TWI837828B - Sinter manufacturing method - Google Patents
Sinter manufacturing method Download PDFInfo
- Publication number
- TWI837828B TWI837828B TW111135216A TW111135216A TWI837828B TW I837828 B TWI837828 B TW I837828B TW 111135216 A TW111135216 A TW 111135216A TW 111135216 A TW111135216 A TW 111135216A TW I837828 B TWI837828 B TW I837828B
- Authority
- TW
- Taiwan
- Prior art keywords
- sintered
- raw material
- ore
- iron
- microwaves
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 31
- 239000002994 raw material Substances 0.000 claims abstract description 74
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 63
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims abstract description 41
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims abstract description 31
- 238000010438 heat treatment Methods 0.000 claims abstract description 30
- 229910052742 iron Inorganic materials 0.000 claims abstract description 29
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052595 hematite Inorganic materials 0.000 claims abstract description 21
- 239000011019 hematite Substances 0.000 claims abstract description 21
- 230000004907 flux Effects 0.000 claims abstract description 17
- 239000012256 powdered iron Substances 0.000 claims abstract description 7
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 28
- 239000000292 calcium oxide Substances 0.000 claims description 14
- 235000012255 calcium oxide Nutrition 0.000 claims description 14
- 239000002893 slag Substances 0.000 claims description 9
- 239000000428 dust Substances 0.000 claims description 8
- 230000001678 irradiating effect Effects 0.000 claims description 7
- 235000019738 Limestone Nutrition 0.000 claims description 6
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 6
- 239000000920 calcium hydroxide Substances 0.000 claims description 6
- 235000011116 calcium hydroxide Nutrition 0.000 claims description 6
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims description 6
- 239000006028 limestone Substances 0.000 claims description 6
- 238000000034 method Methods 0.000 abstract description 10
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 238000005245 sintering Methods 0.000 description 36
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 235000013980 iron oxide Nutrition 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 7
- 239000010410 layer Substances 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 239000000571 coke Substances 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 238000003723 Smelting Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052681 coesite Inorganic materials 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052598 goethite Inorganic materials 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- AEIXRCIKZIZYPM-UHFFFAOYSA-M hydroxy(oxo)iron Chemical compound [O][Fe]O AEIXRCIKZIZYPM-UHFFFAOYSA-M 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/16—Sintering; Agglomerating
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/16—Sintering; Agglomerating
- C22B1/20—Sintering; Agglomerating in sintering machines with movable grates
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/24—Binding; Briquetting ; Granulating
- C22B1/242—Binding; Briquetting ; Granulating with binders
- C22B1/243—Binding; Briquetting ; Granulating with binders inorganic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
本發明提供一種燒結礦的製造方法,其是使用微波使燒結原料成塊,所述燒結原料包含以赤鐵礦為主成分的鐵礦石及助熔劑,該方法以更短時間高效率地進行加熱而製造燒結礦。本發明的燒結礦的製造方法是使燒結原料成塊,所述燒結原料包含以赤鐵礦為主成分的粉狀鐵礦石及助熔劑,所述燒結原料包含以FeO換算為3.0質量%以上的磁鐵礦,且照射微波而將所述燒結原料加熱至1000℃以上。The present invention provides a method for producing a sintered ore, which is to use microwaves to agglomerate a sintered raw material, wherein the sintered raw material includes an iron ore with hematite as a main component and a flux, and the method produces the sintered ore by efficiently heating in a shorter time. The method for producing a sintered ore of the present invention is to agglomerate a sintered raw material, wherein the sintered raw material includes a powdered iron ore with hematite as a main component and a flux, wherein the sintered raw material includes magnetite with a FeO conversion of 3.0 mass % or more, and irradiate the sintered raw material with microwaves to heat the sintered raw material to 1000°C or more.
Description
本發明是有關於一種使用微波將燒結原料進行加熱而製造燒結礦的方法。 The present invention relates to a method for producing sintered ore by heating sintered raw materials using microwaves.
近年來,以降低環境負荷、特別是削減CO2排出量為目的,在鋼鐵業中的燒結礦的製造步驟中,不斷推進開發不伴隨焦炭的燃燒的燒結原料的加熱方法。作為不伴隨燃燒的燒結原料的加熱法之一,有照射微波的方法。微波是電磁波的一種,是頻率為300MHz至300GHz的範圍的電磁波。已知微波具有對介電體賦予能量而進行加熱的效果,特別是介電常數高的物質容易吸收所照射的微波的能量。 In recent years, in order to reduce environmental load, especially to reduce CO2 emissions, in the production process of sintered ore in the steel industry, the development of a method for heating the sintered raw materials without the combustion of coke has been continuously promoted. As one of the methods for heating the sintered raw materials without the combustion, there is a method of irradiating microwaves. Microwaves are a type of electromagnetic wave, and are electromagnetic waves with a frequency range of 300MHz to 300GHz. It is known that microwaves have the effect of heating dielectrics by giving energy, and in particular, materials with a high dielectric constant tend to absorb the energy of the irradiated microwaves.
最近,期望使用微波由以赤鐵礦為主成分的鐵礦石來製造燒結礦的技術開發。 Recently, the development of technology for producing sintered ore from iron ore mainly composed of hematite using microwaves is expected.
