在一連串不同製程步驟期間改變多個製程變數。該等變數經在圍繞基準配方的帶區內調校。例如,變數1在圍繞基準值A的上限值A+及下限值A-之間變化。
5A 顯示跨於一晶圓之特定感興趣維度的點繪圖。實心圓代表該感興趣維度的目標輪廓線,同時空心圓代表本案之空間模型所預測的輪廓線。
5B 顯示一製程空間內在不同製程條件的感興趣維度D1的繪圖,如由空間數位DoE所預測的。該繪圖上的各點代表製程條件。該繪圖的X軸是跨於晶圓之該感興趣維度D1的平均值,而該繪圖的Y軸是標準差。 5B 上的各點指示出一個旋鈕設定組合。位於中央的密度指示出許多旋鈕設定組合落在相同製程空間中且對映至可為連續的一特定旋鈕空間。此種更嚴密的製程控制窗特別有助於HVM期間的晶圓到晶圓控制,以下將進一步詳述。
6A 顯示當單一旋鈕(第一旋鈕)被改變(即單一製程變數被改變)時製程空間的涵蓋範圍。 6B 顯示當一不同旋鈕(第二旋鈕)被改變(即不同製程變數被改變)時製程空間的涵蓋範圍。 6C 顯示當又另一旋鈕(即不同於第一旋鈕及第二旋鈕的第三旋鈕)被改變(即單一製程變數被改變)時製程空間的涵蓋範圍。此是在當兩旋鈕同時被改變時無法預測兩旋鈕對彼此的影響的製程空間探索的習知作法,尤其當該兩旋鈕為非正交的(大部分時間是如此)。
6D 顯示當兩個非正交製程變數(例如上文討論的第一旋鈕及第二旋鈕)被同時改變時本案之空間數位DoE模型所預測的製程空間涵蓋範圍。 6E 顯示當三個非正交製程變數(例如上文討論的第一旋鈕、第二旋鈕及第三旋鈕)被同時改變時本案之空間數位DoE模型所預測的製程空間涵蓋範圍。若製程變異限制在被涵蓋製程空間的較深色中間部分內則能達到更嚴密的維度控制,其中較淺色到較深色陰影表示較低到較高密度,如在 5B 6D 6E 中的隨附密度條狀圖所示。
7A 顯示在製程發展階段期間的兩個DoE階段。第一DoE階段(DoE階段1,也稱為製程優化DoE)的目的是優化製程及建立機器學習控制架構。DoE製程的實例可包括(但不限於)用於得到一元件結構中之傾斜底部輪廓線的蝕刻製程,以匹配晶圓驗收測試(WAT)之記錄製程(POR)。第一DoE階段也可協助識別出哪些製程步驟對特定旋鈕(例如RF功率、溫度、氣體等等)變異或其他製程參數變異是敏感的。
第二DoE階段(DoE階段2,也稱為製程控制DoE)的目的是進階的基於機器學習之晶圓到晶圓變異性控制(如以下說明)。DoE階段2目標是建立主導性配方控制參數及各類型量測(例如VM、OBM、基於SEM之產線內量測等等)之間的關係。最後目標是利用來自製程優化DoE及製程控制DoE的經合併資訊以得到利用機器學習技術的晶圓到晶圓及晶圓內製程控制。 用於更嚴密的製程控制的調適性建模
以上討論的空間模型生成跨於一晶圓的空間輪廓線。為了緊湊的元件規格(例如5 nm技術及超過),特徵層級3D空間輪廓剖析的準確度需求變得非常困難。在大量製造期間從一晶圓到另一晶圓需要有更嚴密的製程控制,以符合維度準確度需求。在多個腔室分布在一個處理設備之內、或跨於一製造平台的多個處理設備之內的情況中,腔室匹配是重要的以最小化硬體變異所導致的晶圓之間的製程變異,該硬體變異導致元件尺寸變異而後者相關於元件效能變異。
目前,製程控制中的主要焦點是批到批控制而非一批之內的晶圓到晶圓控制。本案發明人認知到由於腔室條件漂移而致的時間變化,腔室壁改變以及可消耗部件隨時間的退化可導入晶圓之間(即使是在單一批內的晶圓)的元件效能變異。在一多腔室製造平台內,製程控制生態系統需要基於大數據分析(big-data-analytics)的製程控制模型以得到進階腔室匹配來最小化晶圓到晶圓元件效能變異性。
現今對腔室的監測是利用虛擬量測、板上量測、產線內量測、抑或元件參數和良率測試所完成,其需要特殊的電性測試設定。各種技術具有其優缺點。例如,虛擬量測(VM)在時間上最接近元件處理週期時間,因為資料是從腔室內的感測器即時可得。板上量測(OBM)也是在時間上十分接近處理週期。然而,VM及OBM資料與元件效能的直接相關性有限。因此,若僅有VM及OBM資料被使用當作給元件效能預測模型的輸入,則該模型的準確度可能有所折損。
針對元件效能的最終測試是在製程步驟(或數個製程步驟,諸如光刻、沉積、蝕刻、清潔等等)的結尾經由電性測試所獲得。電性測試資料(諸如臨界電壓、洩漏電流等等)高度相關於晶圓上的特徵層級尺寸。然而,此種測試資料僅能在完成一個製程步驟(或數個製程步驟)之後取得,依照進行該電性測試所在的元件處理階段而定,即電性測試是產線前端(front-end-of-line,FEOL)、產線中端(middle-end-of-line,MEOL)、或產線後端(back-end-of-line,BEOL)測試。本案的DoE能經自訂成FEOL DoE、MEOL DoE或BEOL DoE。用於獲得電性測試資料的時間表能為從前到後數周或幾個月。
本揭示案確認了能利用較接近真實製程週期時間所進行的精確度產線內量測(比較起在製程流程最後等待電性測試結果)來更新模型以使該模型良好地相關於真實的元件效能。產線內量測(諸如電子束檢測及量測)能在資料準確度(即量測資料與元件效能的正相關程度)及對週期時間的接近度之間取得良好的折衷。例如,提供了特徵層級3D輪廓線資訊的精確度SEM量測(有時稱為自訂量測)與元件效能之間比起僅從VM及OBM所獲得者有更佳的相關性。在對於任何當前製程步驟而言都可取得OBM及VM資料的同時,能在製程步驟之間獲得SEM量測資料。此外,產線內量測資料能在一製程週期中的週期時間上更靠近地收集(雖然對週期時間的接近度低於VM及OBM)而不需要在每次製程週期最後等待獲得極少的電性測試資料(元件參數及良率資料)。 7B 總結了在量測類型與元件效能之間的上述不同相關性。
