TWI836527B - Apparatus and ionizing bar for silicon based charge neutralization - Google Patents

Apparatus and ionizing bar for silicon based charge neutralization Download PDF

Info

Publication number
TWI836527B
TWI836527B TW111127927A TW111127927A TWI836527B TW I836527 B TWI836527 B TW I836527B TW 111127927 A TW111127927 A TW 111127927A TW 111127927 A TW111127927 A TW 111127927A TW I836527 B TWI836527 B TW I836527B
Authority
TW
Taiwan
Prior art keywords
emitter
silicon
shaft
voltage
tip
Prior art date
Application number
TW111127927A
Other languages
Chinese (zh)
Other versions
TW202247555A (en
Inventor
彼得 蓋夫特
亞力斯 克羅契可夫
Original Assignee
美商伊利諾工具工程公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/665,994 external-priority patent/US9380689B2/en
Application filed by 美商伊利諾工具工程公司 filed Critical 美商伊利諾工具工程公司
Publication of TW202247555A publication Critical patent/TW202247555A/en
Application granted granted Critical
Publication of TWI836527B publication Critical patent/TWI836527B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Elimination Of Static Electricity (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Silicon Compounds (AREA)

Abstract

An embodiment of the invention provides a method for low emission charge neutralization, comprising: generating a high frequency alternating current (AC) voltage; transmitting the high frequency AC voltage to at least one non-metallic emitter; wherein the at least one non-metallic emitter comprises at least 70% silicon by weight and less than 99.99% silicon by weight; wherein the at least one emitter comprises at least one treated surface section with a destroyed oxidation layer; and generating ions from the at least one non-metallic emitter in response to the high frequency AC voltage. Another embodiment of the invention provides an apparatus for low emission charge neutralization wherein the apparatus can perform the above-described operations.

Description

矽基電荷中和設備及電離棒 Silicon-based charge neutralization equipment and ionization rods

相關申請案之交互參照 Cross-references to related applications

本申請案為2009年6月18日申請的美國申請案第12/456,526號的部分連續案並且主張其優先權,其標題為「利用高頻波形之用於電離器的矽發射極(SILICON EMITTERS FOR IONIZERS WITH HIGH FREQUENCY WAVEFORMS)」並且主張2008年6月18日申請的美國先行申請案第61/132,422號的優先權與利益。美國申請案第12/456,626號與第61/132,422號在本文以引用之方式將其併入。 This application is a continuation-in-part of and claims priority to U.S. Application No. 12/456,526 filed on June 18, 2009, entitled "SILICON EMITTERS FOR IONIZERS WITH HIGH FREQUENCY WAVEFORMS" and claims priority to and the benefit of U.S. Prior Application No. 61/132,422 filed on June 18, 2008. U.S. Application Nos. 12/456,626 and 61/132,422 are incorporated herein by reference.

本發明的實施例主要關於電離裝置,用於靜電荷中和與控制。更具體地,本發明的實施例的目標在於半導體、電子、及/或平板產業內對於可靠的且低粒子發射的電離器之需求。 Embodiments of the present invention relate primarily to ionization devices for static charge neutralization and control. More specifically, embodiments of the present invention address the need for reliable and low particle emission ionizers within the semiconductor, electronics, and/or flat panel industries.

利用AC電離器,每一發射極在一時間時期期間接收高的正電壓並且在另一時間時期期間接收高的負電壓。 因此,每一發射極產生電暈放電,而不會輸出正與負離子兩者。 With an AC ionizer, each emitter receives a high positive voltage during one time period and a high negative voltage during another time period. Therefore, each emitter generates a corona discharge without outputting both positive and negative ions.

為了中和電荷以及防止與技術問題相關的靜電之目的,將正與負離子流(雲)導引朝著帶電靶。 For the purpose of neutralizing charges and preventing static electricity associated with technical problems, a flow (cloud) of positive and negative ions is directed towards a charged target.

本文所提供的背景敘述是為了大體上呈現本揭示案的背景之目的。目前稱為發明人的製做物、此背景部分中敘述的製做物、以及申請時可能不足以稱為先前技術的敘述的態樣皆非明確地或隱含地承認為是反對本揭示案的先前技術。 The background narrative provided herein is for the purpose of generally presenting the context of this disclosure. Nothing now claimed to be the inventor's work, work described in this background section, or any description of the matter at the time of filing that may not qualify as prior art is expressly or implicitly admitted as an objection to the present disclosure. of prior technology.

電荷中和器的離子發射極產生與供應正離子與負離子兩者至周圍的空氣或氣體介質中。為了產生氣體離子,所施加的電壓的振幅必須足夠高,以在配置作為電離單元的至少兩個電極之間產生電暈放電。在電離單元中,至少一電極為離子發射極,且另一電極可為參考電極。也可能,電離單元包括至少兩個電離電極。 The ion emitter of the charge neutralizer generates and supplies both positive and negative ions to the surrounding air or gas medium. To generate gas ions, the amplitude of the applied voltage must be high enough to generate a corona discharge between at least two electrodes configured as an ionization cell. In the ionization cell, at least one electrode is an ion emitter and the other electrode can be a reference electrode. It is also possible that the ionization cell includes at least two ionization electrodes.

伴隨著有用的正氣體離子與負氣體離子,電荷中和器的發射極可能產生與發射電暈副產物,包括非所欲的粒子。在半導體處理與類似的清洗處理中,粒子發射/污染係關聯於缺陷、產品可靠度問題、與利潤的損失。 Along with the useful positive and negative gas ions, the charge neutralizer's emitter may generate and emit corona byproducts, including undesirable particles. In semiconductor processing and similar cleaning processes, particle emission/contamination has been associated with defects, product reliability issues, and lost profits.

本領域中已知有數種因素會影響非所欲的粒子發射的量。一些初級因素包括例如離子發射極的材料成分、幾何形狀、與設計。第二種因素包括至高電壓電源供應器 的發射極連接的配置。另一關鍵的因素則相關於施加至離子發射極的電源的曲線(高電壓與電流的大小與時間相依性)。 Several factors are known in the art to affect the amount of undesired particle emission. Some primary factors include, for example, the material composition, geometry, and design of the ion emitter. The second factor includes high voltage power supplies configuration of the emitter connections. Another critical factor is related to the profile of the power supply applied to the ion emitter (the magnitude and time dependence of the high voltage and current).

電源波形可用於控制高電壓電源供應器供應至發射極的電壓曲線。電壓/電流波形可用於控制發射極的離子產生與粒子發射兩者。 The power waveform can be used to control the voltage profile supplied to the emitter by a high voltage power supply. Voltage/current waveforms can be used to control both ion production and particle emission from the emitter.

電暈放電可藉由直流(DC)電壓、交流(AC)電壓或兩種電壓的組合來激發。針對本發明的許多應用,較佳的電源波形為來自高頻(HF)電源供應器的高頻高電壓(HF-HV,high frequency high voltage)輸出,如同下面將討論的。此高電壓輸出可為持續的而非連續不斷的。亦即,電壓輸出可為在時間上振幅可變的或週期性地關閉。 The coma discharge can be stimulated by direct current (DC) voltage, alternating current (AC) voltage, or a combination of the two voltages. For many applications of the present invention, the preferred power waveform is a high frequency high voltage (HF-HV) output from a high frequency (HF) power supply, as discussed below. This high voltage output can be continuous rather than continuous. That is, the voltage output can be variable in amplitude over time or periodically turned off.

發射極的材料成分已知會影響電離器的粒子發射程度。一般的發射極材料包括不銹鋼、鎢、鈦、氧化矽、單晶矽、碳化矽、與其他鍍鎳或金的金屬。此列表並非完整的。從發明人的經驗知道,金屬型發射極容易產生較多的粒子,因為與侵蝕及濺射相關的電暈。另外,金屬(或者大體上來說,高導電性粒子)通常在半導體產業中被視為「殺手級粒子」(亦即,這些粒子可以短路地緊緊定位在晶圓/晶片的導電線跡)。因此,在本專利申請案的框架中,發明人基本上考慮的是非金屬的離子發射極,如同下面將討論的。 The material composition of the emitter is known to affect the degree of particle emission from the ionizer. Common emitter materials include stainless steel, tungsten, titanium, silicon oxide, single crystal silicon, silicon carbide, and other metals plated with nickel or gold. This list is not exhaustive. The inventors have learned from experience that metal-type emitters tend to generate more particles due to corona associated with erosion and spattering. In addition, metals (or, more generally, highly conductive particles) are often considered "killer particles" in the semiconductor industry (i.e., these particles can short-circuit tightly located conductive traces on the wafer/chip). Therefore, in the framework of this patent application, the inventors are primarily considering non-metallic ion emitters, as discussed below.

在這些材料的一者中,從低粒子發射的觀點來看,Scott Gehlke在美國專利第5,447,763號中建議的是超潔淨的(超過99.99%以上的純度)單晶矽。此單晶矽已經由半導體產業採用作為實際上潔淨的發射極標準。Curtis等人則在美國專利申請案公開號第2006/0071599號中建議超潔淨的碳化矽(至少99.99%的純度)為另一種非金屬材料。但是,碳化矽發射極價格昂貴,而且容易發射非所欲的粒子。 Among these materials, from the perspective of low particle emission, Scott Gehlke in U.S. Patent No. 5,447,763 proposed ultra-clean (greater than 99.99% purity) single crystal silicon. This single crystal silicon has been adopted by the semiconductor industry as the de facto standard for clean emitters. Curtis et al. in U.S. Patent Application Publication No. 2006/0071599 proposed ultra-clean silicon carbide (at least 99.99% purity) as another non-metallic material. However, silicon carbide emitters are expensive and tend to emit undesirable particles.

具有單晶矽發射極的已知電離器係由兩個高電壓DC供應器供電。用於無塵室吊頂安裝的一種系統(像是無塵室電離系統「NiLstat 5000」(離子系統公司(Ion Systems,Inc.))通常產生每立方英尺空氣中少於60個粒子(直徑大於10奈米)。其他發射極材料通常產生每立方英尺空氣中多於200個粒子(直徑大於10奈米)。一些材料產生每立方英尺空氣中數千個粒子(直徑大於10奈米)。 Known ionizers with single crystal silicon emitters are powered by two high voltage DC supplies. One system used for cleanroom ceiling mounting, such as the Cleanroom Ionization System "NiLstat 5000" (Ion Systems, Inc.), typically produces less than 60 particles (greater than 10 nm in diameter) per cubic foot of air. Other emitter materials typically produce more than 200 particles (greater than 10 nm in diameter) per cubic foot of air. Some materials produce thousands of particles (greater than 10 nm in diameter) per cubic foot of air.

雖然(1)發射極材料的成分,(2)非金屬發射極的連接器構造的元件,與(3)特殊的電源波形的應用之某一者已知為獨立地重要的,先前技術並未考慮策略性結合這些因素的益處,以達到高的電離可靠度與潔淨度。 Although any of (1) the composition of the emitter material, (2) the components of the non-metallic emitter connector construction, and (3) the application of the particular power waveform are known to be independently important, the prior art has not Consider the benefits of strategically combining these factors to achieve high ionization reliability and cleanliness.

發明人最近的實驗已經使發明人發現並且找到新穎的組合,使得發射極有穩定的離子產生與低位準的不可預知的粒子產生。潔淨的及/或低粒子發射的電離器在許多高科技產業中都有實用性。具體地,半導體產業對於超潔 淨電離器有定義明確的需要。需要電離器來最小化靜電與電場,靜電與電場可能會毀壞半導體裝置。也需要盡可能低的粒子發射,因為外來粒子會損害半導體裝置的可靠性。先進半導體技術係在晶圓上建立24-16奈米的特徵。針對奈米的特徵,絕對需要對於大於10奈米的粒子的控制。 The inventor's recent experiments have led the inventor to discover and find novel combinations that allow the emitter to have stable ion production and low-level unpredictable particle production. Clean and/or low particle emission ionizers have utility in many high-tech industries. Specifically, the semiconductor industry is interested in ultra-clean Net ionizers have well-defined needs. Ionizers are needed to minimize static electricity and electric fields that can destroy semiconductor devices. Particle emissions are also required to be as low as possible since foreign particles can compromise the reliability of semiconductor devices. Advanced semiconductor technology creates 24-16nm features on the wafer. For nanometer characteristics, control of particles larger than 10 nanometers is absolutely required.

應理解到,前面在背景部分中的一般敘述僅為範例性與解釋性的,且並不限制所主張的本發明。 It should be understood that the general description in the background section above is exemplary and explanatory only and does not limit the claimed invention.

發明人最近的實驗已經顯示出:(1)矽類材料的成分與發射極的設計,(2)發射極連接器的配置及/或構造,與(3)電源電壓波形的類型應視為發射極的可靠性能與低粒子發射之合成、新穎的有利組合。發明人找到的組合可導致發射極的穩定離子產生與低位準的不可預知的粒子產生。潔淨的及/或低粒子發射的電離器在許多高科技產業中都有實用性。具體地,半導體產業對於超潔淨電離器有定義明確的需要。需要電離器來最小化靜電與電場,靜電與電場可能會毀壞半導體裝置。也需要盡可能低的粒子發射,因為外來粒子會損害半導體裝置的可靠性。先進半導體技術係在晶圓上建立24-16奈米的特徵。針對奈米的特徵,絕對需要對於大於10奈米的粒子的控制。 The inventor's recent experiments have shown that (1) the composition of the silicon material and the design of the emitter, (2) the configuration and/or construction of the emitter connector, and (3) the type of supply voltage waveform should be considered emitter A synthetic, novel and advantageous combination of extremely reliable performance and low particle emission. The combination found by the inventors results in stable ion production at the emitter and low levels of unpredictable particle production. Clean and/or low particle emission ionizers have utility in many high-tech industries. Specifically, the semiconductor industry has a well-defined need for ultra-clean ionizers. Ionizers are needed to minimize static electricity and electric fields that can destroy semiconductor devices. Particle emissions are also required to be as low as possible since foreign particles can compromise the reliability of semiconductor devices. Advanced semiconductor technology creates 24-16nm features on the wafer. For nanometer characteristics, control of particles larger than 10 nanometers is absolutely required.

包括矽類材料的發射極電極成分、電極連接器、與施加至發射極的電源波形之匹配已經證實是新穎的方法來達成電荷中和電離器先前無法達到的可靠度水平與潔淨 度。本發明的範例性實施例的核心為以下的組合:具有材料/化學成分重量百分比在小於99.99%至至少70%之間的範圍的矽之非金屬離子發射極、發射極電極設計與表面處理(製備)、發射極的連接配置、以及操作於高頻範圍的高電壓電源供應器。在此組合中,高頻高電壓電源產生電暈放電模式,電暈放電模式的特徵為低啟始電壓。在本發明的實施例中,產生自至少一非金屬發射極的離子包括以最小啟始HF電壓與電源產生的正離子與負離子。 Matching the emitter electrode composition, including the silicone material, the electrode connectors, and the power waveform applied to the emitter has proven to be a novel approach to achieving previously unattainable levels of reliability and cleanliness in charge neutralization ionizers. Spend. At the heart of exemplary embodiments of the present invention is the combination of a non-metallic ion emitter having a material/chemical composition weight percent in the range of less than 99.99% to at least 70% silicon, emitter electrode design and surface treatment ( preparation), the connection configuration of the emitter, and the high voltage power supply operating in the high frequency range. In this combination, a high-frequency, high-voltage power supply produces a corona discharge mode, which is characterized by a low onset voltage. In an embodiment of the present invention, the ions generated from the at least one non-metallic emitter include positive ions and negative ions generated with a minimum starting HF voltage and power supply.

