TWI839341B - 製備顯像化合物之新穎方法 - Google Patents

製備顯像化合物之新穎方法 Download PDF

Info

Publication number
TWI839341B
TWI839341B TW108102782A TW108102782A TWI839341B TW I839341 B TWI839341 B TW I839341B TW 108102782 A TW108102782 A TW 108102782A TW 108102782 A TW108102782 A TW 108102782A TW I839341 B TWI839341 B TW I839341B
Authority
TW
Taiwan
Prior art keywords
compound
disease
formula
hplc
mmol
Prior art date
Application number
TW108102782A
Other languages
English (en)
Other versions
TW201932468A (zh
Inventor
馬里昂 瑟娜
瑪修斯 本那德
漢諾 史奇佛斯坦
米良 強尼 卡斯提洛
海科 克洛斯
傑洛米 莫里特
文森 達曼西
艾瑪紐 葛畢利瑞
Original Assignee
英商生命分子影像有限公司
瑞士商Ac免疫公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英商生命分子影像有限公司, 瑞士商Ac免疫公司 filed Critical 英商生命分子影像有限公司
Publication of TW201932468A publication Critical patent/TW201932468A/zh
Application granted granted Critical
Publication of TWI839341B publication Critical patent/TWI839341B/zh

Links

Abstract

本發明係關於製備式I 化合物之新穎方法。亦揭示診斷組合物及其在例如使用正電子發射斷層攝影術(PET)顯像來選擇性檢測與tau蛋白聚集物有關之病症及異常、例如阿茲海默氏病(Alzheimer’s disease) (AD)及其他tau蛋白病變中之用途。