雖有以上優點,產線內量測目前是在晶圓批次之間進行,而非在單一批內的晶圓之間。本案描述由產線內量測工具獲得的大量3D輪廓剖析量測資料(自訂量測)如何經運用以調適本文中所述基於機器學習之製程模型來得到更佳的晶圓到晶圓控制。
7C 顯示如何能針對元件效能及產線內量測(例如SEM)資料兩者來校準一實證空間模型(其為用於製程優化及控制的基礎)。一旦可取得來自電性測試的元件參數及良率資料(方塊710),該模型經針對元件效能校準,且藉由利用參數及良率資料將SEM所量測的3D輪廓線維度相關於元件效能(方塊708)。針對元件效能的校準可設定成每次定期維護一次或任何其他適當的週期性。3D輪廓感興趣維度也相關於腔室控制旋鈕(方塊706)。該模型是利用在每個晶圓(或每一批)之感興趣維度上獲得的SEM成像及量測資料所校準的,該晶圓或該批是針對元件效能所校準的。因此,基於OBM及VM資料的製程控制旋鈕相關性在方塊704中經進一步精細化以改善與元件效能的整體相關性。最終,該模型協助在重要步驟中調整腔室的控制旋鈕來控制感興趣維度(方塊702)。
7D 顯示經運用以建立一多輸入多輸出調適性實證製程控制模型760(也稱作「調適性模型」)的各種資訊。「多輸入」指的是有關各不同感興趣維度的量測資料,而「多輸出」指的是由該模型預測的各不同空間輪廓線。為了實施調適性特徵,實際的DoE晶圓經由VM 資料(顯示成方塊750)、OBM 資料(顯示成方塊752)及產線內量測資料(顯示成方塊754)所特徵化。其他資料(顯示成方塊756),諸如TEM資料、可從客戶或其他來源取得的資料、來自電性測試的元件參數及良率資料,也可經饋入該模型中。此外,腔室資訊及製程資訊(一起圖示成方塊758)經利用來創造該調適性模型。製程資訊758的一例可為針對一特定腔室可得的基於電漿的製程模型。腔室資訊及製程資訊可有不同,且能從內含有關各不同腔室及不同製程之資訊的資料庫擷取。產線內量測資料可在校準該調適性模型上經賦予高於VM及/或OBM資料的優先度,因為如上所討論,產線內量測資料與元件效能具有較佳相關性。若可從類似元件取得元件參數資料(電性測試資料),則也使用該資料。該調適性模型將DoE中所識別出之關鍵旋鈕與量測輸出之間建立相關性。一旦該調適性模型經建立及校準,其能在至少一特定時間區間內無需收集產線內量測資料之下運用VM及OBM作為給模型的輸入而經使用於元件效能變異性的晶圓到晶圓控制。
7E 顯示運用該基於機器學習之實證模型的新技術發展週期。該週期能沿著時間尺度經分割成三個階段:製程發展階段、逐步增量階段及大量製造(HVM)階段。製程發展階段能再分割成三個階段:初始製程發展階段(P1)、量測設定及製程調校階段(P2)、及敏感度DoE階段(P3)。逐步增量階段包含調適性控制階段(P4),而HVM階段包含監測及製程控制階段(P5)。
各階段關聯於數個目的及功用。例如,P1關聯於(僅舉一例)初始製程配方篩選,以及定義關鍵量測措施。P2關聯於(僅舉一例)建立初步配方基準及發展量測模型(諸如OBM及SEM)和優化量測精確度與準確度。P3關聯於(僅舉一例)識別出關鍵製程控制旋鈕,及基於該實證模型來優化基準配方。P4關聯於發展該實證模型的調適性版本以用於製程控制,以及基於針對元件效能資料的校準來精細化該量測模型。此階段利用預測性量測。P5主要關聯於偏移監測及封閉迴圈製程控制(例如晶圓內、晶圓到晶圓、批到批、腔室到腔室變異性控制)。
8 顯示針對同批內晶圓到晶圓元件效能變異性控制力用調適性模型的方塊圖。該調適性模型利用從機器學習引擎818獲得的最終空間模型838,該機器學習引擎818乃是藉基於實際及數位DoE的量測資料訓練的。來自一當前晶圓(Wn-1 )的VM(方塊828)及OBM(方塊830)原始資料經饋入至一資料過濾及特徵擷取模組836。每一批,數個晶圓經取樣以去往產線內量測工具,且基於自產線內量測收集的資料(方塊832),模型838經適應性地調整。輪廓剖析需求條件可基於可得的電性測試結果經定期地(例如每次定期維護週期或其他預設時間週期)調整。於方塊840,針對一配方生成空間量測結果,該空間量測結果可為針對當前晶圓所使用的記錄製程。利用方塊842中的反向空間模型將預測空間量測840與一些空間黃金量測結果(方塊832)及/或統計對照(方塊834)做比較。該反向空間模型的輸出是建議一經調整配方(方塊846)以用於同一批內的下一個晶圓(Wn )。
9 顯示如何在每一批後適應性地調整該晶圓到晶圓控制模型。特定地, 9 顯示一方塊圖,表示出用於模型更新的調適性製程。在方塊902及904中,VM原始資料及OBM原始資料分別從當前的晶圓批次(Ln-1 )的一或更多個樣本被收集。在方塊906中藉由在當前批次中取樣數個晶圓來針對該當前批次收集產線內量測資料。經收集的資料全部經過資料過濾及特徵擷取模組910。空間模型912產生空間預測量測結果914,後者經饋入至機器學習引擎918。機器學習引擎918將預測量測結果與產線內或其他工具外量測所提供的一對照量測916做比較。製程配方920和製程及設備資訊922被提供給該機器學習引擎。方塊924中產生經更新空間模型已被使用於控制下一批(Ln )。類似於 8 之方塊圖中所示之製程的製程被使用以針對下一批(Ln )建議一配方。
