TWI838501B - Reflective display device using anisotropic optical film - Google Patents

Reflective display device using anisotropic optical film Download PDF

Info

Publication number
TWI838501B
TWI838501B TW109110560A TW109110560A TWI838501B TW I838501 B TWI838501 B TW I838501B TW 109110560 A TW109110560 A TW 109110560A TW 109110560 A TW109110560 A TW 109110560A TW I838501 B TWI838501 B TW I838501B
Authority
TW
Taiwan
Prior art keywords
anisotropic
light
diffusion layer
optical film
light diffusion
Prior art date
Application number
TW109110560A
Other languages
Chinese (zh)
Other versions
TW202043809A (en
Inventor
坂野翼
杉山仁英
Original Assignee
日商巴川製紙所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商巴川製紙所股份有限公司 filed Critical 日商巴川製紙所股份有限公司
Publication of TW202043809A publication Critical patent/TW202043809A/en
Application granted granted Critical
Publication of TWI838501B publication Critical patent/TWI838501B/en

Links

Images

Abstract

An objective of this invention is providing a reflective display device capable of showing white color like high-quality paper when displaying white without glare or blurring feeling, and excellent in white coloration (having a sufficient paper white feeling).
This invention provides a reflective display device includes a reflector and an anisotropic optical film whose linear transmittance changes depending on an incident light angle, wherein the anisotropic optical film is arranged closer to the viewing side than the reflector, the anisotropic optical film includes at least an anisotropic light diffusion layer, the anisotropic light diffusing layer has a matrix region and a plurality of columnar regions having different refractive indexes from the matrix region, the plurality of columnar regions are formed by orienting from one surface over to the other surface of the anisotropic light diffusion layer, the aspect ratio, which is the average major axis / average minor axis of theplurality of columnar regions on one surface of the anisotropic light diffusion layer, is 20 or less.

Description

使用各向異性光學膜之反射型顯示裝置 Reflective display device using anisotropic optical film

本發明係關於使用各向異性光學膜之反射型顯示裝置。 The present invention relates to a reflective display device using an anisotropic optical film.

以往之液晶顯示裝置例如為扭曲向列(TN,Twisted Nematic)型液晶顯示器時,液晶單元的兩表面之二個偏光板係以其偏光面直交之方式設置。因此,例如為NB(Normally black,帄常黑或黑底)模式的情況,液晶單元為驅動狀態時,以通過一偏光板的光會因液晶而偏光並通過另一偏光板之方式動作,而為白畫面,在非驅動狀態時,以光不通過另一偏光板之方式動作,而為黑畫面。因以前述方式光通過偏光板,故與偏光板偏光面相異方向之光無法通過偏光板,液晶使用光量較少,容易成為較暗之顯示裝置。 In the past, when a liquid crystal display device is a twisted nematic (TN) type liquid crystal display, the two polarizing plates on the two surfaces of the liquid crystal unit are arranged in a manner that their polarization planes are orthogonal. Therefore, for example, in the case of NB (Normally black) mode, when the liquid crystal unit is in a driven state, the light passing through one polarizing plate will be polarized by the liquid crystal and pass through the other polarizing plate, resulting in a white screen. In a non-driven state, the light does not pass through the other polarizing plate, resulting in a black screen. Because the light passes through the polarizing plate in the aforementioned manner, the light in the opposite direction to the polarization plane of the polarizing plate cannot pass through the polarizing plate, and the liquid crystal uses less light, which tends to become a darker display device.

近年來,因可攜式終端或穿戴式裝置的普及,在戶外使用顯示裝置的機會增加。對應於此,藉由使戶外的外光進入並反射而得光源之反射型液晶顯示裝置亦在增加。 In recent years, with the popularity of portable terminals or wearable devices, the opportunities for using display devices outdoors have increased. Correspondingly, reflective liquid crystal display devices that obtain light sources by allowing outdoor light to enter and reflect are also increasing.

另一方面,反射型液晶顯示裝置無法如透過型液晶顯示器般調整光源之光譜,故偏光板之波長特性直接成為顯示色,因此改善偏光板之波長特性為重要課題。至今為止的反射型液晶顯示裝置中,白顯示容易稍呈黃色,黑顯示容 易呈藍色。因此,相較於其他反射型顯示裝置(電子紙顯示器等),為顯示品質較差者。 On the other hand, reflective LCD devices cannot adjust the spectrum of the light source like transmissive LCD devices, so the wavelength characteristics of the polarizer directly become the display color, so improving the wavelength characteristics of the polarizer is an important issue. In reflective LCD devices so far, white displays tend to be slightly yellowish, and black displays tend to be bluish. Therefore, compared with other reflective display devices (electronic paper displays, etc.), the display quality is poor.

在此,專利文獻1中揭示以下發明:反射型液晶顯示裝置從背面側依序具有反射板、液晶單元、位相差板、具有偏光功能之基材(A)時,將具有偏光功能之各向異性光擴散板設置於於反射板與液晶單元之間、液晶單元與位相差板之間、位相差板與具有偏光功能之基材(A)之間的任一者,藉此改善偏光板所具有白顯示時呈黃色、黑顯示時呈藍色的問題所產生色相,偏光板在平行位或直交位皆無各波長依存性,白顯示時顯示如高品質紙之白色,黑顯示時顯示漆黑的黑色,可進一步提高反射型液晶顯示裝置之品質。 Here, Patent Document 1 discloses the following invention: When a reflective liquid crystal display device has a reflector, a liquid crystal unit, a phase difference plate, and a substrate (A) with a polarizing function in order from the back side, an anisotropic light diffusion plate with a polarizing function is arranged between the reflector and the liquid crystal unit, between the liquid crystal unit and the phase difference plate, or between the phase difference plate and the substrate (A) with a polarizing function, thereby improving the hue caused by the problem that the polarizing plate is yellow when displaying white and blue when displaying black. The polarizing plate has no wavelength dependence in either the parallel position or the orthogonal position, and displays white like high-quality paper when displaying white and displays pitch black when displaying black, which can further improve the quality of the reflective liquid crystal display device.

[先前技術文獻] [Prior Art Literature]

[專利文獻] [Patent Literature]

專利文獻1:國際公開2015/111472號公報。 Patent document 1: International Publication No. 2015/111472.

專利文獻1所使用各向異性光擴散板在該文獻中記載「如日本特開2012-37611號所記載之各向異性光擴散亦具有藉由各向異性光擴散而偏光之功能,故可使用作為反射型偏光板」,該日本特開2012-37611號公報中的該各向異性光擴散層中,折射率相異之複數層係形成為在平行於膜面之平面內一方向排列的縞狀。以下,本發明中將如此略板狀構造的一層稱為百頁(louver)構造。 The anisotropic light diffusing plate used in Patent Document 1 states that "the anisotropic light diffusing plate described in Japanese Patent Publication No. 2012-37611 also has the function of polarizing light by anisotropic light diffusion, so it can be used as a reflective polarizing plate." In the anisotropic light diffusing layer in Japanese Patent Publication No. 2012-37611, multiple layers with different refractive indices are formed into a spiral shape arranged in one direction in a plane parallel to the film surface. Hereinafter, in the present invention, a layer with such a roughly plate-like structure is referred to as a louver structure.

百頁構造的光學特性為光穿透率良好,但有所謂眩光之問題,該專利文獻1中未有用於反射型液晶顯示裝置時有關該問題的記載。 The optical property of the louver structure is good light transmittance, but there is a problem called glare. Patent document 1 does not record this problem when it is used in a reflective liquid crystal display device.

另一方面,影像顯示之鮮明性,亦即抑制散景感也為重要顯示特性之一,要求抑制眩光及散景感兩者之反射型顯示裝置。 On the other hand, the sharpness of image display, that is, suppressing the bokeh, is also one of the important display characteristics, requiring a reflective display device that suppresses both glare and bokeh.

因此,本發明之目的為提供一種白色呈色優異(具有充分紙白(paper white)感)之反射型顯示裝置,係無前述眩光或散景感,白顯示時可顯示如高品質紙之白色。 Therefore, the purpose of the present invention is to provide a reflective display device with excellent white color rendering (having a sufficient paper white feeling), which has no glare or bokeh as mentioned above, and can display white like high-quality paper when displaying white.

為了解決上述課題,本發明之反射型顯示裝置係具備反射板、以及直線穿透率會因入射光角度而改變之各向異性光學膜,前述各向異性光學膜係至少含有各向異性光擴散層,前述各向異性光擴散層係具有基質區域、以及折射率與前述基質區域相異之複數柱狀區域,前述複數柱狀區域係從前述各向異性光擴散層之一表面朝向另一表面配向而構成,前述各向異性光擴散層之一表面中的前述複數柱狀區域之平均長徑/平均短徑之長寬比為20以下。 In order to solve the above problems, the reflective display device of the present invention has a reflector and an anisotropic optical film whose linear transmittance changes with the angle of incident light. The anisotropic optical film at least contains an anisotropic light diffusion layer. The anisotropic light diffusion layer has a matrix region and a plurality of columnar regions with a refractive index different from that of the matrix region. The plurality of columnar regions are arranged from one surface of the anisotropic light diffusion layer toward the other surface. The aspect ratio of the average major diameter/average minor diameter of the plurality of columnar regions on one surface of the anisotropic light diffusion layer is less than 20.

根據本發明可提供一種反射型顯示裝置,係使各向異性光學膜之各向異性光擴散層之一表面中的複數柱狀區域之長寬比成為特定數值,藉此,在較反射型顯示裝置之反射板靠視覺辨認側設置該各向異性光學膜時,眩光或散景感較少,具有充分紙白感。 According to the present invention, a reflective display device can be provided, wherein the aspect ratio of a plurality of columnar regions in one surface of an anisotropic light diffusion layer of an anisotropic optical film becomes a specific value, whereby when the anisotropic optical film is arranged on the visual recognition side of the reflective plate of the reflective display device, the glare or bokeh is less and the display has a sufficient paper-white feeling.

1:光源 1: Light source

2:檢測器 2: Detector

100:內面反射型顯示裝置(反射型液晶顯示裝置) 100: Internal reflection type display device (reflective liquid crystal display device)

101:外面反射型顯示裝置(反射型液晶顯示裝置) 101: External reflective display device (reflective liquid crystal display device)

110:液晶層 110: Liquid crystal layer

120:背面玻璃 120: Back glass

121:前面玻璃 121:Front glass

130:反射板(金屬電極) 130: Reflector (metal electrode)

140:背面偏光板 140: Back polarizer

141:前面偏光板 141:Front polarizer

150:各向異性光學膜 150: Anisotropic optical film

160:背面位相差膜 160: Back phase difference film

161:前面位相差膜 161: Front phase difference film

170:黏著層 170: Adhesive layer

171:黏著層 171: Adhesive layer

180:反射板(背面反射板) 180: Reflector (back reflector)

200:各向異性光擴散層 200: Anisotropic light diffusion layer

201:基質區域 201: Matrix area

202:柱狀區域 202: Columnar area

211:基質區域 211: Matrix area

212:柱狀區域 212: Columnar area

250:各向異性光擴散層 250: Anisotropic light diffusion layer

300:光源 300: Light source

301:指向性擴散元件 301: Directional diffusion element

302:指向性擴散元件 302: Directional diffusion element

303:未硬化樹脂組成物層 303: Unhardened resin composition layer

圖1係說明本發明之反射型顯示裝置中的反射板、及各向異性光學膜之配置例之示意圖。 FIG1 is a schematic diagram illustrating an example of the configuration of a reflective plate and an anisotropic optical film in the reflective display device of the present invention.

圖2係表示本發明之各向異性光學膜之入射角度依存性之說明圖。 FIG2 is an explanatory diagram showing the incident angle dependence of the anisotropic optical film of the present invention.

圖3係本發明之各向異性光擴散層之平面方向之表面圖。 Figure 3 is a surface diagram of the anisotropic light diffusion layer of the present invention in the plane direction.

圖4係本發明之各向異性光擴散層之示意圖及穿透光圖一例。 Figure 4 is a schematic diagram of the anisotropic light diffusion layer of the present invention and an example of a transmitted light diagram.

圖5係用以說明各向異性光擴散層中的散射中心軸P之3維極座標表示。 Figure 5 is used to illustrate the 3D polar coordinate representation of the scattering center axis P in the anisotropic light diffusion layer.

圖6係用以說明各向異性光擴散層中的擴散區域及非擴散區域之光學輪廓(optical profile)例。 Figure 6 is an example of the optical profile of the diffusion region and the non-diffusion region in the anisotropic light diffusing layer.

圖7係表示各向異性光擴散層之入射光角度依存性測定方法之示意圖。 Figure 7 is a schematic diagram showing a method for measuring the incident light angle dependence of an anisotropic light diffusing layer.

圖8係表示任意步驟1-3之本發明之各向異性光擴散層之製造方法之示意圖。 FIG8 is a schematic diagram showing the manufacturing method of the anisotropic light diffusion layer of the present invention at any step 1-3.

圖9係實施例1及比較例2之反射型顯示裝置之影像照片。 Figure 9 is a photo of the reflective display device of Example 1 and Comparative Example 2.

1.主要用語之定義 1. Definition of main terms

在此定義有關於各向異性光學膜(各向異性光擴散層)之主要用語。 Here we define the main terms related to anisotropic optical films (anisotropic light diffusing layers).

「各向異性光學膜」包括各向異性光擴散層為單層(僅一層)的情形、及積層2層以上各向異性光擴散層而構成的情形(此時,各向異性光擴散層之層間可透過黏著層等而積層)等。因此,例如各向異性光擴散層為單層的情形,單層各向異性光擴散層即為各向異性光學膜。 "Anisotropic optical film" includes the case where the anisotropic light diffusion layer is a single layer (only one layer) and the case where two or more anisotropic light diffusion layers are stacked (in this case, the anisotropic light diffusion layers can be stacked through adhesive layers, etc.). Therefore, for example, in the case where the anisotropic light diffusion layer is a single layer, the single layer anisotropic light diffusion layer is an anisotropic optical film.

「各向異性光學膜」係具有各向異性及指向性,其光之擴散、透過及擴散分佈具有因光入射角度而改變之入射光角度依存性(詳細如後述)者。因此,與無入射光角依存性之指向性擴散膜、各向同性擴散膜、於特定方位配向之擴散膜相異。 "Anisotropic optical film" is anisotropic and directional, and its light diffusion, transmission and diffusion distribution have incident light angle dependence (details as described below) that changes with the incident light angle. Therefore, it is different from directional diffusion film, isotropic diffusion film and diffusion film oriented in a specific direction that have no incident light angle dependence.