Description

製備顯像化合物之新穎方法
本發明係關於製備式I 化合物之新穎方法,該化合物可用於例如使用正電子發射斷層攝影術(PET)顯像來選擇性檢測與tau蛋白聚集物有關之病症及異常、例如阿茲海默氏病(Alzheimer’s disease) (AD)及其他tau蛋白病變。包括所獲得化合物之診斷組合物以及其在診斷及顯像中之用途亦係本申請案之標的物。
阿茲海默氏病係認為主要由類澱粉斑塊引起之神經學病症,類澱粉斑塊係類澱粉-β (Aβ)聚集物在腦或眼睛中之異常沈積物之細胞外累積。AD中之其他主要神經病理學標誌係藉由聚集過磷酸化tau蛋白(微管蛋白相關單元)、磷酸化tau蛋白或病理tau蛋白及其構形異構體所產生之細胞內神經原纖維纏結(NFT)。AD與許多神經退化性tau蛋白病變、尤其特定類型之額顳葉癡呆(FTD)具有相同病況。在AD大腦中,tau蛋白病理(tau蛋白病變)發展晚於類澱粉病理,但對於Aβ蛋白是否係AD中之致病因子(其構成所謂的類澱粉級聯假說之本質)仍存在爭議(Hardy等人,Science 1992,256 , 184-185及最近之Musiek等人,Nature Neurosciences 2015,18 (6), 800-806, 「Three dimensions of the amyloid hypothesis: time, space and 'wingmen'」)。
當前,診斷AD之唯一確定方式係在個體死亡之後藉由生檢或剖檢材料之組織學分析來鑑別腦組織中之斑塊及纏結。除AD外,tau蛋白亦在其他(非AD)神經退化性疾病中發揮重要作用。該等非AD tau蛋白病變包含(例如)核上性麻痺(PSP)、皮克氏病(Pick’s disease,PiD)及皮質基底退化(CBD)。
已提出使用通式A 化合物來選擇性檢測與tau蛋白聚集物有關之病症及異常(例如阿茲海默氏病(AD)及其他tau蛋白病變),且製造此化合物之某些方法已闡述於先前技術中。
Gobbi等人在WO 2015/052105中揭示如下方法:其中藉由使具有硝基而非18 F之前體與[18 F]氟化物在微波裝置中進行反應來獲得式A 化合物。在合成步驟之後,藉由尤其涉及以下步驟之兩步驟程序來純化式A 化合物: 1) HPLC,其使用甲醇及三乙胺之移動相;及 2) 使用固相萃取柱再調配以用於捕集式A 化合物且隨後使用經鹽水(於水中之0.9% NaCl)稀釋之乙醇自柱洗脫。
該方法以26.1%之產率提供式A 化合物。
Gobbi等人進一步在J. Med. Chem. 2017,第60卷,第7350至7370頁中揭示下列兩種方法: a) 微波方法:將[18 F]氟化物捕集於陽離子交換柱上且使用Kryptofix® /碳酸鉀混合物洗脫活性物。在添加乙腈之後,在升高溫度下乾燥混合物。然後將含有乾燥[18 F]氟化物混合物之小瓶轉移至微波裝置中且添加0.5 mg於400 µL DMSO中之前體分子(未保護硝基衍生物)。藉由微波在50 W下輻照小瓶240秒。稀釋所得溶液並藉由製備型HPLC (C-18管柱,乙腈/三甲胺緩衝劑,pH 7.2)純化。
收集產物峰,使用水稀釋且通過C-18 Sep-Pak Plus柱。使用水洗滌柱且使用乙醇洗脫18 F-標記產物並使用鹽水溶液稀釋。
b) 熱加熱方法:將[18 F]氟化物捕集於陽離子交換柱上且使用Kryptofix® /碳酸鉀混合物洗脫活性物。在添加乙腈之後,在升高溫度下乾燥混合物。添加0.5 mg於400 µL DMSO中之前體分子(未保護硝基衍生物)且將溶液在160℃下加熱10 min。稀釋所得溶液並藉由製備型HPLC (C-18管柱,乙腈/三甲胺緩衝劑,pH 7.2)純化。
收集產物峰,使用水稀釋且通過C-18 Sep-Pak Plus柱。使用水洗滌柱且使用乙醇洗脫18 F-標記產物並使用鹽水溶液稀釋。
因此,上文所提及先前技術中之製備式A 化合物之方法具有兩個純化/再調配步驟,其中該方法在微波方法之情形下僅部分地自動進行,如圖1中所圖解說明。
先前技術中所闡述方法之硝基前體(及主要副產物)尤其在用於純化(製備型HPLC)之乙醇、乙腈及乙腈/水性緩衝劑混合物中具有較差溶解性,尤其在使用具有中性pH之水性緩衝劑混合物時。在先前技術之實例中使用僅0.5 mg至0.7 mg前體。
本發明之一目標係提供製備式I 化合物之改良方法,該方法較先前技術方法更為成本及時間有效(如圖2中所概述)。另外,應改良該方法之產率。
本發明係關於下列項目: 1. 一種製備式I 化合物之方法, 其包括以下步驟: A) 使式II 化合物與18 F氟化劑進行反應, 其中X 係H或PGLG 係離去基團,且PG 係胺保護基團,及 B) 視情況,若XPG ,則裂解該保護基團PG ,及 C) 使用包括乙醇及水之移動相對所得式I 化合物實施高效液相層析(HPLC)。 2. 如項目1之方法,其中XPG ,步驟B不存在且在步驟A中裂解該保護基團PG 。 3. 如項目1之方法,其中XPG 且在步驟B中裂解該保護基團PG 。 4. 如項目1至3中任一項之方法,其中該移動相中之乙醇對水之比率為約5/95 v/v至約80/20 v/v。 5. 如項目1至4中任一項之方法,其中該移動相之pH為約0至約8、較佳地約1至約3、更佳地約2至約3.0、甚至更佳地約2.2至約2.8。 6. 如項目1至5中任一項之方法,其中該移動相進一步包括較佳地選自以下之緩衝劑:鹼金屬磷酸二氫鹽、二鹼金屬磷酸氫鹽、三鹼金屬磷酸鹽、鹼金屬乙酸鹽、鹼土金屬乙酸鹽、鹼土金屬甲酸鹽、單/二/三鹼金屬檸檬酸鹽。 7. 如項目1至6中任一項之方法,其中該高效液相層析(HPLC)係在約50巴至約400巴、較佳地約50巴至約250巴之壓力下實施。 8. 如項目1至7中任一項之方法,其中該方法係自動化方法,其中步驟A、可選步驟B及步驟C係在自動化合成器上實施。 9. 如項目1至8中任一項之方法,其中該高效液相層析(HPLC)產生包括該式I 化合物之部分且對此部分實施步驟D)之無菌過濾。 10. 如項目1至9中任一項之方法,其中該方法不包括在步驟C之後固相萃取該式I 化合物,較佳地,其中該方法不包括在步驟C之前或之後固相萃取該式I 化合物。 11. 如項目1至10中任一項之方法,其中在步驟C之該高效液相層析(HPLC)之後並不對該式I 化合物實施層析,較佳地,其中並不對該式I 化合物實施除步驟C之該高效液相層析(HPLC)外之層析。 12. 一種診斷組合物,其包括式I 化合物: 其可藉由如項目1至12中任一項之方法獲得;及視情況診斷上可接受之載劑、稀釋劑、佐劑或賦形劑。 13. 如項目12之組合物,其用於診斷中。 14. 如項目12之組合物,其用於tau蛋白聚集物之顯像,尤其用於tau蛋白聚集物之正電子發射斷層攝影術顯像。 15. 如項目13或14之使用之組合物,其中該病症係選自阿茲海默氏病(AD)、家族性AD、克-雅二氏病(Creutzfeldt-Jacob disease)、拳擊手型癡呆、唐氏症候群(Down’s Syndrome)、傑茨曼-斯脫司勒-史茵克病(Gerstmann-Sträussler-Scheinker disease)、包涵體肌炎、普裡昂蛋白(prion protein)腦類澱粉血管病變、創傷性腦損傷(TBI)、肌肉萎縮性脊髓側索硬化症、關島帕金森症-癡呆複合症(Parkinsonism-dementia complex of Guam)、非關島運動神經元疾病伴神經原纖維纏結、嗜銀顆粒病、皮質基底退化(CBD)、瀰漫性神經原纖維纏結伴鈣化症、額顳葉癡呆伴17號染色體相關性帕金森症、哈勒沃登-施帕茨病(Hallervorden-Spatz disease)、多系統萎縮、C型尼曼-皮克病(Niemann-Pick disease)、蒼白球-腦橋-黑質退化、皮克氏病(PiD)、進行性皮質下膠質細胞增生症、進行性核上性麻痺(PSP)、亞急性硬化性泛腦炎、僅纏結型癡呆、腦炎後帕金森症、肌強直性營養不良、tau泛腦病、與星形細胞有關之類AD (AD-like with astrocytes)、某些普裡昂疾病(與tau蛋白有關之GSS)、LRRK2突變、慢性創傷性腦病、家族性英國型癡呆、家族性丹麥型癡呆、額顳葉退化、瓜德羅普帕金森症(Guadeloupean Parkinsonism)、神經退化伴腦內鐵累積、SLC9A6相關性智力遲鈍、白質tau蛋白病變伴球狀膠質細胞包涵體、創傷性應激症候群、癲癇、路易氏體癡呆(Lewy body dementia,LBD)、遺傳性腦出血伴類澱粉變性(荷蘭型)、輕度認知損傷(MCI)、多發性硬化、帕金森氏病(Parkinson's disease)、非典型帕金森症、HIV相關性癡呆、成人型糖尿病、老年性心臟類澱粉變性、內分泌腫瘤、青光眼、眼部類澱粉變性、原發性視網膜退化、黃斑退化(例如年齡相關性黃斑退化(AMD))、視神經隱結、視神經病變、視神經炎及角膜格子狀營養不良;較佳係阿茲海默氏病。 16. 如項目13或14之使用之組合物,其中該病症係選自亨廷頓氏病(Huntington's disease)、缺血性中風及AD中之精神病。 17. 如項目13至16中任一項之使用之組合物,其中擬藉由注射投與該組合物。 18. 如項目12之組合物,其用於診斷與tau蛋白聚集物有關之病症或用於診斷tau蛋白病變,特定而言,其中該診斷係藉由正電子發射斷層攝影術來實施。 19. 如項目18之使用之組合物,其中該tau蛋白病變係3R tau蛋白病變。 20. 如項目18之使用之組合物,其中該tau蛋白病變係4R tau蛋白病變。 21. 如項目18之使用之組合物,其中該病症係選自阿茲海默氏病(AD)、家族性AD、克-雅二氏病、拳擊手型癡呆、唐氏症候群、傑茨曼-斯脫司勒-史茵克病、包涵體肌炎、普裡昂蛋白腦類澱粉血管病變、創傷性腦損傷(TBI)、肌肉萎縮性脊髓側索硬化症、關島帕金森症-癡呆複合症、非關島運動神經元疾病伴神經原纖維纏結、嗜銀顆粒病、皮質基底退化(CBD)、瀰漫性神經原纖維纏結伴鈣化症、額顳葉癡呆伴17號染色體相關性帕金森症、哈勒沃登-施帕茨病、多系統萎縮、C型尼曼-皮克病、蒼白球-腦橋-黑質退化、皮克氏病(PiD)、進行性皮質下膠質細胞增生症、進行性核上性麻痺(PSP)、亞急性硬化性泛腦炎、僅纏結型癡呆、腦炎後帕金森症、肌強直性營養不良、tau泛腦病、與星形細胞有關之類AD、某些普裡昂疾病(與tau蛋白有關之GSS)、LRRK2突變、慢性創傷性腦病、家族性英國型癡呆、家族性丹麥型癡呆、額顳葉退化、瓜德羅普帕金森症、神經退化伴腦內鐵累積、SLC9A6相關性智力遲鈍、白質tau蛋白病變伴球狀膠質細胞包涵體、創傷性應激症候群、癲癇、路易氏體癡呆LBD)、遺傳性腦出血伴類澱粉變性(荷蘭型)、輕度認知損傷(MCI)、多發性硬化、帕金森氏病、非典型帕金森症、HIV相關性癡呆、成人型糖尿病、老年性心臟類澱粉變性、內分泌腫瘤、青光眼、眼部類澱粉變性、原發性視網膜退化、黃斑退化(例如年齡相關性黃斑退化(AMD))、視神經隱結、視神經病變、視神經炎及角膜格子狀營養不良;較佳係阿茲海默氏病。 22. 如項目18之使用之組合物,其中該病症係選自亨廷頓氏病、缺血性中風及AD中之精神病。 23. 如項目21之使用之組合物,其中該病症係阿茲海默氏病(AD)。 24. 如項目21之使用之組合物,其中該病症係帕金森氏病或非典型帕金森症。 25. 如項目21之使用之組合物,其中該病症係進行性核上性麻痺(PSP)。 26. 如項目21之使用之組合物,其中該病症係皮克氏病(PiD)。 27. 如項目18至26中任一項之使用之組合物,其中該等tau蛋白聚集物顯像於腦或眼睛中。 28. 一種使tau蛋白聚集物顯像之方法、尤其tau蛋白聚集物之正電子發射斷層攝影術顯像方法,其中向患者投與有效量之如項目12之組合物。 29. 一種診斷與tau蛋白聚集物有關之病症或tau蛋白病變之方法,其中向患者投與有效量之如項目12之組合物,特定而言,其中該診斷係藉由正電子發射斷層攝影術來實施。 30. 如項目29之方法,其中該tau蛋白病變係3R tau蛋白病變。 31. 如項目29之方法,其中該tau蛋白病變係4R tau蛋白病變。 32. 如項目29之方法,其中該病症係選自阿茲海默氏病(AD)、家族性AD、克-雅二氏病、拳擊手型癡呆、唐氏症候群、傑茨曼-斯脫司勒-史茵克病、包涵體肌炎、普裡昂蛋白腦類澱粉血管病變、創傷性腦損傷、肌肉萎縮性脊髓側索硬化症、關島帕金森症-癡呆複合症、非關島運動神經元疾病伴神經原纖維纏結、嗜銀顆粒病、皮質基底退化、瀰漫性神經原纖維纏結伴鈣化症、額顳葉癡呆伴17號染色體相關性帕金森症、哈勒沃登-施帕茨病)、多系統萎縮、C型尼曼-皮克病、蒼白球-腦橋-黑質退化、皮克氏病、進行性皮質下膠質細胞增生症、進行性核上性麻痺(PSP)、亞急性硬化性泛腦炎、僅纏結型癡呆、腦炎後帕金森症、肌強直性營養不良、tau泛腦病、與星形細胞有關之類AD、某些普裡昂疾病(與tau蛋白有關之GSS)、LRRK2突變、慢性創傷性腦病、家族性英國型癡呆、家族性丹麥型癡呆、額顳葉退化、瓜德羅普帕金森症、神經退化伴腦內鐵累積、SLC9A6相關性智力遲鈍、白質tau蛋白病變伴球狀膠質細胞包涵體、創傷性應激症候群、癲癇、路易氏體癡呆(LBD)、遺傳性腦出血伴類澱粉變性(荷蘭型)、輕度認知損傷(MCI)、多發性硬化、帕金森氏病、非典型帕金森症、HIV相關性癡呆、成人型糖尿病、老年性心臟類澱粉變性、內分泌腫瘤、青光眼、眼部類澱粉變性、原發性視網膜退化、黃斑退化(例如年齡相關性黃斑退化(AMD))、視神經隱結、視神經病變、視神經炎及角膜格子狀營養不良;較佳係阿茲海默氏病。 33. 如項目29之方法,其中該病症係選自亨廷頓氏病、缺血性中風及AD中之精神病。 34. 如項目32之方法,其中該病症係阿茲海默氏病(AD)。 35. 如項目32之方法,其中該病症係帕金森氏病或非典型帕金森症。 36. 如項目32之方法,其中該病症係進行性核上性麻痺(PSP)。 37. 如項目32之方法,其中該病症係皮克氏病(PiD)。 38. 如項目28至37中任一項之方法,其中該等tau蛋白聚集物顯像於腦或眼睛中。 39. 一種如項目12之組合物之用途,其用以製造用於tau蛋白聚集物之顯像、尤其用於tau蛋白聚集物之正電子發射斷層攝影術顯像之診斷劑。 40. 一種如項目12之組合物之用途,其用以製造用於診斷與tau蛋白聚集物有關之病症或用於診斷tau蛋白病變之診斷劑,特定而言,其中該診斷係藉由正電子發射斷層攝影術來實施。 41. 如項目40之用途,其中該tau蛋白病變係3R tau蛋白病變。 42. 如項目40之用途,其中該tau蛋白病變係4R tau蛋白病變。 43. 如項目40之用途,其中該病症係選自阿茲海默氏病(AD)、家族性AD、克-雅二氏病、拳擊手型癡呆、唐氏症候群、傑茨曼-斯脫司勒-史茵克病、包涵體肌炎、普裡昂蛋白腦類澱粉血管病變、創傷性腦損傷、肌肉萎縮性脊髓側索硬化症、關島帕金森症-癡呆複合症、非關島運動神經元疾病伴神經原纖維纏結、嗜銀顆粒病、皮質基底退化、瀰漫性神經原纖維纏結伴鈣化症、額顳葉癡呆伴17號染色體相關性帕金森症、哈勒沃登-施帕茨病)、多系統萎縮、C型尼曼-皮克病、蒼白球-腦橋-黑質退化、皮克氏病、進行性皮質下膠質細胞增生症、進行性核上性麻痺(PSP)、亞急性硬化性泛腦炎、僅纏結型癡呆、腦炎後帕金森症、肌強直性營養不良、tau泛腦病、與星形細胞有關之類AD、某些普裡昂疾病(與tau蛋白有關之GSS)、LRRK2突變、慢性創傷性腦病、家族性英國型癡呆、家族性丹麥型癡呆、額顳葉退化、瓜德羅普帕金森症、神經退化伴腦內鐵累積、SLC9A6相關性智力遲鈍、白質tau蛋白病變伴球狀膠質細胞包涵體、創傷性應激症候群、癲癇、路易氏體癡呆(LBD)、遺傳性腦出血伴類澱粉變性(荷蘭型)、輕度認知損傷(MCI)、多發性硬化、帕金森氏病、非典型帕金森症、HIV相關性癡呆、成人型糖尿病、老年性心臟類澱粉變性、內分泌腫瘤、青光眼、眼部類澱粉變性、原發性視網膜退化、黃斑退化(例如年齡相關性黃斑退化(AMD))、視神經隱結、視神經病變、視神經炎及角膜格子狀營養不良;較佳係阿茲海默氏病。 44. 如項目40之用途,其中該病症係選自亨廷頓氏病、缺血性中風及AD中之精神病。 45. 如項目43之用途,其中該病症係阿茲海默氏病(AD)。 46. 如項目43之用途,其中該病症係帕金森氏病或非典型帕金森症。 47. 如項目43之用途,其中該病症係進行性核上性麻痺(PSP)。 48. 如項目43之用途,其中該病症係皮克氏病(PiD)。 49. 如項目39至48中任一項之用途,其中該等tau蛋白聚集物顯像於腦或眼睛中。 50. 一種如項目12之組合物之用途,其用作分析參考。 51. 一種如項目12之組合物之用途,其用作活體外篩選工具。 52. 