TWI836349B - Thin-film storage transistor with ferroelectric storage layer - Google Patents

Thin-film storage transistor with ferroelectric storage layer Download PDF

Info

Publication number
TWI836349B
TWI836349B TW111105758A TW111105758A TWI836349B TW I836349 B TWI836349 B TW I836349B TW 111105758 A TW111105758 A TW 111105758A TW 111105758 A TW111105758 A TW 111105758A TW I836349 B TWI836349 B TW I836349B
Authority
TW
Taiwan
Prior art keywords
layer
memory
ferroelectric
oxide
transistor
Prior art date
Application number
TW111105758A
Other languages
Chinese (zh)
Other versions
TW202240869A (en
Inventor
喬治 沙瑪奇薩
維諾 普拉亞
伍意亨利 簡
伊萊 哈拉利
Original Assignee
美商森恩萊斯記憶體公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商森恩萊斯記憶體公司 filed Critical 美商森恩萊斯記憶體公司
Publication of TW202240869A publication Critical patent/TW202240869A/en
Application granted granted Critical
Publication of TWI836349B publication Critical patent/TWI836349B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/223Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements using MOS with ferroelectric gate insulating film
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/225Auxiliary circuits
    • G11C11/2275Writing or programming circuits or methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40111Multistep manufacturing processes for data storage electrodes the electrodes comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/516Insulating materials associated therewith with at least one ferroelectric layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • H10B51/20Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors characterised by the three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • H10B51/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors characterised by the memory core region
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0466Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Volatile Memory (AREA)

Abstract

By harnessing the ferroelectric phases in the charge storage material of thin-film storage transistors of a 3-dimensional array of NOR memory strings, the storage transistors are adapted to operate as ferroelectric field-effect transistors (“FeFETs”), thereby providing a very high-speed, high-density memory array.

Description

具有鐵電性儲存層之薄膜儲存電晶體 Thin film storage transistor with ferroelectric storage layer

本發明是關於一種可規劃為三維記憶陣列之薄膜儲存電晶體。特別地,本發明關於可包括一鐵電性儲存層之薄膜電晶體。 The present invention relates to a thin film storage transistor that can be programmed into a three-dimensional memory array. In particular, the present invention relates to thin film transistors that may include a ferroelectric storage layer.

本申請係於2021年1月22日申請的美國專利申請案之部分延續案(母案),申請案號為17/155,673,名稱為「薄膜儲存電晶體中冷電子抹除」,且其主張並且關於:(i)於2020年1月22日申請的美國臨時專利申請案(臨時申請案I),申請案號為62/964,472,名稱為「薄膜儲存電晶體中冷電子抹除」及(ii)於2020年3月20日申請的美國臨時專利申請案(臨時申請案II),申請案號為62/992,754,名稱為「薄膜儲存電晶體中冷電子抹除」。 This application is a continuation-in-part of U.S. Patent Application No. 17/155,673 filed on January 22, 2021, entitled “Cold Electronic Erase in Thin Film Storage Transistors” and claims and relates to: (i) U.S. Provisional Patent Application No. 62/964,472 filed on January 22, 2020 (Provisional Application I), entitled “Cold Electronic Erase in Thin Film Storage Transistors” and (ii) U.S. Provisional Patent Application No. 62/992,754 filed on March 20, 2020 (Provisional Application II), entitled “Cold Electronic Erase in Thin Film Storage Transistors”.

本申請也主張並關於於2020年7月21日申請的美國臨時專利申請案(臨時申請案III),申請案號為63/054,743,名稱為「反或閘記憶體組的三維記憶體結構之製作方法」;於2020年7月21日申請的美國臨時專利申請案(臨時申請案IV),申請案號為63/054,750,名稱為「反或閘記憶體組的三維記憶體結構之製作方法」;於2021年1月20日申請的美國臨時專利申請案(臨時申請案V),申請案號為64/139,435,名稱為「垂直反或閘薄膜電晶體組及其製作」以及於2021年2月 22日申請的美國臨時專利申請案(臨時申請案VI),申請案號為63/152.266,名稱為「具鐵電性儲存層的薄膜儲存電晶體」。 This application also claims and relates to U.S. provisional patent application No. 63/054,743 filed on July 21, 2020 (Provisional Application III), entitled "Method for making a three-dimensional memory structure of an NOR memory group"; U.S. provisional patent application No. 63/054,750 filed on July 21, 2020 (Provisional Application IV), entitled "Three-dimensional memory structure of an NOR memory group A U.S. provisional patent application filed on January 20, 2021 (Provisional Application V), application number 64/139,435, entitled "Vertical NOR Gate Thin Film Transistor Group and Its Fabrication" and a U.S. provisional patent application filed on February 22, 2021 (Provisional Application VI), application number 63/152.266, entitled "Thin Film Storage Transistor with Ferroelectric Storage Layer".

本申請也關於於2020年6月5日申請的美國專利正式申請案(相關申請案),申請案號為16/894,596,名稱為「三維陣列中電容耦合非揮發性薄膜電晶體組」,其是於2018年8月21日申請的美國專利申請案之延續案,申請案號為16/107,118,名稱為「三維陣列中電容耦合非揮發性薄膜電晶體組」,其是於2016年8月26日申請的美國專利申請案之分割案,申請案號為15/248,420,名稱為「三維陣列中電容耦合非揮發性薄膜電晶體組」,其主張並且關於:(i)於2015年9月30日申請的美國臨時專利申請案,申請案號為62/235,322,名稱為「具有垂直控制閘之堆疊水平主動串中的多重閘反或閘快閃薄膜電晶體組」;(ii)於2015年11月25日申請的美國臨時專利申請案,申請案號為62/260,137,名稱為「三維垂直反或閘快閃薄膜電晶體組」;(iii)於2016年7月26日申請的美國專利正式申請案,申請案號為15/220,375,名稱為「具有垂直控制閘之堆疊水平主動串中的多重閘反或閘快閃薄膜電晶體組」以及(vi)於2016年7月15日申請的美國臨時專利申請案,申請案號為62/363,189,名稱為「電容耦合非揮發性薄膜電晶體組」。 This application is also related to the official U.S. patent application (related application) filed on June 5, 2020, with application number 16/894,596, titled "Capacitively coupled non-volatile thin film transistor group in three-dimensional array", which It is a continuation of the U.S. patent application filed on August 21, 2018, with application number 16/107,118, titled "Capacitively coupled non-volatile thin film transistor assembly in three-dimensional array", which was filed in August 2016 The division of the U.S. patent application filed on the 26th, with application number 15/248,420, titled "Capacitively coupled non-volatile thin film transistor assembly in three-dimensional array", claims and concerns: (i) In September 2015 The U.S. provisional patent application filed on the 30th, with application number 62/235,322, is titled "Multiple gate flip-flop or gate flash thin film transistor groups in stacked horizontal active strings with vertical control gates"; (ii) in 2015 A U.S. provisional patent application filed on November 25, 2016, with application number 62/260,137, titled "Three-dimensional vertical inverse OR gate flash thin film transistor assembly"; (iii) a U.S. patent application filed on July 26, 2016 Formal patent application, application number 15/220,375, titled "Multi-gate inverter or gate flash thin film transistor array in stacked horizontal active string with vertical control gate" and (vi) on July 15, 2016 The U.S. provisional patent application filed, application number 62/363,189, is titled "Capacitively coupled non-volatile thin film transistor assembly."

前述的相關申請案、母案及臨時申請案I、II、III、IV、V的全部揭露內容在此作為參考。 The full disclosure of the aforementioned related applications, parent applications, and provisional applications I, II, III, IV, and V is hereby provided for reference.

根據本發明一實施例,一儲存電晶體具有一穿隧介電層及一通道區及一閘極之間的一電荷捕捉層,其中電荷捕捉層具有一導帶補償差(conduction band offset)---相對於一n型矽導帶---當施加一寫入電壓時,小於穿隧介電層中穿 隧能障的低點,使得電子直接穿隧進入電荷捕捉層。選擇電荷捕捉層的導帶補償差以具有-1.0eV及2.3eV之間的值。在一些實施例中,電荷補捉層可包含一或多種:氧化鉿(HfO2)、氧化釔(Y2O3)、氮化矽(Si3N4)、氧化鋯(ZrO2)、氧化鋯(ZrSiO4)、氧化鑭(La2O3)、氧化鉭(Ta2O5)、氧化鈰(CeO2)、氧化鈦(TiO2)、氧化鍶鈦(SrTiO3)、其他半導體和金屬奈米點(例如矽、釕、鉑和鈷奈米點)。 According to one embodiment of the present invention, a storage transistor has a tunneling dielectric layer and a charge trapping layer between a channel region and a gate, wherein the charge trapping layer has a conduction band offset relative to an n-type silicon conduction band that is smaller than the low point of the tunneling barrier in the tunneling dielectric layer when a write voltage is applied, so that electrons directly tunnel into the charge trapping layer. The conduction band offset of the charge trapping layer is selected to have a value between -1.0 eV and 2.3 eV. In some embodiments, the charge capture layer may include one or more of: yttrium oxide (HfO 2 ), yttrium oxide (Y 2 O 3 ), silicon nitride (Si 3 N 4 ), zirconium oxide (ZrO 2 ), zirconium oxide (ZrSiO 4 ), laminar oxide (La 2 O 3 ), tantalum oxide (Ta 2 O 5 ), chalcanthite oxide (CeO 2 ), titanium oxide (TiO 2 ), strontium titanium oxide (SrTiO 3 ), other semiconductors, and metal nanodots (e.g., silicon, ruthenium, platinum, and cobalt nanodots).

根據本發明一實施例,儲存電晶體可進一步包含穿隧介電層及電荷捕捉層之間的一能障層,能障層具有一導帶補償差,其小於電荷捕捉層之導帶補償差。能障層也可包含一材料,其具有一位於1.0eV及2.3eV之間的導帶補償差,最好是-1.0eV及1.5eV之間,例如一或多種:氧化鉿(HfO2)、氧化釔(Y2O3)、氮化矽(Si3N4)、氧化鋯(ZrO2)、氧化鋯(ZrSiO4)、氧化鉭(Ta2O5)、氧化鈰(CeO2)、氧化鈦(TiO2)、鍶氧化鈦(SrTiO3)、其他半導體和金屬奈米點(例如矽、釕、鉑和鈷奈米點)。 According to an embodiment of the present invention, the storage transistor may further include an energy barrier layer between the tunneling dielectric layer and the charge trapping layer. The energy barrier layer has a conduction band compensation difference that is smaller than the conduction band compensation difference of the charge trapping layer. . The energy barrier layer may also include a material with a conduction band compensation difference between 1.0eV and 2.3eV, preferably between -1.0eV and 1.5eV, such as one or more: hafnium oxide (HfO 2 ), Yttrium oxide (Y 2 O 3 ), silicon nitride (Si 3 N 4 ), zirconium oxide (ZrO 2 ), zirconium oxide (ZrSiO 4 ), tantalum oxide (Ta 2 O 5 ), cerium oxide (CeO 2 ), oxide Titanium (TiO 2 ), strontium titanium oxide (SrTiO 3 ), other semiconductor and metal nanodots (such as silicon, ruthenium, platinum and cobalt nanodots).

在一實施例中,當基本上小於寫入電壓的一電壓橫跨施加於通道區及閘極,電子經過一寬於穿隧介電層之厚度的能障,藉著福勒-諾德漢(Fowler-Nordheim)機制穿隧進入電荷捕捉層。 In one embodiment, when a voltage substantially less than the write voltage is applied across the channel region and the gate, the electrons pass through an energy barrier that is wider than the thickness of the tunneling dielectric layer and pass through the Fowler-Nordham (Fowler-Nordheim) mechanism tunnels into the charge trapping layer.

在一實施例中,穿隧介電層可以薄如5-40埃(Å),且可由氧化矽(例如SiO2)或氮化矽形成。氧化矽穿隧介電層可以利用典型的氧化技術(例如一高溫氧化)、化學合成(例如原子層沉積)或這些技術的任何合適組合來形成。活性氧(O2)製程可以包括臭氧以用於精確控制厚度和改善氧化物質量(例如,減少由於缺陷位導致的洩漏)。氮化矽穿隧介電層可以利用典型的氮化技術、直接合成、 化學合成(例如藉由原子層沉積)或這些技術的任何合適組合來形成。電漿製程可用於精確控制厚度和改善介電質量(例如,減少由於缺陷位引起的洩漏)。 In one embodiment, the tunnel dielectric layer may be as thin as 5-40 angstroms (Å) and may be formed of silicon oxide (e.g., SiO 2 ) or silicon nitride. The silicon oxide tunnel dielectric layer may be formed using a typical oxidation technique (e.g., a high temperature oxidation), chemical synthesis (e.g., atomic layer deposition), or any suitable combination of these techniques. An active oxygen (O 2 ) process may include ozone for precise control of thickness and improved oxide quality (e.g., reduced leakage due to defect sites). The silicon nitride tunnel dielectric layer may be formed using a typical nitridation technique, direct synthesis, chemical synthesis (e.g., by atomic layer deposition), or any suitable combination of these techniques. A plasma process may be used to precisely control thickness and improve dielectric quality (e.g., reduced leakage due to defect sites).

穿隧介電層也可另外包含一薄氧化鋁(Al2O3)層(例如10埃或更薄)。在穿隧介電層中的氧化鋁層可以在非晶相中合成,以減少由於缺陷位引起的洩漏。 The tunnel dielectric layer may additionally include a thin aluminum oxide (Al 2 O 3 ) layer (eg, 10 Angstroms or less). The aluminum oxide layer in the tunnel dielectric layer can be synthesized in the amorphous phase to reduce leakage due to defective sites.

進一步,根據本發明的一實施例,在一三維陣列之記憶體組中的一記憶體組在一半導體基板之一平面上形成,包括:(a)一第一導電型態之第一及第二半導體層;(b)一第三半導體層具有不同於第一導電型態的一第二導電型態,以接觸第一半導體層及第二半導體層;(c)複數個導體;以及(d)一鐵電性儲存層位於該些導體及第三半導體層之間,其中(i)第一、第二及第三半導體層、鐵電性儲存層及該些導體形成用於該記憶體組的複數個鐵電性場效電晶體(FeFET);(ii)第一及第二半導體層分別地提供一共位元線及一共源線給該些鐵電性場效電晶體;(iii)第三半導體層提供一通道區給記憶體組中每一個鐵電性場效電晶體;(iv)鐵電性儲存層提供一極化層給每一個鐵電性場效電晶體;以及(v)每一個導體提供一閘電極給記憶體組中該些鐵電性場效電晶體的一者。記憶體組可以被組成水平反或閘(NOR)記憶體組。記憶體組可以是部分的三維陣列之記憶體組,其中記憶體組的薄膜鐵電性場效電晶體(FeFETs)沿著一基本上平行於該平面之方向排列而成的反或閘(NOR)組。在另一實施例中,記憶體組的該些鐵電性場效電晶體(FeFETs)沿著一基本上垂直於該平面之方向排列以形成垂直反或閘(NOR)薄膜鐵電性場效電晶體(FeFETs)組。 Further, according to an embodiment of the present invention, a memory group in a three-dimensional array of memory groups is formed on a plane of a semiconductor substrate, including: (a) a first and a second semiconductor layer of a first conductivity type; (b) a third semiconductor layer having a second conductivity type different from the first conductivity type to contact the first semiconductor layer and the second semiconductor layer; (c) a plurality of conductors; and (d) a ferroelectric storage layer located between the conductors and the third semiconductor layer, wherein (i) the first, second and third semiconductor layers, the ferroelectric storage layer and the ferroelectric storage layer are connected to each other. The storage layer and the conductors form a plurality of ferroelectric field effect transistors (FeFETs) for the memory set; (ii) the first and second semiconductor layers provide a common bit line and a common source line for the ferroelectric field effect transistors, respectively; (iii) the third semiconductor layer provides a channel region for each ferroelectric field effect transistor in the memory set; (iv) the ferroelectric storage layer provides a polarization layer for each ferroelectric field effect transistor; and (v) each conductor provides a gate electrode for one of the ferroelectric field effect transistors in the memory set. The memory set can be organized into a horizontal NOR memory set. The memory group may be a memory group of a portion of a three-dimensional array, wherein the thin film ferroelectric field effect transistors (FeFETs) of the memory group are arranged along a direction substantially parallel to the plane to form a NOR group. In another embodiment, the ferroelectric field effect transistors (FeFETs) of the memory group are arranged along a direction substantially perpendicular to the plane to form a vertical NOR thin film ferroelectric field effect transistor (FeFETs) group.

在一實施例中,鐵電性儲存層可同時包含一界面介電層及一鐵電性材料層,其中界面介電層具有一介電系數在3.9至大於2500.0的範圍內,或任何 大於3.9的值。界面介電層可包含一或多個氮氧化矽(SiON)、氮化矽(Si3N4)或氧化矽(SiO2),提供一1.5及2.0之間的折射率。界面介電層之厚度可在0.0奈米至2.0奈米之間。界面介電層可包含氧化矽(SiO2)及氧化鋯(ZrO2)。在另一實施例中,界面介電層可包含當鐵電性材料層直接沉積在該第三半導體層上固有地形成的一原始氧化物。或者,界面介電層可包括通過對第三半導體層的表面進行化學清理,接著例如藉著脈衝臭氧或藉著在氫或氘環境中熱退火或任何本領域普通技術人員已知的其他技術進行緻密化而形成的一原始氧化物。這種處理減少了經由界面介電層的電子洩漏,並且還可減少第三半導體層和鐵電儲存層間界面處的表面態(surface states)。 In one embodiment, the ferroelectric storage layer may simultaneously include an interface dielectric layer and a ferroelectric material layer, wherein the interface dielectric layer has a dielectric coefficient in the range of 3.9 to greater than 2500.0, or any greater than 3.9 value. The interface dielectric layer may include one or more silicon oxynitride (SiON), silicon nitride (Si 3 N 4 ), or silicon oxide (SiO 2 ), providing a refractive index between 1.5 and 2.0. The thickness of the interface dielectric layer can be between 0.0 nm and 2.0 nm. The interface dielectric layer may include silicon oxide (SiO 2 ) and zirconium oxide (ZrO 2 ). In another embodiment, the interfacial dielectric layer may comprise a native oxide that is inherently formed when a layer of ferroelectric material is deposited directly on the third semiconductor layer. Alternatively, the interfacial dielectric layer may be formed by chemically cleaning the surface of the third semiconductor layer, followed by, for example, pulsed ozone or by thermal annealing in a hydrogen or deuterium environment or any other technique known to those of ordinary skill in the art. A primitive oxide formed by densification. This treatment reduces electron leakage through the interface dielectric layer and may also reduce surface states at the interface between the third semiconductor layer and the ferroelectric storage layer.

