TWI837940B - Memory device capable of performing in-memory computing - Google Patents

Memory device capable of performing in-memory computing Download PDF

Info

Publication number
TWI837940B
TWI837940B TW111143138A TW111143138A TWI837940B TW I837940 B TWI837940 B TW I837940B TW 111143138 A TW111143138 A TW 111143138A TW 111143138 A TW111143138 A TW 111143138A TW I837940 B TWI837940 B TW I837940B
Authority
TW
Taiwan
Prior art keywords
voltage
memory
control signal
memory cell
bit line
Prior art date
Application number
TW111143138A
Other languages
Chinese (zh)
Other versions
TW202420308A (en
Inventor
林樹森
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW111143138A priority Critical patent/TWI837940B/en
Application granted granted Critical
Publication of TWI837940B publication Critical patent/TWI837940B/en
Publication of TW202420308A publication Critical patent/TW202420308A/en

Links

Images

Landscapes

  • Dram (AREA)

Abstract

A memory device capable of performing in-memory computing is provided, which includes a memory cell array, a sense amplifier, a voltage control circuit, a wordline decoding circuit. The memory cell array includes a plurality of memory cells arranged in a two-dimensional array. The memory cells on each row of the memory cell array are connected to a corresponding wordline, and the memory cells on each column of the memory cell array are connected to a corresponding bitline. The sense amplifier detects a voltage level on the activated bitline and an inverse bitline corresponding to the bitline. The voltage control circuit select a detection voltage provided to the sense amplifier according to a control signal from a memory controller. The wordline decoding circuit activates a first wordline and a second wordline among the wordlines according to the control signal.

Description

可執行記憶體內運算之記憶體裝置A memory device that can perform in-memory operations

本發明係有關於記憶體裝置,特別是有關於一種可執行記憶體內運算之記憶體裝置。The present invention relates to a memory device, and more particularly to a memory device capable of executing in-memory operations.

傳統的電腦裝置通常使用馮紐曼(Von Neumann)架構以在中央處理器及記憶體裝置之間進行資料傳輸。然而,當中央處理器及記憶體裝置之間的資料傳輸量需求極大時,往往在中央處理器及記憶體裝置之間會產生資料傳輸的瓶頸,此即稱為馮紐曼瓶頸。因此,需要一種可執行記憶體內運算之記憶體裝置以解決上述問題。Traditional computer devices usually use the Von Neumann architecture to transfer data between the CPU and the memory device. However, when the data transfer volume between the CPU and the memory device is extremely large, a data transfer bottleneck often occurs between the CPU and the memory device, which is called the Von Neumann bottleneck. Therefore, a memory device that can perform in-memory operations is needed to solve the above problem.

本發明係提供一種可執行記憶體內運算的記憶體裝置,包括:一記憶體單元陣列,包括以二維陣列方式排列的複數個記憶體單元,其中該記憶體單元陣列中之每一列上的該等記憶體單元係連接至相應的字元線,且該記憶體單元陣列中之每一行上的該等記憶體單元係連接至相應的位元線;一感測放大器,用以偵測已開啟的該位元線及相應於該位元線之反向位元線上的電壓位準,一電壓控制電路,用以依據來自一記憶體控制器之控制信號以選擇提供至該感測放大器之偵測電壓;以及一字元線解碼電路,用以依據該控制信號以開啟該等字元線中之第一字元線及第二字元線。The present invention provides a memory device capable of executing in-memory operations, comprising: a memory cell array, comprising a plurality of memory cells arranged in a two-dimensional array, wherein the memory cells on each row of the memory cell array are connected to corresponding word lines, and the memory cells on each column of the memory cell array are connected to corresponding bit lines; A sense amplifier is used to detect the voltage level on the turned-on bit line and the inverted bit line corresponding to the bit line, a voltage control circuit is used to select the detection voltage provided to the sense amplifier according to a control signal from a memory controller; and a word line decoding circuit is used to turn on the first word line and the second word line among the word lines according to the control signal.

第1圖為依據本發明一實施例中之運算裝置的示意圖。如第1圖所示,運算裝置10包括中央處理器110及記憶體裝置120。中央處理器110係電性連接至記憶體裝置120,其中記憶體裝置120例如為動態隨機存取記憶體(DRAM),但本發明並不限於此。記憶體裝置120例如包括複數個記憶體庫(memory bank),且每個記憶體庫包括複數個記憶體單元陣列,其中各個記憶體單元陣列例如以二維陣列(例如:M列*N行)的方式進行排列,其中上述記憶體單元陣列之每一列及每一行係分別連接至對應的字元線及位元線。此外,各記憶體單元可儲存1位元或M位元之資料,其中M為大於1之整數。FIG. 1 is a schematic diagram of a computing device according to an embodiment of the present invention. As shown in FIG. 1, the computing device 10 includes a central processing unit 110 and a memory device 120. The central processing unit 110 is electrically connected to the memory device 120, wherein the memory device 120 is, for example, a dynamic random access memory (DRAM), but the present invention is not limited thereto. The memory device 120 includes, for example, a plurality of memory banks, and each memory bank includes a plurality of memory cell arrays, wherein each memory cell array is, for example, arranged in a two-dimensional array (e.g., M columns*N rows), wherein each column and each row of the above-mentioned memory cell array are respectively connected to corresponding word lines and bit lines. In addition, each memory cell can store 1 bit or M bits of data, where M is an integer greater than 1.

中央處理器110例如包括記憶體控制器111、算術邏輯單元(arithmetic logic unit,ALU)112、以及快取記憶體113。記憶體控制器111係用以控制記憶體裝置120的資料存取。需注意的是,記憶體控制器111發出至記憶體裝置120的控制信號115可控制記憶體裝置120進行記憶體內運算(in-memory computing),例如可執行按位及(AND)/或(OR)運算。記憶體控制器111更可從記憶體裝置120接收按位運算處理過後的資料、或是未經過邏輯運算處理的一般資料。The CPU 110 includes, for example, a memory controller 111, an arithmetic logic unit (ALU) 112, and a cache memory 113. The memory controller 111 is used to control data access of the memory device 120. It should be noted that the control signal 115 sent by the memory controller 111 to the memory device 120 can control the memory device 120 to perform in-memory computing, such as performing bitwise AND/OR operations. The memory controller 111 can also receive data processed by bitwise operations or general data that has not been processed by logical operations from the memory device 120.