專利文獻1中,以鐵礦石的還原為目的,為了將作為鐵礦石的成分的赤鐵礦及針鐵礦進行加熱,而揭示有照射20GHz~30GHz的頻率的微波的方法。揭示有若為高頻(短波長)的20GHz~30GHz的微波,則即便是以赤鐵礦或針鐵礦為主成分的鐵礦原料,亦能夠進行加熱或燒結。 Patent document 1 discloses a method of irradiating microwaves with a frequency of 20 GHz to 30 GHz for the purpose of reducing iron ore and heating hematite and goethite, which are components of iron ore. It discloses that if high-frequency (short-wavelength) microwaves of 20 GHz to 30 GHz are used, even iron ore raw materials containing hematite or goethite as the main component can be heated or sintered.
專利文獻2中,揭示有在利用燃燒反應的已有的燒結機 中,自點火爐出來後對表層照射微波,藉此對表層部供給熱,從而提昇燒結礦的品質及回收率的方法。 Patent document 2 discloses a method for improving the quality and recovery rate of sintered ore by irradiating microwaves to the surface layer after the ignition furnace in an existing sintering machine using a combustion reaction, thereby supplying heat to the surface layer.
專利文獻3中,揭示有在利用微波照射的燒結礦的製造中,使用未特定氧化鐵的種類的燒結原料,照射2.45GHz的微波,燒結率與照射時間成正比地上升,在20分鐘內完成燒結。 Patent document 3 discloses that in the production of sintered ore using microwave irradiation, a sintering raw material of unspecified iron oxide is used and irradiated with 2.45 GHz microwaves. The sintering rate increases in proportion to the irradiation time, and sintering is completed within 20 minutes.
[現有技術文獻] [Prior art literature]
[專利文獻] [Patent Literature]
專利文獻1:日本專利特開2011-184718號公報 Patent document 1: Japanese Patent Publication No. 2011-184718
專利文獻2:日本專利特表2018-505965號公報 Patent document 2: Japanese Patent Publication No. 2018-505965
專利文獻3:日本專利特開平07-268494號公報 Patent document 3: Japanese Patent Publication No. 07-268494
但是,專利文獻1中,由於利用20GHz~30GHz的高頻的微波進行加熱,故而需要專門的大型迴旋管(gyrotron)裝置,在製程化時設備投資變得過大。 However, in Patent Document 1, since high-frequency microwaves of 20 GHz to 30 GHz are used for heating, a specialized large-scale gyrotron device is required, and the equipment investment becomes too large during the manufacturing process.
專利文獻2中,為了被點火的燒結原料表面的熱補償而使用微波,燒結時的熱能量源是碳的燃燒,因此有產生CO2的問題。 In Patent Document 2, microwaves are used to compensate for the heat on the surface of the ignited sintering raw material. Since the heat energy source during sintering is the combustion of carbon, there is a problem of generating CO 2 .
專利文獻3中,由於以未區別氧化鐵的種類的鐵礦石為燒結原料,故而有利用微波照射的加熱需要長時間的照射而效率低的問題。 In Patent Document 3, since iron ore without distinguishing the type of iron oxide is used as the sintering raw material, there is a problem that heating by microwave irradiation requires a long irradiation time and has low efficiency.
如上所述,在燒結步驟中,作為利用焦炭燃燒的加熱的 代替,研究了若干使用微波加熱的技術開發。但是,另一方面,現有技術中有如下問題,即,使用以赤鐵礦為主成分的鐵礦石時,需要大規模的微波產生裝置或長時間的微波照射。 As described above, in the sintering step, as an alternative to heating using coke combustion, some technical developments using microwave heating have been studied. However, on the other hand, the prior art has the following problem, that is, when using iron ore containing hematite as the main component, a large-scale microwave generating device or long-term microwave irradiation is required.
本發明是鑒於所述情況而完成的,本發明的目的在於提供一種燒結礦的製造方法,即便在使用頻率為2.4GHz~2.5GHz的微波的情況下,亦以更短時間高效率地將以赤鐵礦為主成分的燒結原料進行加熱而製造燒結礦。 The present invention is completed in view of the above situation. The purpose of the present invention is to provide a method for producing sintered ore, which can efficiently heat the sintering raw material with hematite as the main component in a shorter time to produce sintered ore even when using microwaves with a frequency of 2.4GHz~2.5GHz.
本發明者等人為了解決所述課題而反覆進行了努力研究,結果發現一種燒結礦的製造方法,對在使用以赤鐵礦為主成分的粉狀鐵礦石的情況下,混合有一定量的包含作為介電體的磁鐵礦的原料的燒結原料,藉由照射微波而進行加熱,從而進行燒結。本發明是基於該些見解進一步進行研究而完成的,本發明構成如下。 The inventors of the present invention have repeatedly conducted diligent research to solve the above-mentioned problem, and as a result, have discovered a method for producing sintered ore, in which a sintering raw material containing a certain amount of raw material including magnetite as a dielectric is mixed with a powdered iron ore containing hematite as a main component, and is heated by irradiating microwaves to thereby sinter. The present invention is completed by further research based on these insights, and the present invention is structured as follows.