此組合是有效的且適用於許多不同類型的無塵室電離器/電荷中和器。作為一範例,本發明的實施例的電離器可視為目標用於等級1的無塵室生產環境的嵌入式電離器。此電離器可具有潔淨乾空氣(CDA,clean dry air)或氮氣、氬氣、或其他惰性氣體的進入流動。氣體或空氣沿著電離單元內的矽類發射極通過。電離單元/腔室通常為封閉的,除了空氣/氣體入口與出口開孔之外。 This combination is effective and applicable to many different types of clean room ionizers/charge neutralizers. As an example, the ionizer of an embodiment of the present invention may be considered as an embedded ionizer targeted for use in a Class 1 clean room production environment. The ionizer may have an inlet flow of clean dry air (CDA) or nitrogen, argon, or other inert gas. The gas or air passes along the silicon-based emitter in the ionization cell. The ionization cell/chamber is typically closed except for the air/gas inlet and outlet openings.

根據本發明的實施例之嵌入式電荷中和電離器的設計可使用像是高頻高電壓供應器的緊密電源。電源供應器的輸出連接器容納至少一矽類發射極。電離單元產生潔淨的雙極性電離。空氣流(或氮氣或氬氣流或其他氣體流)足以移動離子從電離發射極(單元或腔室)至電荷中和的靶。 The design of the embedded charge neutralizing ionizer according to the embodiment of the present invention can use a compact power supply such as a high frequency high voltage supply. The output connector of the power supply accommodates at least one silicon type emitter. The ionization cell produces clean bipolar ionization. The air flow (or nitrogen or argon flow or other gas flow) is sufficient to move ions from the ionization emitter (cell or chamber) to the charge neutralization target.

電源供應器的高頻電壓曲線具有大約1KHz至100kHz的AC頻率範圍。峰值電壓超過發射極的電暈啟始 電壓(正與負)。高頻AC之發射極的離子電流實質上由矽類材料的電阻值來限制。 The high frequency voltage curve of the power supply has an AC frequency range of about 1KHz to 100kHz. The peak voltage exceeds the coma initiation voltage (positive and negative) of the emitter. The ion current of the high frequency AC emitter is essentially limited by the resistance value of the silicon material.

在此目前的申請案中,高電壓係界定為至少一離子產生電極與參考電極之間的電位差。在一些高頻AC電離單元中,參考電極可藉由介電質牆而隔離於電離電極。因此,實際上排除了電極之間的直接電子、離子崩潰(像是火花放電)的可能性,且來自發射極的粒子發射可大大減少。在操作模式期間,每當電壓振幅超過施加至電離電極的電暈正與負啟始電壓時,會產生離子。 In this current application, high voltage is defined as the potential difference between at least one ion-generating electrode and a reference electrode. In some high frequency AC ionization cells, the reference electrode can be isolated from the ionization electrode by a dielectric wall. Therefore, the possibility of direct electron/ion collapse between the electrodes (like a spark discharge) is virtually eliminated, and particle emission from the emitter can be greatly reduced. During the operating mode, ions are generated whenever the voltage amplitude exceeds the corona positive and negative onset voltages applied to the ionization electrodes.

當高頻AC電壓曲線為週期性的而非連續不斷的時,另一頻率(選擇性的)變成相關的。也就是說,僅在預定的時間間隔內,產生超過啟始電壓曲線的高頻AC電壓。在此方案中,高頻AC電壓在啟用時間間隔期間(通常為大約0.01秒(或更小)至大約1或更多秒)施加至發射極,但是在非啟用時間間隔期間可施加低於啟始電壓的電壓。此選擇性的高頻電壓波形也可實質上包括開/關高電壓模式。正常的低電壓或開/關頻率範圍大約為0.1赫茲至500赫茲,但是該頻率可在此範圍之外。 When the high frequency AC voltage curve is periodic rather than continuous, another frequency (selective) becomes relevant. That is, a high-frequency AC voltage exceeding the starting voltage curve is generated only within a predetermined time interval. In this scheme, a high frequency AC voltage is applied to the emitter during the enable time interval (usually about 0.01 second (or less) to about 1 or more seconds), but during the non-enable time interval lower than the enable time may be applied. starting voltage. This selective high frequency voltage waveform may also essentially include an on/off high voltage mode. The normal low voltage or on/off frequency range is approximately 0.1 Hz to 500 Hz, but the frequency can be outside this range.

提供一些含矽的發射極成分作為範例。它們是:(a)摻雜的晶體矽,(b)摻雜的多晶矽,(c)摻雜的矽與氧化矽的組合,與(d)沉積在摻雜有矽的基板上。摻雜劑與添加劑主要目的在於控制表面與體積電阻率,以及矽類發射極的力學特性。它們較佳地係取自已知的非金屬摻雜劑群,像是硼、砷、碳、磷、與其他。 Some silicon-containing emitter compositions are provided as examples. They are: (a) doped crystalline silicon, (b) doped polycrystalline silicon, (c) a combination of doped silicon and silicon oxide, and (d) deposited on a doped silicon substrate. Dopants and additives are mainly intended to control the surface and volume resistivity, as well as the mechanical properties of silicon-based emitters. They are preferably taken from the group of known non-metallic dopants, such as boron, arsenic, carbon, phosphorus, and others.

因此,本發明的至少一範例性實施例提供一種方法,用於低發射電荷中和,該方法包括下述步驟:產生高頻交流(AC)電壓;傳送高頻AC電壓至至少一非金屬發射極;其中至少一非金屬發射極包括重量百分比至少70%的矽且重量百分比小於99.99%的矽;其中至少一非金屬發射極包括至少一已處理的表面部分,至少一已處理的表面部分具有破壞的氧化層;以及回應於高頻AC電壓而從至少一非金屬發射極產生離子。 Therefore, at least one exemplary embodiment of the present invention provides a method for low-emission charge neutralization, the method including the steps of: generating a high-frequency alternating current (AC) voltage; transmitting the high-frequency AC voltage to at least one non-metallic emitter electrode; wherein at least one non-metallic emitter includes at least 70% by weight silicon and less than 99.99% by weight silicon; wherein at least one non-metallic emitter includes at least one treated surface portion, and at least one treated surface portion has a destroyed oxide layer; and generating ions from at least one non-metallic emitter in response to a high frequency AC voltage.

本發明的至少一範例性實施例也提供一種設備,該設備包括允許上述功能的元件。例如,本發明的實施例提供一種設備,用於低發射電荷中和,包括:至少一非金屬發射極,至少一非金屬發射極包括重量百分比至少70%的矽且重量百分比小於99.99%的矽;其中至少一非金屬發射極包括至少一已處理的表面部分,至少一已處理的表面部分具有破壞氧化矽層;以及其中至少一非金屬發射極回應於高頻AC電壓而產生離子。 At least one exemplary embodiment of the present invention also provides a device including elements that enable the above-described functions. For example, embodiments of the present invention provide a device for low emission charge neutralization, comprising: at least one non-metallic emitter, the at least one non-metallic emitter comprising at least 70% by weight silicon and less than 99.99% by weight silicon ; wherein the at least one non-metal emitter includes at least one treated surface portion, the at least one treated surface portion having a destroyed silicon oxide layer; and wherein the at least one non-metal emitter generates ions in response to a high frequency AC voltage.

應理解到,前述的一般說明與以下的詳細說明兩者僅為範例性與解釋性的,且並不限制所主張的本發明。 It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention as claimed.

所附圖式併入於本說明書中並且構成本說明書的一部分,所附圖式例示本發明的一(數個)實施例,並且與說明書一起用來解釋本發明的原理。 The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate one or more embodiments of the invention and together with the description, serve to explain the principles of the invention.

100a:矽發射極 100a: Silicon emitter

100c:矽發射極 100c: Silicon emitter

101a:發射極尖端 101a: Launching the most advanced technology

101b:非金屬的矽部分 101b: Non-metallic silicon part

101c:矽發射極部分 101c: Silicon emitter part

102a:錐部 102a: cone

102b:不銹鋼管(套筒) 102b: Stainless steel pipe (sleeve)

102c:膚層/層(表面氧化層) 102c: Skin layer/layer (surface oxide layer)

103a:軸部 103a: shaft

103b、104b:視圖 103b, 104b: View

103c:套筒 103c: Sleeve

104a:尾部 104a: Tail

104c:凹部 104c: concave part

105b:凹部(突伸部) 105b: Recess (protrusion)

106b:視圖 106b: View

106c:區段/延伸部 106c: Section/Extension

107c:凹槽 107c: Groove

200:電離系統 200: Ionization system

201:正(+)棒 201: Positive (+) stick

202:負(-)棒 202: Negative (-) stick

203:高電壓電源(HVDC)供應器 203: High Voltage Power Supply (HVDC) Supplier

204:視圖 204: View

205:插座式連接器 205:Socket connector

206:高電壓纜線 206:High voltage cable

207:矽類發射極 207:Silicon emitter

300a:矽類發射極 300a: Silicon emitter

300b:矽類發射極 300b: Silicon emitter

300c:矽類發射極 300c: Silicon emitter

301a:軸部 301a: Shaft

301b:軸部 301b: Shaft

301c:軸部 301c: shaft

302a:軸部表面 302a: Shaft surface

302b:金屬鍍層(金屬塗層) 302b: Metal plating (metal coating)

302c:已處理表面部分 302c: Treated surface part

303a:視圖 303a:View

303c、304c:導電電極 303c, 304c: Conductive electrode

304a:圓形端 304a: Round end

305:測量裝置 305: Measuring device

305a:尖端 305a: Tip

306a:錐部 306a: Cone

310a:已處理的表面部分(研磨部分、磨光處理部分) 310a: Processed surface part (ground part, polished part)

310b:已處理的表面部分 310b: Treated surface part

311a:部分 311a: Section

314a:尾部 314a:Tail

314b:尾部 314b:Tail

314c:尾部 314c: Tail

316b:接觸部分 316b: Contact part

400a、400b:矽類發射極 400a, 400b: Silicon emitter

401a、401b:發射極部分 401a, 401b: emitter part

402a、402b:套筒 402a, 402b: sleeve

403a、403b:金屬延伸銷(金屬電極) 403a, 403b: Metal extension pin (metal electrode)

404b:視圖 404b:View

405a:視圖 405a: View

405b:視圖 405b: View

406a:視圖 406a:View

406b:視圖 406b: View

410a:發射極組件 410a: Transmitter assembly

421a、421b:尖端 421a, 421b: tip

430:側 430: Side

431:側 431:Side

435、436:凹槽 435, 436: Groove

440:軸部 440: Shaft

441:曝露部分 441:Exposed part

442:錐形部分 442:Tapered part

461:端 461: End

462:端 462:end

501:矽類發射極 501: Silicon emitter

502:矽類發射極 502: Silicon emitter

503:矽類發射極 503: Silicon emitter

510:平坦尖端 510:Flat tip

511:錐部 511: Cone

514:圓形尖端 514: Round tip

516:錐部 516: Cone

520:尖點狀尖端 520: Pointed tip

521:錐部/圓錐部 521: cone/cone

600:波形 600: Waveform

605:雙極性脈衝 605: Bipolar pulse

610、615:水平虛線 610, 615: Horizontal dotted line

700:電壓波形 700:Voltage waveform

705:正電暈啟始電壓(+)Von 705: Positive corona starting voltage (+)Von

710:負電暈啟始電壓(-)Von(負電暈啟始電壓臨界值) 710: Negative corona starting voltage (-)Von (negative corona starting voltage critical value)

750:電壓波形 750: Voltage waveform

752:脈衝串 752:Pulse train

755:開啟時期 755: Opening period

756:關閉時期 756:Closing period

758:振幅 758:Amplitude

760:振幅 760: Amplitude

780:電壓波形 780: Voltage waveform

782:脈衝串 782:Pulse train

785:開啟時期 785:Open period

786:非操作時期 786: Non-operating period

788:振幅 788:Amplitude

790:振幅 790: Amplitude

800:電壓波形 800: Voltage waveform

802:振幅 802:Amplitude

804:正電壓波 804: Positive voltage wave

806:振幅 806: Amplitude

808:負電壓波 808: Negative voltage wave

810:正偏移 810: Positive offset

815:負偏移 815: Negative offset

850:電壓波形 850: Voltage waveform

900a:電離單元 900a: Ionization unit

900b:視圖 900b:View

900c:電離器 900c: Ionizer

901a:HF HV產生器 901a:HF HV generator

901b:區塊 901b: Block

901c:正與負離子 901c: positive and negative ions

902a:矽類發射極 902a: Silicon emitter

902c:電離單元 902c: Ionization unit

903a:插座 903a: socket

903c:電源供應器 903c: Power supply

904a:空氣/氣體通道 904a: Air/Gas Channel

904c:矽類發射極 904c: Silicon emitter

905a:參考電極 905a: Reference electrode

905b:矽類發射極 905b: Silicon emitter

905c:參考電極 905c: Reference electrode

906a:出口 906a:Exit

906b:插座 906b:Socket

906c:空氣流或氣體流 906c: Air or gas flow

907a:控制系統 907a:Control system

907b:參考電極 907b: Reference electrode

907c:控制系統 907c: Control system

908a:空氣/氣體流 908a: Air/gas flow

908b:高電壓HF電源供應器 908b: High voltage HF power supply

908c:微處理器 908c:Microprocessor

909a:尖端 909a: Tip

909b:帶電靶 909b: Charged target

909c:氣體壓力感測器 909c: Gas pressure sensor

910a:HF電漿 910a:HF plasma

910c:電暈放電感測器 910c: Stun discharge inductor detector

911c:操作狀態指示器 911c: Operation status indicator

920:正離子 920:Positive ion

921:負離子 921: Negative ions

933b:入口 933b: Entrance

934b:出口 934b:Export

934c:電離器出口 934c: Ionizer outlet

960:空腔 960: Cavity

961:箭頭 961:arrow

965:電荷 965: Charge

1000a:高頻AC電離棒 1000a: High frequency AC ionization rod

1001a-1008a:矽類發射極 1001a-1008a: Silicon emitter

1003d:矽發射極 1003d:Silicon emitter

1004d:孔 1004d:hole

1009c:插座 1009c: socket

1010a:外殼 1010a: Shell

1020c、1020d:套筒 1020c, 1020d: Sleeve

1030c、1030d:噴嘴 1030c, 1030d: nozzle

1011a:參考電極 1011a: Reference electrode

C1:電容器 C1: Capacitor

D:直徑 D: Diameter

D1、D2、D3、D4:直徑 D1, D2, D3, D4: Diameter

L2:可變長度 L2: variable length

R:電阻值 R: resistance value

本發明的非限制性且非窮舉式的實施例係參考以下的圖式來說明,其中在各個視圖中類似的元件符號指的是類似的部件,除非另有說明。 Non-limiting and non-exhaustive embodiments of the present invention are illustrated with reference to the following drawings, wherein like reference numerals refer to like parts throughout the various views unless otherwise stated.

但是,應注意到,所附圖式僅例示本發明的典型實施例,且因此不應視為限制本發明的範圍,因為本發明可允許其他等效的實施例。 However, it should be noted that the attached drawings illustrate only typical embodiments of the present invention and therefore should not be considered to limit the scope of the present invention, as the present invention may admit of other equally effective embodiments.

第1(a)圖為傳統的單晶矽離子發射極或(大體上)非金屬離子發射極的圖示。 Figure 1(a) is a diagram of a conventional single crystal silicon ion emitter or (generally) a non-metal ion emitter.