算術邏輯單元112係依據中央處理器110所執行的指令以進行相應的算術運算及/或邏輯運算。在一些實施例中,為了降低中央處理器110及記憶體裝置120之間的資料頻寬需求,中央處理器110的記憶體控制器111會發出相應的控制信號115至記憶體裝置120以將部分的邏輯運算(例如:按位及(AND)/或(OR)運算)交由記憶體裝置120執行,並從記憶體裝置120接收上述邏輯運算處理後的資料(例如透過資料匯流排116),再將上述資料傳送至算術邏輯單元112以進行後續處理。 The ALU 112 performs corresponding arithmetic operations and/or logic operations according to the instructions executed by the CPU 110. In some embodiments, in order to reduce the data bandwidth requirement between the CPU 110 and the memory device 120, the memory controller 111 of the CPU 110 will send a corresponding control signal 115 to the memory device 120 to hand over part of the logic operation (for example, bitwise AND/OR operation) to the memory device 120 for execution, and receive the data processed by the above logic operation from the memory device 120 (for example, through the data bus 116), and then transmit the above data to the arithmetic logic unit 112 for subsequent processing.

記憶體裝置120例如包括複數個記憶體庫121~12N,且各個記憶體庫121~12N均包括複數個記憶體單元陣列1211~121N。 The memory device 120 includes, for example, a plurality of memory libraries 121 to 12N, and each memory library 121 to 12N includes a plurality of memory unit arrays 1211 to 121N.

第2A圖為依據本發明第1圖實施例中之記憶體單元陣列的電路圖。請同時參考第1圖及第2A圖。 FIG. 2A is a circuit diagram of the memory cell array in the embodiment of FIG. 1 of the present invention. Please refer to FIG. 1 and FIG. 2A at the same time.

在第2A圖中係以記憶體單元陣列1211進行說明,其他的記憶體單元陣列1212~121N之電路圖均類似於第2A圖。記憶體單元陣列1211包括複數個記憶體單元201,其係以二維陣列進行排列,且每一列的記憶體單元201係連接至相應的字元線202,且每一行的記憶體單元201係連接至相應的位元線203。此外,每條位元線203均連接至相應的感測放大器204。 In FIG. 2A, the memory cell array 1211 is used for illustration, and the circuit diagrams of other memory cell arrays 1212~121N are similar to FIG. 2A. The memory cell array 1211 includes a plurality of memory cells 201 arranged in a two-dimensional array, and each row of memory cells 201 is connected to a corresponding word line 202, and each row of memory cells 201 is connected to a corresponding bit line 203. In addition, each bit line 203 is connected to a corresponding sense amplifier 204.

第2B圖為依據本發明第2A圖實施例中之記憶體單元的電路圖。第2C圖為依據本發明第2B圖實施例中之記憶體單元進行讀取程序的示意圖。 Figure 2B is a circuit diagram of the memory unit in the embodiment of Figure 2A of the present invention. Figure 2C is a schematic diagram of the reading process of the memory unit in the embodiment of Figure 2B of the present invention.

請參考第2B圖,記憶體單元201包括電晶體2011及電容2012,其中字元線202之邏輯位準係控制電晶體2011之開啟及關閉。此外,第2C圖分別表示記憶體單元201進行存取程序的五個狀態

Figure 111143138-A0305-02-0007-7
~
Figure 111143138-A0305-02-0007-8
的示意圖。 Referring to FIG. 2B , the memory cell 201 includes a transistor 2011 and a capacitor 2012 , wherein the logic level of the word line 202 controls the on and off of the transistor 2011 . In addition, FIG. 2C shows five states of the memory cell 201 in the access process.
Figure 111143138-A0305-02-0007-7
~
Figure 111143138-A0305-02-0007-8
Schematic diagram of .

在第2C圖中,記憶體單元201的電容2012為完全充電狀態。狀態1表示初始預充電狀態,此時,字元線202之邏輯位準為0且感測放大器204關閉,且位元線203之電壓位準會預充電至電壓

Figure 111143138-A0305-02-0008-10
V DD 。接著,記憶體單元201存取操作會被記憶體單元201所相應的字元線202上的ACT指令所觸發以進入狀態2。在狀態2中,字元線202開啟,故其電壓位準會達到電壓V DD 。此時,感測放大器204仍處於關閉狀態。狀態3表示電荷分享狀態,儲存於電容2012的電荷會從記憶體單元201流向位元線203,使得位元線203的電壓位準提高至電壓
Figure 111143138-A0305-02-0008-11
V DD +δ。此時,感測放大器204仍處於關閉狀態。在狀態4中,感測放大器204開啟以感測位元線203的電壓位準與電壓
Figure 111143138-A0305-02-0008-12
V DD 之間的偏差值δ(可為正偏差值或負偏差值),並將該偏差值δ放大直到位元線203之電壓位準到達電壓V DD ,意即進入狀態5。此時,因為電容2012仍然連接至位元線203,故電容2012所儲存之電位會被充電至原本的完全充電狀態。 In FIG. 2C , the capacitor 2012 of the memory cell 201 is in a fully charged state. State 1 represents the initial pre-charge state, where the logic level of the word line 202 is 0 and the sense amplifier 204 is off, and the voltage level of the bit line 203 is pre-charged to a voltage
Figure 111143138-A0305-02-0008-10
V DD . Then, the memory cell 201 access operation is triggered by the ACT instruction on the word line 202 corresponding to the memory cell 201 to enter state 2. In state 2, the word line 202 is turned on, so its voltage level reaches the voltage V DD . At this time, the sense amplifier 204 is still in the off state. State 3 represents the charge sharing state, and the charge stored in the capacitor 2012 flows from the memory cell 201 to the bit line 203, causing the voltage level of the bit line 203 to increase to the voltage
Figure 111143138-A0305-02-0008-11
VDD + δ. At this time, the sense amplifier 204 is still in the off state. In state 4, the sense amplifier 204 is turned on to sense the voltage level of the bit line 203 and the voltage
Figure 111143138-A0305-02-0008-12
V DD , and amplifies the deviation δ until the voltage level of the bit line 203 reaches the voltage V DD , which means entering state 5. At this time, because the capacitor 2012 is still connected to the bit line 203, the potential stored in the capacitor 2012 will be charged to the original fully charged state.