[1]一種燒結礦的製造方法,其是使燒結原料成塊,所述燒結原料包含以赤鐵礦為主成分的粉狀鐵礦石及助熔劑(flux),所述燒結原料包含以FeO換算為3.0質量%以上的磁鐵礦,且照射微波而將所述燒結原料加熱至1000℃以上。 [1] A method for producing sintered ore, comprising agglomerating a sintered raw material, the sintered raw material comprising powdered iron ore containing hematite as a main component and a flux, the sintered raw material comprising 3.0 mass % or more of magnetite in terms of FeO, and irradiating the sintered raw material with microwaves to heat the sintered raw material to a temperature of 1000°C or more.
[2]如[1]所述的燒結礦的製造方法,其中所述燒結原料中混合有包含磁鐵礦的鐵礦石、燒結礦及煉鐵廠內所產生的灰塵的1種以上。 [2] A method for producing a sintered ore as described in [1], wherein the sintered raw material contains a mixture of one or more of iron ore including magnetite, sintered ore and dust generated in an iron smelter.
[3]如[1]所述的燒結礦的製造方法,其中所述助熔劑為石灰石、 生石灰、熟石灰及煉鐵廠內所產生的礦渣的1種以上。 [3] A method for producing sintered ore as described in [1], wherein the flux is one or more of limestone, quicklime, slaked lime and slag produced in an iron smelter.
[4]如[2]所述的燒結礦的製造方法,其中所述助熔劑為石灰石、生石灰、熟石灰及煉鐵廠內所產生的礦渣的1種以上。 [4] The method for producing sintered ore as described in [2], wherein the flux is one or more of limestone, quicklime, slaked lime and slag produced in an iron smelter.
[5]如[1]至[4]中任一項所述的燒結礦的製造方法,其中所述微波的頻率為2.4GHz~2.5GHz。 [5] A method for producing sintered ore as described in any one of [1] to [4], wherein the frequency of the microwave is 2.4 GHz to 2.5 GHz.
根據本發明,包含以FeO換算為3.0質量%以上的磁鐵礦的燒結原料可獲得高的介電加熱性能,因此能夠藉由微波以更短時間高效率地將燒結原料進行加熱,從而能夠製造燒結礦。 According to the present invention, a sintered raw material containing a magnetite having a FeO content of 3.0 mass % or more can obtain high dielectric heating performance, so that the sintered raw material can be efficiently heated by microwaves in a shorter time, thereby being able to produce sintered ore.
1:燒結原料供給裝置 1: Sintering raw material supply device
2:托板 2: Pallet
3:微波照射裝置 3: Microwave irradiation device
4:托板寬度 4: Pallet width
5:托板裝入層高度 5: Pallet loading layer height
6:微波照射裝置長度 6: Length of microwave irradiation device
7:微波爐 7: Microwave oven
8:氧化鋁坩堝 8: Alumina crucible
9:熱電偶 9: Thermocouple
10:坩堝上表面側內徑 10: Inner diameter of the upper surface of the crucible
11:坩堝高度 11: Crucible height
12:熱電偶插入高度 12: Thermocouple insertion height
圖1是表示可實施本發明的燒結礦的製造方法的燒結機的一例的示意圖。 FIG1 is a schematic diagram showing an example of a sintering machine that can implement the sintered ore manufacturing method of the present invention.
圖2的(a)是表示本發明的一實驗例中的燒結礦製造的示意圖。圖2的(b)是表示氧化鋁坩堝形狀及熱電偶的配置的示意圖。 FIG2(a) is a schematic diagram showing the production of sintered ore in an experimental example of the present invention. FIG2(b) is a schematic diagram showing the shape of an alumina crucible and the configuration of a thermocouple.
圖3是加熱後的坩堝上表面照片(上圖)及燒結組織觀察照片(下圖)。(a)是比較例1,(b)是實施例1,(c)是實施例2,及(d)是實施例3。 Figure 3 is a photo of the upper surface of the crucible after heating (upper photo) and a photo of the sintered structure observation (lower photo). (a) is Comparative Example 1, (b) is Example 1, (c) is Example 2, and (d) is Example 3.
圖4是表示實驗2中的微波照射時間與燒結原料的溫度變化的關係的圖。 Figure 4 is a graph showing the relationship between the microwave irradiation time and the temperature change of the sintered raw material in Experiment 2.
以下,一邊參照圖式一邊對本發明的燒結礦的製造方法 的實施方式詳細地進行說明。再者,以下所示的實施方式是本發明的實施方式的一例,且本發明不限定於該些實施方式而解釋。 Hereinafter, the implementation of the method for producing sintered ore of the present invention will be described in detail with reference to the drawings. Furthermore, the implementation shown below is an example of the implementation of the present invention, and the present invention is not limited to these implementations.
[燒結礦製造裝置] [Sintered ore production equipment]
圖1是表示可實施本實施方式的燒結礦的製造方法的燒結礦製造裝置的一例的示意圖。燒結原料裝填至燒結原料供給裝置1中。燒結原料自燒結原料供給裝置1連續地裝入至環形移動式托板(pallet)2中,形成燒結原料的裝入層。自微波照射裝置3照射微波,將燒結原料的裝入層進行加熱,藉由液相燒結使燒結原料成塊而製造燒結礦。 FIG1 is a schematic diagram showing an example of a sintered ore manufacturing device that can implement the sintered ore manufacturing method of the present embodiment. Sintered raw materials are loaded into a sintered raw material supply device 1. Sintered raw materials are continuously loaded from the sintered raw material supply device 1 into a ring-shaped movable pallet 2 to form a loading layer of sintered raw materials. Microwaves are irradiated from a microwave irradiation device 3 to heat the loading layer of sintered raw materials, and the sintered raw materials are agglomerated by liquid phase sintering to manufacture sintered ore.
