TWI772814B - Method and apparatus for silicon based charge neutralization - Google Patents

Method and apparatus for silicon based charge neutralization Download PDF

Info

Publication number
TWI772814B
TWI772814B TW109118430A TW109118430A TWI772814B TW I772814 B TWI772814 B TW I772814B TW 109118430 A TW109118430 A TW 109118430A TW 109118430 A TW109118430 A TW 109118430A TW I772814 B TWI772814 B TW I772814B
Authority
TW
Taiwan
Prior art keywords
silicon
emitter
metal ion
ion emitter
point
Prior art date
Application number
TW109118430A
Other languages
Chinese (zh)
Other versions
TW202110017A (en
Inventor
彼得 蓋夫特
亞力斯 克羅契可夫
Original Assignee
美商伊利諾工具工程公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/665,994 external-priority patent/US9380689B2/en
Application filed by 美商伊利諾工具工程公司 filed Critical 美商伊利諾工具工程公司
Publication of TW202110017A publication Critical patent/TW202110017A/en
Application granted granted Critical
Publication of TWI772814B publication Critical patent/TWI772814B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Elimination Of Static Electricity (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Silicon Compounds (AREA)

Abstract

An embodiment of the invention provides a method for low emission charge neutralization, comprising: generating a high frequency alternating current (AC) voltage; transmitting the high frequency AC voltage to at least one non-metallic emitter; wherein the at least one non-metallic emitter comprises at least 70% silicon by weight and less than 99.99% silicon by weight; wherein the at least one emitter comprises at least one treated surface section with a destroyed oxidation layer; and generating ions from the at least one non-metallic emitter in response to the high frequency AC voltage. Another embodiment of the invention provides an apparatus for low emission charge neutralization wherein the apparatus can perform the above-described operations.

Description

矽基電荷中和方法及設備Silicon-based charge neutralization method and device

本發明的實施例主要關於電離裝置,用於靜電荷中和與控制。更具體地,本發明的實施例的目標在於半導體、電子、及/或平板產業內對於可靠的且低粒子發射的電離器之需求。Embodiments of the present invention are primarily concerned with ionization devices for electrostatic charge neutralization and control. More specifically, embodiments of the present invention address the need for reliable and low particle emission ionizers within the semiconductor, electronics, and/or flat panel industries.

利用AC電離器,每一發射極在一時間時期期間接收高的正電壓並且在另一時間時期期間接收高的負電壓。因此,每一發射極產生電暈放電,而不會輸出正與負離子兩者。With an AC ionizer, each emitter receives a high positive voltage during one time period and a high negative voltage during another time period. Therefore, each emitter generates corona discharge without outputting both positive and negative ions.

為了中和電荷以及防止與技術問題相關的靜電之目的,將正與負離子流(雲)導引朝著帶電靶。Positive and negative ion streams (clouds) are directed towards the charged target for the purpose of neutralizing the charge and preventing static electricity associated with technical problems.

本文所提供的背景敘述是為了大體上呈現本揭示案的背景之目的。目前稱為發明人的製做物、此背景部分中敘述的製做物、以及申請時可能不足以稱為先前技術的敘述的態樣皆非明確地或隱含地承認為是反對本揭示案的先前技術。The background description provided herein is for the purpose of generally presenting the context of the disclosure. The creations currently referred to as inventors, the creations described in this background section, and aspects of the description that may not be sufficient at the time of filing to claim prior art are not expressly or implicitly admitted as objections to this disclosure of prior art.

電荷中和器的離子發射極產生與供應正離子與負離子兩者至周圍的空氣或氣體介質中。為了產生氣體離子,所施加的電壓的振幅必須足夠高,以在配置作為電離單元的至少兩個電極之間產生電暈放電。在電離單元中,至少一電極為離子發射極,且另一電極可為參考電極。也可能,電離單元包括至少兩個電離電極。The ion emitter of the charge neutralizer generates and supplies both positive and negative ions into the surrounding air or gaseous medium. In order to generate gas ions, the amplitude of the applied voltage must be high enough to generate a corona discharge between at least two electrodes configured as ionization cells. In the ionization cell, at least one electrode is an ion emitter, and the other electrode can be a reference electrode. It is also possible that the ionization unit comprises at least two ionization electrodes.

伴隨著有用的正氣體離子與負氣體離子,電荷中和器的發射極可能產生與發射電暈副產物,包括非所欲的粒子。在半導體處理與類似的清洗處理中,粒子發射/污染係關聯於缺陷、產品可靠度問題、與利潤的損失。Along with the useful positive and negative gas ions, the emitter of the charge neutralizer may produce and emit corona by-products, including undesired particles. In semiconductor processing and similar cleaning processes, particle emission/contamination is associated with defects, product reliability issues, and lost profits.

本領域中已知有數種因素會影響非所欲的粒子發射的量。一些初級因素包括例如離子發射極的材料成分、幾何形狀、與設計。第二種因素包括至高電壓電源供應器的發射極連接的配置。另一關鍵的因素則相關於施加至離子發射極的電源的曲線(高電壓與電流的大小與時間相依性)。Several factors are known in the art to affect the amount of undesired particle emission. Some primary factors include, for example, the material composition, geometry, and design of the ion emitter. The second factor includes the configuration of the emitter connection to the high voltage power supply. Another key factor is related to the profile of the power applied to the ion emitter (magnitude and time dependence of high voltage and current).

電源波形可用於控制高電壓電源供應器供應至發射極的電壓曲線。電壓/電流波形可用於控制發射極的離子產生與粒子發射兩者。The power waveform can be used to control the voltage profile of the high voltage power supply to the emitter. The voltage/current waveform can be used to control both ion production and particle emission from the emitter.

電暈放電可藉由直流(DC)電壓、交流(AC)電壓或兩種電壓的組合來激發。針對本發明的許多應用,較佳的電源波形為來自高頻(HF)電源供應器的高頻高電壓(HF-HV, high frequency high voltage)輸出,如同下面將討論的。此高電壓輸出可為持續的而非連續不斷的。亦即,電壓輸出可為在時間上振幅可變的或週期性地關閉。Corona discharges can be excited by direct current (DC) voltage, alternating current (AC) voltage, or a combination of both. For many applications of the present invention, the preferred power waveform is a high frequency high voltage (HF-HV) output from a high frequency (HF) power supply, as will be discussed below. This high voltage output may be continuous rather than continuous. That is, the voltage output may be variable amplitude in time or periodically turned off.

發射極的材料成分已知會影響電離器的粒子發射程度。一般的發射極材料包括不銹鋼、鎢、鈦、氧化矽、單晶矽、碳化矽、與其他鍍鎳或金的金屬。此列表並非完整的。從發明人的經驗知道,金屬型發射極容易產生較多的粒子,因為與侵蝕及濺射相關的電暈。另外,金屬(或者大體上來說,高導電性粒子)通常在半導體產業中被視為「殺手級粒子」(亦即,這些粒子可以短路地緊緊定位在晶圓/晶片的導電線跡)。因此,在本專利申請案的框架中,發明人基本上考慮的是非金屬的離子發射極,如同下面將討論的。The material composition of the emitter is known to affect the degree of particle emission from the ionizer. Common emitter materials include stainless steel, tungsten, titanium, silicon oxide, single crystal silicon, silicon carbide, and other metals plated with nickel or gold. This list is not complete. It is known from the inventors' experience that metallic emitters tend to generate more particles because of corona associated with erosion and sputtering. Additionally, metals (or, in general, highly conductive particles) are often considered "killer particles" in the semiconductor industry (ie, these particles can be short-circuited and tightly positioned on the conductive traces of the wafer/chip). Therefore, in the framework of this patent application, the inventors basically consider non-metallic ion emitters, as will be discussed below.

在這些材料的一者中,從低粒子發射的觀點來看,Scott Gehlke在美國專利第5,447,763號中建議的是超潔淨的(超過99.99%以上的純度)單晶矽。此單晶矽已經由半導體產業採用作為實際上潔淨的發射極標準。Curtis等人則在美國專利申請案公開號第2006/0071599號中建議超潔淨的碳化矽(至少99.99%的純度)為另一種非金屬材料。但是,碳化矽發射極價格昂貴,而且容易發射非所欲的粒子。One of these materials, proposed by Scott Gehlke in US Pat. No. 5,447,763, is ultra-clean (over 99.99% pure) single crystal silicon from a low particle emission standpoint. This single crystal silicon has been adopted by the semiconductor industry as a practically clean emitter standard. Curtis et al. in US Patent Application Publication No. 2006/0071599 suggest that ultra-clean silicon carbide (at least 99.99% pure) is another non-metallic material. However, silicon carbide emitters are expensive and tend to emit unwanted particles.

具有單晶矽發射極的已知電離器係由兩個高電壓DC供應器供電。用於無塵室吊頂安裝的一種系統(像是無塵室電離系統「NiLstat 5000」(離子系統公司(Ion Systems, Inc.))通常產生每立方英尺空氣中少於60個粒子(直徑大於10奈米)。其他發射極材料通常產生每立方英尺空氣中多於200個粒子(直徑大於10奈米)。一些材料產生每立方英尺空氣中數千個粒子(直徑大於10奈米)。Known ionizers with monocrystalline silicon emitters are powered by two high voltage DC supplies. A system for cleanroom ceiling installations (such as the cleanroom ionization system "NiLstat 5000" (Ion Systems, Inc.) typically produces less than 60 particles (larger than 10 in diameter) per cubic foot of air. nanometers). Other emitter materials typically produce more than 200 particles per cubic foot of air (greater than 10 nanometers in diameter). Some materials produce thousands of particles (greater than 10 nanometers in diameter) per cubic foot of air.

雖然(1)發射極材料的成分,(2)非金屬發射極的連接器構造的元件,與(3)特殊的電源波形的應用之某一者已知為獨立地重要的,先前技術並未考慮策略性結合這些因素的益處,以達到高的電離可靠度與潔淨度。While either (1) the composition of the emitter material, (2) the components of the non-metallic emitter connector construction, and (3) the application of a particular power waveform are known to be independently important, the prior art has not Consider the benefits of strategically combining these factors to achieve high ionization reliability and cleanliness.

發明人最近的實驗已經使發明人發現並且找到新穎的組合,使得發射極有穩定的離子產生與低位準的不可預知的粒子產生。潔淨的及/或低粒子發射的電離器在許多高科技產業中都有實用性。具體地,半導體產業對於超潔淨電離器有定義明確的需要。需要電離器來最小化靜電與電場,靜電與電場可能會毀壞半導體裝置。也需要盡可能低的粒子發射,因為外來粒子會損害半導體裝置的可靠性。先進半導體技術係在晶圓上建立24-16奈米的特徵。針對奈米的特徵,絕對需要對於大於10奈米的粒子的控制。Recent experiments by the inventors have led the inventors to discover and find novel combinations of stable ion production at the emitter with unpredictable particle production at low levels. Clean and/or low particle emission ionizers have utility in many high-tech industries. Specifically, the semiconductor industry has a well-defined need for ultra-clean ionizers. Ionizers are required to minimize static and electric fields that can damage semiconductor devices. There is also a need for particle emission as low as possible, since foreign particles can compromise the reliability of semiconductor devices. The Advanced Semiconductor Technology Department builds 24-16nm features on wafers. For nanometer features, there is an absolute need for control over particles larger than 10 nanometers.

應理解到,前面在背景部分中的一般敘述僅為範例性與解釋性的,且並不限制所主張的本發明。It is to be understood that the foregoing general description in the Background section is exemplary and explanatory only and does not limit the invention as claimed.

發明人最近的實驗已經顯示出:(1)矽類材料的成分與發射極的設計,(2)發射極連接器的配置及/或構造,與(3)電源電壓波形的類型應視為發射極的可靠性能與低粒子發射之合成、新穎的有利組合。發明人找到的組合可導致發射極的穩定離子產生與低位準的不可預知的粒子產生。潔淨的及/或低粒子發射的電離器在許多高科技產業中都有實用性。具體地,半導體產業對於超潔淨電離器有定義明確的需要。需要電離器來最小化靜電與電場,靜電與電場可能會毀壞半導體裝置。也需要盡可能低的粒子發射,因為外來粒子會損害半導體裝置的可靠性。先進半導體技術係在晶圓上建立24-16奈米的特徵。針對奈米的特徵,絕對需要對於大於10奈米的粒子的控制。Recent experiments by the inventors have shown that: (1) the composition of the silicon-based material and the design of the emitter, (2) the configuration and/or construction of the emitter connector, and (3) the type of supply voltage waveform that should be considered an emitter Synthetic, novel and advantageous combination of extremely reliable performance and low particle emission. The combination found by the inventors can result in stable ion production at the emitter with unpredictable particle production at low levels. Clean and/or low particle emission ionizers have utility in many high-tech industries. Specifically, the semiconductor industry has a well-defined need for ultra-clean ionizers. Ionizers are required to minimize static and electric fields that can damage semiconductor devices. There is also a need for particle emission as low as possible, since foreign particles can compromise the reliability of semiconductor devices. The Advanced Semiconductor Technology Department builds 24-16nm features on wafers. For nanometer features, there is an absolute need for control over particles larger than 10 nanometers.

包括矽類材料的發射極電極成分、電極連接器、與施加至發射極的電源波形之匹配已經證實是新穎的方法來達成電荷中和電離器先前無法達到的可靠度水平與潔淨度。本發明的範例性實施例的核心為以下的組合:具有材料/化學成分重量百分比在小於99.99%至至少70%之間的範圍的矽之非金屬離子發射極、發射極電極設計與表面處理(製備)、發射極的連接配置、以及操作於高頻範圍的高電壓電源供應器。在此組合中,高頻高電壓電源產生電暈放電模式,電暈放電模式的特徵為低啟始電壓。在本發明的實施例中,產生自至少一非金屬發射極的離子包括以最小啟始HF電壓與電源產生的正離子與負離子。Emitter electrode compositions including silicon-based materials, electrode connectors, and matching of power waveforms applied to the emitters have proven to be novel approaches to achieve a level of reliability and cleanliness previously unattainable with charge neutralizing ionizers. Exemplary embodiments of the present invention are at the heart of the combination of a non-metal ion emitter of silicon with a material/chemical weight percentage ranging from less than 99.99% to at least 70%, an emitter electrode design, and a surface treatment ( preparation), the connection configuration of the emitter, and the high voltage power supply operating in the high frequency range. In this combination, the high frequency high voltage power supply produces a corona discharge mode characterized by a low onset voltage. In an embodiment of the present invention, the ions generated from the at least one non-metallic emitter include positive ions and negative ions generated with a minimum starting HF voltage and power supply.

此組合是有效的且適用於許多不同類型的無塵室電離器/電荷中和器。作為一範例,本發明的實施例的電離器可視為目標用於等級1的無塵室生產環境的嵌入式電離器。此電離器可具有潔淨乾空氣(CDA, clean dry air)或氮氣、氬氣、或其他惰性氣體的進入流動。氣體或空氣沿著電離單元內的矽類發射極通過。電離單元/腔室通常為封閉的,除了空氣/氣體入口與出口開孔之外。This combination is valid and suitable for many different types of cleanroom ionizers/charge neutralizers. As an example, the ionizers of embodiments of the present invention may be considered as embedded ionizers targeted for use in a Class 1 clean room production environment. The ionizer can have an incoming flow of clean dry air (CDA) or nitrogen, argon, or other inert gas. The gas or air passes along the silicon-based emitter inside the ionization cell. The ionization cell/chamber is usually closed except for air/gas inlet and outlet openings.

根據本發明的實施例之嵌入式電荷中和電離器的設計可使用像是高頻高電壓供應器的緊密電源。電源供應器的輸出連接器容納至少一矽類發射極。電離單元產生潔淨的雙極性電離。空氣流(或氮氣或氬氣流或其他氣體流)足以移動離子從電離發射極(單元或腔室)至電荷中和的靶。The design of embedded charge neutralization ionizers according to embodiments of the present invention may use compact power supplies such as high frequency high voltage supplies. The output connector of the power supply accommodates at least one silicon-based emitter. The ionization unit produces clean bipolar ionization. Air flow (or nitrogen or argon flow or other gas flow) is sufficient to move ions from the ionizing emitter (cell or chamber) to the charge neutralizing target.