一種收集與試樣或患者中之tau蛋白聚集物有關之病症之診斷數據的方法,其包括: (a) 使懷疑含有tau蛋白聚集物之試樣或特定身體部分或身體區域與含有式I 化合物之如項目12之組合物接觸; (b) 使該式I 化合物結合至該tau蛋白聚集物; (c) 檢測該結合至該tau蛋白聚集物之式I 化合物;及 (d) 視情況使結合該tau蛋白聚集物之式I 化合物之存在或不存在與該試樣或特定身體部分或身體區域中tau蛋白聚集物之存在或不存在建立關聯。 53. 一種測定組織及/或體液中之tau蛋白聚集物之量之方法,其包括: (a) 提供代表所研究之該組織及/或體液之試樣; (b) 使用含有式I 化合物之如項目12之組合物測試該試樣中tau蛋白聚集物之存在; (c) 測定結合至該tau蛋白聚集物之式I 化合物之量;及 (d) 計算該組織及/或體液中之tau蛋白聚集物之量。 54. 一種收集用於測定患者中與tau蛋白聚集物有關之病症之傾向之數據的方法,該測定包括檢測含有式I 化合物之如項目12之組合物與試樣中或原位tau蛋白聚集物之特異性結合,該方法包括以下步驟: (a) 使懷疑含有該tau蛋白聚集物之試樣或特定身體部分或身體區域與含有特異性結合至該tau蛋白聚集物之式I 化合物之如項目12之組合物接觸; (b) 使該式I 化合物結合至該tau蛋白聚集物以形成化合物/tau蛋白聚集物複合物; (c) 檢測該化合物/tau蛋白聚集物複合物之形成; (d) 視情況使該化合物/tau蛋白聚集物複合物之存在或不存在與該試樣或特定身體部分或身體區域中tau蛋白聚集物之存在或不存在建立關聯;及 (e) 視情況比較該化合物/tau蛋白聚集物之量與正常對照值。 55. 一種收集用於監測患有與tau蛋白聚集物有關之病症且已使用藥劑治療之患者中之殘餘病症之數據的方法,其中該方法包括: (a) 使懷疑含有tau蛋白聚集物之試樣或特定身體部分或身體區域與含有特異性結合至該tau蛋白聚集物之式I 化合物之如項目12之組合物接觸; (b) 使該式I 化合物結合至該tau蛋白聚集物以形成化合物/tau蛋白聚集物複合物; (c) 檢測該化合物/tau蛋白聚集物複合物之形成; (d) 視情況使該化合物/tau蛋白聚集物複合物之存在或不存在與該試樣或特定身體部分或身體區域中tau蛋白聚集物之存在或不存在建立關聯;及 (e) 視情況比較該化合物/tau蛋白聚集物之量與正常對照值。 56.一種收集用於預測患有與tau蛋白聚集物有關之病症且正使用藥劑治療之患者之反應性之數據的方法,其包括: (a) 使懷疑含有tau蛋白聚集物之試樣或特定身體部分或身體區域與含有特異性結合至該tau蛋白聚集物之式I 化合物之如項目12之組合物接觸; (b) 使該式I 化合物結合至該tau蛋白聚集物以形成化合物/tau蛋白聚集物複合物; (c) 檢測該化合物/tau蛋白聚集物複合物之形成; (d) 視情況使該化合物/tau蛋白聚集物複合物之存在或不存在與該試樣或特定身體部分或身體區域中tau蛋白聚集物之存在或不存在建立關聯;及 (e) 視情況比較該化合物/tau蛋白聚集物之量與正常對照值。
定義 除非另外指定,否則術語「烷基」係指含有1至6個碳原子之飽和直鏈或具支鏈碳鏈。
「Hal」或「鹵素」代表F、Cl、Br及I。較佳地,「鹵素」在每次出現時獨立地選自F、Cl及Br、更佳地F及Cl、甚至更佳地F。
本文所用之術語「胺保護基團」 (PG )係任一適於在所構想化學反應期間保護胺基團之保護基團。適宜保護基團之實例為熟習此項技術者所熟知。適宜保護基團論述於(例如)以下教科書中:Greene及Wuts, Protecting groups in Organic Synthesis,第三版,第494-653頁,其以引用方式包含於本文中。保護基團可選自胺基甲酸酯、醯胺、醯亞胺、N-烷基胺、N-芳基胺、亞胺、烯胺、硼烷、N-P保護基團、N-亞氧硫基、N-磺醯基及N-矽基。保護基團(PG )之具體較佳實例係苄氧羰基(Cbz)、(對甲氧基苄基)氧基羰基(Moz或MeOZ)、第三丁基氧基羰基(BOC)、9-茀基甲基氧基羰基(FMOC)、苄基(Bn)、對甲氧基苄基(PMB)、3,4-二甲氧基苄基(DMPM)、對甲氧基苯基(PMP)、三苯基甲基(三苯甲基)、甲氧基苯基二苯基甲基(MMT)或二甲氧基三苯甲基(DMT)。保護基團PG 之更佳實例包含第三丁基氧基羰基(BOC)、二甲氧基三苯甲基(DMT)及三苯基甲基(三苯甲基)。保護基團PG 之一更佳實例係第三丁基氧基羰基(BOC)。
術語「胺基甲酸酯胺保護基團」係指含有*-CO-O基團之胺保護基團,其中星號指示至胺之鍵。實例係苄氧羰基(Cbz)、(對甲氧基苄基)氧基羰基(Moz或MeOZ)、第三丁基氧基羰基(BOC)及9-茀基甲基氧基羰基(FMOC)。
本文所用之術語「離去基團」 (LG )係任一離去基團且意指可由另一原子或原子基團代替之原子或原子基團。實例給出於(例如)以下文獻中:Synthesis (1982), p. 85-125,表2,Carey及Sundberg, Organische Synthese, (1995),第279-281頁,表5.8;或Netscher, Recent Res. Dev. Org. Chem., 2003, 7, 71-83,反應圖1、2、10及15以及其他)。(Coenen, Fluorine-18 Labeling Methods: Features and Possibilities of Basic Reactions, (2006), Schubiger P.A., Friebe M., Lehmann L., (編輯),PET-Chemistry - The Driving Force in Molecular Imaging. Springer, Berlin Heidelberg, pp.15-50,明確而言:反應圖4 pp. 25、反應圖5 pp 28、表4 pp 30、圖7 pp 33)。較佳地,「離去基團」 (LG )係選自由以下組成之群:硝基、溴、碘、氯、三烷基銨、羥基、酸、碘鎓、磺酸酯。更佳地,「離去基團」 (LG )係硝基或三甲銨。應理解,含有三烷基銨或碘鎓之化合物可進一步包括陰離子。仍更佳地,「離去基團」 (LG )係硝基。另一更佳「離去基團」 (LG )係三甲銨。
本文所用之術語「冠醚」意指由含有若干醚基團之環組成之化學化合物。更具體而言,術語「冠醚」較佳地係指可經取代且在環中含有8至16個碳原子及4至8個選自N、O及S之雜原子之單環有機基團。一或多個可選取代基中之每一者可獨立地選自任一含有1至15個碳原子及視情況1至6個選自N、O及S之雜原子之有機基團。「冠醚」之較佳實例係視情況經取代之在環中含有10至14個碳原子及5至7個選自N、O及S之雜原子之單環。「冠醚」之實例係視情況經取代之在環中含有12個碳原子及6個選自N及O之雜原子之單環。具體實例包含18-冠-6、二苯并-18-冠-6及二氮雜-18-冠-6。
本文所用之術語「穴狀配體」係關於與冠醚相關之一類多環化合物,其具有三個附接於兩個氮原子處之鏈。熟知「穴狀配體」係4,7,13,16,21,24-六氧雜-1,10-二氮雜雙環[8.8.8]二十六烷(Kryptofix® )。
本文所用之tau蛋白係指主要發現於神經元中之高度可溶性微管結合蛋白且包含主要6種同種型、裂解或截短形式及其他經修飾形式(例如源自磷酸化、醣基化、醣化、脯胺醯基異構化、硝化、乙醯化、聚胺化、泛素化、蘇素化及氧化)。本文所用之病理tau蛋白或tau蛋白聚集物(神經原纖維纏結,NFT)係指含有配對螺旋絲及直絲之過度磷酸化tau蛋白之不溶性聚集物。其存在係AD及稱為tau蛋白病變之其他疾病之標誌。
tau蛋白基因含有16個外顯子且主要tau蛋白同種型由其中之11個編碼。外顯子10之選擇性剪接分別生成含有三個(外顯子10丟失)或四(外顯子10存在)個重複結構域之tau蛋白同種型(稱為3R tau蛋白及4R tau蛋白) (A. Andreadis等人,Biochemistry 31, (1992) 10626 - 10633;M. Tolnay等人,IUBMB Life, 55(6): 299-305, 2003)。在阿茲海默氏病中,3R及4R同種型之比率類似。與之相比,在一些tau蛋白病變中,主要存在兩種同種型中之一者。在本文中,術語「3R tau蛋白病變」係指其中主要存在3R同種型之tau蛋白病變(例如皮克氏病(PiD))。在本文中,術語「4R tau蛋白病變」係指其中主要存在4R同種型之tau蛋白病變(例如進行性核上性麻痺(PSP)及皮質基底退化(CBD))。
如下文在闡述本發明及申請專利範圍中所使用,術語「醫藥上可接受之鹽」係關於所揭示化合物之無毒衍生物,其中母體化合物係藉由製備其無機酸及有機酸鹽來改質。無機酸包含(但不限於)諸如鹽酸、硝酸或硫酸等酸。有機酸包含(但不限於)羧酸及磺酸,例如脂肪族酸、環脂族酸、芳香族酸、芳脂族酸及雜環酸。本發明之醫藥上可接受之鹽可藉由習用化學方法自含有鹼性或酸性部分之母體化合物來合成。通常,可藉由使該等化合物之游離酸或鹼形式與化學計量量之適當鹼或酸在水或有機溶劑或兩種溶劑之混合物中進行反應來製備該等鹽。適宜鹽之清單可參見Remington’s Pharmaceutical Sciences,第18版,Mack Publishing Company, Easton, PA, 1990, p. 1445,該文獻之揭示內容以引用方式併入本文中。
「醫藥上可接受」或「診斷上可接受」定義為係指彼等在合理藥學判斷範圍內適於與人類及動物組織接觸使用且無過度毒性、刺激性、過敏反應或其他問題或併發症且與合理益處/風險比相稱之化合物、材料、組合物及/或劑型。
本發明中之患者或個體通常係動物、尤其哺乳動物、更尤其人類。
「層析」或「液相層析」意指分離化合物之混合物之方法。將混合物溶於流體中且經由「移動相」傳輸通過「固定相」。分離係基於移動相中之化合物與固定相之相互作用。該等不同相互作用在固定相上產生差異性滯留且由此影響分離。層析可為製備型或分析型。製備型層析之目的係分離混合物之組分,且由此係純化形式。分析型層析係使用較小材料試樣進行且用於量測混合物中之化合物比例。
「高效液相層析(HPLC)」係藉由使用極小固定相顆粒(≤10 µm)且施加足夠較高壓力來分離化合物之液相層析形式。HPLC系統通常由移動相儲槽、幫浦、注射器、分離管柱(含有固定相)及檢測器組成。為分離放射性化合物,使適宜HPLC系統配備有放射性檢測器。視情況,HPLC系統具有其他檢測器,例如UV檢測器、光二極體陣列、折射率檢測器、電導率檢測器、螢光檢測器、質譜儀。
「固相萃取(SPE)」係具有兩個或更多個單獨步驟之試樣製備及/或純化製程。首先,將化合物溶解或懸浮於溶劑之液體混合物中且使液體試樣通過固定(固體)相。一些化合物保留於固定相上,而其他化合物則通過該固定相。在第二步驟中,使用適宜溶劑洗脫所保留化合物。視情況,在洗脫步驟之前使用另一溶液洗滌固定相。與HPLC技術相比,所用粒度極大(例如≥ 25 µm,與之相比,HPLC中之典型粒度≤ 10 µm),且由此所施加壓力極低(對於HPLC而言,壓力通常> 50巴)。
「固相萃取柱(SPE柱)」係預填充SPE固定相之注射器或容器(例如Sep Pak®)。
「無菌過濾」係經由微過濾器藉由過濾使溶液無菌之方法。微過濾器係(例如)孔徑為約0.25 µm或更小、較佳地約20 nm至約0.22 µm之過濾器,其通常用於去除微生物。用於生產製程中之微過濾之膜過濾器通常係自諸如以下等材料製得:混合纖維素酯、聚四氟乙烯(PTFE)、聚二氟亞乙烯(PVDF)或聚醚碸(PES)。
本文所用之「自動化」意指藉由適宜裝置(合成器)實施合成及或純化步驟。
術語「放射清除劑」係指降低由放射分解所致之分解之速率之化合物。較佳放射清除劑包含抗壞血酸及其鹽以及龍膽酸及其鹽。更佳放射清除劑係抗壞血酸、抗壞血酸鈉及其混合物。
用於18 F-放射性標記之適宜「合成器」為熟習此項技術者所熟知,包含(但不限於) IBA Synthera、GE Fastlab、GE Tracerlab MX、GE Tracerlab FX、GE Tracerlab FX、Trasis AllinOne、ORA Neptis Perform、ORA Neptis Mosaic、ORA Neptis Plug、Scintomics GPR、Synthera、Comecer Taddeo、Raytest Synchrom、Sofie Elixys、Eckert&Ziegler Modular Lab、Sumitomo Heavy Industries F100 F200 F300、Siemens Explora。
「放射性化學純度」意指以所陳述化學形式存在之放射性核素之總活性之比例。通常,藉由薄層層析或HPLC來測定放射性化學純度。
除非另外陳述,否則「定義」部分中所給出之較佳定義適用於本文所闡述之所有實施例。
本發明方法 在第一態樣中,本發明係關於製備式I 化合物之方法: 此方法包括以下步驟: A) 使式II 化合物與18 F氟化劑進行反應, 其中X 係H或PGLG 係離去基團,且PG 係胺保護基團,及 B) 視情況,若XPG ,則裂解該保護基團PG ,及 C) 使用包括乙醇及水之混合物之移動相對所得式I 化合物實施高效液相層析(HPLC)。
較佳式I 化合物係選自由以下組成之群: 更佳式I 化合物係
較佳式II 化合物係選自由以下組成之群:
更佳式II 化合物係選自由以下組成之群:。 在該等化合物中,PGLG 係如「定義」部分中所定義。
甚至更佳之式II 化合物係選自由以下組成之群: , 其中X- 係相對離子,例如選自由鹵離子、CF3 SO3 - 及CF3 CO2 - 組成之群之相對離子。
步驟 A 步驟A包括使式II 化合物與18 F氟化劑進行反應: 其中X 係H或PGLG 係離去基團,且PG 係胺保護基團 若X 係H,則產生具有式I 之化合物。若XPG ,則獲得具有式III 之中間體化合物。
18 F氟化劑為熟習此項技術者所熟知。可採用任一適宜18 F-氟化劑。典型實例包含H18 F、鹼性或鹼土18 F-氟化物(例如K18 F、Rb18 F、Cs18 F及Na18 F)。視情況,可組合使用18 F-氟化劑與螯合劑(例如穴狀配體(例如:4,7,13,16,21,24-六氧雜-1,10-二氮雜雙環[8.8.8]-二十六烷- Kryptofix® )或冠醚(例如:18-冠-6))。或者,18 F-氟化劑可為18 F之四烷基銨鹽或18 F之四烷基鏻鹽;例如18 F之四(C1-6 烷基)銨鹽或18 F之四(C1-6 烷基)鏻鹽。其實例包含四丁基[18 F]氟化銨及四丁基[18 F]氟化鏻。較佳地,18 F-氟化劑係K18 F、H18 F、Cs18 F、Na18 F或四丁基[18 F]氟化銨。在一甚至更佳實施例中,18 F-氟化劑係K18 F。在另一更佳實施例中,18 F-氟化劑係四丁基[18 F]氟化銨。
通常在溶劑中實施18 F-氟化,溶劑較佳係選自乙腈、二甲基亞碸、二甲基甲醯胺、二甲基乙醯胺、戊基醇、第三丁基醇或其混合物,較佳地,溶劑含有或係乙腈或DMSO。然而,亦可使用熟習此項技術者所熟知之其他溶劑。溶劑可進一步包括水及/或其他醇(例如C1-10 直鏈、具支鏈或環狀烷醇)作為共溶劑。在一較佳實施例中,用於實施18 F放射性標記之溶劑含有二甲基亞碸。在另一較佳實施例中,用於實施18 F放射性標記之溶劑含有乙腈。在一較佳實施例中,用於實施18 F放射性標記之溶劑係二甲基亞碸。在另一較佳實施例中,用於實施18 F放射性標記之溶劑係乙腈。
通常實施18 F-氟化至多約60分鐘。較佳反應時間為至多約30分鐘。其他較佳反應時間為至多約15 min。典型反應時間為約1-15 min、較佳地5-15 min、更佳地10-15 min。
通常在約60℃至約200℃之溫度下於習用或微波支持之加熱下實施18 F-氟化。在一較佳實施例中,在約100℃至約180℃下實施18 F-氟化。在一更佳實施例中,在約100℃至約160℃下實施18 F-氟化。較佳地,在習用加熱下實施18 F-氟化。習用加熱應理解為任一不使用微波之加熱。
並不特定限制起始材料之量。舉例而言,可在一個批次中使用約0.5 µmol至約50 µmol之式II 化合物來產生式I 化合物。在一較佳實施例中,使用約2 µmol至約25 µmol之式II 化合物。在一更佳實施例中,使用約2.5 µmol至約15 µmol之式II 化合物。在一實施例中,使用至少約2 µmol之式II 化合物。在一較佳實施例中,使用至少約2.5 µmol之式II 化合物。在一更佳實施例中,使用至少約3 µmol之式II 化合物。
通常,可在一個批次中使用約0.5 mg至約10 mg之式II 來產生式I 化合物。在一較佳實施例中,使用約0.5 mg至約5 mg之式II 化合物。在一更佳實施例中,使用約1 mg至約3 mg之式II 化合物。
XPG ,則獲得具有式III 之中間體化合物。保護基團PG 可在步驟A期間或在可選後續步驟B中發生裂解。
較佳式III 化合物係選自包括以下之群: 在該等化合物中,PG 係如「定義」部分中所定義。