[燒結原料] [Sintering raw materials]
燒結原料包含作為鐵源的鐵礦石、及發揮熔劑作用的助熔劑。燒結原料中亦可包含煉鐵廠內所產生的灰塵或燒結礦、矽石。 Sintering raw materials include iron ore as an iron source and flux acting as a flux. Sintering raw materials may also include dust or sintered ore and silica generated in an iron smelter.
燒結原料中,為了進一步以適當比例含有磁鐵礦,亦可混合包含磁鐵礦的鐵礦石、包含磁鐵礦的燒結礦及煉鐵廠內所產生的灰塵的1種以上。所謂適當比例的調配,是指磁鐵礦以FeO換算為3.0質量%以上的量。在磁鐵礦以FeO換算小於3.0質量%的情況下,若使用頻率為2.4GHz~2.5GHz的微波,則加熱至規定溫度需要長時間的照射,因此欠佳。另外,較佳為磁鐵礦以FeO換算為10.0質量%以下。在調配比例以FeO換算超過10.0質量%的情況下,要增加以赤鐵礦為主成分的鐵礦石以外的原料的調配量,因此燒結原料成本變高。更佳的範圍為4.0質量%以上且8.0質量%以下。另外,燒結原料較佳為不事先藉由造粒或加壓成型等 來成塊。這是因為,在以成塊物為加熱對象的情況下,微波會隨著穿透距離而衰減,成塊物的內部的加熱效率有可能降低。另外,在未成塊的情況下,與一般的使用焦炭的燒結法不同,有無需供給空氣的優點,在造粒或成型時使用水分來成塊的情況下,由於水分的蒸發熱而有需要多餘熱量的缺點。 In order to further contain magnetite in an appropriate proportion, the sintering raw materials may be mixed with one or more of iron ore containing magnetite, sintered ore containing magnetite and dust generated in the iron smelting plant. The so-called appropriate proportion is an amount of magnetite of 3.0 mass % or more calculated as FeO. When the amount of magnetite is less than 3.0 mass % calculated as FeO, if microwaves with a frequency of 2.4 GHz to 2.5 GHz are used, it takes a long time of irradiation to heat to the specified temperature, which is not preferred. In addition, it is preferred that the amount of magnetite is less than 10.0 mass % calculated as FeO. When the blending ratio exceeds 10.0 mass % in terms of FeO, the blending amount of raw materials other than iron ore with hematite as the main component is increased, so the sintering raw material cost becomes higher. The more preferable range is 4.0 mass % or more and 8.0 mass % or less. In addition, it is preferable that the sintering raw material is not agglomerated by granulation or pressure molding in advance. This is because when the agglomerated object is heated, the microwave will attenuate with the penetration distance, and the heating efficiency inside the agglomerated object may be reduced. In addition, when the agglomerates are not formed, unlike the general sintering method using coke, there is an advantage that air supply is not required. When water is used to form agglomerates during granulation or molding, there is a disadvantage that excess heat is required due to the evaporation heat of the water.
[鐵礦石] [Iron Ore]
鐵礦石的主成分是氧化鐵,包含赤鐵礦(hematite、Fe2O3)、磁鐵礦(magnetite、Fe3O4)。本實施方式中,使用粒徑8mm以下的粉狀鐵礦石作為鐵礦石。 The main component of iron ore is iron oxide, and includes hematite (Fe 2 O 3 ) and magnetite (Fe 3 O 4 ). In the present embodiment, powdered iron ore with a particle size of 8 mm or less is used as the iron ore.
[赤鐵礦] [Hematite]
赤鐵礦(hematite、Fe2O3)是在高爐法中常用作主原料的氧化鐵。赤鐵礦的顏色是紅褐色或黑色,廣泛分布在岩石或土壤中。在現代的高爐法中,赤鐵礦是與助熔劑或焦炭混合而進行燒結,藉此作為燒結礦加以使用。但是,赤鐵礦的介電常數低,若僅有赤鐵礦則難以利用2.4GHz~2.5GHz的微波來加熱。本實施例中是使用以赤鐵礦為主成分的粉狀鐵礦石中含有75質量%~99質量%的赤鐵礦的原料。 Hematite (Fe 2 O 3 ) is an iron oxide commonly used as the main raw material in the blast furnace process. Hematite is reddish brown or black in color and is widely distributed in rocks or soil. In the modern blast furnace process, hematite is mixed with a flux or coke and sintered to be used as a sintered ore. However, hematite has a low dielectric constant, and it is difficult to heat hematite alone using microwaves of 2.4 GHz to 2.5 GHz. In this embodiment, a raw material containing 75% to 99% by mass of hematite in a powdered iron ore with hematite as the main component is used.
[磁鐵礦] [Magnetite]
磁鐵礦(magnetite、Fe3O4)是氧化鐵的一種。基本上而言,在世界範圍內能夠採集的大部分為低品質。具有高的介電加熱性能,容易利用微波進行加熱。 Magnetite (Fe 3 O 4 ) is a type of iron oxide. Basically, most of the available materials in the world are of low quality. It has high dielectric heating properties and can be easily heated using microwaves.