第8圖中所示機器學習引擎818及第9圖中所示機器學習引擎918可為第1B圖之系統100中顯示的相同處理器,或者可屬於不同控制系統。類似地,資料過濾及特徵擷取模組810和910可為系統100之部分或屬於不同控制系統。
除了改善晶圓到晶圓(及/或批到批)元件效能變異性控制,將產線內量測資料整併至調適性模型允許製程工程師了解潛在故障點。VM及OBM被用以定性地提供感興趣維度的空間對映圖,該空間對映圖接著與一黃金對照做比較以識別出潛在故障點。所選晶圓接著被帶至產線內量測工具(諸如用於自訂量測的電子束)而被識別出潛在故障站點之所在的感興趣區域被詳細掃描,以識別出故障的根本原因。
10 是按照本案一些實施例的範例方法1000之流程圖,該方法致能在單一批次之晶圓之間以及不同批之間的補充製程控制。方法1000的目標是在HVM期間維護且嚴密地控制製程。製程控制可包括將長期及短期中的腔室到腔室變異性納入考量。方法1000能藉由處理邏輯來進行,該處理邏輯能包括硬體(例如處理裝置、電路系統、專用邏輯、可程式化邏輯、微代碼、一元件的硬體、積體電路、等等)、軟體(例如,在一處理裝置上運行或執行的指令)、或以上之組合。雖然以特定序列或順序顯示,但除非有相反指明,方法1000或以下藉例示流程圖說明的其他方法中的程序順序能經修改。因此,所例示實施例應僅作為範例來理解,而所圖示程序能以不同順序進行,且有些程序能並行地進行。額外地,不同實施例中能省略一或更多個程序。因此,並非每個實施例中都必須有全部程序。其他的程序流程為可能的。
方法1000可具有兩個補充流程,也就是針對該調適性模型的模型建立及更新流程1005,以及批內行程到行程製程控制流程1010。用語「行程到行程(run-to-run)」用以表示在一批內的一晶圓到下一個晶圓。在行程之間可能導致腔室到腔室變異性。模型建立及更新流程1005開始於方塊1020,圍繞在製程優化期間(即利用本揭示案之空間數位DoE模型的發展及逐步增量階段)所識別出的記錄製程(POR)配方來設計一DoE。此方塊中,使用於模型校準之實際DoE晶圓的個數可經優化。針對該POR配方探索製程變異性。還有,識別出將使用於製程控制的關鍵旋鈕,且設計該DoE製程空間以涵蓋至少該些關鍵旋鈕。接著,在方塊1030中建造一製程控制模型,其經由VM及OBM擷取了製程變異性,且利用機器學習引擎以提議可針對一批內之下一個晶圓集合來使用的製程變異性校準。方塊1040中,通過產線內量測資料來更新該製程控制模型。可進行該製程模型的批到批校準。另外,若在行程到行程製程控制流程1010(說明於下)內識別出「熱點」或故障點,可在方塊1040中進行根本原因分析(RCA)。
行程到行程製程控制流程1010開始於方塊1060,在該處基於VM及OBM資料來預測晶圓上量測(即感興趣維度的空間對映圖)。該預測可與黃金對照及/或統計對照做比較。在方塊1070中,來自方塊1030的提議被接收,且針對下一次晶圓運行計算一經校正配方。可向進階製程控制(APC)主機建議該配方校正。
於方塊1080,定義一取樣方案以供於方塊1040調整該調適性模型。選出少數晶圓以用於基於VM及OBM資料之模型調整。該些少數晶圓可經排名,且可選出一或更多個排名在前的晶圓作為用於發送至產線內量測的相關晶圓。例如,可將前3~5名的晶圓發送至產線內量測,但該數目可有不同。可藉由電子束檢測或其他方法從被發送至產線內量測的晶圓識別出熱點(HS)(或故障點)。經識別之熱點可使用於RCA以了解晶圓上的任何潛在故障點,如上所討論。本領域之通常知識者將理解方塊1040可基於從VM、OBM及產線內量測資料獲得的合併洞見而定期地循環回到方塊1030。
11 圖示按照本案之實施例,利用經導引量測來將模型精細化的變異性控制的關鍵組件。模型的輸出是一預測空間對映圖,指示出基於實證製程模型與機器學習的失敗機率。第一方塊1102決定在何處量測(即在晶圓上所量測的確切位置),包括在設計檔(例如遮罩設計GDS檔)上的熱點(或故障點)。方塊1104決定哪些維度相關於元件效能。方塊1106中,來自藉由高階電子束技術於特徵層級的大量晶粒中量測結果的成像資料被饋入至該空間模型中。方塊1108是一量測方塊,在該處藉由合併傳統及機器學習演算法來評估感興趣維度上的敏感度。方塊1110是一決策方塊,在該處識別出是否特定製程有問題。若識別出問題,該問題被去卷積(de-convolved)成其組成部分,例如哪些旋鈕設定尤其需要經調整以修正該問題。最後,方塊1112是一控制方塊,在該處基於機器學習模型決定要調校哪些旋鈕以及要調校各旋鈕多少。總結來說,經導引量測連結了 11 中所述功能性方塊來偵測熱點(或故障點)並將製程精細化以避免熱點或減輕故障。 系統環境