步驟 B 步驟 B 係可選步驟,其包括裂解來自式III 化合物之保護基團PG 以獲得式I 化合物。如熟習此項技術者所明瞭,若使用X 係氫之式II 化合物實施步驟A或若保護基團PG 已在步驟A中裂解,則此步驟並不適用。
用於裂解大量保護基團之反應條件為熟習此項技術者所熟知且可選自(但不限於)闡述於以下中者:教科書Greene及Wuts, Protecting groups in Organic Synthesis,第三版,第494-653頁,及教科書P. J. Kocienski, Protecting Groups,第3版,2003,二者皆以引用方式包含於本文中。
步驟B中所採用之條件將取決於擬裂解保護基團且由此並不特定限制。
可能之反應條件包含i)在約60℃至約160℃下加熱,ii)添加酸且在約0℃至約160℃下加熱;或iii)添加鹼且在約0℃至約160℃下加熱。
較佳酸係鹽酸、硫酸及磷酸。一種較佳酸係硫酸。另一較佳酸係磷酸。另一較佳酸係鹽酸。較佳鹼係氫氧化鈉、氫氧化鉀。
較佳反應條件係添加酸且在約25℃至160℃、較佳地25℃至120℃、更佳地90-120℃下加熱。較佳地,將反應混合物加熱約1 min至約20 min、更佳地約5 min至約15 min。
若期望,則步驟A及B可實施於相同或不同之反應器皿中。較佳地,在相同反應器皿中實施步驟A及B。
若期望,則在步驟B之後所獲得之溶液可原樣用於步驟C中。或者,可改變溶液之組成,從而其更適於實施HPLC。舉例而言,可在步驟C之前添加緩衝劑或稀釋劑。
較佳稀釋劑係乙醇、水或其組合。
另外,可改變溶液之pH。在一較佳實施例中,在步驟C之前將pH調節至約6或更小、更佳地約4或更小或甚至更佳地約3或更小。在一較佳實施例中,在步驟C之前將pH調節至約0至約6、更佳地約0至約4、甚至更佳地約1至約3。
步驟 C 步驟C係如下步驟:其中使用包括乙醇及水之移動相對步驟A或(若採用)步驟B中所獲得之式I 化合物實施HPLC。
在先前技術中,假設需要採用兩個層析步驟來獲得可注射示蹤劑,亦即首先藉由HPLC純化式I 化合物且然後藉由SPE再調配。本發明者已令人吃驚地發現,若使用乙醇及水之混合物作為移動相,則可省略經由固相萃取進行之後續化合物捕集。因此,可使用單一層析步驟進行純化及調配。此在放射性氟化之本發明情形下尤其重要,此乃因18 F具有僅約110分鐘之半衰期,從而該方法獲得化合物I之可注射調配物之速度最為重要。
因本發明所主張方法較先前方法更為迅速且較不複雜,故可以較高非衰減校正產率獲得式I 化合物。
選擇乙醇及水之混合物作為移動相具有其他優點,亦即,該兩種組分在診斷上可接受之,從而(不同於先前技術中所採用之甲醇、乙腈、三乙胺及三甲胺)其可保留於投與患者之組合物中。因此,選擇乙醇及水作為移動相可顯著減小製備式I 化合物所需之時間及成本且/或較先前技術之方法得到較高產率及較高放射性化學純度。
本發明方法較佳地不包括在步驟C之後固相萃取式I 化合物,更佳地,本發明方法不包括在步驟C之前或之後固相萃取式I 化合物。
較佳地,並不在步驟C之高效液相層析(HPLC)之後對式I 化合物實施層析,更佳地,並不對式I 化合物實施除步驟C之高效液相層析(HPLC)外之層析。
HPLC方法中所使用之移動相包括乙醇及水。另外,可含有酸、鹼、緩衝劑、鹽及/或放射清除劑及視情況其混合物。
並不特定限制乙醇對水之比率,但較佳為約5/95 v/v至約80/20 v/v、更佳地約5/95 v/v至約50/50 v/v、甚至更佳地約5/95 v/v至約20/80 v/v。
並不限制移動相之pH,但其較佳為約0至約8、較佳地約0至約6、更佳地約1至約5、甚至更佳地約1至約3及甚至更佳地約2.2至約2.8。
可能緩衝劑可包含可選自以下之鹽:鹼金屬磷酸二氫鹽、二鹼金屬磷酸氫鹽、三鹼金屬磷酸鹽、鹼金屬乙酸鹽、鹼土金屬乙酸鹽、鹼土金屬甲酸鹽、單/二/三鹼金屬檸檬酸鹽,其中較佳鹼金屬及鹼土金屬係鈉及鉀。
可能鹼可為氫氧化鈉及/或氫氧化鉀。
若期望,則可使用無機酸或有機酸來調節移動相之pH。無機酸之實例包含抗壞血酸、檸檬酸及乙酸。有機酸之實例包含鹽酸、硫酸及磷酸,較佳係磷酸。
放射清除劑係降低式I 化合物藉由放射分解進行之分解之化合物。實例包含抗壞血酸及抗壞血酸鹽、龍膽酸及龍膽酸鹽。其他實例包含檸檬酸及檸檬酸鹽。更佳放射清除劑係抗壞血酸、抗壞血酸鈉及其混合物。
較佳地,移動相包括pH為約1至約3之約50 mM至約500 mM緩衝劑(例如鹼性磷酸二氫鹽)、pH為約1至約3之更佳地約50 mM至約250 mM緩衝劑(例如鹼性磷酸二氫鹽)、甚至更佳地pH為約1至約3之約50 mM至約150 mM緩衝劑(例如鹼性磷酸二氫鹽)。
較佳移動相包括約5% v/v至約20% v/v乙醇、約95% v/v至約80% v/v水、約50 mM至約150 mM緩衝劑(例如鹼性磷酸二氫鹽,pH為約1至約3)及視情況放射清除劑。更佳移動相包括約5% v/v至約20% v/v乙醇、約95% v/v至約80% v/v水、約50 mM至約150 mM緩衝劑(例如鹼性磷酸二氫鹽,pH為約2.2至約2.8)及視情況放射清除劑。
用於HPLC方法中之固定相眾所周知且可由熟習此項技術者適當選擇。在一較佳實施例中,固定相係「反相」 (RP)固定相。
RP-HPLC固定相之實例包含C18、C8、苯基、氰基(例如氰基丙基)、五氟苯基、胺基(例如胺基丙基)、醯胺(例如C10-24 -烷酸-胺基丙基)、苯基己基官能化樹脂或混合相樹脂。
在一實施例中,HPLC固定相之粒度為約1.6 µm至約15 µm。在一較佳實施例中,HPLC固定相之粒度為約5 µm至約10 µm。在另一實施例中,HPLC固定相之粒度為約10 µm。
通常,HPLC管柱具有約2.0 mm至約50 mm之直徑及約50 mm至約300 mm之長度。在一較佳實施例中,HPLC管柱具有約4.6 mm至約20 mm之直徑及約150 mm至約250 mm之長度。在一更佳實施例中,HPLC管柱具有10 × 250 mm之尺寸。
並不限制高效液相層析中所採用之流速且可為約1 mL/min至約20 mL/min、更通常約2 mL/min至約15 mL/min、甚至更通常約2 mL/min至約7 mL/min。
並不限制高效液相層析中所採用之壓力且可在約50巴至約400巴、通常約50巴至約250巴、更通常約50巴至200巴之範圍內。
在一實施例中,使用約1 GBq至約500 GBq [18 F]氟化物來產生式I 化合物。在一較佳實施例中,使用約50 GBq至約500 GBq [18 F]氟化物來產生式I 化合物。在一更佳實施例中,使用約100 GBq至約500 GBq [18 F]氟化物來產生式I 化合物。在一甚至更佳實施例中,使用約200 GBq至約500 GBq [18 F]氟化物來產生式I 化合物。
在一實施例中,使用約10 GBq或更多[18 F]氟化物來產生式I 化合物。在一較佳實施例中,使用約50 GBq或更多[18 F]氟化物來產生式I 化合物。在一更佳實施例中,使用約100 GBq或更多[18 F]氟化物來產生式I 化合物。在一甚至更佳實施例中,使用約200 GBq或更多[18 F]氟化物來產生式I 化合物。
在一實施例中,獲得約10 GBq或更多之經放射性標記之式I 化合物。在一較佳實施例中,獲得約20 GBq或更多之經放射性標記之式I 化合物。在一更佳實施例中,獲得約50 GBq或更多之經放射性標記之式I 化合物。在一甚至更佳實施例中,獲得約100 GBq或更多之經放射性標記之式I 化合物。
在一實施例中,獲得放射性化學純度為至少約90%之式I 化合物。在一較佳實施例中,獲得放射性化學純度為至少約93%之式I 化合物。在一較佳實施例中,獲得放射性化學純度為至少約95%之式I 化合物。在一更佳實施例中,獲得放射性化學純度為至少約98%之式I 化合物。
可選步驟 因乙醇及水包括於移動相中,故包括式I 化合物之HPLC部分可視需要直接用作可注射調配物。或者,可混合包括式I 化合物之HPLC部分與其他診斷上可接受之組分(例如診斷上可接受之載劑、稀釋劑、佐劑或賦形劑)以製備式I 化合物之可注射調配物。
若期望,則可在步驟C之後實施步驟D之無菌過濾。若添加其他組分,則可在其添加之前或之後實施無菌過濾。
在一實施例中,使用自動化合成器件來實施步驟A、可選步驟B及步驟C。該等自動化合成器件之實例包含(但不限於) IBA Synthera、GE Fastlab、GE Tracerlab MX、GE Tracerlab FX、GE Tracerlab FX、Trasis AllinOne、ORA Neptis Perform、ORA Neptis Mosaic、ORA Neptis Plug、Scintomics GPR、Synthera、Comecer Taddeo、Raytest Synchrom、Sofie Elixys、Eckert&Ziegler Modular Lab、Sumitomo Heavy Industries F100 F200 F300及Siemens Explora。
一種較佳方法包括以下步驟: A) 使式II 化合物(其中LG =硝基且PG = Boc)與較佳地選自K18 F及四丁基[18 F]氟化銨之[18 F]-氟化劑在約100℃至約180℃、較佳地約120℃至約180℃、更佳地約140℃至約160℃於DMSO中進行反應,其中Boc保護基團在放射性標記條件下發生裂解, C) 使用乙醇/磷酸二氫鈉緩衝劑混合物(約5%至約20% EtOH)對式I 化合物實施HPLC純化,其中緩衝劑之pH為約1至約3、較佳地約2.2至約2.8,及 D) 若期望,則混合包括式I 化合物之HPLC部分與意欲投與患者之調配物之其他診斷上可接受之組分。若期望,則在與調配物之其他診斷上可接受之組分混合之前或之後,使HPLC部分通過無菌過濾器。
另一較佳方法包括以下步驟: A) 使式II 化合物(其中LG =三甲銨,且PG =三苯甲基)與較佳地選自K18 F及四丁基[18 F]氟化銨之[18 F]-氟化劑在約80℃至約180℃、較佳地約100℃至約180℃下於DMSO或乙腈中進行反應, B) 添加磷酸並在約90℃至約120℃下加熱約1 min至約15 min, C) 使用乙醇/磷酸二氫鈉緩衝劑混合物(約5%至約20% EtOH)對式I 化合物實施HPLC純化,其中緩衝劑之pH為約1至約3、較佳地約2.2至約2.8,及, D) 若期望,則混合包括式I 化合物之HPLC部分與意欲投與患者之調配物之其他診斷上可接受之組分。若期望,則在與調配物之其他診斷上可接受之組分混合之前或之後,使HPLC部分通過無菌過濾器。 除非另外指定,否則式IIIIII 化合物中之每一氫可為1 H或2 H (氘)。
本發明方法可提供包括式I 化合物之診斷組合物。因本發明方法之速度及減小之複雜性,18 F-標記之化合物I 之量可高於習用方法。此方法亦在高放射性值(例如至少約20 GBq式I 化合物、較佳地至少約50 GBq式I 化合物、更佳地至少約100 GBq式I 化合物)提供具有高放射性化學純度(例如至少約90%、較佳地至少約93%、更佳地至少約95%、甚至更佳地至少約98%)之式I 化合物。
本發明診斷組合物適用於診斷。其尤其適於診斷與tau蛋白聚集物有關之病症或使tau蛋白聚集物顯像、尤其用於使用正電子發射斷層攝影術(PET)使tau蛋白聚集物顯像。
診斷組合物 「診斷組合物」在本發明中定義為包括式I 化合物之組合物。對於活體內應用而言,診斷組合物應呈適於投與哺乳動物(例如人類)之形式。較佳地,診斷組合物進一步包括生理上可接受之載劑、稀釋劑、佐劑或賦形劑。較佳地,藉由注射呈溶液形式之組合物來投與患者。此一組合物可視情況含有其他成分,例如溶劑、緩衝劑;診斷上可接受之增溶劑;及診斷上可接受之穩定劑或抗氧化劑。
診斷上可接受之賦形劑為醫藥技術所熟知且闡述於(例如) Remington's Pharmaceutical Sciences,第15版,Mack Publishing Co., New Jersey (1975)。可根據標準醫藥實踐來選擇診斷賦形劑。賦形劑在對其接受者無害之意義上必須可接受。
較佳地,基於乙醇及水之總量,診斷組合物包括約1% v/v至約20% v/v之乙醇。更佳地,基於乙醇及水之總量,診斷組合物包括約1% v/v至約15% v/v之乙醇。甚至更佳地,基於乙醇及水之總量,診斷組合物包括約5% v/v至約10% v/v之乙醇。除上述組分外,診斷組合物亦包括水。選擇水量,從而組合物之總量為100%。
擬經由注射投與式I 化合物。該投與之實例包含以下中之一或多者:經靜脈內、經動脈內、經腹膜腔內、經鞘內、經心室內、經尿道內、經胸骨內、經顱內、經肌內或經皮下投與化合物;及/或藉由使用輸注技術。對於非經腸投與而言,最佳使用呈可含有其他賦形劑之無菌溶液形式之化合物。視需要,應適宜地緩衝溶液(較佳地緩衝至3至9、更佳地4.0至8.5之pH)。易於藉由熟習此項技術者熟知之標準醫藥技術在無菌條件下來製備適宜非經腸調配物。
可以熟習此項技術者本身已知之方式來調配本發明之診斷組合物,如(例如) Remington's Pharmaceutical Sciences,第15版,Mack Publishing Co., New Jersey (1975)中所闡述。
可檢測標記之式I 化合物之劑量可端視以下因素有所變化:擬投與確切化合物、患者體重、試樣之大小及類型及如熟習此項技術之醫師所明瞭之其他變量。通常,質量可較佳地在約0.001 µg至約100 µg/患者劑量、較佳地約0.01 µg至約50 µg/患者劑量之範圍內。放射性劑量可為(例如)約100 MBq至約600 MBq、更佳地約150 MBq至約450 MBq/注射、甚至更佳地約150 MBq至約200 MBq。
特定而言,在一實施例中,可使用可檢測標記之式I 化合物檢測及監測之疾病或病症係與tau蛋白聚集物有關之疾病或病狀(例如3R或4R tau蛋白病變)。
可使用藉由本發明方法所獲得之可檢測標記之化合物檢測及監測之疾病或病狀包含神經退化性病症(例如tau蛋白病變)。可檢測及監測之疾病及病狀之實例係藉由神經原纖維病灶之形成引起或與其有關。此係tau蛋白病變中之主要腦病況。該等疾病及病狀包括異質群體之神經退化性疾病或病狀,包含展示共存在tau蛋白及類澱粉病況之疾病或病狀。涉及tau蛋白聚集物之疾病之實例通常列示為tau蛋白病變且該等疾病包含(但不限於)阿茲海默氏病(AD)、克-雅二氏病、拳擊手型癡呆、唐氏症候群、傑茨曼-斯脫司勒-史茵克病、包涵體肌炎、普裡昂蛋白腦類澱粉血管病變、創傷性腦損傷、肌肉萎縮性脊髓側索硬化症、關島帕金森症-癡呆複合症、非關島運動神經元疾病伴神經原纖維纏結、嗜銀顆粒病、皮質基底退化、瀰漫性神經原纖維纏結伴鈣化症、額顳葉癡呆伴17號染色體相關性帕金森症、哈勒沃登-施帕茨病、多系統萎縮、C型尼曼-皮克病、蒼白球-腦橋-黑質退化、皮克氏病、進行性皮質下膠質細胞增生症、進行性核上性麻痺(PSP)、亞急性硬化性泛腦炎、僅纏結型癡呆、腦炎後帕金森症、肌強直性營養不良、tau泛腦病、與星形細胞有關之類AD、某些普裡昂疾病(與tau蛋白有關之GSS)、LRRK2突變、慢性創傷性腦病、家族性英國型癡呆、家族性丹麥型癡呆、額顳葉退化、瓜德羅普帕金森症、神經退化伴腦內鐵累積、SLC9A6相關性智力遲鈍、白質tau蛋白病變伴球狀膠質細胞包涵體、創傷性應激症候群、癲癇、路易氏體癡呆(LBD)、遺傳性腦出血伴類澱粉變性(荷蘭型)、輕度認知損傷(MCI)、多發性硬化、帕金森氏病、非典型帕金森症、HIV相關性癡呆、成人型糖尿病、老年性心臟類澱粉變性、內分泌腫瘤、青光眼、眼部類澱粉變性、原發性視網膜退化、黃斑退化(例如年齡相關性黃斑退化(AMD))、視神經隱結、視神經病變、視神經炎及角膜格子狀營養不良。較佳地,可檢測及監測之疾病及病狀包含阿茲海默氏病(AD)、家族性AD、克-雅二氏病、拳擊手型癡呆、唐氏症候群、傑茨曼-斯脫司勒-史茵克病、包涵體肌炎、普裡昂蛋白腦類澱粉血管病變、創傷性腦損傷(TBI)、肌肉萎縮性脊髓側索硬化症、關島帕金森症-癡呆複合症、非關島運動神經元疾病伴神經原纖維纏結、嗜銀顆粒病、皮質基底退化(CBD)、瀰漫性神經原纖維纏結伴鈣化症、額顳葉癡呆伴17號染色體相關性帕金森症、哈勒沃登-施帕茨病、多系統萎縮、C型尼曼-皮克病、蒼白球-腦橋-黑質退化、皮克氏病(PiD)、進行性皮質下膠質細胞增生症、進行性核上性麻痺(PSP)、亞急性硬化性泛腦炎、僅纏結型癡呆、腦炎後帕金森症、肌強直性營養不良、tau泛腦病、與星形細胞有關之類AD、某些普裡昂疾病(與tau蛋白有關之GSS)、LRRK2突變、慢性創傷性腦病、家族性英國型癡呆、家族性丹麥型癡呆、額顳葉退化、瓜德羅普帕金森症、神經退化伴腦內鐵累積、SLC9A6相關性智力遲鈍及白質tau蛋白病變伴球狀膠質細胞包涵體,更佳係阿茲海默氏病(AD)、克-雅二氏病、拳擊手型癡呆、肌肉萎縮性脊髓側索硬化症、嗜銀顆粒病、皮質基底退化、額顳葉癡呆伴17號染色體相關性帕金森症、皮克氏病、進行性核上性麻痺(PSP)、僅纏結型癡呆、關島帕金森症-癡呆複合症、哈勒沃登-施帕茨病及額顳葉退化。較佳地,該疾病或病狀係阿茲海默氏病、帕金森氏病或非典型帕金森症、進行性核上性麻痺(PSP)或皮克氏病(PiD)、更佳地阿茲海默氏病。