本實施方式中的燒結礦是將包含鐵礦石等含鐵原料及 助熔劑的燒結原料進行燒結而製造的燒結礦。燒結礦包含磁鐵礦。另外,返礦是燒結礦的製造過程中所獲得的小於製品粒徑的燒結礦,可再次添加至燒結原料中。另外,灰塵是煉鐵廠內所產生的包含Fe的灰塵,例如可使用鐵銹屑、轉爐灰塵、高爐灰塵。另外,亦可調配矽石以調整鹼度。 The sintered ore in this embodiment is produced by sintering a sintered raw material containing iron ore and flux. The sintered ore contains magnetite. In addition, the return ore is a sintered ore smaller than the product particle size obtained in the process of manufacturing the sintered ore, which can be added to the sintered raw material again. In addition, the dust is the dust containing Fe generated in the iron smelting plant, for example, rusty scraps, converter dust, blast furnace dust can be used. In addition, silica can also be blended to adjust the alkalinity.
[助熔劑] [Flux]
本實施方式中的助熔劑是包含如石灰石、生石灰、熟石灰般藉由加熱會成為CaO的物質、或者含有CaO的煉鐵廠內所產生的礦渣的原料,發揮使燒結原料中的氧化鐵彼此相互熔解而加固的作用。關於助熔劑的調配量,較佳為以燒結原料的CaO/SiO2成為1.7~2.3的方式進行調配。所謂煉鐵廠內所產生的包含CaO的礦渣,是指例如高爐內所產生的高爐礦渣、或製鋼步驟中所產生的製鋼礦渣。 The flux in this embodiment is a material containing a substance that becomes CaO by heating, such as limestone, quicklime, slaked lime, or a raw material containing CaO produced in an iron smelting plant, and plays a role in melting and consolidating the iron oxides in the sintered raw materials. The amount of flux is preferably prepared in such a way that the CaO/ SiO2 of the sintered raw materials becomes 1.7 to 2.3. The so-called slag containing CaO produced in an iron smelting plant refers to, for example, blast furnace slag produced in a blast furnace or steelmaking slag produced in a steelmaking step.
[燒結] [Sintering]
燒結原料中所分散的磁鐵礦具有高的介電加熱性能,因此藉由微波進行加熱,經加熱的磁鐵礦成為熱源而將燒結原料整體進行加熱。助熔劑中的CaO及氧化鐵被加熱而熔融,使粉狀的氧化鐵成為塊狀。 The magnetite dispersed in the sintering raw material has a high dielectric heating performance, so the heated magnetite becomes a heat source to heat the entire sintering raw material by heating it with microwaves. The CaO and iron oxide in the flux are heated and melted, turning the powdered iron oxide into a lump.
[加熱溫度] [Heating temperature]
利用微波的燒結原料的加熱溫度設為1000℃以上。作為加熱溫度的上限,較佳為設為1350℃以下。這是因為,若加熱溫度高於1350℃,則赤鐵礦會變為磁鐵礦,且當溫度下降而再次成為赤 鐵礦時,會成為還原粉化性(reduction disintegration index,RDI)極差的二次赤鐵礦。進而,加熱溫度更佳為設為1200℃以上且1300℃以下。 The heating temperature of the raw material for sintering using microwaves is set to be above 1000°C. As the upper limit of the heating temperature, it is preferably set to be below 1350°C. This is because if the heating temperature is higher than 1350°C, the hematite will turn into magnetite, and when the temperature drops and it becomes hematite again, it will become secondary hematite with extremely poor reduction disintegration index (RDI). Furthermore, the heating temperature is more preferably set to be above 1200°C and below 1300°C.
[微波照射裝置] [Microwave irradiation device]
微波是電磁波的一種。根據國際安全管理規則(International Safety Management,ISM)或電波法,不具有電磁波的大規模的洩漏防止裝置的裝置中可使用的頻帶受到限制。 Microwaves are a type of electromagnetic wave. According to the International Safety Management (ISM) or the Radio Law, the frequency band that can be used in devices that do not have large-scale leakage prevention devices for electromagnetic waves is limited.
磁控管是小型且微波爐等中所使用的通用的微波產生裝置,所述磁控管的頻率包含被視為ISM基本頻率的2.4GHz~2.5GHz的範圍。在ISM基本頻率所指定的範圍內,用以防止與其他頻率的電磁波的干擾的限制並不嚴格,因此只要可使用2.4GHz~2.5GHz的範圍的微波,則可使用比迴旋管廉價的磁控管來製造燒結礦,因此燒結礦的製造設備變得廉價。進而,若為2.4GHz~2.5GHz的微波,則亦無需使用大規模的電波洩漏防止設備,因此能夠利用小型且廉價的設備製造燒結礦。 Magnetrons are small and general-purpose microwave generating devices used in microwave furnaces, etc. The frequency of the magnetrons includes the range of 2.4GHz~2.5GHz, which is considered to be the ISM basic frequency. Within the range specified by the ISM basic frequency, the restrictions for preventing interference with electromagnetic waves of other frequencies are not strict, so as long as microwaves in the range of 2.4GHz~2.5GHz can be used, magnetrons that are cheaper than gyrotrons can be used to produce sintered ore, so the production equipment of sintered ore becomes cheaper. Furthermore, if it is a microwave of 2.4GHz~2.5GHz, there is no need to use large-scale radio wave leakage prevention equipment, so sintered ore can be produced using small and inexpensive equipment.