第3圖為依據本發明一實施例中之記憶體單元陣列的示意圖。請同時參考第1圖及第3圖。 Figure 3 is a schematic diagram of a memory cell array according to an embodiment of the present invention. Please refer to Figures 1 and 3 at the same time.

記憶體單元陣列1211中包含記憶體單元301A、301B及301C,且記憶體單元301A~301C係連接至相同的位元線BL,且感測放大器304係用以感測位元線BL及反向位元線bBL的電壓位準。此外,記憶體單元301A~301C相應的字元線WLR、WL1及WL2可同時開啟以使記憶體單元301A~301C連接至位元線BL。因此,在記憶體單元301A~301C中的電容CSR、CS1及C S2所儲存的電荷會進行電荷共享,且在電荷共享後的位元線BL之電壓位準的偏差值 會朝向三個記憶體單元301A~301C之電容C SR、C S1及C S2所儲存之電壓位準的多數值。 The memory cell array 1211 includes memory cells 301A, 301B, and 301C, and the memory cells 301A-301C are connected to the same bit line BL, and the sense amplifier 304 is used to sense the voltage level of the bit line BL and the inverted bit line bBL. In addition, the word lines WLR, WL1, and WL2 corresponding to the memory cells 301A-301C can be turned on at the same time to connect the memory cells 301A-301C to the bit line BL. Therefore, the charges stored in the capacitors CSR , CS1 , and CS2 in the memory cells 301A-301C are charge-shared, and the deviation value of the voltage level of the bit line BL after charge sharing is It will be toward the majority value of the voltage levels stored by the capacitors CSR , CS1 and CS2 of the three memory cells 301A-301C.

舉例來説,若記憶體單元301A~301C之電容C SR、C S1及C S2有至少兩者在初始處於充電狀態,則位元線BL之電壓位準會出現正偏差。反之,若記憶體單元301A~301C之電容C SR、C S1及C S2至多一個在初始處於充電狀態,則位元線BL之電壓位準會出現負偏差。 For example, if at least two of the capacitors CSR , CS1 and CS2 of the memory cells 301A-301C are initially in a charged state, the voltage level of the bit line BL will have a positive deviation. Conversely, if at most one of the capacitors CSR , CS1 and CS2 of the memory cells 301A-301C is initially in a charged state, the voltage level of the bit line BL will have a negative deviation.

詳細而言,記憶體單元301A可視為參考記憶體單元,且電容C SR所儲存的電壓位準R可用以控制記憶體單元陣列1211以執行按位及(AND)操作、或按位或(OR)操作。為了便於說明,電容C S1及C S2所儲存的電壓位準分別為A及B,且電壓位準R、A及B可分別視為記憶體單元301A、301B及301C的邏輯狀態。因此,同時開啟字元線WLR、WL1及WL2後,感測放大器304所感測到的邏輯狀態OUT可用式(1)或式(2)表示: In detail, the memory cell 301A can be regarded as a reference memory cell, and the voltage level R stored in the capacitor CSR can be used to control the memory cell array 1211 to perform a bitwise AND operation or a bitwise OR operation. For the sake of convenience, the voltage levels stored in the capacitors CS1 and CS2 are A and B, respectively, and the voltage levels R, A and B can be regarded as the logic states of the memory cells 301A, 301B and 301C, respectively. Therefore, after the word lines WLR, WL1 and WL2 are turned on at the same time, the logic state OUT sensed by the sense amplifier 304 can be expressed by equation (1) or equation (2):

因此,若電壓位準R之初始邏輯狀態為1,則位元線BL在電荷分享後的邏輯狀態OUT為電壓位準A及B進行按位或(OR)運算。若電壓位準R之初始邏輯狀態為0,則位元線BL在電荷分享後的邏輯狀態OUT為電壓位準A及B進行按位及(AND)運算。因此,記憶體單元301A~301C執行按位及(AND)操作、以及按位或(OR)操作之真值表可分別用表1及表2表示: 按位及(AND)運算 (R=0) A B OUT 0 0 0 0 1 0 1 0 0 1 1 1 表1 按位及(OR)運算 (R=1) A B OUT 0 0 0 0 1 1 1 0 1 1 1 1 表2 Therefore, if the initial logic state of the voltage level R is 1, the logic state OUT of the bit line BL after charge sharing is a bitwise OR operation of the voltage levels A and B. If the initial logic state of the voltage level R is 0, the logic state OUT of the bit line BL after charge sharing is a bitwise AND operation of the voltage levels A and B. Therefore, the truth tables of the memory cells 301A-301C performing the bitwise AND operation and the bitwise OR operation can be represented by Table 1 and Table 2 respectively: Bitwise AND operation (R=0) A B OUT 0 0 0 0 1 0 1 0 0 1 1 1 Table 1 Bitwise AND (OR) operation (R=1) A B OUT 0 0 0 0 1 1 1 0 1 1 1 1 Table 2

對於第3圖中之感測放大器304所偵測到的位元線BL及反向位元線bBL之間的電壓位準之偏差值 ,可用式(3)表示:

Figure 111143138-A0305-02-0011-2
The deviation of the voltage level between the bit line BL and the reverse bit line bBL detected by the sense amplifier 304 in FIG. , which can be expressed by formula (3):
Figure 111143138-A0305-02-0011-2

其中m表示在電荷共享前的記憶體單元儲存電壓位準為VBLH(即表示為高邏輯狀態)的數量;n表示在同一條位元線上開啟的字元線數量,其中n例如為介於0~3之間的整數。若同時開啟三條字元線,則n=3。若同時開啟兩條字元線,則n=2,依此類推。在一些實施例中,電壓

Figure 111143138-A0305-02-0011-5
。 Where m represents the number of memory cells with a storage voltage level of V BLH (i.e., a high logic state) before charge sharing; n represents the number of word lines turned on on the same bit line, where n is, for example, an integer between 0 and 3. If three word lines are turned on at the same time, n=3. If two word lines are turned on at the same time, n=2, and so on. In some embodiments, the voltage
Figure 111143138-A0305-02-0011-5
.