12 顯示一技術架構方塊圖,該圖為例示之簡化而顯示單一腔室,不過本領域之通常知識者將理解多個腔室可為單一平台之部分。製程平台1220具有一製程建模迷你伺服器1208。該製程模型擷取了腔室內製程的物理學,其創造了跨於該晶圓之一或更多個感興趣維度中的空間變異。該模型可為腔室特定的,或者是可使用於多個腔室的一共同模型。該共同模型有時被稱為「黃金模型」,因為其被使用作為對照以校準一或更多個腔室。迷你伺服器1208接收來自腔室1204中之感測器的感測器資料1205(即VM資料),及來自OBM工具1202的原始資料1203(例如發射頻譜)。基於VM及OBM,製程建模迷你伺服器1208發送多旋鈕建議1209(使用該空間模型所計算出)至主機電腦1210中的晶圓廠進階製程控制器(APC)。該建議可包括將套用至製程控制旋鈕或任何其他腔室參數的偏移(例如,調整來源功率、壓力等等)。晶圓廠APC 1210也接收來自諸如TEM、電性測試工具等等之其他測試工具的資料1207。電性測試資料可包括元件參數及良率資料。晶圓廠APC 1210也接收來自SEM 1212的產線內精確度量測資料,SEM 1212產生多維度自訂量測資料1214。基於機器學習之模型建立設定伺服器1216接收自訂量測資料1214、TEM及其他元件參數和良率資料1207、原始OBM資料1203及感測器資料1205,以適應性地調整該製程模型。機器學習引擎可駐存在迷你伺服器1208、晶圓廠APC 1210及設定伺服器1216中之一或更多者中。製程建模迷你伺服器1208和基於機器學習之模型建立設定伺服器1216經由鏈結1217彼此耦接,使得由製程建模迷你伺服器1208生成的空間模型可利用來自SEM 1212的大量產線內量測資料依需要經調適用於晶圓到晶圓或批到批變異控制。此外,藉由基於對照腔室模型來校準每個腔室能控制腔室到腔室變異,該對照腔室模型擷取到腔室內部之製程的物理學。可基於機器學習來適應性地校準該對照腔室模型本身,使得藉改良對照模型所校準的各腔室能匹配從該對照腔室所期望的晶圓上效能。調適性校準是基於對來自不同腔室之晶圓作定期取樣,因此大致補償了腔室到腔室變異性。基於熱點之取樣的一範例提供在第10圖中。
13 圖示電腦系統1300的範例機器,該機器內可執行一組指令,以致使該機器進行本文中討論之方法中一或更多者。在替代實施方法中,該機器可經連接(例如網路連接)至LAN、內部網路、外部網路、及/或網際網路中的其他機器。該機器可在客戶端對伺服器環境中可以伺服器或客戶端電腦的身份操作,或在點對點(或分散式)網路環境中作為對等電腦操作,或在雲端運算基礎建設或環境中作為伺服器或客戶端機器操作。
該機器可為個人電腦(PC)、平板PC、機上盒(STB)、網路設備、伺服器、網路路由器、切換器或橋接器、或能夠執行一組指令(連續的或其他)的任何機器,該組指令指定了將由該機器採取之動作。進一步,儘管圖示了單一機器,但用語「機器」應被認為包括個別地或一起地執行一組(或多組)指令以進行本文中討論之方法中任一或更多者的機器的任何集合。
範例電腦系統1300包括一處理裝置1302、主記憶體1304(例如唯讀記憶體(ROM)、快閃記憶體、動態隨機存取記憶體(DRAM)像是同步DRAM(SDRAM)、等等)、靜態記憶體1306(例如快閃記憶體、靜態隨機存取記憶體(SRAM)、等等)、及資料儲存裝置1316,其經由匯流排1308來彼此通訊。
處理裝置1302代表一或更多個一般用途處理裝置,像是微處理器、中央處理單元、或類似者。更特定地,該處理裝置可為複雜指令集計算(CISC)微處理器、精簡指令集計算(RISC)微處理器、非常長指令字組(VLIW)微處理器、或實施其他指令集的處理器、或實施指令集之組合的處理器。處理裝置1302也可是一或更多個特殊用途處理裝置,像是應用特定積體電路(ASIC)、現場可程式化閘陣列(FPGA)、數位信號處理器(DSP)、網路處理器、或類似者。處理裝置1302經配置以執行指令以用於進行本文中討論之操作及步驟。
電腦系統1300可進一步包括網路介面裝置1322以在網路1318上通訊。電腦系統1300也可包括視訊顯示單元1310(例如液晶顯示螢幕(LCD)或陰極射線管(CRT))、英數輸入裝置1312(例如鍵盤)、游標控制裝置1314(例如滑鼠或觸控板)、信號產生裝置1320(例如揚聲器)、圖形處理單元(未圖示)、視訊處理單元(未圖示)、及音訊處理單元(未圖示)。
資料儲存裝置1316可包括一機器可讀取儲存媒體1324(也稱為電腦可讀取媒體),在其上儲存一或更多組指令或軟體,該指令或軟體實現本文中所述之方法或功能中任一或更多者。指令也可在其被電腦系統1300執行之期間駐存(完全地或至少部分地)在主記憶體1304內及/或處理裝置1302內,主記憶體1304及處理裝置1302也構成機器可讀取儲存媒體。
在一實施方式中,該等指令包括用以實施對應於高度差決定之功能的指令。在機器可讀取儲存媒體624在範例實施方式中經顯示為單一媒體的同時,用語「機器可讀取儲存媒體」應被認為包括儲存一或更多組指令的單一媒體或多個媒體(例如集中式或分散式資料庫,及/或相關聯快取及伺服器)。用語「機器可讀取儲存媒體」也應被認為包括能夠儲存或編碼一組指令以供由該機器執行的任何媒體,該組指令致使該電腦進行任一或更多個本揭示案之方法。用語「機器可讀取儲存媒體」應因此被認為包括(但不限於)固態記憶體、光學媒體及磁性媒體。
前述詳細說明之一些部分已經以對於在電腦記憶體內之資料位元上之操作的演算法及符號表示方式提出。這些演算法說明及表示方式是資料處理領域之通常知識者最有效地對該領域之通常知識者傳達其成果之實質的方式。本文中(且一般而言)演算法被理解為產生一所欲結果的自我一致操作序列。該些操作必須要對實體數量進行實體操控。通常(儘管非為必要),這些數量採用能夠被儲存、合併、比較、或以其他方式操控之電性或磁性信號的形式。已有證實,主要為了普遍使用之理由,有時將這些信號指稱為位元、數值、元素、符號、字母、用語、數字、或類似者是便利的。
