TW202240869A - Thin-film storage transistor with ferroelectric storage layer - Google Patents

Thin-film storage transistor with ferroelectric storage layer Download PDF

Info

Publication number
TW202240869A
TW202240869A TW111105758A TW111105758A TW202240869A TW 202240869 A TW202240869 A TW 202240869A TW 111105758 A TW111105758 A TW 111105758A TW 111105758 A TW111105758 A TW 111105758A TW 202240869 A TW202240869 A TW 202240869A
Authority
TW
Taiwan
Prior art keywords
layer
memory group
memory
ferroelectric
oxide
Prior art date
Application number
TW111105758A
Other languages
Chinese (zh)
Other versions
TWI836349B (en
Inventor
喬治 沙瑪奇薩
維諾 普拉亞
伍意亨利 簡
伊萊 哈拉利
Original Assignee
美商森恩萊斯記憶體公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商森恩萊斯記憶體公司 filed Critical 美商森恩萊斯記憶體公司
Publication of TW202240869A publication Critical patent/TW202240869A/en
Application granted granted Critical
Publication of TWI836349B publication Critical patent/TWI836349B/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/223Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements using MOS with ferroelectric gate insulating film
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/225Auxiliary circuits
    • G11C11/2275Writing or programming circuits or methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40111Multistep manufacturing processes for data storage electrodes the electrodes comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/516Insulating materials associated therewith with at least one ferroelectric layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • H10B51/20Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors characterised by the three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • H10B51/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors characterised by the memory core region
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0466Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Volatile Memory (AREA)

Abstract

By harnessing the ferroelectric phases in the charge storage material of thin-film storage transistors of a 3-dimensional array of NOR memory strings, the storage transistors are adapted to operate as ferroelectric field-effect transistors (“FeFETs”), thereby providing a very high-speed, high-density memory array.

Description

具有鐵電性儲存層之薄膜儲存電晶體Thin film storage transistor with ferroelectric storage layer

本發明是關於一種可規劃為三維記憶陣列之薄膜儲存電晶體。特別地,本發明關於可包括一鐵電性儲存層之薄膜電晶體。The invention relates to a thin film storage transistor that can be programmed as a three-dimensional memory array. In particular, the invention relates to thin film transistors which may include a ferroelectric storage layer.

根據本發明一實施例,一儲存電晶體具有一穿隧介電層及一通道區及一閘極之間的一電荷捕捉層,其中電荷捕捉層具有一導帶補償差(conduction band offset)---相對於一n型矽導帶---當施加一寫入電壓時,小於穿隧介電層中穿隧能障的低點,使得電子直接穿隧進入電荷捕捉層。選擇電荷捕捉層的導帶補償差以具有-1.0 eV及2.3 eV之間的值。在一些實施例中,電荷補捉層可包含一或多種:氧化鉿(HfO 2)、氧化釔(Y 2O 3)、氮化矽(Si 3N 4)、氧化鋯(ZrO 2)、氧化鋯(ZrSiO 4)、氧化鑭(La 2O 3)、氧化鉭(Ta 2O 5)、氧化鈰(CeO 2)、氧化鈦 (TiO 2)、氧化鍶鈦 (SrTiO 3)、其他半導體和金屬奈米點(例如矽、釕、鉑和鈷奈米點)。 According to an embodiment of the present invention, a storage transistor has a tunneling dielectric layer and a charge trapping layer between a channel region and a gate, wherein the charge trapping layer has a conduction band offset- --Compared to an n-type silicon conduction band---When a write voltage is applied, the low point of the tunneling energy barrier in the tunneling dielectric layer is lower, allowing electrons to tunnel directly into the charge trapping layer. The conduction band compensation difference of the charge trapping layer is selected to have a value between -1.0 eV and 2.3 eV. In some embodiments, the charge trapping layer may include one or more of: hafnium oxide (HfO 2 ), yttrium oxide (Y 2 O 3 ), silicon nitride (Si 3 N 4 ), zirconium oxide (ZrO 2 ), oxide Zirconium (ZrSiO 4 ), Lanthanum Oxide (La 2 O 3 ), Tantalum Oxide (Ta 2 O 5 ), Cerium Oxide (CeO 2 ), Titanium Oxide (TiO 2 ), Strontium Titanium Oxide (SrTiO 3 ), Other Semiconductors and Metals Nanodots (e.g. silicon, ruthenium, platinum and cobalt nanodots).

根據本發明一實施例,儲存電晶體可進一步包含穿隧介電層及電荷捕捉層之間的一能障層,能障層具有一導帶補償差,其小於電荷捕捉層之導帶補償差。能障層也可包含一材料,其具有一位於1.0 eV及2.3 eV之間的導帶補償差,最好是-1.0 eV及1.5 eV之間,例如一或多種:氧化鉿(HfO 2)、氧化釔(Y 2O 3)、氮化矽(Si 3N 4)、氧化鋯(ZrO 2)、氧化鋯(ZrSiO 4)、氧化鉭(Ta 2O 5)、氧化鈰(CeO 2)、氧化鈦(TiO 2)、鍶 氧化鈦 (SrTiO 3)、其他半導體和金屬奈米點(例如矽、釕、鉑和鈷奈米點)。 According to an embodiment of the present invention, the storage transistor may further include an energy barrier layer between the tunneling dielectric layer and the charge trapping layer, and the energy barrier layer has a conduction band compensation difference which is smaller than that of the charge trapping layer. . The barrier layer may also comprise a material having a conduction band compensation difference between 1.0 eV and 2.3 eV, preferably between -1.0 eV and 1.5 eV, such as one or more of: hafnium oxide (HfO 2 ), Yttrium oxide (Y 2 O 3 ), silicon nitride (Si 3 N 4 ), zirconia (ZrO 2 ), zirconia (ZrSiO 4 ), tantalum oxide (Ta 2 O 5 ), cerium oxide (CeO 2 ), oxide Titanium (TiO 2 ), strontium titanium oxide (SrTiO 3 ), other semiconductor and metal nanodots (such as silicon, ruthenium, platinum and cobalt nanodots).

在一實施例中,當基本上小於寫入電壓的一電壓橫跨施加於通道區及閘極,電子經過一寬於穿隧介電層之厚度的能障,藉著福勒-諾德漢(Fowler-Nordheim)機制穿隧進入電荷捕捉層。In one embodiment, when a voltage substantially less than the write voltage is applied across the channel region and the gate, electrons pass through an energy barrier wider than the thickness of the tunneling dielectric layer, by Fowler-Nordheim (Fowler-Nordheim) mechanism tunneling into the charge trapping layer.

在一實施例中,穿隧介電層可以薄如5-40埃(Å),且可由氧化矽(例如SiO 2)或氮化矽形成。氧化矽穿隧介電層可以利用典型的氧化技術(例如一高溫氧化)、化學合成(例如原子層沉積)或這些技術的任何合適組合來形成。活性氧(O 2)製程可以包括臭氧以用於精確控制厚度和改善氧化物質量(例如,減少由於缺陷位導致的洩漏)。 氮化矽穿隧介電層可以利用典型的氮化技術、直接合成、化學合成(例如藉由原子層沉積)或這些技術的任何合適組合來形成。電漿製程可用於精確控制厚度和改善介電質量(例如,減少由於缺陷位引起的洩漏)。 In one embodiment, the tunneling dielectric layer may be as thin as 5-40 angstroms (Å), and may be formed of silicon oxide (eg, SiO 2 ) or silicon nitride. The silicon oxide tunneling dielectric layer can be formed using typical oxidation techniques (such as a high temperature oxidation), chemical synthesis (such as atomic layer deposition), or any suitable combination of these techniques. An active oxygen (O 2 ) process can include ozone for precise thickness control and improved oxide quality (eg, reducing leakage due to defect sites). The silicon nitride tunneling dielectric layer can be formed using typical nitridation techniques, direct synthesis, chemical synthesis (eg, by atomic layer deposition), or any suitable combination of these techniques. Plasma processing can be used to precisely control thickness and improve dielectric quality (eg, reduce leakage due to defective bits).

穿隧介電層也可另外包含一薄氧化鋁 (Al 2O 3)層(例如10埃或更薄)。在穿隧介電層中的氧化鋁層可以在非晶相中合成,以減少由於缺陷位引起的洩漏。 The tunneling dielectric layer may additionally include a thin aluminum oxide (Al 2 O 3 ) layer (eg, 10 Angstroms or less). The aluminum oxide layer in the tunneling dielectric layer can be synthesized in the amorphous phase to reduce leakage due to defect sites.

進一步,根據本發明的一實施例,在一三維陣列之記憶體組中的一記憶體組在一半導體基板之一平面上形成,包括:(a) 一第一導電型態之第一及第二半導體層;(b)一第三半導體層具有不同於第一導電型態的一第二導電型態,以接觸第一半導體層及第二半導體層;(c) 複數個導體;以及 (d) 一鐵電性儲存層位於該些導體及第三半導體層之間,其中(i) 第一、第二及第三半導體層、鐵電性儲存層及該些導體形成用於該記憶體組的複數個鐵電性場效電晶體(FeFET); (ii) 第一及第二半導體層分別地提供一共位元線及一共源線給該些鐵電性場效電晶體; (iii) 第三半導體層提供一通道區給記憶體組中每一個鐵電性場效電晶體; (iv) 鐵電性儲存層提供一極化層給每一個鐵電性場效電晶體; 以及(v) 每一個導體提供一閘電極給記憶體組中該些鐵電性場效電晶體的一者。記憶體組可以被組成水平反或閘(NOR)記憶體組。記憶體組可以是部分的三維陣列之記憶體組,其中記憶體組的薄膜鐵電性場效電晶體(FeFETs)沿著一基本上平行於該平面之方向排列而成的反或閘(NOR)組。在另一實施例中,記憶體組的該些鐵電性場效電晶體(FeFETs)沿著一基本上垂直於該平面之方向排列以形成垂直反或閘(NOR)薄膜鐵電性場效電晶體(FeFETs)組。Further, according to an embodiment of the present invention, a memory group in a memory group of a three-dimensional array is formed on a plane of a semiconductor substrate, including: (a) a first and a first conductive type Two semiconductor layers; (b) a third semiconductor layer having a second conductivity type different from the first conductivity type to contact the first semiconductor layer and the second semiconductor layer; (c) a plurality of conductors; and (d ) a ferroelectric storage layer is located between the conductors and the third semiconductor layer, wherein (i) the first, second and third semiconductor layers, the ferroelectric storage layer and the conductors are formed for the memory group A plurality of ferroelectric field effect transistors (FeFET); (ii) the first and second semiconductor layers respectively provide a common bit line and a common source line to these ferroelectric field effect transistors; (iii) the second The three semiconductor layers provide a channel region to each of the ferroelectric field effect transistors in the memory pack; (iv) the ferroelectric storage layer provides a polarization layer to each of the ferroelectric field effect transistors; and (v) Each conductor provides a gate electrode to one of the ferroelectric field effect transistors in the memory bank. The memory banks can be organized into horizontal Negative OR (NOR) memory banks. The memory bank may be part of a three-dimensional array of memory banks in which the memory bank's thin-film ferroelectric field-effect transistors (FeFETs) are aligned along a direction substantially parallel to the plane of the inverted OR gate (NOR )Group. In another embodiment, the ferroelectric field effect transistors (FeFETs) of the memory group are aligned along a direction substantially perpendicular to the plane to form a vertical negative OR (NOR) thin film ferroelectric field effect Transistor (FeFETs) groups.