「低折射率區域」及「高折射率區域」是由構成本發明之各向異性光學膜之材料的局部折射率高低差而形成之區域,為相較於另一者表示折射率較低或較高之相對性用語。該等區域為形成各向異性光學膜之材料硬化時所形成。 "Low refractive index region" and "high refractive index region" are regions formed by the local refractive index difference of the material constituting the anisotropic optical film of the present invention, and are relative terms indicating a lower or higher refractive index relative to the other. These regions are formed when the material forming the anisotropic optical film is hardened.

「散射中心軸」是指對於各向異性光學膜或各向異性光擴散層的入射光角度改變時,直線透過性為與以該入射光角度為界具有略對稱性的光的入射光角度一致的方向。設置為「具有略對稱性」的原因為:散射中心軸相對於膜法線方向具有傾斜時,光學特性(後述的「光學輪廓」)不具有嚴密定義的對稱性。散射中心軸可藉由以下方式確認:利用光學顯微鏡觀察各向異性光學膜剖面之柱狀區域之傾斜、或藉由使入射光角度改變並觀察透過各向異性光學膜的光的投影形狀。 "Scattering center axis" refers to the direction in which the linear transmittance is consistent with the incident light angle of light that is roughly symmetrical with respect to the incident light angle when the incident light angle to the anisotropic optical film or anisotropic light diffusion layer is changed. The reason for setting it as "slightly symmetrical" is that when the scattering center axis is tilted relative to the film normal direction, the optical characteristics ("optical profile" described later) do not have a strictly defined symmetry. The scattering center axis can be confirmed by observing the tilt of the columnar region of the anisotropic optical film cross section with an optical microscope, or by changing the incident light angle and observing the projection shape of light passing through the anisotropic optical film.

「散射中心軸角度」是指散射中心軸相對於各向異性光學膜或各向異性光擴散層之主平面表面之法線方向為傾斜,且以各向異性光學膜或各向異性光擴散層之法線方向為0°時的角度。 "Scattering center axis angle" refers to the angle at which the scattering center axis is tilted relative to the normal direction of the principal plane surface of the anisotropic optical film or the anisotropic light diffusion layer, and the normal direction of the anisotropic optical film or the anisotropic light diffusion layer is 0°.

又,「直線穿透率」一般係相對於各向異性光學膜或各向異性光擴散層入射的光之直線透過性,為從一入射光角度入射時,與入射方向相同直線方向之穿透光量之「直線穿透光量」與入射光光量之「入射光量」的比率,如下式所示。 In addition, "linear transmittance" is generally the linear transmittance of light incident on an anisotropic optical film or anisotropic light diffusion layer, which is the ratio of the "linear transmitted light amount" of the light amount transmitted in the same linear direction as the incident direction to the "incident light amount" of the incident light amount when the incident light is incident from an incident angle, as shown in the following formula.

直線穿透率(%)=(直線穿透光量/入射光量)×100 Linear transmittance (%) = (linear transmittance/incident light) × 100

又,本發明中,「散射」及「擴散」兩者無區別地使用,兩者表示同義。又,「光聚合」及「光硬化」為光聚合性化合物藉由光而進行聚合反應,兩者以同義語使用。 In addition, in the present invention, "scattering" and "diffusion" are used without distinction and are synonymous. In addition, "photopolymerization" and "photocuring" are the polymerization reactions of photopolymerizable compounds by light, and are used as synonyms.

以下參照圖面詳細說明本發明之較佳實施型態。又,本說明書及圖面中,附以相同符號之構成要件具有實質上相同之構造或功能。 The preferred implementation of the present invention is described in detail below with reference to the drawings. In addition, in this specification and drawings, the components with the same symbols have substantially the same structure or function.

2.反射型顯示裝置 2. Reflective display device

本發明之反射型顯示裝置係具備反射板、及直線穿透率會因入射光角度而改變之各向異性光學膜。 The reflective display device of the present invention has a reflective plate and an anisotropic optical film whose linear transmittance changes with the angle of incident light.

圖1為說明本發明之反射型顯示裝置中的反射板、及各向異性光學膜之配置例之示意圖,係反射型液晶顯示裝置的內面反射型及外面反射型之一例。 FIG1 is a schematic diagram illustrating an example of the configuration of a reflective plate and an anisotropic optical film in a reflective display device of the present invention, which is an example of an internal reflection type and an external reflection type of a reflective liquid crystal display device.

反射型液晶顯示裝置100(101)有在液晶層110之背面玻璃120側配置散射性反射板之金屬電極130的「內面反射型」、及在較背面位相差膜160及背面偏光板140靠外側配置背面反射板180的「外面反射型」等方式。 The reflective liquid crystal display device 100 (101) includes an "inner reflection type" in which a metal electrode 130 of a scattering reflector is arranged on the back glass 120 side of the liquid crystal layer 110, and an "outer reflection type" in which a back reflector 180 is arranged on the outer side of the back phase difference film 160 and the back polarizing plate 140.

上述說明本發明之反射型顯示裝置中的反射板及各向異性光學膜之配置處,但各向異性光學膜只要為較反射板靠反射型顯示裝置中的外光入射面側(視覺辨認者之視覺辨認側,視覺辨認反射光側)的話,則可為任意位置。作為一例,圖1中,係在前面玻璃121與較前面偏光板141靠內側之前面位相差膜161之間,透過黏著層170、171而設置各向異性光學膜150。 The above description describes the placement of the reflector and the anisotropic optical film in the reflective display device of the present invention, but the anisotropic optical film can be placed at any position as long as it is closer to the external light incident surface of the reflective display device (the visual recognition side of the visual recognizer, the visual recognition reflected light side) than the reflector. As an example, in FIG1 , the anisotropic optical film 150 is placed between the front glass 121 and the front phase difference film 161 on the inner side of the front polarizing plate 141 through the adhesive layers 170 and 171.

黏著層170、171所使用黏著劑只要具有透明性則無特別限制,較佳為使用常溫感壓接著性黏著劑。如此黏著劑可舉例如聚酯系樹脂、環氧系樹脂、聚胺甲酸乙酯系樹脂、聚矽氧系樹脂、丙烯酸系樹脂等樹脂。尤其丙烯酸系樹脂的光學性透明性較高且較便宜,故較佳。 The adhesive used in the adhesive layers 170 and 171 is not particularly limited as long as it is transparent, and preferably a room temperature pressure-sensitive adhesive is used. Such adhesives include, for example, polyester resins, epoxy resins, polyurethane resins, silicone resins, acrylic resins, and the like. In particular, acrylic resins are preferred because they have higher optical transparency and are cheaper.

本發明之反射板為反射膜、反射板、金屬電極等反射光之構件,可使用以往所使用裝設於反射型顯示裝置者。 The reflector of the present invention is a light-reflecting component such as a reflective film, a reflective plate, or a metal electrode, and can be installed in a reflective display device as used in the past.

2-1.各向異性光學膜 2-1. Anisotropic optical film

本發明之各向異性光學膜會依存入射光之入射光角度,而改變直線穿透率。亦即,特定角度範圍之入射光會維持直線性並透過,其他角度範圍之入射光會顯示擴散性。 The anisotropic optical film of the present invention changes the linear transmittance depending on the incident light angle. That is, incident light within a certain angle range will maintain linearity and transmit, while incident light within other angle ranges will show diffusion.

圖2為表示本發明之各向異性光學膜之入射角度依存性之說明圖。 Figure 2 is an explanatory diagram showing the incident angle dependence of the anisotropic optical film of the present invention.

圖2之各向異性光學膜在入射光角度為20°至50°時會顯示擴散性,在其他角度不會顯示擴散性而顯示直線透過性。亦即,如圖所示,在小於20°的0°、及大於50°的65°不會顯示擴散性而顯示直線透過性。 The anisotropic optical film in Figure 2 exhibits diffusion when the incident light angle is between 20° and 50°, and exhibits linear transmission instead of diffusion at other angles. That is, as shown in the figure, it exhibits linear transmission instead of diffusion at 0° (less than 20°) and 65° (greater than 50°).

本發明之各向異性光學膜至少含有為單層或複數層之各向異性光擴散層。各向異性光學膜所含有之各向異性光擴散層可含有複數直線透過性、霧度值、散射中心軸等光學特性相異之各向異性光擴散層。 The anisotropic optical film of the present invention contains at least a single layer or multiple layers of anisotropic light diffusing layer. The anisotropic light diffusing layer contained in the anisotropic optical film may contain multiple anisotropic light diffusing layers with different optical properties such as linear transmittance, haze value, and scattering center axis.

在此,複數層之各向異性光擴散層為單層各向異性光擴散層直接或透過黏著層積層複數者。黏著層所使用黏著劑可使用上述圖1的說明所述之黏著劑。 Here, the multiple layers of anisotropic light diffusion layers are multiple layers of single anisotropic light diffusion layers directly or through an adhesive layer. The adhesive used in the adhesive layer can be the adhesive described in the above FIG. 1.

另一方面,於各向異性光擴散層直接積層各向異性光擴散層之構成的情形,使含有光聚合性化合物之組成物層硬化而形成單層各向異性光擴散層後,可藉由於該單層各向異性光擴散層上直接薄片狀地塗布含有光聚合性化合物之塗料並形成組成物層後,將該組成物層硬化而製作。 On the other hand, in the case of directly laminating the anisotropic light diffusing layer, after the composition layer containing the photopolymerizable compound is cured to form a single-layer anisotropic light diffusing layer, a coating containing the photopolymerizable compound is directly applied in a sheet form on the single-layer anisotropic light diffusing layer to form a composition layer, and then the composition layer is cured to produce the film.

進而,各向異性光學膜除了各向異性光擴散層以外亦可積層複數層。 Furthermore, the anisotropic optical film can also be laminated with multiple layers in addition to the anisotropic light diffusion layer.

積層複數層各向異性光學膜可舉例如於各向異性光學膜積層具有其他功能的層者等。又,本發明之各向異性光學膜亦可積層於玻璃基板等透明基板上而使用。 The anisotropic optical film having multiple layers can be laminated, for example, by laminating layers having other functions on the anisotropic optical film. In addition, the anisotropic optical film of the present invention can also be laminated on a transparent substrate such as a glass substrate for use.

以製造容易性或成本之觀點來看,本發明之各向異性光學膜較佳為單層各向異性光擴散層。 From the perspective of manufacturing ease or cost, the anisotropic optical film of the present invention is preferably a single-layer anisotropic light diffusion layer.

若考慮用途或生產性,各向異性光學膜之厚度較佳為10μm至500μm,更佳為50μm至150μm。 Considering the application or productivity, the thickness of the anisotropic optical film is preferably 10μm to 500μm, more preferably 50μm to 150μm.

本發明之各向異性光擴散層係具有基質區域、及折射率與基質區域相異之複數柱狀區域,係具備具有入射光角度依存性之各向異性及指向性。 The anisotropic light diffusion layer of the present invention has a matrix region and a plurality of columnar regions with a refractive index different from that of the matrix region, and has anisotropy and directivity that are incident light angle dependent.

又,各向異性光擴散層通常為含有光聚合性化合物之組成物之硬化物所構成。因此,基質區域、複數柱狀區域為相同組成所構成,且分別相分離而形成。 In addition, the anisotropic light diffusion layer is usually composed of a cured product containing a composition of a photopolymerizable compound. Therefore, the matrix region and the plurality of columnar regions are composed of the same composition and are formed by phase separation.

在此,折射率相異為入射於各向異性光擴散層的光至少一部分會在基質區域與柱狀區域的界面中產生反射程度的差異,並無特別限定,例如基質區域與柱狀區域的折射率差為0.001以上即可。 Here, the difference in refractive index means that at least a portion of the light incident on the anisotropic light diffusion layer will produce a difference in the degree of reflection at the interface between the matrix region and the columnar region. There is no special limitation. For example, the difference in refractive index between the matrix region and the columnar region can be greater than 0.001.

本發明之各向異性光擴散層厚度(相對於各向異性光擴散層主平面之垂直方向,與各向異性光學膜厚度同方向之長度)無特別限定,例如較佳為1μm至200μm,更佳為10μm至100μm。前述厚度超過200μm時,不僅會增加材料 費,也會增加UV照射費用,故會增加製造成本,此外,會因各向異性光擴散層厚度方向擴散性的增加而容易產生影像模糊或對比降低。又,厚度未達1μm時,光的擴散性及集光性容易不足。 The thickness of the anisotropic light diffusion layer of the present invention (the length in the same direction as the thickness of the anisotropic optical film relative to the perpendicular direction of the main plane of the anisotropic light diffusion layer) is not particularly limited, for example, preferably 1μm to 200μm, more preferably 10μm to 100μm. When the aforementioned thickness exceeds 200μm, not only the material cost will be increased, but also the UV irradiation cost will be increased, so the manufacturing cost will be increased. In addition, the increase in the diffusion of the anisotropic light diffusion layer in the thickness direction will easily cause image blur or contrast reduction. In addition, when the thickness is less than 1μm, the light diffusion and light collection properties are likely to be insufficient.

本發明之各向異性光擴散層所含有之複數柱狀區域通常從各向異性光擴散層之一表面朝向另一表面配向且延伸存在。 The multiple columnar regions contained in the anisotropic light diffusion layer of the present invention are usually aligned and extended from one surface of the anisotropic light diffusion layer toward the other surface.

本發明之各向異性光擴散層表面(各向異性光擴散層主平面表面)中,前述複數柱狀區域表面形狀可形成為具有短徑、長徑的形狀。 In the anisotropic light diffusing layer surface (the main plane surface of the anisotropic light diffusing layer) of the present invention, the surface shape of the aforementioned plurality of columnar regions can be formed into a shape having a short diameter and a long diameter.

前述表面形狀無特別限定,例如可為圓形、楕圓形、多邊形。圓形的情形,短徑與長徑相等,楕圓形的情形,短徑為短軸長度,長徑為長軸長度,多邊形時,以在多邊形內畫直線時可能的最短長度為短徑,最長長度為長徑。 The aforementioned surface shape is not particularly limited, and can be, for example, circular, elliptical, or polygonal. In the case of a circle, the short diameter is equal to the long diameter. In the case of an ellipse, the short diameter is the length of the minor axis, and the long diameter is the length of the major axis. In the case of a polygon, the shortest possible length when drawing a straight line inside the polygon is the short diameter, and the longest length is the long diameter.

圖3為本發明之各向異性光擴散層之平面方向之表面圖,表示從各向異性光擴散層200、250表面所觀看的複數柱狀區域(202及212)及基質區域(201及211)。圖中LA表示長徑,SA表示短徑。 FIG3 is a surface diagram of the anisotropic light diffusion layer of the present invention in the plane direction, showing a plurality of columnar regions (202 and 212) and matrix regions (201 and 211) viewed from the surface of the anisotropic light diffusion layer 200, 250. In the figure, LA represents the major diameter and SA represents the minor diameter.

