TWI837967B - Wafer processing system and method of wafer localization - Google Patents

Wafer processing system and method of wafer localization Download PDF

Info

Publication number
TWI837967B
TWI837967B TW111145290A TW111145290A TWI837967B TW I837967 B TWI837967 B TW I837967B TW 111145290 A TW111145290 A TW 111145290A TW 111145290 A TW111145290 A TW 111145290A TW I837967 B TWI837967 B TW I837967B
Authority
TW
Taiwan
Prior art keywords
wafer
voltage
output
voltage value
receiving end
Prior art date
Application number
TW111145290A
Other languages
Chinese (zh)
Other versions
TW202422767A (en
Inventor
張志鴻
張文治
Original Assignee
鴻揚半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鴻揚半導體股份有限公司 filed Critical 鴻揚半導體股份有限公司
Priority to TW111145290A priority Critical patent/TWI837967B/en
Application granted granted Critical
Publication of TWI837967B publication Critical patent/TWI837967B/en
Publication of TW202422767A publication Critical patent/TW202422767A/en

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A wafer processing system including a wafer transfer device, a wafer detect device and a processor is provided. The wafer transfer device moves a transparent wafer or an opaque wafer and outputs moving distances. The wafer detect device includes sensors. The sensor has a emitter, a receiver and an output circuit. The receiver receives a light from the emitter. The output circuit outputs an output voltage. When the receiver directly receives the light, the output voltage has a first voltage value greater than a threshold. When the opaque wafer is between the emitter and the receiver, the output voltage has a second voltage value. When the transparent wafer is between the emitter and the receiver, the output voltage has a third voltage value. The second voltage value and the third voltage value are smaller than the threshold. The processor localizes edge points of the transparent wafer or the opaque wafer according to the threshold, the moving distances and the output voltages of the sensors.

Description

晶圓處理系統及定位晶圓的方法Wafer processing system and method for positioning wafer

本揭露是關於一種晶圓處理系統及定位晶圓的方法,特別是關於一種具有光感測器的一種晶圓處理系統及定位晶圓的方法。The present disclosure relates to a wafer processing system and a method for positioning a wafer, and more particularly to a wafer processing system and a method for positioning a wafer with a photo sensor.

隨著積體電路產品快速發展,作為積體電路原料的晶圓需求與日俱增。在晶圓的生產過程中,晶圓的定位基本上是必須的。不管是在傳輸晶圓時,還是執行晶圓的加工製程時,晶圓的偏移易使得機臺產生錯誤。對於需要對晶圓上特定的結構進行的操作而言,更要求能夠準確掌握如光學顯微鏡鏡頭或探針等操作工具和晶圓上對應的結構間的相對位置。With the rapid development of integrated circuit products, the demand for wafers, which are the raw materials of integrated circuits, is increasing day by day. In the production process of wafers, wafer positioning is basically necessary. Whether it is when transferring wafers or executing wafer processing, the deviation of wafers can easily cause errors in the machine. For operations that need to be performed on specific structures on the wafer, it is even more necessary to accurately grasp the relative position between operating tools such as optical microscope lenses or probes and the corresponding structures on the wafer.

本揭露提供一種晶圓處理系統,晶圓處理系統包含晶圓傳輸裝置、晶圓偵測裝置以及處理器。晶圓傳輸裝置移動透明晶圓或不透明晶圓並輸出多個移動距離。晶圓偵測裝置包含多個感測器,此些感測器中的每一者包含發射端、接收端以及輸出電路。接收端接收來自發射端的光線。輸出電路耦接接收端,並輸出電壓。當接收端直接接收光線時,輸出電壓具有大於閾值的第一電壓值。當不透明晶圓在發射端及接收端之間時,輸出電壓具有第二電壓值。當透明晶圓在發射端及接收端之間時,輸出電壓具有第三電壓值,其中第二電壓值及第三電壓值小於閾值。處理器根據閾值、移動距離以及感測器中的每一者的輸出電壓定位透明晶圓或不透明晶圓上的多個邊緣點。The present disclosure provides a wafer processing system, which includes a wafer transport device, a wafer detection device and a processor. The wafer transport device moves a transparent wafer or an opaque wafer and outputs multiple moving distances. The wafer detection device includes multiple sensors, each of which includes a transmitting end, a receiving end and an output circuit. The receiving end receives light from the transmitting end. The output circuit is coupled to the receiving end and outputs a voltage. When the receiving end directly receives the light, the output voltage has a first voltage value greater than a threshold value. When the opaque wafer is between the transmitting end and the receiving end, the output voltage has a second voltage value. When the transparent wafer is between the transmitting end and the receiving end, the output voltage has a third voltage value, wherein the second voltage value and the third voltage value are less than the threshold value. The processor locates multiple edge points on a transparent or opaque wafer based on the threshold, travel distance, and output voltage of each of the sensors.

本揭露提供一種定位晶圓的方法,包含:調整自多個感測器中的每一者傳輸至處理器的輸出電壓;透過處理器根據輸出電壓產生判斷結果,其中輸出電壓等於電壓閾值;當透明晶圓放置在感測器的發射端及接收端之間,透過感測器輸出具有第一電壓值的輸出電壓至處理器;當第一電壓值大於電壓閾值時,調整感測器的可變電阻以使得輸出電壓具有小於電壓閾值的第二電壓值; 透過晶圓傳輸裝置沿第一方向移動透明晶圓經過此些感測器,並輸出多個移動距離;以及透過處理器根據此些感測器中每一者的輸出電壓、電壓閾值及此些移動距離產生透明晶圓的多個邊緣位置。The present disclosure provides a method for positioning a wafer, comprising: adjusting an output voltage transmitted from each of a plurality of sensors to a processor; generating a judgment result according to the output voltage by the processor, wherein the output voltage is equal to a voltage threshold; when a transparent wafer is placed between a transmitting end and a receiving end of the sensor, outputting an output voltage having a first voltage value to the processor by the sensor; when the first voltage value is greater than the voltage threshold, adjusting a variable resistance of the sensor so that the output voltage has a second voltage value less than the voltage threshold; The transparent wafer is moved along a first direction through the sensors by a wafer transport device, and a plurality of moving distances are outputted; and a plurality of edge positions of the transparent wafer are generated by a processor according to the output voltage, voltage threshold and the moving distances of each of the sensors.

本揭露提供一種定位晶圓的方法,方法包含:量測感測器的輸出端的輸出電壓,當感測器的接收端直接接收來自感測器的發射端的光線時,輸出電壓具有第一電壓值,當第一晶圓在接收端及發射端之間時,輸出電壓具有第二電壓值,當第二晶圓在接收端及發射端之間時,輸出電壓具有第三電壓值;調整感測器以使第一電壓值大於電壓閾值以及第二電壓及第三電壓小於電壓閾值; 透過晶圓傳輸裝置移動第一晶圓或第二晶圓經過感測器,並輸出多個移動距離;以及透過處理器根據此些感測器中每一者的輸出電壓、電壓閾值及此些移動距離產生第一晶圓或第二晶圓的多個邊緣位置。The present disclosure provides a method for positioning a wafer, the method comprising: measuring an output voltage of an output end of a sensor, when a receiving end of the sensor directly receives light from a transmitting end of the sensor, the output voltage has a first voltage value, when a first wafer is between the receiving end and the transmitting end, the output voltage has a second voltage value, and when a second wafer is between the receiving end and the transmitting end, the output voltage has a third voltage value; adjusting the sensor so that the first voltage value is greater than a voltage threshold value and the second voltage and the third voltage are less than the voltage threshold value; The first wafer or the second wafer is moved through the sensors by a wafer transport device, and a plurality of moving distances are outputted; and a plurality of edge positions of the first wafer or the second wafer is generated by a processor according to the output voltage, the voltage threshold and the moving distances of each of the sensors.

以下揭示內容提供了用於實現提供之標的的不同特徵的許多不同的實施例或示例。以下描述元件及佈置的特定示例用以簡化本案的一實施例。當然,該些僅為示例,並不旨在進行限制。例如,在下面的描述中在第二特徵上方或之上形成第一特徵可包括其中第一及第二特徵直接接觸形成的實施例,並且亦可包括其中在第一與第二特徵之間形成附加特徵的實施例,以使得第一及第二特徵可以不直接接觸。此外,本揭示內容可以在各個示例中重複元件符號或字母。此重複係出於簡單及清楚的目的,其本身並不指定所討論之各種實施例或組態之間的關係。The following disclosure provides many different embodiments or examples for implementing different features of the provided subject matter. The following describes specific examples of components and arrangements to simplify one embodiment of the present invention. Of course, these are merely examples and are not intended to be limiting. For example, forming a first feature above or on a second feature in the following description may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features are formed between the first and second features so that the first and second features may not be in direct contact. In addition, the present disclosure may repeat component symbols or letters in various examples. This repetition is for the purpose of simplicity and clarity and does not itself specify the relationship between the various embodiments or configurations discussed.

在本說明書中使用的術語通常具有本領域及在使用每一術語的特定上下文中的普通意義。在本說明書中使用示例,包括本文討論的任何術語的示例,僅為說明性的,絕不限制本案的一實施例或任何示例性術語的範圍及意義。同樣,本案的一實施例不限於本說明書中給定的各種實施例。The terms used in this specification generally have their ordinary meaning in the art and in the specific context in which each term is used. The use of examples in this specification, including examples of any term discussed herein, is illustrative only and in no way limits the scope and meaning of an embodiment of the present invention or any exemplary term. Similarly, an embodiment of the present invention is not limited to the various embodiments given in this specification.

更進一步,為了便於描述,本文中可以使用諸如「在...下方」、「在...下」、「下方」、「在...上方」、「上方」之類的空間相對術語,來描述如圖中所示的一個元件或特徵與另一元件或特徵的關係。除了在附圖中示出的定向之外,空間相對術語意在涵蓋裝置在使用或操作中的不同定向。設備可以其他方式定向(旋轉90度或以其他定向),並且在此使用的空間相對描述語亦可被相應地解釋。如本文所使用,術語「及/或」包括一或多個相關聯的所列項目的任何及所有組合。Further, for ease of description, spatially relative terms such as "below," "under," "below," "above," "above," and the like may be used herein to describe the relationship of one element or feature to another element or feature as shown in the figures. Spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation shown in the accompanying figures. The device may be oriented in other ways (rotated 90 degrees or in other orientations), and the spatially relative descriptors used herein may be interpreted accordingly. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.