作為本實施方式中的微波照射裝置的形態,可列舉圖1所示的穿隧型等。但是,只要為可對燒結原料的裝入層照射微波的形狀、配置即可,並不僅限定於本實施方式中所例示的形狀。 As the form of the microwave irradiation device in this embodiment, the tunnel type shown in Figure 1 can be cited. However, as long as the shape and configuration can irradiate the loading layer of the sintering raw material with microwaves, it is not limited to the shape exemplified in this embodiment.
本實施方式的燒結礦的製造方法中,即便在使用2.4GHz~2.5GHz的微波的情況下,亦可照射所述微波而將燒結原料以135秒左右的短時間加熱至1000℃以上,藉由液相燒結使燒結原料成塊而製造燒結礦。若使用微波照射裝置長度6為40~50m 的微波照射裝置,則能夠使托板速度成為20m/min,因此若將托板寬度4設為4~5m、托板裝入層高度5設為100mm,則可獲得300萬噸/年的燒結礦的生產量。如此,若可使用微波將燒結原料進行加熱而製造燒結礦,則可不使用粉焦炭等而製造燒結礦,從而亦能夠削減伴隨燒結礦的製造的CO2的產生量。 In the method for producing sintered ore of the present embodiment, even when using microwaves of 2.4 GHz to 2.5 GHz, the sintered raw material can be heated to 1000°C or above in a short time of about 135 seconds by irradiating the microwaves, and the sintered raw material can be agglomerated by liquid phase sintering to produce sintered ore. If a microwave irradiation device having a length 6 of 40 to 50 m is used, the pallet speed can be 20 m/min, so if the pallet width 4 is set to 4 to 5 m and the pallet loading layer height 5 is set to 100 mm, a production of 3 million tons of sintered ore per year can be obtained. In this way, if sintered ore can be produced by heating sintered raw materials using microwaves, sintered ore can be produced without using pulverized coke or the like, thereby also being able to reduce the amount of CO 2 generated in the production of sintered ore.
[實施例] [Implementation example]
[實驗1] [Experiment 1]
首先,進行使用磁鐵礦試劑的實驗。表1中示出調配。磁鐵礦試劑是按照以FeO換算成為3~10質量%的方式調整。藉由化學分析測定原料中的磁鐵礦量作為原料中的FeO量。將測定值示於表1。 First, an experiment using a magnetite test agent was conducted. The formulation is shown in Table 1. The magnetite test agent was adjusted to 3 to 10 mass % in terms of FeO. The amount of magnetite in the raw material was measured by chemical analysis as the amount of FeO in the raw material. The measured values are shown in Table 1.
原料中的CaO及SiO2是使用試劑,調配模擬實際操作的量。SiO2是以調整下一步驟的高爐中的礦渣成分,控制鹼度為目的而調配。 CaO and SiO2 in the raw materials are prepared using test materials to simulate the actual operation. SiO2 is prepared to adjust the slag composition in the next step of the blast furnace and control the alkalinity.
各試樣的質量設為合計36g~38g,混合中使用研缽及研棒,充分混合直至目視下試驗體的顏色變得均勻為止。各樣品是 一邊輕輕地振實一邊填充至自氧化鋁坩堝8的上端起約2mm左右的高度。將裝置概要示於圖2。使用如下裝置,即,在微波爐7內放置有氧化鋁坩堝8,在熱電偶插入高度12為18mm的位置裝入有熱電偶9的裝置。坩堝上表面側內徑10設為φ30mm,坩堝高度11設為27mm。 The mass of each sample is set to a total of 36g~38g, and a mortar and pestle are used for mixing, and the sample is mixed thoroughly until the color becomes uniform visually. Each sample is filled to a height of about 2mm from the upper end of the alumina crucible 8 while being gently vibrated. The device is shown in Figure 2. The following device is used, that is, an alumina crucible 8 is placed in a microwave furnace 7, and a thermocouple 9 is installed at a position where the thermocouple insertion height 12 is 18mm. The inner diameter 10 of the upper surface side of the crucible is set to φ30mm, and the crucible height 11 is set to 27mm.
微波的頻率設為2.45GHz,加熱中以升溫速度成為1000℃/min的方式以程式控制微波的輸出(瓦特數)。達到1300℃後,中止利用微波的加熱而連同氧化鋁坩堝8一起進行空氣冷卻。 The microwave frequency was set to 2.45 GHz, and the microwave output (wattage) was controlled by a program at a heating rate of 1000°C/min. After reaching 1300°C, the microwave heating was stopped and the alumina crucible 8 was air-cooled.
將實驗結果示於表2。有無燒結是以抗壓強度及有無氣孔的再排列為基準而進行判斷。另外,抗壓強度是使用精密電子萬能材料試驗機(Autograph)(速度:1mm/min)來測定。由於用作高爐原料的燒結礦的抗壓強度為2MPa~4MPa,故而若具有2MPa以上的強度,則判斷為實際應用上合格。 The experimental results are shown in Table 2. The presence or absence of sintering is determined based on the compressive strength and the presence or absence of rearrangement of pores. In addition, the compressive strength is measured using a precision electronic universal material testing machine (Autograph) (speed: 1mm/min). Since the compressive strength of the sintered ore used as a blast furnace raw material is 2MPa~4MPa, if it has a strength of 2MPa or more, it is judged to be qualified for practical application.