可使用藉由本發明方法獲得之可檢測標記之化合物檢測及監測之疾病或病狀的其他實例包含亨廷頓氏病、缺血性中風及AD中之精神病。
本發明方法與先前技術方法相比具有諸多重要優點。因在已製得式I 化合物之後僅需要單一層析步驟且無需隨後經由SPE進行再調配,故該設置遠簡單於其中實施兩個不同層析步驟之先前技術設置。
該方法已證實極為穩定。因選擇乙醇及水作為具有經調節pH之移動相,故可使用較大量(例如> 1 mg)前體而不引起沈澱。
18 F-標記之式I 化合物可可靠地與式II 之前體化合物及可能副產物分離。
另外,可達成較高之產率及純度。舉例而言,可獲得至少約35%之非衰減校正產率。產物活性可為至少約20 GBq、較佳地至少約50 GBq、更佳地至少約100 GBq。在較低以及較高放射性值下(例如在至少約100 GBq下),放射性化學純度可為至少約95%、較佳地至少約98%。
藉由下列實例來闡釋本發明且不應解釋為限制性。
實例 縮寫
實驗數據 所有試劑及溶劑皆係自商業來源獲得且未經進一步純化即使用。在Bruker DRX-400 MHz NMR光譜儀上或在Bruker AV-400 MHz NMR光譜儀上於氘化溶劑中記錄質子(1 H)光譜。在Advion CMS質譜儀上記錄質譜(MS)。使用矽膠(Fluka:矽膠60,0.063-0.2 mm)及如具體實例中所指示之適宜溶劑來實施質譜分析。利用Biotage Isolera One急速純化系統使用HP-Sil (Biotage)或puriFlash管柱(Interchim)及具體實例中所指示之溶劑梯度來實施急速純化。在矽膠板上使用UV檢測實施薄層層析(TLC)。
測試化合物之合成 製備實例 A
步驟 A 將市售2,6-二溴吡啶(4.12 g, 16.6 mmol)懸浮於乙醇(40 mL)中且添加於水(約50-60%)中之水合肼(10 mL, 97.6 mmol)。將混合物在約115℃下於砂浴中加熱18小時。去除溶劑且藉由層析在二氧化矽上使用乙酸乙酯/正庚烷(60/40)純化殘餘物以提供灰白色固體形式之標題化合物(3.05 g, 93%)。1 H-NMR (400 MHz, CDCl3 ): δ = 7.33 (t, 1H), 6.83 (d, 1H), 6.67 (d, 1H), 6.00 (br-s, 1H), 3.33-3.00 (br-s, 2H)
步驟 B 將來自上文步驟A之標題化合物(10 g, 53.2 mmol)及市售1-Boc-4-六氫吡啶酮(10.6 g, 53.2 mmol)添加至500 mL燒瓶中並混合以變成均質摻合物。然後添加多磷酸(80 g,115% H3 PO4 基)且在約160℃下於砂浴中加熱混合物。在約120℃下,裂解Boc保護基團,從而使得反應混合物起泡。在完成Boc裂解之後,泡沫破裂且將深色反應混合物在約160℃下攪拌 20小時。將反應混合物冷卻至室溫並添加水(400 mL)。將反應混合物攪拌/超音波處理直至膠狀材料溶解為止。然後將反應混合物置於冰浴中且藉由添加固體氫氧化鈉糰粒(放熱)來將溶液之pH調節至pH約為12。藉由過濾收集沈澱物並使用水(400 mL)洗滌以去除鹽。藉由超音波處理將沈澱物溶於二氯甲烷/甲醇(9/1;1500 mL)中並使用水(2 × 400 mL)洗滌以去除剩餘鹽及不溶性材料。藉由Na2 SO4 乾燥有機相,過濾且在減壓下去除溶劑。使用二氯甲烷(100 mL)處理深色殘餘物,超音波處理5分鐘且藉由過濾收集沈澱物。使用二氯甲烷(40 mL)洗滌沈澱物並風乾以提供灰棕色固體形式之標題化合物(3.5 g, 26%)。1 H-NMR (400 MHz, DMSO-d6 ): δ = 11.5 (br-s, 1H), 7.72 (d, 1H), 7.15 (d, 1H), 3.86-3.82 (m, 2H), 3.06-3.00 (m, 2H), 2.71-2.65 (m, 2H)
步驟 C 將來自上文步驟B之標題化合物(1.75 g, 6.94 mmol)懸浮於二甲苯(380 mL)中且添加氧化錳(IV) (6.62 g, 76.9 mmol)。然後將反應混合物在約160℃下於砂浴中加熱36小時。在減壓下蒸發經冷卻反應混合物,將殘餘物懸浮於二氯甲烷/甲醇(1/1;400 mL)中並在室溫下攪拌30分鐘。然後經由紙質過濾器過濾反應混合物以去除氧化錳(IV)且使用甲醇(50 mL)洗滌濾液。在減壓下蒸發合併之濾液且藉由層析在二氧化矽(50 g HP-SIL柱)上使用Biotage Isolera系統採用乙酸乙酯/庚烷梯度(5/95-100/0)來純化深色殘餘物以去除非極性雜質,且隨後使用二氯甲烷/甲醇(9/1 -> 4/1)進行處理以提供深黃色固體形式之標題化合物。來自2個試驗之總產量為1.77 g (51%)。1 H-NMR (400 MHz, DMSO-d6 ): δ = 12.52 (br-s, 1H), 9.42 (s, 1H), 8.61 (d, 1H), 8.53 (d, 1H), 7.56-7.52 (m, 2H)
製備實例 B
步驟 A 向來自製備實例A 之標題化合物(0.776 g, 0.72 mmol)於二氯甲烷(65 mL)中之懸浮液中添加三乙胺(1.86 mL, 13 mmol)及三苯甲基氯(2.63 g, 9.39 mmol)。在添加4-(二甲基胺基)-吡啶(0.074 g, 0.608 mmol)之後,將反應混合物在室溫下攪拌16小時。使用二氯甲烷(150 mL)及水(50 mL)稀釋反應混合物。分離有機相,藉由Na2 SO4 乾燥,過濾且在真空中去除溶劑。在HP-Sil SNAP柱(50 g)上使用Biotage Isolera One純化系統採用乙酸乙酯/正庚烷梯度(5/95 -> 100/0 -> 100/0)純化殘餘物以提供淺黃色固體形式之標題化合物B (0.831 g, 54%)。藉由使用乙酸乙酯/甲醇(90/10)沖洗柱來回收未反應起始材料以提供灰白色固體形式之起始材料(0.195 g, 25%)。1 H-NMR (400 MHz, CDCl3 ) δ = 9.22 (s, 1H), 8.23 (d, 1H), 8.13 (d, 1H), 7.48-7.42 (m, 7H), 7.33-7.22 (m, 12H), 6.41 (d, 1H) MS (ESI); m/z = 490.03/491.96 [M+H]+
製備實例 C
步驟 A 向來自製備實例A 之標題化合物(0.482 g, 1.94 mmol)於二氯甲烷(40 mL)中之懸浮液中添加三乙胺(1.15 mL, 8 mmol)及4,4'-(氯(苯基)亞甲基)雙(甲氧基苯) (DMTrt-Cl) (1.963 g, 5.8 mmol)。在添加4-(二甲基胺基)-吡啶(0.046 g, 0.377 mmol)之後,將反應混合物在室溫下攪拌3天。使用二氯甲烷(100 mL)及水(40 mL)稀釋反應混合物。分離有機相,藉由Na2 SO4 乾燥,過濾且在真空中去除溶劑。在HP-Sil SNAP柱(50 g)上使用Biotage Isolera One純化系統採用乙酸乙酯/正庚烷梯度(5/95 -> 100/0 -> 100/0)純化殘餘物以提供淺黃色固體形式之標題化合物C (0.825 g, 72%)。藉由使用乙酸乙酯/甲醇(90/10)沖洗柱來回收未反應起始材料以提供灰白色固體形式之起始材料(0.042 g, 8.8%)。1 H-NMR (400 MHz, CDCl3 ) δ = 9.23 (s, 1H), 8.23 (d, 1H), 8.13 (d, 1H), 7.39-7.31 (m, 6H), 7.29-7.25 (4H), 6.80 (d, 4H), 6.41 (dd, 1H), 3.81 (s, 6H)
實例 1
步驟 A 在微波小瓶中,向脫氣1,4-二噁烷(4.3 mL)及水(1 mL)之混合物中添加[1,1′-雙(二苯基膦基)二茂鐵]二氯鈀(II)+二氯甲烷複合物(0.0084 g, 0.01 mmol),隨後添加製備實例A 之標題化合物(0.05 g, 0.2 mmol)、(2-氟吡啶-4-基)酸(0.035 g, 0.245 mmol)及碳酸銫(0.133 g, 0.41 mmol)。然後將反應混合物在約115℃下於砂浴中加熱6小時。使用乙酸乙酯(60 mL)及水(20 mL)稀釋反應混合物,分離有機相,藉由Na2 SO4 乾燥,過濾且在真空中蒸發溶劑。藉由層析在二氧化矽(25 g HP-SIL)上使用Biotage Isolera系統採用二氯甲烷/甲醇梯度(100/0 -> 95/5 -> 90/10 -> 80/20)純化深色殘餘物以提供灰白色固體形式之標題化合物1 (0.033 g, 63%)。1 H-NMR (400 MHz, DMSO-d 6 ) δ = 12.50 (br-s, 1H), 9.45 (s, 1H), 8.83 (d, 1H), 8.56-8.52 (m, 1H), 8.43-8.39 (m, 1H), 8.19-8.14 (m, 2H), 7.92 (s, 1H), 7.54-7.50 (m, 1H) MS (ESI): m/z = 265.04 [M+H]+
實例 2
步驟 A 向製備實例A 之標題化合物(0.430 g, 1.73 mmol)於二氯甲烷(25 mL)中之懸浮液中添加三乙胺(1.93 mL, 13.89 mmol)及二碳酸二-第三丁基酯( 2.27 g, 10.02 mmol)。在添加4-(二甲基胺基)-吡啶(0.042 g, 0.34 mmol)之後,將反應混合物在室溫下攪拌3天。在減壓下去除溶劑且在HP-Sil SNAP柱(25 g)上使用Biotage Isolera One純化系統採用乙酸乙酯/正庚烷梯度(5/95 -> 100/0 -> 100/0)純化殘餘物以提供灰白色固體形式之標題化合物(0.558 g, 92%)。1 H-NMR (400 MHz, CDCl3 ) δ = 9.28 (s, 1H), 8.73 (d, 1H), 8.22 (d, 2H), 7.59 8d, 1H), 1.80 (s, 9H)
步驟 B 在微波小瓶中,向脫氣1,4-二噁烷(3 mL)及水(0.7 mL)之混合物中添加[1,1′-雙(二苯基膦基)二茂鐵]二氯鈀(II)+二氯甲烷複合物(0.0058 g, 0.007 mmol),隨後添加來自上文步驟A之標題化合物(0.05 g, 0.143 mmol)、(6-氟吡啶-3-基)酸(0.024 g, 0.17 mmol)及碳酸銫(0.092 g, 0.286 mmol)。然後將反應混合物在約100℃下於砂浴中加熱4小時。使用乙酸乙酯(80 mL)及水(35 mL)稀釋反應混合物,分離有機相,藉由Na2 SO4 乾燥,過濾且在真空中蒸發溶劑。藉由層析在二氧化矽(12 g, puriFlash, Interchim)上使用Biotage Isolera系統採用二氯甲烷/甲醇梯度(100/0 -> 98/2 -> 95/5 -> 90/10 -> 80/20)純化深色殘餘物以提供較小極性之經Boc保護之化合物(0.0255 g, 49%)及灰白色固體形式之較大極性之標題化合物2 (0.0116 g, 31%)。 較大極性之標題化合物21 H-NMR (400 MHz, DMSO-d 6 ) δ = 12.40 (br-s, 1H), 9.40 (s, 1H), 9.05 (s, 1H), 8.78-8.70 (m, 2H), 8.51 (d, 1H), 8.02 (d, 1H), 7.50 (d, 1H), 7.36 (dd, 1H) MS (ESI): m/z = 265.09 [M+H]+ 較小極性之經Boc保護之化合物:1 H-NMR (400 MHz, DMSO-d 6 ) δ = 9.48 (s, 1H), 9.13 (d, 1H), 8.84-8.78 (m, 2H), 8.68 (d, 1H), 8.23 (d, 1H), 8.19 (d, 1H), 7.40 (dd, 1H), 1.75 8s, 9H) 標題化合物2 之合成首次闡述於WO 2015/052105中(實例1,藉由不同合成)。
放射性標記前體之合成 實例 3-a
步驟 A 在微波小瓶中,向脫氣1,4-二噁烷(4.3 mL)及水(1 mL)之混合物中添加[1,1′-雙(二苯基膦基)二茂鐵]二氯鈀(II)+二氯甲烷複合物(0.0084 g, 0.01 mmol)、製備實例B 之標題化合物(0.1 g, 0.2 mmol)、2-硝基-4-(4,4,5,5-四甲基-1,3,2-二氧硼㖦-2-基)吡啶(0.061 g, 0.245 mmol)及碳酸銫(0.133 g, 0.41 mmol)。然後將反應混合物在約115℃下於砂浴中加熱6小時。使用乙酸乙酯(60 mL)及水(20 mL)稀釋反應混合物,分離有機相,藉由Na2 SO4 乾燥,過濾且在真空中蒸發溶劑。藉由層析在二氧化矽(25 g pufiFlash管柱,Interchim)上使用Biotage Isolera系統上採用乙酸乙酯/正庚烷梯度(5/95 -> 100/0 -> 100/0)純化深色殘餘物以提供淺黃色固體形式之標題化合物3-a (0.082 g, 75%)。1 H NMR (400 MHz, CDCl3 ) δ = 9.32 (s, 1H);8.56 (d, 1H), 8.48 (d, 1H), 8.33 (s, 1H);8.30 (d, 1H), 7.85 (d, 1H), 7.69 (d, 1H), 7.58-7.54 (m, 5H), 7.32-7.25 (m, 10H), 6.48 (d, 1H) MS (ESI): m/z = 534.28 [M+H]+
實例 3-b 方法 a
步驟 A3-a (0.0396 g, 0.074 mmol)於二氯甲烷(5 mL)中之溶液添加三氟乙酸(1.2 mL)。將反應混合物在室溫下攪拌6小時且添加甲醇(2 mL)。在真空中蒸發溶劑並將殘餘物溶解/懸浮於甲醇(5 mL)中。在真空中蒸發溶劑並將殘餘物再次溶解/懸浮於甲醇(5 mL)中。在真空中蒸發溶劑並將殘餘物懸浮於二氯甲烷(2 mL)中。在添加三乙胺(1 mL, 7.2 mmol)、二碳酸二-第三丁基酯(0.098 g, 0.43 mmol)及4-(二甲基胺基)-吡啶(0.0018 g, 0.014 mmol)之後,將反應混合物在室溫下攪拌18小時。使用乙酸乙酯(50 mL)及水(20 mL)稀釋反應混合物。分離有機相,藉由Na2 SO4 乾燥,過濾且在真空中去除溶劑。在二氧化矽(25 g puriFlash, Interchim)上使用Biotage Isolera One純化系統(採用乙酸乙酯/正庚烷梯度(5/95 -> 100/0 -> 100/0)洗脫非極性副產物,隨後使用乙酸乙酯/甲醇(95/5)洗脫)來純化殘餘物以提供淺黃色固體形式之標題化合物3-b (0.0184 g, 63%)。1 H-NMR (400 MHz, CDCl3 ) δ = 9.36 (s, 1H), 9.15 (s, 1H), 8.82-8.76 (m, 2H), 8.57 (d, 1H), 8.45 (d, 1H), 8.36 (d, 1H), 8.07 (d, 1H), 1.87 (s, 9H) MS (ESI); m/z = 391.82 [M+H]+
方法 b
步驟 A 在微波小瓶中,向脫氣1,4-二噁烷(2.2 mL)及水(0.5 mL)之混合物中添加[1,1′-雙(二苯基膦基)二茂鐵]二氯鈀(II)+二氯甲烷複合物(0.0042 g, 0.005 mmol),隨後添加製備實例C 之標題化合物(0.055 g, 0.1 mmol)、2-硝基-4-(4,4,5,5-四甲基-1,3,2-二氧硼㖦-2-基)吡啶(0.0305 g, 0.12255 mmol)及碳酸銫(0.067 g, 0.205 mmol)。然後將反應混合物在約115℃下於砂浴中加熱6小時。使用乙酸乙酯(20 mL)稀釋反應混合物,藉由過濾收集沈澱物,使用水(10 mL)及甲醇(5 mL)洗滌並風乾以提供3-c (0.0277 g, 95%)。