第1(b)圖與第1(c)圖繪示傳統的部件與具有金屬套筒與凹槽的單晶矽發射極的組件之圖示。 Figures 1(b) and 1(c) show diagrams of conventional components and assemblies of single crystal silicon emitters with metal sleeves and grooves.

第2圖繪示傳統的DC無塵室電離吊頂系統之圖示,具有兩個單晶矽發射極。 Figure 2 shows a diagram of a conventional DC clean room ionization ceiling system with two single crystal silicon emitters.

第3(a)圖根據本發明的實施例,繪示含矽的發射極的圖示,其中發射極包括具有預選的表面粗糙度之發射極軸部的部分(或已處理的表面部分)。 Figure 3(a) is an illustration of a silicon-containing emitter, wherein the emitter includes a portion of the emitter shaft (or a treated surface portion) having a preselected surface roughness, in accordance with an embodiment of the present invention.

第3(b)圖根據本發明的另一實施例,繪示發射極的圖示,其中發射極包括具有部分導電的表面鍍層或部分導電的表面塗層(或其他類型的已處理的表面部分)之發射極軸部的部分。 Figure 3(b) illustrates an emitter according to another embodiment of the present invention, wherein the emitter includes a partially conductive surface coating or a partially conductive surface coating (or other type of treated surface portion). ) of the emitter axis.

第3(c)圖根據本發明的實施例,繪示含矽的發射極與用以監測發射極的表面電阻值及/或體積電阻值的設備之圖示。 Figure 3(c) shows a diagram of a silicon-containing emitter and a device for monitoring the surface resistance and/or volume resistance of the emitter, according to an embodiment of the present invention.

第4(a)圖與第4(b)圖根據本發明的各種實施例,繪示含矽的發射極的圖示,具有徑向壓縮彈簧套筒與金屬銷的兩個變型。 Figures 4(a) and 4(b) show diagrams of silicon-containing emitters with two variations of radial compression spring sleeves and metal pins according to various embodiments of the present invention.

第5(a)圖、第5(b)圖、與第5(c)圖根據本發明的各種實施例,繪示三個含矽的發射極的圖示,具有不同的錐部與尖端的結構。 Figures 5(a), 5(b), and 5(c) show three silicon-containing emitters with different cone and tip structures according to various embodiments of the present invention.

第6圖根據本發明的實施例,繪示HF波形的圖示,HF波形用於在電暈電離時期的「啟動」期間執行含矽的發射極尖端的「軟式」電漿清洗。 FIG. 6 illustrates an HF waveform for performing a "soft" plasma clean of a silicon-containing emitter tip during the "start-up" period of the corona ionization period, according to an embodiment of the present invention.

第7(a)圖、第7(b)圖、與第7(c)圖根據本發明的各種實施例,繪示在操作模式期間施加至矽類發射極的高頻電源電壓波形的範例的圖示。 FIG. 7(a), FIG. 7(b), and FIG. 7(c) are diagrams showing examples of high frequency power supply voltage waveforms applied to a silicon-type emitter during an operating mode according to various embodiments of the present invention.

第8(a)圖與第8(b)圖根據本發明的各種實施例,繪示調變的高頻電壓波形的範例的圖示。 Figures 8(a) and 8(b) are diagrams showing examples of modulated high-frequency voltage waveforms according to various embodiments of the present invention.

第9(a)圖根據本發明的實施例,繪示嵌入式電離器的電離單元/腔室的圖示。高頻AC供電的矽類發射極產生兩種極性的離子。空氣/氣體流移動來自發射極的離子流。 Figure 9(a) shows a diagram of an ionization unit/chamber of an embedded ionizer according to an embodiment of the present invention. The high frequency AC powered silicon emitter produces ions of both polarities. The air/gas flow moves the ion flow from the emitter.

第9(b)圖根據本發明的實施例,繪示電離單元與氣體通道的圖示。 FIG. 9(b) shows a diagram of an ionization unit and a gas channel according to an embodiment of the present invention.

第9(c)圖根據本發明的實施例,繪示嵌入式電離器的簡化方塊圖,具有矽類發射極。 Figure 9(c) shows a simplified block diagram of an embedded ionizer with a silicon emitter in accordance with an embodiment of the present invention.

第10(a)圖、第10(b)圖、第10(c)圖、與第10(d)圖根據本發明的實施例,繪示高頻AC電離棒的簡化結構與具有矽類離子發射極的噴嘴的細節之圖示。 Figure 10(a), Figure 10(b), Figure 10(c), and Figure 10(d) illustrate a simplified structure of a high-frequency AC ionization rod with silicon ions according to an embodiment of the present invention. Detail of the emitter nozzle.

在下面的詳細說明中,為了解釋的目的,提出許多具體的細節,以提供本發明的各種實施例的透徹理解。本領域中熟習技藝者將瞭解,本發明的這些各種實施例僅為例示性的,且並不打算以任何方式進行限制。本發明的其他實施例將容易地促成具有本揭示案的益處之本領域中熟習技藝者思及該等實施例。 In the following detailed description, for the purpose of explanation, many specific details are set forth to provide a thorough understanding of various embodiments of the present invention. Those skilled in the art will appreciate that these various embodiments of the present invention are merely illustrative and are not intended to be limiting in any way. Other embodiments of the present invention will readily suggest themselves to those skilled in the art having the benefit of this disclosure.

此外,為了清楚起見,本文敘述的實施例的常規特徵並非全部都繪示或敘述。本領域中熟習技藝者將容易理解到,在任何此種實際實施的開發中,可能需要許多特定實施的決策來達成特定的設計目標。這些設計目標將隨著各種實施而變化,並且隨著各種開發者而不同。此外,將理解到,此種開發努力可能是複雜且耗時的,但是儘管如此,仍為給具有本揭示案的益處之本領域中熟習技藝者的一般工程保證。本文揭示的各種實施例並不打算限制本文的揭示內容的範圍與精神。 Furthermore, in the interest of clarity, not all conventional features of the embodiments described herein may be shown or described. Those skilled in the art will readily appreciate that in the development of any such actual implementation, many implementation-specific decisions may be required to achieve specific design goals. These design goals will vary with various implementations, and with various developers. Furthermore, it will be appreciated that such development efforts may be complex and time consuming, but are nevertheless provided with ordinary engineering assurance to those skilled in the art having the benefit of the present disclosure. The various embodiments disclosed herein are not intended to limit the scope or spirit of the disclosure herein.

本文將參考圖式來敘述用於實施本發明的原理之範例性實施例。但是,本發明並不限於具體敘述與例示的實施例。本領域中熟習技藝者將理解到,許多其他實施例 都可能,且不偏離本發明的基本概念。因此,本發明的原理擴展至落入所附申請專利範圍的範圍內之任何製作物。 Exemplary embodiments for implementing the principles of the invention will be described herein with reference to the drawings. However, the present invention is not limited to the specifically described and illustrated embodiments. Those skilled in the art will appreciate that many other embodiments are possible without departing from the basic concept of the invention. Accordingly, the principles of the present invention extend to any article of manufacture falling within the scope of the appended claims.

當在本文使用時,本文的用語「一」並不表示對數量的限制,而是表示存在至少一個提及的事項。 When used herein, the terms "a" and "an" do not indicate a limitation of quantity, but rather indicate the presence of at least one of the referenced item.

在實驗上,已經由發明人展現出,例如,組合下述的嵌入式電離器可以可靠地產生具有非常少的粒子的電性平衡離子氣體流:(1)含有矽的發射極(2)配置做為接觸於導電插座的銷型電極,以及(3)電容性接收高頻AC電壓波形。上述的組合產生的電離的可靠性與潔淨度水平無法由本領域中已知的非金屬含矽發射極或高頻AC電壓波形個別地達成。在潔淨度測試期間測量直徑大於或等於10nm的累積粒子。粒子計數器(像是CNC(condense particle counter)-凝聚粒子計數器)不將粒子分成大小範圍。 Experimentally, the inventors have shown that, for example, an embedded ionizer in combination with: (1) an emitter containing silicon (2) a pin-type electrode configured as a contact to a conductive socket, and (3) capacitive reception of a high-frequency AC voltage waveform can reliably produce an electrically balanced ion gas stream with very few particles. The above combination produces ionization with a reliability and cleanliness level that cannot be achieved by non-metallic silicon-containing emitters or high-frequency AC voltage waveforms known in the art individually. Accumulated particles with a diameter greater than or equal to 10 nm are measured during cleanliness testing. Particle counters (such as CNC (condense particle counter)) do not separate particles into size ranges.

例如,用於連接至DC或脈衝DC(+/-20kV)電源的無塵室電離系統(例如,NiLstat電離系統)(類似於第2圖所示的系統200)之兩個單晶矽發射極(在美國專利第5,447,763號中討論)產生每立方英尺空氣中大約60個粒子(直徑大於10奈米)。相反地,本發明的實施例所揭示的電離器產生每立方英尺空氣中少於10個的相同直徑的奈米粒子。從立體的角度來看,每立方英尺空氣中大於10奈米的10個粒子名義上比本申請案此時最潔淨的先前技術的電離器更潔淨6倍。 For example, two single crystal silicon emitters (discussed in U.S. Patent No. 5,447,763) used in a clean room ionization system (e.g., a NiLstat ionization system) connected to a DC or pulsed DC (+/-20 kV) power source (similar to system 200 shown in FIG. 2) produce approximately 60 particles (diameter greater than 10 nanometers) per cubic foot of air. In contrast, the ionizer disclosed in embodiments of the present invention produces less than 10 nanoparticles of the same diameter per cubic foot of air. To put this in perspective, 10 particles greater than 10 nanometers per cubic foot of air is nominally 6 times cleaner than the cleanest prior art ionizer at the time of this application.

在相反的範例中,利用傳統的系統(例如,美國專利第5,447,763號中的系統)測試金屬發射極(鎢),且展現出不可接受的無塵室粒子發射數量。我們使用鎢發射極結合於高頻AC高電壓波形(類似於美國專利申請案公開號第2003/0007307號(Lee等人)中提出的)的實驗在潔淨度上具有很少的益處,相較於美國專利第5,447,763號中先前揭示的傳統系統來說。兩個實例中測試鎢發射極的粒子集中總數結果在每立方英尺空氣中都超過600個粒子(大於10奈米)。 In the opposite paradigm, metal emitters (tungsten) are tested using conventional systems (eg, the system in US Pat. No. 5,447,763) and exhibit unacceptable clean room particle emission numbers. Our experiments using a tungsten emitter coupled to a high-frequency AC high-voltage waveform (similar to that proposed in U.S. Patent Application Publication No. 2003/0007307 (Lee et al.)) had little benefit in terms of cleanliness compared to In terms of the conventional system previously disclosed in U.S. Patent No. 5,447,763. In both cases the total particle concentration of the tungsten emitter tested was over 600 particles (larger than 10 nanometers) per cubic foot of air.

但是,高純度(99.99%以上的純度)單晶矽發射極(像是第1(a)圖、第1(b)圖、與第1(c)圖中所示的發射極)具有高電阻值(在兆歐姆的範圍)。當此發射極連接至高頻(HF)AC電壓電源時,通常,離子的產生不足以用於有效率的電荷中和。主要的原因在於因為大部分的HF(高頻)電流/電壓跑到雜散電容器中而沒有到發射極尖端。 However, high-purity (99.99% or higher) single-crystal silicon emitters (such as those shown in Figures 1(a), 1(b), and 1(c)) have high resistance value (in the megaohm range). When this emitter is connected to a high frequency (HF) AC voltage supply, typically the generation of ions is insufficient for efficient charge neutralization. The main reason is because most of the HF (high frequency) current/voltage runs into the stray capacitor and does not reach the emitter tip.

與高純度(99.99%以上的純度)單晶矽發射極相關的另一問題為:發射極容易產生表面氧化物「膚層」(在第1(c)圖中,圍繞矽發射極部分101c的表面、由虛線102c所繪示的氧化物層或膚層)。此膚層/層102c包括高絕緣的氧化矽(SiO2)。例如,在下述的加州的史丹佛大學的出版品(「天然氧化物的生長(Growth of native oxide),2003年8月28日史丹佛大學奈米製造設施(Stanford University Nanofabrication Facility,28 August 2003)」)中有討論潔淨的矽晶圓的表面上的氧化矽生長。 Another problem associated with high purity (99.99% purity or greater) single crystal silicon emitters is that the emitters are susceptible to the development of a surface oxide "skin" (the oxide layer or skin shown by dashed line 102c surrounding the surface of silicon emitter portion 101c in FIG. 1(c)). This skin/layer 102c comprises highly insulating silicon oxide ( SiO2 ). For example, the growth of silicon oxide on the surface of a clean silicon wafer is discussed in the following publication by Stanford University in California ("Growth of native oxide", Stanford University Nanofabrication Facility, 28 August 2003).

氧化矽層生長現象的最終結果為:非金屬矽發射極/銷由此絕緣層包圍並且不具有與電性插座(以及因此,HF電源供應器的高電壓輸出)的良好、可靠的連接。 The net result of the silicon oxide layer growth phenomenon is that the non-metallic silicon emitter/pin is surrounded by this insulating layer and does not have a good, reliable connection to the electrical socket (and therefore, the high voltage output of the HF power supply).

另一種非金屬離子發射極則在Curtis等人的美國專利申請案公開號第2006/0071599號中有所討論。此發射極由高純度99.99%的碳化矽製成。此材料為合成材料,具有大約30%的碳。本領域中已知,碳化矽具有高的硬度。在加工生產為銷型的發射極結構來說,碳化矽也是昂貴的。另外,碳化矽具有金屬型的高導電性。來自具有高碳含量的合成材料之導電粒子通常在半導體產業中是非所欲的。 Another non-metallic ion emitter is discussed in US Patent Application Publication No. 2006/0071599 by Curtis et al. This emitter is made of high purity 99.99% silicon carbide. This material is synthetic and has approximately 30% carbon. It is known in the art that silicon carbide has high hardness. Silicon carbide is also expensive to process to produce pin-type emitter structures. In addition, silicon carbide has metallic-type high conductivity. Conductive particles from synthetic materials with high carbon content are generally undesirable in the semiconductor industry.

在半導體產業中對於矽材料的廣泛接受度要求離子發射極材料的較低成本。另外,矽類材料的機械特性使得加工簡單(切割、拋光等)。矽摻雜劑與添加劑的小型集中主要目標在於控制表面與體積電阻率,以及改良矽類發射極的力學特性。它們較佳地係取自已知的非金屬摻雜劑群,像是硼、砷、碳、磷、與其他。 Widespread acceptance of silicon materials in the semiconductor industry requires lower cost ion emitter materials. In addition, the mechanical properties of silicone materials make processing simple (cutting, polishing, etc.). The main goals of small concentrations of silicon dopants and additives are to control surface and volume resistivity and to improve the mechanical properties of silicon-based emitters. They are preferably drawn from the known group of non-metallic dopants, such as boron, arsenic, carbon, phosphorus, and others.

在本發明的實施例中,具有矽含量的重量百分比小於99.99%且大於70%的矽類成分可以達到千歐姆範圍的電阻值之發射極。此電阻值足夠低來傳導高頻電流並且支援穩定的電暈放電。所以,下面兩個特定因素調和地 相互作用,以產生觀測到的潔淨度改良:矽類發射極的成分與設計,以及高頻AC發射極驅動電源/電壓波形。 In embodiments of the present invention, silicon-based compositions with silicon content less than 99.99% by weight and greater than 70% by weight can achieve emitter resistance values in the kilo-ohm range. This resistance value is low enough to conduct high-frequency currents and support stable coma discharge. Therefore, the following two specific factors interact harmoniously to produce the observed cleanliness improvements: the composition and design of the silicon-based emitter, and the high-frequency AC emitter drive power/voltage waveform.