電源供應器的高頻電壓曲線具有大約1KHz至100kHz的AC頻率範圍。峰值電壓超過發射極的電暈啟始電壓(正與負)。高頻AC之發射極的離子電流實質上由矽類材料的電阻值來限制。The high frequency voltage curve of the power supply has an AC frequency range of approximately 1KHz to 100kHz. The peak voltage exceeds the corona onset voltage (positive and negative) of the emitter. The ionic current of the emitter of high frequency AC is substantially limited by the resistance value of the silicon-based material.

在此目前的申請案中,高電壓係界定為至少一離子產生電極與參考電極之間的電位差。在一些高頻AC電離單元中,參考電極可藉由介電質牆而隔離於電離電極。因此,實際上排除了電極之間的直接電子、離子崩潰(像是火花放電)的可能性,且來自發射極的粒子發射可大大減少。在操作模式期間,每當電壓振幅超過施加至電離電極的電暈正與負啟始電壓時,會產生離子。In this current application, high voltage is defined as the potential difference between at least one ion generating electrode and a reference electrode. In some high frequency AC ionization cells, the reference electrode may be isolated from the ionization electrode by a dielectric wall. Therefore, the possibility of direct electron, ion collapse (like a spark discharge) between electrodes is practically excluded, and particle emission from the emitter can be greatly reduced. During the operating mode, ions are generated whenever the voltage amplitude exceeds the positive and negative corona initiation voltages applied to the ionization electrodes.

當高頻AC電壓曲線為週期性的而非連續不斷的時,另一頻率(選擇性的)變成相關的。也就是說,僅在預定的時間間隔內,產生超過啟始電壓曲線的高頻AC電壓。在此方案中,高頻AC電壓在啟用時間間隔期間(通常為大約0.01秒(或更小)至大約1或更多秒)施加至發射極,但是在非啟用時間間隔期間可施加低於啟始電壓的電壓。此選擇性的高頻電壓波形也可實質上包括開/關高電壓模式。正常的低電壓或開/關頻率範圍大約為0.1赫茲至500赫茲,但是該頻率可在此範圍之外。When the high frequency AC voltage curve is periodic rather than continuous, another frequency (selective) becomes relevant. That is, only for a predetermined time interval, a high frequency AC voltage that exceeds the starting voltage curve is generated. In this scheme, a high frequency AC voltage is applied to the emitter during the enable time interval (typically about 0.01 seconds (or less) to about 1 or more seconds), but may be applied lower than the enable time during the non-enable time interval starting voltage. This selective high frequency voltage waveform may also substantially include an on/off high voltage mode. The normal low voltage or on/off frequency range is approximately 0.1 Hz to 500 Hz, but the frequency can be outside this range.

提供一些含矽的發射極成分作為範例。它們是:(a)摻雜的晶體矽,(b)摻雜的多晶矽,(c)摻雜的矽與氧化矽的組合,與(d)沉積在摻雜有矽的基板上。摻雜劑與添加劑主要目的在於控制表面與體積電阻率,以及矽類發射極的力學特性。它們較佳地係取自已知的非金屬摻雜劑群,像是硼、砷、碳、磷、與其他。Some silicon-containing emitter compositions are provided as examples. They are: (a) doped crystalline silicon, (b) doped polysilicon, (c) a combination of doped silicon and silicon oxide, and (d) deposited on a silicon-doped substrate. The main purpose of dopants and additives is to control the surface and volume resistivity, as well as the mechanical properties of silicon-based emitters. They are preferably taken from the known group of non-metallic dopants, such as boron, arsenic, carbon, phosphorus, and others.

因此,本發明的至少一範例性實施例提供一種方法,用於低發射電荷中和,該方法包括下述步驟:產生高頻交流(AC)電壓;傳送高頻AC電壓至至少一非金屬發射極;其中至少一非金屬發射極包括重量百分比至少70%的矽且重量百分比小於99.99%的矽;其中至少一非金屬發射極包括至少一已處理的表面部分,至少一已處理的表面部分具有破壞的氧化層;以及回應於高頻AC電壓而從至少一非金屬發射極產生離子。Accordingly, at least one exemplary embodiment of the present invention provides a method for low emission charge neutralization, the method comprising the steps of: generating a high frequency alternating current (AC) voltage; delivering the high frequency AC voltage to at least one non-metallic emitter electrode; wherein at least one non-metallic emitter includes at least 70% by weight of silicon and less than 99.99% by weight of silicon; wherein at least one non-metallic emitter includes at least one treated surface portion, and at least one treated surface portion has destroying the oxide layer; and generating ions from at least one non-metallic emitter in response to a high frequency AC voltage.

本發明的至少一範例性實施例也提供一種設備,該設備包括允許上述功能的元件。例如,本發明的實施例提供一種設備,用於低發射電荷中和,包括:至少一非金屬發射極,至少一非金屬發射極包括重量百分比至少70%的矽且重量百分比小於99.99%的矽;其中至少一非金屬發射極包括至少一已處理的表面部分,至少一已處理的表面部分具有破壞氧化矽層;以及其中至少一非金屬發射極回應於高頻AC電壓而產生離子。At least one exemplary embodiment of the present invention also provides an apparatus including elements that allow the above-described functionality. For example, embodiments of the present invention provide an apparatus for low emission charge neutralization, comprising: at least one non-metallic emitter comprising at least 70 wt% silicon and less than 99.99 wt% silicon ; wherein at least one non-metallic emitter includes at least one treated surface portion, at least one treated surface portion has a damaged silicon oxide layer; and wherein at least one non-metallic emitter generates ions in response to a high frequency AC voltage.

應理解到,前述的一般說明與以下的詳細說明兩者僅為範例性與解釋性的,且並不限制所主張的本發明。It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention as claimed.

所附圖式併入於本說明書中並且構成本說明書的一部分,所附圖式例示本發明的一(數個)實施例,並且與說明書一起用來解釋本發明的原理。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate an embodiment(s) of the invention, and together with the description serve to explain the principles of the invention.

在下面的詳細說明中,為了解釋的目的,提出許多具體的細節,以提供本發明的各種實施例的透徹理解。本領域中熟習技藝者將瞭解,本發明的這些各種實施例僅為例示性的,且並不打算以任何方式進行限制。本發明的其他實施例將容易地促成具有本揭示案的益處之本領域中熟習技藝者思及該等實施例。In the following detailed description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of various embodiments of the present invention. Those skilled in the art will appreciate that these various embodiments of the present invention are illustrative only and are not intended to be limiting in any way. Other embodiments of the present invention will readily occur to those skilled in the art having the benefit of this disclosure to contemplate such embodiments.

此外,為了清楚起見,本文敘述的實施例的常規特徵並非全部都繪示或敘述。本領域中熟習技藝者將容易理解到,在任何此種實際實施的開發中,可能需要許多特定實施的決策來達成特定的設計目標。這些設計目標將隨著各種實施而變化,並且隨著各種開發者而不同。此外,將理解到,此種開發努力可能是複雜且耗時的,但是儘管如此,仍為給具有本揭示案的益處之本領域中熟習技藝者的一般工程保證。本文揭示的各種實施例並不打算限制本文的揭示內容的範圍與精神。Furthermore, in the interest of clarity, not all of the conventional features of the embodiments described herein are shown or described. Those skilled in the art will readily appreciate that in the development of any such actual implementation, many implementation-specific decisions may be required to achieve specific design goals. These design goals will vary from implementation to implementation and from developer to developer. Furthermore, it will be appreciated that such a development effort may be complex and time-consuming, but nonetheless a general engineering undertaking given to those skilled in the art having the benefit of this disclosure. The various embodiments disclosed herein are not intended to limit the scope and spirit of the disclosure herein.

本文將參考圖式來敘述用於實施本發明的原理之範例性實施例。但是,本發明並不限於具體敘述與例示的實施例。本領域中熟習技藝者將理解到,許多其他實施例都可能,且不偏離本發明的基本概念。因此,本發明的原理擴展至落入所附申請專利範圍的範圍內之任何製作物。Exemplary embodiments for implementing the principles of the invention will be described herein with reference to the drawings. However, the present invention is not limited to the specifically described and illustrated embodiments. Those skilled in the art will appreciate that many other embodiments are possible without departing from the basic concept of the present invention. Accordingly, the principles of the present invention extend to any article of manufacture falling within the scope of the appended claims.

當在本文使用時,本文的用語「一」並不表示對數量的限制,而是表示存在至少一個提及的事項。As used herein, the term "a" herein does not denote a limitation of quantity, but rather denotes the presence of at least one of the referenced item.

在實驗上,已經由發明人展現出,例如,組合下述的嵌入式電離器可以可靠地產生具有非常少的粒子的電性平衡離子氣體流:(1)含有矽的發射極(2)配置做為接觸於導電插座的銷型電極,以及(3)電容性接收高頻AC電壓波形。上述的組合產生的電離的可靠性與潔淨度水平無法由本領域中已知的非金屬含矽發射極或高頻AC電壓波形個別地達成。在潔淨度測試期間測量直徑大於或等於10nm的累積粒子。粒子計數器(像是CNC(condense particle counter)-凝聚粒子計數器)不將粒子分成大小範圍。Experimentally, it has been demonstrated by the inventors that, for example, an electrically balanced ionic gas flow with very few particles can be reliably generated by combining the following embedded ionizers: (1) an emitter containing silicon (2) a configuration As a pin-type electrode contacting a conductive socket, and (3) capacitively receiving a high frequency AC voltage waveform. The level of reliability and cleanliness of the ionization produced by the above combination cannot be achieved individually with non-metallic silicon-containing emitters or high frequency AC voltage waveforms known in the art. Accumulated particles greater than or equal to 10 nm in diameter were measured during the cleanliness test. Particle counters (like CNC (condense particle counter) - condensed particle counters) do not divide particles into size ranges.

例如,用於連接至DC或脈衝DC(+/-20kV)電源的無塵室電離系統(例如,NiLstat電離系統)(類似於第2圖所示的系統200)之兩個單晶矽發射極(在美國專利第5,447,763號中討論)產生每立方英尺空氣中大約60個粒子(直徑大於10奈米)。相反地,本發明的實施例所揭示的電離器產生每立方英尺空氣中少於10個的相同直徑的奈米粒子。從立體的角度來看,每立方英尺空氣中大於10奈米的10個粒子名義上比本申請案此時最潔淨的先前技術的電離器更潔淨6倍。For example, two single crystal silicon emitters for a clean room ionization system (eg, NiLstat ionization system) (similar to system 200 shown in Figure 2) for connection to a DC or pulsed DC (+/-20kV) power supply (discussed in US Patent No. 5,447,763) produces approximately 60 particles (greater than 10 nanometers in diameter) per cubic foot of air. In contrast, ionizers disclosed in embodiments of the present invention produce less than 10 nanoparticles of the same diameter per cubic foot of air. From a stereoscopic perspective, 10 particles larger than 10 nanometers per cubic foot of air are nominally 6 times cleaner than the cleanest prior art ionizer at this time in this application.

在相反的範例中,利用傳統的系統(例如,美國專利第5,447,763號中的系統)測試金屬發射極(鎢),且展現出不可接受的無塵室粒子發射數量。我們使用鎢發射極結合於高頻AC高電壓波形(類似於美國專利申請案公開號第2003/0007307號(Lee等人)中提出的)的實驗在潔淨度上具有很少的益處,相較於美國專利第5,447,763號中先前揭示的傳統系統來說。兩個實例中測試鎢發射極的粒子集中總數結果在每立方英尺空氣中都超過600個粒子(大於10奈米)。In the opposite example, a metal emitter (tungsten) was tested with a conventional system (eg, the system in US Pat. No. 5,447,763) and exhibited unacceptable numbers of clean room particle emissions. Our experiments using a tungsten emitter combined with a high frequency AC high voltage waveform (similar to that presented in US Patent Application Publication No. 2003/0007307 (Lee et al.)) had little benefit in cleanliness, compared to As with the conventional system previously disclosed in US Pat. No. 5,447,763. The particle concentration totals for the tested tungsten emitters in both instances resulted in over 600 particles per cubic foot of air (greater than 10 nanometers).

但是,高純度(99.99%以上的純度)單晶矽發射極(像是第1(a)圖、第1(b)圖、與第1(c)圖中所示的發射極)具有高電阻值(在兆歐姆的範圍)。當此發射極連接至高頻(HF)AC電壓電源時,通常,離子的產生不足以用於有效率的電荷中和。主要的原因在於因為大部分的HF(高頻)電流/電壓跑到雜散電容器中而沒有到發射極尖端。However, high-purity (99.99% or higher) single-crystal silicon emitters (such as those shown in Figure 1(a), Figure 1(b), and Figure 1(c)) have high resistance value (in the megohm range). When this emitter is connected to a high frequency (HF) AC voltage supply, generally, the generation of ions is not sufficient for efficient charge neutralization. The main reason is because most of the HF (high frequency) current/voltage goes into the stray capacitors and not to the emitter tip.

與高純度(99.99%以上的純度)單晶矽發射極相關的另一問題為:發射極容易產生表面氧化物「膚層」(在第1(c)圖中,圍繞矽發射極101c的表面、由虛線102c所繪示的氧化物層或膚層)。此膚層/層102c包括高絕緣的氧化矽(SiO2 )。例如,在下述的加州的史丹佛大學的出版品(「天然氧化物的生長(Growth of native oxide),2003年8月28日史丹佛大學奈米製造設施(Stanford University Nanofabrication Facility, 28 August 2003)」)中有討論潔淨的矽晶圓的表面上的氧化矽生長。Another problem associated with high-purity (above 99.99% pure) single-crystal silicon emitters is that the emitter is prone to a surface oxide "skin" (in Figure 1(c), the surface surrounding the silicon emitter 101c) , the oxide layer or skin layer depicted by dashed line 102c). The skin/layer 102c includes highly insulating silicon oxide (SiO 2 ). For example, in the following Stanford University publication in California ("Growth of native oxide, 28 August 2003 Stanford University Nanofabrication Facility, 28 August 2003) ") discusses the growth of silicon oxide on the surface of clean silicon wafers.

氧化矽層生長現象的最終結果為:非金屬矽發射極/銷由此絕緣層包圍並且不具有與電性插座(以及因此,HF電源供應器的高電壓輸出)的良好、可靠的連接。The end result of the silicon oxide layer growth phenomenon is that the non-metallic silicon emitter/pin is surrounded by this insulating layer and does not have a good, reliable connection to the electrical socket (and thus the high voltage output of the HF power supply).

另一種非金屬離子發射極則在Curtis等人的美國專利申請案公開號第2006/0071599號中有所討論。此發射極由高純度99.99%的碳化矽製成。此材料為合成材料,具有大約30%的碳。本領域中已知,碳化矽具有高的硬度。在加工生產為銷型的發射極結構來說,碳化矽也是昂貴的。另外,碳化矽具有金屬型的高導電性。來自具有高碳含量的合成材料之導電粒子通常在半導體產業中是非所欲的。Another non-metal ion emitter is discussed in US Patent Application Publication No. 2006/0071599 to Curtis et al. This emitter is made of high-purity 99.99% silicon carbide. This material is a synthetic material with approximately 30% carbon. It is known in the art that silicon carbide has a high hardness. Silicon carbide is also expensive to manufacture as pin-type emitter structures. In addition, silicon carbide has high electrical conductivity of the metallic type. Conductive particles from synthetic materials with high carbon content are generally undesirable in the semiconductor industry.