如本文所用,「大約」、「約」、「近似」或「基本上」應通常指給定值或範圍的任何近似值,其中其取決於所涉及的各種領域而變化,並且其範疇應與本領域技術人員所理解的最廣泛解釋相一致,以涵蓋所有該些修改及類似的結構。在一些實施例中,它通常應指給定值或範圍的百分之二十以內,優選地為百分之十以內,更優選地為百分之五以內。本文給定的數值為近似的,意味著若未明確說明,則可以推斷出術語「大約」、「約」、「近似」或「基本上」,或者意味著其他近似值。As used herein, "about", "approximately", or "substantially" shall generally refer to any approximation of a given value or range, which varies depending on the various fields involved, and its scope shall be consistent with the broadest interpretation understood by those skilled in the art to cover all such modifications and similar structures. In some embodiments, it shall generally refer to within 20 percent of a given value or range, preferably within 10 percent, and more preferably within 5 percent. The numerical values given herein are approximate, meaning that if not explicitly stated, the term "about", "approximately", or "substantially" can be inferred, or other approximate values are meant.

第1圖根據一些實施例繪示晶圓處理系統100的一個示例的方塊圖。晶圓處理系統100包含晶圓處理裝置110以及晶圓存放裝置120。晶圓處理裝置110用以移動存放在晶圓存放裝置120中的晶圓並對晶圓執行傳送位置之校正。在不同的實施例中,晶圓存放裝置120可以是晶舟(wafer cassette)、晶圓盒(box)或晶圓載具(carrier)等用以存放晶圓的裝置。FIG. 1 is a block diagram of an example of a wafer processing system 100 according to some embodiments. The wafer processing system 100 includes a wafer processing device 110 and a wafer storage device 120. The wafer processing device 110 is used to move the wafers stored in the wafer storage device 120 and perform transfer position correction on the wafers. In different embodiments, the wafer storage device 120 can be a wafer cassette, a wafer box, or a wafer carrier, etc., for storing wafers.

在第1圖所繪示的示例中,晶圓處理裝置110包含處理器111、晶圓偵測裝置112、晶圓傳輸裝置117以及記憶體118。處理器111耦接晶圓偵測裝置112、晶圓傳輸裝置117以及記憶體118。晶圓傳輸裝置117用以將晶圓自晶圓存放裝置120移動經過晶圓偵測裝置112。處理器111用以藉由晶圓偵測裝置112判斷晶圓是否偏離預定位置(例如,用以在晶圓處理裝置110的內部垂直移動晶圓的儲存升降台(storage elevator)的中心)並藉由晶圓傳輸裝置117校正至預定位置。在一些實施例中,晶圓傳輸裝置117是具有用以吸取晶圓的托盤/叉(blade/fork)的機器手臂。In the example shown in FIG. 1 , the wafer processing device 110 includes a processor 111, a wafer detection device 112, a wafer transfer device 117, and a memory 118. The processor 111 is coupled to the wafer detection device 112, the wafer transfer device 117, and the memory 118. The wafer transfer device 117 is used to move the wafer from the wafer storage device 120 through the wafer detection device 112. The processor 111 is used to determine whether the wafer deviates from a predetermined position (for example, the center of a storage elevator for vertically moving the wafer inside the wafer processing device 110) through the wafer detection device 112 and calibrate it to the predetermined position through the wafer transfer device 117. In some embodiments, the wafer transfer device 117 is a robotic arm having a blade/fork for picking up wafers.

說明而言,晶圓偵測裝置112包含多個感測器113,這些感測器113中的每一者包含發射端114、接收端115以及輸出電路116。發射端114為光源,例如發光二極體。接收端115具有可感測光的元件,例如光敏電阻。接收端115用以根據所接收光的強弱產生感測電壓。輸出電路116耦接接收端115。在一些實施例中,輸出電路116作為分壓電路並用以根據接收端115的感測電壓產生輸出電壓。在一些實施例中,輸出電路116耦接處理器111並用以傳輸輸出電壓至處理器111,處理器111更用以根據所接收的輸出電壓判斷是否有晶圓在發射端114及接收端115之間。For illustration, the wafer detection device 112 includes a plurality of sensors 113, each of which includes a transmitting end 114, a receiving end 115, and an output circuit 116. The transmitting end 114 is a light source, such as a light-emitting diode. The receiving end 115 has a light-sensing element, such as a photoresistor. The receiving end 115 is used to generate a sensing voltage according to the intensity of the received light. The output circuit 116 is coupled to the receiving end 115. In some embodiments, the output circuit 116 is used as a voltage divider circuit and is used to generate an output voltage according to the sensing voltage of the receiving end 115. In some embodiments, the output circuit 116 is coupled to the processor 111 and is used to transmit an output voltage to the processor 111. The processor 111 is further used to determine whether there is a wafer between the transmitting end 114 and the receiving end 115 according to the received output voltage.

第1圖所繪示的實施例不用以限制本案。在一些實施例中,處理器111不耦接接收端115且晶圓偵測裝置112更包含不同於處理器111的處理器。輸出電路116耦接並傳輸輸出電壓至晶圓偵測裝置112的處理器。晶圓偵測裝置112的處理器根據所接收的輸出電壓判斷是否有晶圓在發射端114及接收端115之間並傳輸判斷結果至處理器111。The embodiment shown in FIG. 1 is not intended to limit the present invention. In some embodiments, the processor 111 is not coupled to the receiving end 115 and the wafer detection device 112 further includes a processor different from the processor 111. The output circuit 116 is coupled to and transmits an output voltage to the processor of the wafer detection device 112. The processor of the wafer detection device 112 determines whether there is a wafer between the transmitting end 114 and the receiving end 115 based on the received output voltage and transmits the determination result to the processor 111.

現參考第2圖,第2圖是根據一些實施例繪示無晶圓在發射端114及接收端115之間的感測器113的一個示意圖。對應於第1圖,為了易於理解,以相同元件符號表示第2圖中之相同元件。為了簡要起見,本文中省略已在以上段落中詳細論述之類似元件的特定操作,除非需要介紹與第2圖中所示之元件的協作關係。Referring now to FIG. 2, FIG. 2 is a schematic diagram of a waferless sensor 113 between a transmitting end 114 and a receiving end 115 according to some embodiments. For ease of understanding, the same elements in FIG. 2 are represented by the same element symbols as in FIG. 1. For the sake of brevity, the specific operations of similar elements that have been discussed in detail in the above paragraphs are omitted herein unless the cooperative relationship with the elements shown in FIG. 2 is required.

如第2圖所示,發射端114設置在接收端115的上方,且其間具有足以讓晶圓通過的空間。發射端114用以作為產生直射接收端115的光線201的光源。接收端115用以根據所接收光線201的強度產生感測電壓Vout1。輸出電路116耦接接收端115並用以根據感測電壓Vout1在輸出電路116的輸出端212產生輸出電壓Vout2。在一些實施例中,輸出電路116包含可變電阻211,並且可以藉由調整可變電阻211的電阻值,改變輸出電壓Vout2和感測電壓Vout1間的比率,例如,藉由提高可變電阻211的電阻值,根據感測電壓Vout1產生之輸出電壓Vout2的電壓值會相應上升。As shown in FIG. 2 , the transmitting end 114 is disposed above the receiving end 115, and there is a space therebetween for a wafer to pass through. The transmitting end 114 is used as a light source to generate a light ray 201 that directly irradiates the receiving end 115. The receiving end 115 is used to generate a sensing voltage Vout1 according to the intensity of the received light ray 201. The output circuit 116 is coupled to the receiving end 115 and is used to generate an output voltage Vout2 at an output end 212 of the output circuit 116 according to the sensing voltage Vout1. In some embodiments, the output circuit 116 includes a variable resistor 211, and the ratio between the output voltage Vout2 and the sense voltage Vout1 can be changed by adjusting the resistance value of the variable resistor 211. For example, by increasing the resistance value of the variable resistor 211, the voltage value of the output voltage Vout2 generated according to the sense voltage Vout1 will increase accordingly.

現參考第3圖,第3圖是根據一些實施例繪示具有不透明晶圓320在發射端114及接收端115之間的感測器113的一個示意圖。對應於第2圖,為了易於理解,以相同元件符號表示第3圖中之相同元件。Referring now to FIG. 3 , FIG. 3 is a schematic diagram of a sensor 113 having an opaque wafer 320 between the transmitting end 114 and the receiving end 115 according to some embodiments. For ease of understanding, the same reference numerals are used to represent the same elements in FIG. 3 as in FIG. 2 .

說明而言,當不透明晶圓320(例如,矽晶圓)在發射端114及接收端115之間的感測點P(發射端114產生的光線201投射在晶圓上的點)時,不透明晶圓320遮蔽來自發射端114的光線201。在一些實施例中,輸出電路116相應地產生具有接近0伏特的電壓值Vl的輸出電壓Vout2。在一些實施例中,當接收端115直接接收光線201時輸出電壓Vout2具有電壓值Vh,而電壓值Vl小於電壓值Vh。在一些實施例中,電壓值Vl大約等於0.03伏特,電壓值Vh大約等於1.5伏特 (此處的電壓值僅為舉例,並不用以限制本案)。To illustrate, when the opaque wafer 320 (e.g., a silicon wafer) is at the sensing point P (the point where the light 201 generated by the transmitting end 114 is projected onto the wafer) between the transmitting end 114 and the receiving end 115, the opaque wafer 320 shields the light 201 from the transmitting end 114. In some embodiments, the output circuit 116 accordingly generates an output voltage Vout2 having a voltage value V1 close to 0 volts. In some embodiments, when the receiving end 115 directly receives the light 201, the output voltage Vout2 has a voltage value Vh, and the voltage value Vl is less than the voltage value Vh. In some embodiments, the voltage value Vl is approximately equal to 0.03 volts, and the voltage value Vh is approximately equal to 1.5 volts (the voltage values here are only examples and are not intended to limit the present case).