步驟 B 向來自上文步驟A之粗製標題化合物(0.0277 g, 0.095 mmol)於二氯甲烷(4 mL)中之懸浮液中添加三乙胺(1 mL, 7.2 mmol)、二碳酸二-第三丁基酯(0.2 g, 0.86 mmol)及4-(二甲基胺基)-吡啶(0.0036 g, 0.028 mmol)。將反應混合物在室溫下攪拌16小時,使用乙酸乙酯(50 mL)及水(20 mL)稀釋。分離有機相,藉由Na2 SO4 乾燥,過濾且在真空中去除溶劑。在二氧化矽(25 g puriFlash, Interchim)上使用Biotage Isolera One純化系統(採用乙酸乙酯/正庚烷梯度(5/95 -> 100/0 -> 100/0)洗脫非極性副產物,隨後使用乙酸乙酯/甲醇(95/5)洗脫)來純化殘餘物以提供淺黃色固體形式之標題化合物3-b (0.0261 g, 70%)。1 H-NMR (400 MHz, CDCl3 ) δ = 9.38 (s, 1H), 9.16 (s, 1H), 8.83-8.78 (m, 2H), 8.58 (d, 1H), 8.46 (d, 1H), 8.38 (d, 1H), 8.09 (d, 1H), 1.88 (s, 9H) MS (ESI);m/z = 391.85 [M+H]+ ;291.74 [M+H-Boc]+
實例 3-d
步驟 A 在微波小瓶中,向脫氣1,4-二噁烷(2.2 mL)及水(0.5 mL)之混合物中添加[1,1′-雙(二苯基膦基)二茂鐵]二氯鈀(II)+二氯甲烷複合物(0.0042 g, 0.005 mmol),隨後添加製備實例C 之標題化合物(0.055 g, 0.1 mmol)、2-硝基-4-(4,4,5,5-四甲基-1,3,2-二氧硼㖦-2-基)吡啶(0.0305 g, 0.12255 mmol)及碳酸銫(0.067 g, 0.205 mmol)。然後將反應混合物在約115℃下於砂浴中加熱6小時。使用乙酸乙酯(20 mL)稀釋反應混合物,藉由過濾收集沈澱物,使用水(10 mL)及甲醇(5 mL)洗滌並風乾以提供灰色固體形式之3-c (0.0277 g, 95%)。
步驟 B 向來自上文步驟A之粗製標題化合物(0.0277 g, 0.095 mmol)於二氯甲烷(4 mL)中之懸浮液中添加三乙胺(1 mL, 7.2 mmol)、4,4'-(氯(苯基)亞甲基)雙(甲氧基苯) (0.081 g, 0.29 mmol)及4-(二甲基胺基)-吡啶(0.0036 g, 0.028 mmol)。將反應混合物在室溫下攪拌18小時,使用乙酸乙酯(50 mL)及水(20 mL)稀釋。分離有機相,藉由Na2 SO4 乾燥,過濾且在真空中去除溶劑。在二氧化矽(25 g puriFlash, Interchim)上使用Biotage Isolera One純化系統採用乙酸乙酯/正庚烷梯度(5/95 -> 100/0 -> 100/0)來純化殘餘物以提供淺黃色固體形式之標題化合物3-d (0.0261 g, 44%)。1 H-NMR (400 MHz, CDCl3 ) δ = 9.32 (s, 1H), 8.58 (d, 1H), 8.50 (d, 1h), 8.36 (s, 1H), 8.30 (d, 1H), 7.85 (d, 1H), 7.74 (d, 1H), 7.52-7.42 (m, 6H), 7.27-7.23 (m, 4H), 6.80 (d, 4H), 6.49 (d, 1H), 3.78 (s, 6H)
實例 3-e
步驟 A 將市售N,N-二甲基-4-(4,4,5,5-四甲基-1,3,2-二氧硼㖦-2-基)吡啶-2-胺(0.25 g, 1 mmol)溶於二氯甲烷(5 mL)中。在室溫下,向所得攪拌溶液中逐滴添加三氟甲烷磺酸甲酯(0.124 mL, 1.1 mmol)。將溶液在室溫下攪拌4小時。濃縮反應混合物以去除二氯甲烷且在真空中乾燥殘餘物以獲得黃色玻璃/發泡體,其直接用於下一步驟中。
步驟 B 在微波小瓶中,向脫氣1,4-二噁烷(12 mL)及水(3 mL)之溶液中添加[1,1′-雙(二苯基膦基)二茂鐵]二氯-鈀(II)+二氯甲烷複合物(0.034 g, 0.04 mmol)、製備實例B 之標題化合物(0.4 g, 0.816 mmol)、來自上文步驟A之粗製標題化合物(約1 mmol)及碳酸銫(0.544 g, 1.68 mmol)。將反應混合物在約120℃下於砂浴中加熱6小時。使用乙酸乙酯(150 mL)及水(50 mL)稀釋反應混合物,分離有機相,藉由Na2 SO4 乾燥,過濾且在真空中蒸發溶劑。藉由層析在二氧化矽(25 g HP-Ultra)上使用Biotage Isolera系統採用乙酸乙酯/正庚烷梯度(5/95 -> 100/0 -> 100/0)來純化深色殘餘物以洗脫未反應起始材料及非極性副產物。然後將梯度更換為二氯甲烷/甲醇(100/0 -> 95/5 -> 90/10)以提供淺黃色玻璃形式之二甲胺衍生物(0.127 g, 29%;MS (ESI): m/z = 532.27 [M+H]+)及灰色固體形式之甲胺衍生物(0.0547 g, 13%;MS (ESI): m/z = 519.18 [M+H]+)。將梯度再次更換為二氯甲烷/甲醇(90/10 -> 80/20)並保持於(80/20)以獲得褐色固體形式之標題化合物3-e (0.104 g, 18%)。1 H NMR (400 MHz, DMSO-d6) δ = 9.47 (s, 1H);8.89 (d, 1H), 8.55 (d, 1H), 8-35-8.32 (m, 2H), 8.29 (d, 1H), 7.63-7.57 (m, 5H), 7.48 (d, 1H), 7.34-7.25 (m, 10H), 6.48 (d, 1H), 3.60 (s, 9H) MS (ESI): m/z = 546.26 [M+H]+
實例 3-f
步驟 A3-e (0.199 g, 0.364 mmol)懸浮於二氯甲烷(10 mL)中。在添加三氟乙酸(10 mL)之後,將反應混合物在室溫下攪拌18小時。在減壓下去除溶劑,將殘餘物溶於甲醇(10 mL)並在減壓下去除溶劑。重複使用甲醇處理殘餘物兩次以上。然後將殘餘物懸浮於二氯甲烷(20 mL)中並超音波處理約5分鐘。藉由過濾收集沈澱物,使用二氯甲烷(10 mL)洗滌並風乾以提供灰色固體形式之標題化合物3-f (0.127 g, 83%)。1 H NMR (400 MHz, DMSO-d6) δ = 13.76 (br-s, 1H), 9.84 (s, 1H);8.12 (d, 1H), 8.89 (d, 1H), 8.80 (d, 1H), 8.75 (s, 1H), 8.54-8.50 (m, 2H), 8.04 (d, 1H), 3.72 (s, 9H) MS (ESI): m/z = 303.91 [M+H]+
實例 4-a
步驟 A 在微波小瓶中,向脫氣1,4-二噁烷(3 mL)及水(0.7 mL)之混合物中添加[1,1′-雙(二苯基膦基)二茂鐵]二氯鈀(II)+二氯甲烷複合物(0.0058 g, 0.007 mmol),隨後添加來自實例2步驟A之標題化合物(0.05 g, 0.143 mmol)、2-硝基-5-(4,4,5,5-四甲基-1,3,2-二氧硼㖦-2-基)吡啶(0.0428 g, 0.17 mmol)及碳酸銫(0.092 g, 0.286 mmol)。然後將反應混合物在約100℃下於砂浴中加熱4小時。使用乙酸乙酯(80 mL)及水(35 mL)稀釋反應混合物,分離有機相,藉由Na2 SO4 乾燥,過濾且在真空中蒸發溶劑。藉由層析在二氧化矽(12 g, puriFlash, Interchim)上使用Biotage Isolera系統採用二氯甲烷/甲醇梯度(100/0 -> 98/2 -> 95/5 -> 90/10 -> 80/20)純化深色殘餘物以提供淺黃色固體形式之標題化合物4-a (0.0173 g, 31%)。1 H NMR (400 MHz, CDCl3 /CD3 OD) δ = 9.45 (d, 1H), 9.32 (s, 1H), 8.93 (dd, 1H), 8.68-8.64 (m, 2H), 8.46 (d, 1H), 8.35 (d, 1H), 8.14 (d, 1H), 1.82 (s, 9H) MS (ESI): m/z = 392.13 [M+H]+ 標題化合物4-a 之合成首次闡述於WO 2015/052105中(實例3a,藉由不同合成)。
含有 18 F 之前體之放射性標記 放射性標記前體之實例
一般放射性標記方法 A ,其實施於tracerlab FX上,如圖3中所圖解說明(放射性標記、去保護、HPLC及SPE) -對比實例 在Sep-Pak Accell Plus QMA light柱(Waters)上捕集[18 F]氟化物並使用K2 CO3 /Kryptofix® 2.2.2之溶液洗脫。使用He或N2 流在95℃下去除水並使用MeCN (1 mL)共蒸發至乾燥。然後,將所溶解前體之溶液添加至乾燥K[18 F]F-Kryptofix複合物中。密封反應小瓶並在150℃下加熱15 min。隨後,添加酸(HCl、H2 SO4 或H3 PO4 )且將混合物在150℃下加熱10 min。使用1 mL NaOH及2.4 mL製備型HPLC移動相稀釋反應混合物且經由半製備型HPLC (例如Phenomenex, Gemini C18, 5 µm, 250 × 10 mm)在4 mL/min下純化粗產物。使用水(20 mL + 10 mg/mL抗壞血酸鈉)稀釋所分離示蹤劑,捕集於C-18 Plus柱(Waters)上,使用水(10 mL + 10 mg/mL抗壞血酸鈉)洗滌,使用乙醇(1 mL)洗脫並與水(14 mL+10 mg/mL抗壞血酸鈉)混合。
一般放射性標記方法 B ,其實施於tracerlab FX上,如圖3中所圖解說明(放射性標記、HPLC及SPE) -對比實例 在Sep-Pak Accell Plus QMA light柱(Waters)上捕集[18 F]氟化物並使用K2 CO3 /Kryptofix® 2.2.2之溶液洗脫。使用He或N2 流在95℃下去除水並使用MeCN (1 mL)共蒸發至乾燥。然後,將所溶解前體之溶液添加至乾燥K[18 F]F-Kryptofix複合物中。密封反應小瓶並在150℃下加熱15 min。使用0.5-1 mL NaOH及2.4 mL製備型HPLC移動相稀釋反應混合物且經由半製備型HPLC (例如Phenomenex, Gemini C18, 5 µm, 250 × 10 mm)在4 mL/min下純化粗產物。使用水(20 mL + 10 mg/mL抗壞血酸鈉)稀釋所分離示蹤劑,捕集於C-18 Plus柱(Waters)上,使用水(10 mL + 10 mg/mL抗壞血酸鈉)洗滌,使用乙醇(1 mL)洗脫並與水(14 mL+10 mg/mL抗壞血酸鈉)混合。
一般放射性標記方法 C ,其實施於IBA Synthera + Synthera HPLC上,如圖4中所圖解說明(放射性標記,HPLC) 在Sep-Pak Accell Plus QMA light柱(Waters)上捕集[18 F]氟化物並使用K2 CO3 /Kryptofix® 2.2.2之溶液洗脫。使用He或N2 流在95-110℃下去除水並共蒸發至乾燥。然後,將所溶解前體之溶液添加至乾燥K[18 F]F-Kryptofix複合物中。密封反應小瓶並在150℃下加熱15 min。使用0.5-1 mL 1M H3 PO4 及3-3.5 mL製備型HPLC移動相之水性組分稀釋反應混合物且經由半製備型HPLC (例如Waters XBridge Peptide BEH C18, 130 Å, 10 µm, 10 mm × 250 mm)在3-6 mL/min下純化粗產物。收集含有產物之部分(5-10 mL)並使用含有0-2 mL EtOH、10-20 mL水及0-4 mL磷酸鹽緩衝劑濃縮液(Braun,於20 mL注射用水中之3.05 g十二水合磷酸單氫二鈉、0.462 g二水合磷酸二氫鈉)及/或抗壞血酸鈉(100-1000 mg)及/或檸檬酸鈉(100-1000 mg)及/或龍膽酸(20-200 mg)之稀釋介質稀釋。
一般放射性標記方法 D ,其實施於tracerlab FX上,如圖3中所圖解說明(放射性標記,HPLC) 在Sep-Pak Accell Plus QMA light柱(Waters)上捕集[18 F]氟化物並使用K2 CO3 /Kryptofix® 2.2.2之溶液洗脫。使用He或N2 流在95℃下去除水並使用MeCN (1 mL)共蒸發至乾燥。然後,將所溶解前體之溶液添加至乾燥K[18 F]F-Kryptofix複合物中。密封反應小瓶並在150℃下加熱15 min。使用0.5-1 mL 1M H3 PO4 及3-3.5 mL製備型HPLC移動相之水性組分稀釋反應混合物且經由半製備型HPLC (例如Waters XBridge Peptide BEH C18, 130 Å, 10 µm, 10 mm × 250 mm或Gemini 5 µm C18, 250×10 mm, Phenomenex: 00G-4435-N0)在3-6 mL/min下純化粗產物。收集含有產物之部分(5-10 mL)並使用含有0-2 mL EtOH、10-20 mL水及0-4 mL磷酸鹽緩衝劑濃縮液(Braun)及/或抗壞血酸鈉(100-1000 mg)及/或檸檬酸鈉(100-1000 mg)及/或龍膽酸(20-200 mg)之稀釋介質稀釋。
一般放射性標記方法 E ,其實施於tracerlab FX上,如圖3中所圖解說明(放射性標記,去保護,HPLC) 在Sep-Pak Accell Plus QMA light柱(Waters)上捕集[18 F]氟化物並使用K2 CO3 /Kryptofix® 2.2.2之溶液洗脫。使用He或N2 流在95℃下去除水並使用MeCN (1 mL)共蒸發至乾燥。然後,將所溶解前體之溶液添加至乾燥K[18 F]F-Kryptofix複合物中。密封反應小瓶並在150℃下加熱15 min。隨後,添加1 mL 0.5M H2 SO4 且將混合物在100℃下加熱10 min。使用0.5-1 mL 1M NaOH及2-3 mL製備型HPLC移動相之水性組分稀釋反應混合物且經由半製備型HPLC (例如Waters XBridge Peptide BEH C18, 130 Å, 10 µm, 10 mm × 250 mm或Gemini 5 µm C18, 250×10 mm, Phenomenex: 00G-4435-N0)在3-6 mL/min下純化粗產物。收集含有產物之部分(5-10 mL)並使用含有0-2 mL EtOH、10-20 mL水及0-4 mL磷酸鹽緩衝劑濃縮液(Braun)及/或抗壞血酸鈉(100-1000 mg)及/或檸檬酸鈉(100-1000 mg)及/或龍膽酸(20-200 mg)之稀釋介質稀釋。
一般放射性標記方法 F ,其實施於IBA Synthera + Synthera HPLC上,如圖4中所圖解說明(放射性標記,去保護,HPLC) 在Sep-Pak Accell Plus QMA light柱(Waters)上捕集[18 F]氟化物並使用K2 CO3 /Kryptofix® 2.2.2之溶液洗脫。使用He或N2 流在95-110℃下去除水並共蒸發至乾燥。然後,將所溶解前體之溶液添加至乾燥K[18 F]F-Kryptofix複合物中。密封反應小瓶並在110-120℃下加熱5-10 min,在氟化之後,添加0.5-1 mL 1M H3 PO4 並將反應混合物在100-110℃下加熱10-15 min。使用3-3.5 mL製備型HPLC移動相之水性組分稀釋混合物且經由半製備型HPLC (例如Waters XBridge Peptide BEH C18, 130 Å, 10 µm, 10 mm × 250 mm)在3-6 mL/min下純化粗產物。收集含有產物之部分(5-10 mL)並使用含有0-2 mL EtOH、10-20 mL水及0-4 mL磷酸鹽緩衝劑濃縮液(Braun,於20 mL注射用水中之3.05 g十二水合磷酸單氫二鈉、0.462 g二水合磷酸二氫鈉)及/或抗壞血酸鈉(100-1000 mg)及/或檸檬酸鈉(100-1000 mg)及/或龍膽酸(20-200 mg)之稀釋介質稀釋。
放射性化學純度之測定 藉由(例如)以下分析型HPLC來測定放射性化學純度:管柱:Atlantis T3, Waters, 100 × 4.6 mm, 3 µm, 100;移動相A:40 mM乙酸鈉,最後使用冰乙酸調節至pH 5.0;移動相B:於乙腈中之35%甲醇;流速:1.8 mL/min;梯度:0-5 min 15-32% B, 5-8 min 32-80% B, 8-12 min 80% B, 12-13 min 80-15% B, 13-16 min 15% B。 合成 18 F-Ib 之結果: *對比實例
1 由Gobbi等人選擇之先前技術方法之示意性概述。 2 本發明方法之示意性概述 3 GE Tracerlab FX合成器之設置 4 IBA Synthera合成器之設置