本發明之短徑及長徑係以光學顯微鏡觀察各向異性光擴散層表面,對於任意選擇之20個柱狀區域測量分別之短徑、長徑,且為該等的平均值。 The short and long diameters of the present invention are measured by observing the surface of the anisotropic light diffusion layer with an optical microscope, and measuring the short and long diameters of 20 randomly selected columnar regions, and the average value is obtained.

複數柱狀區域短徑平均值(平均短徑)較佳為0.5μm以上,更佳為1.0μm以上,又更佳為1.5μm以上。另一方面,複數柱狀區域短徑之平均短徑較佳為5.0μm以下,更佳為4.0μm以下,又更佳為3.0μm以下。該等複數柱狀區域之短徑下限值及上限值可適宜組合。 The average value of the short diameter of the multiple columnar regions (average short diameter) is preferably 0.5 μm or more, more preferably 1.0 μm or more, and even more preferably 1.5 μm or more. On the other hand, the average short diameter of the multiple columnar regions is preferably 5.0 μm or less, more preferably 4.0 μm or less, and even more preferably 3.0 μm or less. The lower limit and upper limit of the short diameter of the multiple columnar regions can be appropriately combined.

又,複數柱狀區域長徑平均值(平均長徑)較佳為0.5μm以上,更佳為1.0μm以上,又更佳為1.5μm以上。另一方面,複數柱狀區域長徑之平均長 徑較佳為100μm以下,更佳為50μm以下,又更佳為30μm以下。該等複數柱狀區域之短徑下限值及上限值可適宜組合。 Furthermore, the average value (average length) of the length of the multiple columnar regions is preferably greater than 0.5 μm, more preferably greater than 1.0 μm, and even more preferably greater than 1.5 μm. On the other hand, the average length of the length of the multiple columnar regions is preferably less than 100 μm, more preferably less than 50 μm, and even more preferably less than 30 μm. The lower limit and upper limit of the short diameter of the multiple columnar regions can be appropriately combined.

又,本發明之複數柱狀區域之平均長徑相對於平均短徑之比(平均長徑/平均短徑),亦即長寬比為20以下。圖3(a)表示長寬比未達2之各向異性光擴散層,圖3(b)表示長寬比為2至20之各向異性光擴散層。 In addition, the ratio of the average long diameter to the average short diameter of the multiple columnar regions of the present invention (average long diameter/average short diameter), that is, the aspect ratio is less than 20. Figure 3 (a) shows an anisotropic light diffusing layer with an aspect ratio of less than 2, and Figure 3 (b) shows an anisotropic light diffusing layer with an aspect ratio of 2 to 20.

長寬比上限較佳為20,更佳為5以下。長寬比為該範圍時,可得到抑制眩光之效果。 The upper limit of the aspect ratio is preferably 20, and more preferably less than 5. When the aspect ratio is within this range, the effect of suppressing glare can be obtained.

圖4為本發明之各向異性光擴散層之示意圖及穿透光圖一例。 Figure 4 is a schematic diagram of the anisotropic light diffusion layer of the present invention and an example of a transmitted light diagram.

本發明各向異性光擴散層其長寬比為1以上且未達2時,照射與複數柱狀區域軸方向平行的光時,其穿透光會等向性擴散(參照圖4(a))。另一方面,長寬比為2至20時,同樣地照射與軸方向平行的光時,會以因應長寬比之各向異性而擴散(參照圖4(b))。 When the aspect ratio of the anisotropic light diffusion layer of the present invention is greater than 1 and less than 2, when irradiated with light parallel to the axis direction of the multiple columnar regions, the penetrating light will diffuse isotropically (see Figure 4 (a)). On the other hand, when the aspect ratio is 2 to 20, when irradiated with light parallel to the axis direction, it will diffuse anisotropically according to the aspect ratio (see Figure 4 (b)).

又,本發明之各向異性光擴散層可含有具有一長寬比之複數柱狀區域,也可含有具有相異長寬比之複數柱狀區域。 Furthermore, the anisotropic light diffusion layer of the present invention may contain a plurality of columnar regions with a certain aspect ratio, or may contain a plurality of columnar regions with different aspect ratios.

本發明之各向異性光擴散層可具有至少1個散射中心軸。 The anisotropic light diffusion layer of the present invention may have at least one scattering central axis.

從柱狀區域之一表面朝向另一表面配向方向(延伸存在方向)可以與散射中心軸平行之方式形成,可以各向異性光擴散層具有所求直線穿透率及擴散性之方式適宜決定。又,散射中心軸與柱狀區域之配向方向平行只要滿足折射定律(司乃耳定律,Snell’s law)即可,不需為嚴密平行。 The alignment direction (extending direction) from one surface of the columnar region to the other surface can be formed in a manner parallel to the scattering center axis, and can be appropriately determined in a manner such that the anisotropic light diffusion layer has the desired linear transmittance and diffusivity. In addition, the scattering center axis and the alignment direction of the columnar region can be parallel as long as they satisfy the law of refraction (Snell’s law), and do not need to be strictly parallel.

司乃耳定律為:光從折射率n1之介質入熱於折射率n2之介質之界面時,其入射光角度θ1與折射角θ2之間成立n1sinθ1=n2sinθ2之關係。例如n1=1(空氣)、n2=1.51(各向異性光擴散層)且入射光角度為30°時,柱狀區域之配向方向(折 射角)為約19°,但即使如上述入射光角度與折射角相異,只要滿足司乃耳定律,則在本發明中包含於平行之概念。 Snell's law states that when light enters the interface of a medium with a refractive index of n 1 and a medium with a refractive index of n 2 , the relationship between the incident light angle θ 1 and the refraction angle θ 2 is n 1 sinθ 1 =n 2 sinθ 2. For example, when n 1 =1 (air), n 2 =1.51 (anisotropic light diffusion layer) and the incident light angle is 30°, the alignment direction (refraction angle) of the columnar region is about 19°. However, even if the incident light angle and the refraction angle are different as described above, as long as Snell's law is satisfied, the concept of parallelism is included in the present invention.

如上述,該散射中心軸為:各向異性光擴散層的入射光角度改變時,光擴散性與以該入射光角度為界具有略對稱性的光的入射光角度一致的方向。又,此時之入射光角度為:測定各向異性光擴散層之入射光角度直線穿透光量所得光學輪廓(例如圖6)中,最小直線穿透率的極小值所夾的略中央部(稱為擴散區域之區域的中央部)。 As mentioned above, the scattering center axis is the direction in which the light diffusivity is consistent with the incident light angle of the light that is roughly symmetrical with respect to the incident light angle when the incident light angle of the anisotropic light diffusing layer changes. In addition, the incident light angle at this time is the roughly central part (the central part of the area called the diffusion area) of the minimum value of the minimum straight line transmittance in the optical profile (e.g., Figure 6) obtained by measuring the incident light angle straight line transmission light of the anisotropic light diffusing layer.

接著參照圖5說明各向異性光擴散層中的散射中心軸P。圖5為用以說明各向異性光擴散層中的散射中心軸P之3維極座標表示。 Next, the scattering center axis P in the anisotropic light diffusion layer is explained with reference to FIG5. FIG5 is a 3D polar coordinate representation used to explain the scattering center axis P in the anisotropic light diffusion layer.

根據圖5之3維極座標表示,散射中心軸P在以各向異性光擴散層主平面為xy平面、相對於該主平面之法線為z軸時,可以極角θ及方位角φ表現。亦即,圖5中之Pxy可為投影於上述各向異性光擴散層主平面表面之散射中心軸的長度方向。 According to the 3D polar coordinate representation in Figure 5, the scattering center axis P can be expressed as a polar angle θ and an azimuth angle φ when the principal plane of the anisotropic light diffusion layer is the xy plane and the normal relative to the principal plane is the z axis. That is, Pxy in Figure 5 can be the length direction of the scattering center axis projected on the surface of the principal plane of the anisotropic light diffusion layer.

在此,各向異性光擴散層之法線(圖5所示z軸)與柱狀區域之配向方向(散射中心軸方向)所成極角θ(-90°<θ<90°)定義為本發明的散射中心軸角度。柱狀區域之軸方向角度可在製造該等時改變照射於薄片狀之含有光聚合性化合物之組成物的光線方向,藉此可調整為所求角度。 Here, the polar angle θ (-90°<θ<90°) formed by the normal line of the anisotropic light diffusion layer (z axis shown in FIG. 5) and the orientation direction of the columnar region (scattering center axis direction) is defined as the scattering center axis angle of the present invention. The axial direction angle of the columnar region can be adjusted to the desired angle by changing the direction of light irradiated on the thin sheet-like composition containing a photopolymerizable compound during the manufacture of the same.

散射中心軸角度並無特別限定,例如較佳為-30°至+30°,更佳為-20°至+20°。超過-30°至+30°之範圍時,視覺辨認性會降低,有成為無法獲得充分紙白感之反射型顯示裝置之虞。 The scattering center axis angle is not particularly limited, for example, preferably -30° to +30°, more preferably -20° to +20°. When it exceeds the range of -30° to +30°, visual recognition will be reduced, and there is a risk that the reflective display device will not be able to obtain a sufficient paper-white feeling.

又,複數各向異性光擴散層具有相同散射中心軸時,為整體具有一個散射中心軸者。 Furthermore, when multiple anisotropic light diffusion layers have the same scattering central axis, they have one scattering central axis as a whole.

又,本發明之各向異性光擴散層含有複數散射中心軸時,變成為包括有分別與複數散射中心軸配向方向平行之複數柱狀區域。 Furthermore, when the anisotropic light diffusion layer of the present invention contains multiple scattering central axes, it becomes composed of multiple columnar regions parallel to the orientation directions of the multiple scattering central axes.

又,本發明之柱狀區域之配向方向長度無特別限定,可為從各向異性光擴散層之一表面貫通到另一表面者,也可為從一表面起未到另一表面之長度。因為可提高各向異性光擴散層之光直線透過性,故柱狀區域配向方向長度較佳為比前述平均長徑更長。 In addition, the length of the alignment direction of the columnar region of the present invention is not particularly limited, and can be the length from one surface of the anisotropic light diffusion layer to the other surface, or the length from one surface to the other surface. Because the linear light transmittance of the anisotropic light diffusion layer can be improved, the length of the alignment direction of the columnar region is preferably longer than the aforementioned average length.

圖6為用以說明各向異性光擴散層中的擴散區域及非擴散區域之光學輪廓之例。 Figure 6 is an example of the optical profiles of the diffusion region and the non-diffusion region in the anisotropic light diffusing layer.

如上述,各向異性光擴散層係具有依存入射光角度而改變直線穿透率的光擴散性之入射光角度依存性。在此,如圖6之表示光擴散性之入射光角度依存性的曲線以下稱為「光學輪廓」。 As mentioned above, the anisotropic light diffusing layer has the incident light angle dependency of the light diffusing property that changes the linear transmittance depending on the incident light angle. Here, the curve representing the incident light angle dependency of the light diffusing property as shown in FIG6 is hereinafter referred to as the "optical profile".

圖7為表示各向異性光擴散層之入射光角度依存性測定方法之示意圖。如圖7所示,光學輪廓係將樣品之各向異性光擴散層(或僅單層各向異性光擴散層所構成各向異性光學膜)200或250配置於光源1與檢測器2之間。本形態中,將光源1的照射光I由樣品主平面法線方向入射時的入射光角度設為0°。又,樣品係以可貫穿樣品之直線V為中心任意旋轉之方式配置,光源1及檢測器2係被固定。亦即,根據該方法,在光源1與檢測器2之間配置樣品,一邊以直線V為中心軸改變角度,一邊測定直進透過樣品並進入檢測器2的直線穿透光量,藉此計算直線穿透率而得。 FIG7 is a schematic diagram showing a method for measuring the incident light angle dependence of an anisotropic light diffusing layer. As shown in FIG7, the optical profile is to arrange the anisotropic light diffusing layer of the sample (or an anisotropic optical film composed of only a single layer of anisotropic light diffusing layer) 200 or 250 between the light source 1 and the detector 2. In this form, the incident light angle when the irradiation light I of the light source 1 is incident from the normal direction of the principal plane of the sample is set to 0°. In addition, the sample is arranged in a manner that can be arbitrarily rotated around a straight line V that can penetrate the sample, and the light source 1 and the detector 2 are fixed. That is, according to this method, a sample is placed between the light source 1 and the detector 2, and the angle is changed with the straight line V as the center axis while measuring the amount of straight line light that passes through the sample and enters the detector 2, thereby calculating the straight line transmittance.

光學輪廓並非直接表現光擴散性者,但直線穿透率降低會相反地增加擴散性,以此解釋則可大致表示光擴散性。 Optical profiles do not directly reflect light diffusion, but a decrease in linear transmittance will increase diffusion, so this explanation can roughly represent light diffusion.

一般等向性光擴散膜會顯示在0°附近入射光角度為波峰之山型光學輪廓。 Generally, isotropic light-diffusing films will show a mountain-shaped optical profile with a peak at an incident light angle of around 0°.

各向異性光擴散層中,例如散射中心軸角度0°之各向異性光擴散層的情形(圖6)係顯示在0°附近(-20°至+20°)之入射光角度其直線穿透率較小,隨著入射光角度(之絕對值)變大而直線穿透率變大之谷型光學輪廓。 In an anisotropic light diffusion layer, for example, the case of an anisotropic light diffusion layer with a scattering center axis angle of 0° (Figure 6) shows that the linear transmittance is relatively small at an incident light angle near 0° (-20° to +20°), and the linear transmittance increases as the incident light angle (absolute value) increases, showing a valley-shaped optical profile.

如上述,各向異性光擴散層具有以下性質:入射光會在接近散射中心軸之入射光角度範圍強擴散,但在其以上的入射光角度範圍擴散性變弱並提高直線穿透率。 As mentioned above, the anisotropic light diffusion layer has the following properties: the incident light will be strongly diffused in the incident light angle range close to the scattering center axis, but the diffusion will be weaker in the incident light angle range above it and the linear transmittance will be increased.

以下,如圖6所示,取入射光角度中直線穿透率為最大之直線穿透率之最大直線穿透率與入射光角度中直線穿透率為最小之直線穿透率之最小直線穿透率兩者的中間值,將相對於該中間值的直線穿透率之2個入射光角度之角度範圍稱為擴散區域(該擴散區域寬度稱為「擴散寬度」),此外地入射光角度範圍稱為非擴散區域(透過區域)。 As shown in Figure 6, the middle value between the maximum straight line transmittance at the incident light angle where the straight line transmittance is the largest and the minimum straight line transmittance at the incident light angle where the straight line transmittance is the smallest is taken, and the angle range of the two incident light angles relative to the straight line transmittance of the middle value is called the diffusion area (the width of the diffusion area is called the "diffusion width"), and the other incident light angle range is called the non-diffusion area (transmission area).