在一實施例中,鐵電性材料層可包含一鋯摻雜氧化鉿(HfO2:Zr或HZO)、一鋁摻雜氧化鉿(HfO2:Al)、一矽摻雜氧化鉿(HfO2:Si)或一鑭摻雜氧化鉿(HfO2:La),或其任何組合。HZO一詞可包含鉿鋯氧化物(HfZrO)、鉿鋯氧氮化物(HfZrON)、鉿鋯鋁氧化物(HfZrAlO)、其任何組合,或任何包含鋯雜質的其他鉿氧化物。 In one embodiment, the ferroelectric material layer may include zirconium-doped zirconium oxide (HfO 2 :Zr or HZO), aluminum-doped zirconium oxide (HfO 2 :Al), silicon-doped zirconium oxide (HfO 2 :Si), or yttrium-doped zirconium oxide (HfO 2 :La), or any combination thereof. The term HZO may include zirconium oxide (HfZrO), zirconium oxynitride (HfZrON), zirconium aluminum oxide (HfZrAlO), any combination thereof, or any other zirconium oxide containing zirconium dopants.

包含鐵電性場效電晶體的三維陣列之記憶體組可被組成使得每一個鐵電性場效電晶體(FeFET)的鐵電性材料層與其他記憶體組中的該些鐵電性場效電晶體(FeFETs)的鐵電性材料層分離。 Memory banks containing three-dimensional arrays of ferroelectric field effect transistors can be organized such that the ferroelectric material layer of each ferroelectric field effect transistor (FeFET) is consistent with the ferroelectric fields in other memory banks. Separation of ferroelectric material layers in FeFETs.

在一實施例中,鐵電性場效電晶體的鐵電性儲存層可使用原子層沉積(ALD)技術在200℃至330℃之間的溫度下沉積在第三半導體層上,其溫度在270℃及330℃之間更佳。鐵電性儲存層在一溫度於400℃及1000℃之間下經過一沉積後退火步驟。 In one embodiment, the ferroelectric storage layer of the ferroelectric field effect transistor can be deposited on the third semiconductor layer using atomic layer deposition (ALD) technology at a temperature between 200°C and 330°C, preferably between 270°C and 330°C. The ferroelectric storage layer undergoes a post-deposition annealing step at a temperature between 400°C and 1000°C.

在一實施例中,記憶體組中的導體可以是由鎢(W)、鉬(Mo)、鋁(Al)、釕(Ru)、鉭(Ta)、鈦(Ti)、氮化鈦(TiN)或其任何組合或其合金所形成。 In one embodiment, the conductor in the memory group can be formed of tungsten (W), molybdenum (Mo), aluminum (Al), ruthenium (Ru), tantalum (Ta), titanium (Ti), titanium nitride (TiN) or any combination thereof or alloys thereof.

本發明的薄膜鐵電性場效電晶體可具有一大於0.0伏特的導通狀態臨界(conducting state)電壓,以及在其導通狀態之臨界電壓及在其非導通狀態之臨界電壓之間的一寬窗期(例如0.5伏特至2.5伏特)。 The thin film ferroelectric field effect transistor of the present invention may have a conducting state critical voltage greater than 0.0 volt, and a wide window period (e.g., 0.5 volts to 2.5 volts) between its conducting state critical voltage and its non-conducting state critical voltage.

根據本發明的另一實施例,一薄膜鐵電性場效電晶體(FeFET)可包含由一氧化物半導體材料形成的一通道區,及一金屬源極區或一金屬位元線。在一7.0奈米至14.0奈米厚度間之通道區的鐵電性材料可包含氧化銦鋅(InZnO或IZO),當通道區之厚度大於7.0奈米,其具有大於或等於10.0cm2/V的一電子遷移率。金屬源極區或金屬位元線可包含鉬。 According to another embodiment of the present invention, a thin film ferroelectric field effect transistor (FeFET) may include a channel region formed of an oxide semiconductor material, and a metal source region or a metal bit line. The ferroelectric material of the channel region with a thickness between 7.0 nm and 14.0 nm may include indium zinc oxide (InZnO or IZO), which has an electron mobility greater than or equal to 10.0 cm2 /V when the thickness of the channel region is greater than 7.0 nm. The metal source region or the metal bit line may include molybdenum.

通過以下結合附圖的詳細描述,可以更好地理解本發明。 The present invention can be better understood through the following detailed description in conjunction with the accompanying drawings.

101、102:線 101, 102: Line

110:通道區 110: Channel area

111:穿隧介電次層 111: Tunneling dielectric sublayer

112:電荷捕捉次層 112: Charge trapping sub-layer

113:阻擋介電次層 113: Barrier dielectric sublayer

114:閘電極 114: Gate electrode

120:材料 120:Material

203:隔離介電層(絕緣介電層 203: Isolation dielectric layer (insulating dielectric layer

204-1~204-4:記憶體組 204-1~204-4: Memory group

204a、204e:導體層 204a, 204e: Conductor layer

204b:第一電晶體材料層(N+摻雜非晶矽或多晶矽層) 204b: First transistor material layer (N + doped amorphous silicon or polycrystalline silicon layer)

204d:第二電晶體材料層(N+摻雜非晶矽或多晶矽層) 204d: second transistor material layer (N + doped amorphous silicon or polycrystalline silicon layer)

204c:氧化層 204c:Oxide layer

250:通道區(第三電晶體材料層) 250: Channel region (third transistor material layer)

251:電荷儲存層 251: Charge storage layer

251-1~251-4:複合層 251-1~251-4: Composite layer

252:閘電極或局部字元線 252: Gate electrode or local word line

254-1~254-4:NOR記憶體組 254-1~254-4: NOR memory group

270:通道材料(第三電晶體材料層) 270: Channel material (third transistor material layer)

271:鐵電性儲存層 271: Ferroelectric storage layer

272:閘電極或局部字元線(導電材料) 272: Gate electrode or local word line (conductive material)

301、302、514、1001、1002、1201:箭頭 301, 302, 514, 1001, 1002, 1201: arrow

401:寫入狀態臨界電壓 401: Write status critical voltage

402:抹除狀態臨界電壓 402: Erase state critical voltage

501:通道區 501: Channel area

502:穿隧介電層 502: Tunneling dielectric layer

503:電荷捕捉層 503: Charge capture layer

511:導帶邊界 511: conduction band boundary

512:價帶邊界 512:Boundary of the price band

515:電子能量 515:Electron Energy

516:電洞能量 516:Electric hole energy

601:基底 601: Base

602:穿隧介電層 602: Tunneling dielectric layer

603:低導帶台階之阻障介電層 603: Barrier dielectric layer for low conductivity band steps

604:電荷捕捉層 604: Charge trapping layer

605:阻擋介電層 605: blocking dielectric layer

606:閘電極 606: Gate electrode

607:氧化鋁(Al2O3)層 607: Alumina (Al2O3) layer

608:二氧化矽(SiO2)層 608: Silicon dioxide (SiO2) layer

610:阻擋介電層 610: blocking dielectric layer

615:電子能量偏移 615: Electron energy shift

1202:阻障高度 1202: Obstacle height

1300:NOR記憶體組 1300:NOR memory group

1301-1、1301-2:堆疊 1301-1, 1301-2: stacking

1302:矽基板 1302:Silicon substrate

1303:儲存電晶體 1303: Storage transistor

1350:三維陣列 1350: Three-dimensional array

1351-1、1351-2:主動堆疊 1351-1, 1351-2: Active stacking

1353:鐵電性場效電晶體(FeFET) 1353: Ferroelectric Field Effect Transistor (FeFET)

1401、1402、1403、1404:波形 1401, 1402, 1403, 1404: Waveform

1500:中間記憶體結構 1500: Intermediate memory structure

1501-1、1501-2:主動堆疊 1501-1, 1501-2: Active stacking

1502:溝槽 1502: Groove

1504:介電材料 1504: Dielectric materials

1505:井(橢圓形井) 1505: Well (elliptical well)

1510:X-Y橫截面 1510:X-Y cross section

1600:中間記憶體結構 1600: Intermediate memory structure

1601-1、1601-2:主動堆疊 1601-1, 1601-2: Active stacking

1602:溝槽 1602: Groove

1604:氧化物 1604: Oxide

1605:井 1605: Well

1700:中間記憶體結構 1700: Intermediate memory structure

1701-1、1701-2:主動堆疊 1701-1, 1701-2: Active stacking

1702:溝槽 1702: Groove

1704:氧化物 1704:Oxide

1705:井 1705:well

1707:非晶矽內襯 1707: Amorphous silicon lining

a、b、b’、c、d、A、B:參數 a, b, b’, c, d, A, B: parameters

A-A’:線 A-A’: line

Id:汲電流 Id : sink current

Vg:閘電壓 V g : Gate voltage

X、Y、Z:方向 X, Y, Z: direction

圖1為一典型的儲存電晶體之一能帶圖,其包括一通道區及一閘電極之間介電材料及儲存電荷的多種次層。 Figure 1 is a typical energy band diagram of a storage transistor, which includes a dielectric material between a channel region and a gate electrode and various sublayers for storing charges.

圖2為不同偏壓條件下,各種二氧化矽之厚度的典型直接穿隧電流密度(閘電流)。 Figure 2 shows the typical direct tunneling current density (gate current) for various silicon dioxide thicknesses under different bias conditions.

圖3(a)及圖3(b)分別描繪在寫入及抹除操作期間,電子直接穿隧進入電荷捕捉次層112及躍出電荷捕捉次層112。 Figure 3(a) and Figure 3(b) respectively depict electrons tunneling directly into and out of the charge trapping sublayer 112 during write and erase operations.

圖4為在一儲存電晶體中寫入窗期超過109次的寫入及抹除循環的一演化圖,其描繪了寫入狀態臨界電壓(Vth)401及抹除狀態臨界電壓(Vth)402。 Figure 4 is an evolution diagram of the write window over 109 write and erase cycles in a storage transistor depicting the write state threshold voltage (Vth) 401 and the erase state threshold voltage (Vth) 402.

圖5為一示例之儲存電晶體的能帶圖,具有通道區501、穿隧介電層502及電荷捕捉層503。 FIG5 is an energy band diagram of an exemplary storage transistor, which has a channel region 501, a tunnel dielectric layer 502, and a charge trapping layer 503.

圖6(a)、圖6(b)及圖6(c)分別示意(i)在一儲存電晶體的基板501、穿隧介電層502及電荷捕捉層503的導帶之最低能階(lowest energy levels of the conduction bands);(ii)在未施加一電壓下,在儲存電晶體之前述層的導帶之最低能階;及(iii)當施加一抹除電壓,基板501及電荷捕捉層503之間的電子能量偏移515。 Figures 6(a), 6(b) and 6(c) respectively illustrate (i) the lowest energy levels of the conduction bands of the substrate 501, tunnel dielectric layer 502 and charge trapping layer 503 of a storage transistor; (ii) the lowest energy levels of the conduction bands of the layers before the storage transistor when no voltage is applied; and (iii) the electron energy shift 515 between the substrate 501 and the charge trapping layer 503 when an erase voltage is applied.

圖7(a)、圖7(b)及圖7(c)分別示意(i)在一儲存電晶體之基板601、穿隧介電層602、低導帶台階(LCBO)之阻障介電603及電荷捕捉層604的相對導帶補償差(relative conduction band offsets);(ii)在未施加一電壓下,儲存電晶體之前述層的能帶圖;及(iii)當施加一抹除電壓時,基板601及電荷捕捉層604之間的電子能量偏移615。 Figures 7(a), 7(b) and 7(c) respectively illustrate (i) the relative conduction band offsets of a substrate 601, a tunneling dielectric layer 602, a low conduction band step (LCBO) barrier dielectric 603 and a charge trapping layer 604 in a storage transistor; (ii) the energy band diagram of the aforementioned layers of the storage transistor without applying a voltage; and (iii) the electron energy offset 615 between the substrate 601 and the charge trapping layer 604 when an erase voltage is applied.

圖8(a)、圖8(b)及圖8(c)描繪了圖7(a)-圖7(c)中介電層602-604的導帶台階參數。 Figures 8(a), 8(b) and 8(c) depict the conduction band step parameters of the dielectric layers 602-604 in Figures 7(a)-7(c).

圖9(a)示意圖7(a)之儲存電晶體中直接穿隧,以及圖9(b)及圖9(c)分別示意圖7(b)-圖7(c)之儲存電晶體中MFN穿隧。 Figure 9(a) schematically illustrates direct tunneling in the storage transistor of Figure 7(a), and Figure 9(b) and Figure 9(c) illustrate MFN tunneling in the storage transistor of Figures 7(b) to 7(c) respectively. tunnel.

圖10(a)及圖10(b)為基於橫跨穿隧介電層602的一伏特壓降下寫入及抹除操作期間結構之能帶圖(也就是一寫入操作期間下:b=1eV,以及一抹除操作期間下:b’=1eV)。 10(a) and 10(b) are energy band diagrams of the structure during write and erase operations based on a one volt voltage drop across the tunnel dielectric layer 602 (ie, during a write operation: b=1 eV , and during an erase operation: b'=1 eV ).

圖11(a)、圖11(b)、圖11(c)及圖11(d)為本發明中儲存電晶體的各種模擬結果。 Figures 11(a), 11(b), 11(c) and 11(d) are various simulation results of the storage transistor in the present invention.

圖12(a)為一抹除操作期間一儲存電晶體中閘極堆疊之導帶的能帶圖。 Figure 12(a) is an energy band diagram of the conduction band of a gate stack in a storage transistor during an erase operation.

圖12(b)為一抹除操作期間一儲存電晶體中閘極堆疊之導帶的能 帶圖,根據本發明一實施例中儲存電晶體具有額外的氧化鋁層607於阻擋介電層610中。 FIG. 12(b) is a band diagram of the conduction band of a gate stack in a storage transistor during an erase operation, wherein the storage transistor has an additional aluminum oxide layer 607 in the blocking dielectric layer 610 according to an embodiment of the present invention.

圖13(a)為根據本發明一實施例由本文所述之薄膜儲存電晶體所形成的一三維陣列1300的反或閘(NOR)記憶體組的一截面圖。 FIG. 13(a) is a cross-sectional view of a three-dimensional array 1300 of NOR memory cells formed by thin film storage transistors described herein according to an embodiment of the present invention.

圖13(b)為根據本發明一實施例中於三維陣列1350中NOR記憶體組的主動堆疊1351-1及1351-2,且每一個NOR記憶體組包含許多個FeFET作為儲存電晶體。 Figure 13(b) shows active stacks 1351-1 and 1351-2 of NOR memory groups in a three-dimensional array 1350 according to an embodiment of the present invention, and each NOR memory group includes a plurality of FeFETs as storage transistors.

圖14(a)呈現了一典型的FeFET中,汲電流對應一閘電壓的遲滯(hysteresis)。 Figure 14(a) shows the hysteresis of drain current versus gate voltage in a typical FeFET.

圖14(b)呈現了根據本發明實施例中一反或閘記憶體陣列中一薄膜FeFET中,汲電流(Id)對應一施加閘電壓(Vg)的理想遲滯(hysteresis)。 FIG. 14(b) shows the ideal hysteresis of the drain current (I d ) against an applied gate voltage (V g ) in a thin film FeFET in an inverter-gate memory array according to an embodiment of the present invention.

圖15(a)、圖15(b)、圖15(c)及圖15(d)描繪根據本發明一實施例,形成三維記憶體陣列之薄膜FeFET電晶體組織為NOR記憶體組的一第一製程。 Figures 15(a), 15(b), 15(c) and 15(d) illustrate a first process for forming a three-dimensional memory array of thin-film FeFET transistors organized as a NOR memory group according to an embodiment of the present invention.

圖16(a)、圖16(b)、圖16(c)及圖16(d)描繪根據本發明一實施例,形成三維記憶體陣列之薄膜FeFET電晶體組織為NOR記憶體組的一第二製程。 Figures 16(a), 16(b), 16(c) and 16(d) illustrate a second process for forming a three-dimensional memory array of thin-film FeFET transistors organized as a NOR memory group according to an embodiment of the present invention.

圖17(a)、圖17(b)、圖17(c)、圖17(d)、圖17(e)、圖17(f)及圖17(g)描繪根據本發明一實施例,形成三維記憶體陣列之薄膜FeFET電晶體組織為NOR記憶體組的一第三製程。 Figures 17(a), 17(b), 17(c), 17(d), 17(e), 17(f) and 17(g) illustrate a third process for forming a three-dimensional memory array of thin-film FeFET transistors organized as a NOR memory group according to an embodiment of the present invention.

為了便於附圖之間的交叉引用,相同的元件被分配了相同的符號標記。 To facilitate cross-referencing between the drawings, identical components are assigned the same symbol designations.