在一實施例中,鐵電性儲存層可同時包含一界面介電層及一鐵電性材料層,其中界面介電層具有一介電系數在3.9至大於2500.0的範圍內,或任何大於3.9的值。界面介電層可包含一或多個氮氧化矽 (SiON)、氮化矽 (Si 3N 4) 或氧化矽 (SiO 2),提供一1.5及2.0之間的折射率。界面介電層之厚度可在0.0奈米至2.0奈米之間。界面介電層可包含氧化矽 (SiO 2)及氧化鋯 (ZrO 2)。在另一實施例中,界面介電層可包含當鐵電性材料層直接沉積在該第三半導體層上固有地形成的一原始氧化物。或者,界面介電層可包括通過對第三半導體層的表面進行化學清理,接著例如藉著脈衝臭氧或藉著在氫或氘環境中熱退火或任何本領域普通技術人員已知的其他技術進行緻密化而形成的一原始氧化物。這種處理減少了經由界面介電層的電子洩漏,並且還可減少第三半導體層和鐵電儲存層間界面處的表面態(surface states)。 In one embodiment, the ferroelectric storage layer may include an interfacial dielectric layer and a ferroelectric material layer, wherein the interfacial dielectric layer has a dielectric coefficient in the range of 3.9 to greater than 2500.0, or any value greater than 3.9 value. The interfacial dielectric layer may comprise one or more of silicon oxynitride (SiON), silicon nitride (Si 3 N 4 ) or silicon oxide (SiO 2 ), providing a refractive index between 1.5 and 2.0. The thickness of the interfacial dielectric layer can be between 0.0 nm and 2.0 nm. The interfacial dielectric layer may include silicon oxide (SiO 2 ) and zirconium oxide (ZrO 2 ). In another embodiment, the interfacial dielectric layer may include a native oxide that is inherently formed when the ferroelectric material layer is deposited directly on the third semiconductor layer. Alternatively, the interfacial dielectric layer may be formed by chemically cleaning the surface of the third semiconductor layer, followed by, for example, pulsed ozone or by thermal annealing in a hydrogen or deuterium environment or any other technique known to those of ordinary skill in the art. A primary oxide formed by densification. This treatment reduces electron leakage through the interfacial dielectric layer and also reduces surface states at the interface between the third semiconductor layer and the ferroelectric storage layer.

在一實施例中,鐵電性材料層可包含一鋯摻雜氧化鉿 (HfO 2:Zr或HZO)、一鋁摻雜氧化鉿 (HfO 2:Al)、一矽摻雜氧化鉿 (HfO 2:Si) 或一鑭摻雜氧化鉿 (HfO 2:La ),或其任何組合。HZO一詞可包含鉿鋯氧化物 (HfZrO)、鉿鋯氧氮化物 (HfZrON)、鉿鋯鋁氧化物 (HfZrAlO)、其任何組合,或任何包含鋯雜質的其他鉿氧化物。 In one embodiment, the ferroelectric material layer may include a zirconium-doped hafnium oxide (HfO 2 :Zr or HZO), an aluminum-doped hafnium oxide (HfO 2 :Al), a silicon-doped hafnium oxide (HfO 2 :Si) or a lanthanum-doped hafnium oxide (HfO 2 :La ), or any combination thereof. The term HZO may include hafnium zirconium oxide (HfZrO), hafnium zirconium oxynitride (HfZrON), hafnium zirconium aluminum oxide (HfZrAlO), any combination thereof, or any other hafnium oxide containing zirconium impurities.

包含鐵電性場效電晶體的三維陣列之記憶體組可被組成使得每一個鐵電性場效電晶體(FeFET)的鐵電性材料層與其他記憶體組中的該些鐵電性場效電晶體(FeFETs) 的鐵電性材料層分離。Memory banks comprising three-dimensional arrays of ferroelectric field effect transistors can be organized such that the ferroelectric material layer of each ferroelectric field effect transistor (FeFET) is compatible with the ferroelectric fields in other memory banks. Separation of ferroelectric material layers in FeFETs.

在一實施例中,鐵電性場效電晶體的鐵電性儲存層可使用原子層沉積(ALD)技術在200 °C 至330 °C之間的溫度下沉積在第三半導體層上,其溫度在270 °C 及330 °C之間更佳。鐵電性儲存層在一溫度於400 °C 及1000 °C之間下經過一沉積後退火步驟。In one embodiment, the ferroelectric storage layer of the ferroelectric field effect transistor may be deposited on the third semiconductor layer using atomic layer deposition (ALD) at a temperature between 200°C and 330°C, which The temperature is preferably between 270 °C and 330 °C. The ferroelectric storage layer is subjected to a post-deposition annealing step at a temperature between 400°C and 1000°C.

在一實施例中,記憶體組中的導體可以是由鎢(W)、鉬(Mo)、鋁(Al)、釕(Ru)、鉭(Ta)、鈦(Ti)、氮化鈦 (TiN)或其任何組合或其合金所形成。In one embodiment, the conductors in the memory group can be made of tungsten (W), molybdenum (Mo), aluminum (Al), ruthenium (Ru), tantalum (Ta), titanium (Ti), titanium nitride (TiN ) or any combination or alloy thereof.

本發明的薄膜鐵電性場效電晶體可具有一大於0.0伏特的導通狀態臨界(conducting state)電壓,以及在其導通狀態之臨界電壓及在其非導通狀態之臨界電壓之間的一寬窗期(例如0.5伏特至2.5伏特)。The thin film ferroelectric field effect transistor of the present invention can have a conducting state voltage greater than 0.0 volts, and a wide window between its conducting state threshold voltage and its non-conducting state threshold voltage period (eg, 0.5 volts to 2.5 volts).

根據本發明的另一實施例,一薄膜鐵電性場效電晶體(FeFET)可包含由一氧化物半導體材料形成的一通道區,及一金屬源極區或一金屬位元線。在一7.0奈米至14.0奈米厚度間之通道層的鐵電性材料可包含氧化銦鋅(InZnO或IZO),當通道區之厚度大於7.0奈米,其具有大於或等於10.0 cm 2/V的一電子遷移率。金屬源極區或金屬位元線可包含鉬。 According to another embodiment of the present invention, a thin film ferroelectric field effect transistor (FeFET) may include a channel region formed of an oxide semiconductor material, and a metal source region or a metal bit line. The ferroelectric material of the channel layer between a thickness of 7.0 nm and 14.0 nm may include indium zinc oxide (InZnO or IZO), which has a thickness greater than or equal to 10.0 cm 2 /V when the thickness of the channel region is greater than 7.0 nm. An electron mobility of . Metal source regions or metal bitlines may include molybdenum.

通過以下結合附圖的詳細描述,可以更好地理解本發明。The present invention can be better understood through the following detailed description in conjunction with the accompanying drawings.

前述相關申請案揭露一種三維陣列的反或閘(NOR)記憶體組,每一個由薄膜儲存電晶體所形成。臨時申請案III更揭露(舉例來說)製作這種三維陣列之反或閘(NOR)記憶體組的不同方法。這些三維陣列可以由(例如)一半導體基板的一平面(planar surface)上形成。在該詳細描述中,採用笛卡爾坐標系統以使得圖中所示特徵之間的空間關係更加清晰。在該坐標系統中,Z方向對應於大致垂直於該平面(planar surface)的方向,且X方向和Y方向對應的方向彼此正交並與Z方向正交。 這樣的反或閘(NOR)記憶體組之儲存電晶體可以在100奈秒(ns)或更少時間內被寫入及抹除,使其適用於典型揮發性記憶裝置的多種應用,例如動態隨機記憶(DRAM)裝置。相關申請案的這些薄膜儲存電晶體相較於典型傳統的DRAM裝置僅有幾毫秒,也具有幾分鐘的保持時間(retention time)之優點。因此,也可將這些薄膜儲存電晶體作為準揮發性(quasi-volatile)儲存電晶體。在許多應用中,這樣的準揮發性(quasi-volatile)儲存電晶體最好應該具有高耐久性(例如在10 11循環的範圍內)以及最好可以使用約8-9伏特的電壓或更低來被寫入或抹除。 The aforementioned related application discloses a three-dimensional array of Negative OR (NOR) memory groups, each of which is formed by a thin film storage transistor. Provisional Application III further discloses, for example, different methods of fabricating such three-dimensional arrays of Negative OR (NOR) memory banks. These three-dimensional arrays can be formed, for example, on a planar surface of a semiconductor substrate. In this detailed description, a Cartesian coordinate system is employed to clarify the spatial relationship between the features shown in the drawings. In the coordinate system, the Z direction corresponds to a direction substantially perpendicular to the planar surface, and the directions corresponding to the X direction and the Y direction are orthogonal to each other and to the Z direction. The storage transistors of such a NOR memory group can be written and erased in 100 nanoseconds (ns) or less, making it suitable for many applications of typical volatile memory devices, such as dynamic random access memory (DRAM) device. The thin film storage transistors of the related application also have the advantage of a retention time of several minutes compared to a typical conventional DRAM device of only a few milliseconds. Therefore, these thin film storage transistors can also be used as quasi-volatile storage transistors. In many applications, such quasi-volatile storage transistors should preferably have high durability (e.g., in the range of 10 11 cycles) and preferably be usable at voltages of about 8-9 volts or less to be written or erased.

快速寫入及快速抹除操作需要相對高的電流通過儲存電晶體之閘極堆疊。圖1為一儲存電晶體之一部分的能帶圖,其包括一通道區及一閘電極之間介電材料及儲存電荷的多種次層。圖1所示,通道區110及閘電極114之間的各種材料120允許資料儲存在儲存電晶體中。這些材料包括穿隧介電次層111、電荷捕捉次層112(例如氮化矽)及阻擋介電次層113(例如氧化矽)。電荷補捉次層112及阻擋介電次層113可以分別例如為4奈米厚。在圖1中,線101描繪在各種材料之導帶(conduction bands )中最低能量狀態,以及線102描繪在各種材料之價帶(valence bands)中最高能量狀態。在這樣的系統中,為了在100奈秒內將儲存電晶體之臨界電壓改變1伏特,需要大約每平方公分5.0安培(5.0 amps/cm 2)的一寫入電流密度。使用二氧化矽(silicon dioxide)作為穿隧介電次層111,可以通過一直接穿隧機制在10.0 MV/cm的範圍內的一中度(moderate)電場實現高電流密度。 Fast write and fast erase operations require relatively high current through the gate stack of the storage transistor. 1 is an energy band diagram of a portion of a storage transistor including a channel region and a gate electrode between dielectric materials and various sublayers for storing charge. As shown in FIG. 1, various materials 120 between the channel region 110 and the gate electrode 114 allow data to be stored in the storage transistor. These materials include a tunneling dielectric sublayer 111 , a charge trapping sublayer 112 (such as silicon nitride), and a blocking dielectric sublayer 113 (such as silicon oxide). The charge trapping sublayer 112 and the blocking dielectric sublayer 113 can be, for example, 4 nm thick respectively. In FIG. 1 , line 101 depicts the lowest energy states in the conduction bands of various materials, and line 102 depicts the highest energy states in the valence bands of various materials. In such a system, to change the threshold voltage of the storage transistor by 1 volt in 100 nanoseconds, a write current density of approximately 5.0 amperes per square centimeter (5.0 amps/cm 2 ) is required. Using silicon dioxide as the tunneling dielectric sublayer 111, high current densities can be achieved at a moderate electric field in the range of 10.0 MV/cm through a direct tunneling mechanism.

圖2為不同偏壓條件下各種二氧化矽之厚度的典型直接穿隧電流密度(閘極電流)。如圖2所示,即使通過二氧化矽層之電壓低於1.5伏特,在二氧化矽之厚度小於1.5奈米時,可實現所需高電流密度(例如5.0 amps/cm 2)。 Figure 2 shows typical direct tunneling current densities (gate currents) for various SiO2 thicknesses under different bias conditions. As shown in FIG. 2, even though the voltage across the silicon dioxide layer is lower than 1.5 volts, the desired high current density (eg, 5.0 amps/cm 2 ) can be achieved when the silicon dioxide thickness is less than 1.5 nm.

圖3(a)及圖3(b)分別描繪在寫入及抹除操作期間,電子直接穿隧進入電荷捕捉次層112及躍出電荷捕捉次層112。在圖3(a)中所示,通過閘電極114及通道區110的施加寫入電壓降低了相對於通道區110的穿隧介電次層111、電荷捕捉次層112及阻擋介電次層113的導帶。特別地是,電荷捕捉次層112之導帶中的最低能階稍低於通道區110之導帶中的最低能階,以令位在通道區110之導帶中最低能階上具有能量的電子直接穿隧進入電荷捕捉次層112,如圖3(a)中箭頭301所示。FIG. 3( a ) and FIG. 3( b ) depict electrons tunneling directly into and out of the charge-trapping sublayer 112 during write and erase operations, respectively. As shown in FIG. 3(a), the applied write voltage through the gate electrode 114 and the channel region 110 reduces the tunneling dielectric sublayer 111, the charge trapping sublayer 112 and the blocking dielectric sublayer relative to the channel region 110. 113 conduction band. In particular, the lowest energy level in the conduction band of the charge trapping sublayer 112 is slightly lower than the lowest energy level in the conduction band of the channel region 110, so that bits having energy at the lowest energy level in the conduction band of the channel region 110 The electrons directly tunnel into the charge trapping sublayer 112, as shown by arrow 301 in FIG. 3(a).