在半導體產業中對於矽材料的廣泛接受度要求離子發射極材料的較低成本。另外,矽類材料的機械特性使得加工簡單(切割、拋光等)。矽摻雜劑與添加劑的小型集中主要目標在於控制表面與體積電阻率,以及改良矽類發射極的力學特性。它們較佳地係取自已知的非金屬摻雜劑群,像是硼、砷、碳、磷、與其他。Wide acceptance of silicon materials in the semiconductor industry requires lower cost of ion emitter materials. In addition, the mechanical properties of silicon-based materials allow for easy processing (cutting, polishing, etc.). The primary goal of a small concentration of silicon dopants and additives is to control surface and volume resistivity, and to improve the mechanical properties of silicon-based emitters. They are preferably taken from the known group of non-metallic dopants, such as boron, arsenic, carbon, phosphorus, and others.

在本發明的實施例中,具有矽含量的重量百分比小於99.99%且大於70%的矽類成分可以達到千歐姆範圍的電阻值之發射極。此電阻值足夠低來傳導高頻電流並且支援穩定的電暈放電。所以,下面兩個特定因素調和地相互作用,以產生觀測到的潔淨度改良:矽類發射極的成分與設計,以及高頻AC發射極驅動電源/電壓波形。In an embodiment of the present invention, an emitter having a silicon-based composition with a silicon content of less than 99.99% and more than 70% by weight can achieve a resistance value in the kiloohm range. This resistance value is low enough to conduct high frequency current and support stable corona discharge. Therefore, two specific factors interact harmoniously to produce the observed cleanliness improvement: the composition and design of the silicon-based emitter, and the high frequency AC emitter drive power/voltage waveform.

矽類發射極與HF電壓波形的組合的一個優點在於:電暈放電的啟始電壓(大約1,000V至3,000V或更高)顯著低於用於非金屬發射極的DC、脈衝DC、或低頻(50Hz至60Hz)電壓之電暈放電啟始電壓。One advantage of the combination of silicon-based emitters and HF voltage waveforms is that the onset voltage of corona discharges (approximately 1,000V to 3,000V or higher) is significantly lower than the DC, pulsed DC, or low frequency used for non-metallic emitters (50Hz to 60Hz) voltage of corona discharge initiation voltage.

此效應的可能解釋為:在高頻範圍時(大約1kHz至100kHz或更高),施加至發射極的電壓以數毫秒的範圍或數微秒的範圍改變極性。這就是為什麼電暈電荷載子(正與負離子、電子)不具有足夠的時間來移動遠離發射極尖端。此外,矽類材料的特定表面電荷守恆(通常命名為「電荷記憶體」)特性在電極表面電子發射中可起到作用。這就是為什麼正與負高頻電暈啟始電壓都為低。利用HF電暈放電的較低電壓,來自矽類發射極的粒子發射也會是少的。A possible explanation for this effect is that in the high frequency range (approximately 1 kHz to 100 kHz or higher), the voltage applied to the emitter changes polarity in the range of milliseconds or microseconds. This is why the corona charge carriers (positive and negative ions, electrons) do not have enough time to move away from the emitter tip. In addition, the specific surface charge conservation (often named "charge memory") properties of silicon-based materials can play a role in electron emission at the electrode surface. This is why both positive and negative high frequency corona onset voltages are low. With the lower voltage of the HF corona discharge, the particle emission from the silicon-based emitter will also be less.

因為非金屬矽類發射極與高頻AC電壓波形之間的相互作用所導致之平衡電離器的電暈放電的粒子發射改良的科學基礎是目前正在研究的。來自非金屬發射極的電暈放電及/或電離及/或粒子發射的公認理論並未預測或完全解釋所觀測到的實驗潔淨度。The scientific basis for the improvement of particle emission from corona discharges of balanced ionizers due to the interaction between non-metallic silicon-based emitters and high frequency AC voltage waveforms is currently under investigation. The accepted theory of corona discharge and/or ionization and/or particle emission from non-metallic emitters does not predict or fully explain the observed experimental cleanliness.

但是,如何製作與使用本發明是清楚理解的。下面所寫的敘述係關於解釋在靜電控制領域中熟習技藝者如何製作與使用本發明。However, it is clearly understood how to make and use the present invention. The following description is written to explain how those skilled in the art of static control can make and use the present invention.

關於本發明的實施例的實驗製作物(包括矽類發射極的成分與HF電壓波形的組合)展現出,在一些情況中,具有全新的或長時間閒置的發射極之電離器會展現出啟始HF電暈放電與可靠地產生離子的產生之問題。測量顯示出,矽發射極與電性插座之間有高接觸電阻值。此高電阻值是電離裝置的電暈啟始問題的一個原因。在開放空氣中的矽晶圓上的較厚(10th 至100th 埃或以上)氧化物「膚層」的處理形成則記錄在上面引用的參考文獻(「天然氧化物的生長(Growth of native oxide),史丹佛大學奈米製造設施(Stanford University Nanofabrication Facility)」)中。例如,在六天期間,SiO2 表面層可達到12埃的厚度。氧化矽已知為良好的絕緣體。所以,此膚層生長會導致矽類發射極的較高表面與接觸電阻值。氧化層生長的速率是可變的,且相關於許多周遭的大氣因素,像是氧氣與臭氧濃度(參見網頁連結http://iopscience.iop.org/0953-8984/21/18/183001/pdf/cm9_18_183001.pdf中的「臭氧的矽氧化(Silicon oxidation by ozone)」)、溫度、濕度等。臭氧為電暈放電的副產物之一,並且可能加速矽發射極的氧化。此現象對於具有矽類非金屬發射極的HF電離器的較低電源電壓有深厚的影響。本發明的範例性實施例包括矽類發射極的表面處理,以降低發射極與金屬插座之間的接觸電阻值。Experimental preparations for embodiments of the present invention, including combinations of silicon-based emitter compositions and HF voltage waveforms, demonstrate that, in some cases, ionizers with brand new or long idle emitters exhibit activation The problem of initiating HF corona discharge and generating ions reliably. Measurements showed high contact resistance values between the silicon emitter and the electrical socket. This high resistance value is one cause of corona initiation problems with ionization devices. Process formation of thicker (10 th to 100 th angstrom or more) oxide "skin layers" on silicon wafers in open air is documented in the above cited reference ("Growth of native oxides"). oxide), at the Stanford University Nanofabrication Facility”). For example, over a six-day period, the SiO2 surface layer can reach a thickness of 12 angstroms. Silicon oxide is known to be a good insulator. Therefore, this skin layer growth results in higher surface and contact resistance values for silicon-based emitters. The rate of oxide growth is variable and is related to many surrounding atmospheric factors, such as oxygen and ozone concentrations (see web link http://iopscience.iop.org/0953-8984/21/18/183001/pdf /cm9_18_183001.pdf "Silicon oxidation by ozone"), temperature, humidity, etc. Ozone is one of the by-products of corona discharge and may accelerate the oxidation of silicon emitters. This phenomenon has a profound effect on the lower supply voltage of HF ionizers with silicon-based non-metallic emitters. Exemplary embodiments of the present invention include surface treatment of the silicon-based emitter to reduce the contact resistance value between the emitter and the metal socket.

第1(a)圖為傳統的矽發射極100a的圖示。發射極100a包括四個鮮明的部分:尖端101a、錐部102a、軸部103a、與尾部104a。尖端101a的形狀與大小取決於來自高電壓電源供應器(HVPS,high voltage power supply)的高電壓與電流的可用量、發射極的材料、以及生產的技術與方法。發射極尖端101a通常是任何離子發射極的最關鍵部分。發射極尖端101a直接曝露於電暈放電,並且決定發射極的壽命長度。矽發射極具有大體上圓柱形的軸部103a。軸部103a主要界定發射極的長度,以及錐部與連接至高電壓電源供應器的插座或容器之間的距離。錐部或圓錐體102a為尖端101a與軸部103a之間的過渡部分。矽本質上是脆性材料,且錐角是發射極的機械強度與電性特性的折衷。尾部104a可為圓形、斜面、或倒角。此部分應協助插設發射極100a至插座或容器中。標準的高純度矽發射極因為化學拋光(這通常藉由強酸處理來達成)而具有光滑的表面。Figure 1(a) is an illustration of a conventional silicon emitter 100a. Emitter 100a includes four distinct parts: tip 101a, taper 102a, shaft 103a, and tail 104a. The shape and size of the tip 101a depends on the availability of high voltage and current from a high voltage power supply (HVPS), the material of the emitter, and the technique and method of production. The emitter tip 101a is generally the most critical part of any ion emitter. The emitter tip 101a is directly exposed to the corona discharge and determines the lifetime length of the emitter. The silicon emitter has a generally cylindrical shaft portion 103a. The shaft portion 103a mainly defines the length of the emitter and the distance between the cone portion and the socket or container connected to the high voltage power supply. The taper or cone 102a is the transition between the tip 101a and the shaft 103a. Silicon is an inherently brittle material, and the taper angle is a compromise between the mechanical strength and electrical properties of the emitter. The tail portion 104a may be rounded, beveled, or chamfered. This part should assist in inserting the emitter 100a into the socket or container. Standard high-purity silicon emitters have a smooth surface due to chemical polishing, which is usually achieved by a strong acid treatment.

第1(b)圖繪示具有金屬套筒的矽發射極的圖示。矽發射極100a包括非金屬的矽部分101b與不銹鋼管102b(或套筒102b),套筒102b具有凹部105b。套筒102b應該保護脆性的矽發射極101a免於機械(處理)損傷。套筒102b也應改良非金屬高純度矽發射極與金屬插座或容器的電連接。視圖103b與104b繪示矽發射極100a與金屬套筒102b的組裝圖。視圖106b呈現組裝的發射極軸部103a的橫剖面。Figure 1(b) shows an illustration of a silicon emitter with a metal sleeve. The silicon emitter 100a includes a non-metallic silicon portion 101b and a stainless steel tube 102b (or a sleeve 102b), and the sleeve 102b has a recess 105b. The sleeve 102b should protect the brittle silicon emitter 101a from mechanical (handling) damage. The sleeve 102b should also improve the electrical connection of the non-metal high purity silicon emitter to the metal socket or container. Views 103b and 104b illustrate the assembly of the silicon emitter 100a and the metal sleeve 102b. View 106b presents a cross-section of the assembled emitter shaft portion 103a.

矽軸部103a的大部分(或重要部分)裝入金屬套筒102b中,如同視圖103b中所示。為了固定套筒102b於矽軸部103a上並且達成它們之間的可靠電性接觸,通常在套筒102b上製做至少一突伸部105b(凹部)。考慮所有三個元件的尺寸的公差(矽發射極軸部的直徑、套筒的內徑、與凹部的深度),組裝操作是相當有挑戰性的(參見視圖106b上的矽軸部與凹部的橫剖面視圖,其中因為凹部105b,發射極軸部103a及套筒102b並非共中心)。Most (or a significant portion) of the silicon shaft portion 103a fits into the metal sleeve 102b, as shown in view 103b. In order to fix the sleeve 102b on the silicon shaft portion 103a and achieve reliable electrical contact therebetween, generally at least one protruding portion 105b (recess) is formed on the sleeve 102b. Considering the dimensional tolerances of all three components (diameter of the silicon emitter shaft, inner diameter of the sleeve, and depth of the recess), the assembly operation is quite challenging (see the silicon shaft and recess on view 106b). Cross-sectional view, where the emitter shaft portion 103a and the sleeve 102b are not concentric because of the recess 105b).

第1(c)圖繪示矽發射極100c的另一設計的圖示。發射極部分101c繪示為具有表面氧化層(「膚層」)102c,由虛線表示。發射極100c包括矽部分101c與套筒103c,套筒103c具有凹部104c。套筒103c可具有一或更多個區段/延伸部106c,一或更多個區段/延伸部106c具有凹槽107c(包括各種半徑、凹槽及頸部,而需要特殊設備來製造)。發射極組件繪示在視圖105c中。此設計允許保持發射極在噴嘴中,並且使用延伸部106c來插設延伸部106c至不同的插座或容器中。Figure 1(c) shows an illustration of another design of the silicon emitter 100c. The emitter portion 101c is shown with a surface oxide layer ("skin layer") 102c, represented by the dashed line. The emitter 100c includes a silicon portion 101c and a sleeve 103c, and the sleeve 103c has a recess 104c. Sleeve 103c may have one or more segments/extensions 106c with grooves 107c (including various radii, grooves and necks, requiring special equipment to manufacture) . The emitter assembly is shown in view 105c. This design allows to keep the emitter in the nozzle and use the extension 106c to plug the extension 106c into a different socket or container.

第2圖繪示傳統的DC無塵室電離系統200的圖示,類似於美國專利號第5,447,763號中所使用的那個。電離器具有一對棒,正(+)棒201與負(-)棒202,帶有單晶矽發射極。該等棒連接至專用的正與負高電壓電源(HVDC)供應器203(置於底座中)。發射極棒的橫剖面視圖繪示於視圖204中。棒202的端部具有插座式連接器205與連接至HV DC電源供應器203的高電壓纜線206。插座205容納了視圖204中繪示的矽類發射極207。棒202的其他部分可作為發射極207、連接器205、與HV纜線206的保護裝置,使它們免於破壞力。棒設計成使得矽發射極201、202為可更換的。Figure 2 shows an illustration of a conventional DC cleanroom ionization system 200, similar to that used in US Pat. No. 5,447,763. The ionizer has a pair of rods, a positive (+) rod 201 and a negative (-) rod 202, with single crystal silicon emitters. The rods are connected to dedicated positive and negative high voltage power (HVDC) supplies 203 (placed in the base). A cross-sectional view of the emitter rod is shown in view 204 . The end of the rod 202 has a socket connector 205 and a high voltage cable 206 connected to the HVDC power supply 203 . The socket 205 houses the silicon-based emitter 207 shown in view 204 . The rest of the rod 202 can act as a protection for the emitter 207, connector 205, and HV cable 206 from damaging forces. The rods are designed so that the silicon emitters 201, 202 are replaceable.

本發明的範例性實施例的至少一些目標為藉由經濟型矽類電荷中和系統來促成低粒子發射。矽類發射極的成分(具有重量百分比小於99.99%且大於70%的矽)結合於高頻電暈放電可以使低粒子發射的目標成真。針對電離系統中的非金屬矽電極,下個主要目標為提供矽類發射極與HF高電壓電源供應器之間的可靠電連接。At least some of the goals of the exemplary embodiments of the present invention are to facilitate low particle emission by an economical silicon-based charge neutralization system. The composition of silicon-based emitters (with less than 99.99% and greater than 70% by weight of silicon) combined with high frequency corona discharge can make the goal of low particle emission a reality. For non-metallic silicon electrodes in ionization systems, the next main goal is to provide a reliable electrical connection between the silicon-based emitter and the HF high-voltage power supply.

第3(a)圖根據本發明的實施例,繪示矽類發射極300a的圖示,其中發射極300a包括軸部301a的研磨部分或磨光處理部分310a(亦即,已處理的表面部分310a),軸部301a可插設至高電壓插座(未圖示)中。軸部表面302a的此部分310a具有粗糙度H,範圍大約為0.5微米至10微米(參見視圖303a)。在表面處理期間,例如藉由磨光,先前在軸部表面302a上的氧化物「膚層」將毀壞且刪除,或以其他方式移除。磨光產生的發射極軸部表面輪廓能夠多點接觸於高電壓插座(未圖示)。選擇性地,類似的表面處理可應用至發射極300a的尾部314a的圓形端304a。發射極尖端305a、錐部306a、與軸部301a的部分311a具有一般的化學拋光表面。Figure 3(a) shows a diagram of a silicon-based emitter 300a including a ground portion or a burnished portion 310a (ie, a treated surface portion) of the shaft portion 301a, according to an embodiment of the present invention. 310a), the shaft portion 301a can be inserted into a high-voltage socket (not shown). This portion 310a of the shaft surface 302a has a roughness H in the range of approximately 0.5 microns to 10 microns (see view 303a). During surface treatment, such as by polishing, the oxide "skin" previously on the shaft surface 302a will be destroyed and removed, or otherwise removed. The surface profile of the emitter shaft produced by grinding allows multiple points of contact with a high-voltage socket (not shown). Alternatively, a similar surface treatment can be applied to the rounded end 304a of the tail 314a of the emitter 300a. Emitter tip 305a, taper 306a, and portion 311a of shaft 301a have generally chemically polished surfaces.