現參考第4圖,第4圖是根據一些實施例繪示透明晶圓420在發射端114及接收端115之間的感測器113的一個示意圖。對應於第3圖,為了易於理解,以相同元件符號表示第4圖中之相同元件。Referring now to FIG. 4 , FIG. 4 is a schematic diagram showing a sensor 113 with a transparent wafer 420 between the transmitting end 114 and the receiving end 115 according to some embodiments. For ease of understanding, the same reference numerals are used to represent the same elements in FIG. 4 , corresponding to FIG. 3 .

說明而言,當透明晶圓420(例如,碳化矽(SiC)晶圓)在發射端114及接收端115之間時,發射端114產生光線201穿透透明晶圓420,而接收端115所接收的光強度小於直接接收光線201時的光強度。在一些實施例中,隨著接收端115接收較低的光強度,接收端115產生較低的感測電壓Vout1且輸出電路116相應地產生較低的輸出電壓Vout2。根據一些實施例,接收端115感測的光強度根據光線201在透明晶圓420穿透的位置不同而變化,因此輸出電路116相應地產生屬於一電壓值範圍(具有最小電壓值Va及最大電壓值Vb)的輸出電壓Vout2。在一些實施例中,最小電壓值Va小於電壓值Vh。For illustration, when the transparent wafer 420 (e.g., a silicon carbide (SiC) wafer) is between the transmitting end 114 and the receiving end 115, the transmitting end 114 generates the light 201 which passes through the transparent wafer 420, and the light intensity received by the receiving end 115 is less than the light intensity when the light 201 is directly received. In some embodiments, as the receiving end 115 receives a lower light intensity, the receiving end 115 generates a lower sense voltage Vout1 and the output circuit 116 generates a lower output voltage Vout2 accordingly. According to some embodiments, the light intensity sensed by the receiving end 115 varies according to the position where the light 201 penetrates the transparent wafer 420, so the output circuit 116 accordingly generates an output voltage Vout2 belonging to a voltage value range (having a minimum voltage value Va and a maximum voltage value Vb). In some embodiments, the minimum voltage value Va is less than the voltage value Vh.

現參考第5圖,第5圖是根據一些實施例繪示移動晶圓經過晶圓偵測裝置112的一個示意圖。對應於第4圖及第3圖,為了易於理解,以相同元件符號表示第5圖中之相同元件。Referring now to FIG. 5 , FIG. 5 is a schematic diagram illustrating a wafer being moved through the wafer detection device 112 according to some embodiments. For ease of understanding, the same elements in FIG. 5 are represented by the same element symbols as in FIG. 4 and FIG. 3 .

說明而言,如第5圖所繪示的實施例中,晶圓傳輸裝置117(未繪示於第5圖中)沿一移動方向501移動晶圓(不透明晶圓320或透明晶圓420)經過晶圓偵測裝置112中的一個感測器113,晶圓上的兩個邊緣點(例如第5圖所示的邊緣點a、a’)會通過感測點P。舉例而言,如第5圖所示,晶圓沿移動方向501進入發射端114及接收端115之間時,光線201首先投射在邊緣點a上。接著,光線201隨晶圓移動依序投射在a-a’截線中的點上。晶圓沿移動方向501離開發射端114及接收端115之間時,光線201最後投射在邊緣點a’上,之後光線201便直接投射於接收端115。For illustration, in the embodiment shown in FIG. 5 , the wafer transport device 117 (not shown in FIG. 5 ) moves the wafer (opaque wafer 320 or transparent wafer 420) along a moving direction 501 through a sensor 113 in the wafer detection device 112, and two edge points on the wafer (e.g., edge points a and a′ shown in FIG. 5 ) pass through the sensing point P. For example, as shown in FIG. 5 , when the wafer enters between the transmitting end 114 and the receiving end 115 along the moving direction 501, the light 201 is first projected on the edge point a. Then, the light 201 is sequentially projected on the points in the a-a′ section line as the wafer moves. When the wafer leaves between the emitting end 114 and the receiving end 115 along the moving direction 501, the light ray 201 is finally projected onto the edge point a′, and then the light ray 201 is directly projected onto the receiving end 115.

現參考第6圖,第6圖根據一些實施例繪示不透明晶圓320的移動距離和感測器113的輸出電壓Vout2的電壓值間示例性的關係,對應於第5圖,為了易於理解,以相同元件符號表示第6圖中之相同元件。Now refer to FIG. 6 , which illustrates an exemplary relationship between the moving distance of the opaque wafer 320 and the voltage value of the output voltage Vout2 of the sensor 113 according to some embodiments, corresponding to FIG. 5 . For ease of understanding, the same element symbols are used to represent the same elements in FIG. 6 .

說明而言,第6圖的橫軸對應不透明晶圓320隨著晶圓傳輸裝置117自一起始點沿移動方向501移動的距離。舉例而言,在一些實施例中,晶圓傳輸裝置117將不透明晶圓320自晶圓存放裝置120移動至固定的起始點,接著沿移動方向501移動不透明晶圓320經過晶圓偵測裝置112,同時,晶圓傳輸裝置117傳輸自起始點的移動距離至處理器111。在一些晶圓傳輸裝置117為機器手臂的實施例中,晶圓傳輸裝置117每移動一固定距離(換言之,一步)便傳輸相對於一原點(例如上文所述的起始點)之機器手臂的托盤/叉所在的二維空間座標至處理器111,接著處理器111根據此座標與起始點產生移動距離。For illustration, the horizontal axis of FIG. 6 corresponds to the distance that the opaque wafer 320 moves from a starting point along the moving direction 501 along the wafer transport device 117. For example, in some embodiments, the wafer transport device 117 moves the opaque wafer 320 from the wafer storage device 120 to a fixed starting point, and then moves the opaque wafer 320 along the moving direction 501 through the wafer detection device 112, and at the same time, the wafer transport device 117 transmits the moving distance from the starting point to the processor 111. In some embodiments where the wafer transport device 117 is a robot arm, the wafer transport device 117 transmits the two-dimensional coordinates of the tray/fork of the robot arm relative to an origin (such as the starting point mentioned above) to the processor 111 every time it moves a fixed distance (in other words, one step), and then the processor 111 generates the moving distance based on the coordinates and the starting point.

在第6圖所繪的示例中,移動距離Da對應不透明晶圓320的邊緣點a在晶圓偵測裝置112的發射端114及接收端115之間時,不透明晶圓320移動的距離。相同地,移動距離Da’對應不透明晶圓320的邊緣點a’在晶圓偵測裝置112的發射端114及接收端115之間時,不透明晶圓320移動的距離。In the example shown in FIG. 6 , the moving distance Da corresponds to the distance that the opaque wafer 320 moves when the edge point a of the opaque wafer 320 is between the transmitting end 114 and the receiving end 115 of the wafer detection device 112. Similarly, the moving distance Da' corresponds to the distance that the opaque wafer 320 moves when the edge point a' of the opaque wafer 320 is between the transmitting end 114 and the receiving end 115 of the wafer detection device 112.

此外,第6圖所繪示的縱軸對應感測器113中輸出電路116的輸出電壓Vout2的電壓值。根據第6圖所繪示的實施例,不透明晶圓320的移動距離小於移動距離Da或大於移動距離Da’時,輸出電壓Vout2具有電壓值Vh。當不透明晶圓320的移動距離大於移動距離Da且小於移動距離Da’時,不透明晶圓320經過感測器113並遮蔽自發射端114至接收端115的光線201,因此輸出電壓Vout2具有低於電壓值Vh的電壓值Vl。In addition, the vertical axis shown in FIG. 6 corresponds to the voltage value of the output voltage Vout2 of the output circuit 116 in the sensor 113. According to the embodiment shown in FIG. 6, when the moving distance of the opaque wafer 320 is less than the moving distance Da or greater than the moving distance Da', the output voltage Vout2 has a voltage value Vh. When the moving distance of the opaque wafer 320 is greater than the moving distance Da and less than the moving distance Da', the opaque wafer 320 passes through the sensor 113 and shields the light 201 from the transmitting end 114 to the receiving end 115, so the output voltage Vout2 has a voltage value Vl lower than the voltage value Vh.

接續上述段落,在一些實施例中,處理器111根據大於電壓值Vl且小於電壓值Vh的電壓閾值Vth判斷晶圓是否經過感測器113。舉例而言,當一感測器113的輸出電壓Vout2大於電壓閾值Vth時,處理器111判斷沒有晶圓在此感測器113的發射端114及接收端115之間。反之,當一感測器113的輸出電壓Vout2小於電壓閾值Vth時,處理器111判斷有晶圓在此感測器113的發射端114及接收端115之間。Continuing from the above paragraph, in some embodiments, the processor 111 determines whether the wafer passes through the sensor 113 according to a voltage threshold value Vth greater than the voltage value Vl and less than the voltage value Vh. For example, when the output voltage Vout2 of a sensor 113 is greater than the voltage threshold value Vth, the processor 111 determines that there is no wafer between the transmitting end 114 and the receiving end 115 of the sensor 113. On the contrary, when the output voltage Vout2 of a sensor 113 is less than the voltage threshold value Vth, the processor 111 determines that there is a wafer between the transmitting end 114 and the receiving end 115 of the sensor 113.

現參考第7圖,第7圖根據一些實施例繪示透明晶圓420的移動距離和感測器113的輸出電壓Vout2的電壓值間示例性的關係,對應於第5圖,為了易於理解,以相同元件符號表示第7圖中之相同元件。Now refer to FIG. 7 , which illustrates an exemplary relationship between the moving distance of the transparent wafer 420 and the voltage value of the output voltage Vout2 of the sensor 113 according to some embodiments, corresponding to FIG. 5 . For ease of understanding, the same element symbols are used to represent the same elements in FIG. 7 .