同樣地,如圖3(b)所示,通過閘電極114及通道區110的施加抹除電壓提高了相對於通道區110的穿隧介電次層111、電荷捕捉次層112及阻擋介電次層113的導帶中最低能階。電場賦予能量給在電荷捕捉次層112中電荷捕捉點之允許能階下的電子,以直接穿隧進入通道區110,如圖3(b)中箭頭302所示。Similarly, as shown in FIG. 3(b), the application of the erase voltage through the gate electrode 114 and the channel region 110 improves the tunneling dielectric sublayer 111, the charge trapping sublayer 112 and the blocking dielectric layer relative to the channel region 110. The lowest energy level in the conduction band of the sublayer 113 . The electric field imparts energy to electrons at the allowable energy levels of the charge trapping sites in the charge trapping sublayer 112 to tunnel directly into the channel region 110, as indicated by arrow 302 in FIG. 3(b).

如圖3(a)及圖3(b)描繪之通過電子直接穿隧機制可實現快速寫入及抹除。相對的,通過電洞進行抹除是一緩慢的機制。在一浮動基板(floating-substrate)之準揮發儲存單元中(例如相關申請案所揭露的薄膜儲存電晶體),舉例來說,通道區110中電洞不足以提供一適當的電洞電流進入電荷捕捉次層112;同樣的這種儲存電晶體之抹除機制將電子由電荷捕捉次層112拉出。Fast writing and erasing can be achieved by direct electron tunneling mechanism as depicted in Figure 3(a) and Figure 3(b). In contrast, erasing through holes is a slow mechanism. In a floating-substrate quasi-volatile storage unit (such as the thin-film storage transistor disclosed in the related application), for example, the holes in the channel region 110 are not enough to provide a suitable hole current into the charge Trapping sublayer 112; the same erasing mechanism of the storage transistor pulls electrons out of the charge trapping sublayer 112.

在一儲存電晶體中,位於抹除狀態(erased state)及寫入狀態(programmed state)的儲存電晶體之臨界電壓之間的電壓差被稱為「寫入窗期(programming window)」。寫入窗期隨著儲存電晶體被寫入及抹除之循環數量而縮小或關閉。這種寫入窗期的縮小是由於例如介面狀態形成而導致在通道區110及穿隧介電111之間的介面劣化。寫入窗期的縮小也可能因為在其他材料介面處例如電荷捕捉次層112及阻擋介電次層113之間進行電荷捕捉而導致。在儲存電晶體無法維持一可接受的寫入窗期之前,儲存電晶體的持久性指的是寫入-抹除的循環數量。如圖3(a)所示,由通道區110直接穿隧至電荷捕捉次層112的電子具有低能量以進入電荷捕捉次層112,因此它們僅喪失一小部分在電荷捕捉次層112中最低允許能量狀態下的能量。(也就是說,在寫入電壓的存在下,通道區110及電荷捕捉次層112之導帶中最低能階是非常接近的。)這些能量損耗不會對電荷捕捉次層112引起任何明顯的傷害。相對的,如圖3(b)描繪,在一抹除操作期間,通過電子進入通道區110的能量損耗則明顯大很多。巨大的能量損耗會在通道區110產生高能量電洞(energetic holes)「熱電洞(hot holes)」,其被抹除電壓之電場驅動而朝向閘電極114。這種熱電洞在通道區110及穿隧介電次層111之間的介面處造成介面陷阱(interface traps)。這些介面陷阱對於儲存電晶體的持久性有害,事實上可能是關閉寫入窗期的主要肇因。本領域相關知識人員也可以知道被稱為「陽極熱電洞注入機制」的熱電洞現象提供了一種介電擊穿模型。In a storage transistor, the voltage difference between the threshold voltages of the storage transistor in an erased state and a programmed state is called a "programming window". The write window shrinks or closes with the number of cycles that the storage transistor is written and erased. This shrinking of the write window is due to the degradation of the interface between the channel region 110 and the tunneling dielectric 111 due to, for example, the formation of an interface state. The shrinking of the write window may also be caused by charge trapping at other material interfaces such as between the charge trapping sublayer 112 and the blocking dielectric sublayer 113 . The endurance of a storage transistor refers to the number of write-erase cycles before the storage transistor fails to maintain an acceptable write window. As shown in FIG. 3(a), the electrons that tunnel directly from the channel region 110 to the charge trapping sublayer 112 have low energy to enter the charge trapping sublayer 112, so they only lose a small portion of the electrons that are lowest in the charge trapping sublayer 112. The energy in the energy state is allowed. (That is, the lowest energy levels in the conduction bands of channel region 110 and charge-trapping sublayer 112 are very close in the presence of a write voltage.) These energy losses do not cause any appreciable effect on charge-trapping sublayer 112. harm. In contrast, as depicted in FIG. 3( b ), during an erase operation, the energy loss through electrons entering the channel region 110 is significantly greater. The huge energy loss will generate energetic holes (hot holes) in the channel region 110, which are driven towards the gate electrode 114 by the electric field of the erase voltage. Such hot holes cause interface traps at the interface between the channel region 110 and the tunneling dielectric sublayer 111 . These interface traps are detrimental to the durability of storage transistors and may in fact be the main cause of closing the write window. Those skilled in the art will also know that the hot hole phenomenon known as the "anode hot hole injection mechanism" provides a dielectric breakdown model.

圖4描繪在儲存電晶體中寫入窗期超過10 9寫入及抹除循環的演化,其圖示了寫入狀態臨界電壓401及抹除狀態臨界電壓402。 FIG. 4 depicts the evolution of the write window over 10 9 write and erase cycles in a storage transistor, which illustrates the write state threshold voltage 401 and the erase state threshold voltage 402 .

本發明改善了儲存電晶體的持久度,以超過10 11寫入-抹除循環,藉著利用一裝置結構,在一所需低能量範圍內(稱為「冷電子」),確保電子穿隧出一電荷捕捉層進入儲存電晶體之通道區(例如在一抹除操作期間),使得最後的電洞產生也都是低能量,因此對寫入窗期的損害減少。裝置結構提供一大量超過1.0 amps/cm 2(例如5.0 amps/cm 2)的直接穿隧寫入電流密度。本發明特別有利於使用在三維記憶結構中形成薄膜儲存電晶體之儲存層,例如前述相關申請案所揭露在三維陣列之反或閘記憶串中的準揮發性儲存電晶體。 The present invention improves the endurance of storage transistors to exceed 10 11 write-erase cycles by utilizing a device structure that ensures electron tunneling in a desired low energy range (called "cold electrons") Exiting a charge-trapping layer into the channel region of the storage transistor (eg during an erase operation), the final hole generation is also low energy, thus reducing damage to the write window. The device structure provides a direct tunneling write current density substantially in excess of 1.0 amps/cm 2 (eg, 5.0 amps/cm 2 ). The present invention is particularly beneficial to use the storage layer of thin-film storage transistors formed in three-dimensional memory structures, such as the quasi-volatile storage transistors disclosed in the NOR memory strings of three-dimensional arrays disclosed in the aforementioned related applications.

本發明之一實施例由圖5之模型所描繪,其示出一示例之儲存電晶體的導帶邊界511及價帶邊界512,其具有通道區501、穿隧介電層502及電荷捕捉層503。如圖5所示,箭頭514表示電子直接由電荷捕捉層503穿隧至通道區501。電荷捕捉層503之導帶中最低能階與通道區501之導帶中最低能階之間的能量差(導帶補償差(conduction band offset)),如符號515所指,是一電子穿隧所預期的能量損失。An embodiment of the present invention is depicted by the model of FIG. 5, which shows a conduction band boundary 511 and a valence band boundary 512 of an exemplary storage transistor having a channel region 501, a tunneling dielectric layer 502, and a charge trapping layer. 503. As shown in FIG. 5 , an arrow 514 indicates that electrons directly tunnel from the charge trapping layer 503 to the channel region 501 . The energy difference (conduction band offset) between the lowest energy level in the conduction band of the charge trapping layer 503 and the lowest energy level in the conduction band of the channel region 501, as indicated by symbol 515, is an electron tunneling expected energy loss.

本發明藉著嚴選一穿隧介電材料及一電荷捕捉介電材料的組合材料,以獲得相對於儲存電晶體之半導體基板(也就是通道區)在這些層所需的導帶補償差。圖6(a)為在儲存電晶體中基板501、穿隧介電層502及電荷捕捉層503的導帶之最低能階。圖6(b)為在未施加一電壓下,儲存電晶體中前述層的導帶之最低能階。圖6(c)為當施加一抹除電壓時,基板501及電荷捕捉層503之間的電子能量偏移(electron energy offset)515。電子能量偏移515取決於基板501及穿隧介電層502及電荷捕捉層中503中每一個之間的導帶補償差,以及取決於抹除操作所施加的電壓。如圖6(c)所示,對於穿隧介電層502而言,使用不同的電荷捕捉材料作為電荷捕捉層503,具有相對於基板層501不同的導帶補償差,造成到達基板501之穿隧電子的能量損失更大或更小。同樣地,對於電荷捕捉層503而言,使用不同的穿隧介電材料作為穿隧介電層502,具有相對於基板層501不同的導帶補償差,也造成了到達基板501之穿隧電子的能量損失更大或更小。The present invention carefully selects a combination of a tunneling dielectric material and a charge trapping dielectric material to obtain the required conduction band compensation difference in these layers relative to the semiconductor substrate (that is, the channel region) of the storage transistor. FIG. 6( a ) is the lowest energy level of the conduction bands of the substrate 501 , the tunneling dielectric layer 502 and the charge trapping layer 503 in the storage transistor. Fig. 6(b) is the lowest energy level of the conduction band of the aforementioned layers in the storage transistor without applying a voltage. FIG. 6( c ) shows the electron energy offset 515 between the substrate 501 and the charge trapping layer 503 when an erase voltage is applied. The electron energy shift 515 depends on the difference in conduction band compensation between the substrate 501 and each of the tunneling dielectric layer 502 and the charge trapping layer 503 , and on the applied voltage for the erase operation. As shown in Figure 6(c), for the tunneling dielectric layer 502, using different charge trapping materials as the charge trapping layer 503 has a different conduction band compensation difference relative to the substrate layer 501, resulting in the tunneling dielectric layer 501 reaching the substrate 501. Tunneling electrons lose more or less energy. Similarly, for the charge trapping layer 503, using different tunneling dielectric materials as the tunneling dielectric layer 502 has a different conduction band compensation difference relative to the substrate layer 501, which also causes the tunneling electrons reaching the substrate 501 greater or less energy loss.

穿隧介電層502可以薄至5-40埃(Å),且可由氧化矽(例如SiO 2)、氮化矽(SiN)或氮氧化矽(SiON)所形成。氧化矽穿隧介電層可以利用常規氧化技術(例如一高溫氧化)、化學合成(例如原子層沉積ALD)或任何前述技術的適當組合來形成。一活性氧(O 2)製程可包含一臭氧步驟(例如使用脈衝臭氧(pulsed ozone)),用於精確控制厚度以及改善氧化物質量(例如減少由於缺陷位的洩漏)。臭氧步驟以保形方式增強了氧化物的固化,這對於三維電晶體結構特別有利。一退火步驟(例如一氫氣(H 2)退火、一氨氣(NH 3)退火或一快速熱退火)也可以強化穿隧介電層502。氮化矽穿隧介電層可以利用常規氮化、直接合成、化學合成(例如原子層沉積ALD)或任何前述技術的適當組合來形成。電漿製程可用於精確控制厚度以及改善介電質量(例如減少由於缺陷位的洩漏)。 The tunnel dielectric layer 502 can be as thin as 5-40 angstroms (Å), and can be formed of silicon oxide (eg, SiO 2 ), silicon nitride (SiN), or silicon oxynitride (SiON). The silicon oxide tunneling dielectric layer can be formed using conventional oxidation techniques (such as a high temperature oxidation), chemical synthesis (such as atomic layer deposition ALD), or any suitable combination of the foregoing techniques. An active oxygen (O 2 ) process may include an ozone step (eg, using pulsed ozone) for precise thickness control and improved oxide quality (eg, reduced leakage due to defect sites). The ozone step enhances the curing of the oxide in a conformal manner, which is particularly beneficial for three-dimensional transistor structures. An annealing step (eg, a hydrogen (H 2 ) anneal, an ammonia (NH 3 ) anneal, or a rapid thermal anneal) can also strengthen the tunneling dielectric layer 502 . The silicon nitride tunneling dielectric layer can be formed using conventional nitridation, direct synthesis, chemical synthesis (eg, ALD), or any suitable combination of the foregoing techniques. Plasma processing can be used to precisely control thickness and improve dielectric quality (eg, reduce leakage due to defective bits).