在一實施例中,假設電壓V DD =1V;VBLH=1V;CS1=CS2=17fF;CBL=27fF;

Figure 111143138-A0305-02-0011-13
1.6,則可利用表1、表2以及式(3)以推導出在同時開啟三條字元線WLR、WL1及WL2時(即n=3),感測放大器204所偵測到的偏差值△V BL 以及相應的位元線BL之邏輯狀態OUT,例如分別如表3及表4所示:
Figure 111143138-A0305-02-0011-3
表3 按位或(OR)運算 (R=1) 且同時開啟三條字元線 (n=3) A B m OUT 0 0 0 -0.104V 0 0 1 1 +0.104V 1 1 0 1 +0.104V 1 1 1 2 +0.315V 1 表4 In one embodiment, assume that the voltages V DD = 1V; V BLH = 1V; CS1 = CS2 = 17fF; C BL = 27fF;
Figure 111143138-A0305-02-0011-13
1.6, Table 1, Table 2 and formula (3) can be used to deduce the deviation value △ V BL detected by the sense amplifier 204 and the logic state OUT of the corresponding bit line BL when the three word lines WLR, WL1 and WL2 are turned on at the same time (i.e., n=3), as shown in Table 3 and Table 4 respectively:
Figure 111143138-A0305-02-0011-3
table 3 Bitwise OR operation (R=1) and enable three word lines at the same time (n=3) A B m OUT 0 0 0 -0.104V 0 0 1 1 +0.104V 1 1 0 1 +0.104V 1 1 1 2 +0.315V 1 Table 4

第4A圖為依據本發明另一實施例中之記憶體單元陣列的示意圖。第4B圖為依據本發明第4A圖實施例中之電壓控制電路的電路圖。請同時參考第1圖及第4A-4B圖。FIG. 4A is a schematic diagram of a memory cell array in another embodiment of the present invention. FIG. 4B is a circuit diagram of a voltage control circuit in the embodiment of FIG. 4A of the present invention. Please refer to FIG. 1 and FIGS. 4A-4B at the same time.

記憶體單元陣列400包括記憶體單元401及402、感測放大器404、電壓控制電路405以及字元線解碼電路406。記憶體單元401及402係連接至相同的位元線BL,且感測放大器404係用以感測位元線BL及反向位元線bBL的電壓位準。此外,記憶體單元401及402相應的字元線WL1及WL2可同時開啟以使記憶體單元401及402連接至位元線BL。在此實施例中,記憶體單元陣列400例如可透過電壓控制電路405以及字元線解碼電路406以對記憶體單元401及402所儲存的資料進行電荷共享以達成按位及(AND)運算、或是按位或(OR)運算。The memory cell array 400 includes memory cells 401 and 402, a sense amplifier 404, a voltage control circuit 405, and a word line decoding circuit 406. The memory cells 401 and 402 are connected to the same bit line BL, and the sense amplifier 404 is used to sense the voltage levels of the bit line BL and the inverted bit line bBL. In addition, the word lines WL1 and WL2 corresponding to the memory cells 401 and 402 can be turned on at the same time so that the memory cells 401 and 402 are connected to the bit line BL. In this embodiment, the memory cell array 400 can charge-share the data stored in the memory cells 401 and 402 through the voltage control circuit 405 and the word line decoding circuit 406 to achieve a bitwise AND operation or a bitwise OR operation.

電壓控制電路405例如可依據來自記憶體控制器111之控制信號115以選擇提供至感測放大器404之偵測電壓V BLEQ。在一些實施例中,電壓控制電路405可在電壓 之間進行選擇偵測電壓V BLEQ的電壓位準,但本發明並不限於此。舉例來説,控制信號115可包括記憶體操作的相關控制信號、以及開啟記憶體單元陣列400之相關字元線的位址信號。上述記憶體操作的相關控制信號包括正常讀取控制信號Normal_Read、或運算控制信號OR_Cal與及運算控制信號AND_Cal,且上述三個控制信號最多僅有一者為高邏輯狀態以使記憶體單元陣列400執行相應的操作。 The voltage control circuit 405 can, for example, select the detection voltage V BLEQ provided to the sense amplifier 404 according to the control signal 115 from the memory controller 111. In some embodiments, the voltage control circuit 405 can be , and The voltage level of the detection voltage V BLEQ is selected between, but the present invention is not limited thereto. For example, the control signal 115 may include a control signal related to the memory operation and an address signal for turning on a related word line of the memory cell array 400. The control signal related to the memory operation includes a normal read control signal Normal_Read, or an operation control signal OR_Cal and an operation control signal AND_Cal, and at most only one of the three control signals is in a high logic state to enable the memory cell array 400 to perform a corresponding operation.

舉例來説,當正常讀取控制信號Normal_Read為高邏輯狀態,記憶體單元陣列400則會執行一般的正常讀取操作,意即字元線解碼電路406會依據控制信號115中的相關位址信號以開啟其中一條字元線以對該字元線上的記憶體單元進行資料存取。此時,在第4B圖中的電晶體Q3A會開啟以將電壓 做為偵測電壓V BLEQFor example, when the normal read control signal Normal_Read is in a high logic state, the memory cell array 400 will perform a normal read operation, that is, the word line decoding circuit 406 will open one of the word lines according to the relevant address signal in the control signal 115 to access the data of the memory cell on the word line. At this time, the transistor Q3A in FIG. 4B will be turned on to raise the voltage as the detection voltage V BLEQ .