矽類發射極與HF電壓波形的組合的一個優點在於:電暈放電的啟始電壓(大約1,000V至3,000V或更高)顯著低於用於非金屬發射極的DC、脈衝DC、或低頻(50Hz至60Hz)電壓之電暈放電啟始電壓。 One advantage of the combination of silicon emitters and HF voltage waveforms is that the onset voltage of the corona discharge (approximately 1,000V to 3,000V or more) is significantly lower than the DC, pulsed DC, or low frequency used for non-metallic emitters (50Hz to 60Hz) voltage is the corona discharge starting voltage.

此效應的可能解釋為:在高頻範圍時(大約1kHz至100kHz或更高),施加至發射極的電壓以數毫秒的範圍或數微秒的範圍改變極性。這就是為什麼電暈電荷載子(正與負離子、電子)不具有足夠的時間來移動遠離發射極尖端。此外,矽類材料的特定表面電荷守恆(通常命名為「電荷記憶體」)特性在電極表面電子發射中可起到作用。這就是為什麼正與負高頻電暈啟始電壓都為低。利用HF電暈放電的較低電壓,來自矽類發射極的粒子發射也會是少的。 A possible explanation for this effect is that in the high frequency range (about 1kHz to 100kHz or higher), the voltage applied to the emitter changes polarity in the range of milliseconds or microseconds. This is why the corona charge carriers (positive and negative ions, electrons) do not have enough time to move far away from the emitter tip. In addition, the specific surface charge conservation (often named "charge memory") property of silicon-like materials may play a role in the emission of electrons at the electrode surface. This is why both positive and negative high-frequency coma starting voltages are low. With lower voltages of HF corona discharge, the particle emission from silicon-like emitters will also be small.

因為非金屬矽類發射極與高頻AC電壓波形之間的相互作用所導致之平衡電離器的電暈放電的粒子發射改良的科學基礎是目前正在研究的。來自非金屬發射極的電暈放電及/或電離及/或粒子發射的公認理論並未預測或完全解釋所觀測到的實驗潔淨度。 The scientific basis for the improvement of particle emission from the corona discharge of balanced ionizers due to the interaction between non-metallic silicon emitters and high frequency AC voltage waveforms is currently under investigation. Accepted theories of corona discharge and/or ionization and/or particle emission from non-metallic emitters do not predict or fully explain the observed experimental cleanliness.

但是,如何製作與使用本發明是清楚理解的。下面所寫的敘述係關於解釋在靜電控制領域中熟習技藝者如何製作與使用本發明。 However, it is clearly understood how to make and use the invention. The following description is written to explain how one skilled in the art of static control can make and use the present invention.

關於本發明的實施例的實驗製作物(包括矽類發射極的成分與HF電壓波形的組合)展現出,在一些情況中,具有全新的或長時間閒置的發射極之電離器會展現出啟始HF電暈放電與可靠地產生離子的產生之問題。測量顯示出,矽發射極與電性插座之間有高接觸電阻值。此高電阻值是電離裝置的電暈啟始問題的一個原因。在開放空氣中的矽晶圓上的較厚(10th至100th埃或以上)氧化物「膚層」的處理形成則記錄在上面引用的參考文獻(「天然氧化物的生長(Growth of native oxide),史丹佛大學奈米製造設施(Stanford University Nanofabrication Facility)」)中。例如,在六天期間,SiO2表面層可達到12埃的厚度。氧化矽已知為良好的絕緣體。所以,此膚層生長會導致矽類發射極的較高表面與接觸電阻值。氧化層生長的速率是可變的,且相關於許多周遭的大氣因素,像是氧氣與臭氧濃度(參見網頁連結http://iopscience.iop.org/0953-8984/21/18/183001/pdf/cm9_18_183001.pdf中的「臭氧的矽氧化(Silicon oxidation by ozone)」)、溫度、濕度等。臭氧為電暈放電的副產物之一,並且可能加速矽發射極的氧化。此現象對於具有矽類非金屬發射極的HF電離器的較低電源電壓有深厚的影響。本發明的範例性實施例包括矽類發射極的表面處理,以降低發射極與金屬插座之間的接觸電阻值。 Experimental fabrication of embodiments of the present invention, including combinations of silicon-based emitter composition and HF voltage waveforms, has shown that, in some cases, ionizers with new or long-idle emitters can exhibit problems initiating HF coma discharges and reliably generating ion generation. Measurements have shown that there is a high contact resistance between the silicon emitter and the electrical socket. This high resistance is one cause of coma initiation problems in ionizers. The process of forming thicker ( 10th to 100th angstroms or more) oxide "skin layers" on silicon wafers in open air is documented in the reference cited above ("Growth of native oxide, Stanford University Nanofabrication Facility"). For example, over a six-day period, a SiO2 surface layer can reach a thickness of 12 angstroms. Silicon oxide is known to be a good insulator. Therefore, this skin layer growth results in higher surface and contact resistance values for silicon-based emitters. The rate of oxide growth is variable and depends on many ambient atmospheric factors, such as oxygen and ozone concentrations (see "Silicon oxidation by ozone" at http://iopscience.iop.org/0953-8984/21/18/183001/pdf/cm9_18_183001.pdf), temperature, humidity, etc. Ozone is one of the byproducts of coma discharge and may accelerate the oxidation of silicon emitters. This phenomenon has a profound impact on the lower supply voltages of HF ionizers with silicon-based non-metallic emitters. Exemplary embodiments of the present invention include surface treatment of the silicon-based emitter to reduce the contact resistance between the emitter and the metal socket.

第1(a)圖為傳統的矽發射極100a的圖示。矽發射極100a包括四個鮮明的部分:發射極尖端101a、錐部102a、軸部103a、與尾部104a。發射極尖端101a的形狀與大小取決於來自高電壓電源供應器(HVPS,high voltage power supply)的高電壓與電流的可用量、發射極的材料、以及生產的技術與方法。發射極尖端101a通常是任何離子發射極的最關鍵部分。發射極尖端101a直接曝露於電暈放電,並且決定發射極的壽命長度。矽發射極具有大體上圓柱形的軸部103a。軸部103a主要界定發射極的長度,以及錐部與連接至高電壓電源供應器的插座或容器之間的距離。錐部或圓錐體102a為發射極尖端101a與軸部103a之間的過渡部分。矽本質上是脆性材料,且錐角是發射極的機械強度與電性特性的折衷。尾部104a可為圓形、斜面、或倒角。此部分應協助插設矽發射極100a至插座或容器中。標準的高純度矽發射極因為化學拋光(這通常藉由強酸處理來達成)而具有光滑的表面。 Figure 1(a) is a diagram of a conventional silicon emitter 100a. The silicon emitter 100a includes four distinct parts: the emitter tip 101a, the cone portion 102a, the shaft portion 103a, and the tail portion 104a. The shape and size of the emitter tip 101a depends on the amount of high voltage and current available from a high voltage power supply (HVPS), the emitter material, and the production technology and method. Emitter tip 101a is generally the most critical part of any ion emitter. The emitter tip 101a is directly exposed to the corona discharge and determines the length of the emitter's lifetime. The silicon emitter has a generally cylindrical shaft portion 103a. The shaft 103a essentially defines the length of the emitter and the distance between the taper and the socket or container connected to the high voltage power supply. Taper or cone 102a is the transition between emitter tip 101a and shaft 103a. Silicon is an inherently brittle material, and the taper angle is a compromise between the mechanical strength and electrical properties of the emitter. The tail 104a can be rounded, beveled, or chamfered. This part should assist in inserting silicon emitter 100a into a socket or container. Standard high-purity silicon emitters have a smooth surface due to chemical polishing (which is usually achieved by treatment with strong acids).

第1(b)圖繪示具有金屬套筒的矽發射極的圖示。矽發射極100a包括非金屬的矽部分101b與不銹鋼管102b(或套筒102b),套筒102b具有凹部105b。套筒102b應該保護脆性的發射極尖端101a免於機械(處理)損傷。套筒102b也應改良非金屬高純度矽發射極與金屬插座或容器的電連接。視圖103b與104b繪示矽發射極100a與金屬套筒102b的組裝圖。視圖106b呈現組裝的發射極軸部103a的橫剖面。 FIG. 1(b) shows an illustration of a silicon emitter with a metal sleeve. The silicon emitter 100a includes a non-metallic silicon portion 101b and a stainless steel tube 102b (or sleeve 102b), the sleeve 102b having a recess 105b. The sleeve 102b should protect the brittle emitter tip 101a from mechanical (handling) damage. The sleeve 102b should also improve the electrical connection between the non-metallic high purity silicon emitter and the metal socket or container. Views 103b and 104b show assembly views of the silicon emitter 100a and the metal sleeve 102b. View 106b presents a cross-section of the assembled emitter shaft portion 103a.

矽軸部103a的大部分(或重要部分)裝入金屬套筒102b中,如同視圖103b中所示。為了固定套筒102b於矽軸部103a上並且達成它們之間的可靠電性接觸,通常在套筒102b上製做至少一突伸部105b(凹部)。考慮所有三個元件的尺寸的公差(矽發射極軸部的直徑、套筒的內徑、與凹部的深度),組裝操作是相當有挑戰性的(參見視圖106b上的矽軸部與凹部的橫剖面視圖,其中因為凹部105b,發射極軸部103a及套筒102b並非共中心)。 The majority (or significant portion) of the silicon shaft portion 103a fits into the metal sleeve 102b, as shown in view 103b. In order to fix the sleeve 102b on the silicon shaft portion 103a and achieve reliable electrical contact between them, at least one protruding portion 105b (recess) is usually made on the sleeve 102b. Considering the tolerances on the dimensions of all three components (diameter of the silicon emitter shaft, inner diameter of the sleeve, and depth of the recess), the assembly operation is quite challenging (see Figure 106b. Cross-sectional view, where emitter shaft portion 103a and sleeve 102b are not concentric due to recess 105b).

第1(c)圖繪示矽發射極100c的另一設計的圖示。矽發射極部分101c繪示為具有表面氧化層(「膚層」)102c,由虛線表示。矽發射極100c包括矽發射極部分101c與套筒103c,套筒103c具有凹部104c。套筒103c可具有一或更多個區段/延伸部106c,一或更多個區段/延伸部106c具有凹槽107c(包括各種半徑、凹槽及頸部,而需要特殊設備來製造)。發射極組件繪示在視圖105c中。此設計允許保持發射極在噴嘴中,並且使用延伸部106c來插設延伸部106c至不同的插座或容器中。 Figure 1(c) shows an illustration of another design of silicon emitter 100c. Silicon emitter portion 101c is shown with a surface oxide layer ("skin layer") 102c, indicated by the dashed line. The silicon emitter 100c includes a silicon emitter portion 101c and a sleeve 103c. The sleeve 103c has a recess 104c. Sleeve 103c may have one or more sections/extensions 106c having grooves 107c (including various radii, grooves and necks, requiring special equipment to manufacture) . The emitter assembly is shown in view 105c. This design allows keeping the emitter in the nozzle and using extension 106c to plug extension 106c into a different socket or container.

第2圖繪示傳統的DC無塵室電離系統200的圖示,類似於美國專利號第5,447,763號中所使用的那個。電離器具有一對棒,正(+)棒201與負(-)棒202,帶有單晶矽發射極。該等棒連接至專用的正與負高電壓電源(HVDC)供應器203(置於底座中)。發射極棒的橫剖面視圖繪示於視圖204中。棒202的端部具有插座式連接器205與連接至HV DC電源供應器203的高電壓纜線 206。插座式連接器205容納了視圖204中繪示的矽類發射極207。棒202的其他部分可作為矽類發射極207、插座式連接器205、與HV纜線206的保護裝置,使它們免於破壞力。棒設計成使得棒201、202為可更換的。 FIG. 2 shows a diagram of a conventional DC clean room ionization system 200, similar to that used in U.S. Patent No. 5,447,763. The ionizer has a pair of rods, a positive (+) rod 201 and a negative (-) rod 202, with single crystal silicon emitters. The rods are connected to dedicated positive and negative high voltage power (HVDC) supplies 203 (housed in a base). A cross-sectional view of the emitter rods is shown in view 204. The ends of the rods 202 have socket connectors 205 and high voltage cables 206 connected to the HV DC power supply 203. The socket connectors 205 house the silicon emitters 207 shown in view 204. The rest of the rod 202 serves as a protection for the silicon emitter 207, the socket connector 205, and the HV cable 206 from damaging forces. The rod is designed so that the rods 201, 202 are replaceable.

本發明的範例性實施例的至少一些目標為藉由經濟型矽類電荷中和系統來促成低粒子發射。矽類發射極的成分(具有重量百分比小於99.99%且大於70%的矽)結合於高頻電暈放電可以使低粒子發射的目標成真。針對電離系統中的非金屬矽電極,下個主要目標為提供矽類發射極與HF高電壓電源供應器之間的可靠電連接。 At least some of the objectives of exemplary embodiments of the present invention are to facilitate low particle emission by an economical silicon-based charge neutralization system. The composition of the silicon-based emitter (having less than 99.99% and greater than 70% silicon by weight) combined with high frequency corona discharge can achieve the goal of low particle emission. For non-metallic silicon electrodes in the ionization system, the next major goal is to provide a reliable electrical connection between the silicon-based emitter and the HF high voltage power supply.

第3(a)圖根據本發明的實施例,繪示矽類發射極300a的圖示,其中矽類發射極300a包括軸部301a的研磨部分或磨光處理部分310a(亦即,已處理的表面部分310a),軸部301a可插設至高電壓插座(未圖示)中。軸部表面302a的此部分310a具有粗糙度H,範圍大約為0.5微米至10微米(參見視圖303a)。在表面處理期間,例如藉由磨光,先前在軸部表面302a上的氧化物「膚層」將毀壞且刪除,或以其他方式移除。磨光產生的發射極軸部表面輪廓能夠多點接觸於高電壓插座(未圖示)。選擇性地,類似的表面處理可應用至矽類發射極300a的尾部314a的圓形端304a。發射極尖端305a、錐部306a、與軸部301a的部分311a具有一般的化學拋光表面。 FIG. 3( a) shows an illustration of a silicon-based emitter 300 a according to an embodiment of the present invention, wherein the silicon-based emitter 300 a includes a ground or polished portion 310 a of a shaft 301 a (i.e., a processed surface portion 310 a ) that can be plugged into a high voltage socket (not shown). This portion 310 a of the shaft surface 302 a has a roughness H in the range of approximately 0.5 microns to 10 microns (see view 303 a ). During surface treatment, such as by polishing, the oxide “skin layer” previously on the shaft surface 302 a is destroyed and removed, or otherwise removed. The emitter shaft surface profile resulting from polishing enables multiple points of contact with the high voltage socket (not shown). Optionally, a similar surface treatment may be applied to the rounded end 304a of the tail 314a of the silicon-based emitter 300a. The emitter tip 305a, the cone 306a, and the portion 311a of the shaft 301a have a generally chemically polished surface.