前述相關申請案揭露一種三維陣列的反或閘(NOR)記憶體組,每一個由薄膜儲存電晶體所形成。臨時申請案III更揭露(舉例來說)製作這種三維陣列之反或閘(NOR)記憶體組的不同方法。這些三維陣列可以由(例如)一半導體基板的一平面(planar surface)上形成。在該詳細描述中,採用笛卡爾坐標系統以使得圖中所示特徵之間的空間關係更加清晰。在該坐標系統中,Z方向對應於大致垂直於該平面(planar surface)的方向,且X方向和Y方向對應的方向彼此正交並與Z方向正交。這樣的反或閘(NOR)記憶體組之儲存電晶體可以在100奈秒(ns)或更少時間內被寫入及抹除,使其適用於典型揮發性記憶裝置的多種應用,例如動態隨機記憶(DRAM)裝置。相關申請案的這些薄膜儲存電晶體相較於典型傳統的DRAM裝置僅有幾毫秒,也具有幾分鐘的保持時間(retention time)之優點。因此,也可將這些薄膜儲存電晶體作為準揮發性(quasi-volatile)儲存電晶體。在許多應用中,這樣的準揮發性(quasi-volatile)儲存電晶體最好應該具有高耐久性(例如在1011循環的範圍內)以及最好可以使用約8-9伏特的電壓或更低來被寫入或抹除。 The aforementioned related application discloses a three-dimensional array of NOR memory banks, each of which is formed of a thin film storage transistor. Provisional Application III further discloses, for example, different methods of fabricating such three-dimensional array NOR memory banks. These three-dimensional arrays may be formed, for example, on a planar surface of a semiconductor substrate. In this detailed description, a Cartesian coordinate system is used to make the spatial relationships between the features shown in the figures clearer. In the coordinate system, the Z direction corresponds to a direction substantially perpendicular to the planar surface, and the directions corresponding to the X direction and the Y direction are orthogonal to each other and to the Z direction. The storage transistors of such NOR memory banks can be written to and erased in 100 nanoseconds (ns) or less, making them suitable for a variety of applications typical of volatile memory devices, such as dynamic Random Access Memory (DRAM) device. These thin film storage transistors of the related application have the advantage of retention times of several minutes compared to typical conventional DRAM devices of only a few milliseconds. Therefore, these thin film storage transistors can also be used as quasi-volatile storage transistors. In many applications, such quasi-volatile storage transistors should ideally have high endurance (e.g., in the range of 10 11 cycles) and preferably be usable at voltages of about 8-9 volts or less to be written or erased.

快速寫入及快速抹除操作需要相對高的電流通過儲存電晶體之閘極堆疊。圖1為一儲存電晶體之一部分的能帶圖,其包括一通道區及一閘電極之間介電材料及儲存電荷的多種次層。圖1所示,通道區110及閘電極114之間的各種材料120允許資料儲存在儲存電晶體中。這些材料包括穿隧介電次層111、電荷捕捉次層112(例如氮化矽)及阻擋介電次層113(例如氧化矽)。電荷補捉次層112及阻擋介電次層113可以分別例如為4奈米厚。在圖1中,線101描繪在各種材料之導帶(conduction bands)中最低能量狀態,以及線102描繪在各種材料之價帶(valence bands)中最高能量狀態。在這樣的系統中,為了在100奈秒內將儲存電晶體之臨界電壓改變1伏特,需要大約每平方公分5.0安培(5.0amps/cm2)的一寫入電 流密度。使用二氧化矽(silicon dioxide)作為穿隧介電次層111,可以通過一直接穿隧機制在10.0MV/cm的範圍內的一中度(moderate)電場實現高電流密度。 Fast write and fast erase operations require relatively high currents through the gate stack of the storage transistor. Figure 1 is an energy band diagram of a portion of a storage transistor, which includes multiple sub-layers of dielectric material and charge storage between a channel region and a gate electrode. As shown in Figure 1, various materials 120 between the channel region 110 and the gate electrode 114 allow data to be stored in the storage transistor. These materials include tunneling dielectric sublayer 111, charge trapping sublayer 112 (eg, silicon nitride), and blocking dielectric sublayer 113 (eg, silicon oxide). The charge trapping sublayer 112 and the blocking dielectric sublayer 113 may each be, for example, 4 nm thick. In Figure 1, line 101 depicts the lowest energy state in the conduction bands of various materials, and line 102 depicts the highest energy state in the valence bands of various materials. In such a system, to change the threshold voltage of the storage transistor by 1 volt in 100 nanoseconds, a write current density of approximately 5.0 amperes per square centimeter (5.0amps/cm 2 ) is required. Using silicon dioxide as the tunneling dielectric sublayer 111, high current density can be achieved through a direct tunneling mechanism at a moderate electric field in the range of 10.0MV/cm.

圖2為不同偏壓條件下各種二氧化矽之厚度的典型直接穿隧電流密度(閘極電流)。如圖2所示,即使通過二氧化矽層之電壓低於1.5伏特,在二氧化矽之厚度小於1.5奈米時,可實現所需高電流密度(例如5.0amps/cm2)。 Figure 2 shows the typical direct tunneling current density (gate current) for various SiO2 thicknesses under different bias conditions. As shown in Figure 2, even when the voltage across the SiO2 layer is less than 1.5 volts, a desired high current density (e.g., 5.0 amps/ cm2 ) can be achieved when the SiO2 thickness is less than 1.5 nm.

圖3(a)及圖3(b)分別描繪在寫入及抹除操作期間,電子直接穿隧進入電荷捕捉次層112及躍出電荷捕捉次層112。在圖3(a)中所示,通過閘電極114及通道區110的施加寫入電壓降低了相對於通道區110的穿隧介電次層111、電荷捕捉次層112及阻擋介電次層113的導帶。特別地是,電荷捕捉次層112之導帶中的最低能階稍低於通道區110之導帶中的最低能階,以令位在通道區110之導帶中最低能階上具有能量的電子直接穿隧進入電荷捕捉次層112,如圖3(a)中箭頭301所示。 3(a) and 3(b) depict electrons tunneling directly into and out of the charge trapping sublayer 112 during write and erase operations, respectively. As shown in FIG. 3(a) , applying a write voltage through the gate electrode 114 and the channel region 110 reduces the tunneling dielectric sublayer 111 , the charge trapping sublayer 112 and the blocking dielectric sublayer relative to the channel region 110 113 conductor band. In particular, the lowest energy level in the conduction band of the charge trapping sublayer 112 is slightly lower than the lowest energy level in the conduction band of the channel region 110 , so that the energy level at the lowest energy level in the conduction band of the channel region 110 is The electrons tunnel directly into the charge trapping sublayer 112, as indicated by arrow 301 in Figure 3(a).

同樣地,如圖3(b)所示,通過閘電極114及通道區110的施加抹除電壓提高了相對於通道區110的穿隧介電次層111、電荷捕捉次層112及阻擋介電次層113的導帶中最低能階。電場賦予能量給在電荷捕捉次層112中電荷捕捉點之允許能階下的電子,以直接穿隧進入通道區110,如圖3(b)中箭頭302所示。 Likewise, as shown in FIG. 3(b) , applying an erase voltage through the gate electrode 114 and the channel region 110 increases the tunneling dielectric sublayer 111 , the charge trapping sublayer 112 and the blocking dielectric relative to the channel region 110 . The lowest energy level in the conduction band of sub-layer 113. The electric field imparts energy to the electrons at the allowed energy level of the charge trapping point in the charge trapping sublayer 112 to tunnel directly into the channel region 110, as shown by arrow 302 in FIG. 3(b).

如圖3(a)及圖3(b)描繪之通過電子直接穿隧機制可實現快速寫入及抹除。相對的,通過電洞進行抹除是一緩慢的機制。在一浮動基板(floating-substrate)之準揮發儲存單元中(例如相關申請案所揭露的薄膜儲存電晶體),舉例來說,通道區110中電洞不足以提供一適當的電洞電流進入電荷捕捉次層112;同樣的這種儲存電晶體之抹除機制將電子由電荷捕捉次層112拉出。 As shown in Figures 3(a) and 3(b), fast writing and erasing can be achieved through the direct electron tunneling mechanism. In contrast, erasing through holes is a slow mechanism. In a floating-substrate quasi-volatile storage cell (such as the thin film storage transistor disclosed in the related application), for example, the holes in the channel region 110 are insufficient to provide a suitable hole current into the charge trapping sublayer 112; the same erasing mechanism of this storage transistor pulls electrons out of the charge trapping sublayer 112.

在一儲存電晶體中,位於抹除狀態(erased state)及寫入狀態(programmed state)的儲存電晶體之臨界電壓之間的電壓差被稱為「寫入窗期(programming window)」。寫入窗期隨著儲存電晶體被寫入及抹除之循環數量而縮小或關閉。這種寫入窗期的縮小是由於例如介面狀態形成而導致在通道區110及穿隧介電111之間的介面劣化。寫入窗期的縮小也可能因為在其他材料介面處例如電荷捕捉次層112及阻擋介電次層113之間進行電荷捕捉而導致。在儲存電晶體無法維持一可接受的寫入窗期之前,儲存電晶體的持久性指的是寫入-抹除的循環數量。如圖3(a)所示,由通道區110直接穿隧至電荷捕捉次層112的電子具有低能量以進入電荷捕捉次層112,因此它們僅喪失一小部分在電荷捕捉次層112中最低允許能量狀態下的能量。(也就是說,在寫入電壓的存在下,通道區110及電荷捕捉次層112之導帶中最低能階是非常接近的。)這些能量損耗不會對電荷捕捉次層112引起任何明顯的傷害。相對的,如圖3(b)描繪,在一抹除操作期間,通過電子進入通道區110的能量損耗則明顯大很多。巨大的能量損耗會在通道區110產生高能量電洞(energetic holes)「熱電洞(hot holes)」,其被抹除電壓之電場驅動而朝向閘電極114。這種熱電洞在通道區110及穿隧介電次層111之間的介面處造成介面陷阱(interface traps)。這些介面陷阱對於儲存電晶體的持久性有害,事實上可能是關閉寫入窗期的主要肇因。本領域相關知識人員也可以知道被稱為「陽極熱電洞注入機制」的熱電洞現象提供了一種介電擊穿模型。 In a memory transistor, the voltage difference between the critical voltage of the memory transistor in the erased state and the programmed state is called the "programming window". The programming window shrinks or closes with the number of cycles in which the memory transistor is written and erased. This reduction in the programming window is due to, for example, interface state formation resulting in interface degradation between the channel region 110 and the tunnel dielectric 111. The reduction in the programming window may also be caused by charge trapping at other material interfaces, such as between the charge trapping sublayer 112 and the blocking dielectric sublayer 113. The endurance of a storage transistor refers to the number of write-erase cycles before the storage transistor cannot maintain an acceptable write window period. As shown in FIG3(a), the electrons that tunnel directly from the channel region 110 to the charge trapping sublayer 112 have low energy to enter the charge trapping sublayer 112, so they only lose a small portion of the energy in the lowest allowed energy state in the charge trapping sublayer 112. (That is, in the presence of the write voltage, the lowest energy levels in the conduction bands of the channel region 110 and the charge trapping sublayer 112 are very close.) These energy losses do not cause any significant damage to the charge trapping sublayer 112. In contrast, as depicted in FIG3(b), during an erase operation, the energy loss through electrons entering the channel region 110 is significantly larger. The huge energy loss will generate high energy holes (energetic holes) "hot holes" in the channel region 110, which are driven by the electric field of the erase voltage towards the gate electrode 114. Such hot holes cause interface traps at the interface between the channel region 110 and the tunnel dielectric sublayer 111. These interface traps are detrimental to the durability of the storage transistor and may in fact be the main cause of closing the write window. Those skilled in the art will also know that the hot hole phenomenon, known as the "anode hot hole injection mechanism", provides a dielectric breakdown model.

圖4描繪在儲存電晶體中寫入窗期超過109寫入及抹除循環的演化,其圖示了寫入狀態臨界電壓401及抹除狀態臨界電壓402。 Figure 4 depicts the evolution of the write window in a storage transistor over 109 write and erase cycles, which illustrates the write state threshold voltage 401 and the erase state threshold voltage 402.

本發明改善了儲存電晶體的持久度,以超過1011寫入-抹除循環,藉著利用一裝置結構,在一所需低能量範圍內(稱為「冷電子」),確保電子穿隧 出一電荷捕捉層進入儲存電晶體之通道區(例如在一抹除操作期間),使得最後的電洞產生也都是低能量,因此對寫入窗期的損害減少。裝置結構提供一大量超過1.0amps/cm2(例如5.0amps/cm2)的直接穿隧寫入電流密度。本發明特別有利於使用在三維記憶結構中形成薄膜儲存電晶體之儲存層,例如前述相關申請案所揭露在三維陣列之反或閘記憶串中的準揮發性儲存電晶體。 The present invention improves the endurance of a storage transistor to over 10 11 write-erase cycles by utilizing a device structure that ensures that electrons tunnel out of a charge trapping layer into the channel region of the storage transistor (e.g., during an erase operation) at a desired low energy range (referred to as "cold electrons") so that the final holes generated are also low energy, thereby reducing damage to the write window. The device structure provides a direct tunneling write current density in excess of 1.0 amps/cm 2 (e.g., 5.0 amps/cm 2 ). The present invention is particularly advantageous for use in forming a storage layer of a thin film storage transistor in a three-dimensional memory structure, such as a quasi-volatile storage transistor in a three-dimensional array of NOR gate memory strings as disclosed in the aforementioned related applications.

本發明之一實施例由圖5之模型所描繪,其示出一示例之儲存電晶體的導帶邊界511及價帶邊界512,其具有通道區501、穿隧介電層502及電荷捕捉層503。如圖5所示,箭頭514表示電子直接由電荷捕捉層503穿隧至通道區501。電荷捕捉層503之導帶中最低能階與通道區501之導帶中最低能階之間的能量差(導帶補償差(conduction band offset)),如符號515所指,是一電子穿隧所預期的能量損失。 One embodiment of the present invention is depicted by the model of FIG. 5 , which shows a conduction band boundary 511 and a valence band boundary 512 of an exemplary storage transistor, which has a channel region 501, a tunneling dielectric layer 502, and a charge trapping layer 503. As shown in FIG. 5 , arrow 514 indicates that electrons directly tunnel from the charge trapping layer 503 to the channel region 501. The energy difference (conduction band offset) between the lowest energy level in the conduction band of the charge trapping layer 503 and the lowest energy level in the conduction band of the channel region 501, as indicated by symbol 515, is the energy loss expected for electron tunneling.

本發明藉著嚴選一穿隧介電材料及一電荷捕捉介電材料的組合材料,以獲得相對於儲存電晶體之半導體基板(也就是通道區)在這些層所需的導帶補償差。圖6(a)為在儲存電晶體中基板501、穿隧介電層502及電荷捕捉層503的導帶之最低能階。圖6(b)為在未施加一電壓下,儲存電晶體中前述層的導帶之最低能階。圖6(c)為當施加一抹除電壓時,基板501及電荷捕捉層503之間的電子能量偏移(electron energy offset)515。電子能量偏移515取決於基板501及穿隧介電層502及電荷捕捉層中503中每一個之間的導帶補償差,以及取決於抹除操作所施加的電壓。如圖6(c)所示,對於穿隧介電層502而言,使用不同的電荷捕捉材料作為電荷捕捉層503,具有相對於基板層501不同的導帶補償差,造成到達基板501之穿隧電子的能量損失更大或更小。同樣地,對於電荷捕捉層503而言,使用不同的穿隧介電材料作為穿隧介電層502,具有相對於基板層501不同的導帶補 償差,也造成了到達基板501之穿隧電子的能量損失更大或更小。 The present invention obtains the conduction band compensation difference required in these layers relative to the semiconductor substrate (i.e., the channel region) of the storage transistor by carefully selecting a combination of a tunneling dielectric material and a charge trapping dielectric material. FIG6(a) shows the lowest energy level of the conduction band of the substrate 501, the tunneling dielectric layer 502, and the charge trapping layer 503 in the storage transistor. FIG6(b) shows the lowest energy level of the conduction band of the aforementioned layers in the storage transistor when no voltage is applied. FIG6(c) shows the electron energy offset 515 between the substrate 501 and the charge trapping layer 503 when an erase voltage is applied. The electron energy offset 515 depends on the conduction band compensation difference between the substrate 501 and each of the tunneling dielectric layer 502 and the charge trapping layer 503, and on the voltage applied during the erase operation. As shown in FIG6(c), for the tunneling dielectric layer 502, using different charge trapping materials as the charge trapping layer 503 has different conduction band compensation differences relative to the substrate layer 501, resulting in greater or less energy loss of the tunneling electrons reaching the substrate 501. Similarly, for the charge trapping layer 503, using different tunneling dielectric materials as the tunneling dielectric layer 502 has different conduction band compensation differences relative to the substrate layer 501, also resulting in greater or less energy loss of the tunneling electrons reaching the substrate 501.

穿隧介電層502可以薄至5-40埃(Å),且可由氧化矽(例如SiO2)、氮化矽(SiN)或氮氧化矽(SiON)所形成。氧化矽穿隧介電層可以利用常規氧化技術(例如一高溫氧化)、化學合成(例如原子層沉積ALD)或任何前述技術的適當組合來形成。一活性氧(O2)製程可包含一臭氧步驟(例如使用脈衝臭氧(pulsed ozone)),用於精確控制厚度以及改善氧化物質量(例如減少由於缺陷位的洩漏)。臭氧步驟以保形方式增強了氧化物的固化,這對於三維電晶體結構特別有利。一退火步驟(例如一氫氣(H2)退火、一氨氣(NH3)退火或一快速熱退火)也可以強化穿隧介電層502。氮化矽穿隧介電層可以利用常規氮化、直接合成、化學合成(例如原子層沉積ALD)或任何前述技術的適當組合來形成。電漿製程可用於精確控制厚度以及改善介電質量(例如減少由於缺陷位的洩漏)。 Tunnel dielectric layer 502 can be as thin as 5-40 Angstroms (Å), and can be formed of silicon oxide (eg, SiO 2 ), silicon nitride (SiN), or silicon oxynitride (SiON). The silicon oxide tunneling dielectric layer may be formed using conventional oxidation techniques (eg, a high temperature oxidation), chemical synthesis (eg, atomic layer deposition (ALD)), or any appropriate combination of the foregoing techniques. An active oxygen (O 2 ) process may include an ozone step (eg using pulsed ozone) for precise thickness control and improved oxide quality (eg reducing leakage due to defective sites). The ozone step enhances solidification of the oxide in a conformal manner, which is particularly advantageous for three-dimensional transistor structures. An annealing step (eg, a hydrogen (H 2 ) anneal, an ammonia (NH 3 ) anneal, or a rapid thermal anneal) may also strengthen the tunnel dielectric layer 502. The silicon nitride tunneling dielectric layer may be formed using conventional nitridation, direct synthesis, chemical synthesis (eg, atomic layer deposition (ALD)), or a suitable combination of any of the foregoing techniques. Plasma processes can be used to precisely control thickness and improve dielectric quality (such as reducing leakage due to defective bits).