當或運算控制信號OR_Cal為高邏輯狀態,記憶體單元陣列400則會執行按位或(OR)運算。此時,控制信號115中的位址信號亦會改變為同時致能兩條字元線(例如字元線WL1及WL2)以對相應的記憶體單元(例如記憶體單元401及402)所儲存的資料進行按位或(OR)運算。此外,在第4B圖中的電晶體Q3B會開啟以將電壓 做為偵測電壓V BLEQWhen the OR operation control signal OR_Cal is in a high logic state, the memory cell array 400 will perform a bitwise OR operation. At this time, the address signal in the control signal 115 will also change to enable two word lines (e.g., word lines WL1 and WL2) at the same time to perform a bitwise OR operation on the data stored in the corresponding memory cells (e.g., memory cells 401 and 402). In addition, the transistor Q3B in FIG. 4B will turn on to turn the voltage as the detection voltage V BLEQ .

當及運算控制信號AND_Cal為高邏輯狀態,記憶體單元陣列400則會執行按位及(AND)運算。此時,控制信號115中的位址信號亦會改變為同時致能兩條字元線(例如字元線WL1及WL2)以對相應的記憶體單元(例如記憶體單元401及402)所儲存的資料進行按位及(AND)運算。此外,在第4B圖中的電晶體Q3C會開啟以將電壓 做為偵測電壓V BLEQWhen the AND operation control signal AND_Cal is in a high logic state, the memory cell array 400 will perform a bitwise AND operation. At this time, the address signal in the control signal 115 will also change to enable two word lines (e.g., word lines WL1 and WL2) at the same time to perform a bitwise AND operation on the data stored in the corresponding memory cells (e.g., memory cells 401 and 402). In addition, the transistor Q3C in FIG. 4B will turn on to turn the voltage as the detection voltage V BLEQ .

無論記憶體單元陣列400則會執行按位或(OR)運算、或是按位及(AND)運算,記憶體單元401及402在位元線BL上的電荷分享機制仍然可參考式(3),唯此時因為是同時開啟兩條字元線WL1及WL2,故n之數值等於2。Regardless of whether the memory cell array 400 performs a bitwise OR operation or a bitwise AND operation, the charge sharing mechanism of the memory cells 401 and 402 on the bit line BL can still refer to equation (3), but this time, because two word lines WL1 and WL2 are turned on at the same time, the value of n is equal to 2.

在第4A-4B圖之實施例中,假設電壓位準A及B可分別視為記憶體單元401及402的邏輯狀態,依據第3圖實施例之類似數據:電壓 =1V;V BLH=1V;C S1=C S2=17fF;C BL=27fF; ,可推導出在同時開啟兩條字元線WL1及WL2時(即n=2),感測放大器404所偵測到的偏差值 以及相應的位元線BL之邏輯狀態OUT,例如分別如表5及表6所示: 按位及(AND)運算 (AND_Cal=1) 且同時開啟兩條字元線 (n=2) A B m V BLEQ OUT 0 0 0 -0.417V 0 0 1 1 -0.139V 0 1 0 1 -0.139V 0 1 1 2 +0.139V 1 表5 按位或(OR)運算 (OR_Cal=1) 且同時開啟兩條字元線 (n=2) A B m V BLEQ OUT 0 0 0 -0.139V 0 0 1 1 +0.139V 1 1 0 1 +0.139V 1 1 1 2 +0.417V 1 表6 In the embodiment of FIG. 4A-4B, it is assumed that voltage levels A and B can be regarded as the logical states of memory cells 401 and 402, respectively. According to similar data of the embodiment of FIG. 3: voltage =1V; V BLH =1V; C S1 =C S2 =17fF; C BL =27fF; , it can be deduced that when two word lines WL1 and WL2 are turned on at the same time (ie n=2), the deviation value detected by the sense amplifier 404 is And the corresponding logic state OUT of the bit line BL are shown in Table 5 and Table 6 respectively: Bitwise AND operation (AND_Cal=1) and enable two word lines at the same time (n=2) A B m V BLEQ OUT 0 0 0 -0.417V 0 0 1 1 -0.139V 0 1 0 1 -0.139V 0 1 1 2 +0.139V 1 table 5 Bitwise OR operation (OR_Cal=1) and turn on two word lines at the same time (n=2) A B m V BLEQ OUT 0 0 0 -0.139V 0 0 1 1 +0.139V 1 1 0 1 +0.139V 1 1 1 2 +0.417V 1 Table 6

綜合第3圖及第4A-4B圖之實施例,可以推導出同時開啟3條字元線以及同時開啟2條字元線對於偏差值 的影響,如表7所示: 按位運算 A B - AND 0 0 -0.315V -0.417V 102mV 0 1 -0.104V -0.139V 35mV 1 0 -0.104V -0.139V 35mV 1 1 +0.104V +0.139V 35mV OR 0 0 -0.104V -0.139V 35mV 0 1 +0.104V +0.139V 35mV 1 0 +0.104V +0.139V 35mV 1 1 +0.315V +0.417V 102mV 表7 Combining the embodiments of FIG. 3 and FIG. 4A-4B, it can be deduced that the deviation value of opening three word lines at the same time and opening two word lines at the same time is The impact is shown in Table 7: Bitwise operations A B - AND 0 0 -0.315V -0.417V 102mV 0 1 -0.104V -0.139V 35mV 1 0 -0.104V -0.139V 35mV 1 1 +0.104V +0.139V 35mV OR 0 0 -0.104V -0.139V 35mV 0 1 +0.104V +0.139V 35mV 1 0 +0.104V +0.139V 35mV 1 1 +0.315V +0.417V 102mV Table 7