矽類發射極的又一實施例例示在第3(b)圖中。根據本發明的此實施例,矽類發射極300b包括發射極軸部301b的部分310b(亦即,已處理的表面部分310b),部分310b具有金屬鍍層或金屬塗層302b(或導電的鍍層或金屬塗層302b),使得軸部301b的部分310b為良好的表面導體並且保護發射極300b的接觸部分316b長期免於氧化。接觸部分316b可在發射極軸部301b的尾部314b中。Yet another embodiment of a silicon-based emitter is illustrated in Figure 3(b). According to this embodiment of the invention, the silicon-based emitter 300b includes a portion 310b of the emitter shaft portion 301b (ie, the treated surface portion 310b) having a metal coating or metal coating 302b (or a conductive coating or metal coating 302b) so that the portion 310b of the shaft portion 301b is a good surface conductor and protects the contact portion 316b of the emitter 300b from oxidation for a long time. Contact portion 316b may be in tail portion 314b of emitter shaft portion 301b.

矽電鍍的不同已知方法(例如,像是真空沉積、電解電鍍、噴塗、與其他)也可使用。像是金屬的電鍍材料可包括:例如,鎳、銅、銀、金、與其他金屬,以及半導體產業中可接受的合金。Different known methods of silicon electroplating (eg, such as vacuum deposition, electrolytic plating, spraying, and others) can also be used. Electroplating materials like metals may include, for example, nickel, copper, silver, gold, and other metals, as well as alloys acceptable in the semiconductor industry.

第3(c)圖根據本發明的實施例,繪示含矽的發射極與用於監測含矽的發射極的表面電阻值及/或體積電阻值的設備之圖示。這顯現如同第3(c)圖所示的矽類發射極300c的電性特性控制操作的範例。控制及/或監測包括電阻值的測量或者監測發射極300c或發射極300c的已處理表面部分302c的電阻值及/或成分。導電電極303c與304c分別附接至或連接至發射極300c的發射極軸部301c的磨光部分302c(或已處理表面部分302c)與尾部314c。標準的電阻值R測量裝置305可用於測量電阻值R並且記錄電阻值R的測量。以此方式,可監控合成的表面與體積電阻率以及發射極成分。矽類發射極所需要的正常特性與成分(具有重量百分比小於99.99%至至少70%的矽)應具有千歐姆範圍的合成電阻值。在表面處理與控制操作之後,發射極300c可插設至標準的金屬插座(未圖示)中,以最少化氧化矽「膚層」的新層的形成。Figure 3(c) shows a diagram of a silicon-containing emitter and an apparatus for monitoring the sheet resistance and/or volume resistance of the silicon-containing emitter, according to an embodiment of the present invention. This shows an example of the electrical property control operation of the silicon-based emitter 300c as shown in FIG. 3(c). Controlling and/or monitoring includes measuring the resistance value or monitoring the resistance value and/or composition of the emitter 300c or the treated surface portion 302c of the emitter 300c. Conductive electrodes 303c and 304c are attached or connected, respectively, to polished portion 302c (or treated surface portion 302c) and tail portion 314c of emitter shaft portion 301c of emitter 300c. A standard resistance value R measurement device 305 can be used to measure the resistance value R and record the resistance value R measurement. In this way, the resultant surface and volume resistivity and emitter composition can be monitored. The normal properties and composition required for a silicon-based emitter (having less than 99.99% to at least 70% silicon by weight) should have a resultant resistance value in the kiloohm range. After surface treatment and control operations, the emitter 300c can be plugged into a standard metal socket (not shown) to minimize the formation of a new layer of silicon oxide "skin".

在此呈現的至少一些範例性實施例允許解決兩個失敗問題:(1)建立可靠的電連接於非金屬矽類發射極與插座之間;與(2)保護發射極的接觸部分免於氧化。At least some of the exemplary embodiments presented herein allow addressing two failure problems: (1) establishing a reliable electrical connection between the non-metallic silicon based emitter and socket; and (2) protecting the contact portion of the emitter from oxidation .

第4(a)圖與第4(b)圖根據本發明的各種實施例,繪示含矽的發射極的圖示,具有徑向壓縮彈簧套筒與金屬銷的兩個變型。含矽的發射極與金屬銷插設至套筒中,如同以下所討論的。將先敘述本發明的實施例中之第4(a)圖的矽類發射極400a。根據此範例性實施例,發射極400a包括發射極部分401a,其中發射極部分401a的矽部分具有減小的長度/軸部直徑比率。短的矽類發射極部分401a從套筒402a的一側430連接至金屬徑向壓縮彈簧套筒402a。套筒402a的另一側431連接至實心的金屬延伸銷403a。本文所討論的金屬銷403a與403b可為金屬電極403a與403b,分別插設至彈簧式套筒402a與402b中。此銷403a可具有至少一(或更多個)凹槽與可變長度「L2」,由插座與電離單元(包括參考電極)的設計所要求。例如,銷403a包括凹槽435與436,但是在其他實施例中,銷403a可僅具有單一凹槽。銷403a可為例如實心的金屬銷或管。傳統的、CNC、或自動金屬切割機、或者其他金屬程序方法可用於製造銷403a。視圖405a根據此範例性實施例,繪示具有矽發射極400a的發射極組件410a的圖示或圖式。徑向壓縮彈簧套筒402a具有顯著較大的面積接觸於矽部分401a,相較於第1(a)圖與第1(b)圖所示之具有凹部105b的傳統套筒102b來說。結果為更可靠的電連接以及施加至脆性矽發射極部分401a的較小機械應力。具有金屬套筒之矽發射極的設計具有一些要求,以防止從套筒邊緣至附近的參考電極之「二次」電暈放電。應考慮的主要參數例示在視圖406a中:D,D為矽發射極軸部440的直徑;L,L為矽發射極軸部440的曝露部分441的長度;α,α為軸部440的錐形部分442的錐角;以及S,S為套筒402a的厚度。為了矽部分401a的發射極尖端421a上(或矽部分401b的發射極尖端421b上)的高集中電場,第一比率S/D應在大約0.03至0.06的範圍中。關於發射極尖端421a與套筒402之間的距離的另一要求為第二比率L/S:第二比率L/S應在(2–5)/[tan {tangent} (0.5α)]的範圍中。參數α為至少一非金屬發射極部分401a或401b的軸部440的錐形部分的錐角。在本發明的一實施例中,新的矽發射極設計的這些狀況將滿足數個規範/規格:可靠的電連接、良好的機械強度、以及將從金屬部分產生粒子發射之「二次」電暈的最小可能性。Figures 4(a) and 4(b) show diagrams of silicon-containing emitters with two variants of radially compressed spring sleeves and metal pins, according to various embodiments of the present invention. A silicon-containing emitter and metal pins are inserted into the sleeve, as discussed below. The silicon-based emitter 400a of Fig. 4(a) in the embodiment of the present invention will be described first. According to this exemplary embodiment, the emitter 400a includes an emitter portion 401a, wherein the silicon portion of the emitter portion 401a has a reduced length/shaft diameter ratio. A short silicon-based emitter portion 401a is attached to a metal radial compression spring sleeve 402a from one side 430 of the sleeve 402a. The other side 431 of the sleeve 402a is connected to a solid metal extension pin 403a. The metal pins 403a and 403b discussed herein may be metal electrodes 403a and 403b inserted into spring-loaded sleeves 402a and 402b, respectively. This pin 403a may have at least one (or more) groove and variable length "L2" as required by the design of the socket and ionization cell (including the reference electrode). For example, pin 403a includes grooves 435 and 436, but in other embodiments, pin 403a may have only a single groove. Pin 403a may be, for example, a solid metal pin or tube. Conventional, CNC, or automatic metal cutters, or other metal procedural methods may be used to manufacture pins 403a. View 405a shows a diagram or diagram of an emitter assembly 410a having a silicon emitter 400a, according to this exemplary embodiment. The radially compressed spring sleeve 402a has a significantly larger area in contact with the silicon portion 401a than the conventional sleeve 102b with the recess 105b shown in Figures 1(a) and 1(b). The result is a more reliable electrical connection and less mechanical stress applied to the brittle silicon emitter portion 401a. The design of a silicon emitter with a metal sleeve has some requirements to prevent "secondary" corona discharge from the edge of the sleeve to the nearby reference electrode. The main parameters that should be considered are illustrated in view 406a: D, D are the diameters of the silicon emitter shaft 440; L, L are the lengths of the exposed portions 441 of the silicon emitter shaft 440; α, α are the tapers of the shaft 440 and S, S is the thickness of the sleeve 402a. For a highly concentrated electric field on the emitter tip 421a of the silicon portion 401a (or on the emitter tip 421b of the silicon portion 401b), the first ratio S/D should be in the range of about 0.03 to 0.06. Another requirement regarding the distance between the emitter tip 421a and the sleeve 402 is the second ratio L/S: the second ratio L/S should be at (2-5)/[tan {tangent}(0.5α)] in the range. The parameter α is the taper angle of the tapered portion of the shaft portion 440 of the at least one non-metal emitter portion 401a or 401b. In one embodiment of the present invention, these conditions of the new silicon emitter design will satisfy several specifications/specifications: reliable electrical connection, good mechanical strength, and "secondary" electricity that will generate particle emission from the metal part Minimal possibility of halo.

第4(b)圖繪示矽類發射極400b的另一實施例的圖示,包括金屬徑向壓縮彈簧套筒402b的另一配置,其中發射極400b與套筒402b係共中心。在此情況中,發射極400包括矽發射極部分401b,矽發射極部分401b具有直徑D1,且金屬套筒402b的一端461具有直徑D3。矽發射極部分401b具有發射極尖端421b。部分403b為實心的金屬銷403b,具有直徑D4,且套筒402b的另一端462具有直徑D2。矽發射極部分401b與金屬套筒402b的直徑的差異(D1>D3)產生所需的壓縮力,以提供矽部分401b與金屬套筒402b之間的可靠或良好的電性接觸。類似地,直徑的差異(D2<D4)提供金屬套筒402b與金屬銷403b之間的可靠或良好的電連接。視圖404b與406b繪示矽發射極400b的已組裝視圖。視圖405b為橫剖面圖,根據此範例性實施例繪示具有大接觸面積、最小接觸壓力與局部應力之矽發射極401b與套筒部分402b。組裝操作係簡化。兩個範例性實施例(發射極400a與400b)都使用最少量的昂貴矽類材料、具有非金屬發射極軸部與金屬套筒的大的、可靠的接觸面積、以及至標準的插座或容器之良好尺寸匹配。Figure 4(b) shows an illustration of another embodiment of a silicon-based emitter 400b, including another configuration of a metal radially compressed spring sleeve 402b, where the emitter 400b and the sleeve 402b are concentric. In this case, the emitter 400 includes a silicon emitter portion 401b having a diameter D1 and one end 461 of the metal sleeve 402b having a diameter D3. The silicon emitter portion 401b has an emitter tip 421b. The portion 403b is a solid metal pin 403b having a diameter D4, and the other end 462 of the sleeve 402b has a diameter D2. The difference in diameters of the silicon emitter portion 401b and the metal sleeve 402b (D1>D3) produces the required compressive force to provide reliable or good electrical contact between the silicon portion 401b and the metal sleeve 402b. Similarly, the difference in diameter (D2 < D4) provides a reliable or good electrical connection between the metal sleeve 402b and the metal pin 403b. Views 404b and 406b illustrate assembled views of silicon emitter 400b. View 405b is a cross-sectional view illustrating silicon emitter 401b and sleeve portion 402b with large contact area, minimal contact pressure, and localized stress, according to this exemplary embodiment. Assembly operating system is simplified. Both exemplary embodiments (emitters 400a and 400b) use minimal amounts of expensive silicon-based materials, have large, reliable contact areas with non-metallic emitter shafts and metal sleeves, and to standard sockets or containers a good size match.

在一些情況中,矽類發射極在啟始高頻電暈放電與可靠地產生離子的產生方面會有問題,儘管具有正常的表面/體積電阻值以及至高電壓插座的良好電連接。我們的實驗顯示出,此問題的核心是因為發射極尖端的表面(發射極的「工作腳架」)上形成厚的絕緣氧化物「膚層」。本發明的另一範例性實施例解決了此問題。含矽的發射極的尖端的形狀會對於絕緣氧化物「膚層」的形成速率與厚度有某種絕對的影響。In some cases, silicon-based emitters can have problems initiating high frequency corona discharges and reliably generating ion production despite normal surface/volume resistance values and good electrical connection to high voltage sockets. Our experiments show that the core of the problem is the formation of a thick insulating oxide "skin" on the surface of the emitter tip (the "working foot" of the emitter). Another exemplary embodiment of the present invention addresses this problem. The shape of the tip of the silicon-containing emitter has some absolute effect on the rate and thickness of the insulating oxide "skin".

第5(a)圖、第5(b)圖、與第5(c)圖根據本發明的各種實施例,繪示三個含矽的發射極的圖示,具有不同的錐部與尖端的結構。第5(a)圖、第5(b)圖、與第5(c)圖所示的各種尖端結構與錐部結構決定操作HF電暈啓始電壓與電離電流參數。Figures 5(a), 5(b), and 5(c) are illustrations of three silicon-containing emitters, with different tapers and tips, according to various embodiments of the present invention. structure. The various tip and cone configurations shown in Figures 5(a), 5(b), and 5(c) determine the operating HF corona onset voltage and ionization current parameters.

在第5(a)圖中,繪示具有平坦截頭尖端的矽類發射極501。此尖端設計容易產生環型高頻電暈放電(其中平坦尖端510相接於發射極501的錐部511)。此發射極501可減少離子電流密度與粒子發射。但是,特徵在於較高的啓始HF電暈電壓。錐部511相對於平坦尖端510有角度值α。In Figure 5(a), a silicon-based emitter 501 with a flat truncated tip is shown. This tip design is easy to generate annular high-frequency corona discharge (wherein the flat tip 510 is in contact with the taper 511 of the emitter 501 ). The emitter 501 reduces ionic current density and particle emission. However, it is characterized by a higher onset HF corona voltage. The tapered portion 511 has an angle value α with respect to the flat tip 510 .

矽類發射極502(第5(b)圖)具有小的圓形尖端514,圓形尖端514具有大約60微米至400微米範圍的半徑Z,這在生產上較便宜並且可最小化電暈電流波動。(發射極502的)錐部516延伸自小的圓形尖端514。The silicon based emitter 502 (Fig. 5(b)) has a small rounded tip 514 with a radius Z in the range of about 60 microns to 400 microns, which is cheaper to produce and minimizes corona currents fluctuation. Cone 516 (of emitter 502 ) extends from small rounded tip 514 .

尖的矽類發射極503(第5(c)圖)具有尖點狀尖端520,尖點狀尖端520具有大約40微米至50微米範圍(或更小)的半徑Y。此發射極503具有最低的電暈啟始電壓Von 。但是,發射極503的離子電流密度最大,且濺射、侵蝕、與氧化物「膚層」生長都是最高速率。此矽類發射極503較佳地用於無氧氣體的電離,像是氮氣或氬氣。發射極503的錐部/圓錐部521較佳地相對於尖點狀尖端520具有大約10度-20度範圍的角度α。所有矽類發射極(501、502、503)都具有根據本發明的範例性實施例的成分,並且當安裝於嵌入式電離器、電離棒、以及由HF AC電壓驅動的其他電荷中和器中時,可以提供低粒子數。尖端的尖銳的程度與曲率(亦即,尖端的結構)影響或決定電離器操作參數,包括啟始電壓、離子電流、與離子平衡,但是它們不影響本發明的範圍。The pointed silicon-based emitter 503 (Fig. 5(c)) has a pointed tip 520 having a radius Y in the range of about 40 microns to 50 microns (or less). This emitter 503 has the lowest corona onset voltage Von . However, the emitter 503 has the highest ionic current density and the highest rates of sputtering, erosion, and oxide "skin" growth. The silicon-based emitter 503 is preferably used for ionization of oxygen-free gases, such as nitrogen or argon. The taper/cone 521 of the emitter 503 preferably has an angle α relative to the cusp-like tip 520 in the range of about 10-20 degrees. All silicon-based emitters (501, 502, 503) have compositions according to exemplary embodiments of the present invention, and when installed in embedded ionizers, ionization rods, and other charge neutralizers driven by HF AC voltage , can provide low particle numbers. The degree of sharpness and curvature of the tip (ie, the configuration of the tip) affects or determines ionizer operating parameters, including onset voltage, ion current, and ion balance, but they do not affect the scope of the present invention.