矽類發射極的又一實施例例示在第3(b)圖中。根據本發明的此實施例,矽類發射極300b包括發射極軸 部301b的部分310b(亦即,已處理的表面部分310b),部分310b具有金屬鍍層或金屬塗層302b(或導電的鍍層或金屬塗層302b),使得軸部301b的部分310b為良好的表面導體並且保護矽類發射極300b的接觸部分316b長期免於氧化。接觸部分316b可在發射極軸部301b的尾部314b中。 Yet another embodiment of a silicon emitter is illustrated in Figure 3(b). According to this embodiment of the invention, the silicon emitter 300b includes an emitter axis The portion 310b of the portion 301b (ie, the treated surface portion 310b), the portion 310b has a metal plating or metal coating 302b (or a conductive plating or metal coating 302b) such that the portion 310b of the shaft portion 301b is a good surface conductor and protects the contact portion 316b of the silicon emitter 300b from oxidation over time. Contact portion 316b may be in tail 314b of emitter shaft portion 301b.

矽電鍍的不同已知方法(例如,像是真空沉積、電解電鍍、噴塗、與其他)也可使用。像是金屬的電鍍材料可包括:例如,鎳、銅、銀、金、與其他金屬,以及半導體產業中可接受的合金。 Various known methods of silicon plating (e.g., such as vacuum deposition, electrolytic plating, spraying, and others) may also be used. Electroplating materials such as metals may include, for example, nickel, copper, silver, gold, and other metals and alloys acceptable in the semiconductor industry.

第3(c)圖根據本發明的實施例,繪示含矽的發射極與用於監測含矽的發射極的表面電阻值及/或體積電阻值的設備之圖示。這顯現如同第3(c)圖所示的矽類發射極300c的電性特性控制操作的範例。控制及/或監測包括電阻值的測量或者監測矽類發射極300c或矽類發射極300c的已處理表面部分302c的電阻值及/或成分。導電電極303c與304c分別附接至或連接至矽類發射極300c的發射極軸部301c的磨光部分302c(或已處理表面部分302c)與尾部314c。標準的電阻值R測量裝置305可用於測量電阻值R並且記錄電阻值R的測量。以此方式,可監控合成的表面與體積電阻率以及發射極成分。矽類發射極所需要的正常特性與成分(具有重量百分比小於99.99%至至少70%的矽)應具有千歐姆範圍的合成電阻值。在表面處理與控制操作之後,矽類發射極300c可插設至標準 的金屬插座(未圖示)中,以最少化氧化矽「膚層」的新層的形成。 FIG. 3( c ) shows a diagram of a silicon-containing emitter and an apparatus for monitoring the surface resistance and/or volume resistance of the silicon-containing emitter according to an embodiment of the present invention. This shows an example of an electrical property control operation of a silicon-based emitter 300 c as shown in FIG. 3( c ). The control and/or monitoring includes measuring the resistance value or monitoring the resistance value and/or composition of the silicon-based emitter 300 c or the processed surface portion 302 c of the silicon-based emitter 300 c. Conductive electrodes 303 c and 304 c are respectively attached or connected to the polished portion 302 c (or the processed surface portion 302 c) and the tail 314 c of the emitter shaft 301 c of the silicon-based emitter 300 c. A standard resistance R measuring device 305 can be used to measure the resistance R and record the resistance R measurement. In this way, the resulting surface and volume resistivity and emitter composition can be monitored. The normal properties and composition required for a silicon-based emitter (having a weight percentage of less than 99.99% to at least 70% silicon) should have a resulting resistance in the kilo-ohm range. After surface treatment and control operations, the silicon-based emitter 300c can be plugged into a standard metal socket (not shown) to minimize the formation of a new layer of silicon oxide "skin".

在此呈現的至少一些範例性實施例允許解決兩個失敗問題:(1)建立可靠的電連接於非金屬矽類發射極與插座之間;與(2)保護發射極的接觸部分免於氧化。 At least some of the exemplary embodiments presented herein allow for solving two failure problems: (1) establishing a reliable electrical connection between a non-metallic silicon emitter and a socket; and (2) protecting the contact portion of the emitter from oxidation.

第4(a)圖與第4(b)圖根據本發明的各種實施例,繪示含矽的發射極的圖示,具有徑向壓縮彈簧套筒與金屬銷的兩個變型。含矽的發射極與金屬銷插設至套筒中,如同以下所討論的。將先敘述本發明的實施例中之第4(a)圖的矽類發射極400a。根據此範例性實施例,矽類發射極400a包括發射極部分401a,其中發射極部分401a的矽部分具有減小的長度/軸部直徑比率。短的發射極部分401a從金屬徑向壓縮彈簧的套筒402a的一側430連接至套筒402a。套筒402a的另一側431連接至實心的金屬延伸銷403a。本文所討論的金屬銷403a與403b可為金屬電極403a與403b,分別插設至套筒402a與402b中。此銷403a可具有至少一(或更多個)凹槽與可變長度「L2」,由插座與電離單元(包括參考電極)的設計所要求。例如,銷403a包括凹槽435與436,但是在其他實施例中,銷403a可僅具有單一凹槽。銷403a可為例如實心的金屬銷或管。傳統的、CNC、或自動金屬切割機、或者其他金屬程序方法可用於製造銷403a。視圖405a根據此範例性實施例,繪示具有矽類發射極400a的發射極組件410a的圖示或圖式。套筒402a具有顯著較大的面積接觸 於發射極部分401a,相較於第1(a)圖與第1(b)圖所示之具有凹部105b的傳統套筒102b來說。結果為更可靠的電連接以及施加至脆性發射極部分401a的較小機械應力。具有金屬套筒之矽發射極的設計具有一些要求,以防止從套筒邊緣至附近的參考電極之「二次」電暈放電。應考慮的主要參數例示在視圖406a中:D,D為矽發射極軸部440的直徑;L,L為矽發射極軸部440的曝露部分441的長度;α,α為軸部440的錐形部分442的錐角;以及S,S為套筒402a的厚度。為了發射極部分401a的發射極尖端421a上(或發射極部分401b的發射極尖端421b上)的高集中電場,第一比率S/D應在大約0.03至0.06的範圍中。關於發射極尖端421a與套筒402之間的距離的另一要求為第二比率L/S:第二比率L/S應在(2-5)/[tan{tangent}(0.5α)]的範圍中。參數α為至少一非金屬發射極部分401a或401b的軸部440的錐形部分的錐角。在本發明的一實施例中,新的矽發射極設計的這些狀況將滿足數個規範/規格:可靠的電連接、良好的機械強度、以及將從金屬部分產生粒子發射之「二次」電暈的最小可能性。 Figures 4(a) and 4(b) illustrate diagrams of silicon-containing emitters with two variations of radial compression spring sleeves and metal pins, in accordance with various embodiments of the invention. The silicon-containing emitter and metal pin are inserted into the sleeve as discussed below. The silicon emitter 400a of Figure 4(a) in the embodiment of the present invention will be described first. According to this exemplary embodiment, silicon-based emitter 400a includes an emitter portion 401a, wherein the silicon portion of emitter portion 401a has a reduced length/shaft diameter ratio. A short emitter portion 401a is connected to the sleeve 402a from one side 430 of the sleeve 402a of a metal radial compression spring. The other side 431 of the sleeve 402a is connected to a solid metal extension pin 403a. The metal pins 403a and 403b discussed herein may be metal electrodes 403a and 403b inserted into sleeves 402a and 402b respectively. This pin 403a may have at least one (or more) grooves and a variable length "L2", as required by the design of the socket and ionization unit (including the reference electrode). For example, pin 403a includes grooves 435 and 436, but in other embodiments, pin 403a may have only a single groove. Pin 403a may be, for example, a solid metal pin or tube. Traditional, CNC, or automated metal cutting machines, or other metal processing methods may be used to manufacture pin 403a. View 405a illustrates an illustration or diagram of an emitter assembly 410a having a silicon emitter 400a, according to this exemplary embodiment. Sleeve 402a has a significantly larger area of contact The emitter part 401a is compared to the conventional sleeve 102b with the recess 105b shown in Figure 1(a) and Figure 1(b). The result is a more reliable electrical connection and less mechanical stress applied to the brittle emitter portion 401a. The design of silicon emitters with metal sleeves has some requirements to prevent "secondary" corona discharges from the edge of the sleeve to the nearby reference electrode. The main parameters that should be considered are illustrated in view 406a: D, D is the diameter of the silicon emitter shaft 440; L, L is the length of the exposed portion 441 of the silicon emitter shaft 440; α, α is the cone of the shaft 440. the taper angle of the shaped portion 442; and S, where S is the thickness of the sleeve 402a. For a high concentrated electric field on emitter tip 421a of emitter portion 401a (or on emitter tip 421b of emitter portion 401b), the first ratio S/D should be in the range of approximately 0.03 to 0.06. Another requirement regarding the distance between the emitter tip 421a and the sleeve 402 is the second ratio L/S: the second ratio L/S should be in the range of (2-5)/[tan{tangent}(0.5α)] within range. Parameter α is the taper angle of the tapered portion of the shaft portion 440 of at least one non-metallic emitter portion 401a or 401b. In one embodiment of the present invention, these conditions for the new silicon emitter design will meet several criteria/specifications: reliable electrical connection, good mechanical strength, and "secondary" electricity that will generate particle emission from the metal part. Minimal possibility of fainting.

第4(b)圖繪示矽類發射極400b的另一實施例的圖示,包括金屬徑向壓縮彈簧的套筒402b的另一配置,其中矽類發射極400b與套筒402b係共中心。在此情況中,發射極400包括發射極部分401b,發射極部分401b具有直徑D1,且套筒402b的一端461具有直徑D3。發射極部分401b具有發射極尖端421b。部分403b為實心的 金屬銷403b,具有直徑D4,且套筒402b的另一端462具有直徑D2。發射極部分401b與套筒402b的直徑的差異(D1>D3)產生所需的壓縮力,以提供發射極部分401b與套筒402b之間的可靠或良好的電性接觸。類似地,直徑的差異(D2<D4)提供套筒402b與金屬銷403b之間的可靠或良好的電連接。視圖404b與406b繪示矽類發射極400b的已組裝視圖。視圖405b為橫剖面圖,根據此範例性實施例繪示具有大接觸面積、最小接觸壓力與局部應力之發射極部分401b與套筒402b。組裝操作係簡化。兩個範例性實施例(矽類發射極400a與400b)都使用最少量的昂貴矽類材料、具有非金屬發射極軸部與金屬套筒的大的、可靠的接觸面積、以及至標準的插座或容器之良好尺寸匹配。 FIG. 4(b) shows an illustration of another embodiment of a silicon emitter 400b, including another configuration of a sleeve 402b of a metal radial compression spring, wherein the silicon emitter 400b and the sleeve 402b are concentric. In this case, the emitter 400 includes an emitter portion 401b having a diameter D1, and one end 461 of the sleeve 402b having a diameter D3. The emitter portion 401b has an emitter tip 421b. The portion 403b is a solid metal pin 403b having a diameter D4, and the other end 462 of the sleeve 402b has a diameter D2. The difference in diameters of the emitter portion 401b and the sleeve 402b (D1>D3) generates the required compressive force to provide reliable or good electrical contact between the emitter portion 401b and the sleeve 402b. Similarly, the difference in diameters (D2<D4) provides a reliable or good electrical connection between the sleeve 402b and the metal pin 403b. Views 404b and 406b show assembled views of the silicon-based emitter 400b. View 405b is a cross-sectional view showing the emitter portion 401b and the sleeve 402b with a large contact area, minimal contact pressure and local stress according to this exemplary embodiment. The assembly operation is simplified. Both exemplary embodiments (silicon emitters 400a and 400b) use a minimal amount of expensive silicon material, have a large, reliable contact area between the non-metal emitter shaft and the metal sleeve, and a good dimensional match to a standard socket or receptacle.

在一些情況中,矽類發射極在啟始高頻電暈放電與可靠地產生離子的產生方面會有問題,儘管具有正常的表面/體積電阻值以及至高電壓插座的良好電連接。我們的實驗顯示出,此問題的核心是因為發射極尖端的表面(發射極的「工作腳架」)上形成厚的絕緣氧化物「膚層」。本發明的另一範例性實施例解決了此問題。含矽的發射極的尖端的形狀會對於絕緣氧化物「膚層」的形成速率與厚度有某種絕對的影響。 In some cases, silicon-based emitters have problems initiating high-frequency coma discharge and reliably generating ion generation, despite having normal surface/volume resistance values and good electrical connection to high voltage sockets. Our experiments have shown that the core of this problem is due to the formation of a thick insulating oxide "skin" on the surface of the emitter tip (the "working scaffold" of the emitter). Another exemplary embodiment of the present invention solves this problem. The shape of the tip of the silicon-containing emitter has a certain absolute effect on the formation rate and thickness of the insulating oxide "skin".

第5(a)圖、第5(b)圖、與第5(c)圖根據本發明的各種實施例,繪示三個含矽的發射極的圖示,具有不同的錐部與尖端的結構。第5(a)圖、第5(b)圖、與 第5(c)圖所示的各種尖端結構與錐部結構決定操作HF電暈啟始電壓與電離電流參數。 Figures 5(a), 5(b), and 5(c) illustrate diagrams of three silicon-containing emitters with different tapers and tips, according to various embodiments of the present invention. structure. Figure 5(a), Figure 5(b), and The various tip structures and cone structures shown in Figure 5(c) determine the operating HF corona starting voltage and ionization current parameters.

在第5(a)圖中,繪示具有平坦截頭尖端的矽類發射極501。此尖端設計容易產生環型高頻電暈放電(其中平坦尖端510相接於矽類發射極501的錐部511)。此矽類發射極501可減少離子電流密度與粒子發射。但是,特徵在於較高的啟始HF電暈電壓。錐部511相對於平坦尖端510有角度值α。 In Figure 5(a), a silicon emitter 501 with a flat truncated tip is shown. This tip design is prone to generate annular high-frequency corona discharge (where the flat tip 510 is connected to the tapered portion 511 of the silicon emitter 501). The silicon emitter 501 can reduce ion current density and particle emission. However, it is characterized by a higher starting HF corona voltage. The tapered portion 511 has an angle α relative to the flat tip 510 .

矽類發射極502(第5(b)圖)具有小的圓形尖端514,圓形尖端514具有大約60微米至400微米範圍的半徑Z,這在生產上較便宜並且可最小化電暈電流波動。(矽類發射極502的)錐部516延伸自小的圓形尖端514。 Silicon emitter 502 (Fig. 5(b)) has a small rounded tip 514 with a radius Z in the range of approximately 60 microns to 400 microns, which is cheaper to produce and minimizes corona currents Fluctuations. Taper 516 (of silicon emitter 502 ) extends from small rounded tip 514 .

尖的矽類發射極503(第5(c)圖)具有尖點狀尖端520,尖點狀尖端520具有大約40微米至50微米範圍(或更小)的半徑Y。此矽類發射極503具有最低的電暈啟始電壓Von。但是,矽類發射極503的離子電流密度最大,且濺射、侵蝕、與氧化物「膚層」生長都是最高速率。此矽類發射極503較佳地用於無氧氣體的電離,像是氮氣或氬氣。矽類發射極503的錐部/圓錐部521較佳地相對於尖點狀尖端520具有大約10度-20度範圍的角度α。所有矽類發射極(501、502、503)都具有根據本發明的範例性實施例的成分,並且當安裝於嵌入式電離器、電離棒、以及由HF AC電壓驅動的其他電荷中和器中時,可以提供低粒子數。尖端的尖銳的程度與曲率(亦即,尖端的 結構)影響或決定電離器操作參數,包括啟始電壓、離子電流、與離子平衡,但是它們不影響本發明的範圍。 The pointed silicon emitter 503 (Fig. 5(c)) has a pointed tip 520 having a radius Y in the range of approximately 40 microns to 50 microns (or less). This silicon emitter 503 has the lowest corona onset voltage V on . However, the silicon emitter 503 has the highest ion current density and the highest rates of sputtering, erosion, and oxide "skin layer" growth. The silicon emitter 503 is preferably used for ionization of oxygen-free gas, such as nitrogen or argon. The taper/conical portion 521 of the silicon emitter 503 preferably has an angle α relative to the pointed tip 520 in the range of approximately 10 degrees to 20 degrees. All silicon emitters (501, 502, 503) have compositions according to exemplary embodiments of the present invention and when installed in embedded ionizers, ionization rods, and other charge neutralizers driven by HF AC voltages When, low particle numbers can be provided. The sharpness and curvature of the tip (ie, the structure of the tip) affects or determines ionizer operating parameters, including onset voltage, ion current, and ion balance, but they do not affect the scope of the present invention.