其中, 表示第4A-4B圖中之偏差值 表示第3圖中之偏差值 。因此,從表7可看出當記憶體單元陣列400執行按位及(AND)運算時,在電壓位準(A,B)分別為(0,0)、(0,1)、(1,0)及(1,1)時,偏差值 的信號範圍(signal margin)均比偏差值 的信號範圍還大。此外,當記憶體單元陣列400執行按位或(OR)運算時,在電壓位準(A,B)分別為(0,0)、(0,1)、(1,0)及(1,1)時,偏差值 的信號範圍(signal margin)同樣均比偏差值 的信號範圍還大。換言之,相較於第3圖的記憶體單元陣列300,在第4A圖中的記憶體單元陣列400具有較大的信號範圍,故感測放大器404可以更容易並準確地判斷位元線BL的邏輯位準,且對於半導體製程變異可具有較大的容忍度。 in, Indicates the deviation value in Figure 4A-4B ; Indicates the deviation value in Figure 3 Therefore, it can be seen from Table 7 that when the memory cell array 400 performs a bitwise AND operation, when the voltage levels (A, B) are (0,0), (0,1), (1,0) and (1,1) respectively, the deviation value The signal margin is greater than the deviation value In addition, when the memory cell array 400 performs a bitwise OR operation, when the voltage levels (A, B) are (0,0), (0,1), (1,0) and (1,1), respectively, the deviation value The signal margin is also greater than the deviation value. In other words, compared to the memory cell array 300 in FIG. 3 , the memory cell array 400 in FIG. 4A has a larger signal range, so the sense amplifier 404 can more easily and accurately determine the logic level of the bit line BL and has a greater tolerance for semiconductor process variations.

綜上所述,本發明係提供一種可執行記憶體內運算的記憶體裝置,其包含記憶體單元陣列可利用字元線解碼電路以同時開啟多條字元線以對相應的記憶體單元進行電荷共享,並利用電壓控制電路以選擇合適的偵測電壓,藉以執行按位及(AND)運算、或是按位或(OR)運算。因此,本發明之記憶體單元陣列可具有較大的信號範圍,並對於半導體製程變異可具有較大的容忍度。In summary, the present invention provides a memory device capable of performing in-memory operations, which includes a memory cell array that can use a word line decoding circuit to simultaneously open multiple word lines to perform charge sharing for corresponding memory cells, and use a voltage control circuit to select an appropriate detection voltage to perform a bitwise AND operation or a bitwise OR operation. Therefore, the memory cell array of the present invention can have a larger signal range and a greater tolerance for semiconductor process variations.

10:運算裝置 110:中央處理器 111:記憶體控制器 112:算術邏輯單元 113:快取記憶體 115:控制信號 116:資料匯流排 120:記憶體裝置 121-12N:記憶體庫 1211-121N:記憶體單元陣列 201:記憶體單元 202:字元線 203:位元線 204:感測放大器 2011:電晶體 2012:電容 301A-301C:記憶體單元 304:感測放大器 400:記憶體單元陣列 401、402:記憶體單元 404:感測放大器 405:電壓控制電路 406:字元線解碼電路 V DD、V BLH:電壓 V BLEQ:偵測電壓 :偏差值 1~5:狀態 BL:位元線 bBL:反向位元線 WLR、WL1、WL2:字元線 Q1A、Q1B、Q1C、Q2A、Q2B:電晶體 Q3A、Q3B、Q3C:電晶體 C BL、C SR、C S1、C S2:電容 Normal_Read:正常讀取控制信號 OR_Cal:或運算控制信號 AND_Cal:及運算控制信號 10: Computing device 110: Central processing unit 111: Memory controller 112: Arithmetic logic unit 113: Cache memory 115: Control signal 116: Data bus 120: Memory device 121-12N: Memory bank 1211-121N: Memory cell array 201: Memory cell 202: Word line 203: Bit line 204: Sense amplifier 2011: Transistor 2012: Capacitor 301A-301C: Memory cell 304: Sense amplifier 400: Memory cell array 401, 402: Memory cell 404: Sense amplifier 405: Voltage control circuit 406: Word line decoding circuit V DD , V BLH : Voltage V BLEQ : Detection voltage : Deviation value 1~5: State BL: Bit line bBL: Reverse bit line WLR, WL1, WL2: Word line Q1A, Q1B, Q1C, Q2A, Q2B: Transistor Q3A, Q3B, Q3C: Transistor C BL , C SR , C S1 , C S2 : Capacitor Normal_Read: Normal read control signal OR_Cal: Or operation control signal AND_Cal: And operation control signal

第1圖為依據本發明一實施例中之運算裝置的示意圖。 第2A圖為依據本發明第1圖實施例中之記憶體單元陣列的電路圖。 第2B圖為依據本發明第2A圖實施例中之記憶體單元的電路圖。 第2C圖為依據本發明第2B圖實施例中之記憶體單元進行讀取程序的示意圖。 第3圖為依據本發明一實施例中之記憶體單元陣列的示意圖。 第4A圖為依據本發明另一實施例中之記憶體單元陣列的示意圖。 第4B圖為依據本發明第4A圖實施例中之電壓控制電路的電路圖。 FIG. 1 is a schematic diagram of an operation device according to an embodiment of the present invention. FIG. 2A is a circuit diagram of a memory cell array according to the embodiment of FIG. 1 of the present invention. FIG. 2B is a circuit diagram of a memory cell according to the embodiment of FIG. 2A of the present invention. FIG. 2C is a schematic diagram of a read program of a memory cell according to the embodiment of FIG. 2B of the present invention. FIG. 3 is a schematic diagram of a memory cell array according to an embodiment of the present invention. FIG. 4A is a schematic diagram of a memory cell array according to another embodiment of the present invention. FIG. 4B is a circuit diagram of a voltage control circuit according to the embodiment of FIG. 4A of the present invention.