說明而言,第7圖的橫軸對應透明晶圓420隨著晶圓傳輸裝置117自上述起始點沿移動方向501移動的距離。第7圖所繪示的縱軸對應感測器113中輸出電路116的輸出電壓Vout2的電壓值。在第7圖中,移動距離Da對應透明晶圓420的邊緣點a在晶圓偵測裝置112的發射端114及接收端115之間時,透明晶圓420移動的距離。相同地,移動距離Da’對應透明晶圓420的邊緣點a’在晶圓偵測裝置112的發射端114及接收端115之間時,透明晶圓420移動的距離。For illustration, the horizontal axis of FIG. 7 corresponds to the distance that the transparent wafer 420 moves along the moving direction 501 from the above-mentioned starting point along the wafer transport device 117. The vertical axis shown in FIG. 7 corresponds to the voltage value of the output voltage Vout2 of the output circuit 116 in the sensor 113. In FIG. 7, the moving distance Da corresponds to the distance that the transparent wafer 420 moves when the edge point a of the transparent wafer 420 is between the transmitting end 114 and the receiving end 115 of the wafer detection device 112. Similarly, the moving distance Da' corresponds to the distance that the transparent wafer 420 moves when the edge point a' of the transparent wafer 420 is between the transmitting end 114 and the receiving end 115 of the wafer detection device 112.

如第7圖所示,當透明晶圓420的移動距離小於移動距離Da或大於移動距離Da’時,輸出電壓Vout2具有電壓值Vh。當透明晶圓420的移動距離大於移動距離Da且小於移動距離Da’時,輸出電壓Vout2隨著透明晶圓420經過感測器113的位置不同(換言之,光線201在透明晶圓420上的穿透位置不同)而改變,輸出電壓Vout2的電壓值變動於電壓值Va到電壓值Vb的電壓值範圍內。As shown in FIG. 7 , when the moving distance of the transparent wafer 420 is less than the moving distance Da or greater than the moving distance Da’, the output voltage Vout2 has a voltage value Vh. When the moving distance of the transparent wafer 420 is greater than the moving distance Da and less than the moving distance Da’, the output voltage Vout2 changes with the different positions of the transparent wafer 420 passing through the sensor 113 (in other words, the different penetration positions of the light 201 on the transparent wafer 420), and the voltage value of the output voltage Vout2 varies within a voltage value range from a voltage value Va to a voltage value Vb.

在第7圖所繪示的示例中,於上一段落所述的電壓值範圍的最小值Va大於電壓閾值Vth。因此,當處理器111根據電壓閾值Vth判斷感測器113的發射端114及接收端115之間是否有晶圓時會產生錯誤。舉例而言,當透明晶圓420移動經過感測器113時,輸出電壓Vout2在電壓值Va到電壓值Vb之間。處理器111根據輸出電壓Vout2大於電壓閾值Vth判斷沒有晶圓在感測器113的發射端114及接收端115之間,然而實際上在發射端114及接收端115之間存在透明晶圓420。在一些實施例中,藉由調整輸出電路116使得當晶圓經過感測器113時,輸出電壓Vout2的電壓值皆小於電壓閾值Vth(將於下文參考第8圖作詳細的描述)。In the example shown in FIG. 7 , the minimum value Va of the voltage value range described in the previous paragraph is greater than the voltage threshold value Vth. Therefore, when the processor 111 determines whether there is a wafer between the transmitting end 114 and the receiving end 115 of the sensor 113 based on the voltage threshold value Vth, an error occurs. For example, when the transparent wafer 420 moves through the sensor 113, the output voltage Vout2 is between the voltage value Va and the voltage value Vb. The processor 111 determines that there is no wafer between the transmitting end 114 and the receiving end 115 of the sensor 113 based on the output voltage Vout2 being greater than the voltage threshold value Vth, but in fact, there is a transparent wafer 420 between the transmitting end 114 and the receiving end 115. In some embodiments, the output circuit 116 is adjusted so that when the wafer passes through the sensor 113, the voltage value of the output voltage Vout2 is less than the voltage threshold Vth (which will be described in detail below with reference to FIG. 8 ).

現參考第8圖,第8圖根據一些實施例繪示不透明晶圓320/透明晶圓420的移動距離和經調整的感測器113的輸出電壓Vout2的電壓值間示例性的關係。對應於第6圖及第7圖,為了易於理解,以相同元件符號表示第8圖中之相同元件。Referring now to FIG. 8 , FIG. 8 illustrates an exemplary relationship between the moving distance of the opaque wafer 320/transparent wafer 420 and the voltage value of the adjusted output voltage Vout2 of the sensor 113 according to some embodiments. For ease of understanding, the same elements in FIG. 8 are represented by the same element symbols as in FIG. 6 and FIG. 7 .

在一些實施例中,調整輸出電路116的可變電阻211的電阻值,使得當有晶圓在發射端114及接收端115之間時,輸出電壓Vout2的電壓值小於電壓閾值Vth;當沒有晶圓在發射端114及接收端115之間時,輸出電壓Vout2的電壓值大於電壓閾值Vth。因此,處理器111可以根據電壓閾值Vth正確判斷是否有晶圓經過感測器113。In some embodiments, the resistance value of the variable resistor 211 of the output circuit 116 is adjusted so that when a wafer is between the transmitting end 114 and the receiving end 115, the voltage value of the output voltage Vout2 is less than the voltage threshold Vth; when no wafer is between the transmitting end 114 and the receiving end 115, the voltage value of the output voltage Vout2 is greater than the voltage threshold Vth. Therefore, the processor 111 can correctly determine whether a wafer passes through the sensor 113 according to the voltage threshold Vth.

舉例而言,在輸出電路116的可變電阻211未經調整的實施例中,在沒有晶圓在發射端114及接收端115之間時,輸出電壓Vout2具有電壓值Vh;而在不透明晶圓320移動至發射端114及接收端115之間時(移動的距離大於移動距離Da小於移動距離Da’),輸出電壓Vout2具有電壓值Vl;相對地,在透明晶圓420移動至發射端114及接收端115之間時,輸出電壓Vout2具有電壓值Va到電壓值Vb的範圍內的電壓值。由於電壓值Va大於電壓閾值Vth,處理器111無法根據電壓閾值Vth正確判斷是否有晶圓經過感測器113。For example, in an embodiment in which the variable resistor 211 of the output circuit 116 is not adjusted, when there is no wafer between the transmitting end 114 and the receiving end 115, the output voltage Vout2 has a voltage value Vh; when the opaque wafer 320 moves between the transmitting end 114 and the receiving end 115 (the moving distance is greater than the moving distance Da and less than the moving distance Da’), the output voltage Vout2 has a voltage value Vl; conversely, when the transparent wafer 420 moves between the transmitting end 114 and the receiving end 115, the output voltage Vout2 has a voltage value within the range of voltage value Va to voltage value Vb. Since the voltage value Va is greater than the voltage threshold value Vth, the processor 111 cannot correctly determine whether a wafer passes through the sensor 113 based on the voltage threshold value Vth.

相對地,在輸出電路116的可變電阻211經過調整的實施例中,在沒有晶圓在發射端114及接收端115之間時,輸出電壓Vout2具有電壓值Vh’;在不透明晶圓320移動至發射端114及接收端115之間時(移動的距離大於移動距離Da小於移動距離Da’),輸出電壓Vout2具有電壓值Vl’;在透明晶圓420移動至發射端114及接收端115之間時,輸出電壓Vout2具有電壓值Va’到電壓值Vb’的範圍內的電壓值,其中最大電壓值Vb’ 小於電壓閾值Vth且電壓值Vh’ 大於電壓閾值Vth,因此處理器111可以根據電壓閾值Vth正確判斷是否有晶圓經過感測器113。In contrast, in an embodiment in which the variable resistor 211 of the output circuit 116 is adjusted, when there is no wafer between the transmitting end 114 and the receiving end 115, the output voltage Vout2 has a voltage value Vh'; when the opaque wafer 320 moves between the transmitting end 114 and the receiving end 115 (the moving distance is greater than the moving distance Da and less than the moving distance Da'), the output voltage Vout2 has a voltage value Vl'; when the transparent wafer 420 moves between the transmitting end 114 and the receiving end 115, the output voltage Vout2 has a voltage value within the range of the voltage value Va' to the voltage value Vb', wherein the maximum voltage value Vb' is less than the voltage threshold value Vth and the voltage value Vh' is greater than the voltage threshold Vth, so the processor 111 can correctly determine whether a wafer passes through the sensor 113 based on the voltage threshold Vth.

現參考第9A圖,第9A圖根據一些實施例繪示不透明晶圓320/透明晶圓420和晶圓偵測裝置112間示例性的關係。對應於第5圖,為了易於理解,以相同元件符號表示第9A圖中之相同元件。Referring now to FIG. 9A , FIG. 9A illustrates an exemplary relationship between the opaque wafer 320 / transparent wafer 420 and the wafer detection device 112 according to some embodiments. For ease of understanding, the same reference numerals are used to represent the same elements in FIG. 9A , corresponding to FIG. 5 .

說明而言,在第9A圖所示的實施例中,晶圓偵測裝置112具有根據感測器113配置的感測器113a、感測器113b以及感測器113c。感測器113a-113b彼此配置相同且沿方向y彼此對齊地設置。感測器113b設置在晶圓偵測裝置112的中心點C上,且感測器113a及感測器113c設置在感測器113b在方向y上的兩側。感測器113a及感測器113c皆與感測器113b以間距S1相隔(與中心點C相距間距S1)。For illustration, in the embodiment shown in FIG. 9A , the wafer detection device 112 has sensors 113a, 113b, and 113c configured according to the sensor 113. The sensors 113a-113b are configured identically to each other and are arranged aligned with each other along the direction y. The sensor 113b is arranged at the center point C of the wafer detection device 112, and the sensors 113a and 113c are arranged on both sides of the sensor 113b in the direction y. The sensors 113a and 113c are both separated from the sensor 113b by a distance S1 (a distance S1 from the center point C).