實施例1~實施例3中,燒結原料升溫至1000℃以上。剛試驗後的實施例1~實施例3的樣品為熔融狀態。圖3的(b)~圖3的(d)中示出實施例1~實施例3的加熱後的坩堝上表面照片(上圖)及燒結組織觀察照片(下圖)。如圖3所示,可知實施例1(b)、實施例2(c)、實施例3(d)熔融,且就氣孔進行了再排列來看,進行了燒結反應。實施例1~實施例3中,磁鐵礦以FeO換算分別包含3.3質量%、6.4質量%、9.4質量%。因此,藉由頻率2.45GHz的微波將該些原料加熱,燒結原料整體達到1000℃以上,進行燒結反應而成塊,從而可製造具有規定強度的燒結礦。 In Examples 1 to 3, the sintering raw materials are heated to above 1000°C. The samples of Examples 1 to 3 are in a molten state immediately after the test. Figures 3 (b) to 3 (d) show the upper surface photographs of the crucibles after heating (upper figure) and the sintered structure observation photographs (lower figure) of Examples 1 to 3. As shown in Figure 3, it can be seen that Examples 1 (b), 2 (c), and 3 (d) are melted, and the pores are rearranged, indicating that a sintering reaction has taken place. In Examples 1 to 3, the magnetite contains 3.3% by mass, 6.4% by mass, and 9.4% by mass, respectively, calculated as FeO. Therefore, these raw materials are heated by microwaves with a frequency of 2.45 GHz, and the sintered raw materials as a whole reach a temperature of more than 1000°C, undergoing a sintering reaction to form agglomerates, thereby producing sintered ore with a specified strength.
比較例1中,溫度的上升在中途停止,亦未觀測到微波的吸收,因此中止試驗。如圖3的(a)所示,可知比較例1的試驗後的試驗體保持粉末狀態不變,組織觀察時,比較例1中氣孔亦未再排列,原本的礦石的粒子直接殘留,未進行燒結反應。可認為,由於比較例1中未添加磁鐵礦,磁鐵礦以FeO換算僅含有0.2質量%,故而若為頻率為2.45GHz微波則無法加熱,因此未進行燒結反應。 In Comparative Example 1, the temperature rise stopped midway and no microwave absorption was observed, so the test was terminated. As shown in Figure 3 (a), it can be seen that the test body of Comparative Example 1 remained in a powder state after the test. When observing the structure, the pores in Comparative Example 1 were not rearranged, and the original ore particles remained directly without sintering reaction. It can be considered that since magnetite was not added in Comparative Example 1, magnetite only contained 0.2 mass% in terms of FeO, so it could not be heated if it was a microwave with a frequency of 2.45GHz, so no sintering reaction occurred.
[實驗2] [Experiment 2]
接下來,以工業上所使用的磁鐵礦精礦及鐵銹屑為原料而使用合計36g~38g的試樣。實施例4~實施例6是以實施例1中確認到燒結的調配為參考,設為以FeO換算為3質量%的調配率。另外,參考例1中使用與實施例5相同的原料,填充事先進行造粒並乾燥而成的原料。表3中示出比較例2、實施例4~實施例6及參考例1的調配。表4中示出各原料中的Fe元素的存在形態的比例。針對該些試樣以3kW照射頻率2.45GHz的微波而進行加熱。 Next, a total of 36g~38g of samples were used as raw materials using magnetite concentrate and rusty iron chips used in industry. Examples 4 to 6 were based on the formulation confirmed to be sintered in Example 1, and the formulation ratio was set to 3% by mass in terms of FeO. In addition, the same raw materials as those in Example 5 were used in Reference Example 1, and the raw materials were granulated and dried in advance. Table 3 shows the formulation of Comparative Example 2, Examples 4 to 6, and Reference Example 1. Table 4 shows the proportion of the Fe element in each raw material. These samples were heated with 3kW of microwave irradiation frequency of 2.45GHz.
圖4中示出所計測的溫度曲線。未調配磁鐵礦精礦及鐵銹屑的比較例2中,磁鐵礦以FeO換算僅含有0.7質量%,因此直至達到燒結開始的1000℃為止需要約180秒(3分鐘)。另一方面,調配有磁鐵礦精礦或鐵銹屑的實施例4~實施例6中,包含磁鐵礦3.0質量%以上,因此升溫速度快,以135秒(2分鐘15秒)以下達到1000℃而燒結。另外,參考例1中,升溫速度高於比較例2,但若與使用相同原料的實施例5相比,則成為升溫速度非常低的結果。 FIG4 shows the measured temperature curve. In Comparative Example 2, which does not mix magnetite concentrate and rusty scraps, magnetite contains only 0.7 mass % in terms of FeO, so it takes about 180 seconds (3 minutes) to reach 1000°C at the start of sintering. On the other hand, in Examples 4 to 6, which mix magnetite concentrate or rusty scraps, magnetite contains more than 3.0 mass % and therefore has a fast heating rate, reaching 1000°C and sintering in less than 135 seconds (2 minutes 15 seconds). In addition, in Reference Example 1, the heating rate is higher than that of Comparative Example 2, but compared with Example 5 using the same raw materials, the heating rate is very low.