穿隧介電層502也可包含額外的一薄氧化鋁(Al2O3)層(例如10Å或更薄)。在穿隧介電層中額外的氧化鋁層可以在非晶相(amorphous phase)中合成,以減少由於缺陷位所造成的洩漏。 The tunnel dielectric layer 502 may also include an additional thin aluminum oxide (Al 2 O 3 ) layer (eg, 10 Å or thinner). The additional aluminum oxide layer in the tunnel dielectric layer may be synthesized in an amorphous phase to reduce leakage caused by defects.

以下材料可以用於提供穿隧介電層502及電荷捕捉層503:

Figure 111105758-A0305-02-0015-2
The following materials may be used to provide the tunneling dielectric layer 502 and the charge trapping layer 503:
Figure 111105758-A0305-02-0015-2

Figure 111105758-A0305-02-0016-3
Figure 111105758-A0305-02-0016-3

在電荷捕捉層中使用一較低的導帶補償差可有效增加穿隧介電層中的穿隧能障,從而改善資料保存能力。 Using a lower conduction band offset in the charge trapping layer can effectively increase the tunneling barrier in the tunneling dielectric layer, thereby improving data retention.

替代地,可以將低導帶補償差之一阻障材料引入至儲存電晶體中穿隧介電層及電荷捕捉層之間。圖7(a)-圖7(c)為此結構的代表能帶圖。圖7(a)為在儲存電晶體之基板601、穿隧介電層602、低導帶補償差之阻障介電603及電荷捕捉層604的相對導帶補償差。圖7(b)為在未施加一電壓下,儲存電晶體中前述層的能帶圖。圖7(c)為當施加一抹除電壓時,基板601及電荷捕捉層604之間的電子能量偏移615。電子能量偏移615取決於基板601及穿隧介電層602、低導帶補償差之阻障介電603及電荷捕捉層604中每一個之間的導帶補償差,以及取決於抹除操作所施加的電壓。如圖7(a)-圖7(c)所示,低導帶補償差(LCBO)之阻障介電603的一導電補償差,其最好相對基板601皆小於穿隧介電層602及電荷捕捉層604之 導帶補償差。嚴選穿隧介電層602、低導帶補償差之阻障介電603及電荷捕捉層604的材料,無論是寫入或抹除操作,皆可實現冷電子直接穿隧,以令儲存電晶體具有高持久度。 Alternatively, a low conduction band compensation barrier material may be introduced into the storage transistor between the tunneling dielectric layer and the charge trapping layer. Figure 7(a)-Figure 7(c) are representative band diagrams of this structure. Figure 7(a) shows the relative conduction band compensation difference in the substrate 601 of the storage transistor, the tunnel dielectric layer 602, the low conduction band compensation difference barrier dielectric 603 and the charge trapping layer 604. Figure 7(b) is an energy band diagram of the aforementioned layer in the storage transistor when no voltage is applied. Figure 7(c) shows the electron energy shift 615 between the substrate 601 and the charge trapping layer 604 when an erasure voltage is applied. The electron energy shift 615 depends on the conduction band compensation difference between each of the substrate 601 and the tunneling dielectric layer 602, the low conduction band compensation difference barrier dielectric 603, and the charge trapping layer 604, and depends on the erase operation applied voltage. As shown in Figures 7(a) to 7(c), the conductive compensation difference of the low conduction band compensation difference (LCBO) barrier dielectric 603 is preferably smaller than that of the tunnel dielectric layer 602 and the substrate 601. charge trapping layer 604 Poor conductor band compensation. The materials of the tunneling dielectric layer 602, the barrier dielectric 603 with low conduction band compensation difference and the charge trapping layer 604 are carefully selected to achieve direct tunneling of cold electrons, regardless of writing or erasing operations, so as to store electricity. The crystals are highly durable.

圖8(a)-圖8(c)描繪了圖7(a)-圖7(c)中介電層602-604的導帶補償差參數。如圖8(a)所示,(i)參數B表示穿隧介電層602相對於基板601的導電補償差,(ii)參數a表示LCBO阻障層603之導帶補償差相對於穿隧介電層602之導帶補償差,(iii)參數d表示LCBO阻障層603相對於基板601的導電補償差,以及(iv)參數c表示電荷捕捉層604相對於基板601的導電補償差。根據本發明之一實施例,LCBO阻障層603之導電補償差應該不大於電荷捕捉層604之導電補償差(也就是dc),而令一大量直接穿隧寫入電流密度超過1.0amps/cm2(例如5.0amps/cm2)。 Figures 8(a)-8(c) depict the conduction band compensation difference parameters of the dielectric layers 602-604 in Figures 7(a)-7(c). As shown in Figure 8(a), (i) parameter B represents the conduction compensation difference of the tunnel dielectric layer 602 relative to the substrate 601, (ii) parameter a represents the conduction band compensation difference of the LCBO barrier layer 603 relative to the tunneling dielectric layer 602. The conduction band compensation difference of the dielectric layer 602, (iii) parameter d represents the conduction compensation difference of the LCBO barrier layer 603 relative to the substrate 601, and (iv) parameter c represents the conduction compensation difference of the charge trapping layer 604 relative to the substrate 601. According to an embodiment of the present invention, the conductive compensation difference of the LCBO barrier layer 603 should be no greater than the conductive compensation difference of the charge trapping layer 604 (that is, dc ), so that a large amount of direct tunneling writing current density exceeds 1.0amps /cm 2 (eg 5.0amps/cm 2 ).

圖8(b)示出由於寫入電壓而在穿隧介電層602之導帶底部傾斜了能階。經過穿隧介電層602之厚度,傾斜(the sloping)使穿隧介電層602之能階降低了參數b。為了通過直接穿隧實現寫入操作,參數b應該大於或等於參數c的值(也就是bc)。參數b之值(以電子伏特eV為單位)為橫跨穿隧介電層602的壓降以及電荷q(也就是1.6×10-19庫倫)的乘積。 Figure 8(b) shows that the energy level at the bottom of the conduction band of the tunneling dielectric layer 602 is tilted due to the write voltage. Through the thickness of the tunnel dielectric layer 602, the sloping reduces the energy level of the tunnel dielectric layer 602 by a parameter b . In order to implement write operations through direct tunneling, parameter b should be greater than or equal to the value of parameter c (that is, bc ). The value of parameter b (in electron volts eV) is the product of the voltage drop across the tunnel dielectric layer 602 and the charge q (ie, 1.6×10 −19 coulombs).

當穿隧介電層602之壓降小於電荷捕捉層604之導電補償差(也就是b<c),由於至少一部分的LCBO阻障層603保持一穿隧阻障,穿隧阻障會變寬。在那種情況下,直接穿隧可被改進的福勒-諾德漢(modified Fowler-Nordheim,MFN)機制取代,以提供一相對直接穿隧小得多的電流(例如小於0.1amps/cm2)。 When the voltage drop of the tunnel dielectric layer 602 is smaller than the conductivity compensation difference of the charge trapping layer 604 (i.e., b < c ), the tunnel barrier becomes wider because at least a portion of the LCBO barrier layer 603 remains a tunnel barrier. In that case, direct tunneling can be replaced by a modified Fowler-Nordheim (MFN) mechanism to provide a much smaller current (e.g., less than 0.1 amps/ cm2 ) than direct tunneling.

在圖7(a)-圖7(c)之儲存電晶體中,圖9(a)為一寫入電壓的施加下的直接穿隧,圖9(b)及圖9(c)分別為一低電壓(中間電壓)及一更低電壓下的MFN穿隧。可以了解到在儲存電晶體的操作期間,MFN穿隧可能發生在低電壓干擾的 區域中。不過,對於具有圖7(a)-圖7(c)所描繪之結構的儲存電晶體,所施加的電壓範圍下,這樣的MFN穿隧電流可以非常低。選用電荷捕捉層604及阻障層603的材料及厚度,使得讀取干擾電壓(read disturb voltages)、寫入禁止電壓(programming inhibit voltages)或抹除禁止電壓(erase inhibit voltages)落入了低電壓或中間電壓之範圍內,以限制穿隧至MFN機制。 In the storage transistor of Figures 7(a) to 7(c), Figure 9(a) shows direct tunneling under the application of a write voltage, Figure 9(b) and Figure 9(c) respectively show a MFN tunneling at low voltage (intermediate voltage) and one lower voltage. It can be understood that during operation of storage transistors, MFN tunneling may occur in the presence of low voltage disturbances. in the area. However, for a storage transistor having the structure depicted in Figures 7(a) to 7(c), such MFN tunneling current can be very low in the applied voltage range. The materials and thicknesses of the charge trapping layer 604 and the barrier layer 603 are selected so that the read disturb voltages, programming inhibit voltages, or erase inhibit voltages fall into a low voltage. or within the intermediate voltage range to limit tunneling to the MFN mechanism.

如此,本發明中儲存電晶體具有一重要優點:在寫入電壓下由於直接穿隧具有高電流,而當處在一低電壓下僅有低MFN穿隧電流。這種特性減少了讀取、寫入禁止或抹除禁止操作下的干擾,且改善了資料保存性及耐久性,特別是利用直接穿隧以快速寫入及抹除操作的本發明之準揮發性儲存電晶體。關於此點,由於通道區中產生的電洞為低能量,LCBO阻障層603藉著允許冷電子抹除操作來改善耐久性,減少了裝置劣化。 Thus, the storage transistor of the present invention has an important advantage: it has a high current due to direct tunneling at a write voltage, and only a low MFN tunneling current at a low voltage. This characteristic reduces interference under read, write inhibit or erase inhibit operations, and improves data retention and durability, especially the quasi-volatile storage transistor of the present invention that uses direct tunneling for fast write and erase operations. In this regard, since the holes generated in the channel region are low energy, the LCBO barrier layer 603 improves durability by allowing cold electron erase operations, reducing device degradation.

由於讀取干擾、寫入禁止干擾或抹除禁止干擾均在一低電壓下發生,藉著在一低電壓限制穿隧至MFN穿隧,LCBO阻障層603也改善了資料保存性及耐久性以及減少了讀取干擾、寫入禁止干擾或抹除禁止干擾。舉例來說,寫入禁止干擾或抹除禁止干擾發生在半選(half-select)電壓或一低於分別使用於寫入及抹除操作下的電壓。所有優點皆在儲存電晶體偏壓於低電壓時體現,而同時維持了在儲存電晶體偏壓於較高讀取、寫入或抹除電壓下直接穿隧之高效率的優點。 Since read disturb, write inhibit disturb or erase inhibit disturb all occur at a low voltage, the LCBO barrier layer 603 also improves data retention and durability and reduces read disturb, write inhibit disturb or erase inhibit disturb by limiting the tunneling to MFN tunneling at a low voltage. For example, write inhibit disturb or erase inhibit disturb occurs at a half-select voltage or a voltage lower than that used for write and erase operations respectively. All advantages are realized when the storage transistor is biased at a low voltage, while maintaining the high efficiency advantage of direct tunneling at a storage transistor biased at a higher read, write or erase voltage.

圖8(c)示出一抹除操作期間下穿隧介電層602之導帶底部傾斜的能階。經過穿隧介電層602之厚度,傾斜(the sloping)使穿隧介電層602之能階提高了參數b’。在抹除操作期間,電子由電荷捕捉層604直接穿隧至基板601損失了由參數A表示的能量,其中參數A之關係為A=b'+c。注意得是,電荷捕捉層604 之導帶補償差應該比電荷捕捉點之能階的量和該能階之導帶之差還要大,以令位在電荷捕捉點的電子包含在直接穿隧電流中。 FIG8(c) shows the energy level of the bottom slope of the conduction band of the lower tunnel dielectric layer 602 during an erase operation. The slope (the slope) raises the energy level of the tunnel dielectric layer 602 by the parameter b ' through the thickness of the tunnel dielectric layer 602. During the erase operation, the electrons tunnel directly from the charge trapping layer 604 to the substrate 601 and lose energy represented by the parameter A , where the parameter A is related by A = b' + c . It is noted that the conduction band compensation difference of the charge trapping layer 604 should be larger than the amount of the energy level of the charge trapping point and the difference between the conduction band of the energy level so that the electrons at the charge trapping point are included in the direct tunneling current.

根據本發明之一實施例,基板601可以由一P摻雜矽實現,穿隧介電層602可由1奈米厚的二氧化矽層(SiO2B=3.15eV)實現,低導電補償差之阻障層603可由2奈米厚的二氧化鈦層(Ti2O5d=0.3eV)實現,電荷捕捉層604可由4奈米厚的富矽之氮化矽(也就是SiN:Si,c=1.35eV)實現,以及另一4奈米厚的二氧化矽層可作為阻擋介電層。不同於氮化矽(化學計量地,Si3N4),富矽之氮化矽包含矽作為摻雜,減少了由氮化矽4.6eV至富矽之氮化矽約3.6eV之能隙。此外,氮化矽之折射率為2.0,而富矽之氮化矽之折射率的範圍為2.1-2.3。閘電極606可由一高摻雜P型多晶矽來實現。圖10(a)及10(b)為基於橫跨穿隧介電層602的一伏特壓降下寫入及抹除操作期間結構之能帶圖(也就是一寫入操作期間下b=1eV,以及一抹除操作期間下b'=1eV)。如圖10(b)中箭頭1001所示,在抹除操作期間,一電子通過直接穿隧到達基板601損失了大約1.4電子伏特的能量。在LCBO阻障層603中分散,如箭頭1002所指,可更加減少這些能量損失。 According to one embodiment of the present invention, the substrate 601 can be implemented by a P-doped silicon, the tunnel dielectric layer 602 can be implemented by a 1 nm thick silicon dioxide layer (SiO 2 , B = 3.15 eV ), the low conductivity compensation barrier layer 603 can be implemented by a 2 nm thick titanium dioxide layer (Ti 2 O 5 , d = 0.3 eV ), the charge trapping layer 604 can be implemented by a 4 nm thick silicon-rich silicon nitride (i.e. SiN:Si, c = 1.35 eV ), and another 4 nm thick silicon dioxide layer can serve as a blocking dielectric layer. Unlike silicon nitride (stoichiometrically, Si 3 N 4 ), silicon-rich silicon nitride contains silicon as a dopant, which reduces the bandgap from 4.6 eV for silicon nitride to about 3.6 eV for silicon-rich silicon nitride. In addition, the refractive index of silicon nitride is 2.0, while the refractive index of silicon-rich silicon nitride ranges from 2.1-2.3. The gate electrode 606 can be implemented by a highly doped P-type polysilicon. Figures 10(a) and 10(b) are energy band diagrams of the structure during write and erase operations based on a one volt voltage drop across the tunnel dielectric layer 602 (i.e., b = 1 eV during a write operation, and b' = 1 eV during an erase operation). As shown by arrow 1001 in Figure 10(b), during an erase operation, an electron loses about 1.4 electron volts of energy by tunneling directly to the substrate 601. Dispersion in the LCBO barrier layer 603, as indicated by arrow 1002, can further reduce these energy losses.

根據本發明之另一實施例,基板601可以由P摻雜矽實現,穿隧介電層602可由1奈米厚的二氧化矽層(B=3.15eV)實現,低導電補償差之阻障層603可由2奈米厚的二氧化鈰層(CeO2d=0.6eV),電荷捕捉層604可由4奈米厚的富矽之氮化矽(Si3N4:Si,c=1.35eV),以及另一5奈米厚的二氧化矽層可作為阻擋介電層605。閘電極606可由一高摻雜P型多晶矽來實現。 According to another embodiment of the present invention, the substrate 601 can be implemented by P-doped silicon, the tunnel dielectric layer 602 can be implemented by a 1 nm thick silicon dioxide layer ( B = 3.15 eV ), the low conductivity compensation barrier layer 603 can be a 2 nm thick caesium dioxide layer (CeO 2 , d = 0.6 eV ), the charge trapping layer 604 can be a 4 nm thick silicon-rich silicon nitride (Si 3 N 4 : Si, c = 1.35 eV ), and another 5 nm thick silicon dioxide layer can be used as a blocking dielectric layer 605. The gate electrode 606 can be implemented by a highly doped P-type polysilicon.

圖11(a)-圖11(d)為本發明中儲存電晶體的各種模擬結果。 Figures 11(a) to 11(d) show various simulation results of the storage transistor in the present invention.

圖11(a)為一儲存電晶體之模擬圖,其具有0.8奈米厚的二氧化矽之穿隧介電層、2.0奈米厚的二氧化鋯之LCBO阻障層及5.0奈米厚的富矽之氮化矽 的捕捉層。圖11(a)呈現在3.1伏特左右的寫入電壓下,可實現超過1.0amps/cm2之直接穿隧電流密度。 Figure 11(a) is a simulation of a storage transistor with a 0.8 nm thick silicon dioxide tunneling dielectric layer, a 2.0 nm thick zirconium dioxide LCBO barrier layer, and a 5.0 nm thick silicon-rich silicon nitride trapping layer. Figure 11(a) shows that at a write voltage of about 3.1 volts, a direct tunneling current density of more than 1.0 amps/cm 2 can be achieved.

圖11(b)為一儲存電晶體之模擬圖,其具有1.0奈米厚的二氧化矽之穿隧介電層、2.0奈米厚的二氧化鈰之LCBO阻障層及4.0奈米厚的富矽之氮化矽的捕捉層。圖11(b)呈現在1.6伏特左右的寫入電壓下,可實現超過1.0amps/cm2之直接穿隧電流密度。 Figure 11(b) is a simulation of a storage transistor with a 1.0 nm thick silicon dioxide tunneling dielectric layer, a 2.0 nm thick LCBO barrier layer of n-O2, and a 4.0 nm thick silicon-rich silicon nitride trapping layer. Figure 11(b) shows that at a write voltage of about 1.6 volts, a direct tunneling current density of more than 1.0 amps/ cm2 can be achieved.

圖11(c)為一儲存電晶體之模擬圖,其具有1.0奈米厚的二氧化矽之穿隧介電層、2.0奈米厚的五氧化二鉭之LCBO阻障層及4.0奈米厚的富矽之氮化矽的捕捉層。圖11(c)呈現在1.8伏特左右的寫入電壓下,可實現超過1.0amps/cm2之直接穿隧電流密度。 Figure 11(c) is a simulation of a storage transistor with a 1.0 nm thick silicon dioxide tunneling dielectric layer, a 2.0 nm thick LCBO barrier layer of tantalum pentoxide, and a 4.0 nm thick silicon-rich silicon nitride trapping layer. Figure 11(c) shows that at a write voltage of about 1.8 volts, a direct tunneling current density of more than 1.0 amps/ cm2 can be achieved.