然而,應記住這些用語全部及其類似者將被關聯於適當的實體數量而僅為套用至這些數量的便利標籤。除非特定地相反指明或從以上討論中可明顯得知,將理解到在整份說明書中,運用了像是「識別」或「決定」或「執行」或「進行」或「收集」或「產生」或「發送」或類似者之用語的討論,指的是由電腦系統(或類似電子計算裝置)的動作及程序,該電腦系統操控並轉換被表示成電腦系統暫存器及記憶體內之物理性(電子)量的資料成為經類似地表示成電腦系統記憶體或暫存器(或其他此類資訊儲存裝置)內之物理性數量的其他資料。
本案也有關於用於進行本文中之操作的設備。此設備可經特別地建構以用於所意圖之用途,或者其可包含藉由電腦程式經選擇地啟用或重新配置的一般用途電腦,該電腦程式儲存在該電腦中。此一電腦程式可經儲存在電腦可讀取儲存媒體中,像是(但不限於)包括軟碟片、光碟片、CD-ROM、及磁性光學碟片的任何類型之磁碟、唯讀記憶體(ROM)、隨機存取記憶體(RAM)、EPROM、EEPROM、磁卡或光學卡、或適合用於儲存電子指令的任何類型媒體,各媒體耦合至一電腦系統匯流排。
本文中提出之演算法及顯示圖本質上並非有關任何特定電腦或其他設備。按照本文中所說明之教示可連同程式使用各種一般用途系統,或其可證明建構更特殊化的設備來進行方法為方便的。用於各式各樣這些系統的結構將出現在以下說明中。此外,並未參照任何特定程式語言來說明本案。將顯見可利用各式各樣之程式語言來實施本文中所述本案的教示。
本案可作為一電腦程式產品或軟體提供,該電腦程式產品可包括其上儲存有指令的機器可讀取媒體,該些指令可經使用以程式化電腦系統(或其他電子裝置)以按照本案進行一製程。機器可讀取媒體包括用於以機器(例如電腦)可讀取之形式來儲存資訊的任何機制。例如,機器可讀取(例如電腦可讀取)媒體包括機器(例如電腦)可以讀取的儲存媒體,諸如唯讀記憶體(「ROM」)、隨機存取記憶體(「RAM」)、磁碟儲存媒體、光學儲存媒體、快閃記憶體裝置、等等。
以上的說明書中,已參照本案之特定範例實施方式描述本揭示案的實施方式。將顯見可對其做出各種修改而無悖離如以下申請專利範圍中闡述之本揭示案實施方式的較寬廣精神及範疇。本案說明書及圖式因此將被當作示意性質而非設限性質。
10:範例方法 20:方塊 40:方塊 60:方塊 70:自訂量測資料 80:方塊 100:系統 101:工具上量測資料 102:工具外量測資料 103a:VM原始資料 103b:OBM原始資料 104a:產線內量測資料 104b:非產線內量測資料 105:成本函數 106:資料過濾及特徵擷取模組 107a:多輸入量測資料 107b:對照量測 108:機器學習引擎 109:基於量測的中間空間模型 110:模型效能的評估模組 111:有關配方及控制旋鈕的資訊 112:最終空間模型 113:有關製程及設備的資訊 202:量測資料 211:有關製程配方及控制旋鈕的資訊 215:預測空間量測結果 302:對照空間量測 312:反向空間模型 313:製程及設備資訊 315:經建議配方 702:方塊 704:方塊 708:方塊 710:方塊 750:虛擬量測(VM) 752:板上量測(OBM) 754:產線內量測 756:其他資料 758:腔室及製程資訊 760:多輸入多輸出調適性實證模型 810:資料過濾及特徵擷取模型 818:機器學習引擎 828:VM 830:OBM 832:產線內量測資料/空間黃金量測 834:統計對照 838:最終空間模型 840:經預測的空間量測結果 842:反向空間模型 846:經建議配方 1000:方法 1005:模型建立及更新流程 1010:批內行程到行程製程控制流程 1020:方塊 1030:方塊 1040:方塊 1060:方塊 1070:方塊 1080:方塊 1102:量測何處 1104:量測什麼 1106:從產線內量測成像 1108:量測 1110:決策 1112:控制 1202:OBM工具 1203:原始資料 1204:腔室 1205:感測器資料 1206:其他測試 1207:元件參數及良率及其他資料 1208:製程建模迷你伺服器 1209:多旋鈕建議 1210:晶圓廠APC(主機) 1212:SEM 1214:多維度自訂量測 1216:基於機器學習之模型建立設定伺服器 1217:鏈結 1220:製程平台 1300:電腦系統 1302:處理裝置(處理器) 1304:主記憶體 1306:靜態記憶體 1308:匯流排 1310:顯示器裝置 1312:英數輸入裝置 1314:游標控制裝置 1316:資料儲存裝置 1318:網路 1320:信號產生裝置 1322:網路介面裝置 1324:電腦可讀取媒體 1326:指令
從以下提供的對本揭示案之各種實施方式的詳細說明以及隨附圖式將更完整了解本案。
1A 是按照本案的一些實施例,用以產生空間數位實驗設計(DoE)的範例方法的流程圖;
1B 是按照本揭示案的一實施例的基於機器學習之空間模型產生器的方塊圖;
2 3 顯示按照本案的實施例該模型的兩個基本功能,預測空間量測及建議配方;
4 顯示按照本案的實施例的用於多步驟製程的範例DoE空間,各步驟具有一或更多個旋鈕;
5A 顯示按照本揭示案的一實施例將感興趣維度的目標輪廓線與該空間模型的預測做比較;
5B 顯示按照本揭示案的一實施例在不同製程條件下對一感興趣維度繪圖,其由該空間數位DoE所預測;
6A 顯示按照本揭示案的一實施例,當第一旋鈕被改變時製程空間的涵蓋範圍;
6B 顯示按照本揭示案的一實施例,當第二旋鈕被改變時製程空間的涵蓋範圍;