本發明的另一範例性實施例解決了矽發射極尖端上的氧化物「膚層」生長的問題。該實施例使用電暈放電的特定模式來清潔矽發射極尖端免於氧化物膚層,並且協助電離器的啟動無關於發射極外形。 Another exemplary embodiment of the present invention addresses the problem of oxide "skin" growth on silicon emitter tips. This embodiment uses a specific mode of coma discharge to clean the silicon emitter tips from the oxide skin and assist in ionizer activation independent of emitter profile.

第6圖根據本發明的實施例,繪示HF波形的圖示,HF波形用於在電暈電離時期的「啟動」期間執行含矽的發射極尖端的「軟式」電漿清洗。 FIG. 6 illustrates an HF waveform for performing a "soft" plasma clean of a silicon-containing emitter tip during the "start-up" period of the corona ionization period, according to an embodiment of the present invention.

高電壓「HF啟動」型波形600施加至發射極。此模式的高電壓驅動可在啟動時期(標示為Ts時期)期間提供一組短持續時間的雙極性電壓突波(數量從1至多達數百個的雙極性脈衝605)至發射極。由於電源曲線的很短持續時間(毫秒、微秒或更小範圍),與電漿相關的HF電暈具有非常有限的能量。此方式可防止發射極尖端的上升溫度與發射極尖端的表面破壞(濺射、侵蝕、與粒子發射)兩者。短持續時間的HF電漿突波僅執行發射極尖端的「軟式」清潔,使其免於氧化矽膚層。「啟動」時間時期Ts的持續時間、突波脈衝的振幅、與脈衝的數量可變化,並且取決於氧化矽膚層的厚度、氣體介質、發射極尖端的設計等。HF突波脈衝的電壓振幅明顯高於(大約25%至100%或更多)正常的(操作的)電暈啟始電壓(正(+)Von與負(-)Von)(在第6圖中分別以兩條水平虛線610與615繪示)。最初的「啟動」模式有助於啟始正常/操作 的高頻電暈放電與離子產生。在正常/操作模式期間(在時間Top期間),高電壓振幅可僅高於電暈啟始電壓((+)Von或(-)Von)10%-20%,以最少化粒子發射。在連續操作模式中,HF電暈放電可以保護矽發射極免於在乾淨乾燥的氣體介質中氧化。因此,至少一非金屬發射極的軟式電漿清洗係在電暈電離時期的啟動時期期間藉由與在操作時期期間的電壓/電源波形不同之電壓/電源波形來執行。 A high voltage "HF start" type waveform 600 is applied to the emitter. This mode of high voltage drive provides a set of short duration bipolar voltage surges (numbering from 1 to hundreds of bipolar pulses 605) to the emitter during the start-up period (labeled as the Ts period). Due to the very short duration of the power curve (millisecond, microsecond or less range), the HF corona associated with the plasma has very limited energy. This approach prevents both the temperature increase of the emitter tip and the surface damage of the emitter tip (sputtering, erosion, and particle emission). The short duration HF plasma burst performs only a "soft" cleaning of the emitter tip from the silicon oxide skin layer. The duration of the "start-up" time period Ts, the amplitude of the burst pulse, and the number of pulses can vary and depend on the thickness of the silicon oxide skin layer, the gas medium, the design of the emitter tip, etc. The voltage amplitude of the HF burst pulse is significantly higher (about 25% to 100% or more) than the normal (operating) coma start voltages (positive (+) Von and negative (-) Von) (shown in FIG. 6 as two horizontal dashed lines 610 and 615, respectively). The initial "start-up" mode helps to start the high frequency coma discharge and ion generation for normal/operation. During the normal/operation mode (during time Top), the high voltage amplitude can be only 10%-20% above the coma start voltage ((+)Von or (-)Von) to minimize particle emission. In the continuous operation mode, the HF coma discharge can protect the silicon emitter from oxidation in the clean dry gas medium. Therefore, soft plasma cleaning of at least one non-metallic emitter is performed during the start-up period of the corona ionization period with a voltage/power waveform different from the voltage/power waveform during the operation period.

第7(a)圖、第7(b)圖、與第7(c)圖根據本發明的實施例,繪示在操作模式期間施加至矽類發射極的高頻電源電壓波形的範例的圖示。不同的操作HF電壓波形有效地產生矽類發射極的雙極性電離。高頻AC電壓的功能為以最小的驅動電壓來產生兩個極性的離子(正離子與負離子)。為了產生離子,峰值電壓(正與負的峰值電壓)要超過電暈啟始電壓。如同第7(a)圖所示,電壓波形700為連續不斷的,但是電壓波形也可調變為連續不斷或非連續不斷且週期性的。 Figures 7(a), 7(b), and 7(c) are diagrams illustrating examples of high-frequency power supply voltage waveforms applied to a silicon emitter during an operating mode, according to embodiments of the present invention. Show. Different operating HF voltage waveforms effectively produce bipolar ionization of the silicon emitter. The function of the high-frequency AC voltage is to generate ions of two polarities (positive ions and negative ions) with a minimum driving voltage. In order to generate ions, the peak voltage (positive and negative peak voltage) must exceed the corona onset voltage. As shown in Figure 7(a), the voltage waveform 700 is continuous, but the voltage waveform can also be adjusted to be continuous or discontinuous and periodic.

第7(a)圖呈現連續的電壓波形700,可具有頻率範圍從大約1kHz至高達100kHz。電壓波形700的正與負電壓振幅高於正電暈啟始電壓(+)Von 705且低於負電暈啟始電壓(-)Von 710。此電壓波形700提供最大電源給本文所述的矽類發射極,並且產生最大的離子電流。 FIG. 7(a) shows a continuous voltage waveform 700 having a frequency range from about 1 kHz to up to 100 kHz. The positive and negative voltage amplitudes of the voltage waveform 700 are higher than the positive coma initiation voltage (+) Von 705 and lower than the negative coma initiation voltage (-) Von 710. This voltage waveform 700 provides maximum power to the silicon-based emitter described herein and produces maximum ion current.

第7(b)圖繪示電壓波形750的圖示,電壓波形750包括多組脈衝串752,脈衝串752具有「開啟」時期755與「關閉」時期756。電壓波形750包括至少一調變部分,其中每一調變部分包括脈衝串752,脈衝串752具有開啟時期755與關閉時期756。在脈衝串752中的開啟時期755期間,電壓波形750具有振幅758,振幅758超過特定發射極的正電暈啟始電壓臨界值705且超過負電暈啟始電壓臨界值710。在脈衝串752中的關閉時期756期間,電壓波形750具有不超過電暈啟始電壓臨界值705與710的振幅760。在第7(b)圖的範例中,此振幅760為大約零的電壓大小。分別在第7(a)圖、第7(b)圖、與第7(c)圖中的電壓波形700、750、與780的額外細節也敘述於共同轉讓給Peter Gefter等人且由Peter Gefter等人共同擁有的美國專利號第8,009,405號中。在「關閉」時期756期間(可為小的工作因子(duty factor)),電暈放電(離子產生)與粒子發射停止。工作因子可變化在從大約100%低至大約0.1%或更小的範圍,取決於所需的離子輸出。最小的工作因子有助於抑制粒子發射與發射極的侵蝕速率。 Figure 7(b) shows a diagram of a voltage waveform 750 that includes a plurality of pulse trains 752 having an "on" period 755 and an "off" period 756. The voltage waveform 750 includes at least one modulation portion, where each modulation portion includes a pulse train 752 having an on period 755 and an off period 756 . During the on period 755 in the burst 752, the voltage waveform 750 has an amplitude 758 that exceeds the positive corona onset voltage threshold 705 and exceeds the negative corona onset voltage threshold 710 for the particular emitter. During the off period 756 in the burst 752, the voltage waveform 750 has an amplitude 760 that does not exceed the corona onset voltage thresholds 705 and 710. In the example of Figure 7(b), this amplitude 760 is a voltage magnitude of approximately zero. Additional details of voltage waveforms 700, 750, and 780 in Figures 7(a), 7(b), and 7(c), respectively, are also described in No. 8,009,405 co-owned by et al. During the "off" period 756 (which can be a small duty factor), corona discharge (ion production) and particle emission cease. The operating factor can vary from as low as about 100% to about 0.1% or less, depending on the desired ion output. The minimum operating factor helps suppress particle emission and emitter erosion rates.

第7(c)圖繪示電壓波形780的另一種變型的圖示,其中工作因子接近大約100%,但是施加至矽發射極的電壓振幅週期性地下降至低於電暈啟始電壓的值(電暈啟始電壓的大約90%至大約50%或更小的範圍)。此波 形的優點在於可最小化粒子發射與高電壓擺幅(電壓/電場變化)。 FIG. 7(c) shows an illustration of another variation of voltage waveform 780 in which the duty factor approaches approximately 100%, but the voltage amplitude applied to the silicon emitter periodically drops to a value below the coma initiation voltage (in the range of approximately 90% to approximately 50% or less of the coma initiation voltage). This waveform has the advantage of minimizing particle emission and high voltage swings (voltage/electric field variations).

電壓波形780包括至少一調變部分,其中每一調變部分包括脈衝串782,脈衝串782具有開啟時期785與非操作時期786。在脈衝串782中的開啟時期785期間,電壓波形780具有振幅788,振幅788超過特定發射極的正電暈啟始電壓臨界值((+)Vmax)705且超過負電暈啟始電壓臨界值((-)Vmax)710。在脈衝串782中的非操作時期786期間,電壓波形780具有不超過電暈啟始電壓臨界值705與710的振幅790,但是振幅790大於零伏。 Voltage waveform 780 includes at least one modulation portion, where each modulation portion includes a pulse train 782 having an on period 785 and an inoperative period 786 . During the on period 785 in the pulse train 782, the voltage waveform 780 has an amplitude 788 that exceeds the positive corona onset voltage threshold ((+)Vmax) 705 for the particular emitter and exceeds the negative corona onset voltage threshold ((+)Vmax). (-)Vmax)710. During the non-operation period 786 in the burst 782, the voltage waveform 780 has an amplitude 790 that does not exceed the corona onset voltage thresholds 705 and 710, but the amplitude 790 is greater than zero volts.

第8(a)圖與第8(b)圖根據本發明的實施例,繪示調變的高頻電壓波形的範例的圖示。第8(a)圖呈現混合(組合)高頻與低頻電壓所產生的連續調變的電壓波形800。低頻分量(或偏移電壓)繪示在第8(b)圖中。此電壓波形850主要藉由高頻分量(類似於第7(a)圖所示的電壓波形700)來產生離子,並且藉由低頻分量來移動來自發射極的離子。 FIG. 8(a) and FIG. 8(b) illustrate examples of modulated high-frequency voltage waveforms according to embodiments of the present invention. FIG. 8(a) shows a continuously modulated voltage waveform 800 generated by mixing (combining) high-frequency and low-frequency voltages. The low-frequency component (or offset voltage) is shown in FIG. 8(b). This voltage waveform 850 mainly generates ions by a high-frequency component (similar to the voltage waveform 700 shown in FIG. 7(a)) and moves ions from the emitter by a low-frequency component.

具有矽類發射極的嵌入式電離器可用於半導體產業中的最關鍵操作/製程(例如,像是空中懸浮微粒潔淨度1級(Airborne Particulate Cleanness Class 1)的環境)。第9(a)圖、第9(b)圖、與第9(c)圖呈現嵌入式電離器的方塊圖與電離單元的簡化視圖的圖示。利用嵌入式電離器的設計,HF頻率電壓的施加可類似 於第8(a)圖所示的波形,其中頻率範圍擴展成大約20kHz至高達大約100kHz。 Embedded ionizers with silicon-type emitters can be used in the most critical operations/processes in the semiconductor industry (e.g., environments such as Airborne Particulate Cleanness Class 1). FIG. 9(a), FIG. 9(b), and FIG. 9(c) present block diagrams of embedded ionizers and diagrams of simplified views of ionization units. With the design of embedded ionizers, the application of HF frequency voltages can be similar to the waveform shown in FIG. 8(a), where the frequency range extends from about 20kHz up to about 100kHz.

第9(a)圖根據本發明的實施例,繪示嵌入式電離器的電離單元/腔室的圖示。高頻AC供電的矽類發射極902a產生兩種極性的離子。空氣/氣體流908a移動來自矽類發射極902a的離子流。也繪示在第9(a)圖中,電離單元900a連接至HF HV產生器901a。矽類發射極902a定位在插座903a中,並且經由電容器(C1)而連接,電容器(C1)連接至HF HV產生器901a。矽類發射極902a可具有軸部的磨光或鍍金屬部分,分別如同先前在第3(a)圖與第3(b)圖中討論的,以提供至插座903a的可靠連接。 Figure 9(a) shows a diagram of an ionization unit/chamber of an embedded ionizer according to an embodiment of the present invention. The high-frequency AC powered silicon emitter 902a generates ions of two polarities. Air/gas flow 908a moves the ion flow from silicon emitter 902a. Also shown in Figure 9(a), the ionization unit 900a is connected to the HF HV generator 901a. Silicon emitter 902a is positioned in socket 903a and connected via capacitor (C1), which is connected to HF HV generator 901a. The silicon emitter 902a may have a ground or metallized portion of the shaft, as previously discussed in Figures 3(a) and 3(b), respectively, to provide a reliable connection to the socket 903a.

矽類發射極902a通常定位在空氣/氣體通道904a的中間部分中。較佳地,參考電極905a定位在通道904a的外側上並且靠近通道904a的出口906a。參考電極905a連接至控制系統907a。當高頻AC電壓(施加至HF HV產生器901a)的峰值電壓(正或負電壓)超過電暈啟始電壓時,由HF HV產生器901a產生正離子920與負離子921。來自外部來源(未圖示)的空氣/氣體流908a仍需要移動產生的離子雲朝向遠處的靶電荷中和(未圖示)。矽類發射極902a的尖端909a附近的電暈放電產生強烈的HF電漿910a,其中離子與電子在矽類發射極902a的尖端909a附近。電暈啟始電壓對於正離子為大約(+)5至6kV且對於負離子為(-)4.5至5.5kV。 Silicon emitter 902a is generally positioned in the middle portion of air/gas channel 904a. Preferably, reference electrode 905a is positioned on the outside of channel 904a and near the outlet 906a of channel 904a. Reference electrode 905a is connected to control system 907a. When the peak voltage (positive or negative voltage) of the high-frequency AC voltage (applied to the HF HV generator 901a) exceeds the corona onset voltage, positive ions 920 and negative ions 921 are generated by the HF HV generator 901a. Air/gas flow 908a from an external source (not shown) is still required to move the resulting ion cloud toward a distant target for charge neutralization (not shown). The corona discharge near the tip 909a of the silicon emitter 902a generates an intense HF plasma 910a, in which ions and electrons are near the tip 909a of the silicon emitter 902a. The corona onset voltage is approximately (+) 5 to 6 kV for positive ions and (-) 4.5 to 5.5 kV for negative ions.