圖11(d)為一儲存電晶體之模擬圖,其具有1.0奈米厚的氮化矽之穿隧介電層、2.0奈米厚的二氧化鈰之LCBO阻障層及4.0奈米厚的富矽之氮化矽的捕捉層。圖11(d)呈現在2.1伏特左右的寫入電壓下,可實現超過1.0amps/cm2之直接穿隧電流密度。 Figure 11(d) is a simulation diagram of a storage transistor with a 1.0 nm thick silicon nitride tunneling dielectric layer, a 2.0 nm thick ceria LCBO barrier layer, and a 4.0 nm thick LCBO barrier layer. A capture layer of silicon-rich silicon nitride. Figure 11(d) shows that at a write voltage of approximately 2.1 volts, a direct tunneling current density exceeding 1.0amps/cm 2 can be achieved.

圖12(a)描繪在抹除操作期間可能發生一「反向注入電子(reverse injection electrons)」現象。反向注入的電子可能對於耐久性產生不利影響。圖12(a)為抹除操作期間一儲存電晶體中閘堆疊之導帶的能帶圖。如圖12(a)所示,閘堆疊包含基板601、穿隧介電602、LCBO阻障介電603、電荷捕捉層604、阻擋介電層605及閘電極606。(阻擋介電層605可以例如為二氧化矽(SiO2))。於一抹除操作期間,橫跨阻擋介電層605相對高的電場可能導致高能量的電子,如圖12(a)中箭頭1201所指,由閘電極穿隧至電荷捕捉層604,或甚至進入穿隧介電層602。這些反向注入的電子可能損害這些層,而對儲存電晶體的耐久性產生不利影響。 Figure 12(a) depicts a "reverse injection electrons" phenomenon that may occur during an erase operation. Back-injected electrons may adversely affect durability. Figure 12(a) is an energy band diagram of the conduction band of the gate stack in a storage transistor during an erase operation. As shown in FIG. 12(a) , the gate stack includes a substrate 601, a tunnel dielectric 602, an LCBO barrier dielectric 603, a charge trapping layer 604, a blocking dielectric layer 605, and a gate electrode 606. (Blocking dielectric layer 605 may be, for example, silicon dioxide (SiO 2 )). During an erase operation, the relatively high electric field across the blocking dielectric layer 605 may cause high-energy electrons, as indicated by arrow 1201 in Figure 12(a) , to tunnel from the gate electrode to the charge trapping layer 604, or even enter Tunnel dielectric layer 602. These back-injected electrons can damage these layers, adversely affecting the durability of the storage transistor.

根據本發明之一實施例,藉著包含具有高介電常數(高k材料)的材料層,例如在阻擋介電層(如圖10(a)中的阻擋介電層605)中的氧化鋁(Al2O3),可以顯著減少或基本上消除反向注入電子。在此實施例中,閘電極可以使用一高功函數金屬(例如高於3.8eV,優選不小於4.0eV)。高k材料的t H 提供一等效氧化物厚度t EOT 為:

Figure 111105758-A0305-02-0021-4
According to one embodiment of the present invention, by including a material layer with a high dielectric constant (high-k material), such as aluminum oxide in a blocking dielectric layer (blocking dielectric layer 605 in Figure 10(a)) (Al 2 O 3 ), can significantly reduce or essentially eliminate reverse injection of electrons. In this embodiment, the gate electrode may use a high work function metal (for example, higher than 3.8 eV, preferably not less than 4.0 eV). The t H of high-k materials provides an equivalent oxide thickness t EOT as:
Figure 111105758-A0305-02-0021-4

其中,κ ox κ H 分別為二氧化矽及高k材料的相對介電常數。因此,高k材料可以在一厚度t H 下,提供相同需求的電晶體特性(例如閘極電容),而不會在相當薄的等效厚度t EOT 下,引起其二氧化矽層對應物之不期望的洩漏。 Among them, κ ox and κ H are the relative dielectric constants of silicon dioxide and high-k materials respectively. Therefore, a high-k material can provide the same required transistor characteristics (e.g. gate capacitance) at a thickness t H without causing the incompatibility of its silicon dioxide counterpart at a much thinner equivalent thickness t EOT Undesired leakage.

圖12(b)為一抹除操作期間一儲存電晶體中閘堆疊之導帶的能帶圖,根據本發明一實施例,儲存電晶體具有額外的氧化鋁層607於阻擋介電層610中。在圖12(b)中,阻擋介電層610包含氧化鋁層607及二氧化矽層608。在一實際態樣中,阻擋介電層610的等效氧化物厚度基本上與圖12(a)中阻擋介電層605相同。然而,由於氧化鋁的相對介電常數為9.0,而二氧化矽的相對介電常數為3.9,因此圖12(b)中氧化鋁607及二氧化矽608的實際組合物理厚度大於圖12(a)中阻擋介電層605的厚度。由於高k介電層607之相對介電常數大於二氧化矽層608之相對介電常數,高k介電層607中的電場低於二氧化矽層608中的電場。圖12(b)中阻擋介電層610之較大的組合物理厚度(於閘電極606及電荷捕捉層604之間提供了一較寬的穿隧阻障),以及在閘電極606與高k材料607之間介面的一較低電場,減少了或消除了反向電子注入,從而達到一改善的耐久性。配合高k電性層607(例如氧化鋁),優選高功函數金屬作為閘電極。高功函數金屬在閘電極-氧化鋁介面 處產生一高阻障(如圖12(b)中阻障高度1202所指),顯著減少了反向電子注入的抹除操作。合適的高功函數金屬包含:鎢(w)、氮化鉭(TaN)及氮化鉭矽(TaSiN)。 12(b) is an energy band diagram of the conduction band of the gate stack in a storage transistor having an additional aluminum oxide layer 607 in the blocking dielectric layer 610 according to an embodiment of the present invention during an erase operation. In FIG. 12(b) , the blocking dielectric layer 610 includes an aluminum oxide layer 607 and a silicon dioxide layer 608. In a practical aspect, the equivalent oxide thickness of blocking dielectric layer 610 is substantially the same as blocking dielectric layer 605 in FIG. 12(a). However, since the relative dielectric constant of alumina is 9.0 and that of silicon dioxide is 3.9, the actual combined physical thickness of alumina 607 and silicon dioxide 608 in Figure 12(b) is greater than that in Figure 12(a) ) the thickness of the barrier dielectric layer 605. Since the relative dielectric constant of the high-k dielectric layer 607 is greater than the relative dielectric constant of the silicon dioxide layer 608, the electric field in the high-k dielectric layer 607 is lower than the electric field in the silicon dioxide layer 608. The larger combined physical thickness of blocking dielectric layer 610 in Figure 12(b) (providing a wider tunneling barrier between gate electrode 606 and charge trapping layer 604), and the combination of gate electrode 606 and high-k A lower electric field at the interface between materials 607 reduces or eliminates reverse electron injection, thereby achieving improved durability. In conjunction with the high-k electrical layer 607 (such as aluminum oxide), a high work function metal is preferably used as the gate electrode. High work function metal at gate electrode-alumina interface A high barrier is generated (as indicated by barrier height 1202 in Figure 12(b)), which significantly reduces the erasure operation of reverse electron injection. Suitable high work function metals include: tungsten (w), tantalum nitride (TaN) and tantalum silicon nitride (TaSiN).

圖13(a)為根據本發明一實施例由前述薄膜儲存電晶體所形成的一三維陣列1300的反或閘(NOR)記憶體組的一截面圖。如圖13(a)中所示,反或閘(NOR)記憶體組的堆疊1301-1及1301-2在矽基板1302的一平面上形成。堆疊1301-1及1301-2代表任何適當數量(例如2、4、6、8、16...)的主動堆疊的一排,每一排沿著X方向並藉著隔離介電層203(例如碳氧化矽(SiOC))彼此分開。每一個主動堆疊可包含任何適當數量(例如2、4、6、8、16...)的主動複合層(active multi-layer),且每一個主動複合層提供任何適當數量(例如8、16...、2048、4096...)的儲存電晶體-組成一或多個反或閘(NOR)記憶體組-沿著Y方向彼此分開。舉例來說,圖13(a)中堆疊1301-1包含了反或閘(NOR)記憶體組204-1至204-4。圖13(a)的內插圖呈現在主動堆疊1301-2的一個NOR記憶體組中儲存電晶體1303的一截面圖。 FIG. 13(a) is a cross-sectional view of a NOR memory group of a three-dimensional array 1300 formed of the aforementioned thin film storage transistors according to an embodiment of the present invention. As shown in FIG. 13(a) , stacks 1301-1 and 1301-2 of NOR memory groups are formed on a plane of a silicon substrate 1302. Stacks 1301-1 and 1301-2 represent a row of any suitable number (e.g., 2, 4, 6, 8, 16...) of active stacks, each row along the X direction and separated by isolation dielectric layer 203 ( For example, silicon oxycarbide (SiOC)) are separated from each other. Each active stack may contain any suitable number (e.g., 2, 4, 6, 8, 16...) of active multi-layers, and each active multi-layer may provide any suitable number (e.g., 8, 16...) ..., 2048, 4096...) storage transistors - forming one or more inverse-OR gate (NOR) memory banks - separated from each other along the Y direction. For example, stack 1301-1 in Figure 13(a) includes NOR memory banks 204-1 to 204-4. The inset of Figure 13(a) presents a cross-sectional view of storage transistor 1303 in a NOR memory bank of active stack 1301-2.

如圖13(a)所示,儲存電晶體1303包含(i)導體層204a(例如一氮化鈦內襯鎢層),(ii)第一電晶體材料層204b例如N+摻雜非晶矽或多晶矽層(例如磷或砷摻雜的非晶矽或多晶矽),(iii)氧化層204c,(iv)第二電晶體材料層204d例如N+摻雜非晶矽或多晶矽層(例如磷或砷摻雜的非晶矽或多晶矽),(v)導體層204e(例如一氮化鈦內襯鎢層),第三電晶體材料層例如通道區250,通道區250包括以上描述的任何適當的半導體材料所形成的任何通道區,電荷儲存層251(例如一複合層可包含以上描述的任何穿隧層、任何電荷捕捉層及任何阻擋層),以及閘電極或局部字元線252(例如以上描述的任何閘電極)。N+摻雜非晶矽或多晶矽層204b及204d沿著Y方向延伸長度以分別形成反或閘記憶組的所有儲存電晶體共 源區及共汲區(“共用位元線”)。導體層204a及204e分別與共源區及共用位元線接觸並提供來減少電阻率。 As shown in FIG. 13( a ), the storage transistor 1303 includes (i) a conductive layer 204a (e.g., a titanium nitride-lined tungsten layer), (ii) a first transistor material layer 204b such as an N + doped amorphous silicon or polycrystalline silicon layer (e.g., phosphorus or arsenic doped amorphous silicon or polycrystalline silicon), (iii) an oxide layer 204c, (iv) a second transistor material layer 204d such as N + doped amorphous silicon or polycrystalline silicon layer (e.g., phosphorus or arsenic doped amorphous silicon or polycrystalline silicon), (v) a conductor layer 204e (e.g., a titanium nitride lined tungsten layer), a third transistor material layer such as a channel region 250, the channel region 250 includes any channel region formed by any appropriate semiconductor material described above, a charge storage layer 251 (e.g., a composite layer that may include any tunneling layer, any charge trapping layer and any blocking layer described above), and a gate electrode or local word line 252 (e.g., any gate electrode described above). N + doped amorphous silicon or polysilicon layers 204b and 204d extend along the Y direction to form common source regions and common drain regions (“common bit lines”) for all storage transistors of the NOR gate memory group, respectively. Conductive layers 204a and 204e contact the common source regions and common bit lines, respectively, and are provided to reduce resistivity.

反或閘記憶體組的三維陣列1300可以使用前述臨時申請案III或臨時申請案IV(例如結合臨時申請案III中圖2a-2j所討論的製程)中的任何製程或任何組合來形成。 The three-dimensional array 1300 of NOR gate memory banks can be formed using any process or any combination of the aforementioned provisional application III or provisional application IV (e.g., in combination with the process discussed in FIGS. 2a-2j of provisional application III).

本發明人瞭解,用於上述薄膜存儲電晶體的電荷捕捉層的材料(例如,圖5中的電荷捕捉層503),例如氧化鉿,可以具有如現有技術中已知的鐵電極化相。本發明人實現了,藉著利用這些鐵電相進行數據存儲,在NOR記憶體組的三維記憶體陣列中的薄膜儲存電晶體可以很容易地適應於作為鐵電性場效電晶體(“FeFET”)工作,從而提供高耐久性、長數據保留及相對較低的電壓操作,以供抹除(於7.0伏特下)及寫入(於-7.0伏特下)。藉由薄膜鐵電性場效電晶體(FeFET)可以高速隨機訪問(即,低讀取延遲),鐵電性場效電晶體的鐵電極化相特性與前述薄膜水平(或垂直)NOR記憶體組之3維組織的組合實現了高密度、低成本記憶體陣列的額外好處。 The inventors understand that the material used for the charge trapping layer of the above-described thin film storage transistor (eg, charge trapping layer 503 in FIG. 5), such as hafnium oxide, can have a ferroelectric polarization phase as is known in the art. The present inventors have realized that by utilizing these ferroelectric phases for data storage, thin film storage transistors in three-dimensional memory arrays of NOR memory banks can be easily adapted as ferroelectric field effect transistors ("FeFETs"). ”) operation, thereby providing high endurance, long data retention and relatively low voltage operation for erase (at 7.0 volts) and write (at -7.0 volts). High-speed random access (i.e., low read latency) can be achieved through thin-film ferroelectric field-effect transistors (FeFETs). The ferroelectric polarization phase characteristics of ferroelectric field-effect transistors are similar to those of the aforementioned thin-film horizontal (or vertical) NOR memories. The combination of three-dimensional organizations enables the additional benefits of high-density, low-cost memory arrays.

圖13(b)示意根據本發明一實施例中於三維陣列1350中NOR記憶體組的主動堆疊1351-1及1351-2,且每一個NOR記憶體組包含許多個FeFET作為儲存電晶體。在三維陣列1350中,每一個主動堆疊(例如堆疊1351-1)包含了由多個FeFET形成的許多個NOR記憶體組(例如NOR記憶體組254-1至254-4)。圖13(b)的內插圖呈現在一NOR記憶體組的主動堆疊1351-2中FeFET 1353的截面圖。 FIG. 13( b ) schematically shows active stacks 1351-1 and 1351-2 of NOR memory groups in a three-dimensional array 1350 according to an embodiment of the present invention, and each NOR memory group includes a plurality of FeFETs as storage transistors. In the three-dimensional array 1350 , each active stack (e.g., stack 1351-1) includes a plurality of NOR memory groups (e.g., NOR memory groups 254-1 to 254-4) formed by a plurality of FeFETs. The inset of FIG. 13( b ) shows a cross-sectional view of FeFET 1353 in an active stack 1351-2 of a NOR memory group.

圖13(b)示意了在一三維陣列1350的NOR記憶體組中代表性的FeFET 1353。代表性的FeFET 1353包含(i)導體層204a(例如一氮化鈦內襯鎢層),(ii)第一電晶體材料層204b例如N+摻雜非晶矽或多晶矽層,(iii)氧化層204c,(iv) 第二電晶體材料層204d例如N+摻雜非晶矽或多晶矽層及(v)導體層204e(例如一氮化鈦內襯鎢層),與圖13(a)中被分配了相同附圖符號的那些層起了相似於作用,且可以提供基本上相同的方法。然而,FeFET 1353具有鐵電性儲存層271,其可包含一鐵電性材料及一界面介電層,而非儲存電晶體1303的電荷儲存層251。FeFET 1353具有第三電晶體材料層例如通道材料270及閘電極或局部字元線272,通道材料270可以由相同於或不同於通道區250的材料形成,閘電極或局部字元線272可以由閘電極或局部字元線252的材料形成。如同在圖13(a)的一NOR記憶體組之儲存電晶體中,N+摻雜非晶矽或多晶矽層204b及204d沿著Y方向延伸長度以分別形成圖13(b)的反或閘記憶組的所有FeFET的共源區及共汲區(“共用位元線”)。同樣地,圖13(b)中的導體層204a及204e分別與共源區及共用位元線接觸並提供來減少電阻率。 FIG13( b) illustrates a representative FeFET 1353 in a NOR memory group in a three-dimensional array 1350. The representative FeFET 1353 includes (i) a conductor layer 204a (e.g., a titanium nitride-lined tungsten layer), (ii) a first transistor material layer 204b such as an N + doped amorphous silicon or polycrystalline silicon layer, (iii) an oxide layer 204c, (iv) a second transistor material layer 204d such as an N + doped amorphous silicon or polycrystalline silicon layer and (v) a conductor layer 204e (e.g., a titanium nitride-lined tungsten layer), which play similar roles to those layers assigned the same reference numerals as those in FIG13( a) and can provide substantially the same method. However, instead of the charge storage layer 251 of the storage transistor 1303, the FeFET 1353 has a ferroelectric storage layer 271, which may include a ferroelectric material and an interfacial dielectric layer. The FeFET 1353 has a third transistor material layer such as a channel material 270 and a gate electrode or local word line 272, the channel material 270 may be formed of the same or different material as the channel region 250, and the gate electrode or local word line 272 may be formed of the material of the gate electrode or local word line 252. As in the storage transistor of a NOR memory set of FIG13(a), the N + doped amorphous silicon or polysilicon layers 204b and 204d extend in length along the Y direction to form the common source region and the common drain region (“common bit line”) of all FeFETs of the NOR memory set of FIG13(b), respectively. Similarly, the conductive layers 204a and 204e in FIG13(b) are in contact with the common source region and the common bit line, respectively, and are provided to reduce the resistivity.

在此詳細描述,本發明所有實施例中半導體基底通常包括控制、感測和驅動電路,以支持其上方的NOR記憶體組之三維陣列中的儲存電晶體或FeFET的記憶操作。 As described in detail herein, the semiconductor substrate in all embodiments of the present invention generally includes control, sensing and drive circuits to support the memory operation of the storage transistors or FeFETs in the three-dimensional array of NOR memory groups above it.