Claims (10)

  1. 一種製備式I化合物之方法,
    Figure 108102782-A0305-02-0064-1
    其包括以下步驟:A)使式II化合物與18F氟化劑進行反應
    Figure 108102782-A0305-02-0064-2
    其中X係H或PGLG係離去基團,且PG係胺保護基團,其選自苄氧羰基、(對甲氧基苄基)氧基羰基、第三丁基氧基羰基、9-茀基甲基氧基羰基、苄基、對甲氧基苄基、3,4-二甲氧基苄基、對甲氧基苯基、三苯基甲基、甲氧基苯基、二苯基甲基及二甲氧基三苯甲基;及B)視情況,若XPG,則裂解該保護基團PG,及C)使用包括乙醇及水之移動相使所得式I化合物實施高效液相層析(HPLC)。
  2. 如請求項1之方法,其中XPG,步驟B不存在且在步驟A中裂解該保護基團PG
  3. 如請求項1之方法,其中XPG,且在步驟B中裂解該保護基團PG
  4. 如請求項1至3中任一項之方法,其中該移動相中之乙醇對水之比率為5/95v/v至80/20v/v。
  5. 如請求項1至3中任一項之方法,其中該移動相之pH為0至8。
  6. 如請求項1至3中任一項之方法,其中該移動相進一步包括選自以下之緩衝劑:鹼金屬磷酸二氫鹽、二鹼金屬磷酸氫鹽、三鹼金屬磷酸鹽、鹼金屬乙酸鹽、鹼金屬甲酸鹽及單/二/三鹼金屬檸檬酸鹽。
  7. 如請求項1至3中任一項之方法,其中該高效液相層析(HPLC)係在50巴至400巴之壓力下實施。
  8. 如請求項1至3中任一項之方法,其中該方法係自動化方法,其中步驟A、可選步驟B及步驟C係在自動化合成器上實施。
  9. 如請求項1至3中任一項之方法,其中該高效液相層析(HPLC)產生包括該式I化合物之部分且對此部分實施步驟D)無菌過濾。
  10. 如請求項1至3中任一項之方法,其中該移動相之pH為1至3。
TW108102782A 2018-01-24 2019-01-24 製備顯像化合物之新穎方法 TWI839341B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP18153326.6 2018-01-24
??18153326.6 2018-01-24
EP18153326 2018-01-24