穿隧介電層502也可包含額外的一薄氧化鋁(Al 2O 3)層(例如10Å或更薄)。在穿隧介電層中額外的氧化鋁層可以在非晶相(amorphous phase)中合成,以減少由於缺陷位所造成的洩漏。 The tunneling dielectric layer 502 may also include an additional thin aluminum oxide (Al 2 O 3 ) layer (eg, 10 Å or less). An additional aluminum oxide layer in the tunneling dielectric layer can be synthesized in an amorphous phase to reduce leakage due to defect sites.

以下材料可以用於提供穿隧介電層502及電荷捕捉層503: 材料 導帶補償差 (Conduction Band Offset) 氧化矽(Silicon oxide, SiO 2) 3.15 eV 氧化鉿(Hafnium oxide, HfO 2) 1.5 eV 氮化矽(Silicon Nitride, Si 3N 4) 2.4 eV 氧化釔(Yttrium oxide, Y 2O 3) 2.3 eV 二氧化鋯(Zirconium oxide, ZrO 2) 1.4 eV 矽酸鋯(Zirconium silicon oxide, ZrSiO 4) 1.5 eV 氧化鑭(Lanthanum oxide, La 2O 3) 2.3 eV 氮化矽氫(Silicon oxinitrides, SiN:H) 1.3-2.4 eV 五氧化二鉭(Tantalum oxide, Ta 2O 5) 0.3 eV 二氧化鈰(Cerium oxide, CeO 2) 0.6 eV 二氧化鈦(Titanium oxide, TiO 2) 0.0 eV 鈦酸鍶(Strontium titanium oxide, SrTiO 3) 0.0 eV 富矽之氮化矽(SiN:Si) 1.35 eV 矽奈米點 0.0 eV 釕奈米點 -0.7 eV 鈷奈米點 -1.0 eV The following materials can be used to provide the tunneling dielectric layer 502 and the charge trapping layer 503: Material Conduction Band Offset Silicon oxide (SiO 2 ) 3.15 eV Hafnium oxide (HfO 2 ) 1.5 eV Silicon Nitride (Silicon Nitride, Si 3 N 4 ) 2.4 eV Yttrium oxide (Yttrium oxide, Y 2 O 3 ) 2.3eV Zirconium dioxide (Zirconium oxide, ZrO 2 ) 1.4 eV Zirconium silicon oxide (ZrSiO 4 ) 1.5 eV Lanthanum oxide (Lanthanum oxide, La 2 O 3 ) 2.3eV Silicon oxinitrides (SiN:H) 1.3-2.4eV Tantalum pentoxide (Tantalum oxide, Ta 2 O 5 ) 0.3eV Cerium oxide (CeO 2 ) 0.6 eV Titanium oxide (TiO 2 ) 0.0 eV Strontium titanium oxide (SrTiO 3 ) 0.0 eV Silicon-rich silicon nitride (SiN:Si) 1.35 eV Silicon nano dots 0.0 eV Ruthenium Nanodots -0.7eV Cobalt Nanodots -1.0 eV

在電荷捕捉層中使用一較低的導帶補償差可有效增加穿隧介電層中的穿隧能障,從而改善資料保存能力。Using a lower conduction band compensation difference in the charge trapping layer can effectively increase the tunneling barrier in the tunneling dielectric layer, thereby improving data retention.

替代地,可以將低導帶補償差之一阻障材料引入至儲存電晶體中穿隧介電層及電荷捕捉層之間。圖7(a)-圖7(c)為此結構的代表能帶圖。圖7(a)為在儲存電晶體之基板601、穿隧介電層602、低導帶補償差之阻障介電603及電荷捕捉層604的相對導帶補償差。圖7(b)為在未施加一電壓下,儲存電晶體中前述層的能帶圖。圖7(c)為當施加一抹除電壓時,基板601及電荷捕捉層604之間的電子能量偏移615。電子能量偏移615取決於基板601及穿隧介電層602、低導帶補償差之阻障介電603及電荷捕捉層604中每一個之間的導帶補償差,以及取決於抹除操作所施加的電壓。如圖7(a)-圖7(c)所示,低導帶補償差(LCBO)之阻障介電603的一導電補償差,其最好相對基板601皆小於穿隧介電層602及電荷捕捉層604之導帶補償差。嚴選穿隧介電層602、低導帶補償差之阻障介電603及電荷捕捉層604的材料,無論是寫入或抹除操作,皆可實現冷電子直接穿隧,以令儲存電晶體具有高持久度。Alternatively, a low conduction band compensating barrier material can be introduced into the storage transistor between the tunneling dielectric layer and the charge trapping layer. Figure 7(a)-Figure 7(c) are representative energy band diagrams for this structure. FIG. 7( a ) shows the relative conduction band compensation difference of the substrate 601 of the storage transistor, the tunneling dielectric layer 602 , the barrier dielectric 603 with low conduction band compensation difference, and the charge trapping layer 604 . Fig. 7(b) is an energy band diagram of the aforementioned layers in the storage transistor without applying a voltage. FIG. 7( c ) shows the electron energy shift 615 between the substrate 601 and the charge trapping layer 604 when an erase voltage is applied. The electron energy shift 615 depends on the conduction band compensation difference between the substrate 601 and the tunneling dielectric layer 602, the low conduction band compensation difference barrier dielectric 603, and the charge trapping layer 604, and depends on the erase operation the applied voltage. As shown in Figure 7(a)-Figure 7(c), a conduction compensation difference of the barrier dielectric 603 of the low conduction band compensation difference (LCBO) is preferably smaller than the tunneling dielectric layer 602 and the opposite substrate 601. The conduction band of the charge trapping layer 604 compensates for the difference. The materials of the tunneling dielectric layer 602, the barrier dielectric 603 with low conduction band compensation difference, and the charge trapping layer 604 are carefully selected. Whether it is writing or erasing, cold electrons can directly tunnel to make the stored electricity Crystals are highly durable.

圖8(a)- 圖8(c)描繪了圖7(a)-圖7(c)中介電層602-604的導帶補償差參數。如圖8(a)所示,(i)參數 B表示穿隧介電層602相對於基板601的導電補償差,(ii)參數 a表示LCBO阻障層603之導帶補償差相對於穿隧介電層602之導帶補償差,(iii)參數 d表示LCBO阻障層603相對於基板601的導電補償差,以及(iv)參數 c表示電荷捕捉層604相對於基板601的導電補償差。根據本發明之一實施例,LCBO阻障層603之導電補償差應該不大於電荷捕捉層604之導電補償差(也就是 dc),而令一大量直接穿隧寫入電流密度超過1.0 amps/cm 2(例如5.0 amps/cm 2)。 8(a)-8(c) depict the conduction band compensation difference parameters of the dielectric layers 602-604 in FIGS. 7(a)-7(c). As shown in Figure 8(a), (i) parameter B represents the conduction compensation difference of the tunneling dielectric layer 602 relative to the substrate 601, (ii) parameter a represents the conduction band compensation difference of the LCBO barrier layer 603 relative to the tunneling The conduction band compensation difference of the dielectric layer 602, (iii) parameter d represents the conduction compensation difference of the LCBO barrier layer 603 relative to the substrate 601, and (iv) parameter c represents the conduction compensation difference of the charge trapping layer 604 relative to the substrate 601. According to an embodiment of the present invention, the conduction compensation difference of the LCBO barrier layer 603 should not be larger than the conduction compensation difference of the charge trapping layer 604 (that is, dc ), so that a large amount of direct tunneling write current density exceeds 1.0 amps /cm 2 (eg, 5.0 amps/cm 2 ).

圖8(b)示出由於寫入電壓而在穿隧介電層602之導帶底部傾斜了能階。經過穿隧介電層602之厚度,傾斜(the sloping)使穿隧介電層602之能階降低了參數 b。為了通過直接穿隧實現寫入操作,參數 b應該大於或等於參數 c的值 (也就是 bc)。參數 b之值(以電子伏特eV為單位)為橫跨穿隧介電層602的壓降以及電荷 q(也就是1.6 × 10 -19庫倫)的乘積。 FIG. 8( b ) shows that the energy level is tilted at the bottom of the conduction band of the tunneling dielectric layer 602 due to the write voltage. Through the thickness of the tunneling dielectric layer 602, the sloping lowers the energy level of the tunneling dielectric layer 602 by a parameter b . In order to implement write operations through direct tunneling, parameter b should be greater than or equal to the value of parameter c (that is, bc ). The value of the parameter b (in electron volts eV) is the product of the voltage drop across the tunneling dielectric layer 602 and the charge q (ie, 1.6×10 −19 coulombs).

當穿隧介電層602之壓降小於電荷捕捉層604之導電補償差(也就是

Figure 02_image001
),由於至少一部分的LCBO阻障層603保持一穿隧阻障,穿隧阻障會變寬。在那種情況下,直接穿隧可被改進的福勒-諾德漢(modified Fowler-Nordheim,MFN)機制取代,以提供一相對直接穿隧小得多的電流(例如小於0.1 amps/cm 2)。 When the voltage drop of the tunneling dielectric layer 602 is smaller than the conduction compensation difference of the charge trapping layer 604 (that is,
Figure 02_image001
), since at least a portion of the LCBO barrier layer 603 maintains a tunnel barrier, the tunnel barrier becomes wider. In that case, direct tunneling can be replaced by a modified Fowler-Nordheim (MFN) mechanism to provide a much lower current than direct tunneling (eg, less than 0.1 amps/cm 2 ).

在圖7(a)-圖7(c)之儲存電晶體中,圖9(a)為一寫入電壓的施加下的直接穿隧,圖9(b)及圖9(c)分別為一低電壓(中間電壓)及一更低電壓下的MFN穿隧。可以了解到在儲存電晶體的操作期間,MFN穿隧可能發生在低電壓干擾的區域中。不過,對於具有圖7(a)-圖7(c)所描繪之結構的儲存電晶體,所施加的電壓範圍下,這樣的MFN穿隧電流可以非常低。選用電荷捕捉層604及阻障層603的材料及厚度,使得讀取干擾電壓(read disturb voltages)、寫入禁止電壓(programming inhibit voltages)或抹除禁止電壓(erase inhibit voltages)落入了低電壓或中間電壓之範圍內,以限制穿隧至MFN機制。In the storage transistor of Figure 7(a)-Figure 7(c), Figure 9(a) is a direct tunneling under the application of a write voltage, and Figure 9(b) and Figure 9(c) are a MFN tunneling at low voltage (intermediate voltage) and a lower voltage. It can be appreciated that MFN tunneling may occur in regions of low voltage disturbance during operation of the storage transistor. However, for storage transistors having the structures depicted in FIGS. 7( a )- 7 ( c ), such MFN tunneling current can be very low in the applied voltage range. The material and thickness of the charge trapping layer 604 and the barrier layer 603 are selected so that the read disturb voltages, programming inhibit voltages or erase inhibit voltages fall into a low voltage or in the range of intermediate voltages to limit tunneling to the MFN mechanism.

如此,本發明中儲存電晶體具有一重要優點:在寫入電壓下由於直接穿隧具有高電流,而當處在一低電壓下僅有低MFN穿隧電流。這種特性減少了讀取、寫入禁止或抹除禁止操作下的干擾,且改善了資料保存性及耐久性,特別是利用直接穿隧以快速寫入及抹除操作的本發明之準揮發性儲存電晶體。關於此點,由於通道區中產生的電洞為低能量,LCBO阻障層603藉著允許冷電子抹除操作來改善耐久性,減少了裝置劣化。Thus, the storage transistor in the present invention has an important advantage: high current due to direct tunneling at write voltage, and low MFN tunneling current at a low voltage. This characteristic reduces disturbance under read, write inhibit, or erase inhibit operations, and improves data retention and durability, especially the quasi-volatile nature of the present invention utilizing direct tunneling for fast write and erase operations. permanent storage transistors. In this regard, since the holes generated in the channel region are of low energy, the LCBO barrier layer 603 improves durability by allowing cold electron erase operations, reducing device degradation.