在一些實施例中,為了減少相鄰FeFET之間的干擾,圖13(b)中FeFET 1353的鐵電性儲存層271最好與在其他主動複合層的主動堆疊中的鐵電性儲存層分隔,不同於圖13(a)中儲存電晶體1303的電荷儲存層251可以連續於其他主動複合層的主動堆疊中的電荷儲存層。 In some embodiments, to reduce interference between adjacent FeFETs, the ferroelectric storage layer 271 of FeFET 1353 in Figure 13(b) is preferably separated from the ferroelectric storage layers in the active stack of other active composite layers. , the charge storage layer 251 different from the storage transistor 1303 in FIG. 13(a) may be continuous with the charge storage layer in the active stack of other active composite layers.

根據本發明一實施例,FeFET 1353的通道區(通道材料270)可以在一三維記憶體陣列中形成,可包括p摻雜的多晶矽(例如,7.0-14.0奈米厚),及閘電極272可以由鎢(W)、鉬(Mo)、鋁(Al)、釕(Ru)、鉭(Ta)、鈦(Ti),或這些金屬的任何組合或合金形成。鐵電性儲存層271可包含一界面介電層(例如氮氧化矽 (SiON)、氮化矽(Si3N4)或氧化矽(SiO2),0.0至2.0奈米厚,具有一1.5至2.0之間的折射率),及一鐵電性材料層(例如鋯摻雜氧化鉿(HfO2:Zr或HZO)、鋁摻雜氧化鉿(HfO2:Al)、矽摻雜氧化鉿(HfO2:Si)或鑭摻雜氧化鉿(HfO2:La))。鐵電性材料層可以是,舉例來說,3.0至8.0奈米厚。用語HZO可以包括鉿鋯氧化物(HfZrO)、鉿鋯氧氮化物(HfZrON)、鉿鋯鋁氧化物(HfZrAlO),或任何包含鋯雜質的其他鉿氧化物。基於鐵電性材料所需的結晶相要求,HZO鐵電性材料層可以利用使用原子層沉積(ALD)技術在200℃至330℃(例如約在300℃)之間的溫度下沉積形成,並伴隨在一溫度於400℃及1000℃之間下經過一沉積後退火步驟。 According to one embodiment of the present invention, the channel region (channel material 270) of the FeFET 1353 can be formed in a three-dimensional memory array and can include p-doped polysilicon (e.g., 7.0-14.0 nm thick), and the gate electrode 272 can be formed of tungsten (W), molybdenum (Mo), aluminum (Al), ruthenium (Ru), tantalum (Ta), titanium (Ti), or any combination or alloy of these metals. The ferroelectric storage layer 271 may include an interfacial dielectric layer (e.g., silicon oxynitride (SiON), silicon nitride ( Si3N4 ), or silicon oxide ( SiO2 ), 0.0 to 2.0 nm thick, with a refractive index between 1.5 and 2.0), and a ferroelectric material layer (e.g., zirconium-doped ferroxene oxide ( HfO2 :Zr or HZO), aluminum-doped ferroxene oxide ( HfO2 :Al), silicon-doped ferroxene oxide ( HfO2 :Si), or titanium-doped ferroxene oxide ( HfO2 :La)). The ferroelectric material layer may be, for example, 3.0 to 8.0 nm thick. The term HZO may include HfZrO, HfZrON, HfZrAlO, or any other HfZr oxide containing zirconium dopants. Based on the crystalline phase requirements of the ferroelectric material, the HZO ferroelectric material layer may be formed by deposition at a temperature between 200° C. and 330° C. (e.g., about 300° C.) using an atomic layer deposition (ALD) technique, followed by a post-deposition annealing step at a temperature between 400° C. and 1000° C.

由於電子或電洞穿隧進入鐵電性材料層可能對鐵電性材料層的極化有不良影響,界面介電層於傳導期間將鐵電性材料層與由通道區穿隧來的電子或電洞隔離。界面介電層可以由一介面常數高於氧化矽(“高k”材料,介電常數最好大於3.9)的材料所形成,以降低寫入或抹除操作期間的電場,並減少來自通道區的穿隧。欲取得一0.0奈米厚的界面介電層,可以將鐵電性材料層直接通過原子層沉積(ALD)技術沉積在通道區(例如多晶矽)上。一自限厚度(self-limiting thickness,例如1.0-10.0埃)的原始氧化物將在通道區及鐵電材料層的界面處固有地形成。這種方法特別有利於當通道區在高溫步驟後形成,使得摻雜物擴散的汙染被減少關注。在一些實施例中,帶隙工程(bandgap-engineered)穿隧層(例如氧化矽(SiO2)及氧化鋯(ZrO2)多層)可以作為界面介電層,有利於減少穿隧進入鐵電性材料層。氧化鋯的高k介電性質降低了界面介電層中的電場。 Since tunneling of electrons or holes into the ferroelectric material layer may have an adverse effect on the polarization of the ferroelectric material layer, the interfacial dielectric layer isolates the ferroelectric material layer from the electrons or holes tunneling from the channel region during conduction. The interfacial dielectric layer can be formed of a material with a higher interface constant than silicon oxide (a "high-k" material, preferably with a dielectric constant greater than 3.9) to reduce the electric field during write or erase operations and reduce tunneling from the channel region. To obtain a 0.0 nm thick interfacial dielectric layer, the ferroelectric material layer can be deposited directly on the channel region (e.g., polysilicon) by atomic layer deposition (ALD) technology. A self-limiting thickness (e.g., 1.0-10.0 angstroms) of native oxide will be inherently formed at the interface of the channel region and the ferroelectric material layer. This approach is particularly advantageous when the channel region is formed after a high temperature step, so that contamination from dopant diffusion is less of a concern. In some embodiments, a bandgap-engineered tunneling layer (e.g., a multilayer of silicon oxide (SiO 2 ) and zirconium oxide (ZrO 2 )) can be used as an interfacial dielectric layer to help reduce tunneling into the ferroelectric material layer. The high-k dielectric properties of zirconium oxide reduce the electric field in the interfacial dielectric layer.

鐵電性場效電晶體可以極化為一導電或”抹除”狀態或一非導電或”寫入”狀態。在FeFET中,其在抹除狀態中的臨界電壓低於其在導帶狀態中的臨界電壓。圖14(a)呈現了一典型的FeFET中,汲電流(Id)對應一施加閘電壓(Vg)的 遲滯(hysteresis)。(典型的FeFET形成在一單晶半導體基底的平面上,而不是形成一薄膜場域電晶體(thin-film field effect transistor)。)在圖14(a)中,當閘電壓由小於-1.0伏特增加至大於1.0伏特,波形1401描繪FeFET在其抹除狀態下的汲電流,以及當閘電壓由大於1.0伏特減少到小於-1.0伏特,波形1402描繪FeFET在其寫入狀態下的汲電流。如圖14(a)所示,典型的FeFET具有一負的臨界電壓(negative threshold voltage,Vt)。 Ferroelectric field effect transistors can be polarized into a conducting or "erasing" state or a non-conducting or "writing" state. In a FeFET, its critical voltage in the erase state is lower than its critical voltage in the conduction band state. Figure 14(a) shows the hysteresis of the drain current (I d ) versus an applied gate voltage (V g ) in a typical FeFET. (A typical FeFET is formed on the plane of a single-crystal semiconductor substrate, rather than forming a thin-film field effect transistor.) In Figure 14(a), when the gate voltage changes from less than -1.0 volts Increasing to greater than 1.0 volts, waveform 1401 depicts the current drained by the FeFET in its erase state, and as the gate voltage decreases from greater than 1.0 volts to less than -1.0 volts, waveform 1402 depicts the current drained by the FeFET in its write state. As shown in Figure 14(a), a typical FeFET has a negative threshold voltage (V t ).

然而,在一些應用中,希望FeFET(例如一反或閘記憶體組中的薄膜FeFET)具有一正的臨界電壓(Vt),例如約在0.5伏特,以防止在受到干擾條件時出現不希望的洩漏電流(例如,在一讀取操作中選擇NOR記憶體組中的一相鄰FeFET,而不是FeFET本身)。 However, in some applications it is desirable for FeFETs (such as thin film FeFETs in an inverter or gate memory bank) to have a positive threshold voltage (V t ), such as around 0.5 volts, to prevent undesirable behavior when subjected to disturbing conditions. leakage current (e.g., selecting an adjacent FeFET in a NOR memory bank during a read operation, rather than the FeFET itself).

圖14(b)呈現了根據本發明實施例中一反或閘記憶體陣列中一薄膜FeFET中,汲電流(Id)對應一施加閘電壓(Vg)的理想遲滯(hysteresis)。在圖14(b)中,當閘電壓由小於-1.0伏特增加至大於1.0伏特,波形1403描繪FeFET在其抹除狀態下的汲電流,以及當閘電壓由大於1.0伏特減少到小於-1.0伏特,波形1404描繪FeFET在其寫入狀態下的汲電流。如圖14(b)所示,FeFET具有一大約0.5伏特的正臨界電壓(Vt),且一臨界電壓差(“窗期window”)位於1.0伏特至2.5伏特的抹除狀態及寫入狀態之間。對於p-多晶矽通道區(例如硼摻雜),臨界電壓可以通過以下實現(i)增加通道區中的硼摻雜劑濃度,(ii)提供由具有高功函數的導電材料(例如鎢(W)、鉬(Mo)、鋁(Al)、釕(Ru)、鉭(Ta)或鈦(Ti))形成的閘電極,(iii)在共源區(見下文)的適當偏壓(biasing),或(iv)由(i)、(ii)和(iii)的組合。 FIG14( b ) shows the ideal hysteresis of drain current (I d ) versus applied gate voltage (V g ) in a thin film FeFET in an NOR gate memory array according to an embodiment of the present invention. In FIG14( b ), waveform 1403 depicts the drain current of the FeFET in its erase state when the gate voltage increases from less than -1.0 volt to greater than 1.0 volt, and waveform 1404 depicts the drain current of the FeFET in its write state when the gate voltage decreases from greater than 1.0 volt to less than -1.0 volt. As shown in FIG14( b ), the FeFET has a positive critical voltage (V t ) of about 0.5 V, and a critical voltage difference (“window”) between the erase state and the write state of 1.0 V to 2.5 V. For a p-polysilicon channel region (e.g., boron doped), the critical voltage can be achieved by (i) increasing the boron dopant concentration in the channel region, (ii) providing a gate electrode formed of a conductive material with a high work function (e.g., tungsten (W), molybdenum (Mo), aluminum (Al), ruthenium (Ru), tantalum (Ta), or titanium (Ti)), (iii) appropriate biasing in the common source region (see below), or (iv) a combination of (i), (ii), and (iii).

表格1統整了在(i)閘極或字元線(word line)、共源線和一選定FeFET的共位線(common bit line)以及(ii)三維記憶體陣列的非選定字元線(non- selected word lines)和位元線,三維陣列之NOR記憶體組於抹除、寫入和讀取操作期間的示範性偏壓(V,伏特):

Figure 111105758-A0305-02-0027-5
Table 1 summarizes exemplary bias voltages (V, volts) for a three-dimensional array of NOR memory cells during erase, write, and read operations on (i) the gate or word line, common source line, and common bit line of a selected FeFET and (ii) the non-selected word lines and bit lines of the three-dimensional memory array:
Figure 111105758-A0305-02-0027-5

當在NOR記憶體組中一FeFET的本體區(body region)浮接時,其寫入速度可能慢於其抹除速度。在這樣的條件下,閘極引致汲極漏電(GIDL)效應可利於改善寫入速度。於寫入期間,GIDL效應可通過產生一0.5伏特至2.0伏特的共位線及共源線之間的電壓差來啟動,舉例來說,如相關申請中所述,首先通過共位線將共源線隨時預先充電至預定的源線電壓(source line voltage),然後將共位線設定至其目標電壓。 When the body region of a FeFET in a NOR memory set is floated, its write speed may be slower than its erase speed. Under such conditions, the gate-induced drain leakage (GIDL) effect can be beneficial to improve the write speed. During write, the GIDL effect can be activated by generating a voltage difference of 0.5 volts to 2.0 volts between the common bit line and the common source line, for example, by first pre-charging the common source line to a predetermined source line voltage at any time through the common bit line, and then setting the common bit line to its target voltage, as described in the related application.

於一讀取操作期間,當薄膜FeFET在抹除狀態具有一負的臨界電壓,其共源線可偏壓至一電壓高於這樣的臨界電壓,以防止在NOR記憶體組的非選定FeFETs中導通。重要的是,在一讀取操作期間,選定的FeFET中閘極或字元線及共位線或共源線之間的電壓維持在一小於可能改變選定FeFET的極化現象的電壓,以避免讀取干擾的現象。 During a read operation, when the thin film FeFET has a negative threshold voltage in the erase state, its common source line can be biased to a voltage higher than this threshold voltage to prevent unselected FeFETs in the NOR memory bank. conduction. It is important that during a read operation, the voltage between the gate or word line and the common bit line or common source line in the selected FeFET is maintained at a voltage that is less than a voltage that may change the polarization of the selected FeFET to avoid Read interference phenomenon.

三維記憶體陣列之薄膜FeFET電晶體被組織為NOR記憶體組,可通過調整任何合適的製程或臨時申請案III和IV中公開的製程來形成。 Three-dimensional memory arrays of thin film FeFET transistors organized into NOR memory groups may be formed by adapting any suitable process or processes disclosed in Provisional Applications III and IV.

圖15(a)-15(d)描繪根據本發明一實施例,形成三維記憶體陣列之薄膜FeFET電晶體組織為NOR記憶體組的一第一製程。在形成主動堆疊1501-1及1501-2並沉積至複合層251-1至251-4的凹槽內且蝕刻回一通道材料(例如p-摻雜非晶矽或多晶矽)之後,圖15(a)示意了在頂面(例如..X-Y平面)及X-Z平面橫截面的中間記憶體結構1500。在圖15(a)中,鄰近的主動堆疊被溝槽1502分開且沿著Y方向延伸。中間記憶體結構1500可以利用例如臨時申請案III中圖2a至2h的製程步驟來實現。在圖15(a)中,由於複合層陷入相鄰的絕緣介電層203(例如SiOC),在複合層251-4中的通道區(通道材料270)與複合層251-3中相似的通道區分開。因此,溝槽1502被介電材料1504填滿(例如氧化矽),且多餘的介電材料通過例如化學機械拋光(CMP)從中間記憶體結構1500的頂部除去,得到如圖15(b)所示的中間結構1500。 Figures 15(a)-15(d) depict a first process for forming a three-dimensional memory array of thin film FeFET transistors organized as NOR memory groups according to an embodiment of the present invention. After active stacks 1501-1 and 1501-2 are formed and deposited into the recesses of composite layers 251-1 to 251-4 and etched back to a channel material (e.g., p - doped amorphous silicon or polysilicon), Figure 15(a) illustrates the intermediate memory structure 1500 in cross-section in the top surface (e.g., XY plane) and XZ plane. In Figure 15(a), adjacent active stacks are separated by trenches 1502 and extend along the Y direction. The intermediate memory structure 1500 can be implemented using, for example, the process steps of FIGS. 2a to 2h of the provisional application III. In FIG. 15(a), the channel region (channel material 270) in the composite layer 251-4 is separated from the similar channel region in the composite layer 251-3 by the composite layer being sunken into the adjacent insulating dielectric layer 203 (e.g., SiOC). Therefore, the trench 1502 is filled with a dielectric material 1504 (e.g., silicon oxide), and the excess dielectric material is removed from the top of the intermediate memory structure 1500 by, for example, chemical mechanical polishing (CMP), resulting in the intermediate structure 1500 shown in FIG. 15(b).

然後,井1505(例如,橢圓形井)使用如臨時申請案IV中結合圖2j描述的過程,在填充溝槽1502的介電材料1504中形成。得到的中間結構1500如圖15(c)所示。井1505分別曝露出絕緣介電層203和通道材料270的側壁。 A well 1505 (eg, an elliptical well) is then formed in the dielectric material 1504 filling the trench 1502 using a process as described in Provisional Application IV in connection with FIG. 2j. The resulting intermediate structure 1500 is shown in Figure 15(c). Wells 1505 expose the sidewalls of insulating dielectric layer 203 and channel material 270, respectively.

接著,自組裝單層(SAMs;例如,具有活性羥基(-OH)鍵的物質)被提供以鈍化絕緣介電層203的側壁。然後,鐵電性儲存層271可被選擇性地沉積在通道材料270的曝露表面。(通過自組裝單層的處理防止鐵電性儲存層271沉積到絕緣介電層203的側壁上。)得到的中間結構1500如15(d)所示。鐵電性儲存層271可以通過利用ALD技術在臭氧環境中,選擇性沉積形成界面介電層和鐵電性材料層。 Next, self-assembled monolayers (SAMs; eg, substances with active hydroxyl (-OH) bonds) are provided to passivate the sidewalls of the insulating dielectric layer 203 . Ferroelectric storage layer 271 may then be selectively deposited on the exposed surface of channel material 270 . (The process of self-assembling a single layer prevents the ferroelectric storage layer 271 from being deposited on the sidewalls of the insulating dielectric layer 203.) The resulting intermediate structure 1500 is shown in 15(d). The ferroelectric storage layer 271 can be selectively deposited to form an interface dielectric layer and a ferroelectric material layer by using ALD technology in an ozone environment.