Publications (2)

Publication Number Publication Date
TW201932468A TW201932468A (zh) 2019-08-16
TWI839341B true TWI839341B (zh) 2024-04-21

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201520212A (zh) 2013-10-08 2015-06-01 Hoffmann La Roche 做為tau-pet-配位體之二氮雜咔唑衍生物

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201520212A (zh) 2013-10-08 2015-06-01 Hoffmann La Roche 做為tau-pet-配位體之二氮雜咔唑衍生物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
期刊 Luca C. Gobbi et al. Identification of Three Novel Radiotracers for Imaging Aggregated Tau in Alzheimer’s Disease with Positron Emission Tomography J. Med. Chem., 60, 17, 2017 7350–7370.

Similar Documents

Publication Publication Date Title
TWI808119B (zh) 用於pet顯像之診斷組合物、一種用於製造該診斷組合物之方法及其於診斷中之用途
AU2017299219B2 (en) Compounds for imaging Tau protein aggregates
AU2019212170B2 (en) Novel method of preparing an imaging compound
TWI839341B (zh) 製備顯像化合物之新穎方法
JP7059270B2 (ja) タウタンパク質凝集体を画像化するための化合物
EA042728B1 (ru) Новый способ получения визуализирующего соединения
EA046355B1 (ru) Композиции для диагностики для пэт-визуализации, способ получения композиции для диагностики и ее применение в диагностике
EP3743426A1 (en) Azacarboline compounds for the detection of tau aggregates