由於讀取干擾、寫入禁止干擾或抹除禁止干擾均在一低電壓下發生,藉著在一低電壓限制穿隧至MFN穿隧,LCBO阻障層603也改善了資料保存性及耐久性以及減少了讀取干擾、寫入禁止干擾或抹除禁止干擾。舉例來說,寫入禁止干擾或抹除禁止干擾發生在半選(half-select)電壓或一低於分別使用於寫入及抹除操作下的電壓。所有優點皆在儲存電晶體偏壓於低電壓時體現,而同時維持了在儲存電晶體偏壓於較高讀取、寫入或抹除電壓下直接穿隧之高效率的優點。The LCBO barrier layer 603 also improves data retention and durability by limiting tunneling to MFN tunneling at a low voltage since read disturb, write inhibit disturb, or erase inhibit disturb all occur at a low voltage And read disturb, write inhibit disturb or erase inhibit disturb is reduced. For example, write-inhibit or erase-inhibit occurs at a half-select voltage or a voltage lower than that used for write and erase operations, respectively. All of the advantages are realized when the storage transistor is biased at low voltages, while maintaining the advantages of high efficiency of direct tunneling when the storage transistor is biased at higher read, write or erase voltages.

圖8(c)示出一抹除操作期間下穿隧介電層602之導帶底部傾斜的能階。經過穿隧介電層602之厚度,傾斜(the sloping)使穿隧介電層602之能階提高了參數 b’。在抹除操作期間,電子由電荷捕捉層604直接穿隧至基板601損失了由參數 A表示的能量,其中參數 A之關係為

Figure 02_image003
。注意得是,電荷捕捉層604之導帶補償差應該比電荷捕捉點之能階的量和該能階之導帶之差還要大,以令位在電荷捕捉點的電子包含在直接穿隧電流中。 FIG. 8( c ) shows a sloped energy level at the bottom of the conduction band of the lower tunneling dielectric layer 602 during an erase operation. Through the thickness of the tunneling dielectric layer 602, the sloping increases the energy level of the tunneling dielectric layer 602 by a parameter b' . During the erasing operation, electrons tunneling directly from the charge trapping layer 604 to the substrate 601 lose energy represented by a parameter A , where the relationship between the parameter A is
Figure 02_image003
. It should be noted that the conduction band compensation difference of the charge trapping layer 604 should be larger than the difference between the energy level of the charge trapping point and the conduction band of the energy level, so that the electrons at the charge trapping point are included in the direct tunneling current.

根據本發明之一實施例,基板601可以由一P摻雜矽實現,穿隧介電層602可由1奈米厚的二氧化矽層(SiO 2

Figure 02_image005
)實現,低導電補償差之阻障層603可由2奈米厚的二氧化鈦層(Ti 2O 5
Figure 02_image007
)實現,電荷捕捉層604可由4奈米厚的富矽之氮化矽(也就是SiN:Si,
Figure 02_image009
)實現,以及另一4奈米厚的二氧化矽層可作為阻擋介電層。不同於氮化矽(化學計量地,Si 3N 4),富矽之氮化矽包含矽作為摻雜,減少了由氮化矽4.6
Figure 02_image011
至富矽之氮化矽約3.6
Figure 02_image011
之能隙。此外,氮化矽之折射率為2.0,而富矽之氮化矽之折射率的範圍為2.1-2.3。閘電極606可由一高摻雜P型多晶矽來實現。圖10(a)及10(b)為基於橫跨穿隧介電層602的一伏特壓降下寫入及抹除操作期間結構之能帶圖(也就是一寫入操作期間下
Figure 02_image013
,以及一抹除操作期間下
Figure 02_image015
)。如圖10(b)中箭頭1001所示,在抹除操作期間,一電子通過直接穿隧到達基板601損失了大約1.4電子伏特的能量。在LCBO阻障層603中分散,如箭頭1002所指,可更加減少這些能量損失。 According to an embodiment of the present invention, the substrate 601 can be realized by a P-doped silicon, and the tunneling dielectric layer 602 can be made of a silicon dioxide layer (SiO 2 ,
Figure 02_image005
), the barrier layer 603 for low conductivity compensation can be made of a 2 nm thick titanium dioxide layer (Ti 2 O 5 ,
Figure 02_image007
), the charge trapping layer 604 can be made of silicon-rich silicon nitride (that is, SiN:Si,
Figure 02_image009
) to achieve, and another 4 nm thick silicon dioxide layer can be used as a blocking dielectric layer. Unlike silicon nitride (stoichiometrically, Si 3 N 4 ), silicon-rich silicon nitride contains silicon as a dopant, reducing the
Figure 02_image011
To silicon-rich silicon nitride about 3.6
Figure 02_image011
The energy gap. In addition, the refractive index of silicon nitride is 2.0, and the refractive index of silicon-rich silicon nitride is in the range of 2.1-2.3. The gate electrode 606 can be realized by a highly doped P-type polysilicon. 10(a) and 10(b) are energy band diagrams of the structures during write and erase operations based on a voltage drop across the tunneling dielectric layer 602 (that is, during a write operation).
Figure 02_image013
, and during an erase operation under
Figure 02_image015
). As shown by arrow 1001 in FIG. 10( b ), during the erase operation, an electron loses about 1.4 eV of energy by direct tunneling to the substrate 601 . Dispersion in the LCBO barrier layer 603, as indicated by arrow 1002, can further reduce these energy losses.

根據本發明之另一實施例,基板601可以由P摻雜矽實現,穿隧介電層602可由1奈米厚的二氧化矽層(

Figure 02_image005
)實現,低導電補償差之阻障層603可由2奈米厚的二氧化鈰層(CeO 2
Figure 02_image017
),電荷捕捉層604可由4奈米厚的富矽之氮化矽(Si 3N 4:Si,
Figure 02_image009
),以及另一5奈米厚的二氧化矽層可作為阻擋介電層605。閘電極606可由一高摻雜P型多晶矽來實現。 According to another embodiment of the present invention, the substrate 601 can be realized by P-doped silicon, and the tunneling dielectric layer 602 can be made of a 1-nm thick silicon dioxide layer (
Figure 02_image005
), the barrier layer 603 for low conductivity compensation can be made of a 2 nm thick ceria layer (CeO 2 ,
Figure 02_image017
), the charge trapping layer 604 can be made of silicon-rich silicon nitride (Si 3 N 4 : Si,
Figure 02_image009
), and another 5 nm thick silicon dioxide layer can be used as the blocking dielectric layer 605 . The gate electrode 606 can be realized by a highly doped P-type polysilicon.

圖11(a)-圖11(d)為本發明中儲存電晶體的各種模擬結果。Fig. 11(a)-Fig. 11(d) are various simulation results of the storage transistor in the present invention.

圖11(a)為一儲存電晶體之模擬圖,其具有0.8奈米厚的二氧化矽之穿隧介電層、2.0奈米厚的二氧化鋯之LCBO阻障層及5.0奈米厚的富矽之氮化矽的捕捉層。圖11(a)呈現在3.1伏特左右的寫入電壓下,可實現超過1.0 amps/cm 2之直接穿隧電流密度。 Figure 11(a) is a simulation diagram of a storage transistor with a tunneling dielectric layer of 0.8 nm thick silicon dioxide, a 2.0 nm thick LCBO barrier layer of zirconia and a 5.0 nm thick Capture layer of silicon-rich silicon nitride. Figure 11(a) shows that at a writing voltage of about 3.1 volts, a direct tunneling current density exceeding 1.0 amps/cm 2 can be achieved.

圖11(b)為一儲存電晶體之模擬圖,其具有1.0奈米厚的二氧化矽之穿隧介電層、2.0奈米厚的二氧化鈰之LCBO阻障層及4.0奈米厚的富矽之氮化矽的捕捉層。圖11(b)呈現在1.6伏特左右的寫入電壓下,可實現超過1.0 amps/cm 2之直接穿隧電流密度。 Figure 11(b) is a simulation diagram of a storage transistor with a tunneling dielectric layer of 1.0 nm thick silicon dioxide, a 2.0 nm thick LCBO barrier layer of ceria and a 4.0 nm thick Capture layer of silicon-rich silicon nitride. Figure 11(b) shows that at a writing voltage of about 1.6 volts, a direct tunneling current density exceeding 1.0 amps/cm 2 can be achieved.

圖11(c)為一儲存電晶體之模擬圖,其具有1.0奈米厚的二氧化矽之穿隧介電層、2.0奈米厚的五氧化二鉭之LCBO阻障層及4.0奈米厚的富矽之氮化矽的捕捉層。圖11(c)呈現在1.8伏特左右的寫入電壓下,可實現超過1.0 amps/cm 2之直接穿隧電流密度。 Figure 11(c) is a simulation diagram of a storage transistor with a tunneling dielectric layer of 1.0 nm thick silicon dioxide, a 2.0 nm thick LCBO barrier layer of tantalum pentoxide and a 4.0 nm thick The trapping layer of silicon-rich silicon nitride. Figure 11(c) shows that at a writing voltage of about 1.8 volts, a direct tunneling current density exceeding 1.0 amps/cm 2 can be achieved.

圖11(d)為一儲存電晶體之模擬圖,其具有1.0奈米厚的氮化矽之穿隧介電層、2.0奈米厚的二氧化鈰之LCBO阻障層及4.0奈米厚的富矽之氮化矽的捕捉層。圖11(d)呈現在2.1伏特左右的寫入電壓下,可實現超過1.0 amps/cm 2之直接穿隧電流密度。 Figure 11(d) is a simulation diagram of a storage transistor with a tunneling dielectric layer of 1.0 nm thick silicon nitride, a 2.0 nm thick LCBO barrier layer of ceria and a 4.0 nm thick Capture layer of silicon-rich silicon nitride. Figure 11(d) shows that at a writing voltage of about 2.1 volts, a direct tunneling current density exceeding 1.0 amps/cm 2 can be achieved.

圖12(a)描繪在抹除操作期間可能發生一「反向注入電子(reverse injection electrons)」現象。反向注入的電子可能對於耐久性產生不利影響。圖12(a)為抹除操作期間一儲存電晶體中閘堆疊之導帶的能帶圖。如圖12(a)所示,閘堆疊包含基板601、穿隧介電602、LCBO阻障介電603、電荷捕捉層604、阻擋介電層605及閘電極606。(阻擋介電層605可以例如為二氧化矽(SiO 2))。於一抹除操作期間,橫跨阻擋介電層605相對高的電場可能導致高能量的電子,如圖12(a)中箭頭1201所指,由閘電極穿隧至電荷捕捉層604,或甚至進入穿隧介電層602。這些反向注入的電子可能損害這些層,而對儲存電晶體的耐久性產生不利影響。 Figure 12(a) depicts a "reverse injection electrons" phenomenon that may occur during an erase operation. Reversely injected electrons may adversely affect durability. Figure 12(a) is a band diagram of the conduction band of a gate stack in a storage transistor during an erase operation. As shown in FIG. 12( a ), the gate stack includes a substrate 601 , a tunneling dielectric 602 , an LCBO barrier dielectric 603 , a charge trapping layer 604 , a blocking dielectric layer 605 and a gate electrode 606 . (The blocking dielectric layer 605 may be, for example, silicon dioxide (SiO 2 )). During an erase operation, the relatively high electric field across the blocking dielectric layer 605 may cause high energy electrons, as indicated by arrow 1201 in FIG. 12(a), to tunnel from the gate electrode to the charge trapping layer 604, or even enter tunneling dielectric layer 602 . These back-injected electrons may damage these layers, adversely affecting the durability of the storage transistor.