本發明的另一範例性實施例解決了矽發射極尖端上的氧化物「膚層」生長的問題。該實施例使用電暈放電的特定模式來清潔矽發射極尖端免於氧化物膚層,並且協助電離器的啟動無關於發射極外形。Another exemplary embodiment of the present invention addresses the problem of oxide "skin" growth on the silicon emitter tip. This embodiment uses a specific pattern of corona discharge to clean the silicon emitter tip from the oxide skin and assist in ionizer activation independent of the emitter profile.

第6圖根據本發明的實施例,繪示HF波形的圖示,HF波形用於在電暈電離時期的「啟動」期間執行含矽的發射極尖端的「軟式」電漿清洗。6 shows a graphical representation of HF waveforms used to perform "soft" plasma cleaning of silicon-containing emitter tips during "start-up" periods of corona ionization, in accordance with an embodiment of the present invention.

高電壓「HF啟動」型波形600施加至發射極。此模式的高電壓驅動可在啟動時期(標示為Ts時期)期間提供一組短持續時間的雙極性電壓突波(數量從1至多達數百個的雙極性脈衝605)至發射極。由於電源曲線的很短持續時間(毫秒、微秒或更小範圍),與電漿相關的HF電暈具有非常有限的能量。此方式可防止發射極尖端的上升溫度與發射極尖端的表面破壞(濺射、侵蝕、與粒子發射)兩者。短持續時間的HF電漿突波僅執行發射極尖端的「軟式」清潔,使其免於氧化矽膚層。「啟動」時間時期Ts的持續時間、突波脈衝的振幅、與脈衝的數量可變化,並且取決於氧化矽膚層的厚度、氣體介質、發射極尖端的設計等。HF突波脈衝的電壓振幅明顯高於(大約25%至100%或更多)正常的(操作的)電暈啟始電壓(正(+)Von與負(-)Von)(在第6圖中分別以兩條水平虛線610與615繪示)。最初的「啟動」模式有助於啟始正常/操作的高頻電暈放電與離子產生。在正常/操作模式期間(在時間Top期間),高電壓振幅可僅高於電暈啟始電壓((+)Von或(-)Von)10%-20%,以最少化粒子發射。在連續操作模式中,HF電暈放電可以保護矽發射極免於在乾淨乾燥的氣體介質中氧化。因此,至少一非金屬發射極的軟式電漿清洗係在電暈電離時期的啟動時期期間藉由與在操作時期期間的電壓/電源波形不同之電壓/電源波形來執行。A high voltage "HF start" type waveform 600 is applied to the emitter. This mode of high voltage drive may provide a set of short duration bipolar voltage bursts (bipolar pulses 605 in number from 1 to as many as hundreds) to the emitter during a start-up period (designated as the Ts period). Due to the very short duration of the power supply curve (millisecond, microsecond or less range), the HF corona associated with plasma has very limited energy. This approach prevents both rising temperature of the emitter tip and surface damage (sputtering, erosion, and particle emission) of the emitter tip. The short duration HF plasma surge only performs a "soft" cleaning of the emitter tip, freeing it from the silicon oxide skin. The duration of the "start" time period Ts, the amplitude of the burst pulses, and the number of pulses can vary and depend on the thickness of the silicon oxide skin layer, the gas medium, the design of the emitter tip, etc. The voltage amplitude of the HF glitch is significantly higher (approximately 25% to 100% or more) than the normal (operating) corona onset voltage (positive (+) Von vs. negative (-) Von) (in Figure 6 are shown by two horizontal dotted lines 610 and 615 respectively). The initial "start" mode helps initiate normal/operational high frequency corona discharge and ion generation. During normal/operational mode (during time Top), the high voltage amplitude can be only 10%-20% above the corona onset voltage ((+)Von or (-)Von) to minimize particle emission. In continuous operation mode, HF corona discharge can protect the silicon emitter from oxidation in a clean dry gaseous medium. Therefore, soft plasma cleaning of at least one non-metallic emitter is performed during the start-up period of the corona ionization period with a different voltage/power waveform than during the operation period.

第7(a)圖、第7(b)圖、與第7(c)圖根據本發明的實施例,繪示在操作模式期間施加至矽類發射極的高頻電源電壓波形的範例的圖示。不同的操作HF電壓波形有效地產生矽類發射極的雙極性電離。高頻AC電壓的功能為以最小的驅動電壓來產生兩個極性的離子(正離子與負離子)。為了產生離子,峰值電壓(正與負的峰值電壓)要超過電暈啟始電壓。如同第7(a)圖所示,高頻AC電壓曲線700為連續不斷的,但是電壓曲線也可調變為連續不斷或非連續不斷且週期性的。FIGS. 7(a), 7(b), and 7(c) are diagrams illustrating examples of high frequency power supply voltage waveforms applied to silicon-based emitters during operating modes, according to embodiments of the present invention. Show. Different operating HF voltage waveforms effectively produce bipolar ionization of silicon-based emitters. The function of the high frequency AC voltage is to generate ions of two polarities (positive and negative) with a minimum drive voltage. In order to generate ions, the peak voltage (positive and negative peak voltage) must exceed the corona initiation voltage. As shown in Figure 7(a), the high frequency AC voltage curve 700 is continuous, but the voltage curve can also be adjusted to be continuous or discontinuous and periodic.

第7(a)圖呈現連續正弦波型的供電電壓700,可具有頻率範圍從大約1kHz至高達100kHz。電壓700的正與負電壓振幅高於正電暈啟始電壓(+)Von 705且低於負電暈啟始電壓(-)Von 710。此電壓型波形700提供最大電源給本文所述的矽類發射極,並且產生最大的離子電流。Figure 7(a) presents a supply voltage 700 in the form of a continuous sine wave, which can have frequencies ranging from about 1 kHz to as high as 100 kHz. The positive and negative voltage amplitudes of the voltage 700 are higher than the positive corona onset voltage (+) Von 705 and lower than the negative corona onset voltage (-) Von 710 . This voltage-type waveform 700 provides maximum power to the silicon-based emitters described herein, and produces the maximum ionic current.

第7(b)圖繪示電壓波形750的圖示,電壓波形750包括多組脈衝串752,脈衝串752具有「開啟」時期755與「關閉」時期756。波形750包括至少一調變部分,其中每一調變部分包括脈衝串752,脈衝串752具有開啟時期755與關閉時期756。在脈衝串752中的開啟時期755期間,波形750具有振幅758,振幅758超過特定發射極的正電暈啟始電壓臨界值705且超過負電暈啟始電壓臨界值710。在脈衝串752中的關閉時期756期間,波形750具有不超過電暈啟始電壓臨界值705與710的振幅760。在第7(b)圖的範例中,此振幅760為大約零的電壓大小。分別在第7(a)圖、第7(b)圖、與第7(c)圖中的波形700、750、與780的額外細節也敘述於共同轉讓給Peter Gefter等人且由Peter Gefter等人共同擁有的美國專利號第8,009,405號中。在「關閉」時期756期間(可為小的工作因子(duty factor)),電暈放電(離子產生)與粒子發射停止。工作因子可變化在從大約100%低至大約0.1%或更小的範圍,取決於所需的離子輸出。最小的工作因子有助於抑制粒子發射與發射極的侵蝕速率。Figure 7(b) shows a graphical representation of a voltage waveform 750 that includes a plurality of sets of pulse trains 752 having an "on" period 755 and an "off" period 756 . The waveform 750 includes at least one modulated portion, wherein each modulated portion includes a pulse train 752 having an on period 755 and an off period 756 . During the on period 755 in the pulse train 752, the waveform 750 has an amplitude 758 that exceeds the positive corona onset voltage threshold 705 and exceeds the negative corona onset voltage threshold 710 for a particular emitter. During the off period 756 in the pulse train 752, the waveform 750 has an amplitude 760 that does not exceed the corona onset voltage thresholds 705 and 710. In the example of Figure 7(b), this amplitude 760 is a voltage magnitude of approximately zero. Additional details of waveforms 700, 750, and 780 in Figures 7(a), 7(b), and 7(c), respectively, are also described in common assignment to Peter Gefter et al. in commonly owned US Patent No. 8,009,405. During the "off" period 756, which may be a small duty factor, corona discharge (ion production) and particle emission cease. The duty factor can vary from about 100% down to about 0.1% or less, depending on the desired ion output. The minimum work factor helps to suppress particle emission and the erosion rate of the emitter.

第7(c)圖繪示電壓波形780的另一種變型的圖示,其中工作因子接近大約100%,但是施加至矽發射極的電壓振幅週期性地下降至低於電暈啟始電壓的值(電暈啟始電壓的大約90%至大約50%或更小的範圍)。此波形的優點在於可最小化粒子發射與高電壓擺幅(電壓/電場變化)。Figure 7(c) is a graphical representation of another variation of the voltage waveform 780 in which the duty factor approaches approximately 100%, but the amplitude of the voltage applied to the silicon emitter periodically drops to a value below the corona onset voltage (Range from about 90% to about 50% or less of the corona onset voltage). The advantage of this waveform is that particle emission and high voltage swings (voltage/electric field changes) are minimized.

波形780包括至少一調變部分,其中每一調變部分包括脈衝串782,脈衝串782具有開啟時期785與非操作時期786。在脈衝串782中的開啟時期785期間,波形780具有振幅788,振幅788超過特定發射極的正電暈啟始電壓臨界值((+)Vmax)705且超過負電暈啟始電壓臨界值((-)Vmax)710。在脈衝串782中的非操作時期786期間,波形780具有不超過電暈啟始電壓臨界值705與710的振幅790,但是振幅790大於零伏。The waveform 780 includes at least one modulated portion, wherein each modulated portion includes a pulse train 782 having an on period 785 and an inactive period 786 . During the on period 785 in the pulse train 782, the waveform 780 has an amplitude 788 that exceeds the positive corona onset voltage threshold ((+)Vmax) 705 for the particular emitter and exceeds the negative corona onset voltage threshold ((( -) Vmax) 710. During the non-operational period 786 in the pulse train 782, the waveform 780 has an amplitude 790 that does not exceed the corona onset voltage thresholds 705 and 710, but the amplitude 790 is greater than zero volts.

第8(a)圖與第8(b)圖根據本發明的實施例,繪示調變的高頻電壓波形的範例的圖示。第8(a)圖呈現混合(組合)高頻與低頻電壓所產生的連續調變的波形800。低頻分量(或偏移電壓)繪示在第8(b)圖中。此電壓波形850主要藉由高頻分量(類似於第7(a)圖所示的波形700)來產生離子,並且藉由低頻分量來移動來自發射極的離子。FIGS. 8(a) and 8(b) are diagrams illustrating examples of modulated high-frequency voltage waveforms according to embodiments of the present invention. Figure 8(a) presents a continuously modulated waveform 800 resulting from mixing (combining) high frequency and low frequency voltages. The low frequency component (or offset voltage) is shown in Figure 8(b). This voltage waveform 850 generates ions primarily with high frequency components (similar to waveform 700 shown in Figure 7(a)) and moves ions from the emitter with low frequency components.

具有矽類發射極的嵌入式電離器可用於半導體產業中的最關鍵操作/製程(例如,像是空中懸浮微粒潔淨度1級(Airborne Particulate Cleanness Class 1)的環境)。第9(a)圖、第9(b)圖、與第9(c)圖呈現嵌入式電離器的方塊圖與電離單元的簡化視圖的圖示。利用嵌入式電離器的設計,HF頻率電壓的施加可類似於第8(a)圖所示的波形,其中頻率範圍擴展成大約20kHz至高達大約100kHz。Embedded ionizers with silicon-based emitters can be used in the most critical operations/processes in the semiconductor industry (eg, environments like Airborne Particulate Cleanness Class 1). Figures 9(a), 9(b), and 9(c) present illustrations of a block diagram of an embedded ionizer and a simplified view of an ionization unit. With the design of the embedded ionizer, the application of the HF frequency voltage can be similar to the waveform shown in Figure 8(a), with the frequency range extending from about 20 kHz up to about 100 kHz.

第9(a)圖根據本發明的實施例,繪示嵌入式電離器的電離單元/腔室的圖示。高頻AC供電的矽類發射極902a產生兩種極性的離子。空氣/氣體流908a移動來自發射極902a的離子流。也繪示在第9(a)圖中,電離單元900a連接至HF HV產生器901a。矽類發射極902a定位在插座903a中,並且經由電容器(C1)而連接,電容器(C1)連接至HF產生器901a。發射極902a可具有軸部的磨光或鍍金屬部分,分別如同先前在第3(a)圖與第3(b)圖中討論的,以提供至插座903a的可靠連接。Figure 9(a) shows a diagram of an ionization cell/chamber of an embedded ionizer in accordance with an embodiment of the present invention. A high frequency AC powered silicon based emitter 902a produces ions of both polarities. Air/gas flow 908a moves the ion flow from emitter 902a. Also shown in Figure 9(a), the ionization unit 900a is connected to the HF HV generator 901a. The silicon based emitter 902a is positioned in the socket 903a and is connected via a capacitor (C1) which is connected to the HF generator 901a. Emitter 902a may have a polished or metallized portion of the shaft, as previously discussed in Figures 3(a) and 3(b), respectively, to provide a reliable connection to socket 903a.

發射極901a通常定位在空氣/氣體通道904a的中間部分中。較佳地,參考電極905a定位在通道904a的外側上並且靠近通道904a的出口906a。參考電極905a連接至控制系統907a。當高頻AC電壓(施加至發射極901a)的峰值電壓(正或負電壓)超過電暈啟始電壓時,由發射極901a產生正離子920與負離子921。來自外部來源(未圖示)的空氣/氣體流908a仍需要移動產生的離子雲朝向遠處的靶電荷中和(未圖示)。發射極902a的尖端909a附近的電暈放電產生強烈的HF電漿910a,其中離子與電子在矽發射極902a的尖端909a附近。電暈啟始電壓對於正離子為大約(+)5至6kV且對於負離子為(-)4.5至5.5kV。The emitter 901a is generally positioned in the middle portion of the air/gas channel 904a. Preferably, the reference electrode 905a is positioned on the outside of the channel 904a and near the outlet 906a of the channel 904a. The reference electrode 905a is connected to the control system 907a. When the peak voltage (positive or negative voltage) of the high frequency AC voltage (applied to the emitter 901a) exceeds the corona initiation voltage, positive ions 920 and negative ions 921 are generated from the emitter 901a. The air/gas stream 908a from an external source (not shown) still needs to move the resulting ion cloud towards distant target charge neutralization (not shown). The corona discharge near the tip 909a of the emitter 902a produces an intense HF plasma 910a with ions and electrons near the tip 909a of the silicon emitter 902a. The corona onset voltage is approximately (+) 5 to 6 kV for positive ions and (-) 4.5 to 5.5 kV for negative ions.

藉由先前討論的方法、設備、與機構(如同離子發射極的成分、離子發射極的設計、與供電的電壓波形之組合),來最少化產生/發射電暈的副產物,像是電漿中的粒子。Minimize the generation/emission of corona by-products, such as plasma particles in .