接續上述實施例,如第9A圖所示,當晶圓(在此晶圓包含不透明晶圓320及透明晶圓420)的中心點920對齊起始點時,在垂直方向y的方向x (等於移動方向501)上,晶圓的邊緣點911和感測器113b的感測點P1相距距離D1,晶圓的邊緣點912和感測器113b的感測點P1相距距離D2。換言之,當晶圓移動距離D1時,晶圓與感測器113b重合,邊緣點911在感測器113b的發射端及接收端之間;當晶圓移動距離D2時,邊緣點912在感測器113b的發射端及接收端之間,(亦即晶圓將離開感測器113b)。Continuing with the above embodiment, as shown in FIG. 9A , when the center point 920 of the wafer (here the wafer includes the opaque wafer 320 and the transparent wafer 420) is aligned with the starting point, in the direction x (equal to the moving direction 501) perpendicular to the direction y, the edge point 911 of the wafer and the sensing point P1 of the sensor 113b are separated by a distance D1, and the edge point 912 of the wafer and the sensing point P1 of the sensor 113b are separated by a distance D2. In other words, when the wafer moves a distance D1, the wafer overlaps with the sensor 113b, and the edge point 911 is between the transmitting end and the receiving end of the sensor 113b; when the wafer moves a distance D2, the edge point 912 is between the transmitting end and the receiving end of the sensor 113b (that is, the wafer will leave the sensor 113b).

相同地,當晶圓的中心點920對齊起始點SP時,在垂直方向y的方向x上:晶圓的邊緣點913和感測器113a的感測點P2相距距離D3;晶圓的邊緣點914和感測點P2相距距離D4;晶圓的邊緣點915和感測器113c的感測點P3相距距離D5;以及晶圓的邊緣點916和感測點P2相距距離D6。 換言之,當晶圓移動距離D3時,晶圓與感測器113a重合,邊緣點913在感測器113a的發射端及接收端之間;當晶圓移動距離D4時,邊緣點914在感測器113a的發射端及接收端之間。當晶圓移動距離D5時,晶圓與感測器113c重合,邊緣點915在感測器113c的發射端及接收端之間;當晶圓移動距離D6時,邊緣點916在感測器113c的發射端及接收端之間。Similarly, when the center point 920 of the wafer is aligned with the starting point SP, in the direction x perpendicular to the direction y: the edge point 913 of the wafer and the sensing point P2 of the sensor 113a are at a distance D3; the edge point 914 of the wafer and the sensing point P2 are at a distance D4; the edge point 915 of the wafer and the sensing point P3 of the sensor 113c are at a distance D5; and the edge point 916 of the wafer and the sensing point P2 are at a distance D6. In other words, when the wafer moves a distance D3, the wafer overlaps with the sensor 113a, and the edge point 913 is between the transmitting end and the receiving end of the sensor 113a; when the wafer moves a distance D4, the edge point 914 is between the transmitting end and the receiving end of the sensor 113a. When the wafer moves a distance D5, the wafer overlaps with the sensor 113c, and the edge point 915 is between the transmitting end and the receiving end of the sensor 113c; when the wafer moves a distance D6, the edge point 916 is between the transmitting end and the receiving end of the sensor 113c.

在一些實施例中,記憶體118用以儲存晶圓傳輸裝置117輸出的多個移動距離(或移動步數)及在這些移動距離時根據感測器113a-113c的輸出電壓值產生之判斷是否有晶圓在發射端及接收端之間的判斷結果。說明而言,當輸出電壓Vout2的電壓值大於電壓閾值Vth時,處理器111產生沒有晶圓在發射端及接收端之間的判斷結果;相對地,當輸出電壓Vout2的電壓值小於電壓閾值Vth時,處理器111產生有晶圓在發射端及接收端之間的判斷結果。處理器111用以根據這些判斷結果定位(找出相對一固定點如中心點C的位置)多個邊緣點(如邊緣點911-916)。In some embodiments, the memory 118 is used to store a plurality of moving distances (or moving steps) output by the wafer transport device 117 and the determination results of whether there is a wafer between the transmitting end and the receiving end generated according to the output voltage values of the sensors 113a-113c at these moving distances. For example, when the voltage value of the output voltage Vout2 is greater than the voltage threshold Vth, the processor 111 generates a determination result that there is no wafer between the transmitting end and the receiving end; conversely, when the voltage value of the output voltage Vout2 is less than the voltage threshold Vth, the processor 111 generates a determination result that there is a wafer between the transmitting end and the receiving end. The processor 111 is used to locate (find the position relative to a fixed point such as the center point C) multiple edge points (such as edge points 911-916) according to these determination results.

舉例而言,每當晶圓傳輸裝置117移動一步,處理器111便根據感測器113b的輸出電壓產生判斷是否有晶圓在發射端及接收端之間的判斷結果,並將移動距離及判斷結果儲存於記憶體118。在這些判斷結果中,當多個連續的移動步數的判斷結果皆為有晶圓在發射端及接收端之間時,處理器111以最小移動步數的移動距離作為距離D1以定位邊緣點911,並以最大移動步數的移動距離作為距離D2以定位邊緣點912。For example, every time the wafer transport device 117 moves one step, the processor 111 generates a judgment result of whether there is a wafer between the transmitting end and the receiving end according to the output voltage of the sensor 113b, and stores the moving distance and the judgment result in the memory 118. Among these judgment results, when the judgment results of multiple consecutive moving steps are that there is a wafer between the transmitting end and the receiving end, the processor 111 uses the moving distance of the minimum moving step as the distance D1 to locate the edge point 911, and uses the moving distance of the maximum moving step as the distance D2 to locate the edge point 912.

接續上述例子,請參照第9B圖,第9B圖根據一些實施例繪示對應於第9A圖的不透明晶圓320/透明晶圓420和晶圓偵測裝置112間示例性的關係。對應於第9A圖,為了易於理解,以相同元件符號表示第9B圖中之相同元件。Continuing with the above example, please refer to FIG. 9B, which shows an exemplary relationship between the opaque wafer 320/transparent wafer 420 and the wafer detection device 112 corresponding to FIG. 9A according to some embodiments. For ease of understanding, the same element symbols are used to represent the same elements in FIG. 9B corresponding to FIG. 9A.

具體而言,中心點C的xy座標為(0,0)。處理器111根據距離D1產生邊緣點911的座標為(-D1,0)。處理器111根據距離D2產生邊緣點912的座標為(-D2,0)。如上所述在一些實施例中,處理器111用以根據此最小移動步數的移動距離及此最大移動步數的移動距離產生晶圓的中心920在移動方向501上的位置(例如晶圓的中心920的xy座標為((D1-D2)/2,0)。Specifically, the xy coordinates of the center point C are (0,0). The processor 111 generates the coordinates of the edge point 911 as (-D1,0) based on the distance D1. The processor 111 generates the coordinates of the edge point 912 as (-D2,0) based on the distance D2. As described above, in some embodiments, the processor 111 is used to generate the position of the center 920 of the wafer in the moving direction 501 according to the moving distance of the minimum moving step number and the moving distance of the maximum moving step number (for example, the xy coordinates of the center 920 of the wafer are ((D1-D2)/2,0).

現參考第10圖,第10圖根據一些實施例繪示偏移的不透明晶圓320/透明晶圓420和晶圓偵測裝置112間示例性的關係。對應於第9A圖,為了易於理解,以相同元件符號表示第10圖中之相同元件。Referring now to FIG. 10 , FIG. 10 illustrates an exemplary relationship between the offset opaque wafer 320/transparent wafer 420 and the wafer detection device 112 according to some embodiments. For ease of understanding, the same reference numerals are used to represent the same elements in FIG. 10 as in FIG. 9A .

說明而言,在第10圖所繪示的實施例中晶圓沿方向y偏移起始點SP偏移距離D7。在方向x上: 晶圓的邊緣點911’和感測器113b的感測點P1相距距離D1’;晶圓的邊緣點912’和感測點P1相距距離D2’;晶圓的邊緣點913’和感測器113a的感測點P2相距距離D3’;晶圓的邊緣點914’和感測點P2相距距離D4’;晶圓的邊緣點915’和感測器113c的感測點P3相距距離D5’;以及晶圓的邊緣點916’和感測點P2相距距離D6’。For illustration, in the embodiment shown in FIG. 10 , the wafer is offset from the starting point SP by a distance D7 along the direction y. In the direction x: the edge point 911′ of the wafer is at a distance D1′ from the sensing point P1 of the sensor 113b; the edge point 912′ of the wafer is at a distance D2′ from the sensing point P1; the edge point 913′ of the wafer is at a distance D3′ from the sensing point P2 of the sensor 113a; the edge point 914′ of the wafer is at a distance D4′ from the sensing point P2; the edge point 915′ of the wafer is at a distance D5′ from the sensing point P3 of the sensor 113c; and the edge point 916′ of the wafer is at a distance D6′ from the sensing point P2.

在一些實施例中,處理器111用以根據距離D3’、 距離D4’、晶圓的半徑R及間距S1判斷偏移距離D7。舉例而言,距離D4’和距離D3’之差的一半為長度L1。利用長度L1及半徑R判斷晶圓中心點920和感測點P2在方向y上相距的長度L2,並以間距S1和長度L2的差判斷偏移距離D7。在一些實施例中,處理器111根據距離D4’和距離D3’的差判斷邊緣點913’和邊緣點914’的間距,並根據距離D6’和距離D5’的差判斷邊緣點915’和邊緣點916’的間距,接著比較邊緣點913’和邊緣點914’的間距以及邊緣點915’和邊緣點916’的間距,以判斷晶圓的偏移方向(例如當邊緣點913’和邊緣點914’的間距較大,處理器111判斷晶圓沿著方向y正向地偏移。In some embodiments, the processor 111 is used to determine the offset distance D7 according to the distance D3', the distance D4', the radius R of the wafer, and the spacing S1. For example, half of the difference between the distance D4' and the distance D3' is the length L1. The length L1 and the radius R are used to determine the length L2 between the wafer center point 920 and the sensing point P2 in the direction y, and the offset distance D7 is determined by the difference between the spacing S1 and the length L2. In some embodiments, the processor 111 determines the distance between edge point 913′ and edge point 914′ based on the difference between distance D4′ and distance D3′, and determines the distance between edge point 915′ and edge point 916′ based on the difference between distance D6′ and distance D5′, and then compares the distance between edge point 913′ and edge point 914′ and the distance between edge point 915′ and edge point 916′ to determine the offset direction of the wafer (for example, when the distance between edge point 913′ and edge point 914′ is larger, the processor 111 determines that the wafer is positively offset along direction y).