根據本發明之一實施例,藉著包含具有高介電常數(高k材料)的材料層,例如在阻擋介電層(如圖10(a)中的阻擋介電層605)中的氧化鋁(Al 2O 3),可以顯著減少或基本上消除反向注入電子。在此實施例中,閘電極可以使用一高功函數金屬(例如高於3.8 eV,優選不小於4.0 eV)。高k材料的

Figure 02_image019
提供一等效氧化物厚度
Figure 02_image021
為: According to one embodiment of the present invention, by including a material layer with a high dielectric constant (high-k material), such as aluminum oxide in a blocking dielectric layer (such as the blocking dielectric layer 605 in FIG. 10(a)), (Al 2 O 3 ), can significantly reduce or substantially eliminate back-injected electrons. In this embodiment, a metal with a high work function (for example higher than 3.8 eV, preferably not less than 4.0 eV) can be used for the gate electrode. of high-k materials
Figure 02_image019
Provides an equivalent oxide thickness
Figure 02_image021
for:

Figure 02_image023
Figure 02_image023

其中,

Figure 02_image025
Figure 02_image027
分別為二氧化矽及高k材料的相對介電常數。因此,高k材料可以在一厚度
Figure 02_image019
下,提供相同需求的電晶體特性(例如閘極電容),而不會在相當薄的等效厚度
Figure 02_image021
下,引起其二氧化矽層對應物之不期望的洩漏。 in,
Figure 02_image025
and
Figure 02_image027
are the relative permittivity of silicon dioxide and high-k materials, respectively. Therefore, high-k materials can be made in a thickness
Figure 02_image019
, providing the same required transistor characteristics (e.g. gate capacitance) without at a considerably thinner equivalent thickness
Figure 02_image021
, causing undesired leakage of its silicon dioxide layer counterpart.

圖12(b)為一抹除操作期間一儲存電晶體中閘堆疊之導帶的能帶圖,根據本發明一實施例,儲存電晶體具有額外的氧化鋁層607於阻擋介電層610中。在圖12(b)中,阻擋介電層610包含氧化鋁層607及二氧化矽層608。在一實際態樣中,阻擋介電層610的等效氧化物厚度基本上與圖12(a)中阻擋介電層605相同。然而,由於氧化鋁的相對介電常數為9.0,而二氧化矽的相對介電常數為3.9,因此圖12(b)中氧化鋁607及二氧化矽608的實際組合物理厚度大於圖12(a)中阻擋介電層605的厚度。由於高k介電層607之相對介電常數大於二氧化矽層608之相對介電常數,高k介電層607中的電場低於二氧化矽層608中的電場。圖12(b)中阻擋介電層610之較大的組合物理厚度(於閘電極606及電荷捕捉層604之間提供了一較寬的穿隧阻障),以及在閘電極606與高k材料607之間介面的一較低電場,減少了或消除了反向電子注入,從而達到一改善的耐久性。配合高k電性層607(例如氧化鋁),優選高功函數金屬作為閘電極。高功函數金屬在閘電極-氧化鋁介面處產生一高阻障(如圖12(b)中阻障高度1202所指),顯著減少了反向電子注入的抹除操作。合適的高功函數金屬包含:鎢(w)、氮化鉭(TaN)及氮化鉭矽(TaSiN)。12( b ) is an energy band diagram of the conduction band of the gate stack in a storage transistor with an additional aluminum oxide layer 607 in the blocking dielectric layer 610 according to an embodiment of the present invention during an erase operation. In FIG. 12( b ), the blocking dielectric layer 610 includes an aluminum oxide layer 607 and a silicon dioxide layer 608 . In an actual aspect, the equivalent oxide thickness of the blocking dielectric layer 610 is substantially the same as that of the blocking dielectric layer 605 in FIG. 12( a ). However, since the relative permittivity of alumina is 9.0 and that of silicon dioxide is 3.9, the actual combined physical thickness of alumina 607 and silicon dioxide 608 in Figure 12(b) is greater than that of Figure 12(a ) is the thickness of the blocking dielectric layer 605. Since the relative permittivity of the high-k dielectric layer 607 is greater than that of the silicon dioxide layer 608 , the electric field in the high-k dielectric layer 607 is lower than the electric field in the silicon dioxide layer 608 . The larger combined physical thickness of the blocking dielectric layer 610 in Figure 12(b) (providing a wider tunneling barrier between the gate electrode 606 and the charge trapping layer 604), and the gap between the gate electrode 606 and the high-k A lower electric field at the interface between materials 607 reduces or eliminates reverse electron injection, resulting in an improved durability. In conjunction with the high-k electrical layer 607 (for example, aluminum oxide), a high work function metal is preferably used as the gate electrode. The high work function metal creates a high barrier (as indicated by the barrier height 1202 in FIG. 12( b )) at the gate electrode-alumina interface, which significantly reduces the erasing operation of reverse electron injection. Suitable high work function metals include: tungsten (w), tantalum nitride (TaN) and tantalum silicon nitride (TaSiN).

圖13(a)為根據本發明一實施例由前述薄膜儲存電晶體所形成的一三維陣列1300的反或閘(NOR)記憶體組的一截面圖。如圖13(a)中所示,反或閘(NOR)記憶體組的堆疊1301-1及1301-2在矽基板1302的一平面上形成。堆疊1301-1及1301-2代表任何適當數量(例如2、4、6、8、16…)的主動堆疊的一排,每一排沿著X方向並藉著隔離介電層203(例如碳氧化矽(SiOC))彼此分開。每一個主動堆疊可包含任何適當數量(例如2、4、6、8、16…)的主動複合層(active multi-layer),且每一個主動複合層提供任何適當數量(例如8、16…、2048、4096…)的儲存電晶體 – 組成一或多個反或閘(NOR)記憶體組 – 沿著Y方向彼此分開。舉例來說,圖13(a)中堆疊1301-1包含了反或閘(NOR)記憶體組204-1至204-4。圖13(a)的內插圖呈現在主動堆疊1301-2的一個NOR記憶體組中儲存電晶體1303的一截面圖。FIG. 13( a ) is a cross-sectional view of a three-dimensional array 1300 of a Negative OR gate (NOR) memory group formed by the aforementioned thin film storage transistors according to an embodiment of the present invention. As shown in FIG. 13( a ), stacks 1301 - 1 and 1301 - 2 of Negative OR (NOR) memory groups are formed on a plane of a silicon substrate 1302 . Stacks 1301-1 and 1301-2 represent any suitable number (e.g., 2, 4, 6, 8, 16...) of actively stacked rows, each along the X direction and separated by a dielectric layer 203 (e.g., carbon Silicon Oxide (SiOC)) are separated from each other. Each active stack may comprise any suitable number (e.g. 2, 4, 6, 8, 16...) of active multi-layers (active multi-layer), and each active multi-layer provides any suitable number (e.g. 8, 16..., 2048, 4096…) of storage transistors – forming one or more NOR memory banks – separated from each other along the Y direction. For example, stack 1301-1 in FIG. 13(a) includes Negative OR (NOR) memory banks 204-1 to 204-4. The inset of FIG. 13(a) presents a cross-sectional view of storage transistor 1303 in a NOR memory group of active stack 1301-2.

如圖13(a)所示,儲存電晶體1303包含(i) 導體層 204a (例如一氮化鈦內襯鎢層),(ii) N +摻雜非晶矽或多晶矽層 204b (例如磷或砷摻雜的非晶矽或多晶矽),(iii) 氧化層204c,(iv) N +摻雜非晶矽或多晶矽層 204d  (例如磷或砷摻雜的非晶矽或多晶矽),(v) 導體層 204e (例如一氮化鈦內襯鎢層),通道層250  (例如以上描述的任何適當的半導體材料所形成的任何通道區),電荷儲存層251 (例如一複合層可包含以上描述的任何穿隧層、任何電荷捕捉層及任何阻擋層),以及閘電極或局部字元線252 (例如以上描述的任何閘電極)。N +摻雜非晶矽或多晶矽層 204b及204d沿著Y方向延伸長度以分別形成反或閘記憶組的所有儲存電晶體共源區及共汲區(“共用位元線”)。導體層204a及204e分別與共源區及共用位元線接觸並提供來減少電阻率。 As shown in Figure 13(a), the storage transistor 1303 includes (i) a conductor layer 204a (such as a titanium nitride-lined tungsten layer), (ii) an N + doped amorphous silicon or polysilicon layer 204b (such as phosphorus or arsenic doped amorphous silicon or polysilicon), (iii) oxide layer 204c, (iv) N + doped amorphous silicon or polysilicon layer 204d (for example phosphorus or arsenic doped amorphous silicon or polysilicon), (v) Conductor layer 204e (such as a titanium nitride-lined tungsten layer), channel layer 250 (such as any channel region formed by any suitable semiconductor material described above), charge storage layer 251 (such as a composite layer may include the above-described any tunneling layer, any charge trapping layer, and any blocking layer), and the gate electrode or local word line 252 (such as any gate electrode described above). The N + doped amorphous silicon or polysilicon layers 204b and 204d extend along the Y direction to respectively form a common source region and a common drain region (“common bit line”) of all storage transistors of the NOR memory group. Conductor layers 204a and 204e respectively contact the common source region and the common bit line and are provided to reduce resistivity.

反或閘記憶體組的三維陣列1300可以使用前述臨時申請案III或臨時申請案IV(例如結合臨時申請案III中圖2a-2j所討論的製程)中的任何製程或任何組合來形成。The three-dimensional array 1300 of NOR banks can be formed using any or any combination of the aforementioned processes in Provisional Application III or Provisional Application IV (eg, processes discussed in connection with FIGS. 2a-2j in Provisional Application III).

本發明人瞭解,用於上述薄膜存儲電晶體的電荷捕捉層的材料(例如,圖5中的電荷捕捉層503),例如氧化鉿,可以具有如現有技術中已知的鐵電極化相。本發明人實現了,藉著利用這些鐵電相進行數據存儲,在NOR記憶體組的三維記憶體陣列中的薄膜儲存電晶體可以很容易地適應於作為鐵電性場效電晶體(“FeFET”)工作,從而提供高耐久性、長數據保留及相對較低的電壓操作,以供抹除(於7.0伏特下)及寫入(於-7.0伏特下)。藉由薄膜鐵電性場效電晶體(FeFET)可以高速隨機訪問(即,低讀取延遲),鐵電性場效電晶體的鐵電極化相特性與前述薄膜水平(或垂直)NOR記憶體組之3維組織的組合實現了高密度、低成本記憶體陣列的額外好處。The present inventors understand that the material used for the charge trapping layer of the thin film storage transistor described above (eg, charge trapping layer 503 in FIG. 5 ), such as hafnium oxide, may have a ferroelectric polarization phase as known in the art. The present inventors have realized that by utilizing these ferroelectric phases for data storage, thin-film storage transistors in three-dimensional memory arrays of NOR memory groups can be easily adapted as ferroelectric field-effect transistors ("FeFETs"). ”) operation, thereby providing high endurance, long data retention, and relatively low voltage operation for erasing (at 7.0 volts) and writing (at -7.0 volts). High-speed random access (i.e., low read delay) can be achieved by thin-film ferroelectric field-effect transistors (FeFETs), whose ferroelectric polarization phase characteristics are similar to those of the aforementioned thin-film horizontal (or vertical) NOR memory The combination of the 3-dimensional organization of the groups achieves the added benefit of high-density, low-cost memory arrays.

圖13(b)示意根據本發明一實施例中於三維陣列1350中NOR記憶體組的主動堆疊1351-1及1351-2,且每一個NOR記憶體組包含許多個FeFET作為儲存電晶體。在三維陣列1350中,每一個主動堆疊(例如堆疊1351-1)包含了由多個FeFET形成的許多個NOR記憶體組(例如NOR記憶體組254-1至254-4)。圖13(b)的內插圖呈現在一NOR記憶體組的主動堆疊1351-2中FeFET 1353的截面圖。FIG. 13( b ) shows active stacks 1351 - 1 and 1351 - 2 of NOR memory groups in a three-dimensional array 1350 according to an embodiment of the present invention, and each NOR memory group includes many FeFETs as storage transistors. In three-dimensional array 1350, each active stack (eg, stack 1351-1) contains a number of NOR memory groups (eg, NOR memory groups 254-1 to 254-4) formed from a plurality of FeFETs. The inset of Figure 13(b) presents a cross-sectional view of FeFET 1353 in active stack 1351-2 of a NOR memory group.