第9(b)圖根據本發明的實施例,繪示電離單元的另一視圖900b與區塊901b中的氣體通道之圖示。通道902b具有入口933b與出口934b。矽類發射極905b與插座906b可製成可交換的單元,定位在通道902b的空腔960中。發射極插座906b與參考電極907b連接至高電壓HF電源供應器908b。電離的氣體流(由箭頭961表示)移動離子雲至帶電靶909b(像是晶圓),且離子雲將中和帶電靶909b上的這些電荷965。Figure 9(b) shows another view 900b of the ionization cell and an illustration of the gas channels in block 901b, according to an embodiment of the present invention. Channel 902b has an inlet 933b and an outlet 934b. The silicon-based emitter 905b and socket 906b may be fabricated as an exchangeable unit, positioned in the cavity 960 of the channel 902b. Emitter socket 906b and reference electrode 907b are connected to high voltage HF power supply 908b. The ionized gas stream (represented by arrows 961 ) moves the ion cloud to the charged target 909b (like a wafer), and the ion cloud will neutralize these charges 965 on the charged target 909b.

第9(c)圖根據本發明的實施例,繪示嵌入式電離器900c的簡化方塊圖,具有矽類發射極904c。正與負離子901c產生在電離單元902c的內部。高電壓HV-HF電源供應器903c提供產生離子901c所需要的電壓與電流。電源供應器903c透過電容器C1而傳送高頻AC電壓至矽類發射極904c。矽類發射極904c上的電壓係相關於參考電極905c。Figure 9(c) shows a simplified block diagram of an embedded ionizer 900c with a silicon-based emitter 904c in accordance with an embodiment of the present invention. Positive and negative ions 901c are generated inside the ionization unit 902c. High voltage HV-HF power supply 903c provides the voltage and current required to generate ions 901c. The power supply 903c transmits the high frequency AC voltage to the silicon-based emitter 904c through the capacitor C1. The voltage on the silicon-based emitter 904c is relative to the reference electrode 905c.

空氣、氮氣、或氬氣的加壓源經由入口而連接至嵌入式電離器900c,以產生空氣流或氣體流906c。空氣流或氣體流906c夾帶正與負離子901c並且攜帶離子901c通過電離器出口934c朝向靶(例如,第9(b)圖的靶909b)。A pressurized source of air, nitrogen, or argon is connected to the embedded ionizer 900c via the inlet to generate an air or gas stream 906c. Air or gas flow 906c entrains positive and negative ions 901c and carries ions 901c through ionizer outlet 934c towards a target (eg, target 909b of Figure 9(b)).

嵌入式電離器900c包括控制系統907c(控制系統907c包括微處理器908c)、氣體壓力感測器909c、電暈放電感測器910c、與操作狀態指示器911c。嵌入式電離器900c通常在具有晶圓裝載/卸載操作的半導體工具中工作。這就是為什麼嵌入式電離器900c可具有較長的閒置(「停止」)時期,沒有電暈放電與氣體流動。在這些時間時期期間,矽發射極的尖端可能生長氧化矽層。如同先前在第3(a)圖與第6圖中例示的範例性實施例中所討論的,控制系統907c藉由開始高電壓電源供應器903c於「啟動」模式而啟始氣體電離處理。電暈放電感測器910c與微處理器908c連續監測電暈放電的狀態,直到達到強烈與穩定的電暈與離子產生的點。之後,控制系統907c與電源供應器903c切換至正常操作模式。 Embedded ionizer 900c includes control system 907c (control system 907c includes microprocessor 908c), gas pressure sensor 909c, corona discharge sensor 910c, and operational status indicator 911c. Embedded ionizer 900c typically operates in a semiconductor tool with wafer loading/unloading operations. This is why the embedded ionizer 900c can have a longer idle ("stop") period without corona discharge and gas flow. During these time periods, the tip of the silicon emitter may grow a silicon oxide layer. As previously discussed in the exemplary embodiments illustrated in Figures 3(a) and 6, the control system 907c initiates the gas ionization process by starting the high voltage power supply 903c in the "start" mode. The corona discharge sensor 910c and microprocessor 908c continuously monitor the state of the corona discharge until the point of intense and stable corona and ion generation is reached. After that, the control system 907c and the power supply 903c are switched to the normal operation mode.

第10(a)圖、第10(b)圖、第10(c)圖、與第10(d)圖根據本發明的實施例,繪示高頻AC電離棒1000a的簡化結構的圖示,與具有矽類離子發射極的噴嘴的細節。第10(a)圖與第10(b)圖繪示高頻AC電離棒1000a的視圖,具有複數個原始的矽類發射極1001a至1008a(作為範例)。每一矽發射極具有不銹鋼套筒。不銹鋼套筒繪示為第10(c)圖中的套筒1020c以及第10(d)圖中的套筒1020d。每一不銹鋼套筒安裝在噴嘴中。每一噴嘴具有插座與選擇性的一或兩個空氣/氣體噴射孔。噴嘴的橫剖面視圖繪示為第10(c)圖中的噴嘴1030c與第10(d)圖中的噴嘴1030d。Figures 10(a), 10(b), 10(c), and 10(d) are diagrams illustrating a simplified structure of a high frequency AC ionization bar 1000a according to an embodiment of the present invention, Detail with a nozzle with a silicon-based ion emitter. Figures 10(a) and 10(b) show views of a high frequency AC ionization rod 1000a with a plurality of original silicon-based emitters 1001a-1008a (as an example). Each silicon emitter has a stainless steel sleeve. The stainless steel sleeves are shown as sleeve 1020c in Fig. 10(c) and sleeve 1020d in Fig. 10(d). Each stainless steel sleeve is installed in the nozzle. Each nozzle has a socket and optionally one or two air/gas injection holes. Cross-sectional views of the nozzles are shown as nozzle 1030c in Figure 10(c) and nozzle 1030d in Figure 10(d).

插座1009c連接至共用的高電壓匯流排,且孔與歧管(未圖示)都位於電離器棒1000a的外殼1010a的內部。噴嘴1030d的橫剖面視圖1040繪示矽發射極1003d(具有如同先前在第4(a)圖與第4(b)圖中所討論的套筒與凹槽)與孔1004d的相對位置。匯流排分配來自高電壓AC電源供應器的HF電源至每一噴嘴與發射極。具有微處理器型控制系統的HF-HV電源供應器較佳地位於相同的外殼1010a內。矽類離子發射極接收HF AC電壓,大約6kV至8kV的範圍,基本頻率大約10kHz至26kHz(類似於第7(a)圖中所示的)。此HF高電壓產生每一發射極1001a至1008a與參考電極1011a之間的電暈放電。當發射極的成分使用小於99%至大於70%的範圍的矽時,此高頻AC電壓本身足以產生潔淨的雙極性電離。如同先前討論的,高頻本身無法移動離子雲遠離。HF電離棒1000a通常安裝在平板或半導體工具中,離靶較短的距離處(例如,大約50mm至300mm)。在此情況中,帶電靶(未圖示)的電場吸引相反極性的離子。但是,針對較長距離(例如,大約400mm至1500mm)處的有效率的電荷中和,離子雲需要空氣/氣體流或電場或兩者的組合之協助。通常,HF電離棒可與提供潔淨的空氣層流的HEPA過濾器組合使用。The sockets 1009c are connected to a common high voltage bus, and the holes and manifolds (not shown) are located inside the housing 1010a of the ionizer bar 1000a. A cross-sectional view 1040 of nozzle 1030d shows the relative positions of silicon emitter 1003d (with sleeves and grooves as previously discussed in Figures 4(a) and 4(b)) and hole 1004d. The busbar distributes HF power from a high voltage AC power supply to each nozzle and emitter. The HF-HV power supply with the microprocessor-based control system is preferably located within the same housing 1010a. The silicon-based ion emitters receive HF AC voltages in the range of about 6kV to 8kV with a fundamental frequency of about 10kHz to 26kHz (similar to that shown in Figure 7(a)). This HF high voltage produces a corona discharge between each of the emitters 1001a to 1008a and the reference electrode 1011a. This high frequency AC voltage by itself is sufficient to produce clean bipolar ionization when the composition of the emitter uses silicon in the range of less than 99% to greater than 70%. As discussed previously, high frequencies by themselves cannot move the ion cloud away. The HF ionizing rod 1000a is typically mounted in a flat panel or semiconductor tool at a short distance from the target (eg, about 50mm to 300mm). In this case, the electric field of the charged target (not shown) attracts ions of opposite polarity. However, for efficient charge neutralization at longer distances (eg, about 400 mm to 1500 mm), the ion cloud requires the assistance of an air/gas flow or an electric field or a combination of both. Typically, HF ionizing rods are used in combination with HEPA filters that provide laminar flow of clean air.

第8a圖繪示調變的HF波形800,HF波形800產生額外的低頻場(具有大約0.1Hz至200Hz的頻率),以協助離子傳送至靶。在時期T2期間,正電壓波804的振幅802與負電壓波808的振幅806為幾乎相等,且因此,偏移電壓接近零,且離子雲在矽發射極附近振盪。相反地,在像是T1的時期期間,電壓波形800具有正偏移810,且正極性的離子雲(它們互斥)移動至靶(參見第8(b)圖)。類似地,在像是T3的時間時期期間,電壓波形800具有負偏移815,且負極性離子雲(它們互斥)移動至靶。偏移電壓的頻率與振幅取決於電離棒1000a與靶之間的距離。Figure 8a shows a modulated HF waveform 800 that generates an additional low frequency field (with a frequency of approximately 0.1 Hz to 200 Hz) to assist in ion delivery to the target. During period T2, the amplitude 802 of the positive voltage wave 804 and the amplitude 806 of the negative voltage wave 808 are nearly equal, and as a result, the offset voltage approaches zero and the ion cloud oscillates near the silicon emitter. Conversely, during periods like T1, the voltage waveform 800 has a positive offset 810, and the ion cloud of positive polarity (which repel each other) moves to the target (see Figure 8(b)). Similarly, during a time period like T3, the voltage waveform 800 has a negative offset 815, and the negative polarity ion cloud (which repels each other) moves to the target. The frequency and amplitude of the offset voltage depend on the distance between the ionizing rod 1000a and the target.

具有矽類發射極的高頻電離棒1000a能夠產生低發射,以產生潔淨的空氣/氣體電離,並且中和在例如大約400mm最多至1500mm的距離處的快速移動的大型物體(像是平板顯示器)的電荷。The high frequency ionizing rod 1000a with a silicon-based emitter is capable of producing low emission to produce clean air/gas ionization and neutralize fast moving large objects (like flat panel displays) at distances such as about 400mm up to 1500mm charge.

本發明的另一實施例提供一種方法,用於低發射電荷中和,其中至少一上述的非金屬發射極包括減小之矽部分長度/軸部直徑比率。Another embodiment of the present invention provides a method for low emission charge neutralization wherein at least one of the aforementioned non-metallic emitters includes a reduced silicon portion length/shaft portion diameter ratio.

本發明的另一實施例提供一種方法,用於低發射電荷中和,其中上述的套筒包括金屬徑向壓縮彈簧套筒,且其中至少一發射極、金屬銷、與套筒的直徑的差異產生壓縮力,以提供至少一發射極、金屬銷、與金屬電極之間的可靠電連接。Another embodiment of the present invention provides a method for low emission charge neutralization, wherein said sleeve comprises a metal radial compression spring sleeve, and wherein at least one emitter, metal pin, and the diameter of the sleeve are different A compressive force is generated to provide reliable electrical connection between at least one emitter, metal pins, and metal electrodes.

本發明的另一實施例提供一種設備,用於低發射電荷中和,其中至少一上述的非金屬發射極包括減小之長度/軸部直徑比率。Another embodiment of the present invention provides an apparatus for low emission charge neutralization wherein at least one of the aforementioned non-metallic emitters includes a reduced length/shaft diameter ratio.

本發明的另一實施例提供一種設備,用於低發射電荷中和,其中上述的套筒包括金屬徑向壓縮彈簧套筒,且其中至少一發射極、金屬銷、與套筒的直徑的差異產生壓縮力,以提供至少一發射極、金屬銷、與金屬電極之間的可靠電連接。Another embodiment of the present invention provides an apparatus for low emission charge neutralization, wherein the above-mentioned sleeve comprises a metal radial compression spring sleeve, and wherein at least one emitter, metal pin, and the diameter of the sleeve are different A compressive force is generated to provide reliable electrical connection between at least one emitter, metal pins, and metal electrodes.

本發明的另一實施例提供一種設備與方法,用於藉由結合下述來產生可靠的、低粒子發射的電荷中和器:具有化學成分的重量百分比在小於99.99%至至少70%之間的範圍的矽之非金屬離子發射極、發射極的幾何外形、與表面處理(製備)、以及發射極與操作在高頻範圍中的高電壓電源供應器之間的連接配置。在此組合中,發射極可靠地產生高頻電暈放電,高頻電暈放電的特徵是低啟始電壓與低粒子發射。此組合對於目標為用於等級1的無塵室之許多不同類型的無塵室電離器/電荷中和器都有效。含矽的發射極與高頻AC電壓的組合產生的電離器比傳統的電離器更潔淨(基於大於10奈米的粒子數)。潔淨度的此改良已經由發明人在實驗上確定。Another embodiment of the present invention provides an apparatus and method for producing a reliable, low particle emission charge neutralizer by combining: having a chemical composition between less than 99.99% to at least 70% by weight A range of silicon non-metal ion emitters, emitter geometries, and surface treatments (fabrication), and connection configurations between emitters and high voltage power supplies operating in the high frequency range. In this combination, the emitter reliably produces a high frequency corona discharge, which is characterized by a low onset voltage and low particle emission. This combination is valid for many different types of cleanroom ionizers/charge neutralizers targeted for use in Class 1 cleanrooms. The combination of the silicon-containing emitter and high frequency AC voltage produces an ionizer that is cleaner than conventional ionizers (based on particle counts greater than 10 nanometers). This improvement in cleanliness has been experimentally determined by the inventors.

本發明的例示實施例的上面敘述(包括摘要中敘述的)並非打算為窮舉的或限制本發明至所揭示的精確形式。雖然本文為了說明的目的而敘述了本發明的具體實施例與範例,在本發明的範圍內可能有各種等效的修改,如同本領域中熟習技藝者將認定的。The above description of exemplary embodiments of the present invention, including that described in the Abstract, is not intended to be exhaustive or to limit the invention to the precise forms disclosed. While specific embodiments of, and examples for, the invention are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the art will recognize.

有鑑於以上的詳細說明,可對本發明做出這些修改。下面的申請專利範圍中使用的用語不應解釋為限制本發明至說明書與申請專利範圍中揭示的具體實施例。而是,本發明的範圍完全由以下的申請專利範圍來決定,申請專利範圍根據申請專利範圍解釋的既定原則來解釋。These modifications can be made to the present invention in light of the above detailed description. The terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in the specification and the claims. Rather, the scope of the present invention is entirely determined by the following patentable scope, which is to be interpreted in accordance with established principles for the interpretation of patentable scope.