現參考第11圖,第11圖根據一些實施例繪示定位晶圓的方法1100的一個流程圖。定位晶圓的方法1100中的至少一些操作(或步驟)可以用來定位透明晶圓例如第4圖中的透明晶圓420。Referring now to FIG. 11 , FIG. 11 is a flowchart of a method 1100 for positioning a wafer according to some embodiments. At least some operations (or steps) in the method 1100 for positioning a wafer may be used to position a transparent wafer such as the transparent wafer 420 in FIG. 4 .

方法1100僅是一個示例,並不意圖限制本案。因此應當理解在第11圖的方法1100之前、之間和之後可提供更多操作,並且方法1100中的一些操作可以被取代或是移除。可以預期方法1100的操作可以替代地以第11圖所示以外的順序進行。製造方法1100包含操作1101、1102、1103、1104、1105及1106,且將於下文討論。The method 1100 is merely an example and is not intended to limit the present invention. It should therefore be understood that more operations may be provided before, during, and after the method 1100 of FIG. 11 , and that some operations in the method 1100 may be replaced or removed. It is contemplated that the operations of the method 1100 may alternatively be performed in an order other than that shown in FIG. 11 . The manufacturing method 1100 includes operations 1101, 1102, 1103, 1104, 1105, and 1106, which will be discussed below.

在操作1101中,調整自如第2圖所示的多個感測器113中的每一者傳輸至處理器111的輸出電壓Vout2。In operation 1101, the output voltage Vout2 transmitted from each of the plurality of sensors 113 shown in FIG. 2 to the processor 111 is adjusted.

在一些實施例中,此些感測器是沿垂直於方向x的方向y設置。In some embodiments, the sensors are arranged along a direction y that is perpendicular to the direction x.

在操作1102中,透過處理器111根據輸出電壓Vout2產生判斷結果,輸出電壓Vout2等於電壓閾值Vth。In operation 1102, the processor 111 generates a determination result based on the output voltage Vout2, and the output voltage Vout2 is equal to the voltage threshold Vth.

在操作1103中,當透明晶圓420放置在感測器113的發射端114及接收端115之間,透過感測器113輸出具有第一電壓值的輸出電壓Vout2至處理器111。In operation 1103 , when the transparent wafer 420 is placed between the transmitting end 114 and the receiving end 115 of the sensor 113 , the sensor 113 outputs an output voltage Vout2 having a first voltage value to the processor 111 .

在操作1104中,當第一電壓值大於電壓閾值Vth時,調整感測器113的可變電阻211以使得輸出電壓Vout2具有小於電壓閾值Vth的第二電壓值。In operation 1104, when the first voltage value is greater than the voltage threshold value Vth, the variable resistor 211 of the sensor 113 is adjusted so that the output voltage Vout2 has a second voltage value less than the voltage threshold value Vth.

在操作1105中,透過晶圓傳輸裝置117沿移動方向501移動透明晶圓420經過此些感測器113,並輸出多個移動距離,例如第10圖中的距離D1’-D6’。In operation 1105, the transparent wafer 420 is moved along the moving direction 501 through the sensors 113 by the wafer transport device 117, and a plurality of moving distances are output, such as the distances D1'-D6' in FIG. 10 .

在操作1106中,透過處理器111根據此些感測器113中每一者的輸出電壓Vout2、電壓閾值Vth及此些移動距離產生透明晶圓420的多個邊緣位置。In operation 1106, the processor 111 generates a plurality of edge positions of the transparent wafer 420 according to the output voltage Vout2 of each of the sensors 113, the voltage threshold Vth, and the movement distances.

在一些實施例中,方法1100更包含根據透明晶圓420經過此些感測器113中的一者的第一邊緣位置及第二邊緣位置,產生該透明晶圓的中心在第一方向上的位置。In some embodiments, the method 1100 further includes generating a position of a center of the transparent wafer in a first direction according to a first edge position and a second edge position of the transparent wafer 420 passing through one of the sensors 113 .

現參考第12圖,第12圖根據一些實施例繪示定位晶圓的方法1200的一個流程圖。定位晶圓的方法1200中的至少一些操作(或步驟)可以用來定位晶圓例如第3圖中的不透明晶圓320及第4圖中的透明晶圓420。Referring now to FIG. 12 , FIG. 12 is a flowchart of a method 1200 for positioning a wafer according to some embodiments. At least some operations (or steps) in the method 1200 for positioning a wafer may be used to position a wafer such as the opaque wafer 320 in FIG. 3 and the transparent wafer 420 in FIG. 4 .

方法1200僅是一個示例,並不意圖限制本案。因此應當理解在第12圖的方法1200之前、之間和之後可提供更多操作,並且方法1200中的一些操作可以被取代或是移除。可以預期方法1200的操作可以替代地以第12圖所示以外的順序進行。製造方法1200包含操作1201、1202、1203及1204,且將於下文討論。The method 1200 is merely an example and is not intended to be limiting. It should therefore be understood that more operations may be provided before, during, and after the method 1200 of FIG. 12 , and that some operations in the method 1200 may be replaced or removed. It is contemplated that the operations of the method 1200 may alternatively be performed in an order other than that shown in FIG. 12 . The manufacturing method 1200 includes operations 1201, 1202, 1203, and 1204, which will be discussed below.

在操作1201中,量測如第2圖所示的感測器113的輸出端的輸出電壓Vout2,當感測器113的接收端115直接接收來自感測器113的發射端114的光線201時,輸出電壓具有第一電壓值(例如第6圖的Vh),當第一晶圓(例如不透明晶圓320)在接收端115及發射端114之間時,輸出電壓具有第二電壓值(例如第6圖的Vl),當第二晶圓(例如透明晶圓420)在接收端115及發射端114之間時,輸出電壓具有第三電壓值(例如第7圖的Va)。In operation 1201, the output voltage Vout2 of the output end of the sensor 113 as shown in Figure 2 is measured. When the receiving end 115 of the sensor 113 directly receives the light 201 from the transmitting end 114 of the sensor 113, the output voltage has a first voltage value (for example, Vh in Figure 6). When the first wafer (for example, the opaque wafer 320) is between the receiving end 115 and the transmitting end 114, the output voltage has a second voltage value (for example, Vl in Figure 6). When the second wafer (for example, the transparent wafer 420) is between the receiving end 115 and the transmitting end 114, the output voltage has a third voltage value (for example, Va in Figure 7).

在操作1202中,調整感測器113以使第一電壓值大於電壓閾值Vth,以及第二電壓及第三電壓小於電壓閾值Vth。In operation 1202, the sensor 113 is adjusted so that the first voltage value is greater than a voltage threshold value Vth, and the second voltage and the third voltage are less than the voltage threshold value Vth.

在一些實施例中,第三電壓屬於一電壓值範圍(例如第8圖中的電壓值Va’到電壓值Vb’),電壓值範圍的一最大值(如Vb’)小於電壓閾值Vth。In some embodiments, the third voltage belongs to a voltage value range (e.g., voltage value Va' to voltage value Vb' in FIG. 8), and a maximum value of the voltage value range (e.g., Vb') is less than the voltage threshold Vth.

在操作1203中,透過晶圓傳輸裝置117移動第一晶圓或第二晶圓經過感測器113,並輸出多個移動距離(例如第10圖中的移動距離D1’-D6’)。In operation 1203, the first wafer or the second wafer is moved through the sensor 113 by the wafer transfer device 117, and a plurality of moving distances (e.g., moving distances D1'-D6' in FIG. 10) are output.

在操作1204中,透過處理器111根據輸出電壓Vout2、電壓閾值Vth及此些移動距離產生第一晶圓或第二晶圓的多個邊緣位置(例如邊緣點911’-916’相對於起始點SP的位置)。In operation 1204, the processor 111 generates multiple edge positions of the first wafer or the second wafer (e.g., positions of edge points 911'-916' relative to the starting point SP) according to the output voltage Vout2, the voltage threshold Vth, and these moving distances.

在一些實施例中,方法1200更透過處理器111根據此些邊緣位置產生第一晶圓或第二晶圓的偏移方向及偏移距離(如第10圖中的方向y及偏移距離D7)。In some embodiments, the method 1200 further generates, by the processor 111, an offset direction and an offset distance (such as the direction y and the offset distance D7 in FIG. 10 ) of the first wafer or the second wafer according to the edge positions.

在一些實施例中,透過晶圓傳送裝置117反向於此偏移方向移動第一晶圓或第二晶圓此偏移距離。In some embodiments, the first wafer or the second wafer is moved by the wafer transfer device 117 in the opposite direction to the offset direction by the offset distance.

綜合以上所述,本揭露提供一種具有光感測器的晶圓處理系統及定位透明晶圓及不透明晶圓的方法。晶圓偵測裝置的感測器中可調整的部件使得晶圓處理系統可以針對不同種類(不同透光度)的晶圓進行調整。即使在操作的晶圓種類未知的情況下,經調整後的晶圓處理系統仍能藉由感測器偵測是否有晶圓經過晶圓偵測裝置,並判斷晶圓是否有偏移並校正至預定的位置。In summary, the present disclosure provides a wafer processing system with a light sensor and a method for positioning a transparent wafer and an opaque wafer. The adjustable components in the sensor of the wafer detection device allow the wafer processing system to be adjusted for different types of wafers (with different light transmittances). Even when the type of wafer being operated is unknown, the adjusted wafer processing system can still detect whether a wafer passes through the wafer detection device through the sensor, and determine whether the wafer is offset and correct it to a predetermined position.

前文概述了數個實施例的特徵,使得本領域通常知識者可更好地理解本案的一實施例的態樣。本領域通常知識者應瞭解,可易於使用本案的一實施例作為設計或修改其他製程及結構的基礎以便實施本案所介紹的實施例的相同目的及/或實現相同優勢。本領域通常知識者亦應認識到,此類等效結構並未脫離本案的一實施例的精神及範疇,並且可在不脫離本案的一實施例的精神及範疇的情況下在本案的一實施例中執行各種變化、取代及修改。The foregoing summarizes the features of several embodiments so that those skilled in the art can better understand the aspects of an embodiment of the present invention. Those skilled in the art should understand that an embodiment of the present invention can be easily used as a basis for designing or modifying other processes and structures in order to implement the same purpose and/or achieve the same advantages of the embodiment introduced in the present invention. Those skilled in the art should also recognize that such equivalent structures do not deviate from the spirit and scope of an embodiment of the present invention, and that various changes, substitutions and modifications can be performed in an embodiment of the present invention without departing from the spirit and scope of an embodiment of the present invention.