從本發明之各向異性光擴散層法線方向入射的光的最大直線穿透率並無特別限定,例如各向異性光學膜所含有之各向異性光擴散層為1層時,較佳為10%至60%,更佳為10%至50%。藉由為該範圍而可得到散景感較少且具有充分紙白感之反射型顯示裝置。 The maximum linear transmittance of light incident from the normal direction of the anisotropic light diffusing layer of the present invention is not particularly limited. For example, when the anisotropic light diffusing layer contained in the anisotropic optical film is one layer, it is preferably 10% to 60%, and more preferably 10% to 50%. By setting it within this range, a reflective display device with less bokeh and sufficient paper whiteness can be obtained.

本發明之各向異性光擴散層之霧度值為表示各向異性光擴散層之擴散性之指標。若霧度值變大,則各向異性光擴散層之擴散性提高。各向異性光擴散層之霧度值並無特別限定,例如較佳為50%至90%,更佳為60%至80%。藉由為該範圍而可得到散景感較少且具有充分紙白感之反射型顯示裝置。 The haze value of the anisotropic light diffusing layer of the present invention is an indicator of the diffusivity of the anisotropic light diffusing layer. If the haze value becomes larger, the diffusivity of the anisotropic light diffusing layer is improved. The haze value of the anisotropic light diffusing layer is not particularly limited, for example, preferably 50% to 90%, more preferably 60% to 80%. By setting it within this range, a reflective display device with less bokeh and sufficient paper whiteness can be obtained.

各向異性光學膜所含有之各向異性光擴散層為複數層時,作為全各向異性光擴散層的霧度值係成為各向異性光學膜之各向異性光擴散層霧度值。 When the anisotropic optical film contains multiple anisotropic light diffusing layers, the haze value of the entire anisotropic light diffusing layer becomes the haze value of the anisotropic light diffusing layer of the anisotropic optical film.

前述各向異性光擴散層霧度值之測定方法無特別限定,可以公知方法測定。例如可藉由JIS K7136-1:2000「塑膠-透明材料之霧度求法」而測定。 The method for measuring the haze value of the anisotropic light diffusing layer is not particularly limited and can be measured by a known method. For example, it can be measured according to JIS K7136-1:2000 "Plastics - Method for determining the haze of transparent materials".

本發明之各向異性光擴散層可於各向異性光擴散層之至少一表面具有凹凸。此時,各向異性光擴散層表面之算術平均粗度Ra較佳為0.10μm以下。又,前述算術平均粗度Ra係根據JIS B 0601-2001而求得。 The anisotropic light diffusing layer of the present invention may have concavities and convexities on at least one surface of the anisotropic light diffusing layer. In this case, the arithmetic mean roughness Ra of the surface of the anisotropic light diffusing layer is preferably less than 0.10 μm. In addition, the arithmetic mean roughness Ra is obtained according to JIS B 0601-2001.

前述各向異性光擴散層表面之算術平均粗度Ra可以公知方法測定,並無特別限定。可舉例如使用共焦點型雷射顯微鏡等之非接觸法、或使用探針之表面粗度測定器等之接觸法。 The arithmetic mean roughness Ra of the surface of the anisotropic light diffusion layer can be measured by a known method without any particular limitation. For example, a non-contact method using a confocal laser microscope or a contact method using a probe surface roughness measuring device can be used.

2-2.各向異性光學膜中的各向異性光擴散層之製造方法 2-2. Method for manufacturing anisotropic light diffusion layer in anisotropic optical film

本發明各向異性光學膜中的各向異性光擴散層之製造方法可藉由於未硬化樹脂組成物層照射UV(紫外線)等光線而製造。以下首先說明各向異性光擴散層之原料,接著說明製造製程。下述中主要說明為適合例之含有1層各向異性光擴散層之各向異性光學膜之製造,視需要追加說明其他態樣。 The manufacturing method of the anisotropic light diffusion layer in the anisotropic optical film of the present invention can be manufactured by irradiating an uncured resin composition layer with UV (ultraviolet light) or other light. The following first describes the raw materials of the anisotropic light diffusion layer, and then describes the manufacturing process. The following mainly describes the manufacturing of an anisotropic optical film containing one anisotropic light diffusion layer as an example, and other aspects are described as needed.

2-2-1.各向異性光擴散層之原料 2-2-1. Raw materials of anisotropic light diffusion layer

有關於各向異性光擴散層之原料,係依序說明(1)光聚合性化合物、(2)光起始劑、(3)其他任意成分。 The raw materials of the anisotropic light diffusion layer are described in order: (1) photopolymerizable compound, (2) photoinitiator, and (3) other optional components.

2-2-1-1.光聚合性化合物 2-2-1-1. Photopolymerizable compounds

形成本發明之各向異性光擴散層之材料之光聚合性化合物係由:由具有自由基聚合性或陽離子聚合性官能基之高分子單體、聚合物、寡聚物、單體所選擇 光聚合性化合物及光起始劑所構成,並藉由照射紫外線及/或可見光線而聚合、硬化之材料。在此,形成各向異性光學膜所含有之各向異性光擴散層之材料即便為1種類,亦不會因密度形成有高低差而產生折射率差。其原因為:UV照射強度較強部分硬化速度較快,故於該硬化區域周圍的聚合、硬化材料會移動,結果會形成折射率較高區域及折射率較低區域。又,(甲基)丙烯酸酯意指可為丙烯酸酯或甲基丙烯酸酯之任一者。 The photopolymerizable compound of the material forming the anisotropic light diffusion layer of the present invention is composed of: a polymer monomer, a polymer, an oligomer, a monomer having a free radical polymerizable or cationic polymerizable functional group, a photopolymerizable compound and a photoinitiator, and is a material that polymerizes and cures by irradiating ultraviolet rays and/or visible rays. Here, even if the material forming the anisotropic light diffusion layer contained in the anisotropic optical film is of one type, there will be no difference in refractive index due to the difference in density. The reason is that the part with stronger UV irradiation intensity cures faster, so the polymerized and cured material around the cured area will move, resulting in the formation of a higher refractive index area and a lower refractive index area. In addition, (meth)acrylate means either acrylate or methacrylate.

自由基聚合性化合物主要為分子中含有1個以上不飽和雙鍵者,具體而言可舉出被稱為環氧基丙烯酸酯、胺甲酸乙酯丙烯酸酯、聚酯丙烯酸酯、聚醚丙烯酸酯、聚丁二烯丙烯酸酯、聚矽氧丙烯酸酯等之丙烯酸系寡聚物、丙烯酸2-乙基己酯、丙烯酸異戊酯、丙烯酸丁氧基乙酯、乙氧基二乙二醇丙烯酸酯、丙烯酸苯氧基乙酯、丙烯酸四氫呋喃甲酯、丙烯酸異降莰酯、丙烯酸2-羥基乙酯、丙烯酸2-羥基丙酯、2-丙烯醯氧基鄰苯二甲酸、丙烯酸二環戊烯酯、三乙二醇二丙烯酸酯、新戊二醇二丙烯酸酯、1,6-己二醇二丙烯酸酯、雙酚A之EO加成物二丙烯酸酯、三羥甲基丙烷三丙烯酸酯、EO改質三羥甲基丙烷三丙烯酸酯、新戊四醇三丙烯酸酯、新戊四醇四丙烯酸酯、雙三羥甲基丙烷四丙烯酸酯、二新戊四醇六丙烯酸酯等丙烯酸酯單體。又,該等化合物可以各單體使用,也可複數混合使用。又,同樣地亦可使用甲基丙烯酸酯,但一般而言相較於甲基丙烯酸酯,丙烯酸酯的光聚合速度較快,故較佳。 Free radical polymerizable compounds are mainly those containing one or more unsaturated double bonds in the molecule. Specifically, there are acrylic oligomers called epoxy acrylates, urethane acrylates, polyester acrylates, polyether acrylates, polybutadiene acrylates, polysilicone acrylates, 2-ethylhexyl acrylate, isoamyl acrylate, butoxyethyl acrylate, ethoxydiethylene glycol acrylate, phenoxyethyl acrylate, tetrahydrofuran methyl acrylate, isobornyl acrylate, 2-ethylhexyl acrylate, -Hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-acryloyloxyphthalic acid, dicyclopentenyl acrylate, triethylene glycol diacrylate, neopentyl glycol diacrylate, 1,6-hexanediol diacrylate, EO adduct diacrylate of bisphenol A, trihydroxymethylpropane triacrylate, EO-modified trihydroxymethylpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, ditrihydroxymethylpropane tetraacrylate, dipentaerythritol hexaacrylate and other acrylate monomers. In addition, these compounds can be used individually or in combination. In addition, methacrylate can also be used in the same manner, but generally speaking, acrylate has a faster photopolymerization speed than methacrylate, so it is better.

陽離子聚合性化合物可使用分子中具有1個以上環氧基或乙烯基醚基、氧環丁烷基之化合物。具有環氧基之化合物可舉出2-乙基己基二甘醇環氧丙基醚、聯苯基之環氧丙基醚、雙酚A、氫化雙酚A、雙酚F、雙酚AD、雙酚S、四甲基雙酚A、四甲基雙酚F、四氯雙酚A、四溴雙酚A等雙酚類之二環 氧丙基醚類、苯酚酚醛清漆、甲酚酚醛清漆、溴化苯酚酚醛清漆、鄰甲酚酚醛清漆等酚醛清漆樹脂之聚環氧丙基醚類、乙二醇、聚乙二醇、聚丙二醇、丁二醇、1,6-己二醇、新戊二醇、三羥甲基丙烷、1,4-環己烷二甲醇、雙酚A之EO加成物、雙酚A之PO加成物等伸烷二醇類之二環氧丙基醚類、六氫鄰苯二甲酸之環氧丙基酯或二聚酸之二環氧丙基酯等環氧丙基酯類。 The cationically polymerizable compound may be a compound having one or more epoxy groups, vinyl ether groups, or cyclobutylene groups in the molecule. Examples of the compound having an epoxy group include 2-ethylhexyl diglycol epoxypropyl ether, epoxypropyl ether of biphenyl, bisphenol A, hydrogenated bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethyl bisphenol A, tetramethyl bisphenol F, tetrachlorobisphenol A, tetrabromobisphenol A, and other bisphenols, dicyclohexyl ethers, phenol novolac, cresol novolac, brominated phenol novolac, o-cresol novolac, etc. Polyglycidyl ethers of novolac resins, ethylene glycol, polyethylene glycol, polypropylene glycol, butanediol, 1,6-hexanediol, neopentyl glycol, trihydroxymethylpropane, 1,4-cyclohexanedimethanol, EO adducts of bisphenol A, PO adducts of bisphenol A, etc., diglycidyl ethers of alkylene glycols, glycidyl esters of hexahydrophthalic acid or diglycidyl esters of dimer acid, etc.

具有環氧基之化合物可進一步舉出3,4-環氧環己基甲基-3’,4’-環氧環己烷羧酸酯、2-(3,4-環氧環己基-5,5-螺-3,4-環氧基)環己烷-間二噁烷、二(3,4-環氧環己基甲基)己二酸酯、二(3,4-環氧基-6-甲基環己基甲基)己二酸酯、3,4-環氧基-6-甲基環己基-3’,4’-環氧基-6’-甲基環己烷羧酸酯、亞甲基雙(3,4-環氧環己烷)、二環戊二烯二環氧化物、乙二醇之二(3,4-環氧環己基甲基)醚、伸乙基雙(3,4-環氧環己烷羧酸酯)、內酯改質3,4-環氧環己基甲基-3’,4’-環氧環己烷羧酸酯、四(3,4-環氧環己基甲基)丁烷四羧酸酯、二(3,4-環氧環己基甲基)-4,5-環氧基四氫鄰苯二甲酸酯等脂環式環氧化合物,但並不限定於該等。 Compounds having an epoxy group include 3,4-epoxyepoxyhexylmethyl-3',4'-epoxyepoxyhexanecarboxylate, 2-(3,4-epoxyepoxyhexyl-5,5-spiro-3,4-epoxy)cyclohexane-m-dioxane, di(3,4-epoxyepoxyhexylmethyl)adipate, di(3,4-epoxy-6-methylcyclohexylmethyl)adipate, 3,4-epoxy-6-methylcyclohexyl-3',4'-epoxy-6'-methylcyclohexanecarboxylate, methylenebis(3,4-epoxyepoxyhexylmethyl)adipate, (3,4-epoxycyclohexane), dicyclopentadiene diepoxide, ethylene glycol bis(3,4-epoxycyclohexylmethyl) ether, ethylene bis(3,4-epoxycyclohexanecarboxylate), lactone-modified 3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexanecarboxylate, tetra(3,4-epoxycyclohexylmethyl)butanetetracarboxylate, di(3,4-epoxycyclohexylmethyl)-4,5-epoxytetrahydrophthalate and other aliphatic epoxy compounds, but not limited to these.

具有乙烯基醚基之化合物可舉例如二乙二醇二乙烯基醚、三乙二醇二乙烯基醚、丁二醇二乙烯基醚、己二醇二乙烯基醚、環己烷二甲醇二乙烯基醚、羥基丁基乙烯基醚、乙基乙烯基醚、十二烷基乙烯基醚、三羥甲基丙烷三乙烯基醚、丙烯基醚碳酸伸丙酯等,但並不限定於該等。又,乙烯基醚化合物一般而言為陽離子聚合性,但可藉由與丙烯酸酯組合而進行自由基聚合。 Compounds having a vinyl ether group include, but are not limited to, diethylene glycol divinyl ether, triethylene glycol divinyl ether, butanediol divinyl ether, hexanediol divinyl ether, cyclohexanedimethanol divinyl ether, hydroxybutyl vinyl ether, ethyl vinyl ether, dodecyl vinyl ether, trihydroxymethylpropane trivinyl ether, and propylene carbonate. In addition, vinyl ether compounds are generally cationic polymerizable, but can be free radical polymerized by combining with acrylates.

又,具有氧環丁烷基之化合物可使用1,4-雙[(3-乙基-3-氧環丁基甲氧基)甲基]苯、3-乙基-3-(羥基甲基)-氧環丁烷等。 In addition, compounds having an oxobutyl group may include 1,4-bis[(3-ethyl-3-oxobutylmethoxy)methyl]benzene, 3-ethyl-3-(hydroxymethyl)-oxobutylene, etc.