100a:發射極 100c:發射極 101a:尖端 101b:非金屬的矽部分 101c:發射極部分 102a:錐部 102b:不銹鋼管(套筒) 102c:膚層/層(表面氧化層) 103a:軸部 103b、104b:視圖 103c:套筒 104a:尾部 104c:凹部 105b:凹部(突伸部) 106b:視圖 106c:區段/延伸部 107c:凹槽 200:電離系統 201:正(+)棒100a: Emitter 100c: Emitter 101a: Tip 101b: Non-metallic silicon parts 101c: Emitter part 102a: Cone 102b: Stainless steel tube (sleeve) 102c: skin layer/layer (surface oxide layer) 103a: Shaft 103b, 104b: Views 103c: Sleeve 104a: tail 104c: Recess 105b: Recess (protrusion) 106b: Views 106c: Section/Extension 107c: Groove 200: Ionization System 201: positive (+) stick

202:負(-)棒 202: negative (-) stick

203:高電壓電源(HVDC)供應器 203: High Voltage Power (HVDC) Supply

204:視圖 204: View

205:插座式連接器 205: Socket Connector

206:高電壓纜線 206: High Voltage Cable

207:矽類發射極 207: Silicon Emitter

300a:矽類發射極 300a: Silicon emitter

300b:矽類發射極 300b: Silicon Emitter

300c:矽類發射極 300c: Silicon Emitter

301a:軸部 301a: Shaft

301b:軸部 301b: Shaft

301c:軸部 301c: Shaft

302a:軸部表面 302a: Shaft surface

302b:金屬鍍層(金屬塗層) 302b: Metallic coatings (metallic coatings)

302c:已處理表面部分 302c: Treated surface part

303a:視圖 303a: View

303c、304c:導電電極 303c, 304c: Conductive electrodes

304a:圓形端 304a: Rounded end

305:測量裝置 305: Measuring device

305a:尖端 305a: tip

306a:錐部 306a: Cone

310a:已處理的表面部分(研磨部分、磨光處理部分) 310a: Treated surface parts (grinded parts, polished parts)

310b:已處理的表面部分 310b: Treated surface parts

311a:部分 311a: Parts

314a:尾部 314a: tail

314b:尾部 314b: tail

314c:尾部 314c: tail

316b:接觸部分 316b: Contact part

400a、400b:矽類發射極 400a, 400b: Silicon emitter

401a、401b:發射極部分 401a, 401b: Emitter part

402a、402b:套筒 402a, 402b: Sleeve

403a、403b:金屬延伸銷(金屬電極) 403a, 403b: Metal extension pins (metal electrodes)

404b:視圖 404b: view

405a:視圖 405a: View

405b:視圖 405b: View

406a:視圖 406a: View

406b:視圖 406b: view

410a:發射極組件 410a: Emitter Components

421a、421b:尖端 421a, 421b: tip

430:側 430: Side

431:側 431: Side

435、436:凹槽 435, 436: groove

440:軸部 440: Shaft

461:端 461: end

462:端 462: end

501:矽類發射極 501: Silicon Emitter

502:矽類發射極 502: Silicon Emitter

503:矽類發射極 503: Silicon Emitter

510:平坦尖端 510: Flat tip

511:錐部 511: Cone

514:圓形尖端 514: round tip

516:錐部 516: Cone

520:尖點狀尖端 520: pointed tip

521:錐部/圓錐部 521: Cone / Cone

600:波形 600: Waveform

605:雙極性脈衝 605: Bipolar Pulse

610、615:水平虛線 610, 615: horizontal dotted line

700:高頻AC電壓曲線 700: High frequency AC voltage curve

705:正電暈啟始電壓(+)Von 705: Positive corona onset voltage (+)Von

710:負電暈啟始電壓(-)Von(負電暈啟始電壓臨界值) 710: Negative corona onset voltage (-) Von (negative corona onset voltage threshold)

750:電壓波形 750: Voltage waveform

752:脈衝串 752: Burst

755:開啟時期 755: Opening Period

756:關閉時期 756: Closing Period

758:振幅 758: Amplitude

780:電壓波形 780: Voltage waveform

782:脈衝串 782: Burst

785:開啟時期 785: Opening Period

786:非操作時期 786: Non-operational period

788:振幅 788: Amplitude

790:振幅 790: Amplitude

800:波形 800: Waveform

802:振幅 802: Amplitude

804:正電壓波 804: Positive Voltage Wave

806:振幅 806: Amplitude

808:負電壓波 808: Negative Voltage Wave

810:正偏移 810: positive offset

815:負偏移 815: negative offset

850:電壓波形 850: Voltage waveform

900a:電離單元 900a: Ionization Unit

900b:視圖 900b: View

900c:電離器 900c: Ionizer

901a:HF HV產生器 901a: HF HV Generator

901b:區塊 901b:Block

901c:正、負離子 901c: positive and negative ions

902a:矽類發射極 902a: Silicon Emitter

902c:電離單元 902c: Ionization Unit

903a:插座 903a: Socket

903c:電源供應器 903c: Power Supply

904a:空氣/氣體通道 904a: Air/Gas Passage

904c:矽類發射極 904c: Silicon Emitter

905a:參考電極 905a: Reference Electrode

905b:矽類發射極 905b: Silicon Emitter

905c:參考電極 905c: Reference Electrode

906a:出口 906a: Export

906b:插座 906b: Socket

906c:空氣流或氣體流 906c: Air flow or gas flow

907a:控制系統 907a: Control Systems

907b:參考電極 907b: Reference electrode

907c:控制系統 907c: Control Systems

908a:空氣/氣體流 908a: Air/Gas Flow

908b:高電壓HF電源供應器 908b: High Voltage HF Power Supply

908c:微處理器 908c: Microprocessor

909a:尖端 909a: tip

909b:帶電靶 909b: Charged Target

909c:氣體壓力感測器 909c: Gas pressure sensor

910a:HF電漿 910a:HF Plasma

910c:電暈放電感測器 910c: Corona Discharge Sensor

911c:操作狀態指示器 911c: Operational Status Indicator

920:正離子 920: positive ion

921:負離子 921: Negative Ion

933b:入口 933b: Entrance

934b:出口 934b: Export

934c:電離器出口 934c: Ionizer outlet

960:空腔 960: cavity

961:箭頭 961: Arrow

965:電荷 965: Charge

1000a:高頻AC電離棒 1000a: High Frequency AC Ionizing Bar

1001a-1008a:矽類發射極 1001a-1008a: Silicon Emitters

1003d:矽發射極 1003d: Silicon Emitter

1004d:孔 1004d: Hole

1009c:插座 1009c: Socket

1010a:外殼 1010a: Shell

1020c、1020d:套筒 1020c, 1020d: Sleeve

1030c、1030d:噴嘴 1030c, 1030d: Nozzle

C1:電容器 C1: Capacitor

D:直徑 D: diameter

D1、D2、D3、D4:直徑 D1, D2, D3, D4: Diameter

L2:可變長度 L2: variable length

R:電阻值 R: resistance value

本發明的非限制性且非窮舉式的實施例係參考以下的圖式來說明,其中在各個視圖中類似的元件符號指的是類似的部件,除非另有說明。Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following drawings, wherein like reference numerals refer to like parts throughout the various views, unless otherwise indicated.

但是,應注意到,所附圖式僅例示本發明的典型實施例,且因此不應視為限制本發明的範圍,因為本發明可允許其他等效的實施例。It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.

第1(a)圖為傳統的單晶矽離子發射極或(大體上)非金屬離子發射極的圖示。Figure 1(a) is an illustration of a conventional single crystal silicon ion emitter or (generally) a non-metal ion emitter.

第1(b)圖與第1(c)圖繪示傳統的部件與具有金屬套筒與凹槽的單晶矽發射極的組件之圖示。Figures 1(b) and 1(c) show diagrams of conventional components and components with single crystal silicon emitters with metal sleeves and grooves.

第2圖繪示傳統的DC無塵室電離吊頂系統之圖示,具有兩個單晶矽發射極。Figure 2 shows a diagram of a conventional DC clean room ionization ceiling system with two monocrystalline silicon emitters.

第3(a)圖根據本發明的實施例,繪示含矽的發射極的圖示,其中發射極包括具有預選的表面粗糙度之發射極軸部的部分(或已處理的表面部分)。Figure 3(a) shows an illustration of a silicon-containing emitter including a portion of the emitter axis (or treated surface portion) having a preselected surface roughness, in accordance with an embodiment of the present invention.

第3(b)圖根據本發明的另一實施例,繪示發射極的圖示,其中發射極包括具有部分導電的表面鍍層或部分導電的表面塗層(或其他類型的已處理的表面部分)之發射極軸部的部分。Figure 3(b) shows an illustration of an emitter including a partially conductive surface coating or a partially conductive surface coating (or other type of treated surface portion, according to another embodiment of the present invention) ) part of the emitter shaft.

第3(c)圖根據本發明的實施例,繪示含矽的發射極與用以監測發射極的表面電阻值及/或體積電阻值的設備之圖示。Figure 3(c) shows a schematic diagram of a silicon-containing emitter and a device for monitoring the surface resistance and/or volume resistance of the emitter, according to an embodiment of the present invention.

第4(a)圖與第4(b)圖根據本發明的各種實施例,繪示含矽的發射極的圖示,具有徑向壓縮彈簧套筒與金屬銷的兩個變型。Figures 4(a) and 4(b) show diagrams of silicon-containing emitters with two variants of radially compressed spring sleeves and metal pins, according to various embodiments of the present invention.

第5(a)圖、第5(b)圖、與第5(c)圖根據本發明的各種實施例,繪示三個含矽的發射極的圖示,具有不同的錐部與尖端的結構。Figures 5(a), 5(b), and 5(c) are illustrations of three silicon-containing emitters, with different tapers and tips, according to various embodiments of the present invention. structure.

第6圖根據本發明的實施例,繪示HF波形的圖示,HF波形用於在電暈電離時期的「啟動」期間執行含矽的發射極尖端的「軟式」電漿清洗。6 shows a graphical representation of HF waveforms used to perform "soft" plasma cleaning of silicon-containing emitter tips during "start-up" periods of corona ionization, in accordance with an embodiment of the present invention.

第7(a)圖、第7(b)圖、與第7(c)圖根據本發明的各種實施例,繪示在操作模式期間施加至矽類發射極的高頻電源電壓波形的範例的圖示。Figures 7(a), 7(b), and 7(c) illustrate examples of high frequency power supply voltage waveforms applied to silicon-based emitters during operating modes in accordance with various embodiments of the present invention icon.

第8(a)圖與第8(b)圖根據本發明的各種實施例,繪示調變的高頻電壓波形的範例的圖示。Figures 8(a) and 8(b) are diagrams illustrating examples of modulated high frequency voltage waveforms according to various embodiments of the present invention.

第9(a)圖根據本發明的實施例,繪示嵌入式電離器的電離單元/腔室的圖示。高頻AC供電的矽類發射極產生兩種極性的離子。空氣/氣體流移動來自發射極的離子流。Figure 9(a) shows a diagram of an ionization cell/chamber of an embedded ionizer in accordance with an embodiment of the present invention. High frequency AC powered silicon-based emitters generate ions of both polarities. The air/gas flow moves the ion flow from the emitter.

第9(b)圖根據本發明的實施例,繪示電離單元與氣體通道的圖示。Figure 9(b) shows a diagram of an ionization cell and a gas channel according to an embodiment of the present invention.

第9(c)圖根據本發明的實施例,繪示嵌入式電離器的簡化方塊圖,具有矽類發射極。Figure 9(c) shows a simplified block diagram of an embedded ionizer with a silicon-based emitter in accordance with an embodiment of the present invention.

第10(a)圖、第10(b)圖、第10(c)圖、與第10(d)圖根據本發明的實施例,繪示高頻AC電離棒的簡化結構與具有矽類離子發射極的噴嘴的細節之圖示。Figures 10(a), 10(b), 10(c), and 10(d) illustrate a simplified structure of a high-frequency AC ionization rod with silicon-based ions according to embodiments of the present invention Illustration of a detail of the emitter's nozzle.

300a:矽類發射極 300a: Silicon emitter

301a:軸部 301a: Shaft

302a:軸部表面 302a: Shaft surface

303a:視圖 303a: View

304a:圓形端 304a: Rounded end

305a:尖端 305a: tip

306a:錐部 306a: Cone

310a:已處理的表面部分(研磨部分、磨光處理部分) 310a: Treated surface parts (grinded parts, polished parts)

311a:部分 311a: Parts

314a:尾部 314a: tail

Claims (20)