藉由先前討論的方法、設備、與機構(如同離子發射極的成分、離子發射極的設計、與供電的電壓波形之組合),來最少化產生/發射電暈的副產物,像是電漿中的粒子。 By means of the previously discussed methods, apparatus, and mechanisms (such as the composition of the ion emitter, the design of the ion emitter, and the combination of the voltage waveform of the supply), the generation/emission of corona byproducts, such as particles in the plasma, is minimized.

第9(b)圖根據本發明的實施例,繪示電離單元的另一視圖900b與區塊901b中的氣體通道之圖示。通道902b具有入口933b與出口934b。矽類發射極905b與插座906b可製成可交換的單元,定位在通道902b的空腔960中。發射極插座906b與參考電極907b連接至高電壓HF電源供應器908b。電離的氣體流(由箭頭961表示)移動離子雲至帶電靶909b(像是晶圓),且離子雲將中和帶電靶909b上的這些電荷965。 Figure 9(b) shows another view 900b of the ionization unit and an illustration of the gas channels in block 901b, according to an embodiment of the present invention. Channel 902b has an inlet 933b and an outlet 934b. The silicon emitter 905b and socket 906b can be made into interchangeable units positioned in the cavity 960 of the channel 902b. Emitter socket 906b and reference electrode 907b are connected to a high voltage HF power supply 908b. The ionized gas flow (indicated by arrow 961) moves the ion cloud to charged target 909b (like a wafer), and the ion cloud will neutralize these charges 965 on charged target 909b.

第9(c)圖根據本發明的實施例,繪示嵌入式電離器900c的簡化方塊圖,具有矽類發射極904c。正與負離子901c產生在電離單元902c的內部。高電壓HV-HF電源供應器903c提供產生正與負離子離子901c所需要的電壓與電流。電源供應器903c透過電容器C1而傳送高頻AC電壓至矽類發射極904c。矽類發射極904c上的電壓係相關於參考電極905c。 FIG. 9(c) shows a simplified block diagram of an embedded ionizer 900c having a silicon-based emitter 904c according to an embodiment of the present invention. Positive and negative ions 901c are generated inside the ionization unit 902c. A high voltage HV-HF power supply 903c provides the voltage and current required to generate the positive and negative ions 901c. The power supply 903c transmits a high frequency AC voltage to the silicon-based emitter 904c through a capacitor C1. The voltage on the silicon-based emitter 904c is relative to a reference electrode 905c.

空氣、氮氣、或氬氣的加壓源經由入口而連接至嵌入式電離器900c,以產生空氣流或氣體流906c。空氣流或氣體流906c夾帶正與負離子901c並且攜帶正與負離子901c通過電離器出口934c朝向靶(例如,第9(b)圖的靶909b)。 A pressurized source of air, nitrogen, or argon is connected to the embedded ionizer 900c via the inlet to generate an air or gas stream 906c. The air or gas stream 906c entrains the positive and negative ions 901c and carries the positive and negative ions 901c through the ionizer outlet 934c toward the target (e.g., target 909b in FIG. 9(b)).

嵌入式電離器900c包括控制系統907c(控制系統907c包括微處理器908c)、氣體壓力感測器909c、電暈放電感測器910c、與操作狀態指示器911c。嵌入式電離器900c通常在具有晶圓裝載/卸載操作的半導體工具中工作。這就是為什麼嵌入式電離器900c可具有較長的閒置(「停止」)時期,沒有電暈放電與氣體流動。在這些時間時期期間,矽發射極的尖端可能生長氧化矽層。如同先前在第3(a)圖與第6圖中例示的範例性實施例中所討論的,控制系統907c藉由開始高電壓電源供應器903c於「啟動」模式而啟始氣體電離處理。電暈放電感測器910c與微處理器908c連續監測電暈放電的狀態,直到達到強烈與穩定的電暈與離子產生的點。之後,控制系統907c與電源供應器903c切換至正常操作模式。 The embedded ionizer 900c includes a control system 907c (the control system 907c includes a microprocessor 908c), a gas pressure sensor 909c, a corona discharge sensor 910c, and an operating status indicator 911c. Embedded ionizer 900c typically operates in semiconductor tools with wafer loading/unloading operations. This is why embedded ionizer 900c can have long idle ("off") periods without corona discharge and gas flow. During these periods of time, a layer of silicon oxide may grow on the tip of the silicon emitter. As previously discussed in the exemplary embodiments illustrated in Figures 3(a) and 6, control system 907c initiates the gas ionization process by initiating high voltage power supply 903c in "start" mode. The corona discharge sensor 910c and the microprocessor 908c continuously monitor the state of the corona discharge until a point of strong and stable corona and ion generation is reached. Afterwards, the control system 907c and the power supply 903c switch to the normal operation mode.

第10(a)圖、第10(b)圖、第10(c)圖、與第10(d)圖根據本發明的實施例,繪示高頻AC電離棒1000a的簡化結構的圖示,與具有矽類離子發射極的噴嘴的細節。第10(a)圖與第10(b)圖繪示高頻AC電離棒1000a的視圖,具有複數個原始的矽類發射極1001a至1008a(作為範例)。每一矽發射極具有不銹鋼套筒。不銹鋼套筒繪示為第10(c)圖中的套筒1020c以及第10(d)圖中的套筒1020d。每一不銹鋼套筒安裝在噴嘴中。每一噴嘴具有插座與選擇性的一或兩個空氣/氣體噴射孔。噴嘴的橫剖面視圖繪示為第10(c)圖中的噴嘴1030c與第10(d)圖中的噴嘴1030d。 Figures 10(a), 10(b), 10(c), and 10(d) illustrate a simplified structure of a high-frequency AC ionization rod 1000a according to an embodiment of the present invention. Detail with nozzle with silicon-based ion emitter. Figures 10(a) and 10(b) illustrate views of a high frequency AC ionization rod 1000a with a plurality of primitive silicon emitters 1001a to 1008a (as an example). Each silicon emitter has a stainless steel sleeve. Stainless steel sleeves are shown as sleeve 1020c in Figure 10(c) and sleeve 1020d in Figure 10(d). Each stainless steel sleeve is installed in the nozzle. Each nozzle has a socket and optionally one or two air/gas injection holes. Cross-sectional views of the nozzles are shown as nozzles 1030c in Figure 10(c) and nozzles 1030d in Figure 10(d).

插座1009c連接至共用的高電壓匯流排,且孔與歧管(未圖示)都位於高頻AC電離棒1000a的外殼1010a的內部。噴嘴1030d的橫剖面視圖1040繪示矽發射極1003d(具有如同先前在第4(a)圖與第4(b)圖中所討論的套筒與凹槽)與孔1004d的相對位置。匯流排分配來自高電壓AC電源供應器的HF電源至每一噴嘴與發射極。具有微處理器型控制系統的HF-HV電源供應器較佳地位於相同的外殼1010a內。矽類離子發射極接收HF AC電壓,大約6kV至8kV的範圍,基本頻率大約10kHz至26kHz(類似於第7(a)圖中所示的)。此HF高電壓產生每一矽類發射極1001a至1008a與參考電極1011a之間的電暈放電。當發射極的成分使用小於99%至大於70%的範圍的矽時,此高頻AC電壓本身足以產生潔淨的雙極性電離。如同先前討論的,高頻本身無法移動離子雲遠離。高頻AC電離棒1000a通常安裝在平板或半導體工具中,離靶較短的距離處(例如,大約50mm至300mm)。在此情況中,帶電靶(未圖示)的電場吸引相反極性的離子。但是,針對較長距離(例如,大約400mm至1500mm)處的有效率的電荷中和,離子雲需要空氣/氣體流或電場或兩者的組合之協助。通常,HF電離棒可與提供潔淨的空氣層流的HEPA過濾器組合使用。 The socket 1009c is connected to a common high voltage bus, and the holes and manifold (not shown) are located inside the housing 1010a of the high frequency AC ionization rod 1000a. Cross-sectional view 1040 of nozzle 1030d illustrates the relative position of silicon emitter 1003d (having the sleeve and groove as previously discussed in Figures 4(a) and 4(b)) and hole 1004d. The busbar distributes HF power from the high voltage AC power supply to each nozzle and emitter. The HF-HV power supply with a microprocessor type control system is preferably located within the same housing 1010a. The silicon ion emitter receives an HF AC voltage, in the range of approximately 6 kV to 8 kV, with a fundamental frequency of approximately 10 kHz to 26 kHz (similar to that shown in Figure 7(a)). This HF high voltage generates corona discharge between each silicon emitter 1001a to 1008a and the reference electrode 1011a. This high frequency AC voltage alone is sufficient to produce clean bipolar ionization when the emitter composition ranges from less than 99% to greater than 70% silicon. As discussed previously, high frequencies by themselves cannot move the ion cloud away. The high frequency AC ionization rod 1000a is typically mounted in a flat panel or semiconductor tool at a short distance from the target (eg, approximately 50 mm to 300 mm). In this case, the electric field of the charged target (not shown) attracts ions of opposite polarity. However, for efficient charge neutralization at longer distances (eg, approximately 400 mm to 1500 mm), the ion cloud requires the assistance of air/gas flow or electric fields, or a combination of both. Typically, HF ionization rods are used in combination with HEPA filters that provide laminar flow of clean air.

第8a圖繪示調變高頻的電壓波形800,電壓波形800產生額外的低頻場(具有大約0.1Hz至200Hz的頻率),以協助離子傳送至靶。在時期T2期間,正電壓波804 的振幅802與負電壓波808的振幅806為幾乎相等,且因此,偏移電壓接近零,且離子雲在矽發射極附近振盪。相反地,在像是T1的時期期間,電壓波形800具有正偏移810,且正極性的離子雲(它們互斥)移動至靶(參見第8(b)圖)。類似地,在像是T3的時間時期期間,電壓波形800具有負偏移815,且負極性離子雲(它們互斥)移動至靶。偏移電壓的頻率與振幅取決於高頻AC電離棒1000a與靶之間的距離。 FIG. 8a shows a voltage waveform 800 modulated at a high frequency, which generates an additional low frequency field (having a frequency of about 0.1 Hz to 200 Hz) to assist in ion transport to the target. During period T2, the amplitude 802 of the positive voltage wave 804 and the amplitude 806 of the negative voltage wave 808 are nearly equal, and therefore, the offset voltage is close to zero, and the ion cloud oscillates near the silicon emitter. Conversely, during periods such as T1, the voltage waveform 800 has a positive offset 810, and the positive polarity ion cloud (which repel each other) moves to the target (see FIG. 8(b)). Similarly, during time periods such as T3, the voltage waveform 800 has a negative offset 815, and the negatively polarized ion cloud (which repel each other) moves toward the target. The frequency and amplitude of the offset voltage depends on the distance between the high frequency AC ionization rod 1000a and the target.

具有矽類發射極的高頻AC電離棒1000a能夠產生低發射,以產生潔淨的空氣/氣體電離,並且中和在例如大約400mm最多至1500mm的距離處的快速移動的大型物體(像是平板顯示器)的電荷。 High frequency AC ionization rod 1000a with a silicon emitter is capable of producing low emissions to produce clean air/gas ionization and neutralize fast moving large objects such as flat panel displays at distances such as approximately 400mm up to 1500mm ) charge.

本發明的另一實施例提供一種方法,用於低發射電荷中和,其中至少一上述的非金屬發射極包括減小之矽部分長度/軸部直徑比率。 Another embodiment of the present invention provides a method for low emission charge neutralization, wherein at least one of the above-mentioned non-metallic emitter poles includes a reduced silicon portion length/axial portion diameter ratio.

本發明的另一實施例提供一種方法,用於低發射電荷中和,其中上述的套筒包括金屬徑向壓縮彈簧套筒,且其中至少一發射極、金屬銷、與套筒的直徑的差異產生壓縮力,以提供至少一發射極、金屬銷、與金屬電極之間的可靠電連接。 Another embodiment of the present invention provides a method for low emission charge neutralization, wherein the above-mentioned sleeve includes a metal radial compression spring sleeve, and wherein the difference in diameter of at least one emitter, metal pin, and sleeve Compressive force is generated to provide a reliable electrical connection between at least one emitter, the metal pin, and the metal electrode.

本發明的另一實施例提供一種設備,用於低發射電荷中和,其中至少一上述的非金屬發射極包括減小之長度/軸部直徑比率。 Another embodiment of the present invention provides an apparatus for low emission charge neutralization, wherein at least one of the above-mentioned non-metallic emitter poles includes a reduced length/axial diameter ratio.

本發明的另一實施例提供一種設備,用於低發射電荷中和,其中上述的套筒包括金屬徑向壓縮彈簧套筒,且其中至少一發射極、金屬銷、與套筒的直徑的差異產生壓縮力,以提供至少一發射極、金屬銷、與金屬電極之間的可靠電連接。 Another embodiment of the present invention provides a device for low emission charge neutralization, wherein the above-mentioned sleeve includes a metal radial compression spring sleeve, and wherein the difference in diameter of at least one emitter, a metal pin, and the sleeve generates a compression force to provide a reliable electrical connection between at least one emitter, a metal pin, and a metal electrode.

本發明的另一實施例提供一種設備與方法,用於藉由結合下述來產生可靠的、低粒子發射的電荷中和器:具有化學成分的重量百分比在小於99.99%至至少70%之間的範圍的矽之非金屬離子發射極、發射極的幾何外形、與表面處理(製備)、以及發射極與操作在高頻範圍中的高電壓電源供應器之間的連接配置。在此組合中,發射極可靠地產生高頻電暈放電,高頻電暈放電的特徵是低啟始電壓與低粒子發射。此組合對於目標為用於等級1的無塵室之許多不同類型的無塵室電離器/電荷中和器都有效。含矽的發射極與高頻AC電壓的組合產生的電離器比傳統的電離器更潔淨(基於大於10奈米的粒子數)。潔淨度的此改良已經由發明人在實驗上確定。 Another embodiment of the invention provides an apparatus and method for producing a reliable, low particle emission charge neutralizer by combining a non-metallic ion emitter of silicon having a chemical composition weight percentage ranging from less than 99.99% to at least 70%, the geometry and surface treatment (preparation) of the emitter, and the connection configuration between the emitter and a high voltage power supply operating in the high frequency range. In this combination, the emitter reliably produces a high frequency coma discharge characterized by a low starting voltage and low particle emission. This combination is effective for many different types of clean room ionizers/charge neutralizers targeted for use in Class 1 clean rooms. The combination of a silicon-containing emitter and a high-frequency AC voltage produces an ionizer that is cleaner (based on the number of particles larger than 10 nanometers) than conventional ionizers. This improvement in cleanliness has been experimentally determined by the inventors.

本發明的例示實施例的上面敘述(包括摘要中敘述的)並非打算為窮舉的或限制本發明至所揭示的精確形式。雖然本文為了說明的目的而敘述了本發明的具體實施例與範例,在本發明的範圍內可能有各種等效的修改,如同本領域中熟習技藝者將認定的。 The above description of illustrative embodiments of the invention, including what is set forth in the Abstract, is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Although specific embodiments and examples of the invention are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the art will recognize.

有鑑於以上的詳細說明,可對本發明做出這些修改。下面的申請專利範圍中使用的用語不應解釋為限制本 發明至說明書與申請專利範圍中揭示的具體實施例。而是,本發明的範圍完全由以下的申請專利範圍來決定,申請專利範圍根據申請專利範圍解釋的既定原則來解釋。 In light of the above detailed description, these modifications may be made to the present invention. The terms used in the claims below should not be construed to limit the present invention to the specific embodiments disclosed in the specification and claims. Rather, the scope of the present invention is determined entirely by the claims below, which are to be interpreted in accordance with established principles for interpretation of claims.