100:晶圓處理系統100:Wafer processing system

110:晶圓處理裝置110: Wafer processing device

111:處理器111:Processor

112:晶圓偵測裝置112: Wafer detection device

113:感測器113:Sensor

114:發射端114: Transmitter

115:接收端115: Receiving end

116:輸出電路116: Output circuit

117:晶圓傳輸裝置117: Wafer transfer device

118:記憶體118: Memory

120:晶圓存放裝置120: Wafer storage device

201:光線201: Light

211:可變電阻211: Variable resistor

212:輸出端212: Output terminal

P:感測點P: Sensing point

Vout1:感測電壓Vout1: Sense voltage

Vout2:輸出電壓Vout2: output voltage

320:不透明晶圓320: Opaque wafer

420:透明晶圓420: Transparent Wafer

501:移動方向501:Moving direction

a:邊緣點a:Edge point

a’:邊緣點a’: edge point

Vh, Vl:電壓值Vh, Vl: voltage value

Vth:電壓閾值Vth: voltage threshold

Da, Da’:移動距離Da, Da’: moving distance

Va, Vb:電壓值Va, Vb: voltage value

Vh’, Vl’, Va’, Vb’:電壓值Vh’, Vl’, Va’, Vb’: voltage value

113a, 113b, 113c:感測器113a, 113b, 113c: Sensor

911-916:邊緣點911-916: Edge Point

920:中心點920: Center point

C:中心點C: Center point

D1-D6:距離D1-D6: Distance

P1, P2, P3:感測點P1, P2, P3: Sensing points

S1:間距S1: Spacing

SP:起始點SP: Starting point

x:方向x: direction

y:方向y: direction

911’-916’:邊緣點911’-916’: Edge Point

C:中心點C: Center point

D1’-D6’:距離D1’-D6’: Distance

D7:偏移距離D7: Offset distance

L1, L2:長度L1, L2: Length

R:半徑R: Radius

1100:定位晶圓的方法1100: Method for positioning wafer

1101-1106:操作1101-1106: Operation

1200:定位晶圓的方法1200: Method for positioning wafer

1201-1204:操作1201-1204: Operation

當結合隨附圖式閱讀時,將自下文的詳細描述最佳地理解本案的一實施例的態樣。應注意,根據工業中的標準實務,並未按比例繪製各特徵。事實上,為了論述清楚,可任意增加或減小各特徵的尺寸。 第1圖根據一些實施例繪示晶圓處理系統的一個示例的方塊圖; 第2圖是根據一些實施例繪示無晶圓在發射端及接收端之間的感測器的一個示意圖; 第3圖是根據一些實施例繪示具有不透明晶圓在發射端及接收端之間的感測器的一個示意圖; 第4圖是根據一些實施例繪示透明晶圓在發射端及接收端之間的感測器的一個示意圖; 第5圖是根據一些實施例繪示移動晶圓經過晶圓偵測裝置的一個示意圖; 第6圖根據一些實施例繪示不透明晶圓的移動距離和感測器的輸出電壓的電壓值間示例性的關係; 第7圖根據一些實施例繪示透明晶圓的移動距離和感測器的輸出電壓的電壓值間示例性的關係; 第8圖根據一些實施例繪示不透明晶圓/透明晶圓的移動距離和經調整的感測器的輸出電壓的電壓值間示例性的關係; 第9A圖根據一些實施例繪示不透明晶圓/透明晶圓和晶圓偵測裝置間示例性的關係; 第9B圖根據一些實施例繪示對應於第9A圖的不透明晶圓/透明晶圓和晶圓偵測裝置間示例性的關係; 第10圖根據一些實施例繪示偏移的不透明晶圓/透明晶圓和晶圓偵測裝置間示例性的關係。 第11圖根據一些實施例繪示定位晶圓的方法1100的一個流程圖;以及 第12圖根據一些實施例繪示定位晶圓的方法1200的一個流程圖。 The aspects of one embodiment of the present invention will be best understood from the detailed description below when read in conjunction with the accompanying drawings. It should be noted that, in accordance with standard practice in the industry, the various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or decreased for clarity of discussion. FIG. 1 is a block diagram of an example of a wafer processing system according to some embodiments; FIG. 2 is a schematic diagram of a sensor without a wafer between a transmitting end and a receiving end according to some embodiments; FIG. 3 is a schematic diagram of a sensor with an opaque wafer between a transmitting end and a receiving end according to some embodiments; FIG. 4 is a schematic diagram of a sensor with a transparent wafer between a transmitting end and a receiving end according to some embodiments; FIG. 5 is a schematic diagram of a moving wafer passing through a wafer detection device according to some embodiments; FIG. 6 is an exemplary relationship between a moving distance of an opaque wafer and a voltage value of an output voltage of a sensor according to some embodiments; FIG. 7 illustrates an exemplary relationship between the moving distance of a transparent wafer and the voltage value of the output voltage of a sensor according to some embodiments; FIG. 8 illustrates an exemplary relationship between the moving distance of an opaque wafer/transparent wafer and the voltage value of the adjusted output voltage of a sensor according to some embodiments; FIG. 9A illustrates an exemplary relationship between an opaque wafer/transparent wafer and a wafer detection device according to some embodiments; FIG. 9B illustrates an exemplary relationship between an opaque wafer/transparent wafer corresponding to FIG. 9A and a wafer detection device according to some embodiments; FIG. 10 illustrates an exemplary relationship between a shifted opaque wafer/transparent wafer and a wafer detection device according to some embodiments. FIG. 11 is a flowchart of a method 1100 for positioning a wafer according to some embodiments; and FIG. 12 is a flowchart of a method 1200 for positioning a wafer according to some embodiments.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in the order of storage institution, date, and number) None Foreign storage information (please note in the order of storage country, institution, date, and number) None

100:晶圓處理系統 100: Wafer processing system

110:晶圓處理裝置 110: Wafer processing equipment

111:處理器 111: Processor

112:晶圓偵測裝置 112: Wafer detection device

113:感測器 113:Sensor

114:發射端 114: Transmitter

115:接收端 115: receiving end

116:輸出電路 116: Output circuit

117:晶圓傳輸裝置 117: Wafer transfer device

118:記憶體 118: Memory

120:晶圓存放裝置 120: Wafer storage device

Claims (10)