又,以上的陽離子聚合性化合物能夠以各單體使用,也可複數混合使用。上述光聚合性化合物並不限定於上述者。又,為了產生充分的折射率差, 上述光聚合性化合物中可為了謀求低折射率化而導入氟原子(F),也可為了謀求高折射率化而導入硫原子(S)、溴原子(Br)、各種金屬原子。又,如日本特表2005-514487號公報所揭示,可將於氧化鈦(TiO2)、氧化鋯(ZrO2)、氧化錫(SnOx)等高折射率之金屬氧化物所構成超微粒子表面導入丙烯醯基或甲基丙烯醯基、環氧基等光聚合性官能基之功能性超微粒子添加於上述光聚合性化合物,此亦為有效的。 Furthermore, the above-mentioned cationically polymerizable compounds can be used as individual monomers or as a mixture of multiple monomers. The above-mentioned photopolymerizable compounds are not limited to the above-mentioned ones. Furthermore, in order to produce a sufficient refractive index difference, fluorine atoms (F) may be introduced into the above-mentioned photopolymerizable compounds in order to lower the refractive index, and sulfur atoms (S), bromine atoms (Br), and various metal atoms may be introduced in order to increase the refractive index. Furthermore, as disclosed in Japanese Patent Publication No. 2005-514487, functional ultrafine particles having photopolymerizable functional groups such as acryl or methacryl, epoxy, etc. introduced into the surface of ultrafine particles composed of metal oxides with high refractive index such as titanium oxide ( TiO2 ), zirconium oxide (ZrO2), and tin oxide ( SnOx ) may be added to the above-mentioned photopolymerizable compounds, which is also effective.

本發明之光聚合性化合物較佳為使用具有聚矽氧骨架之光聚合性化合物。具有聚矽氧骨架之光聚合性化合物會伴隨其構造(主要為醚鍵)而配向並進行聚合、硬化,形成低折射率區域、高折射率區域、或低折射率區域及高折射率區域。藉由使用具有聚矽氧骨架之光聚合性化合物而容易使柱狀區域傾斜,會提高正面方向的集光性。又,低折射率區域相當於柱狀區域或基質區域之任一者,且另一者相當於高折射率區域。 The photopolymerizable compound of the present invention preferably uses a photopolymerizable compound with a polysilicone skeleton. The photopolymerizable compound with a polysilicone skeleton will be aligned and polymerized and hardened along with its structure (mainly ether bonds) to form a low refractive index region, a high refractive index region, or a low refractive index region and a high refractive index region. By using a photopolymerizable compound with a polysilicone skeleton, it is easy to tilt the columnar region, which will improve the light collection in the front direction. In addition, the low refractive index region is equivalent to either the columnar region or the matrix region, and the other is equivalent to the high refractive index region.

於低折射率區域中,較佳為具有聚矽氧骨架之光聚合性化合物之硬化物的聚矽氧樹脂相對較多。藉此可容易使散射中心軸進一步傾斜,故可提高正面方向集光性。相較於不具有聚矽氧骨架之化合物,聚矽氧樹脂含有較多矽(Si),故可以該矽作為指標使用EDS(能量分散型X射線分光器)藉此確認聚矽氧樹脂之相對量。 In the low refractive index region, it is preferred that the cured product of the photopolymerizable compound with a polysilicone skeleton has a relatively large amount of polysilicone resin. This makes it easier to further tilt the scattering center axis, thereby improving the light collection property in the front direction. Compared with compounds without a polysilicone skeleton, polysilicone resin contains more silicon (Si), so the silicon can be used as an indicator to use EDS (energy dispersive X-ray spectrometer) to confirm the relative amount of polysilicone resin.

具有聚矽氧骨架之光聚合性化合物為具有自由基聚合性或陽離子聚合性官能基之單體、寡聚物、預聚物或高分子單體。自由基聚合性官能基可舉出丙烯醯基、甲基丙烯醯基、烯丙基等,陽離子聚合性官能基可舉出環氧基、氧環丁烷基等。該等官能基種類及數量並無特別限制,官能基越多則越提高交聯密度,易產生折射率差,故較佳,因此較佳為具有多官能之丙烯醯基或甲基丙烯醯 基。又,具有聚矽氧骨架之化合物從其構造來看與其他化合物的相溶性較不充分,但此時可進行胺甲酸乙酯化而提高相溶性。本形態中適合使用末端具有丙烯醯基或甲基丙烯醯基之聚矽氧、胺甲酸乙酯、(甲基)丙烯酸酯。 The photopolymerizable compound having a polysiloxane skeleton is a monomer, oligomer, prepolymer or polymer monomer having a free radical polymerizable or cationic polymerizable functional group. Examples of free radical polymerizable functional groups include acryloyl, methacryloyl, allyl, etc., and examples of cationic polymerizable functional groups include epoxide, cyclohexane, etc. There is no particular restriction on the type and amount of such functional groups. The more functional groups there are, the higher the crosslinking density is, and the easier it is to produce a refractive index difference, so it is better. Therefore, it is better to have a polyfunctional acryloyl or methacryloyl. In addition, the compound having a polysiloxane skeleton is not sufficiently compatible with other compounds due to its structure, but in this case, it can be urethanized to improve the compatibility. In this form, polysilicone, urethane, or (meth)acrylate having an acryl or methacryl group at the end is suitable.

具有聚矽氧骨架之光聚合性化合物之重量平均分子量(Mw)較佳為500至50,000之範圍。更佳為2,000至20,000之範圍。藉由使重量平均分子量為上述範圍,可充分產生光硬化反應,存在於各向異性光學膜100之各各向異性光擴散層內的聚矽氧樹脂容易配向。隨著聚矽氧樹脂的配向,散射中心軸變得容易傾斜。 The weight average molecular weight (Mw) of the photopolymerizable compound having a polysilicone skeleton is preferably in the range of 500 to 50,000. More preferably, it is in the range of 2,000 to 20,000. By making the weight average molecular weight in the above range, the photocuring reaction can be fully produced, and the polysilicone resin in each anisotropic light diffusion layer of the anisotropic optical film 100 is easily aligned. With the alignment of the polysilicone resin, the scattering center axis becomes easy to tilt.

聚矽氧骨架例如為下述通式(1)所示者。通式(1)中,R1、R2、R3、R4、R5、R6分別獨立具有甲基、烷基、氟烷基、苯基、環氧基、胺基、羧基、聚醚基、丙烯醯基、甲基丙烯醯基等官能基。又,通式(1)中,n較佳為1至500之整數。 The polysiloxane skeleton is, for example, represented by the following general formula (1). In general formula (1), R1 , R2 , R3 , R4 , R5 , and R6 independently have functional groups such as methyl, alkyl, fluoroalkyl, phenyl, epoxy, amino, carboxyl, polyether, acryl, and methacryl. In general formula (1), n is preferably an integer of 1 to 500.

Figure 109110560-A0202-12-0018-2
Figure 109110560-A0202-12-0018-2

若於具有聚矽氧骨架之光聚合性化合物摻配不具有聚矽氧骨架之化合物並形成各向異性光擴散層,則容易使低折射率區域及高折射率區域分離並形成,各向異性程度較強,故較佳。除了光聚合性化合物以外,不具有聚矽氧 骨架之化合物可使用熱塑性樹脂、熱硬化性樹脂,也可併用該等。光聚合性化合物可使用具有自由基聚合性或陽離子聚合性官能基之聚合物、寡聚物、單體(但為不具有聚矽氧骨架者)。熱塑性樹脂可舉出聚酯、聚醚、聚胺甲酸乙酯、聚醯胺、聚苯乙烯、聚碳酸酯、聚縮醛、聚乙酸乙烯酯、丙烯酸樹脂及其共聚物或改質物。使用熱塑性樹脂時,使用溶解熱塑性樹脂之溶劑並溶解、塗布、乾燥後,以紫外線使具有聚矽氧骨架之光聚合性化合物硬化,而成型各向異性光擴散層。熱硬化性樹脂可舉出環氧樹脂、苯酚樹脂、三聚氰胺樹脂、尿素樹脂、不飽和聚酯及其共聚物或改質物。使用熱硬化性樹脂時,以紫外線使具有聚矽氧骨架之光聚合性化合物硬化後,適宜加熱藉此使熱硬化性樹脂硬化,而成型各向異性光擴散層。不具有聚矽氧骨架之化合物最較佳為光聚合性化合物,因低折射率區域及高折射率區域容易分離、使用熱塑性樹脂時不需溶劑而不需乾燥過程、及不需如熱硬化性樹脂之熱硬化過程等,故生產性優異。 If a photopolymerizable compound having a polysilicone skeleton is mixed with a compound without a polysilicone skeleton to form an anisotropic light diffusion layer, it is easy to separate and form a low refractive index region and a high refractive index region, and the degree of anisotropy is stronger, so it is better. In addition to photopolymerizable compounds, thermoplastic resins and thermosetting resins can be used as compounds without a polysilicone skeleton, and they can also be used in combination. Photopolymerizable compounds can use polymers, oligomers, and monomers (but those without a polysilicone skeleton) with free radical polymerizable or cationic polymerizable functional groups. Examples of thermoplastic resins include polyesters, polyethers, polyurethanes, polyamides, polystyrenes, polycarbonates, polyacetals, polyvinyl acetates, acrylic resins, and copolymers or modified products thereof. When using a thermoplastic resin, a solvent for dissolving the thermoplastic resin is used to dissolve, apply, and dry, and then a photopolymerizable compound having a polysilicone skeleton is hardened by ultraviolet light to form an anisotropic light diffusion layer. Thermosetting resins include epoxy resins, phenol resins, melamine resins, urea resins, unsaturated polyesters, and copolymers or modified products thereof. When using a thermosetting resin, a photopolymerizable compound having a polysilicone skeleton is hardened by ultraviolet light, and then the thermosetting resin is hardened by appropriately heating to form an anisotropic light diffusion layer. The best compound without a polysilicone skeleton is a photopolymerizable compound, because the low refractive index area and the high refractive index area are easy to separate, no solvent is required when using thermoplastic resin, and no thermal curing process is required like thermosetting resin, so the productivity is excellent.

具有聚矽氧骨架之光聚合性化合物與不具有聚矽氧骨架之化合物之比率以質量比較佳為15:85至85:15之範圍。更佳為30:70至70:30之範圍。藉由在該範圍,可使低折射率區域及高折射率區域之相分離容易進行,且使柱狀區域變得容易傾斜。若具有聚矽氧骨架之光聚合性化合物之比率未達下限值或超過上限值,則相分離難以進行,柱狀區域難以傾斜。若使用聚矽氧/胺甲酸乙酯/(甲基)丙烯酸酯作為具有聚矽氧骨架之光聚合性化合物,則可提高與不具有聚矽氧骨架之化合物的相溶性。藉此,即便擴寬材料混合比率亦可使柱狀區域傾斜。 The ratio of the photopolymerizable compound having a polysilicone skeleton to the compound without a polysilicone skeleton is preferably in the range of 15:85 to 85:15 by mass. It is more preferably in the range of 30:70 to 70:30. By being in this range, the phase separation of the low refractive index region and the high refractive index region can be easily performed, and the columnar region can be easily tilted. If the ratio of the photopolymerizable compound having a polysilicone skeleton does not reach the lower limit or exceeds the upper limit, the phase separation is difficult to perform and the columnar region is difficult to tilt. If polysilicone/urethane/(meth)acrylate is used as the photopolymerizable compound having a polysilicone skeleton, the compatibility with the compound without a polysilicone skeleton can be improved. Thereby, the columnar region can be tilted even if the material mixing ratio is widened.

2-2-1-2.光起始劑 2-2-1-2. Photoinitiator

可使自由基聚合性化合物聚合的光起始劑可舉出二苯基酮、苄基、米其勒酮、2-氯噻噸酮、2,4-二乙基噻噸酮、安息香乙基醚、安息香異丙基醚、安息香異丁基醚、2,2-二乙氧基苯乙酮、苄基二甲基縮酮、2,2-二甲氧基-1,2-二苯基乙烷-1-酮、2-羥基-2-甲基-1-苯基丙烷-1-酮、1-羥基環己苯基酮、2-甲基-1-[4-(甲基硫基)苯基]-2-嗎啉基丙酮-1、1-[4-(2-羥基乙氧基)-苯基]-2-羥基-2-甲基-1-丙烷-1-酮、雙(環戊二烯基)-雙[2,6-二氟-3-(吡喃-1-基)苯基]鈦、2-苄基-2-二甲胺基-1-(4-嗎啉基苯基)-丁酮-1,2,4,6-三甲基苯甲醯基二苯基膦氧化物等。又,該等化合物可以各單體使用,也可複數混合使用。 Examples of the photoinitiator capable of polymerizing the radical polymerizable compound include diphenyl ketone, benzyl, michler's ketone, 2-chlorothiazolone, 2,4-diethylthiazolone, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 2,2-diethoxyacetophenone, benzyl dimethyl ketal, 2,2-dimethoxy-1,2-diphenylethane-1-one, 2-hydroxy-2-methyl-1-phenylpropane-1-one, 1-hydroxycyclohexylphenyl ketone, 2 -methyl-1-[4-(methylthio)phenyl]-2-morpholinoacetone-1, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propane-1-one, bis(cyclopentadienyl)-bis[2,6-difluoro-3-(pyran-1-yl)phenyl]titanium, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1,2,4,6-trimethylbenzyldiphenylphosphine oxide, etc. In addition, these compounds can be used individually or in combination.

又,陽離子聚合性化合物之光起始劑係可藉由照射光產生酸,並藉由該產生的酸使上述陽離子聚合性化合物聚合之化合物,一般適合使用鎓鹽、茂金屬錯合物。鎓鹽係使用重氮鹽、鋶鹽、錪鹽、鏻鹽、硒鹽等,該等的對離子係使用BF4 -、PF6 -、AsF6 -、SbF6 -等陰離子。具體例可舉出4-氯苯重氮六氟磷酸鹽、三苯基鋶六氟銻酸酯、三苯基鋶六氟磷酸鹽、(4-苯基硫苯基)二苯基鋶六氟銻酸酯、(4-苯基硫苯基)二苯基鋶六氟磷酸鹽、雙[4-(二苯基二氫硫基)苯基]硫化物-雙-六氟銻酸酯、雙[4-(二苯基二氫硫基)苯基]硫化物-雙-六氟磷酸鹽、(4-甲氧基苯基)二苯基鋶六氟銻酸酯、(4-甲氧基苯基)苯基錪六氟銻酸酯、雙(4-第三丁基苯基)錪六氟磷酸鹽、苄基三苯基鏻六氟銻酸酯、三苯基硒六氟磷酸鹽、(η5-異丙基苯)(η5-環戊二烯基)鐵(II)六氟磷酸鹽等,但並不限定於該等。又,該等化合物可以各單體使用,也可複數混合使用。 In addition, the photoinitiator of the cationic polymerizable compound is a compound that can generate an acid by irradiation with light, and the generated acid polymerizes the above cationic polymerizable compound. Generally, onium salts and metallocene complexes are suitable. Onium salts include diazonium salts, coronium salts, iodonium salts, phosphonium salts, selenium salts, etc., and their counter ions include anions such as BF4- , PF6- , AsF6- , SbF6- , etc. Specific examples include 4-chlorobenzenediazonium hexafluorophosphate, triphenylcopperium hexafluoroacidate, triphenylcopperium hexafluorophosphate, (4-phenylthiophenyl)diphenylcopperium hexafluoroacidate, (4-phenylthiophenyl)diphenylcopperium hexafluorophosphate, bis[4-(diphenyldihydrothio)phenyl]sulfide-bis-hexafluoroacidate, bis[4-(diphenyldihydrothio)phenyl]sulfide- Bis-hexafluorophosphate, (4-methoxyphenyl) diphenylphosphonium hexafluoroantiphonate, (4-methoxyphenyl) phenyliodonium hexafluoroantiphonate, bis(4-tert-butylphenyl)iodonium hexafluorophosphate, benzyltriphenylphosphonium hexafluoroantiphonate, triphenylselenium hexafluorophosphate, (η5-isopropylbenzene)(η5-cyclopentadienyl) iron (II) hexafluorophosphate, etc., but not limited to these. In addition, these compounds can be used individually or in combination.