界面介電層可包含由化學清潔通道材料270表面形成的原始氧化層,隨後通過緻密化,例如通過脈衝臭氧或在氫或氘環境中通過熱退火,或本領域普通技術人員已知的任何其他技術。這樣的處理減少了通過界面介電層的電子洩漏,或降低了第三半導體層和鐵電性儲存層之間界面處的表面狀態,或是兩者兼之。鐵電性材料層可利用例如重複循環的氧化鉿沉積和氧化鋯沉積(例如HfO2:ZrO2的比例為4:1)。對於較厚的鐵電性材料層(例如大於40奈米),於沉積循環之間額外的SAM處理是較佳的。圖15(d)包含記憶體結構1500的一附加X-Y面橫截面圖1510,其沿著A-A’線通過X-Y橫截面圖的氧化層204c。然後,可以使用例如結合臨時申請案IV的圖2l至2t描述的製程步驟來完成三維陣列。 The interface dielectric layer may comprise a raw oxide layer formed from the surface of chemically cleaned channel material 270, followed by densification, such as by pulsed ozone or by thermal annealing in a hydrogen or deuterium environment, or any other known to those of ordinary skill in the art. Technology. Such treatment reduces electron leakage through the interface dielectric layer, reduces the surface state at the interface between the third semiconductor layer and the ferroelectric storage layer, or both. The ferroelectric material layer may be deposited using, for example, repeated cycles of hafnium oxide deposition and zirconium oxide deposition (for example, the ratio of HfO 2 :ZrO 2 is 4:1). For thicker ferroelectric material layers (e.g., greater than 40 nm), additional SAM processing between deposition cycles is preferable. Figure 15(d) includes an additional XY cross-sectional view 1510 of the memory structure 1500 along line AA' through the oxide layer 204c of the XY cross-sectional view. The three-dimensional array can then be completed using, for example, the process steps described in conjunction with Figures 21 to 2t of Provisional Application IV.

圖16(a)-16(d)描繪根據本發明一實施例,形成三維記憶體陣列之薄膜FeFET電晶體組織為NOR記憶體組的一第二製程。在形成主動堆疊1601-1及1601-2並沉積至複合層251-1至251-4的凹槽內且蝕刻回一通道材料(例如p-摻雜非晶矽或多晶矽)以曝露絕緣介電層203的側壁之後,圖16(a)示意X-Z平面橫截面的中間記憶體結構1600。如圖15(a),圖16(a)中鄰近的主動堆疊被溝槽(例如溝槽1602)分開且沿著Y方向延伸。中間記憶體結構1600可以利用例如臨時申請案III中圖2a至2h的製程步驟來實現。 Figures 16(a)-16(d) depict a second process for forming a three-dimensional memory array whose thin film FeFET transistor structure is a NOR memory group according to an embodiment of the present invention. Active stacks 1601-1 and 1601-2 are formed and deposited into the recesses of composite layers 251-1 through 251-4 and etched back to a channel material (eg, p - doped amorphous silicon or polycrystalline silicon) to expose the insulating dielectric After the sidewalls of layer 203, Figure 16(a) illustrates an XZ plane cross-section of the intermediate memory structure 1600. As shown in Figure 15(a), adjacent active stacks in Figure 16(a) are separated by trenches (eg, trench 1602) and extend along the Y direction. The intermediate memory structure 1600 may be implemented using, for example, the process steps of Figures 2a to 2h of Provisional Application III.

然而,相較於圖15(a)的中間記憶體結構1500,圖16(a)中複合層251-1至251-4的凹槽更深。舉例來說,對於目標為10.0奈米厚的通道區(通道材料270),令複合層251-1至251-4的凹槽為20.0奈米厚,使得在圖16(a)之製程步驟中通道材料270為20.0奈米厚。進一步蝕刻回至通道區(通道材料270,例如藉由一濕式蝕刻),減少了通道區(通道材料270)的厚度,例如至10.0奈米,因此鄰近的絕 緣介電層203之間產生接近10.0奈米深的凹槽。得到如圖16(b)所示的中間記憶體結構1600。 However, the grooves of the composite layers 251-1 to 251-4 in FIG. 16(a) are deeper than the intermediate memory structure 1500 of FIG. 15(a). For example, for a target channel region (channel material 270) thickness of 10.0 nm, the grooves of the composite layers 251-1 to 251-4 are made 20.0 nm thick, resulting in the channel material 270 being 20.0 nm thick in the process step of FIG. 16(a). Further etching back to the channel region (channel material 270), such as by a wet etch, reduces the thickness of the channel region (channel material 270), such as to 10.0 nm, thereby producing grooves of approximately 10.0 nm deep between adjacent insulating dielectric layers 203. The intermediate memory structure 1600 is obtained as shown in Figure 16(b).

接著,鐵電性儲存層271可利用ALD技術沉積形成,界面介電層及鐵電性材料層在通道材料270上於鄰近的絕緣介電層203之間10奈米深的凹槽中。鐵電性材料層例如可利用重複循環的氧化鉿沉積和氧化鋯沉積(例如HfO2:ZrO2的比例為4:1)。得到如圖16(c)所示的中間記憶體結構1600。如圖16(c)所示,複合層的鐵電性儲存層271因為凹槽彼此藉由絕緣介電層203分離。 Next, the ferroelectric storage layer 271 can be formed by ALD deposition, and the interface dielectric layer and the ferroelectric material layer are formed on the channel material 270 in a 10 nm deep groove between the adjacent insulating dielectric layer 203. The ferroelectric material layer can be formed by, for example, repeated cycles of ferroelectric oxide deposition and zirconia deposition (for example, the ratio of HfO 2 :ZrO 2 is 4:1). The intermediate memory structure 1600 shown in FIG. 16( c ) is obtained. As shown in FIG. 16( c ), the composite ferroelectric storage layer 271 is separated from each other by the insulating dielectric layer 203 because of the grooves.

三維陣列之NOR記憶體組可以使用例如結合臨時申請案IV的圖2j至2t描述的製程步驟來完成。圖16(d)呈現一完成的三維陣列之NOR記憶體組的X-Z面橫截面圖,示意了(i)在井1605中的導電材料272(例如閘極)以及(ii)與鄰近閘極彼此電性隔離的氧化物1604。 The three-dimensional array of NOR memory banks can be accomplished using, for example, the process steps described in connection with Figures 2j to 2t of Provisional Application IV. Figure 16(d) presents an X-Z cross-sectional view of a completed three-dimensional array of NOR memory banks, illustrating (i) conductive material 272 (eg, gate) in well 1605 and (ii) with adjacent gates and each other. Electrically isolated oxide 1604.

圖17(a)-17(g)描繪根據本發明一實施例,形成三維記憶體陣列之薄膜FeFET電晶體組織為NOR記憶體組的一第三製程。在形成主動堆疊1701-1及1701-2並沉積至複合層251-1至251-4的凹槽內且蝕刻回一通道材料(例如p-摻雜非晶矽或多晶矽;例如20.0奈米厚)以曝露絕緣介電層203的側壁之後,圖17(a)示意X-Z平面橫截面的中間記憶體結構1700。如圖16(a),圖17(a)中鄰近的主動堆疊被溝槽(例如溝槽1702)分開且沿著Y方向延伸。進一步蝕刻回至通道區(通道材料270,例如藉由一濕式蝕刻),減少了通道區(通道材料270)的厚度,例如至10.0奈米,因此鄰近的絕緣介電層203之間產生接近10.0奈米深的凹槽。得到如圖17(b)所示的中間記憶體結構1700。圖17(a)及17(b)的中間記憶體結構1700可以利用與前述討論分別用於形成圖16(a)及圖16(b)的中間記憶體結構1600,基本上相同的製程步驟形成。 17(a)-17(g) depict a third process for forming a three-dimensional memory array whose thin film FeFET transistor structure is a NOR memory group according to an embodiment of the present invention. After forming active stacks 1701-1 and 1701-2 and depositing into the recesses of composite layers 251-1 through 251-4 and etching back a channel material (eg, p - doped amorphous silicon or polycrystalline silicon; eg, 20.0 nm thick ) to expose the sidewalls of the insulating dielectric layer 203, FIG. 17(a) illustrates the XZ plane cross-section of the intermediate memory structure 1700. As shown in Figure 16(a), adjacent active stacks in Figure 17(a) are separated by trenches (eg, trench 1702) and extend along the Y direction. Further etching back to the channel region (channel material 270 , for example by a wet etch) reduces the thickness of the channel region (channel material 270 ), for example to 10.0 nm, thereby creating proximity between adjacent insulating dielectric layers 203 10.0 nm deep grooves. The intermediate memory structure 1700 shown in Figure 17(b) is obtained. The intermediate memory structures 1700 of Figures 17(a) and 17(b) may be formed using substantially the same process steps discussed above for forming the intermediate memory structures 1600 of Figures 16(a) and 16(b) respectively. .

然後,鐵電性儲存層271可利用前述的ALD技術沉積形成在中間記憶體結構1700上,舉例來說,結合前面的圖16(c),隨之通過進行非晶矽內襯1707的共形沉積(conformal deposition)。得到如圖17(c)所示的中間記憶體結構1700。各向異性乾式蝕刻步驟接著移除部分的非晶矽內襯1707,以曝露位在溝槽1702中絕緣介電層203的側壁上的部份鐵電性儲存層271,同時允許餘下的非晶矽內襯1707保護複合層251-1至251-4的凹槽中部份鐵電性儲存層271。各向異性乾式蝕刻也由中間記憶體結構1700的頂部濺射掉非晶矽內襯1707及鐵電性儲存層271。得到如圖17(d)所示的中間記憶體結構1700。 Then, the ferroelectric storage layer 271 can be deposited on the intermediate memory structure 1700 using the aforementioned ALD technology, for example, in combination with the previous FIG. 16( c ), followed by conformal deposition of the amorphous silicon liner 1707 , to obtain the intermediate memory structure 1700 as shown in FIG. 17( c ). The anisotropic dry etching step then removes a portion of the amorphous silicon liner 1707 to expose a portion of the ferroelectric storage layer 271 on the sidewalls of the insulating dielectric layer 203 in the trench 1702, while allowing the remaining amorphous silicon liner 1707 to protect a portion of the ferroelectric storage layer 271 in the grooves of the composite layers 251-1 to 251-4. The anisotropic dry etching also sputters the amorphous silicon liner 1707 and the ferroelectric storage layer 271 from the top of the intermediate memory structure 1700. The intermediate memory structure 1700 is obtained as shown in Figure 17(d).

接著,用以移除鐵電性材料層(例如鋯摻雜氧化HZO)的濕式蝕刻由絕緣介電層203的側壁移除了鐵電性儲存層271。得到如圖17(e)所示的中間記憶體結構1700。餘下的非晶矽內襯1707接著可以通過濕式蝕刻移除。得到如圖17(f)所示的中間記憶體結構1700。 Next, wet etching for removing the ferroelectric material layer (e.g., zirconium doped oxide HZO) removes the ferroelectric storage layer 271 from the sidewalls of the insulating dielectric layer 203. The intermediate memory structure 1700 shown in FIG. 17(e) is obtained. The remaining amorphous silicon liner 1707 can then be removed by wet etching. The intermediate memory structure 1700 shown in FIG. 17(f) is obtained.

然後,三維陣列之NOR記憶體組可以使用例如結合臨時申請案IV的圖2j至2t描述的製程步驟來完成。圖17(g)呈現一完成的三維陣列之NOR記憶體組的X-Z面橫截面圖,示意了(i)在井1705中的導電材料272(例如閘極)以及(ii)與鄰近閘極彼此電性隔離的氧化物1704。 Then, the three-dimensional array NOR memory set can be completed using, for example, the process steps described in conjunction with Figures 2j to 2t of Provisional Application IV. Figure 17(g) shows an X-Z cross-sectional view of a completed three-dimensional array NOR memory set, illustrating (i) conductive material 272 (e.g., gate) in well 1705 and (ii) oxide 1704 electrically isolated from adjacent gates.

根據本發明中另一實施例,FeFET 1353的通道區(通道材料270)可以用8.0至15.0厚的氧化半導體材料(例如銦鋅氧化物(InZnO或IZO))形成。IZO通道區具有高遷移率的優點,可提升切換性能且無需擔心電子或電洞穿隧。舉例來說,相較於厚度相當的鋁氧化鋯(aluminum zirconium oxide,AZO)的電子遷移率為5.6cm2/V,10.0奈米厚的IZO薄膜的電子遷移率為40.6cm2/V。此外,共源區及共位線可以由金屬(例如鉬Mo)形成。FeFET 1353的鐵電性儲存層可以由前述任 何的鐵電性儲存層(例如一SiON界面介電層及一HZO鐵電性材料層)來提供。由於這個FeFET不具有p/n接面,在寫入狀態下來自FeFET的任何漏電流都相對較小。因此,這樣的FeFET特別有利於高溫應用。這樣的FeFET也可以一相對短的通道長度來建構,因為在影響通道區的任何退火步驟期間,不需要餘量來允許摻雜劑從大量摻雜的半導體共位線和共源線擴散。金屬共位線和共源線也減少了主動複合層的厚度(例如,40.0奈米的共位線或共源線,40.0奈米的通道區及30.0奈米的SiOC界面介電層,總合為一相對較薄的150.0奈米)。共源及汲極區也可利用一犧牲材料來建構,犧牲材料在後期金屬更換(metal-replacement)步驟中被替換。 According to another embodiment of the present invention, the channel region (channel material 270) of the FeFET 1353 can be formed of an oxidized semiconductor material (e.g., indium zinc oxide (InZnO or IZO)) with a thickness of 8.0 to 15.0 nm. The IZO channel region has the advantage of high mobility, which can improve switching performance without worrying about electron or hole tunneling. For example, compared to the electron mobility of aluminum zirconium oxide (AZO) of equivalent thickness of 5.6 cm 2 /V, the electron mobility of a 10.0 nm thick IZO film is 40.6 cm 2 /V. In addition, the common source region and the common bit line can be formed of a metal (e.g., Mo). The ferroelectric storage layer of the FeFET 1353 can be provided by any of the ferroelectric storage layers described above (e.g., a SiON interface dielectric layer and a HZO ferroelectric material layer). Since this FeFET does not have a p/n junction, any leakage current from the FeFET in the written state is relatively small. Therefore, such a FeFET is particularly advantageous for high temperature applications. Such a FeFET can also be constructed with a relatively short channel length because no margin is required to allow dopants to diffuse from the heavily doped semiconductor common bit lines and common source lines during any annealing steps affecting the channel region. Metal common bit and common source lines also reduce the thickness of the active composite layer (e.g., 40.0 nm common bit or common source line, 40.0 nm channel region and 30.0 nm SiOC interface dielectric layer, totaling a relatively thin 150.0 nm). Common source and drain regions can also be constructed using a sacrificial material that is replaced in a post-metal-replacement step.

於此揭露的三維”水平”NOR記憶體組的FeFETs具有顯著的優點,因為它們在構建本文公開的三維記憶體結構(例如,記憶體結構1300、1500、1600或1700)時,為鐵電性儲存層(例如圖15(d)、16(d)或17(j)中的鐵電性儲存層271)提供了相對較大的表面積,同時由於其相對於基板的垂直方向之優點,僅在半導體基板上需要非常小的佔地面積。這種較大的表面積在抹除及寫入狀態下提供了電壓的緊密分佈,而在高度縮放平面(highly-scaled planar)的FeFET中很難實現。 The FeFETs of the three-dimensional "horizontal" NOR memory set disclosed herein have significant advantages because they are ferroelectric when constructing the three-dimensional memory structures disclosed herein (e.g., memory structures 1300, 1500, 1600, or 1700). A storage layer (eg, ferroelectric storage layer 271 in Figures 15(d), 16(d), or 17(j)) provides a relatively large surface area and, due to the advantage of its vertical orientation relative to the substrate, is only in A very small footprint is required on a semiconductor substrate. This larger surface area provides a tight distribution of voltage during erase and write states, which is difficult to achieve in highly-scaled planar FeFETs.

於此揭露的FeFETs通過調整在三維”水平”NOR記憶體串中的儲存電晶體,如同臨時申請案III-IV中揭露的來說明。不過,FeFETs也可以通過基本上應用本文公開的原理和方法,通過調整三維”垂直”NOR記憶體串中的儲存電晶體來形成,如同臨時申請案V中所揭露。 The FeFETs disclosed herein are demonstrated by tuning storage transistors in three-dimensional "horizontal" NOR memory strings, as disclosed in Provisional Applications III-IV. However, FeFETs can also be formed by tailoring storage transistors in three-dimensional "vertical" NOR memory strings, as disclosed in Provisional Application V, by substantially applying the principles and methods disclosed herein.

以上詳細描述提供了本發明具體實施方式的描繪,但本發明並不限於此。在本發明的範圍內可以進行許多變化和修改。舉例來說,雖然前面詳細描述說明本發明採用半導體層(例如多晶矽層)之間具有PN接面之薄膜場效電晶 體,本發明也可應用於無接面(junction-less)的電晶體。在一些實施例中,這樣的無接面電晶體可包含具有導電氧化物通道區的薄膜無接面電晶體。在一些實施例中,適合的導電金屬氧化物包含氧化鎵、氧化鋅、氧化銦(例如,銦鎵氧化鋅(IGZO)和氧化銦鋅(IZO))及使用適當的製備或包含合適的雜質進行調變或調製其電荷載子之遷移率的任何適合的導電金屬氧化物。舉例來說,在一實施例中,低電阻導電材料(例如,氮化鈦(TiN)內襯鎢(W)、鎢、鈷、鉬))之無接面電晶體提供了源極及汲極區,以及導電金屬氧化物(例如IGZO)提供了通道區,取代了具有N+多晶矽源極及汲極區以及P-多晶矽通道區之多晶矽薄膜場效電晶體。 The above detailed description provides a description of a specific implementation of the present invention, but the present invention is not limited thereto. Many variations and modifications may be made within the scope of the present invention. For example, although the above detailed description illustrates that the present invention uses a thin film field effect transistor having a PN junction between semiconductor layers (e.g., polysilicon layers), the present invention may also be applied to junction-less transistors. In some embodiments, such a junction-less transistor may include a thin film junction-less transistor having a conductive oxide channel region. In some embodiments, suitable conductive metal oxides include gallium oxide, zinc oxide, indium oxide (e.g., indium gallium zinc oxide (IGZO) and indium zinc oxide (IZO)) and any suitable conductive metal oxide whose charge carrier mobility is modulated or modulated using appropriate preparation or including appropriate dopants. For example, in one embodiment, a junction-less transistor of a low-resistance conductive material (e.g., tungsten (W), tungsten, cobalt, molybdenum lined with titanium nitride (TiN)) provides source and drain regions, and a conductive metal oxide (e.g., IGZO) provides a channel region, replacing a polysilicon thin film field effect transistor having N + polysilicon source and drain regions and a P - polysilicon channel region.

以下申請權利範圍闡述了本發明。 The following claims describe the invention.