115:控制信號 115: Control signal

400:記憶體單元陣列 400: Memory cell array

401、402:記憶體單元 401, 402: memory unit

404:感測放大器 404: Sense amplifier

405:電壓控制電路 405: Voltage control circuit

406:字元線解碼電路 406: Character line decoding circuit

BL:位元線 BL: Bit Line

bBL:反向位元線 bBL: reverse bit line

WL1、WL2:字元線 WL1, WL2: character line

Q2A、Q2B:電晶體 Q2A, Q2B: Transistor

CBL、CS1、CS2:電容 C BL , CS1 , CS2 : Capacitor

VBLEQ:偵測電壓 V BLEQ : Detection voltage

Claims (10)

一種可執行記憶體內運算的記憶體裝置,包括:一記憶體單元陣列,包括以二維陣列方式排列的複數個記憶體單元,其中該記憶體單元陣列中之每一列上的該等記憶體單元係連接至相應的字元線,且該記憶體單元陣列中之每一行上的該等記憶體單元係連接至相應的位元線;一感測放大器,用以偵測已開啟的該位元線及相應於該位元線之反向位元線上的電壓位準,一電壓控制電路,用以依據來自一記憶體控制器之控制信號以選擇提供至該感測放大器之偵測電壓;以及一字元線解碼電路,用以依據該控制信號以開啟該等字元線中之第一字元線及第二字元線;其中,該記憶體單元陣列係依據來自該記憶體控制器之該控制信號以進行運算,而該控制信號包括一正常讀取控制信號、一或運算控制信號與一及運算控制信號,且該正常讀取控制信號、該或運算控制信號與該及運算控制信號之其中一者處於高邏輯狀態。 A memory device capable of executing in-memory operations comprises: a memory cell array, comprising a plurality of memory cells arranged in a two-dimensional array, wherein the memory cells on each row of the memory cell array are connected to a corresponding word line, and the memory cells on each column of the memory cell array are connected to a corresponding bit line; a sense amplifier for detecting the voltage level on the turned-on bit line and the inverted bit line corresponding to the bit line, and a voltage control circuit for controlling the voltage level of the turned-on bit line according to a memory control circuit; A control signal from a memory controller is used to select a detection voltage provided to the sense amplifier; and a word line decoding circuit is used to turn on the first word line and the second word line among the word lines according to the control signal; wherein the memory cell array is operated according to the control signal from the memory controller, and the control signal includes a normal read control signal, an OR operation control signal and an AND operation control signal, and one of the normal read control signal, the OR operation control signal and the AND operation control signal is in a high logic state. 如請求項1之可執行記憶體內運算的記憶體裝置,其中該電壓控制電路係依據來自該記憶體控制器之該控制信號,選擇一第一電壓、一第二電壓或一第三電壓以做為提供至該感測放大器之該偵測電壓。 A memory device capable of performing in-memory operations as in claim 1, wherein the voltage control circuit selects a first voltage, a second voltage, or a third voltage as the detection voltage provided to the sense amplifier according to the control signal from the memory controller. 如請求項2之可執行記憶體內運算的記憶體裝置,其中,該第三電壓大於第一電壓,且該第一電壓大於第二電壓。 A memory device capable of performing in-memory operations as in claim 2, wherein the third voltage is greater than the first voltage, and the first voltage is greater than the second voltage. 如請求項2之可執行記憶體內運算的記憶體裝置,其中,該位元線之高邏輯狀態具有一第一電壓位準,且該第一電壓為該第一電壓位準的1/2,該第二電壓為該第一電壓位準的1/4,且該第三電壓為該第一電壓位準的3/4。 A memory device capable of performing in-memory operations as in claim 2, wherein the high logic state of the bit line has a first voltage level, and the first voltage is 1/2 of the first voltage level, the second voltage is 1/4 of the first voltage level, and the third voltage is 3/4 of the first voltage level. 如請求項2之可執行記憶體內運算的記憶體裝置,其中,該記憶體單元陣列包括一第一記憶體單元及一第二記憶體單元分別連接至該第一字元線及該第二字元線,且該第一記憶體單元及該第二記憶體單元同時連接至該位元線。 A memory device capable of performing in-memory operations as in claim 2, wherein the memory cell array includes a first memory cell and a second memory cell connected to the first word line and the second word line respectively, and the first memory cell and the second memory cell are simultaneously connected to the bit line. 如請求項5之可執行記憶體內運算的記憶體裝置,其中該第一記憶體單元之第一電容及該第二記憶體單元之第二電容在初始狀態係分別儲存第一資料電壓及第二資料電壓,其中當該或運算控制信號或該及運算控制信號處於該高邏輯狀態,該字元線解碼電路係依據該控制信號中之位址信號以同時開啟該第一字元線及該第二字元線,且該第一記憶體單元之該第一電容及該第二記憶體單元之該第二電容係進行電荷共享以將該位元線之一預充電電壓改變至一結果電壓,且該結果電壓為該預充電電壓加上一偏差值。 A memory device capable of performing in-memory operations as in claim 5, wherein the first capacitor of the first memory cell and the second capacitor of the second memory cell respectively store a first data voltage and a second data voltage in an initial state, wherein when the OR operation control signal or the AND operation control signal is in the high logic state, the word line decoding circuit turns on the first word line and the second word line simultaneously according to the address signal in the control signal, and the first capacitor of the first memory cell and the second capacitor of the second memory cell perform charge sharing to change a precharge voltage of the bit line to a result voltage, and the result voltage is the precharge voltage plus an offset value. 如請求項6之可執行記憶體內運算的記憶體裝置,其中,當該或運算控制信號處於該高邏輯狀態,該電壓控制電路選擇該第二電壓以做為提供至該感測放大器之該偵測電壓, 其中,該感測放大器所偵測到之該位元線的該電壓位準為該第一資料電壓及該第二資料電壓進行按位或(OR)運算。 A memory device capable of performing in-memory operations as claimed in claim 6, wherein when the OR operation control signal is in the high logic state, the voltage control circuit selects the second voltage as the detection voltage provided to the sense amplifier, wherein the voltage level of the bit line detected by the sense amplifier is a bitwise OR operation of the first data voltage and the second data voltage. 如請求項7之可執行記憶體內運算的記憶體裝置,其中當該第一資料電壓及該第二資料電壓處於低邏輯狀態,該感測放大器所偵測到之該位元線的該電壓位準處於該低邏輯狀態,其中,當該第一資料電壓及該第二資料電壓之至少一者處於該高邏輯狀態,該感測放大器所偵測到之該位元線的該電壓位準處於該高邏輯狀態。 A memory device capable of performing in-memory operations as claimed in claim 7, wherein when the first data voltage and the second data voltage are in a low logic state, the voltage level of the bit line detected by the sense amplifier is in the low logic state, and when at least one of the first data voltage and the second data voltage is in the high logic state, the voltage level of the bit line detected by the sense amplifier is in the high logic state. 如請求項6之可執行記憶體內運算的記憶體裝置,其中,當該及運算控制信號處於該高邏輯狀態,該電壓控制電路選擇該第三電壓以做為提供至該感測放大器之該偵測電壓,其中,該感測放大器所偵測到之該位元線的該電壓位準為該第一資料電壓及該第二資料電壓進行按位及(AND)運算。 A memory device capable of performing in-memory operations as claimed in claim 6, wherein when the AND operation control signal is in the high logic state, the voltage control circuit selects the third voltage as the detection voltage provided to the sense amplifier, wherein the voltage level of the bit line detected by the sense amplifier is a bitwise AND operation performed on the first data voltage and the second data voltage. 如請求項9之可執行記憶體內運算的記憶體裝置,其中當該第一資料電壓及該第二資料電壓之至少一者處於低邏輯狀態,該感測放大器所偵測到之該位元線的該電壓位準處於該低邏輯狀態,其中,當該第一資料電壓及該第二資料電壓均處於該高邏輯狀態,該感測放大器所偵測到之該位元線的該電壓位準處於該高邏輯狀態。 A memory device capable of performing in-memory operations as claimed in claim 9, wherein when at least one of the first data voltage and the second data voltage is in a low logic state, the voltage level of the bit line detected by the sense amplifier is in the low logic state, and when both the first data voltage and the second data voltage are in the high logic state, the voltage level of the bit line detected by the sense amplifier is in the high logic state.
TW111143138A 2022-11-11 2022-11-11 Memory device capable of performing in-memory computing TWI837940B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111143138A TWI837940B (en) 2022-11-11 2022-11-11 Memory device capable of performing in-memory computing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111143138A TWI837940B (en) 2022-11-11 2022-11-11 Memory device capable of performing in-memory computing