相對於光聚合性化合物100質量份,本發明之光起始劑係摻配0.01至10質量份,較佳為0.1至7質量份,更佳為0.1至5質量份程度。其原因為:未達0.01質量份時會降低光硬化性,摻配超過10質量份時,會導致僅表面硬化 而使內部硬化性降低之不良、著色、阻礙柱狀區域之形成。該等光起始劑通常為將粉體直接溶解於光聚合性化合物中使用,但溶解性差時,可將光起始劑預先高濃度地溶解於極少量溶劑而使用。如此溶劑較佳為光聚合性,具體而言更佳可舉出碳酸伸丙酯、γ-丁內酯等。又,為了提高光聚合性而可添加公知各種染料或敏化劑劑。又,可併用熱硬化起始劑及光起始劑,該熱硬化起始劑可使光聚合性化合物藉由加熱而硬化。此時可期待在光硬化後藉由加熱而進一步促進光聚合性化合物之聚合硬化,而變得更為完全者。 The photoinitiator of the present invention is blended in an amount of 0.01 to 10 parts by mass, preferably 0.1 to 7 parts by mass, and more preferably 0.1 to 5 parts by mass relative to 100 parts by mass of the photopolymerizable compound. The reason is that if the amount is less than 0.01 parts by mass, the photocurability will be reduced, and if the amount is more than 10 parts by mass, it will result in poor surface hardening, which will reduce the internal hardening, coloring, and hinder the formation of columnar regions. The photoinitiator is usually used by directly dissolving the powder in the photopolymerizable compound, but when the solubility is poor, the photoinitiator can be used by pre-dissolving it in a very small amount of solvent at a high concentration. Such a solvent is preferably photopolymerizable, and more preferably propyl carbonate, γ-butyrolactone, etc. can be mentioned. In addition, various known dyes or sensitizers may be added to improve photopolymerization. In addition, a heat-curing initiator and a photoinitiator may be used together, and the heat-curing initiator can cure the photopolymerizable compound by heating. In this case, it can be expected that the polymerization and curing of the photopolymerizable compound can be further promoted by heating after photocuring, and become more complete.

2-2-1-3.其他任意成分 2-2-1-3. Other optional ingredients

將光聚合性化合物單獨硬化、或將複數混合之組成物硬化,而可形成各向異性光擴散層。又,可藉由使光聚合性化合物與不具有光硬化性之高分子樹脂的混合物硬化,而形成本發明之各向異性光擴散層。在此,可使用之高分子樹脂可舉出丙烯酸樹脂、苯乙烯樹脂、苯乙烯/丙烯酸共聚物、聚胺甲酸乙酯樹脂、聚酯樹脂、環氧樹脂、纖維素系樹脂、乙酸乙烯酯系樹脂、氯乙烯/乙酸乙烯酯共聚物、聚乙烯醇縮丁醛樹脂等。該等高分子樹脂及光聚合性化合物需要在光硬化前具有充分相溶性,但亦可為了確保該相溶性而使用各種有機溶劑或塑化劑等。又,光聚合性化合物使用丙烯酸酯時,以相溶性的觀點來看較佳為從高分子樹脂丙烯酸樹脂選擇。 An anisotropic light diffusion layer can be formed by curing a photopolymerizable compound alone or by curing a mixed composition of multiple compounds. In addition, the anisotropic light diffusion layer of the present invention can be formed by curing a mixture of a photopolymerizable compound and a polymer resin that is not photocurable. Examples of polymer resins that can be used include acrylic resins, styrene resins, styrene/acrylic acid copolymers, polyurethane resins, polyester resins, epoxy resins, cellulose resins, vinyl acetate resins, vinyl chloride/vinyl acetate copolymers, and polyvinyl butyral resins. These polymer resins and photopolymerizable compounds need to be sufficiently compatible before photocuring, but various organic solvents or plasticizers may be used to ensure such compatibility. Furthermore, when using acrylate as a photopolymerizable compound, it is preferably selected from the polymer resin acrylic resin from the viewpoint of compatibility.

調製含有光聚合性化合物之組成物時之溶劑可使用例如乙酸乙酯、乙酸丁酯、丙酮、甲基乙酮、甲基異丁酮、環己酮、甲苯、二甲苯等。 When preparing a composition containing a photopolymerizable compound, the solvent that can be used may include ethyl acetate, butyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, toluene, xylene, etc.

2-2-2.各向異性光擴散層之製造步驟(製程) 2-2-2. Manufacturing steps (process) of anisotropic light diffusion layer

接著說明本形態之各向異性光擴散層之製造步驟(製程)。首先將上述含有光聚合性化合物之塗料塗布於透明PET膜之類之適當基體上,成膜為薄片狀,而設置未硬化樹脂組成物層。於該未硬化樹脂組成物層上照射紫外線及/或可見光線等光線,藉此可製作各向異性光擴散層。 Next, the manufacturing steps (process) of the anisotropic light diffusion layer of this form are described. First, the coating containing the photopolymerizable compound is applied to a suitable substrate such as a transparent PET film to form a thin film, and an uncured resin component layer is provided. The uncured resin component layer is irradiated with ultraviolet light and/or visible light, thereby producing an anisotropic light diffusion layer.

本形態之各向異性光擴散層之形成步驟主要具有以下步驟。 The steps for forming the anisotropic light diffusion layer of this form mainly include the following steps.

(1)步驟1-1:於基體上設置未硬化樹脂組成物層之步驟。 (1) Step 1-1: a step of providing an uncured resin composition layer on a substrate.

(2)步驟1-2:從光源獲取平行光線之步驟。 (2) Step 1-2: The step of obtaining parallel light from the light source.

(3)任意步驟1-3:使平行光線入射於指向性擴散元件,獲得指向性光線之步驟。 (3) Any step 1-3: making parallel light incident on a directional diffusion element to obtain directional light.

(4)步驟1-4:使光線照射於未硬化樹脂組成物層,使未硬化樹脂組成物層硬化之步驟。 (4) Step 1-4: Expose light to the uncured resin composition layer to harden the uncured resin composition layer.

‧步驟1-1:於基體上設置未硬化樹脂組成物層之步驟 ‧Step 1-1: The step of providing an uncured resin composition layer on the substrate

將光聚合性化合物塗布於基體上並成模為薄片狀,未硬化樹脂組成物層的設置手法可使用一般塗布方式或印刷方式。具體而言可使用氣動刮刀塗佈、棒塗佈、刮刀塗佈、刀塗佈、逆輥塗布、轉移輥塗布、凹板輥塗布、吻合塗佈、澆鑄塗佈、噴霧塗佈、槽孔口塗佈、壓延塗佈、堰堤塗佈、浸漬塗佈、模塗佈等塗佈、或凹板印刷等凹版印刷、網版印刷等孔版印刷等印刷等。組成物為低黏度時,可於基體周圍設定固定高度的堰堤,並於該堰堤所包圍區域中澆鑄組成物。 The photopolymerizable compound is applied to the substrate and molded into a sheet shape. The uncured resin composition layer can be provided by general coating methods or printing methods. Specifically, pneumatic doctor blade coating, rod coating, doctor blade coating, knife coating, reverse roll coating, transfer roll coating, gravure roll coating, matching coating, casting coating, spray coating, slot orifice coating, calender coating, weir coating, dip coating, mold coating, etc., or printing such as gravure printing such as gravure printing, stencil printing such as screen printing, etc. can be used. When the composition has low viscosity, a weir of fixed height can be set around the substrate, and the composition can be cast in the area surrounded by the weir.

又,上述步驟1-1中,為了防止未硬化樹脂組成物層之氧阻礙而有效率形成本形態之各向異性光擴散層之特徵之柱狀區域,可於未硬化樹脂組成物層之光照射側密著積層遮罩,該遮罩可局部性改變光線照射強度。遮罩之材質 為將碳等光吸收性填料分散於基質中者,較佳為以入射光一部分被碳吸收,但遮罩開口部可充分穿透光之構成。如此基質可使用PET、TAC、PVAc、PVA、丙烯酸系、聚乙烯等透明塑膠膜、或玻璃、石英等無機物。 Furthermore, in the above step 1-1, in order to prevent the oxygen barrier of the uncured resin component layer and efficiently form the characteristic columnar region of the anisotropic light diffusion layer of this form, a mask can be closely layered on the light irradiation side of the uncured resin component layer, and the mask can locally change the light irradiation intensity. The material of the mask is to disperse light-absorbing fillers such as carbon in the matrix, preferably so that a part of the incident light is absorbed by the carbon, but the opening of the mask can fully penetrate the light. Such a matrix can use transparent plastic films such as PET, TAC, PVAc, PVA, acrylic, polyethylene, or inorganic materials such as glass and quartz.

又,可於遮罩薄片包含用以控制紫外線透過量之圖案、或吸收紫外線之顏料。 In addition, the mask sheet may include a pattern for controlling the amount of UV light transmitted, or a pigment that absorbs UV light.

不使用上述遮罩時,亦可藉由在氮環境下進行光照射而防止未硬化樹脂組成物層之氧阻礙。又,僅將一般透明膜積層於未硬化樹脂組成物層上時,對於防止氧阻礙且促進柱狀區域形成亦為有效。透過上述遮罩或透明膜之光照射中,由於在含有光聚合性化合物之組成物中會因應其光照射強度而產生光聚合反應,故容易產生折射率分佈,對於本形態之各向異性光擴散層之製作為有效。 When the above-mentioned mask is not used, oxygen barrier of the uncured resin composition layer can also be prevented by light irradiation in a nitrogen environment. In addition, when only a general transparent film is layered on the uncured resin composition layer, it is also effective to prevent oxygen barrier and promote the formation of columnar regions. During light irradiation through the above-mentioned mask or transparent film, since a photopolymerization reaction occurs in the composition containing a photopolymerizable compound in response to the light irradiation intensity, a refractive index distribution is easily generated, which is effective for the preparation of anisotropic light diffusion layers of this form.

‧步驟1-2:從光源獲取平行光線之步驟 ‧Step 1-2: Steps to obtain parallel light from the light source

光源通常使用產生短弧紫外線之光源,具體而言可使用高壓汞燈、低壓汞燈、金屬鹵化物燈、氙燈等。此時需要獲得與所求散射中心軸平行之光線,而如此平行光線例如可用以下方式獲得:配置點光源,在該點光源與未硬化樹脂組成物層之間配置用以照射平行光線之菲涅耳透鏡等光學透鏡,此外於光源背後配置反射鏡,使光射出於特定方向等。 The light source usually uses a light source that generates short-arc ultraviolet light, specifically, a high-pressure mercury lamp, a low-pressure mercury lamp, a metal halide lamp, a xenon lamp, etc. At this time, it is necessary to obtain light parallel to the desired scattering center axis, and such parallel light can be obtained, for example, in the following manner: a point light source is arranged, and an optical lens such as a Fresnel lens for irradiating parallel light is arranged between the point light source and the uncured resin composition layer, and a reflector is arranged behind the light source to emit light in a specific direction, etc.

‧步驟1-4:使光線照射於未硬化樹脂組成物層,使未硬化樹脂組成物層硬化之步驟(未進行任意步驟1-3時) ‧Step 1-4: Expose light to the uncured resin component layer to harden the uncured resin component layer (when any of steps 1-3 are not performed)

照射於未硬化樹脂組成物層且使未硬化樹脂組成物層硬化之光線需要含有可使光聚合性化合物硬化之波長,通常利用以汞燈之365nm為中心之波長的光。使用該波長帶製作各向異性光擴散層時,照度較佳為0.01mW/cm2至100mW/cm2 之範圍,更佳為0.1mW/cm2至20mW/cm2。若照度未達0.01mW/cm2,則硬化需要長時間,故生產效率較差,若超過100mW/cm2,則光聚合性化合物之硬化過快而不會產生構造形成,無法展現目的之光學特性。又,光照射時間並無特別限定,較佳為10秒至180秒,更佳為30秒至120秒。藉由照射上述光線可得到本形態之各向異性光擴散層。 The light irradiated on the uncured resin composition layer and curing the uncured resin composition layer needs to contain a wavelength that can cure the photopolymerizable compound, and usually uses light with a wavelength centered at 365nm of a mercury lamp. When using this wavelength band to make an anisotropic light diffusion layer, the illumination is preferably in the range of 0.01mW/ cm2 to 100mW/ cm2 , and more preferably 0.1mW/ cm2 to 20mW/ cm2 . If the illumination is less than 0.01mW/ cm2 , curing takes a long time, so the production efficiency is poor. If it exceeds 100mW/ cm2 , the photopolymerizable compound cures too quickly and no structure is formed, and the intended optical properties cannot be exhibited. The light irradiation time is not particularly limited, but is preferably 10 to 180 seconds, more preferably 30 to 120 seconds. By irradiating the light, an anisotropic light diffusion layer of this form can be obtained.

如上述,本形態之各向異性光擴散層係藉由將低照度光以長時間照射,藉此可於未硬化樹脂組成物層中形成特定內部構造,藉此獲得。因此有僅進行上述光照射時會殘存未反應單體成分,產生黏膩感或處理性或耐久性有問題的情形。此時可追加照射1000mW/cm2以上之高照度光使殘存單體聚合。此時之光照射可從積層有遮罩側的相反側進行。 As mentioned above, the anisotropic light diffusion layer of this form is obtained by irradiating low-intensity light for a long time, thereby forming a specific internal structure in the uncured resin composition layer. Therefore, when only the above light irradiation is performed, unreacted monomer components may remain, resulting in a sticky feeling or problems with handling or durability. In this case, high-intensity light of more than 1000mW/ cm2 can be additionally irradiated to polymerize the residual monomers. At this time, the light irradiation can be performed from the opposite side of the layer with the mask.