203:隔離介電層(絕緣介電層) 203: Isolation dielectric layer (insulating dielectric layer)

204a、204e:導體層 204a, 204e: Conductor layer

204b:第一電晶體材料層(N+摻雜非晶矽或多晶矽層) 204b: first transistor material layer (N + doped amorphous silicon or polycrystalline silicon layer)

204d:第二電晶體材料層(N+摻雜非晶矽或多晶矽層) 204d: second transistor material layer (N + doped amorphous silicon or polycrystalline silicon layer)

204c:氧化層 204c: Oxide layer

250:通道區(第三電晶體材料層) 250: Channel region (third transistor material layer)

254-1~254-4:NOR記憶體組 254-1~254-4: NOR memory group

270:通道材料(第三電晶體材料層) 270: Channel material (third transistor material layer)

271:鐵電性儲存層 271: Ferroelectric storage layer

272:閘電極或局部字元線(導電材料) 272: Gate electrode or local word line (conductive material)

1350:三維陣列 1350: Three-dimensional array

1351-1、1351-2:主動堆疊 1351-1, 1351-2: Active stacking

1353:鐵電性場效電晶體(FeFET) 1353: Ferroelectric field effect transistor (FeFET)

Claims (32)

一種在一半導體基板之一平面上形成的三維陣列中記憶體組,該記憶體組包括:一第一、一第二及一第三電晶體材料層,該第三電晶體材料層被形成以接觸該第一電晶體材料層及該第二電晶體材料層;複數個導體;以及一鐵電性儲存層,位於該些導體及該第三電晶體材料層之間,其中(i)該第一、該第二及該第三電晶體材料層、該鐵電性儲存層及該些導體形成用於該記憶體組的複數個鐵電性場效電晶體(FeFET);(ii)該第一及第二電晶體材料層分別地提供一共位元線及一共源線給該些鐵電性場效電晶體;(iii)該第三電晶體材料層提供一通道區給該記憶體組中每一個該鐵電性場效電晶體;(iv)該鐵電性儲存層提供一極化層給每一個該鐵電性場效電晶體;以及(v)每一個該導體提供一閘電極給該記憶體組中該些鐵電性場效電晶體的一者;其中,該鐵電性儲存層之至少一部份利用一選擇性原子層沉積技術沉積在一絕緣介電層上。 A memory group in a three-dimensional array formed on a plane of a semiconductor substrate. The memory group includes: a first, a second and a third transistor material layer. The third transistor material layer is formed to contacting the first layer of transistor material and the second layer of transistor material; a plurality of conductors; and a ferroelectric storage layer located between the conductors and the third layer of transistor material, wherein (i) the 1. The second and third transistor material layers, the ferroelectric storage layer and the conductors form a plurality of ferroelectric field effect transistors (FeFETs) for the memory group; (ii) the first The first and second transistor material layers respectively provide a common bit line and a common source line for the ferroelectric field effect transistors; (iii) the third transistor material layer provides a channel region for the memory group each of the ferroelectric field effect transistors; (iv) the ferroelectric storage layer provides a polarization layer to each of the ferroelectric field effect transistors; and (v) each of the conductors provides a gate electrode to One of the ferroelectric field effect transistors in the memory set; wherein at least a portion of the ferroelectric storage layer is deposited on an insulating dielectric layer using a selective atomic layer deposition technique. 如請求項1的記憶體組,其中該第一及該第二電晶體材料層各包含一第一導電型態之一半導體層,及該第三電晶體材料層包含不同於該第一導電型態的一第二導電型態之一半導體層。 The memory set of claim 1, wherein the first and second transistor material layers each include a semiconductor layer of a first conductivity type, and the third transistor material layer includes a semiconductor layer different from the first conductivity type. A semiconductor layer of a second conductivity type. 如請求項1的記憶體組,其中該第一及該第二電晶體材料層各包含一導體層,及該第三電晶體材料層包含一導體金屬氧化物。 The memory set of claim 1, wherein the first and second transistor material layers each include a conductor layer, and the third transistor material layer includes a conductive metal oxide. 如請求項3的記憶體組,其中該導體層包含一或多個氮化鈦內襯鎢(titanium nitride-lined tungsten)、鎢、鈷及鉬。 A memory device as claimed in claim 3, wherein the conductive layer comprises one or more of titanium nitride-lined tungsten, tungsten, cobalt and molybdenum. 如請求項3的記憶體組,其中該導體金屬氧化物包含一或多個:氧化鎵、氧化鋅及氧化銦。 A memory set as claimed in claim 3, wherein the conductive metal oxide comprises one or more of: gallium oxide, zinc oxide and indium oxide. 如請求項5的記憶體組,其中該氧化銦包含一或多個:銦鎵鋅氧化物(IGZO)、銦鋅氧化物(IZO)和任何具有可藉由包含一或多種雜質來調變電荷載子遷移率的導電金屬氧化物。 The memory set of claim 5, wherein the indium oxide includes one or more of: indium gallium zinc oxide (IGZO), indium zinc oxide (IZO) and any material capable of modulating electrical current by including one or more impurities. Charge carrier mobility in conductive metal oxides. 如請求項1的記憶體組,其中該記憶體組的該些鐵電性場效電晶體(FeFET)組成一反或閘(NOR)記憶體組。 For example, the memory group of claim 1, wherein the ferroelectric field effect transistors (FeFETs) of the memory group form a NOR memory group. 如請求項1的記憶體組,其中該鐵電性儲存層包含一界面介電層及一鐵電性材料層。 The memory set of claim 1, wherein the ferroelectric storage layer includes an interface dielectric layer and a ferroelectric material layer. 如請求項8的記憶體組,其中該界面介電層包含一具有一大於3.9介電系數的金屬。 A memory device as claimed in claim 8, wherein the interface dielectric layer comprises a metal having a dielectric constant greater than 3.9. 如請求項8的記憶體組,其中該界面介電層包含一或多個氧化鋯(ZrO2)、氮氧化矽(SiON)、氮化矽(Si3N4)或氧化矽(SiO2)。 The memory set of claim 8, wherein the interface dielectric layer includes one or more zirconium oxide (ZrO 2 ), silicon oxynitride (SiON), silicon nitride (Si 3 N 4 ) or silicon oxide (SiO 2 ) . 如請求項8的記憶體組,其中該界面介電層具有一1.5及2.0之間的折射率。 The memory set of claim 8, wherein the interface dielectric layer has a refractive index between 1.5 and 2.0. 如請求項8的記憶體組,其中該界面介電層的厚度在0.0至2.0奈米之間。 As in the memory set of claim 8, the thickness of the interface dielectric layer is between 0.0 and 2.0 nanometers. 如請求項8的記憶體組,其中該界面介電層包含當該鐵電性材料層直接沉積在該第三電晶體材料層上固有地形成的一原始氧化物。 The memory set of claim 8, wherein the interface dielectric layer includes a primary oxide that is inherently formed when the layer of ferroelectric material is deposited directly on the layer of third transistor material. 如請求項8的記憶體組,其中該界面介電層包含氧化矽(SiO2)及一高k介電材料。 The memory set of claim 8, wherein the interface dielectric layer includes silicon oxide (SiO 2 ) and a high- k dielectric material. 如請求項14的記憶體組,其中該高k介電材料包含氧化鋯(ZrO2)。 The memory device of claim 14, wherein the high- k dielectric material comprises zirconium oxide (ZrO 2 ). 如請求項8的記憶體組,其中該鐵電性材料層包含一鋯摻雜氧化鉿(HfO2:Zr或HZO)、一鋁摻雜氧化鉿(HfO2:Al)、一矽摻雜氧化鉿(HfO2:Si)或一鑭摻雜氧化鉿(HfO2:La),或其任何組合。 The memory set of claim 8, wherein the ferroelectric material layer comprises zirconium-doped bismuth oxide (HfO 2 :Zr or HZO), aluminum-doped bismuth oxide (HfO 2 :Al), silicon-doped bismuth oxide (HfO 2 :Si), or onium-doped bismuth oxide (HfO 2 :La), or any combination thereof. 如請求項16的記憶體組,其中該鋯摻雜氧化鉿(HZO)包含鉿鋯氧化物(HfZrO)、鉿鋯氧氮化物(HfZrON)、鉿鋯鋁氧化物(HfZrAlO)、其任何組合,或任何包含鋯雜質的其他鉿氧化物。 A memory set as claimed in claim 16, wherein the zirconium-doped zirconium oxide (HZO) comprises zirconium oxide (HfZrO), zirconium oxynitride (HfZrON), zirconium aluminum oxide (HfZrAlO), any combination thereof, or any other zirconium oxide containing zirconium impurities. 如請求項8的記憶體組,其中該三維陣列的記憶體組被組成使得每一個該鐵電性場效電晶體(FeFET)的該鐵電性材料層與其他記憶體組中的該些鐵電性場效電晶體(FeFETs)的該鐵電性材料層分離。 A memory group as claimed in claim 8, wherein the three-dimensional array of memory groups is configured so that the ferroelectric material layer of each ferroelectric field effect transistor (FeFET) is separated from the ferroelectric material layers of the ferroelectric field effect transistors (FeFETs) in other memory groups. 如請求項1的記憶體組,其中該鐵電性儲存層使用原子層沉積(ALD)技術在200℃至330℃之間的溫度下沉積在該第三電晶體材料層上。 The memory set of claim 1, wherein the ferroelectric storage layer is deposited on the third transistor material layer using atomic layer deposition (ALD) technology at a temperature between 200°C and 330°C. 如請求項19的記憶體組,其中該溫度在270℃及330℃之間。 A memory array as claimed in claim 19, wherein the temperature is between 270°C and 330°C. 如請求項19的記憶體組,其中該鐵電性儲存層在一溫度於400℃及1000℃之間下經過一沉積後退火步驟。 A memory device as claimed in claim 19, wherein the ferroelectric storage layer undergoes a post-deposition annealing step at a temperature between 400°C and 1000°C. 如請求項1的記憶體組,其中每一個該導體包含鎢(W)、鉬(Mo)、鋁(Al)、釕(Ru)、鉭(Ta)、鈦(Ti)或其任何組合或其合金。 A memory set as claimed in claim 1, wherein each of the conductors comprises tungsten (W), molybdenum (Mo), aluminum (Al), ruthenium (Ru), tantalum (Ta), titanium (Ti) or any combination thereof or alloy thereof. 如請求項1的記憶體組,其中每一個該鐵電性場效電晶體(FeFET)的一導通狀態臨界(conducting state)電壓大於0.0伏特。 For example, in the memory set of claim 1, a conducting state critical voltage of each ferroelectric field effect transistor (FeFET) is greater than 0.0 volts. 如請求項23的記憶體組,其中該第三電晶體材料層是硼摻雜。 A memory device as claimed in claim 23, wherein the third transistor material layer is boron-doped. 如請求項1的記憶體組,其中每一個該鐵電性場效電晶體(FeFET)在其導通狀態之臨界電壓及在其非導通狀態之臨界電壓之間具有一1.0伏特至2.0伏特的窗期。 A memory set as claimed in claim 1, wherein each of the ferroelectric field effect transistors (FeFET) has a window period of 1.0 volts to 2.0 volts between the critical voltage of its conducting state and the critical voltage of its non-conducting state. 如請求項1的記憶體組,其中該第三電晶體材料層在一寫入操作期間是浮動,其中該寫入操作與偏壓一同進行以提供一閘極引致汲極漏電(GIDL)效應。 The memory set of claim 1, wherein the third transistor material layer is floating during a write operation, wherein the write operation is performed with a bias voltage to provide a gate induced drain leakage (GIDL) effect. 如請求項1的記憶體組,其中該三維陣列中記憶體組藉由該絕緣介電層彼此分離。 The memory group of claim 1, wherein the memory groups in the three-dimensional array are separated from each other by the insulating dielectric layer. 如請求項1的記憶體組,其中該選擇性原子層沉積技術涉及自組裝單層(SAMs)作用在該絕緣介電層上。 A memory device as claimed in claim 1, wherein the selective atomic layer deposition technique involves self-assembled monolayers (SAMs) acting on the insulating dielectric layer. 如請求項28的記憶體組,其中該自組裝單層(SAMs)包含具有羥基末端的物質。 The memory set of claim 28, wherein the self-assembled monolayers (SAMs) comprise substances with hydroxyl termini. 如請求項1的記憶體組,其中該記憶體組的該些鐵電性場效電晶體(FeFETs)沿著一基本上平行於該平面之方向排列。 The memory set of claim 1, wherein the ferroelectric field effect transistors (FeFETs) of the memory set are arranged along a direction substantially parallel to the plane. 如請求項1的記憶體組,其中該記憶體組的該些鐵電性場效電晶體(FeFETs)沿著一基本上垂直於該平面之方向排列。 The memory set of claim 1, wherein the ferroelectric field effect transistors (FeFETs) of the memory set are arranged along a direction substantially perpendicular to the plane. 如請求項1的記憶體組,其中每一個該鐵電性場效電晶體(FeFET)的該通道區之一表面積大於在該半導體基板之該平面上的該鐵電性場效電晶體(FeFET)的佔位面積。 The memory set of claim 1, wherein a surface area of the channel region of each ferroelectric field effect transistor (FeFET) is larger than that of the ferroelectric field effect transistor (FeFET) on the plane of the semiconductor substrate. ) area.
TW111105758A 2021-02-22 2022-02-17 Thin-film storage transistor with ferroelectric storage layer TWI836349B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163152266P 2021-02-22 2021-02-22
US63/152,266 2021-02-22
US202163153273P 2021-02-24 2021-02-24
US63/153,273 2021-02-24

Publications (2)

Publication Number Publication Date
TW202240869A TW202240869A (en) 2022-10-16
TWI836349B true TWI836349B (en) 2024-03-21

Family

ID=82931163

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111105758A TWI836349B (en) 2021-02-22 2022-02-17 Thin-film storage transistor with ferroelectric storage layer

Country Status (2)

Country Link
TW (1) TWI836349B (en)
WO (1) WO2022178083A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW449924B (en) * 1999-04-29 2001-08-11 Symetrix Corp Ferroelectric field effect transistors for nonvolatile memory applications having functional gradient material and method for making same
US6627503B2 (en) * 2000-02-11 2003-09-30 Sharp Laboratories Of America, Inc. Method of forming a multilayer dielectric stack
US20140112075A1 (en) * 2012-10-24 2014-04-24 Sandisk Technologies Inc. Pre-Charge During Programming For 3D Memory Using Gate-Induced Drain Leakage
US20180374929A1 (en) * 2017-06-27 2018-12-27 SK Hynix Inc. Ferroelectric memory devices
WO2019066948A1 (en) * 2017-09-29 2019-04-04 Intel Corporation Double-gated ferroelectric field-effect transistor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7687891B2 (en) * 2007-05-14 2010-03-30 Infineon Technologies Ag Diode having one or more zones of a first conductivity type and one or more zones of a second conductivity type each located within a layer of the second conductivity type
KR101468594B1 (en) * 2008-07-31 2014-12-04 삼성전자주식회사 Oxide Semiconductor and Thin Film Transistor comprising the same
KR101476817B1 (en) * 2009-07-03 2014-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device including transistor and manufacturing method thereof
US10127964B2 (en) * 2014-07-03 2018-11-13 Yale University Circuitry for ferroelectric FET-based dynamic random access memory and non-volatile memory
US20170062456A1 (en) * 2015-08-31 2017-03-02 Cypress Semiconductor Corporation Vertical division of three-dimensional memory device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW449924B (en) * 1999-04-29 2001-08-11 Symetrix Corp Ferroelectric field effect transistors for nonvolatile memory applications having functional gradient material and method for making same
US6627503B2 (en) * 2000-02-11 2003-09-30 Sharp Laboratories Of America, Inc. Method of forming a multilayer dielectric stack
US20140112075A1 (en) * 2012-10-24 2014-04-24 Sandisk Technologies Inc. Pre-Charge During Programming For 3D Memory Using Gate-Induced Drain Leakage
US20180374929A1 (en) * 2017-06-27 2018-12-27 SK Hynix Inc. Ferroelectric memory devices
WO2019066948A1 (en) * 2017-09-29 2019-04-04 Intel Corporation Double-gated ferroelectric field-effect transistor

Also Published As

Publication number Publication date
WO2022178083A1 (en) 2022-08-25
TW202240869A (en) 2022-10-16

Similar Documents

Publication Publication Date Title
US10043567B2 (en) Multilevel ferroelectric memory cell for an integrated circuit
CN107408558B (en) Memory cell with high-k charge trapping layer
US10211223B2 (en) Vertical ferroelectric memory device and a method for manufacturing thereof
Walker Sub-50-nm dual-gate thin-film transistors for monolithic 3-D flash
US10790287B2 (en) Reducing gate induced drain leakage in DRAM wordline
TWI415269B (en) High-κ capped blocking dieletric bandgap engineered sonos and monos
TWI451562B (en) Methods of operating non-volatile memory cells having an oxide/nitride multilayer insulating structure
TWI251860B (en) Semiconductor memory device and manufacturing method for the same
CN107408498B (en) Method of forming a semiconductor device having a high-k charge trapping layer
US20160086970A1 (en) Three-dimensional non-volatile nor-type flash memory
US20220173251A1 (en) Thin-film storage transistor with ferroelectric storage layer
Vorotilov et al. Ferroelectric memory
US10685695B2 (en) Semiconductor device
EP2442364A1 (en) Gate stack structure for semiconductor flash memory device and preparation method thereof
TW200917467A (en) Highly scalable thin film transistor
CN111223873A (en) Asymmetric ferroelectric functional layer array and preparation method of ferroelectric tunnel junction multi-value storage unit
Kim et al. High performance ferroelectric field-effect transistors for large memory-window, high-reliability, high-speed 3D vertical NAND flash memory
CN106024889A (en) Semiconductor device and manufacturing method thereof
CN113994480A (en) Assembly having conductive structure comprising three or more different materials
TW200924168A (en) Planar double gate transistor storage cell
TWI767512B (en) Cool electron erasing in thin-film storage transistors
TWI836349B (en) Thin-film storage transistor with ferroelectric storage layer
US9337047B2 (en) Semiconductor device and method of making semiconductor device
CN116669427A (en) Electronic devices including pillars containing memory material, and related memory devices, systems, and methods
US10361093B2 (en) Multi time programmable memories using local implantation in high-K/ metal gate technologies