圖13(b)示意了在一三維陣列1350的NOR記憶體組中代表性的FeFET 1353。代表性的FeFET 1353包含(i) 導體層 204a (例如一氮化鈦內襯鎢層),(ii) N +摻雜非晶矽或多晶矽層 204b,(iii) 氧化層204c,(iv) N +摻雜非晶矽或多晶矽層 204d 及(v) 導體層 204e (例如一氮化鈦內襯鎢層),與圖13(a)中被分配了相同附圖符號的那些層起了相似於作用,且可以提供基本上相同的方法。然而, FeFET 1353具有鐵電性儲存層271,其可包含一鐵電性材料及一界面介電層,而非儲存電晶體1303的電荷儲存層251。FeFET 1353 具有通道區270及閘電極或局部字元線272,可以分別由相同於或不同於通道區250及閘電極或局部字元線252的材料形成。如同在圖13(a)的一NOR記憶體組之儲存電晶體中,N +摻雜非晶矽或多晶矽層 204b及204d沿著Y方向延伸長度以分別形成圖13(b)的反或閘記憶組的所有FeFET的共源區及共汲區(“共用位元線”)。同樣地,圖13(b)中的導體層204a及204e分別與共源區及共用位元線接觸並提供來減少電阻率。 FIG. 13( b ) illustrates representative FeFETs 1353 in a NOR memory group in a three-dimensional array 1350 . A representative FeFET 1353 includes (i) a conductor layer 204a (such as a titanium nitride-lined tungsten layer), (ii) an N + doped amorphous silicon or polysilicon layer 204b, (iii) an oxide layer 204c, (iv) a N + doped amorphous silicon or polysilicon layer 204d and (v) conductor layer 204e (eg a titanium nitride lined tungsten layer), similar to those layers assigned the same reference numerals in FIG. 13(a) function, and can provide essentially the same method. However, FeFET 1353 has ferroelectric storage layer 271 , which may include a ferroelectric material and an interfacial dielectric layer, instead of charge storage layer 251 of storage transistor 1303 . FeFET 1353 has channel region 270 and gate electrode or local wordline 272, which may be formed of the same or different materials as channel region 250 and gate electrode or local wordline 252, respectively. As in the storage transistor of a NOR memory group in Figure 13(a), the N + doped amorphous silicon or polysilicon layers 204b and 204d extend along the Y direction to form the NOR gates of Figure 13(b) respectively The common source and common drain regions ("common bit line") of all FeFETs of the memory bank. Likewise, conductor layers 204a and 204e in FIG. 13(b) are respectively in contact with the common source region and the common bit line and provided to reduce resistivity.

在此詳細描述,本發明所有實施例中半導體基底通常包括控制、感測和驅動電路,以支持其上方的NOR記憶體組之三維陣列中的儲存電晶體或FeFET的記憶操作。As described in detail herein, the semiconductor substrate in all embodiments of the present invention generally includes control, sensing, and drive circuitry to support memory operation of storage transistors or FeFETs in a three-dimensional array of NOR memory banks above it.

在一些實施例中,為了減少相鄰FeFET之間的干擾,圖13(b)中FeFET 1353的鐵電性儲存層271最好與在其他主動複合層的主動堆疊中的鐵電性儲存層分隔,不同於圖13(a)中儲存電晶體1303的電荷儲存層251可以連續於其他主動複合層的主動堆疊中的電荷儲存層。In some embodiments, to reduce interference between adjacent FeFETs, the ferroelectric storage layer 271 of FeFET 1353 in FIG. 13(b) is preferably separated from the ferroelectric storage layer in the active stack of other active recombination layers 13(a), the charge storage layer 251, which is different from the storage transistor 1303 in FIG. 13(a), may be continuous with the charge storage layer in the active stack of other active recombination layers.

根據本發明一實施例,FeFET 1353的通道區270可以在一三維記憶體陣列中形成,可包括p摻雜的多晶矽(例如,7.0-14.0奈米厚),及閘電極272可以由鎢(W)、鉬(Mo)、鋁(Al)、釕(Ru)、鉭(Ta)、鈦 (Ti),或這些金屬的任何組合或合金形成。鐵電性儲存層271可包含一界面介電層(例如氮氧化矽 (SiON)、氮化矽 (Si 3N 4) 或氧化矽 (SiO 2), 0.0至2.0奈米厚,具有一1.5至2.0之間的折射率),及一鐵電性材料層(例如鋯摻雜氧化鉿 (HfO 2:Zr或HZO)、鋁摻雜氧化鉿 (HfO 2:Al)、矽摻雜氧化鉿 (HfO 2:Si) 或鑭摻雜氧化鉿 (HfO 2:La ))。鐵電性材料層可以是,舉例來說,3.0至8.0奈米厚。用語HZO可以包括鉿鋯氧化物 (HfZrO)、鉿鋯氧氮化物 (HfZrON)、鉿鋯鋁氧化物 (HfZrAlO),或任何包含鋯雜質的其他鉿氧化物。基於鐵電性材料所需的結晶相要求,HZO鐵電性材料層可以利用使用原子層沉積(ALD)技術在200 °C 至330 °C(例如約在300°C)之間的溫度下沉積形成,並伴隨在一溫度於400 °C 及1000 °C之間下經過一沉積後退火步驟。 According to an embodiment of the present invention, the channel region 270 of the FeFET 1353 may be formed in a three-dimensional memory array, may include p-doped polysilicon (eg, 7.0-14.0 nm thick), and the gate electrode 272 may be made of tungsten (W ), molybdenum (Mo), aluminum (Al), ruthenium (Ru), tantalum (Ta), titanium (Ti), or any combination or alloy of these metals. The ferroelectric storage layer 271 may include an interfacial dielectric layer (such as silicon oxynitride (SiON), silicon nitride (Si 3 N 4 ) or silicon oxide (SiO 2 ) with a thickness of 0.0 to 2.0 nm and a thickness of 1.5 to 2.0), and a ferroelectric material layer (such as zirconium-doped hafnium oxide (HfO 2 :Zr or HZO), aluminum-doped hafnium oxide (HfO 2 :Al), silicon-doped hafnium oxide (HfO 2 :Si) or lanthanum-doped hafnium oxide (HfO 2 :La )). The layer of ferroelectric material can be, for example, 3.0 to 8.0 nm thick. The term HZO may include hafnium zirconium oxide (HfZrO), hafnium zirconium oxynitride (HfZrON), hafnium zirconium aluminum oxide (HfZrAlO), or any other hafnium oxide containing zirconium impurities. Based on the crystalline phase requirements required for the ferroelectric material, the HZO ferroelectric material layer can be deposited at a temperature between 200 °C and 330 °C (eg around 300 °C) using atomic layer deposition (ALD) techniques formed with a post-deposition annealing step at a temperature between 400°C and 1000°C.

由於電子或電洞穿隧進入鐵電性材料層可能對鐵電性材料層的極化有不良影響,界面介電層於傳導期間將鐵電性材料層與由通道區穿隧來的電子或電洞隔離。界面介電層可以由一介面常數高於氧化矽(“高k”材料,介電常數最好大於3.9)的材料所形成,以降低寫入或抹除操作期間的電場,並減少來自通道區的穿隧。欲取得一0.0奈米厚的界面介電層,可以將鐵電性材料層直接通過原子層沉積(ALD)技術沉積在通道區(例如多晶矽)上。一自限厚度(self-limiting thickness,例如1.0-10.0埃)的原始氧化物將在通道區及鐵電材料層的界面處固有地形成。這種方法特別有利於當通道區在高溫步驟後形成,使得摻雜物擴散的汙染被減少關注。在一些實施例中,帶隙工程(bandgap-engineered)穿隧層(例如氧化矽(SiO 2)及氧化鋯(ZrO 2)多層)可以作為界面介電層,有利於減少穿隧進入鐵電性材料層。氧化鋯的高k介電性質降低了界面介電層中的電場。 Since the tunneling of electrons or holes into the ferroelectric material layer may have adverse effects on the polarization of the ferroelectric material layer, the interfacial dielectric layer separates the ferroelectric material layer from the electrons or holes tunneled from the channel region during conduction. hole isolation. The interfacial dielectric layer can be formed of a material with a higher interfacial constant than silicon oxide ("high-k" material, preferably with a dielectric constant greater than 3.9) to reduce the electric field during write or erase operations and reduce the tunneling. To obtain a 0.0 nm thick interfacial dielectric layer, a layer of ferroelectric material can be deposited directly on the channel region (eg, polysilicon) by atomic layer deposition (ALD). A native oxide of a self-limiting thickness (eg, 1.0-10.0 Angstroms) will inherently form at the interface of the channel region and the ferroelectric material layer. This approach is particularly beneficial when the channel region is formed after a high temperature step, so that contamination by dopant diffusion is less of a concern. In some embodiments, bandgap-engineered tunneling layers (such as silicon oxide (SiO 2 ) and zirconia (ZrO 2 ) multilayers) can be used as interfacial dielectric layers, which are beneficial to reduce tunneling into ferroelectric material layer. The high-k dielectric properties of zirconia reduce the electric field in the interfacial dielectric layer.

鐵電性場效電晶體可以極化為一導電或”抹除”狀態或一非導電或”寫入”狀態。在FeFET中,其在抹除狀態中的臨界電壓低於其在導帶狀態中的臨界電壓。圖14(a)呈現了一典型的FeFET中,汲電流(I d)對應一施加閘電壓(V g)的遲滯 (hysteresis)。(典型的FeFET形成在一單晶半導體基底的平面上,而不是形成一薄膜場域電晶體(thin-film field effect transistor)。) 在圖14(a)中,當閘電壓由小於-1.0伏特增加至大於1.0伏特,波形1401描繪FeFET在其抹除狀態下的汲電流,以及當閘電壓由大於1.0伏特減少到小於-1.0伏特,波形1402描繪FeFET在其寫入狀態下的汲電流。如圖14(a)所示,典型的FeFET具有一負的臨界電壓(negative threshold voltage,V t)。 Ferroelectric field effect transistors can be polarized into a conductive or "erase" state or a non-conductive or "write" state. In a FeFET, its threshold voltage in the erased state is lower than that in the conduction band state. Fig. 14(a) presents the hysteresis of drain current (I d ) versus an applied gate voltage (V g ) in a typical FeFET. (A typical FeFET is formed on the plane of a single crystal semiconductor substrate, rather than forming a thin-film field effect transistor.) In Figure 14(a), when the gate voltage is lower than -1.0 volts Increasing to greater than 1.0 volts, waveform 1401 depicts the current drawn by the FeFET in its erased state, and waveform 1402 depicts the current drawn by the FeFET in its written state as the gate voltage decreases from greater than 1.0 volts to less than -1.0 volts. As shown in FIG. 14( a ), a typical FeFET has a negative threshold voltage (negative threshold voltage, V t ).

然而,在一些應用中,希望FeFET(例如一反或閘記憶體組中的薄膜FeFET)具有一正的臨界電壓(V t),例如約在0.5伏特,以防止在受到干擾條件時出現不希望的洩漏電流(例如,在一讀取操作中選擇NOR記憶體組中的一相鄰FeFET,而不是FeFET本身)。 In some applications, however, it is desirable for FeFETs (such as thin-film FeFETs in an inverting-OR memory stack) to have a positive threshold voltage (V t ), such as about 0.5 volts, to prevent undesirable leakage current (for example, selecting an adjacent FeFET in a NOR memory bank in a read operation, rather than the FeFET itself).