一種晶圓處理系統,包含:一晶圓傳輸裝置,用以移動一透明晶圓或一不透明晶圓並輸出複數個移動距離;一晶圓偵測裝置,包含複數個感測器,該些感測器中的每一者包含:一發射端及一接收端,其中該接收端用以接收來自該發射端的一光線;以及一輸出電路,耦接該接收端,並用以根據該接收端的一感測電壓輸出一輸出電壓,其中當該接收端直接接收該光線時,該輸出電壓具有大於一閾值的一第一電壓值,其中當該不透明晶圓在該發射端及該接收端之間時,該輸出電壓具有一第二電壓值,以及當該透明晶圓在該發射端及該接收端之間時,該輸出電壓具有一第三電壓值,其中該輸出電路更用以根據該第二電壓值及該第三電壓值與該閾值的比較結果,調整該感測電壓及該輸出電壓間的一輸出比率以使該第二電壓值及該第三電壓值小於該閾值;以及一處理器,用以根據該閾值、該些移動距離以及該些感測器中的每一者的該輸出電壓定位該透明晶圓或該不透明晶圓上的複數個邊緣點。 A wafer processing system includes: a wafer transport device for moving a transparent wafer or an opaque wafer and outputting a plurality of moving distances; a wafer detection device including a plurality of sensors, each of the sensors including: a transmitting end and a receiving end, wherein the receiving end is used to receive a light from the transmitting end; and an output circuit coupled to the receiving end and used to output an output voltage according to a sensed voltage of the receiving end, wherein when the receiving end directly receives the light, the output voltage has a first voltage value greater than a threshold value, wherein when the opaque wafer is between the transmitting end and the receiving end ... When the transparent wafer is between the transmitting end and the receiving end, the output voltage has a second voltage value, and when the transparent wafer is between the transmitting end and the receiving end, the output voltage has a third voltage value, wherein the output circuit is further used to adjust an output ratio between the sensed voltage and the output voltage so that the second voltage value and the third voltage value are less than the threshold value according to the comparison result of the second voltage value and the third voltage value with the threshold value; and a processor is used to locate a plurality of edge points on the transparent wafer or the opaque wafer according to the threshold value, the moving distances and the output voltage of each of the sensors. 如請求項1所述的晶圓處理系統,其中該輸 出電路更包含一可變電阻,該輸出電路更用以根據該感測電壓及該可變電阻的一電阻值產生該輸出電壓。 A wafer processing system as described in claim 1, wherein the output circuit further includes a variable resistor, and the output circuit is further used to generate the output voltage according to the sensed voltage and a resistance value of the variable resistor. 如請求項1至2任一所述的晶圓處理系統,其中該晶圓傳輸裝置沿一第一方向移動該透明晶圓或該不透明晶圓經過該些感測器,其中該些邊緣點為該透明晶圓或該不透明晶圓經過該些感測器中的每一者的一第一邊緣點及一第二邊緣點,其中該些感測器中的每一者的該第一邊緣點及該第二邊緣點對應該晶圓傳輸裝置輸出的一第一移動距離及一第二移動距離,其中該處理器更用以根據該第一移動距離及該第二移動距離,產生該透明晶圓或該不透明晶圓在該第一方向上的一晶圓中心位置。 A wafer processing system as described in any one of claims 1 to 2, wherein the wafer transport device moves the transparent wafer or the opaque wafer along a first direction to pass through the sensors, wherein the edge points are a first edge point and a second edge point of the transparent wafer or the opaque wafer passing through each of the sensors, wherein the first edge point and the second edge point of each of the sensors correspond to a first moving distance and a second moving distance output by the wafer transport device, wherein the processor is further used to generate a wafer center position of the transparent wafer or the opaque wafer in the first direction according to the first moving distance and the second moving distance. 如請求項3所述的晶圓處理系統,其中該些感測器中的一者在該第一方向上設置對齊該晶圓偵測裝置的一中心,該些感測器中的該者在垂直於該第一方向的一第二方向上與該中心相距一距離,其中該處理器更用以根據該距離、該透明晶圓或該不透明晶圓的一半徑,以及對應該些感測器中的該者的該第一移動距離與該第二移動距離產生該透明晶圓或該不透明晶圓在該第二方向上的一偏移距離。 A wafer processing system as described in claim 3, wherein one of the sensors is arranged to align with a center of the wafer detection device in the first direction, and the one of the sensors is at a distance from the center in a second direction perpendicular to the first direction, wherein the processor is further used to generate an offset distance of the transparent wafer or the opaque wafer in the second direction according to the distance, a half diameter of the transparent wafer or the opaque wafer, and the first moving distance and the second moving distance corresponding to the one of the sensors. 如請求項1至2任一所述的晶圓處理系統,其中該不透明晶圓為一矽晶圓,該透明晶圓為一碳化矽晶圓。 A wafer processing system as described in any one of claim 1 to 2, wherein the opaque wafer is a silicon wafer and the transparent wafer is a silicon carbide wafer. 一種定位晶圓的方法,包含:調整自複數個感測器中的每一者傳輸至一處理器的一輸出電壓;透過該處理器根據該輸出電壓產生一判斷結果,其中該輸出電壓等於一電壓閾值;當一透明晶圓放置在該感測器的一發射端及一接收端之間,透過該感測器輸出具有一第一電壓值的該輸出電壓至該處理器;當該第一電壓值大於該電壓閾值時,調整該感測器的一可變電阻以使得該輸出電壓具有小於該電壓閾值的一第二電壓值;透過一晶圓傳輸裝置沿一第一方向移動該透明晶圓經過該些感測器,並輸出複數個移動距離;以及透過該處理器根據該些感測器中每一者的該輸出電壓、該電壓閾值及該些移動距離產生該透明晶圓的複數個邊緣位置。 A method for positioning a wafer, comprising: adjusting an output voltage transmitted from each of a plurality of sensors to a processor; generating a judgment result according to the output voltage by the processor, wherein the output voltage is equal to a voltage threshold; when a transparent wafer is placed between a transmitting end and a receiving end of the sensor, the sensor outputs the output voltage having a first voltage value to the processor; when the first voltage value is greater than When the voltage threshold is reached, a variable resistor of the sensor is adjusted so that the output voltage has a second voltage value less than the voltage threshold; the transparent wafer is moved along a first direction through the sensors by a wafer transport device, and a plurality of moving distances are output; and a plurality of edge positions of the transparent wafer are generated by the processor according to the output voltage of each of the sensors, the voltage threshold and the moving distances. 一種定位晶圓的方法,包含:量測一感測器的一輸出電路的一輸出電壓,當該感測器 的一接收端直接接收來自該感測器的一發射端的一光線時,該輸出電壓具有一第一電壓值,當一第一晶圓在該接收端及該發射端之間時,該輸出電壓具有一第二電壓值,當一第二晶圓在該接收端及該發射端之間時,該輸出電壓具有一第三電壓值;調整該輸出電路的一輸出比率以使該第一電壓值大於一電壓閾值以及該第二電壓及該第三電壓小於該電壓閾值;透過一晶圓傳輸裝置移動該第一晶圓或該第二晶圓經過該感測器,並輸出複數個移動距離;以及透過該處理器根據該輸出電壓、該電壓閾值及該些移動距離產生該第一晶圓或該第二晶圓的複數個邊緣位置。 A method for positioning a wafer comprises: measuring an output voltage of an output circuit of a sensor, wherein when a receiving end of the sensor directly receives a light from a transmitting end of the sensor, the output voltage has a first voltage value, when a first wafer is between the receiving end and the transmitting end, the output voltage has a second voltage value, and when a second wafer is between the receiving end and the transmitting end, the output voltage has a third voltage value. voltage value; adjusting an output ratio of the output circuit so that the first voltage value is greater than a voltage threshold value and the second voltage and the third voltage are less than the voltage threshold value; moving the first wafer or the second wafer through the sensor through a wafer transport device and outputting a plurality of moving distances; and generating a plurality of edge positions of the first wafer or the second wafer according to the output voltage, the voltage threshold value and the moving distances through the processor. 如請求項7所述的方法,其中該第一晶圓為一不透明晶圓,該第二晶圓為一透明晶圓。 As described in claim 7, the first wafer is an opaque wafer and the second wafer is a transparent wafer. 如請求項8所述的方法,其中該第三電壓屬於一電壓值範圍,其中該電壓值範圍的一最大值小於該電壓閾值。 As described in claim 8, the third voltage belongs to a voltage value range, wherein a maximum value of the voltage value range is less than the voltage threshold value. 如請求項7至9任一所述的方法,更包含:透過該處理器根據該些邊緣位置產生該第一晶圓或該第二晶圓的一偏移方向及一偏移距離;以及透過該晶圓傳輸裝置反向於該偏移方向移動該第一晶圓 或該第二晶圓該偏移距離。 The method described in any one of claims 7 to 9 further includes: generating an offset direction and an offset distance of the first wafer or the second wafer according to the edge positions by the processor; and moving the first wafer or the second wafer by the offset distance in the opposite direction to the offset direction by the wafer transport device.
TW111145290A 2022-11-25 2022-11-25 Wafer processing system and method of wafer localization TWI837967B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111145290A TWI837967B (en) 2022-11-25 2022-11-25 Wafer processing system and method of wafer localization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111145290A TWI837967B (en) 2022-11-25 2022-11-25 Wafer processing system and method of wafer localization

Publications (2)

Publication Number Publication Date
TWI837967B true TWI837967B (en) 2024-04-01
TW202422767A TW202422767A (en) 2024-06-01

Family

ID=91618896

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111145290A TWI837967B (en) 2022-11-25 2022-11-25 Wafer processing system and method of wafer localization

Country Status (1)

Country Link
TW (1) TWI837967B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010002447A1 (en) * 1999-11-29 2001-05-31 Dainippon Screen Mfg. Co., Ltd. Substrate transport apparatus and transport teaching system
TW201145437A (en) * 2009-11-19 2011-12-16 Ulvac Inc Method for specifying center position of substrate
TW201332043A (en) * 2011-12-02 2013-08-01 Kobe Steel Ltd Rotational misalignment measuring device of bonded substrate, rotational misalignment measuring method of bonded substrate, and method of manufacturing bonded substrate
US20150330914A1 (en) * 2014-05-17 2015-11-19 Kla-Tencor Corporation Wafer Edge Detection and Inspection
CN111952230A (en) * 2020-09-01 2020-11-17 无锡卓海科技有限公司 Transparent wafer edge extraction method of pre-alignment machine
US20220359261A1 (en) * 2019-06-28 2022-11-10 Kawasaki Jukogyo Kabushiki Kaisha Substrate transfer apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010002447A1 (en) * 1999-11-29 2001-05-31 Dainippon Screen Mfg. Co., Ltd. Substrate transport apparatus and transport teaching system
TW201145437A (en) * 2009-11-19 2011-12-16 Ulvac Inc Method for specifying center position of substrate
TW201332043A (en) * 2011-12-02 2013-08-01 Kobe Steel Ltd Rotational misalignment measuring device of bonded substrate, rotational misalignment measuring method of bonded substrate, and method of manufacturing bonded substrate
US20150330914A1 (en) * 2014-05-17 2015-11-19 Kla-Tencor Corporation Wafer Edge Detection and Inspection
US20220359261A1 (en) * 2019-06-28 2022-11-10 Kawasaki Jukogyo Kabushiki Kaisha Substrate transfer apparatus
CN111952230A (en) * 2020-09-01 2020-11-17 无锡卓海科技有限公司 Transparent wafer edge extraction method of pre-alignment machine

Also Published As

Publication number Publication date
TW202422767A (en) 2024-06-01

Similar Documents

Publication Publication Date Title
JP5490741B2 (en) Substrate transport apparatus position adjustment method and substrate processing apparatus
EP2421034B1 (en) Substrate carrying mechanism and substrate carrying method
US9299620B2 (en) Substrate bonding apparatus and substrate bonding method
CN100407396C (en) Substrate positioning device, substrate positioning method and program
JP6303556B2 (en) Substrate transport mechanism position detection method, storage medium, and substrate transport mechanism position detection device
CN100524684C (en) Method for positioning a wafer
US20070071581A1 (en) Process apparatus with on-the-fly workpiece centering
JP2006351884A (en) Substrate conveyance mechanism and processing system
JP2004502312A (en) Edge gripping type front aligner
US10340175B2 (en) Substrate transfer teaching method and substrate processing system
US7823295B2 (en) Method for calibration of a measuring table of a coordinate measuring machine
JP2010067905A (en) Wafer alignment method and equipment
JP2006351883A (en) Substrate conveyance mechanism and processing system
WO2002007236A1 (en) Displacement detector and processing system
KR20190055068A (en) Integrated Radiation Sensor Alignment Characteristics
TWI837967B (en) Wafer processing system and method of wafer localization
CN108614392B (en) Lithographic apparatus, method of manufacturing article, and measuring apparatus
JP6688273B2 (en) Lithographic apparatus, lithographic method, determination method, and article manufacturing method
JP5584808B2 (en) Method for adjusting position of substrate transfer apparatus
CN111201594A (en) Shallow angle, multi-wavelength, multi-photoreceptor, adjustable sensitivity calibration sensor for semiconductor manufacturing equipment
CN118099058A (en) Wafer processing system and method for positioning wafer
JPWO2010073817A1 (en) Substrate positioning apparatus, substrate processing apparatus, substrate positioning program, and electronic device manufacturing method
TWI712072B (en) Exposure apparatus, method thereof, and method of manufacturing article
CN112342519A (en) Film forming system, method for determining abnormal portion of film forming system, and computer-readable storage medium
KR101300852B1 (en) Method for appointing orientation flat, apparatus for detecting orientation flat, and recording medium having program for appointing orientation flat recorded therein