一種用於低發射電荷中和的方法,包括下述步驟:產生一交流電流(AC)及一高電壓;傳送該高電壓到至少一個點狀式矽類的非金屬離子發射極,該至少一個點狀式矽類的非金屬離子發射極配有一尖端、一錐部、一軸部及一尾部;其中該錐部在該尖端與該軸部之間;其中該軸部在該錐部與該尾部之間;其中該高電壓及該交流電流在1kHz至100kHz的一高頻範圍中;其中該至少一個點狀式矽類的非金屬離子發射極包括大於72.00%重量百分比的矽及小於99.99%重量百分比的矽;其中該至少一個點狀式矽類的非金屬離子發射極包括該軸部或/及該尾部的已處理表面的至少一部分,該已處理表面具有增加的表面導電性或較低的電阻值;及回應於該發射極的該軸部或/及該尾部的該已處理表面接觸在該高頻範圍中的該高電壓及該交流電流,從該發射極的該尖端產生離子。 A method for low emission charge neutralization, comprising the steps of: generating an alternating current (AC) and a high voltage; transmitting the high voltage to at least one point-type silicon-based non-metal ion emitter, the at least one A point-type silicon-based non-metal ion emitter is provided with a tip, a taper, a shaft and a tail; wherein the taper is between the tip and the shaft; wherein the shaft is between the taper and the tail wherein the high voltage and the alternating current are in a high frequency range of 1 kHz to 100 kHz; wherein the at least one point-type silicon-based non-metal ion emitter comprises greater than 72.00 wt % silicon and less than 99.99 wt % percentage of silicon; wherein the at least one point-type silicon-based non-metal ion emitter comprises at least a portion of the treated surface of the shaft portion or/and the tail portion, the treated surface having an increased surface conductivity or a lower resistance; and generating ions from the tip of the emitter in response to the treated surface of the shaft or/and the tail of the emitter contacting the high voltage and the alternating current in the high frequency range. 如請求項1所述之方法,其中該至少一個點狀式矽類的非金屬離子發射極的該軸部或/及該尾部的該已處理表面的部分包括具有一預選的粗糙度的一區域,該預選的粗糙度在0.5微米至10微米的範圍中,該預 選的粗糙度係起因於研磨(abrasive)或磨光(sanding)處理。 The method of claim 1, wherein the portion of the treated surface of the shaft portion or/and the tail portion of the at least one point-like silicon-based non-metal ion emitter includes a region having a preselected roughness , the preselected roughness is in the range of 0.5 microns to 10 microns, the preselected roughness The selected roughness results from abrasive or sanding treatments. 如請求項1所述之方法,其中該至少一個點狀式矽類的非金屬離子發射極的該軸部或/及該尾部的該已處理表面的部分包括一金屬鍍層或金屬塗層。 The method of claim 1, wherein the portion of the treated surface of the shaft portion or/and the tail portion of the at least one point-type silicon-based non-metal ion emitter comprises a metal coating or metal coating. 如請求項1所述之方法,進一步包括下述步驟:提供一測量裝置,用以監測該至少一個點狀式矽類的非金屬離子發射極的一表面或/及體積電阻值與成分。 The method of claim 1, further comprising the step of: providing a measuring device for monitoring a surface or/and volume resistance value and composition of the at least one point-type silicon-based non-metal ion emitter. 如請求項1所述之方法,其中包括一矽類部分的該發射極的該軸部及一金屬電極係插設至一彈簧式套筒中。 The method of claim 1, wherein the shaft portion of the emitter including a silicon-like portion and a metal electrode are inserted into a spring-loaded sleeve. 如請求項1所述之方法,進一步包括下述步驟:在一電暈電漿電離的一啟動時期期間,執行該至少一個點狀式矽類的非金屬離子發射極的一電漿清洗,該電暈電漿電離係由一電壓/電源波形產生,該電壓/電源波形包括短持續時間的脈衝突波,該電壓/電源波形產生比一般(操作)時期期間的一電壓/電源波形高出25%至100%的一振幅。 The method of claim 1, further comprising the step of: performing a plasma cleaning of the at least one dotted silicon-based non-metal ion emitter during a start-up period of corona plasma ionization, the Corona Plasma Ionization is produced by a voltage/power waveform that includes short-duration bursts of pulses that are 25 higher than a voltage/power waveform during a typical (operating) period % to 100% of an amplitude. 如請求項1所述之方法,其中為了使該離子發射極的粒子發射最小化,在一操作時期期間將具有一最小啟始HF電壓振幅及/或一較低工作因子(duty factor)的一電暈放電電壓波形施加至該離子發射極。 The method of claim 1, wherein in order to minimize particle emission from the ion emitter, during an operation period a minimum starting HF voltage amplitude and/or a lower duty factor is to be used A corona discharge voltage waveform is applied to the ion emitter. 如請求項1所述之方法,其中該至少一個點狀式矽類的非金屬離子發射極包括一非金屬部件/部分及一金屬部件/部分的一組件;其中該金屬部件/部分建構成一壓縮彈簧套筒,該壓縮彈簧套筒定位在該非金屬離子發射極的該軸部上;其中該組件包括大約0.03至0.06的範圍中之一第一比率S/D;其中S為接收該至少一個點狀式矽類的非金屬離子發射極的該套筒的一厚度;及其中D為該至少一個點狀式矽類的非金屬離子發射極的該軸部的一直徑。 The method of claim 1, wherein the at least one point-like silicon-based non-metal ion emitter comprises an assembly of a non-metal part/part and a metal part/part; wherein the metal part/part constitutes a a compression spring sleeve positioned on the shaft portion of the non-metal ion emitter; wherein the assembly includes a first ratio S/D in the range of about 0.03 to 0.06; wherein S is receiving the at least one a thickness of the sleeve of the point-type silicon-based non-metal ion emitter; and wherein D is a diameter of the shaft portion of the at least one point-type silicon-type non-metal ion emitter. 如請求項1所述之方法,其中該至少一個點狀式矽類的非金屬離子發射極包括在(2-5)/[tan{tangent}(0.5α)]的範圍中之一第二比率L/S;其中L為該至少一個點狀式矽類的非金屬離子發射極的一軸部的一曝露部分的一長度;其中S為接收該至少一個點狀式矽類的非金屬離子發射極的一套筒的一厚度;及其中α為該至少一個點狀式矽類的非金屬離子發射極的該軸部的一錐形部分的一錐角。 The method of claim 1, wherein the at least one point-like silicon-based non-metal ion emitter comprises a second ratio in the range of (2-5)/[tan{tangent}(0.5α)] L/S; wherein L is a length of an exposed portion of an axial portion of the at least one point-type silicon-based non-metal ion emitter; wherein S is the reception of the at least one point-type silicon-type non-metal ion emitter a thickness of a sleeve; and wherein α is a taper angle of a tapered portion of the shaft portion of the at least one point-type silicon-based non-metal ion emitter. 一種用於低發射電荷中和的設備,包括:至少一個點狀式矽類的非金屬離子發射極,該至少一個點狀式矽類的非金屬離子發射極配有一尖端、一錐 部、一軸部及一尾部;其中該錐部在該尖端與該軸部之間;其中該軸部在該錐部與該尾部之間;其中該至少一個點狀式矽類的非金屬離子發射極包括大於72.00%重量百分比的矽及小於99.99%重量百分比的矽;其中該至少一個點狀式矽類的非金屬離子發射極包括該軸部或/及該尾部的已處理表面的至少一部分,該已處理表面具有增加的表面導電性或較低的電阻值;及其中該發射極的該尖端回應於該發射極的該軸部或/及該尾部的該已處理表面接觸在1kHz至100kHz的一高頻範圍中的一高電壓及一交流電流(AC)而產生離子。 A device for low-emission charge neutralization, comprising: at least one point-type silicon-based non-metal ion emitter, the at least one point-type silicon-type non-metal ion emitter is equipped with a tip, a cone part, a shaft part and a tail part; wherein the cone part is between the tip and the shaft part; wherein the shaft part is between the cone part and the tail part; wherein the at least one point-like non-metal ion emission of silicon The electrode includes more than 72.00% by weight of silicon and less than 99.99% by weight of silicon; wherein the at least one point-type silicon-based non-metal ion emitter includes at least a portion of the treated surface of the shaft portion or/and the tail portion, The treated surface has increased surface conductivity or lower resistance value; and wherein the tip of the emitter responds to the shaft or/and the tail of the emitter in contact with the treated surface at 1 kHz to 100 kHz Ions are generated by a high voltage and an alternating current (AC) in the high frequency range. 如請求項10所述之設備,該至少一個點狀式矽類的非金屬離子發射極的該軸部或/及該尾部的該已處理表面的部分包括具有一預選的粗糙度的一區域,該預選的粗糙度在0.5微米至10微米的範圍中,該預選的粗糙度係起因於研磨或磨光處理。 The apparatus of claim 10, the portion of the treated surface of the shaft portion or/and the tail portion of the at least one point-like silicon-based non-metal ion emitter includes a region having a preselected roughness, The preselected roughness is in the range of 0.5 microns to 10 microns, the preselected roughness being due to the grinding or buffing process. 如請求項10所述之設備,其中該至少一個點狀式矽類的非金屬離子發射極的該軸部或/及該尾部的該已處理表面的部分包括一金屬鍍層或金屬塗層。 The apparatus of claim 10, wherein the portion of the treated surface of the shaft portion or/and the tail portion of the at least one point-type silicon-based non-metal ion emitter includes a metal coating or metal coating. 如請求項10所述之設備,其中該至少一個點狀式矽類的非金屬離子發射極的一表面或/及體積電阻值與成分係被監測的。 The apparatus of claim 10, wherein a surface or/and volume resistance value and composition of the at least one point-type silicon-based non-metal ion emitter are monitored. 如請求項10所述之設備,其中包括一矽類部分的該發射極的該軸部及一金屬電極係插設至一彈簧式套筒中。 The apparatus of claim 10, wherein the shaft portion of the emitter including a silicon-like portion and a metal electrode are inserted into a spring-loaded sleeve. 如請求項10所述之設備,其中在一電暈電漿電離的一啟動時期期間,執行該至少一個點狀式矽類的非金屬離子發射極的一軟式電漿清洗,該電暈電漿電離係由一電壓/電源波形產生,該電壓/電源波形包括短持續時間的脈衝突波,該電壓/電源波形具有比一般(操作)時期期間的一電壓/電源波形高出25%至100%的一振幅。 11. The apparatus of claim 10, wherein a soft plasma cleaning of the at least one dotted silicon-based non-metal ion emitter is performed during a start-up period of corona plasma ionization, the corona plasma Ionization is produced by a voltage/power waveform that includes short-duration pulsed bursts having a voltage/power waveform that is 25% to 100% higher than a voltage/power waveform during a typical (operating) period an amplitude of . 如請求項10所述之設備,其中為了使該離子發射極的粒子發射最小化,在一操作時期期間將具有一最小啟始HF電壓振幅及/或一較低工作因子的一電暈放電電壓波形施加至該離子發射極。 The apparatus of claim 10, wherein in order to minimize particle emission from the ion emitter, a corona discharge voltage is to have a minimum starting HF voltage amplitude and/or a lower duty factor during a period of operation A waveform is applied to the ion emitter. 如請求項10所述之設備,其中該至少一個點狀式矽類的非金屬離子發射極包括一非金屬部件/部分及一金屬部件/部分的一組件;其中該金屬部件/部分建構成一壓縮彈簧套筒,該壓縮彈簧套筒定位在該非金屬離子發射極的該軸部上;其中該組件包括大約0.03至0.06的範圍中之一第一比率S/D;其中S為接收該至少一個點狀式矽類的非金屬離子發射極的該套筒的一厚度;及其中D為該至少一個點狀式矽類的非金屬離子發射 極的該軸部的一直徑。 The apparatus of claim 10, wherein the at least one point-like silicon-based non-metal ion emitter comprises an assembly of a non-metal part/part and a metal part/part; wherein the metal part/part constitutes a a compression spring sleeve positioned on the shaft portion of the non-metal ion emitter; wherein the assembly includes a first ratio S/D in the range of about 0.03 to 0.06; wherein S is receiving the at least one A thickness of the sleeve of the point-type silicon-based non-metal ion emitter; and wherein D is the at least one point-type silicon-type non-metal ion emission A diameter of the shaft portion of the pole. 如請求項10所述之設備,其中該至少一個點狀式矽類的非金屬離子發射極包括在(2-5)/[tan{tangent}(0.5α)]的範圍中之一第二比率L/S;其中L為該至少一個點狀式矽類的非金屬離子發射極的一軸部的一曝露部分的一長度;其中S為接收該至少一個點狀式矽類的非金屬離子發射極的一套筒的一厚度;及其中α為該至少一個點狀式矽類的非金屬離子發射極的該軸部的一錐形部分的一錐角。 The apparatus of claim 10, wherein the at least one point-like silicon-based non-metal ion emitter comprises a second ratio in the range of (2-5)/[tan{tangent}(0.5α)] L/S; wherein L is a length of an exposed portion of an axial portion of the at least one point-type silicon-based non-metal ion emitter; wherein S is the reception of the at least one point-type silicon-type non-metal ion emitter a thickness of a sleeve; and wherein α is a taper angle of a tapered portion of the shaft portion of the at least one point-type silicon-based non-metal ion emitter. 一種用於低發射電荷中和的設備,包括:一矽類非金屬離子發射極,該矽類非金屬離子發射極配有一尖端、一錐部、一軸部及一尾部;其中該錐部在該尖端與該軸部之間;其中該軸部在該錐部與該尾部之間;其中該矽類非金屬離子發射極包括大於72.00%重量百分比的矽及小於99.99%重量百分比的矽;其中該矽類非金屬離子發射極包括該軸部或/及該尾部的已處理表面的至少一部分,該已處理表面具有比該軸部及該尾部更高的表面導電性或更低的電阻值。 A device for low emission charge neutralization, comprising: a silicon-based non-metal ion emitter, the silicon-based non-metal ion emitter is provided with a tip, a taper, a shaft and a tail; wherein the taper is in the between the tip and the shaft; wherein the shaft is between the taper and the tail; wherein the silicon-based non-metal ion emitter comprises greater than 72.00% by weight of silicon and less than 99.99% by weight of silicon; wherein the The silicon-based non-metal ion emitter includes at least a portion of the treated surface of the shaft portion or/and the tail portion, the treated surface having a higher surface conductivity or lower resistance value than the shaft portion and the tail portion. 如請求項19所述之設備,其中該發射極的該尖端回應於該發射極的該軸部或/及該尾部的該已處理表面接觸在1kHz至100kHz的 一高頻範圍中的一高電壓及一交流電流(AC)而產生離子。The apparatus of claim 19, wherein the tip of the emitter is responsive to the treated surface of the shaft or/and the tail of the emitter contacting a 1 kHz to 100 kHz Ions are generated by a high voltage and an alternating current (AC) in the high frequency range.
TW109118430A 2015-03-23 2016-03-23 Method and apparatus for silicon based charge neutralization TWI772814B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/665,994 2015-03-23
US14/665,994 US9380689B2 (en) 2008-06-18 2015-03-23 Silicon based charge neutralization systems

Publications (2)

Publication Number Publication Date
TW202110017A TW202110017A (en) 2021-03-01
TWI772814B true TWI772814B (en) 2022-08-01

Family

ID=56008846

Family Applications (3)

Application Number Title Priority Date Filing Date
TW111127927A TWI836527B (en) 2015-03-23 2016-03-23 Apparatus and ionizing bar for silicon based charge neutralization
TW105109042A TWI699056B (en) 2015-03-23 2016-03-23 Method and apparayus for silicon based charge neutralization
TW109118430A TWI772814B (en) 2015-03-23 2016-03-23 Method and apparatus for silicon based charge neutralization

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW111127927A TWI836527B (en) 2015-03-23 2016-03-23 Apparatus and ionizing bar for silicon based charge neutralization
TW105109042A TWI699056B (en) 2015-03-23 2016-03-23 Method and apparayus for silicon based charge neutralization

Country Status (6)

Country Link
EP (1) EP3275060B1 (en)
JP (3) JP6673931B2 (en)
KR (1) KR102549253B1 (en)
CN (1) CN107624083B (en)
TW (3) TWI836527B (en)
WO (1) WO2016153755A1 (en)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5447763A (en) 1990-08-17 1995-09-05 Ion Systems, Inc. Silicon ion emitter electrodes
JPH06140127A (en) * 1992-10-28 1994-05-20 Tokyo Tekko Co Ltd Ionizer discharge electrode
KR100489819B1 (en) 2001-07-03 2005-05-16 삼성전기주식회사 Apparatus for removing a static electricity by high frequency-high voltage
DE10348217A1 (en) * 2003-10-16 2005-05-25 Brandenburgische Technische Universität Cottbus Device and method for Aerosolauf- or aerosol transfer into a defined state of charge of a bipolar diffusion charging by means of an electrical discharge in the aerosol space
US7501765B2 (en) 2004-10-01 2009-03-10 Illinois Tool Works Inc. Emitter electrodes formed of chemical vapor deposition silicon carbide
TWI245671B (en) * 2005-03-08 2005-12-21 Quanta Display Inc Clean apparatus
JP2007141691A (en) * 2005-11-19 2007-06-07 Keyence Corp Ionizing device
US8009405B2 (en) * 2007-03-17 2011-08-30 Ion Systems, Inc. Low maintenance AC gas flow driven static neutralizer and method
US20090316325A1 (en) * 2008-06-18 2009-12-24 Mks Instruments Silicon emitters for ionizers with high frequency waveforms
US8277812B2 (en) 2008-10-12 2012-10-02 Massachusetts Institute Of Technology Immunonanotherapeutics that provide IgG humoral response without T-cell antigen
JP2012524976A (en) * 2009-04-24 2012-10-18 イオン システムズ,インコーポレイティド Clean corona gas ionization for electrostatic charge neutralization
US8038775B2 (en) * 2009-04-24 2011-10-18 Peter Gefter Separating contaminants from gas ions in corona discharge ionizing bars
JP5373519B2 (en) * 2009-09-15 2013-12-18 株式会社日本セラテック Ionizer discharge needle contamination detection circuit and ionizer discharge needle contamination detection method
US8416552B2 (en) * 2009-10-23 2013-04-09 Illinois Tool Works Inc. Self-balancing ionized gas streams
US9579664B2 (en) * 2011-06-22 2017-02-28 Koninklijke Philips N.V. Cleaning device for cleaning the air-ionizing part of an electrode

Also Published As

Publication number Publication date
CN107624083A (en) 2018-01-23
TWI699056B (en) 2020-07-11
JP7197530B2 (en) 2022-12-27
JP7371213B2 (en) 2023-10-30
JP2018518794A (en) 2018-07-12
TW202247555A (en) 2022-12-01
KR102549253B1 (en) 2023-06-28
JP2023038948A (en) 2023-03-17
CN107624083B (en) 2020-09-01
JP6673931B2 (en) 2020-03-25
WO2016153755A1 (en) 2016-09-29
TW201707320A (en) 2017-02-16
TW202110017A (en) 2021-03-01
EP3275060B1 (en) 2018-12-12
KR20170131529A (en) 2017-11-29
JP2020095972A (en) 2020-06-18
TWI836527B (en) 2024-03-21
EP3275060A1 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
US10136507B2 (en) Silicon based ion emitter assembly
TWI655881B (en) Balanced barrier discharge neutralization in a variable pressure environment
CN102257886B (en) Controlling ion energy distribution in plasma processing systems
EP2422219B1 (en) Clean corona gas ionization for static charge neutralization
JP5021198B2 (en) An emitter electrode formed from or coated with a carbide material for a gas ionizer
JP2008294440A (en) Plasma ion implantation system
CN1230954C (en) Ion producer and static charge removing apparatus
US20170309764A1 (en) Electronic component and manufacturing method thereof
US20090316325A1 (en) Silicon emitters for ionizers with high frequency waveforms
TWI772814B (en) Method and apparatus for silicon based charge neutralization
KR20110044379A (en) Ionizer
CN112768331B (en) Plasma processing device, lower electrode assembly thereof and electrostatic chuck
KR200427719Y1 (en) Atmospheric pressure plasma generating apparatus
JP2020506523A (en) High dielectric strength insulator
KR102398023B1 (en) High density atmospheric pressure plasma generating apparatus
CN214544891U (en) Low-temperature plasma electrode structure, sterilization device and air purification device