6C 顯示按照本揭示案的一實施例,當第三旋鈕被改變時製程空間的涵蓋範圍;
6D 顯示按照本揭示案的一實施例,當第一旋鈕及第二非正交旋鈕同時被改變時製程空間的涵蓋範圍改善;
6E 顯示按照本揭示案的一實施例,當三個非正交旋鈕同時被改變時製程空間的涵蓋範圍進一步改善;
7A 顯示按照本揭示案的一實施例,分別在製程優化及製程控制期間的DoE;
7B 顯示按照本案的實施例,在各種測試及量測技術與元件效能之間的相關性;
7C 顯示按照本揭示案的一實施例,如何能針對元件效能與產線內量測兩者來校準實證空間模型(其為製程優化及控制的基礎);
7D 顯示按照本揭示案的一實施例,在基於機器學習之模型的一調適性版本中所使用的不同輸入;
7E 顯示按照本揭示案的一實施例利用基於機器學習之實證模型的新的技術發展週期;
8 顯示按照本案之實施例該模型針對晶圓到晶圓製程控制的應用;
9 顯示按照本案的一實施例該模型針對定期更新(包括但不限於批到批更新)的調適性擴充;
10 顯示按照本案的一些實施例的範例製程控制方法的流程圖,該範例製程控制方法利用調適性模型來在大量製造期間維持更嚴密的製程控制,包括腔室到腔室變異性控制(長期及短期);
11 圖示按照本揭示案的一實施例利用引導量測的變異性控制之關鍵組件;
12 顯示按照本揭示案的一實施例用於變異性控制的一技術架構方塊圖;及
13 顯示一簡化環境,在該環境內可實施本案的方法及系統。
750:虛擬量測(VM)
752:板上量測(OBM)
754:產線內量測
756:其他資料
758:腔室及製程資訊
760:多輸入多輸出調適性實證模型

Claims (25)

  1. 一種電腦實施方法,包含下列步驟:藉由處理一有限個數的晶圓來產生來自一處理設備之感測器的虛擬量測(VM)資料以及來自該等晶圓上之該等元件的特徵的板上量測(OBM)資料,以基於一已知初始製程來進行一實體實驗設計(DoE);獲得來自一掃描電子顯微鏡(SEM)的產線內(in-line)量測資料;獲得用於一製程及該處理設備的一實證製程模型;藉由利用該產線內量測資料作為對照來校準該實證製程模型;合併該VM、OBM及產線內量測資料以產生自訂量測資料;及由一機器學習引擎將該實證製程模型精細化以建立一預測模型,該機器學習引擎接收該自訂量測資料並輸出針對跨於該晶圓之一或更多個感興趣維度的該晶圓的一或更多個空間對映圖,其中該預測模型乃用以在沒有實體地處理任何其他晶圓下進行空間數位DoE,及其中該空間數位DoE包含針對該處理設備及針對跨於該晶圓之該一或更多個感興趣維度的該製程的一多重限制條件優化。
  2. 如請求項1所述之方法,其中自訂量測資 料額外地包括透射電子顯微鏡(TEM)資料。
  3. 如請求項1所述之方法,其中該預測模型用以在一反向模式中建議用於處理該晶圓的虛擬配方。
  4. 如請求項1所述之方法,其中該預測模型用以識別在一製程空間內的一製程窗,針對該製程窗而言該一或更多個感興趣維度的製程引發變異在一可接受限度內。
  5. 如請求項1所述之方法,其中該機器學習引擎進一步用以接收有關一特定製程及一或更多個特定設備的資訊,該製程將在該一或更多個特定設備處進行。
  6. 如請求項1所述之方法,進一步包含以下步驟:利用進一步量測資料來驗證該預測模型,該進一步量測資料乃從處理另一組實體晶圓所獲得。
  7. 如請求項1所述之方法,其中該預測模型用以將該自訂量測資料相關於一製程空間內的一或更多個關鍵旋鈕設定。
  8. 如請求項7所述之方法,其中利用了機器學習技術來識別在該一或更多個感興趣維度上該一或更多個關鍵旋鈕的合併效果。
  9. 如請求項1所述之方法,其中各晶圓包含一完整晶圓或其一部分。
  10. 一種用於建立一基於機器學習之預測模型以用於空間數位實驗設計(DoE)的電腦實施方法,該方法包含下列步驟:基於對一半導體製程之知識獲得一初始配方;藉由改變圍繞該初始配方的該半導體製程之複數個變數來處理一第一組晶圓,以識別出影響在該第一組晶圓上製造之一元件的一感興趣維度的關鍵旋鈕;篩選來自處理該第一組晶圓之步驟的結果,以決定要涵蓋該等經識別出關鍵旋鈕在一製程空間內之交互作用所需要的一最優個數的晶圓;藉由改變該製程空間內的該等經識別出關鍵旋鈕來處理一第二組晶圓,其中該第二組包含該最優個數的晶圓;在處理該第二組晶圓之步驟期間,從感測器收集有關該感興趣維度的虛擬量測(VM)資料;從該第二組晶圓收集有關該感興趣維度的板上量測(OBM)資料;藉由在來自該第二組晶圓的至少一些晶圓上進行電子束檢測及量測來收集有關該感興趣維度的產線內(in-line)量測資料; 合併該VM、OBM及產線內量測資料以產生有關該感興趣維度的經合併量測資料;決定該經合併量測資料與該製程空間內的該經識別關鍵旋鈕設定之間的相關性;及當關聯於該半導體製程的各不同旋鈕在該製程空間內虛擬地變化時,利用該經決定相關性來建立一基於機器學習之預測模型以預測該感興趣維度的一空間分布,其中該感興趣維度的該預測空間分布提供用於在無需實體地處理任何其他晶圓下進行空間數位DoE以針對該給定處理腔室優化該半導體製程。