1:燒結原料供給裝置 1: Sintering raw material supply device
2:托板 2: Pallet
3:微波照射裝置 3: Microwave irradiation device
4:托板寬度 4: Pallet width
5:托板裝入層高度 5: Pallet loading layer height
6:微波照射裝置長度 6: Length of microwave irradiation device
Claims (5)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-204016 | 2021-12-16 | ||
JP2021204016 | 2021-12-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202325859A TW202325859A (en) | 2023-07-01 |
TWI837828B true TWI837828B (en) | 2024-04-01 |
Family
ID=86774260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111135216A TWI837828B (en) | 2021-12-16 | 2022-09-16 | Sinter manufacturing method |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPWO2023112403A1 (en) |
KR (1) | KR20240105430A (en) |
CN (1) | CN118355134A (en) |
TW (1) | TWI837828B (en) |
WO (1) | WO2023112403A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107429310A (en) * | 2015-03-17 | 2017-12-01 | 高丽大学校产学协力团 | Magnetic iron ore base sintering deposit and its production method |
CN112824547A (en) * | 2019-11-21 | 2021-05-21 | 上海梅山钢铁股份有限公司 | Method for producing sintered ore from high-alumina iron ore powder |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07268494A (en) | 1994-03-29 | 1995-10-17 | Nippon Steel Corp | Method for agglomerating ore by microwave irradiation |
JPH09176750A (en) * | 1995-12-26 | 1997-07-08 | Nippon Steel Corp | Production of sintered ore |
JP5445230B2 (en) | 2010-03-05 | 2014-03-19 | 新日鐵住金株式会社 | Method for reducing iron oxide-containing substance by microwave heating, method for producing raw material for producing sinter, and method for producing blast furnace raw material |
KR20170040826A (en) | 2015-10-05 | 2017-04-14 | 주식회사 포스코 | Apparatus and method for manufacturing sintered ore |
CN110273065B (en) * | 2018-03-14 | 2021-05-14 | 宝山钢铁股份有限公司 | Iron ore microwave sintering method |
-
2022
- 2022-09-06 JP JP2023504758A patent/JPWO2023112403A1/ja active Pending
- 2022-09-06 CN CN202280080408.7A patent/CN118355134A/en active Pending
- 2022-09-06 WO PCT/JP2022/033466 patent/WO2023112403A1/en active Application Filing
- 2022-09-06 KR KR1020247019239A patent/KR20240105430A/en unknown
- 2022-09-16 TW TW111135216A patent/TWI837828B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107429310A (en) * | 2015-03-17 | 2017-12-01 | 高丽大学校产学协力团 | Magnetic iron ore base sintering deposit and its production method |
CN112824547A (en) * | 2019-11-21 | 2021-05-21 | 上海梅山钢铁股份有限公司 | Method for producing sintered ore from high-alumina iron ore powder |
Also Published As
Publication number | Publication date |
---|---|
TW202325859A (en) | 2023-07-01 |
KR20240105430A (en) | 2024-07-05 |
WO2023112403A1 (en) | 2023-06-22 |
JPWO2023112403A1 (en) | 2023-06-22 |
CN118355134A (en) | 2024-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW495552B (en) | Method of producing reduced iron pellets | |
JP5218196B2 (en) | Method for reducing iron oxide-containing substances | |
KR20120037447A (en) | Method for producing an agglomerate made of fine material containing metal oxide for use as a blast furnace feed material | |
Zhu et al. | Utilization of hydrated lime as binder and fluxing agent for the production of high basicity magnesium fluxed pellets | |
CN105331808B (en) | A kind of method of iron mineral powder agglomeration | |
JP7119856B2 (en) | Method for smelting oxide ore | |
TWI837828B (en) | Sinter manufacturing method | |
US2363371A (en) | Process of forming briquettes, bricks, or solid agglomerates | |
Umadevi et al. | Influence of coke breeze particle size on quality of sinter | |
AU2014294413A1 (en) | Method for manufacturing briquettes and reduced iron | |
Pal et al. | Development of carbon composite iron ore micropellets by using the microfines of iron ore and carbon-bearing materials in iron making | |
CN113912393B (en) | Stable zirconium ramming mass and preparation method thereof | |
JP2004027250A (en) | Method for producing sintered ore | |
JP5463571B2 (en) | Method of agglomerating iron raw material and its agglomeration equipment | |
Korchevskii et al. | Experimental study of briquetting technology for iron-bearing metallurgical waste treatment | |
JPH05339654A (en) | Pretreatment of sintered ore raw material and sintered ore raw material for iron making | |
JPH0310027A (en) | Pretreatment of high goethite ore | |
CN107949646A (en) | It is used to prepare the method and apparatus of the chromite concentrate of granulation and sintering and is granulated charging | |
CN114703364B (en) | Method for producing sinter by high-proportion FB powder | |
RU2497953C2 (en) | Method for obtaining granulated metallic iron | |
Kutsin et al. | The development of fine manganese concentrate lumping technology at PJSC Nikopol Ferroalloy Plant | |
JPS62290833A (en) | Carbonaceous material-containing non-calcined briquette | |
RU2430979C2 (en) | Procedure for preparation of charge for manufacture of metallised product | |
Hessien et al. | Effect of barite on mineralogical composition and structure of iron ore sinter | |
KR20150004523A (en) | Method for making cement material from steelmaking slag |