‧任意步驟1-3:使平行光線入射於指向性擴散元件,而獲得指向性光線之步驟。 ‧Any step 1-3: Make parallel light incident on the directional diffusion element to obtain directional light.

接著說明含有任意步驟1-3時之製造方法。含有任意步驟1-3時之製造方法中,步驟1-1及1-2如上述所說明,故以下說明任意步驟1-3以後的步驟。 Next, the manufacturing method including any step 1-3 is described. In the manufacturing method including any step 1-3, steps 1-1 and 1-2 are as described above, so the steps after any step 1-3 are described below.

圖8為表示任意步驟1-3之本發明之各向異性光擴散層之製造方法之示意圖。 FIG8 is a schematic diagram showing the manufacturing method of the anisotropic light diffusion layer of the present invention at any step 1-3.

任意步驟1-3所使用指向性擴散元件301及302只要為可對於從光源300入射的平行光線D賦予指向性者即可。圖8中,指向性光E係以在X方向較多擴散、在Y方向幾乎不擴散之態樣,入射於未硬化樹脂組成物層303。為了獲得上述指向性光,例如可採用下列方法:使指向性擴散元件301及302內含有高長寬比之針狀填料,並使該針狀填料以在長軸方向延存之方式配向於Y方 向之方法。指向性擴散元件301及302除了使用針狀填料之方法以外,也可使用各種方法。 The directional diffusion elements 301 and 302 used in any of steps 1-3 can be any ones that can impart directivity to the parallel light D incident from the light source 300. In FIG8 , the directional light E is incident on the uncured resin composition layer 303 in a state where it diffuses more in the X direction and hardly diffuses in the Y direction. In order to obtain the above-mentioned directional light, for example, the following method can be adopted: a method in which a needle-shaped filler with a high aspect ratio is contained in the directional diffusion elements 301 and 302, and the needle-shaped filler is oriented in the Y direction in a manner that extends in the long axis direction. In addition to the method of using needle-shaped fillers, various methods can also be used for the directional diffusion elements 301 and 302.

在此,指向性光E之長寬比為20以下,較佳為5以下。形成為具有幾乎與該長寬比對應之長寬比的柱狀區域。 Here, the aspect ratio of the directional light E is less than 20, preferably less than 5. A columnar region having an aspect ratio almost corresponding to the aspect ratio is formed.

任意步驟1-3中,可藉由調整指向性光E之擴展度而適當決定所形成柱狀區域主平面表面形狀(長寬比、短徑SA、長徑LA等)。例如圖8(a)、(b)之任一者中均可得到本形態之各向異性光擴散層。圖8(a)與(b)不同的是:指向性光E之擴展度在(a)中較大,相對於此,在(b)中較小。依存於指向性光E之擴展度大小,會使柱狀區域主平面表面形狀大小相異。 In any step 1-3, the surface shape of the main plane of the columnar region (aspect ratio, short path SA, long path LA, etc.) can be appropriately determined by adjusting the expansion of the directional light E. For example, the anisotropic light diffusion layer of this form can be obtained in either Figure 8 (a) or (b). The difference between Figure 8 (a) and (b) is that the expansion of the directional light E is larger in (a), and smaller in (b). Depending on the expansion of the directional light E, the surface shape of the main plane of the columnar region will be different.

指向性光E之擴展度主要依存於指向性擴散元件301及302之種類、及與未硬化樹脂組成物層303的距離。隨著該距離變短會使柱狀區域大小變小,隨著便長會使柱狀區域大小變大。因此可藉由調整該距離而調整柱狀區域大小。 The spread of the directional light E mainly depends on the type of directional diffusion elements 301 and 302 and the distance from the uncured resin composition layer 303. As the distance becomes shorter, the size of the columnar region becomes smaller, and as the distance becomes longer, the size of the columnar region becomes larger. Therefore, the size of the columnar region can be adjusted by adjusting the distance.

‧步驟1-4:將光線照射於未硬化樹脂組成物層,硬化未硬化樹脂組成物層之步驟(進行任意步驟1-3時) ‧Step 1-4: Expose light to the uncured resin component layer to harden the uncured resin component layer (when performing any of steps 1-3)

透過指向性擴散元件照射於未硬化樹脂組成物層且使未硬化樹脂組成物層硬化之光線需要含有可使光聚合性化合物硬化之波長,通常利用以汞燈之365nm為中心之波長的光。使用該波長帶製作各向異性光擴散層時,照度較佳為0.01mW/cm2至100mW/cm2之範圍,更佳為0.1mW/cm2至20mW/cm2。若照度未達0.01mW/cm2,則硬化需要長時間,故生產效率較差,若超過100mW/cm2,則光聚合性化合物之硬化過快而不會產生構造形成,無法展現目的之光學特性。又, 光照射時間並無特別限定,較佳為10秒至180秒,更佳為30秒至120秒。藉由照射上述光線而可得到本形態之各向異性光擴散層。 The light irradiated to the uncured resin composition layer through the directional diffusion element and curing the uncured resin composition layer needs to contain a wavelength that can cure the photopolymerizable compound, and usually uses light with a wavelength centered at 365nm of a mercury lamp. When using this wavelength band to make an anisotropic light diffusion layer, the illumination is preferably in the range of 0.01mW/ cm2 to 100mW/ cm2 , and more preferably 0.1mW/ cm2 to 20mW/ cm2 . If the illumination is less than 0.01mW/ cm2 , curing takes a long time, so the production efficiency is poor. If it exceeds 100mW/ cm2 , the photopolymerizable compound cures too quickly and no structure is formed, and the intended optical properties cannot be exhibited. The light irradiation time is not particularly limited, but is preferably 10 to 180 seconds, more preferably 30 to 120 seconds. By irradiating the light, an anisotropic light diffusion layer of the present form can be obtained.

如上述,本形態之各向異性光擴散層既使在進型任意步驟1-3的情形,係將由將低照度光以長時間照射,藉此可於未硬化樹脂組成物層中形成特定內部構造,藉此獲得。因此有僅進行上述光照射時會殘存未反應單體成分,產生黏膩感或處理性或耐久性有問題的情形。此時可追加照射1000mW/cm2以上之高照度光使殘存單體聚合。此時之光照射可由積層遮罩側的相反側進行。 As described above, the anisotropic light diffusion layer of this form is obtained by irradiating low-intensity light for a long time even in the case of any step 1-3, thereby forming a specific internal structure in the uncured resin composition layer. Therefore, when only the above light irradiation is performed, unreacted monomer components may remain, resulting in a sticky feeling or problems with handling or durability. In this case, high-intensity light of more than 1000mW/ cm2 can be additionally irradiated to polymerize the residual monomers. The light irradiation at this time can be performed from the opposite side of the laminate mask side.

3.本發明之反射型顯示裝置之用途 3. Application of the reflective display device of the present invention

本發明之反射型顯示裝置可使用作為平板型電腦或可穿戴式裝置之類之戶外所使用顯示裝置。 The reflective display device of the present invention can be used as a display device for outdoor use such as a tablet computer or a wearable device.

[實施例][Example]

接著藉由實施例及比較例進一步具體說明本發明,但本發明不限定於該等例。 Next, the present invention is further described in detail through embodiments and comparative examples, but the present invention is not limited to these examples.

<實施例用各向異性光學膜1至6之製作> <Preparation of anisotropic optical films 1 to 6 in the embodiment>

於厚度100μm之PET膜(東洋紡公司製商品名:A4300)之邊緣部全周,使用分配器,以硬化性樹脂形成高度50μm之間隔壁。於其中滴入下述紫外線硬化樹脂塗料,將滴入的液膜表面以其他PET膜覆蓋,藉此製作50μm之厚度之未硬化樹脂組成物層之液膜。 A 50μm high partition wall is formed using a dispenser on the entire periphery of the edge of a 100μm thick PET film (product name: A4300 manufactured by Toyobo Co., Ltd.). The following UV-curable resin coating is dripped into it, and the surface of the dripped liquid film is covered with another PET film to produce a 50μm thick uncured resin composition layer liquid film.

(紫外線硬化樹脂塗料) (UV curing resin coating)

‧聚矽氧/胺甲酸乙酯/丙烯酸酯(折射率:1.460,重量平均分子量:5,890)、20重量份 ‧Polysilicone/urethane/acrylate (refractive index: 1.460, weight average molecular weight: 5,890), 20 parts by weight

(RAHN公司製商品名:00-225/TM18)。 (Product name: 00-225/TM18 manufactured by RAHN).

‧新戊二醇二丙烯酸酯(折射率:1.450)、30重量份 ‧Neopentyl glycol diacrylate (refractive index: 1.450), 30 parts by weight

(Daicel Cytec公司製商品名:Ebecryl145)。 (Trade name: Ebecryl145 manufactured by Daicel Cytec).

‧雙酚A之EO加成物二丙烯酸酯(折射率:1.536)、15重量份 ‧Bisphenol A EO adduct diacrylate (refractive index: 1.536), 15 parts by weight

(Daicel Cytec公司製商品名:Ebecyl150)。 (Trade name: Ebecyl150 manufactured by Daicel Cytec).

‧丙烯酸苯氧基乙酯(折射率:1.518)、40重量份 ‧Phenoxyethyl acrylate (refractive index: 1.518), 40 parts by weight

(共榮公司化學製商品名:Lightacrylate PO-A)。 (Trade name of Gongrong Chemical Co., Ltd.: Lightacrylate PO-A).

‧2,2-二甲氧基-1,2-二苯基乙烷-1-酮、4重量份 ‧2,2-Dimethoxy-1,2-diphenylethane-1-one, 4 parts by weight

(BASF公司製商品名:Irgacure651)。 (Trade name: Irgacure 651 manufactured by BASF).

對於將其兩面以PET膜夾住之50μm厚度之未硬化樹脂組成物層之液膜,從UV點光源(Hamamatsu Photonics公司製商品名:L2859-01)之落射用照射單元,將照射強度5mW/cm2之平行光線之紫外線直接或透過指向性擴散元件照射1分鐘並硬化,如圖4所示,獲得在具有複數柱狀區域之單層各向異性光擴散層兩面具有PET膜之6種類的附PET之實施例用各向異性光擴散層(實施例用各向異性光學膜1至6)。 A liquid film of an uncured resin composition layer with a thickness of 50 μm sandwiched by PET films on both sides was irradiated with parallel ultraviolet light with an irradiation intensity of 5 mW/ cm2 directly or through a directional diffusion element from a UV point light source (trade name: L2859-01, manufactured by Hamamatsu Photonics) for 1 minute and cured, as shown in FIG. 4 , to obtain 6 types of anisotropic light diffusion layers with PET films on both sides of a single-layer anisotropic light diffusion layer with a plurality of columnar regions (anisotropic optical films for examples 1 to 6).

具體而言,各向異性光學膜1、4至6之製作中不使用指向性擴散元件,各向異性光學膜2及3之製作中使用可變更平行光線之長寬比之指向性擴散元件。 Specifically, no directional diffusion element is used in the production of anisotropic optical films 1, 4 to 6, and a directional diffusion element that can change the aspect ratio of parallel light is used in the production of anisotropic optical films 2 and 3.

另外,各向異性光學膜6之製作中,相對於未硬化樹脂組成物層之液膜主平面之法線方向(表面法線方向)而從傾斜25°的角度照射平行光線。 In addition, in the production of the anisotropic optical film 6, parallel light is irradiated at an angle of 25° relative to the normal direction of the main plane of the liquid film of the uncured resin composition layer (surface normal direction).

又,各各向異性光擴散層之光學特性,散射中心軸角度(各向異性光擴散層之法線方向相對於)係藉由調整所照射紫外線之光線方向而調整,最大直線穿透率係藉由調整紫外線硬化樹脂組成物所成液膜之加熱溫度而調整,柱狀區域之長寬比係藉由使用可變更平行光線之長寬比之指向性擴散元件而調整。 In addition, the optical properties of each anisotropic light diffusion layer, the scattering center axis angle (relative to the normal direction of the anisotropic light diffusion layer) is adjusted by adjusting the light direction of the irradiated ultraviolet light, the maximum straight line transmittance is adjusted by adjusting the heating temperature of the liquid film formed by the ultraviolet light curing resin composition, and the aspect ratio of the columnar area is adjusted by using a directional diffusion element that can change the aspect ratio of parallel light.

所製作之6種類之實施例用各向異性光學膜1至6之特性顯示於下列表1。 The properties of the 6 types of anisotropic optical films 1 to 6 produced in the examples are shown in Table 1 below.

<實施例用各向異性光學膜7之製作> <Preparation of anisotropic optical film 7 in the implementation example>

形成高度120μm之間隔壁,並製作120μm之厚度之未硬化樹脂組成物層之液膜,除此之外以與各向異性光學膜1相同方式製作,而得到在具有複數柱狀區域之單層各向異性光擴散層兩面具有PET膜之附PET之實施例用各向異性光擴散層(實施例用各向異性光學膜7)。特性顯示於表1。 The anisotropic optical film 1 was prepared in the same manner as the anisotropic optical film 1 except that a partition wall with a height of 120 μm and a liquid film of an uncured resin composition layer with a thickness of 120 μm were formed, thereby obtaining an anisotropic light diffusion layer for example with PET film on both sides of a single-layer anisotropic light diffusion layer with multiple columnar regions (anisotropic optical film for example 7). The characteristics are shown in Table 1.

<比較例用各向異性光學膜1之製作> <Comparative example of the preparation of anisotropic optical film 1>

使用可將平行光線之長寬比變更為50之指向性擴散元件,除此之外以與各向異性光學膜1相同方式製作,而得於具有複數柱狀區域之單層各向異性光擴散層兩面具有PET膜之附PET之比較例用各向異性光擴散層(比較例用各向異性光學膜1)。 A directional diffusion element capable of changing the aspect ratio of parallel light to 50 is used, and the anisotropic optical film 1 is manufactured in the same manner as the anisotropic optical film 1, thereby obtaining a comparative anisotropic light diffusion layer with PET films on both sides of a single-layer anisotropic light diffusion layer having multiple columnar regions (comparative anisotropic optical film 1).

所製作比較例用各向異性光學膜1之特性示於以下表1。 The properties of the anisotropic optical film 1 prepared as a comparative example are shown in the following Table 1.

<各向異性光學膜之測定> <Measurement of anisotropic optical films>

表1內的實施例用各向異性光學膜1至7、比較例用各向異性光學膜1之特性是用下列的方式測定。 The properties of the anisotropic optical films 1 to 7 used in the examples and the anisotropic optical film 1 used in the comparative example in Table 1 were measured in the following manner.