  11. 一種用於建立一預測模型的電腦實施方法,該預測模型係用於在一晶圓上製造的一元件之一或更多個感興趣維度的空間分布,該方法包含下列步驟:藉由改變一製程空間內的一處理腔室的關鍵旋鈕來處理一最優個數的晶圓;在處理該最優個數的晶圓之步驟期間,收集有關該一或更多個感興趣維度的腔室量測資料;藉由在一取樣組晶圓上進行電子束檢測及量測,來收集有關該一或更多個感興趣維度的產線內(in-line)量測資料;藉由一機器學習引擎合併該腔室量測資料以及該產線內量測資料,來產生有關該一或更多個感興趣維度 的自訂量測資料;由該機器學習引擎決定該自訂量測資料與該製程空間內的經識別關鍵旋鈕設定之間的一相關性;獲得用於在該處理腔室內運行的一特定製程的一實證製程模型;當關聯於該製程的各不同旋鈕在該製程空間內虛擬地變化時,由該機器學習引擎藉由使用該自訂量測資料與該經識別關鍵旋鈕設定之間的該所決定的相關性,來將該實證製程模型精細化以建立一預測模型,該預測模型預測跨於一晶圓之該一或更多個感興趣維度的一空間分布。
  12. 如請求項11所述之方法,其中收集該腔室量測資料之步驟進一步包含以下步驟:在處理該最優個數的晶圓之步驟期間,收集虛擬量測(VM)資料,該VM資料包含腔室感測器之時間描跡。
  13. 如請求項11所述之方法,其中收集該腔室量測資料之步驟進一步包含以下步驟:在處理該最優個數的晶圓之步驟期間,藉由直接量測該一或更多個感興趣維度來收集板上量測(OBM)資料。
  14. 如請求項11所述之方法,其中將該實證製 程模型精細化之步驟進一步包含以下步驟:當一或更多個關鍵旋鈕中的至少一些關鍵旋鈕在該製程空間內同時被改變時,由該機器學習引擎識別該一或更多個關鍵旋鈕之設定的交互作用。
  15. 如請求項11所述之方法,進一步包含以下步驟:在沒有實體地處理任何其他晶圓下進行一空間數位實驗設計(DoE),其中該空間數位DoE包含針對該處理腔室及針對跨於該晶圓之該一或更多個感興趣維度的該製程的一多重限制條件優化。
  16. 如請求項15所述之方法,進一步包含以下步驟:藉由使該預測模型反向,由該機器學習引擎預測用於該空間數位DoE的一或更多個虛擬配方,該預測模型預測跨於一晶圓之該一或更多個感興趣維度的一空間分布。
  17. 如請求項11所述之方法,進一步包含以下步驟:藉由使用經更新的產線內量測資料,定期地校準該預測模型,該經更新的產線內量測資料提供正被處理的該元件的特徵層級三維輪廓線資訊,其中該輪廓線資訊包括:該一或更多個感興趣維度。
  18. 如請求項11所述之方法,其中由該機器學習引擎所使用的一機器學習方法係基於以下之一者或更多者:線性迴歸分析、偏最小平方法迴歸分析、高斯迴歸分析、多項式迴歸分析、用於迴歸的卷積式神經網路以及迴歸樹。
  19. 一種非暫態電腦可讀取媒體,包含多個指令,當該等指令被一機器學習引擎的一處理器所執行時,使該處理器進行以下多個操作以建立一預測模型,該預測模型係用於在一晶圓上製造的一元件之一或更多個感興趣維度的空間分布,該等操作包含:在藉由改變一製程空間內的一處理腔室的關鍵旋鈕來處理一最優個數的晶圓期間,接收有關該一或更多個感興趣維度的腔室量測資料;藉由在一取樣組晶圓上進行電子束檢測及量測,來接收有關該一或更多個感興趣維度的產線內(in-line)量測資料;合併該腔室量測資料以及該產線內量測資料,來產生有關該一或更多個感興趣維度的自訂量測資料;決定該自訂量測資料與該製程空間內的經識別關鍵旋鈕設定之間的一相關性;獲得用於在該處理腔室內運行的一特定製程的一實證製程模型; 當關聯於該製程的各不同旋鈕在該製程空間內虛擬地變化時,藉由使用該自訂量測資料與該經識別關鍵旋鈕設定之間的該所決定的相關性,來將該實證製程模型精細化以建立一預測模型,該預測模型預測跨於一晶圓之該一或更多個感興趣維度的一空間分布。
  20. 如請求項19所述之非暫態電腦可讀取媒體,其中接收該腔室量測資料之操作進一步包含:在處理該最優個數的晶圓期間,接收虛擬量測(VM)資料,該VM資料包含腔室感測器之時間描跡;以及在處理該最優個數的晶圓期間,藉由直接量測該一或更多個感興趣維度來接收板上量測(OBM)資料。
  21. 如請求項19所述之非暫態電腦可讀取媒體,其中將該實證製程模型精細化之操作進一步包含:當一或更多個關鍵旋鈕中的至少一些關鍵旋鈕在該製程空間內同時被改變時,由該機器學習引擎識別該一或更多個關鍵旋鈕之設定的交互作用。
  22. 如請求項19所述之非暫態電腦可讀取媒體,其中該等操作進一步包含:在沒有實體地處理任何其他晶圓下進行一空間數位實驗設計(DoE),其中該空間數位DoE包含針對該處理腔室及針對跨於該晶圓之該一或更多個感興趣維 度的該製程的一多重限制條件優化。
  23. 如請求項22所述之非暫態電腦可讀取媒體,其中該等操作進一步包含:藉由使該預測模型反向,由該機器學習引擎預測用於該空間數位DoE的一或更多個虛擬配方,該預測模型預測跨於一晶圓之該一或更多個感興趣維度的一空間分布。
  24. 如請求項19所述之非暫態電腦可讀取媒體,其中該等操作進一步包含:藉由使用經更新的產線內量測資料,定期地校準該預測模型,該經更新的產線內量測資料提供正被處理的該元件的特徵層級三維輪廓線資訊,其中該輪廓線資訊包括:該一或更多個感興趣維度。