300a:矽類發射極 300a: Silicon emitter

301a:軸部 301a: Shaft

302a:軸部表面 302a: Shaft surface

303a:視圖 303a: View

304a:圓形端 304a: Round end

305a:尖端 305a: Tip

306a:錐部 306a: Cone

310a:已處理的表面部分(研磨部分、磨光處理部分) 310a: Treated surface part (grinding part, polished part)

311a:部分 311a: Section

314a:尾部 314a:Tail

Claims (20)

一種用於電荷中和的設備,包括:一矽類發射極,該發射極配有一尖端、一錐部、一軸部及一尾部;其中該錐部在該尖端與該軸部之間;其中該軸部在該錐部與該尾部之間;其中該發射極包括在該軸部或該尾部的其中至少一者上的一已處理表面,該已處理表面具有比該錐部及該尖端更高的一導電性或更低的一電阻率;其中該發射極包括一非金屬部分及一金屬部分的一組件;其中該金屬部分建構成一壓縮彈簧套筒,該壓縮彈簧套筒定位在該發射極的該軸部上;其中該組件包括大約0.03至0.06的範圍中之一第一比率S/D;其中S為接收該發射極的該套筒的一厚度;及其中D為該發射極的該軸部的一直徑。 A device for charge neutralization, comprising: a silicon-based emitter, the emitter having a tip, a cone, a shaft and a tail; wherein the cone is between the tip and the shaft; wherein the shaft is between the cone and the tail; wherein the emitter comprises a processed surface on at least one of the shaft or the tail, the processed surface having a higher conductivity or a lower conductivity than the cone and the tip. Resistivity; wherein the emitter comprises an assembly of a non-metallic portion and a metallic portion; wherein the metallic portion is constructed as a compression spring sleeve positioned on the shaft of the emitter; wherein the assembly comprises a first ratio S/D in the range of about 0.03 to 0.06; wherein S is a thickness of the sleeve receiving the emitter; and wherein D is a diameter of the shaft of the emitter. 如請求項1所述之設備,其中該發射極包括在(2-5)/[tan{tangent}(0.5α)]的範圍中之一第二比率L/S;其中L為該發射極的該軸部的一曝露部分的一長度;其中α為該發射極的該軸部的一錐形部分的一錐角。 The device of claim 1, wherein the emitter includes a second ratio L/S in the range of (2-5)/[tan{tangent}(0.5 α )]; where L is the A length of an exposed portion of the shaft portion; where α is a taper angle of a tapered portion of the shaft portion of the emitter. 如請求項1所述之設備,其中回應於該發射極的該已處理表面接觸一交流電流(AC),該發射極的該尖端產生離子,該交流電流具有1kHz至100kHz的一頻率範圍。 The apparatus of claim 1, wherein the tip of the emitter generates ions in response to the treated surface of the emitter being contacted with an alternating current (AC), the AC current having a frequency range of 1 kHz to 100 kHz. 如請求項1所述之設備,其中該發射極的該已處理表面包括一區域,該區域具有在0.5微米至10微米的範圍中的一粗糙度。 The device of claim 1, wherein the treated surface of the emitter includes a region having a roughness in the range of 0.5 microns to 10 microns. 如請求項1所述之設備,其中該發射極的該已處理表面包括一金屬鍍層或金屬塗層。 The device of claim 1, wherein the treated surface of the emitter includes a metal plating or metal coating. 如請求項1所述之設備,其中該發射極包括大於72.00%重量百分比的矽及小於99.99%重量百分比的矽。 The device of claim 1, wherein the emitter includes greater than 72.00% silicon by weight and less than 99.99% silicon by weight. 一種用於電荷中和的設備,包括:一矽類發射極,該發射極配有一尖端、一錐部、一軸部及一尾部;其中該錐部在該尖端與該軸部之間;其中該軸部在該錐部與該尾部之間;其中該發射極包括在該軸部或該尾部的其中至少一者上的一已處理表面,該已處理表面具有比該錐部及該尖端更高的一導電性或更低的一電阻率;其中該發射極包括在(2-5)/[tan{tangent}(0.5α)]的範圍中之一第二比率L/S;其中L為該發射極的該軸部的一曝露部分的一長度; 其中S為接收該發射極的一套筒的一厚度;及其中α為該發射極的該軸部的一錐形部分的一錐角。 A device for charge neutralization, comprising: a silicon-based emitter, the emitter having a tip, a cone, a shaft and a tail; wherein the cone is between the tip and the shaft; wherein the shaft is between the cone and the tail; wherein the emitter includes a treated surface on at least one of the shaft or the tail, the treated surface having a higher conductivity or a lower resistivity than the cone and the tip; wherein the emitter includes a second ratio L/S in the range of (2-5)/[tan{tangent}(0.5 α )]; wherein L is a length of an exposed portion of the shaft of the emitter; wherein S is a thickness of a sleeve receiving the emitter; and wherein α is a taper angle of a tapered portion of the shaft of the emitter. 如請求項7所述之設備,其中該發射極包括大於72.00%重量百分比的矽及小於99.99%重量百分比的矽。 The device as described in claim 7, wherein the emitter comprises greater than 72.00 weight percent silicon and less than 99.99 weight percent silicon. 如請求項7所述之設備,其中回應於該發射極的該已處理表面接觸一交流電流(AC),該發射極的該尖端產生離子,該交流電流具有1kHz至100kHz的一頻率範圍。 The apparatus as claimed in claim 7, wherein the tip of the emitter generates ions in response to the treated surface of the emitter being contacted with an alternating current (AC), the AC current having a frequency range of 1 kHz to 100 kHz. 如請求項7所述之設備,其中該發射極的該已處理表面包括一區域,該區域具有在0.5微米至10微米的範圍中的一粗糙度。 The device of claim 7, wherein the treated surface of the emitter includes a region having a roughness in the range of 0.5 microns to 10 microns. 如請求項7所述之設備,其中該發射極的該已處理表面包括一金屬鍍層或金屬塗層。 The device of claim 7, wherein the treated surface of the emitter includes a metal plating or metal coating. 一種電離棒,包括:一高電壓產生器;及一矽類發射極,該發射極耦合至該高電壓產生器且經配置以產生正離子及負離子,該發射極配有一尖端、一錐部、一軸部及一尾部;其中該錐部在該尖端與該軸部之間;其中該軸部在該錐部與該尾部之間;其中該發射極包括在該軸部或該尾部的其中至少一者上的一已處理表面,該已處理表面具有比該錐部及該 尖端更高的一導電性或更低的一電阻率;其中該發射極包括一非金屬部分及一金屬部分的一組件;其中該金屬部分建構成一壓縮彈簧套筒,該壓縮彈簧套筒定位在該發射極的該軸部上;其中該組件包括大約0.03至0.06的範圍中之一第一比率S/D;其中S為接收該發射極的該套筒的一厚度;及其中D為該發射極的該軸部的一直徑。 An ionization rod includes: a high voltage generator; and a silicon-based emitter, the emitter coupled to the high voltage generator and configured to generate positive ions and negative ions, the emitter having a tip, a cone, a shaft, and a tail; wherein the cone is between the tip and the shaft; wherein the shaft is between the cone and the tail; wherein the emitter includes a processed surface on at least one of the shaft or the tail, the processed surface having a higher conductivity than the cone and the tail. The tip has a higher conductivity or a lower resistivity; wherein the emitter comprises an assembly of a non-metallic portion and a metallic portion; wherein the metallic portion is constructed as a compression spring sleeve positioned on the shaft of the emitter; wherein the assembly comprises a first ratio S/D in the range of about 0.03 to 0.06; wherein S is a thickness of the sleeve receiving the emitter; and wherein D is a diameter of the shaft of the emitter. 如請求項12所述之電離棒,進一步包括一插座,其中該發射極連接在該插座中以從該高電壓產生器接收一高電壓訊號。 The ionization rod of claim 12, further comprising a socket, wherein the emitter is connected in the socket to receive a high voltage signal from the high voltage generator. 如請求項13所述之電離棒,其中該高電壓產生器經配置以經由該套筒及該插座來至少提供一電暈啟始電壓給該發射極。 An ionization rod as described in claim 13, wherein the high voltage generator is configured to provide at least a coma starting voltage to the emitter via the sleeve and the socket. 如請求項12所述之電離棒,其中該發射極經由該套筒及一金屬銷而耦合至該高電壓產生器。 The ionization rod of claim 12, wherein the emitter is coupled to the high voltage generator via the sleeve and a metal pin. 如請求項12所述之電離棒,其中該發射極包括在(2-5)/[tan{tangent}(0.5α)]的範圍中之一第二比率L/S;其中L為該發射極的該軸部的一曝露部分的一長度;其中α為該發射極的該軸部的一錐形部分的一錐角。 An ionization rod as described in claim 12, wherein the emitter includes a second ratio L/S in the range of (2-5)/[tan{tangent}(0.5 α )]; wherein L is a length of an exposed portion of the axis of the emitter; and wherein α is a taper angle of a tapered portion of the axis of the emitter. 如請求項12所述之電離棒,其中該高電壓產生器經配置以提供在1kHz至100kHz的一高頻範圍中的一交流電流(AC)以及高到足以使該發射極發射正離子及負離子的電壓。 The ionization rod of claim 12, wherein the high voltage generator is configured to provide an alternating current (AC) in a high frequency range of 1 kHz to 100 kHz and high enough to cause the emitter to emit positive ions and negative ions voltage. 如請求項12所述之電離棒,進一步包括一測量裝置用以監測該發射極的一表面電阻值及/或體積電阻值及成分。 The ionization rod as described in claim 12 further includes a measuring device for monitoring a surface resistance value and/or volume resistance value and composition of the emitter. 如請求項12所述之電離棒,其中該發射極的該已處理表面包括一金屬鍍層或金屬塗層。 An ionization rod as described in claim 12, wherein the treated surface of the emitter includes a metal plating or a metal coating. 如請求項12所述之電離棒,其中該發射極包括大於72.00%重量百分比的矽及小於99.99%重量百分比的矽。 An ionization rod as described in claim 12, wherein the emitter comprises greater than 72.00% by weight of silicon and less than 99.99% by weight of silicon.
TW111127927A 2015-03-23 2016-03-23 Apparatus and ionizing bar for silicon based charge neutralization TWI836527B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/665,994 US9380689B2 (en) 2008-06-18 2015-03-23 Silicon based charge neutralization systems
US14/665,994 2015-03-23

Publications (2)

Publication Number Publication Date
TW202247555A TW202247555A (en) 2022-12-01
TWI836527B true TWI836527B (en) 2024-03-21

Family

ID=56008846

Family Applications (3)

Application Number Title Priority Date Filing Date
TW109118430A TWI772814B (en) 2015-03-23 2016-03-23 Method and apparatus for silicon based charge neutralization
TW111127927A TWI836527B (en) 2015-03-23 2016-03-23 Apparatus and ionizing bar for silicon based charge neutralization
TW105109042A TWI699056B (en) 2015-03-23 2016-03-23 Method and apparayus for silicon based charge neutralization

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW109118430A TWI772814B (en) 2015-03-23 2016-03-23 Method and apparatus for silicon based charge neutralization

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW105109042A TWI699056B (en) 2015-03-23 2016-03-23 Method and apparayus for silicon based charge neutralization

Country Status (6)

Country Link
EP (1) EP3275060B1 (en)
JP (3) JP6673931B2 (en)
KR (1) KR102549253B1 (en)
CN (1) CN107624083B (en)
TW (3) TWI772814B (en)
WO (1) WO2016153755A1 (en)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5447763A (en) 1990-08-17 1995-09-05 Ion Systems, Inc. Silicon ion emitter electrodes
JPH06140127A (en) * 1992-10-28 1994-05-20 Tokyo Tekko Co Ltd Ionizer discharge electrode
KR100489819B1 (en) 2001-07-03 2005-05-16 삼성전기주식회사 Apparatus for removing a static electricity by high frequency-high voltage
DE10348217A1 (en) * 2003-10-16 2005-05-25 Brandenburgische Technische Universität Cottbus Device and method for Aerosolauf- or aerosol transfer into a defined state of charge of a bipolar diffusion charging by means of an electrical discharge in the aerosol space
US7501765B2 (en) * 2004-10-01 2009-03-10 Illinois Tool Works Inc. Emitter electrodes formed of chemical vapor deposition silicon carbide
TWI245671B (en) * 2005-03-08 2005-12-21 Quanta Display Inc Clean apparatus
JP2007141691A (en) * 2005-11-19 2007-06-07 Keyence Corp Ionizing device
US8009405B2 (en) * 2007-03-17 2011-08-30 Ion Systems, Inc. Low maintenance AC gas flow driven static neutralizer and method
US20090316325A1 (en) * 2008-06-18 2009-12-24 Mks Instruments Silicon emitters for ionizers with high frequency waveforms
US8277812B2 (en) 2008-10-12 2012-10-02 Massachusetts Institute Of Technology Immunonanotherapeutics that provide IgG humoral response without T-cell antigen
US8038775B2 (en) * 2009-04-24 2011-10-18 Peter Gefter Separating contaminants from gas ions in corona discharge ionizing bars
KR101862160B1 (en) * 2009-04-24 2018-07-04 이온 시스템즈, 인크. Clean corona gas ionization for static charge neutralization
JP5373519B2 (en) * 2009-09-15 2013-12-18 株式会社日本セラテック Ionizer discharge needle contamination detection circuit and ionizer discharge needle contamination detection method
US8416552B2 (en) * 2009-10-23 2013-04-09 Illinois Tool Works Inc. Self-balancing ionized gas streams
EP2724431B1 (en) * 2011-06-22 2017-02-15 Koninklijke Philips N.V. A cleaning device for cleaning the air-ionizing part of an electrode

Also Published As

Publication number Publication date
TW202247555A (en) 2022-12-01
TWI699056B (en) 2020-07-11
JP7197530B2 (en) 2022-12-27
JP6673931B2 (en) 2020-03-25
JP7371213B2 (en) 2023-10-30
TW201707320A (en) 2017-02-16
JP2023038948A (en) 2023-03-17
JP2018518794A (en) 2018-07-12
EP3275060B1 (en) 2018-12-12
CN107624083B (en) 2020-09-01
CN107624083A (en) 2018-01-23
TWI772814B (en) 2022-08-01
JP2020095972A (en) 2020-06-18
EP3275060A1 (en) 2018-01-31
KR102549253B1 (en) 2023-06-28
KR20170131529A (en) 2017-11-29
WO2016153755A1 (en) 2016-09-29
TW202110017A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
US10136507B2 (en) Silicon based ion emitter assembly
JP6659687B2 (en) Balanced barrier discharge neutralization in fluctuating pressure environment
TWI386110B (en) Wire electrode type ionizer
CN102257886B (en) Controlling ion energy distribution in plasma processing systems
JP2010020908A (en) Ionizer
TWI836527B (en) Apparatus and ionizing bar for silicon based charge neutralization
JP6716588B2 (en) X-ray source for gas ionization
JP2007035310A (en) Atmospheric pressure corona discharge generating device
CN214544891U (en) Low-temperature plasma electrode structure, sterilization device and air purification device
JP2020506523A (en) High dielectric strength insulator
JP2016004728A (en) Plasma generator, plasma generating body and plasma generating method
KR20040028817A (en) Minus ions generator
KR20060052648A (en) Ion generator