(霧度值之測定) (Determination of fog value)

霧度值之測定係使用日本電色公司工業股份有限公司製霧度計NDH-2000並根據JIS K 7136測定。 The haze value was measured using a haze meter NDH-2000 manufactured by Nippon Denshoku Industries Co., Ltd. and in accordance with JIS K 7136.

(各向異性光擴散層之散射中心軸角度及最大直線穿透率之測定) (Determination of the scattering center axis angle and maximum linear transmittance of anisotropic light diffusion layer)

如圖7所示,使用可任意改變光源的投光角、檢測器的受光角之可變角光度計配光測定器(Genesia公司製)進行實施例用及比較例用的各個各向異性光學膜(各向異性光擴散層)之直線穿透率測定。於接受來自固定光源之直進光的位置固定檢測器,在於其之間之樣品支架設置作為樣品之實施例用及比較例用的各個各向異性光學膜。如圖7所示,以貫穿樣品的直線V為旋轉中心軸並使樣品旋轉,測定對應個別入射光角度之直線穿透光量。藉由該評價方法可評價哪一角度範圍內所入射的光是否會擴散。如圖3所示,該直線V為與樣品構造中的C-C軸相同的軸。直線穿透光量之測定係使用視感度過濾器測定可見光區域之波長。根據以上測定結果,根據所得光學輪廓而求得入射光角度中的直線穿透率最大值(最大直線穿透率)、及該光學輪廓成略對稱形狀之入射光角度之散射中心軸角度。 As shown in FIG7 , a variable angle photometer (manufactured by Genesia) that can arbitrarily change the light projection angle of the light source and the light receiving angle of the detector is used to measure the linear transmittance of each anisotropic optical film (anisotropic light diffusion layer) used in the embodiment and the comparative example. The detector is fixed at a position to receive the direct light from the fixed light source, and the sample holder therebetween is provided with each anisotropic optical film used in the embodiment and the comparative example of the sample. As shown in FIG7 , the sample is rotated with the straight line V passing through the sample as the rotation center axis, and the amount of linear transmitted light corresponding to the individual incident light angle is measured. This evaluation method can be used to evaluate whether the incident light will diffuse within which angle range. As shown in FIG3 , the straight line V is the same axis as the C-C axis in the sample structure. The measurement of the amount of straight-line light transmission is to use a visual sensitivity filter to measure the wavelength of the visible light region. Based on the above measurement results, the maximum straight-line transmittance (maximum straight-line transmittance) in the incident light angle and the scattering center axis angle of the incident light angle with the optical profile being roughly symmetrical are obtained based on the obtained optical profile.

(複數柱狀區域之長寬比之測定(各向異性光擴散層之表面觀察)) (Determination of the aspect ratio of multiple columnar regions (surface observation of anisotropic light diffusion layer))

以光學顯微鏡觀察實施例用及比較例用的各個各向異性光學膜(各向異性光擴散層)之一表面(紫外線照射時之光照射側),並測定複數柱狀區域之長徑及短 徑。平均長徑及平均短徑之計算係任意20個構造中的平均值。又,對於所求得之平均長徑及平均短徑,將平均長徑/平均短徑計算作為長寬比。 An optical microscope was used to observe one surface (light irradiation side during ultraviolet irradiation) of each anisotropic optical film (anisotropic light diffusion layer) used in the embodiment and the comparative example, and the major and minor diameters of multiple columnar regions were measured. The average major and minor diameters were calculated as the average values of any 20 structures. In addition, for the obtained average major and minor diameters, the average major diameter/average minor diameter was calculated as the aspect ratio.

Figure 109110560-A0202-12-0030-3
Figure 109110560-A0202-12-0030-3

<反射型顯示裝置之製作> <Production of reflective display device>

剝離市售TN型反射液晶顯示器之液晶面板視覺辨認側表面上之偏光板及位相差板,對於露出之前面玻璃表面,隔著厚度10μm之透明黏著層將上述所製作之實施例用各向異性光學膜1至7、比較例用各向異性光學膜1分別積層於前面玻璃表面上並貼合後,相對於露出之各各向異性光學膜表面,透過厚度10μm之透明黏著層將上述剝離之偏光板及位相差板之位相差板表面積層並貼合,而形成實施例1至7、比較例1之反射型顯示裝置。 The polarizing plate and phase difference plate on the visual recognition side surface of the liquid crystal panel of a commercially available TN type reflective liquid crystal display are peeled off, and the anisotropic optical films 1 to 7 for the embodiments and the anisotropic optical film 1 for the comparative example are respectively laminated and bonded on the front glass surface through a transparent adhesive layer with a thickness of 10 μm. Then, the polarizing plate and phase difference plate surfaces of the phase difference plate peeled off are laminated and bonded through a transparent adhesive layer with a thickness of 10 μm relative to the exposed surfaces of each anisotropic optical film, thereby forming the reflective display device of embodiments 1 to 7 and comparative example 1.

又,比較例2之反射型顯示裝置係不使用各向異性光學膜而直接為反射型顯示裝置。 In addition, the reflective display device of Comparative Example 2 does not use an anisotropic optical film but is directly a reflective display device.

該等實施例1至7、比較例1至2之反射型顯示裝置之特性顯示於下列表2。 The characteristics of the reflective display devices of Examples 1 to 7 and Comparative Examples 1 to 2 are shown in Table 2 below.

又,實施例1及比較例2之反射型顯示裝置之影像照片如圖9所示(左側為實施例1,右側為比較例2)。 In addition, the image photographs of the reflective display devices of Example 1 and Comparative Example 2 are shown in Figure 9 (the left side is Example 1, and the right side is Comparative Example 2).

<官能試驗> <Sensory test>

進行所製作實施例1至7、比較例1至2之反射型顯示裝置之官能試驗。根據以下評價基準所評價結果示於表2。 The reflective display devices of Examples 1 to 7 and Comparative Examples 1 to 2 were subjected to functional tests. The evaluation results based on the following evaluation criteria are shown in Table 2.

(紙白感評價基準) (Paper whiteness evaluation criteria)

○:背景色(白顯示)觀察的觀測為白色。 ○: The background color (white display) observation is white.

△:背景色(白顯示)觀察為略白色。 △: The background color (white display) is observed to be slightly white.

×:背景色(白顯示)觀察為略黃色。 ×: The background color (white display) is observed to be slightly yellow.

(眩光評價基準) (Glare evaluation criteria)

○:無干涉所致眩光。 ○: No glare caused by interference.

△:稍有眩光但在容許範圍內。 △: There is a little glare but it is within the allowable range.

×:明顯觀察到眩光。 ×: Glare was clearly observed.

(散景感評價基準) (Bokeh evaluation criteria)

○:影像顯示觀測為鮮明。 ○: The image shows that the observation is clear.

△:影像顯示觀察為稍微模糊。 △: The image appears slightly blurred.

×:影像顯示觀察為模糊。 ×: The image appears blurry.

Figure 109110560-A0202-12-0032-4
Figure 109110560-A0202-12-0032-4

由表2結果來看,實施例1至7之反射型顯示裝置在紙白感、眩光及散景感之所有評價都為△以上。但是,實施例7之反射型顯示裝置在散景感評價中其性能比實施例5之反射型顯示裝置差。 From the results in Table 2, the reflective display devices of Examples 1 to 7 are all rated above △ in all evaluations of paper whiteness, glare, and bokeh. However, the reflective display device of Example 7 performs worse than the reflective display device of Example 5 in the bokeh evaluation.

因此,本發明使用各向異性光學膜之反射型顯示裝置可使背景色為白色,可賦予紙白感。又,未有眩光、散景感之顯著惡化所致視覺辨認性降低。 Therefore, the reflective display device using anisotropic optical film of the present invention can make the background color white, which can give a paper-white feeling. In addition, there is no significant deterioration of glare and bokeh that causes a decrease in visual recognition.

尤其,實施例1、2、6之反射型顯示裝置在紙白感、眩光及散景感之所有評價項目中都為○,平衡地具有高等級的特性。 In particular, the reflective display devices of Examples 1, 2, and 6 were rated ○ in all evaluation items of paper whiteness, glare, and bokeh, and have high-level characteristics in a balanced manner.

另一方面,比較例1至2之反射型顯示裝置在評價項目之任一項為×。 On the other hand, the reflective display devices of Comparative Examples 1 and 2 were rated × in any of the evaluation items.

比較例1之反射型顯示裝置之眩光的×評價認其原因為:比較例用各向異性光學膜1之複數柱狀區域為長寬比之大百頁構造,會形成在與膜面平行之平面內一方向排列的縞狀,而產生光的干涉。 The reason why the glare of the reflective display device in Comparative Example 1 was rated × is that the multiple columnar regions of the anisotropic optical film 1 used in Comparative Example 1 have a large aspect ratio of 100-page structure, which will form a spiral arranged in one direction in a plane parallel to the film surface, thereby generating light interference.

因此,相較於本發明實施例用使用各向異性光學膜之反射型顯示裝置,比較例1之反射型顯示裝置其眩光較強,視覺辨認性不良。 Therefore, compared with the reflective display device using an anisotropic optical film in the embodiment of the present invention, the reflective display device in Example 1 has stronger glare and poor visual recognition.

比較例2之反射型顯示裝置未使用各向異性光學膜,故紙白感評價為×的評價。 The reflective display device in Comparative Example 2 does not use an anisotropic optical film, so the paper whiteness evaluation is ×.

由以上來看,藉由在較反射型顯示裝置之反射板靠視覺辨認側設置本發明之具有特定長寬比之各向異性光學膜,可提供眩光或散景感較少且具有充分紙白感之反射型顯示裝置。 From the above, it can be seen that by setting the anisotropic optical film with a specific aspect ratio of the present invention on the visual recognition side of the reflective plate of the reflective display device, a reflective display device with less glare or bokeh and a sufficient paper-white feeling can be provided.

Figure 109110560-A0202-11-0002-1
Figure 109110560-A0202-11-0002-1

100:內面反射型顯示裝置(反射型液晶顯示裝置) 100: Internal reflection type display device (reflective liquid crystal display device)

110:液晶層 110: Liquid crystal layer

120:背面玻璃 120: Back glass

130:反射板(金屬電極) 130: Reflector (metal electrode)

140:背面偏光板 140: Back polarizer

150:各向異性光學膜 150: Anisotropic optical film

160:背面位相差膜 160: Back phase difference film

161:前面位相差膜 161: Front phase difference film

170、171:黏著層 170, 171: Adhesive layer

Claims (5)

一種反射型顯示裝置,係具備反射板、以及直線穿透率會因入射光角度而改變之各向異性光學膜,前述各向異性光學膜係配置得較前述反射板靠近視覺辨認側,前述各向異性光學膜係至少含有各向異性光擴散層,前述各向異性光擴散層係具有基質區域、以及折射率與前述基質區域相異之複數柱狀區域,前述複數柱狀區域係從前述各向異性光擴散層之一表面朝向另一表面配向而構成,前述各向異性光擴散層之一表面中的前述複數柱狀區域之平均長徑/平均短徑之長寬比為20以下,前述各向異性光擴散層之霧度值為50%至90%。 A reflective display device comprises a reflector and an anisotropic optical film whose linear transmittance varies with the angle of incident light. The anisotropic optical film is arranged closer to the visual recognition side than the reflector. The anisotropic optical film contains at least an anisotropic light diffusion layer. The anisotropic light diffusion layer has a matrix region and a refractive index that is different from that of the front light. The plurality of columnar regions are different from the matrix region, the plurality of columnar regions are aligned from one surface of the anisotropic light diffusing layer toward the other surface, the aspect ratio of the average major diameter/average minor diameter of the plurality of columnar regions in one surface of the anisotropic light diffusing layer is less than 20, and the haze value of the anisotropic light diffusing layer is 50% to 90%. 如請求項1所記載之反射型顯示裝置,其中前述各向異性光擴散層具有至少1個散射中心軸,前述各向異性光擴散層之一表面法線方向與前述至少1個散射中心軸所成角度即散射中心軸角度為-30°至+30°。 A reflective display device as described in claim 1, wherein the aforementioned anisotropic light diffusion layer has at least one scattering center axis, and the angle between a surface normal direction of the aforementioned anisotropic light diffusion layer and the aforementioned at least one scattering center axis, i.e., the scattering center axis angle, is -30° to +30°. 如請求項1或2所記載之反射型顯示裝置,其中前述各向異性光擴散層之最大直線穿透率為10%至60%。 A reflective display device as described in claim 1 or 2, wherein the maximum linear transmittance of the aforementioned anisotropic light diffusion layer is 10% to 60%. 如請求項1或2所記載之反射型顯示裝置,其中前述各向異性光擴散層之厚度為10μm至100μm。 A reflective display device as described in claim 1 or 2, wherein the thickness of the anisotropic light diffusion layer is 10 μm to 100 μm. 如請求項1或2所記載之反射型顯示裝置,其中前述長寬比為5以下。 A reflective display device as described in claim 1 or 2, wherein the aspect ratio is less than 5.
TW109110560A 2019-03-29 2020-03-27 Reflective display device using anisotropic optical film TWI838501B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-069352 2019-03-29
JP2019069352 2019-03-29

Publications (2)

Publication Number Publication Date
TW202043809A TW202043809A (en) 2020-12-01
TWI838501B true TWI838501B (en) 2024-04-11

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051639A1 (en) 2016-09-14 2018-03-22 株式会社巴川製紙所 Light diffusion film layered body for reflective display device, and reflective display device using same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051639A1 (en) 2016-09-14 2018-03-22 株式会社巴川製紙所 Light diffusion film layered body for reflective display device, and reflective display device using same

Similar Documents

Publication Publication Date Title
JP6288672B2 (en) Anisotropic optical film
JP5670601B2 (en) Anisotropic optical film
JP6433638B1 (en) Light guide laminate using anisotropic optical film and planar light source device using the same
CN112074771B (en) Head-mounted display
WO2018180541A1 (en) Anti-glare film and display device
JP6093113B2 (en) Anisotropic optical film
JP2015222441A (en) Anisotropic optical film
TWI838501B (en) Reflective display device using anisotropic optical film
JP2019179204A (en) Anisotropic optical film
CN112088578B (en) Head-mounted display
JP7475333B2 (en) Reflective display device using anisotropic optical film
JP7475182B2 (en) Anisotropic light-diffusing film laminate and display device
WO2021200891A1 (en) Anisotropic light-diffusing film and display device
JP6581329B1 (en) Head mounted display
WO2022209567A1 (en) Anisotropic light-diffusing film and display device
JP2022157897A (en) Anisotropic light diffusion film laminate and display device