  25. 一種用於建立一預測模型的系統,該預測模型係用於在一晶圓上製造的一元件之一或更多個感興趣維度的空間分布,該系統包含:一記憶體;以及一機器學習引擎的一處理器,該處理器可操作地耦接至該記憶體,以進行以下多個操作以建立一預測模型,該預測模型係用於在該晶圓上製造的該元件之一或更多個感興趣維度的空間分布,該等操作包含:在藉由改變一製程空間內的一處理腔室的關鍵旋鈕 來處理一最優個數的晶圓期間,接收有關該一或更多個感興趣維度的腔室量測資料;藉由在一取樣組晶圓上進行電子束檢測及量測,來接收有關該一或更多個感興趣維度的產線內(in-line)量測資料;合併該腔室量測資料以及該產線內量測資料,來產生有關該一或更多個感興趣維度的自訂量測資料;決定該自訂量測資料與該製程空間內的經識別關鍵旋鈕設定之間的一相關性;獲得用於在該處理腔室內運行的一特定製程的一實證製程模型;及當關聯於該製程的各不同旋鈕在該製程空間內虛擬地變化時,藉由使用該自訂量測資料與該經識別關鍵旋鈕設定之間的該所決定的相關性,來將該實證製程模型精細化以建立一預測模型,該預測模型預測跨於該晶圓之該一或更多個感興趣維度的該空間分布。
TW108136563A 2018-10-09 2019-10-09 高階半導體製程優化及製造期間適應性控制 TWI839396B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US16/155,779 US10930531B2 (en) 2018-10-09 2018-10-09 Adaptive control of wafer-to-wafer variability in device performance in advanced semiconductor processes
US16/155,773 2018-10-09
US16/155,779 2018-10-09
US16/155,773 US10657214B2 (en) 2018-10-09 2018-10-09 Predictive spatial digital design of experiment for advanced semiconductor process optimization and control
US16/214,550 US10705514B2 (en) 2018-10-09 2018-12-10 Adaptive chamber matching in advanced semiconductor process control
US16/214,550 2018-12-10

Publications (2)

Publication Number Publication Date
TW202038030A TW202038030A (zh) 2020-10-16
TWI839396B true TWI839396B (zh) 2024-04-21

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017117568A1 (en) 2015-12-31 2017-07-06 Kla-Tencor Corporation Accelerated training of a machine learning based model for semiconductor applications

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017117568A1 (en) 2015-12-31 2017-07-06 Kla-Tencor Corporation Accelerated training of a machine learning based model for semiconductor applications

Similar Documents

Publication Publication Date Title
EP3864470B1 (en) Advanced semiconductor process optimization and adaptive control during manufacturing
US10930531B2 (en) Adaptive control of wafer-to-wafer variability in device performance in advanced semiconductor processes
US10929586B2 (en) Predictive spatial digital design of experiment for advanced semiconductor process optimization and control
KR101094620B1 (ko) 반도체 프로세싱 도구에 의해 수행되는 프로세스를 용이하게 하는 방법 및 시스템, 시스템, 및 컴퓨터 판독가능한 매체
US11586794B2 (en) Semiconductor processing tools with improved performance by use of hybrid learning models
KR20060116192A (ko) 반도체 제조 프로세스를 제어하기 위한 제 1 원리들의시뮬레이션을 사용하기 위한 시스템 및 방법
KR20060116193A (ko) 반도체 프로세싱 도구에 의하여 수행된 프로세스를분석하기 위하여 제 1 원리들의 시뮬레이션을 사용하기위한 시스템 및 방법
TWI839396B (zh) 高階半導體製程優化及製造期間適應性控制
KR20240067834A (ko) 피처 모델들을 사용한 프로세스 레시피 생성 및 매칭
CN117321522A (zh) 使用特征模型的工艺配方创建和匹配