Publications (2)

Publication Number Publication Date
TWI837940B true TWI837940B (en) 2024-04-01
TW202420308A TW202420308A (en) 2024-05-16

Family

ID=91618937

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111143138A TWI837940B (en) 2022-11-11 2022-11-11 Memory device capable of performing in-memory computing

Country Status (1)

Country Link
TW (1) TWI837940B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW516040B (en) * 2000-08-31 2003-01-01 Hewlett Packard Co Method and apparatus for reading memory cells of a resistive cross point array
CN103531235A (en) * 2012-06-29 2014-01-22 三星电子株式会社 Sense amplifier circuitry for resistive type memory
TWI505271B (en) * 2011-08-31 2015-10-21 Tessera Inc Dram security erase
US11127457B2 (en) * 2019-07-24 2021-09-21 Samsung Electronics Co., Ltd. Memory device with reduced read disturbance and method of operating the memory device
WO2022072584A1 (en) * 2020-09-30 2022-04-07 Infineon Technologies LLC Local reference voltage generator for non-volatile memory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW516040B (en) * 2000-08-31 2003-01-01 Hewlett Packard Co Method and apparatus for reading memory cells of a resistive cross point array
TWI505271B (en) * 2011-08-31 2015-10-21 Tessera Inc Dram security erase
CN103531235A (en) * 2012-06-29 2014-01-22 三星电子株式会社 Sense amplifier circuitry for resistive type memory
US11127457B2 (en) * 2019-07-24 2021-09-21 Samsung Electronics Co., Ltd. Memory device with reduced read disturbance and method of operating the memory device
WO2022072584A1 (en) * 2020-09-30 2022-04-07 Infineon Technologies LLC Local reference voltage generator for non-volatile memory

Similar Documents

Publication Publication Date Title
US10860222B2 (en) Memory devices performing refresh operations with row hammer handling and memory systems including such memory devices
JP6980902B2 (en) Equipment and methods for shielded memory architecture
US7319629B2 (en) Method of operating a dynamic random access memory cell
US20200162112A1 (en) Error detection code generation circuits of semiconductor devices, memory controllers including the same and semiconductor memory devices including the same
US6952376B2 (en) Method and apparatus to generate a reference value in a memory array
US10127972B2 (en) Apparatuses and methods including two transistor-one capacitor memory and for accessing same
TWI767072B (en) Semiconductor device
US9704571B2 (en) Memory device and a method of operating the same
US8553484B2 (en) Semiconductor memory device for data sensing
US6445636B1 (en) Method and system for hiding refreshes in a dynamic random access memory
US20200411095A1 (en) Search circuits, hammer address management circuits, and memory systems including the same
USRE46474E1 (en) Multiple write during simultaneous memory access of a multi-port memory device
US6888771B2 (en) Skewed sense AMP for variable resistance memory sensing
TW202121408A (en) Apparatus for enhancing prefetch access in memory module
US10740188B2 (en) Volatile memory device and method for efficient bulk data movement, backup operation in the volatile memory device
US11521670B2 (en) Word lines coupled to pull-down transistors, and related devices, systems, and methods
US7804728B2 (en) Information handling system with SRAM precharge power conservation
TWI837940B (en) Memory device capable of performing in-memory computing
KR20190072971A (en) A layout structure of bit-line sense amplifier in semiconductor memory device
US6928012B2 (en) Bitline equalization system for a DRAM integrated circuit
TW202420308A (en) Memory device capable of performing in-memory computing
US20170242754A1 (en) Semiconductor device
US9236112B1 (en) Apparatuses and methods for reducing cycle times in successive memory accesses
CN118136063A (en) Memory device capable of executing in-memory operation
US9613680B2 (en) Semiconductor device with improved sense margin of sense amplifier