圖14(b)呈現了根據本發明實施例中一反或閘記憶體陣列中一薄膜FeFET中,汲電流(I d)對應一施加閘電壓(V g)的理想遲滯 (hysteresis)。在圖14(b)中,當閘電壓由小於-1.0伏特增加至大於1.0伏特,波形1403描繪FeFET在其抹除狀態下的汲電流,以及當閘電壓由大於1.0伏特減少到小於-1.0伏特,波形1404描繪FeFET在其寫入狀態下的汲電流。如圖14(b)所示,FeFET具有一大約0.5伏特的正臨界電壓(V t),且一臨界電壓差(“窗期window”)位於1.0伏特至2.5伏特的抹除狀態及寫入狀態之間。對於p-多晶矽通道區(例如硼摻雜),臨界電壓可以通過以下實現(i)增加通道區中的硼摻雜劑濃度,(ii)提供由具有高功函數的導電材料(例如鎢(W)、鉬(Mo)、鋁(Al)、釕(Ru)、鉭(Ta)或鈦(Ti))形成的閘電極,(iii)在共源區(見下文)的適當偏壓(biasing),或(iv)由(i)、(ii)和(iii)的組合。 FIG. 14( b ) shows the ideal hysteresis of the drain current (I d ) corresponding to an applied gate voltage (V g ) in a thin film FeFET in an NOR memory array according to an embodiment of the present invention. In Figure 14(b), waveform 1403 depicts the FeFET sink current in its erased state when the gate voltage increases from less than -1.0 volts to greater than 1.0 volts, and when the gate voltage decreases from greater than 1.0 volts to less than -1.0 volts , waveform 1404 depicts the FeFET sink current in its written state. As shown in Figure 14(b), the FeFET has a positive threshold voltage (V t ) of about 0.5 volts, and a threshold voltage difference ("window period window") between the erased and written states of 1.0 volts to 2.5 volts between. For a p-polysilicon channel region (e.g. boron doped), the threshold voltage can be achieved by (i) increasing the concentration of boron dopant in the channel region, (ii) providing a high work function conductive material such as tungsten (W ), molybdenum (Mo), aluminum (Al), ruthenium (Ru), tantalum (Ta) or titanium (Ti)), (iii) proper biasing in the common source region (see below) , or (iv) a combination of (i), (ii) and (iii).

表格1統整了在(i)閘極或字元線(word line)、共源線和一選定 FeFET的共位線(common bit line)以及(ii)三維記憶體陣列的非選定字元線(non-selected word lines)和位元線,三維陣列之NOR 記憶體組於抹除、寫入和讀取操作期間的示範性偏壓(V,伏特): 操作 選定 非選定 閘極/ 字元線 源極 汲極 字元線 源極/ 位元線 抹除 (Erase) 2.0至6.0V (例如4.0V) 0V 0V e.g., 1.0V 1.0至3.0V (例如2.0V) 寫入 (Program) 0V 3.0至6.0V (如4.0 V) 3.0至6.0V (如4.0 V) 1.0 to 3.0V (例如1.0V) 例如2.0V 讀取 (Read) 1.0至3.0V 0.0V 0.05至1.0V 0.0V 0.0至1.0V 表格 1 Table 1 summarizes the common bit lines at (i) the gate or word line, common source line and a selected FeFET and (ii) the non-selected word lines of the 3D memory array Exemplary bias voltage (V, volts) during erase, write and read operations of (non-selected word lines) and bit lines, three-dimensional array of NOR memory: operate selected non-selected Gate/Word Line source drain character line source/bit line Erase 2.0 to 6.0V (eg 4.0V) 0V 0V eg, 1.0V 1.0 to 3.0V (eg 2.0V) Write (Program) 0V 3.0 to 6.0V (eg 4.0 V) 3.0 to 6.0V (eg 4.0 V) 1.0 to 3.0V (eg 1.0V) e.g. 2.0V read 1.0 to 3.0V 0.0V 0.05 to 1.0V 0.0V 0.0 to 1.0V Table 1

當在NOR記憶體組中一FeFET的本體區(body region)浮接時,其寫入速度可能慢於其抹除速度。在這樣的條件下,閘極引致汲極漏電(GIDL)效應可利於改善寫入速度。於寫入期間,GIDL效應可通過產生一0.5伏特至2.0伏特的共位線及共源線之間的電壓差來啟動,舉例來說,如相關申請中所述,首先通過共位線將共源線隨時預先充電至預定的源線電壓(source line voltage),然後將共位線設定至其目標電壓。When the body region of an FeFET is floating in a NOR memory group, its writing speed may be slower than its erasing speed. Under such conditions, the Gate Induced Drain Leakage (GIDL) effect can be beneficial to improve the write speed. During writing, the GIDL effect can be initiated by creating a voltage difference between the common bit line and the common source line of 0.5 volts to 2.0 volts, for example, first switching the common bit line through the common bit line as described in the related application. The source line is pre-charged to a predetermined source line voltage at any time, and then the common bit line is set to its target voltage.

於一讀取操作期間,當薄膜FeFET在抹除狀態具有一負的臨界電壓,其共源線可偏壓至一電壓高於這樣的臨界電壓,以防止在NOR記憶體組的非選定FeFETs中導通。重要的是,在一讀取操作期間,選定的FeFET中閘極或字元線及共位線或共源線之間的電壓維持在一小於可能改變選定FeFET的極化現象的電壓,以避免讀取干擾的現象。During a read operation, when thin-film FeFETs have a negative threshold voltage in the erased state, their common source line can be biased to a voltage higher than such threshold voltage to prevent conduction. It is important that during a read operation the voltage between the gate or word line and the common bit or common source line in the selected FeFET is maintained at a voltage less than that which would change the polarization of the selected FeFET to avoid The phenomenon of read interference.

三維記憶體陣列之薄膜FeFET電晶體被組織為NOR記憶體組,可通過調整任何合適的製程或臨時申請案III和IV中公開的製程來形成。The thin-film FeFET transistors of the three-dimensional memory array organized into NOR memory groups can be formed by adapting any suitable process or processes disclosed in Provisional Applications III and IV.

圖15(a)-15(d)描繪根據本發明一實施例,形成三維記憶體陣列之薄膜FeFET電晶體組織為NOR記憶體組的一第一製程。在形成主動堆疊1501-1及1501-2並沉積至複合層251-1至251-4的凹槽內且蝕刻回一通道材料(例如p -摻雜非晶矽或多晶矽)之後,圖15(a)示意了在頂面(例如..X-Y平面)及X-Z平面橫截面的中間記憶體結構1500。在圖15(a)中,鄰近的主動堆疊被溝槽1502分開且沿著Y方向延伸。中間記憶體結構1500可以利用例如臨時申請案III中圖2a至2h的製程步驟來實現。在圖15(a)中,由於複合層陷入相鄰的絕緣介電層203(例如SiOC),在複合層251-4中的通道區270與複合層251-3中相似的通道區分開。因此,溝槽1502被介電材料1504填滿(例如氧化矽),且多餘的介電材料通過例如化學機械拋光(CMP)從中間記憶體結構1500的頂部除去,得到如圖15(b)所示的中間結構1500。 15(a)-15(d) depict a first process for forming a three-dimensional memory array of thin-film FeFET transistors organized as NOR memory groups according to an embodiment of the present invention. 15 ( a) illustrates the intermediate memory structure 1500 in the top surface (eg.. XY plane) and in cross-section in the XZ plane. In FIG. 15( a ), adjacent active stacks are separated by trenches 1502 and extend along the Y direction. The intermediate memory structure 1500 can be implemented using, for example, the process steps of FIGS. 2a to 2h in Provisional Application III. In FIG. 15(a), channel region 270 in composite layer 251-4 is separated from a similar channel region in composite layer 251-3 due to the composite layer sinking into the adjacent insulating dielectric layer 203 (eg, SiOC). Thus, the trenches 1502 are filled with a dielectric material 1504 (such as silicon oxide), and excess dielectric material is removed from the top of the intermediate memory structure 1500 by, for example, chemical mechanical polishing (CMP), resulting in the result shown in FIG. 15(b). The intermediate structure 1500 is shown.

然後,井1505(例如,橢圓形井)使用如臨時申請案IV中結合圖2j描述的過程,在填充溝槽1502的介電材料1504中形成。得到的中間結構1500如圖15(c)所示。井1505分別曝露出絕緣介電層203和通道材料270的側壁。A well 1505 (eg, an elliptical well) is then formed in the dielectric material 1504 filling the trench 1502 using a process as described in provisional application IV in connection with FIG. 2j. The resulting intermediate structure 1500 is shown in Figure 15(c). The well 1505 exposes the sidewalls of the insulating dielectric layer 203 and the channel material 270, respectively.

接著,自組裝單層(SAMs;例如,具有活性羥基(-OH)鍵的物質)被提供以鈍化絕緣介電層203的側壁。然後,鐵電性儲存層271可被選擇性地沉積在通道材料270的曝露表面。(通過自組裝單層的處理防止鐵電性儲存層271沉積到絕緣介電層203的側壁上。) 得到的中間結構1500如15(d)所示。鐵電性儲存層271可以通過利用ALD技術在臭氧環境中,選擇性沉積形成界面介電層和鐵電性材料層。Next, self-assembled monolayers (SAMs; eg, substances having active hydroxyl (-OH) bonds) are provided to passivate the sidewalls of the insulating dielectric layer 203 . Then, a ferroelectric storage layer 271 may be selectively deposited on the exposed surface of the channel material 270 . (Processing by the self-assembled monolayer prevents deposition of the ferroelectric storage layer 271 on the sidewalls of the insulating dielectric layer 203.) The resulting intermediate structure 1500 is shown in FIG. 15(d). The ferroelectric storage layer 271 can be selectively deposited by using ALD technology in an ozone environment to form an interfacial dielectric layer and a ferroelectric material layer.

界面介電層可包含由化學清潔通道材料270表面形成的原始氧化層,隨後通過緻密化,例如通過脈衝臭氧或在氫或氘環境中通過熱退火,或本領域普通技術人員已知的任何其他技術。這樣的處理減少了通過界面介電層的電子洩漏,或降低了第三半導體層和鐵電性儲存層之間界面處的表面狀態,或是兩者兼之。鐵電性材料層可利用例如重複循環的氧化鉿沉積和氧化鋯沉積(例如HfO 2:ZrO 2的比例為4:1)。對於較厚的鐵電性材料層(例如大於40奈米),於沉積循環之間額外的SAM處理是較佳的。圖15(d)包含記憶體結構1500的一附加X-Y面橫截面圖1510,其沿著A-A’線通過X-Y橫截面圖的氧化層204c。然後,可以使用例如結合臨時申請案IV的圖2l至2t描述的製程步驟來完成三維陣列。 The interfacial dielectric layer may comprise a native oxide layer formed by chemically cleaning the surface of the channel material 270, followed by densification, such as by pulsed ozone or by thermal annealing in a hydrogen or deuterium environment, or any other method known to those of ordinary skill in the art. technology. Such treatment reduces electron leakage through the interfacial dielectric layer, or reduces the surface state at the interface between the third semiconductor layer and the ferroelectric storage layer, or both. The ferroelectric material layer may be deposited using, for example, repeated cycles of hafnium oxide deposition and zirconium oxide deposition (eg HfO 2 :ZrO 2 ratio 4:1). For thicker ferroelectric material layers (eg, greater than 40 nm), additional SAM treatments between deposition cycles are preferred. FIG. 15( d ) includes an additional XY cross-sectional view 1510 of memory structure 1500 along line AA' through oxide layer 204c of the XY cross-sectional view. A three-dimensional array can then be completed using, for example, the process steps described in connection with Figures 21 to 2t of Provisional Application IV.

圖16(a)-16(d)描繪根據本發明一實施例,形成三維記憶體陣列之薄膜FeFET電晶體組織為NOR記憶體組的一第二製程。在形成主動堆疊1601-1及1601-2並沉積至複合層251-1至251-4的凹槽內且蝕刻回一通道材料(例如p -摻雜非晶矽或多晶矽)以曝露絕緣介電層203的側壁之後,圖16(a)示意X-Z平面橫截面的中間記憶體結構1600。如圖15(a),圖16(a)中鄰近的主動堆疊被溝槽(例如溝槽1602)分開且沿著Y方向延伸。中間記憶體結構1600可以利用例如臨時申請案III中圖2a至2h的製程步驟來實現。 16(a)-16(d) depict a second process for forming a three-dimensional memory array of thin-film FeFET transistors organized as NOR memory groups according to an embodiment of the present invention. In the recesses where the active stacks 1601-1 and 1601-2 are formed and deposited into the composite layers 251-1 to 251-4 and etched back a channel material (such as p - doped amorphous silicon or polysilicon) to expose the insulating dielectric After the sidewalls of layer 203, FIG. 16(a) illustrates the intermediate memory structure 1600 in XZ plane cross-section. As shown in FIG. 15( a ), adjacent active stacks in FIG. 16( a ) are separated by trenches (such as trenches 1602 ) and extend along the Y direction. The intermediate memory structure 1600 can be implemented using, for example, the process steps of FIGS. 2a to 2h in Provisional Application III.

然而,相較於圖15(a)的中間記憶體結構1500,圖16(a)中複合層251-1至251-4的凹槽更深。舉例來說,對於目標為10.0奈米厚的通道區270,令複合層251-1至251-4的凹槽為20.0奈米厚,使得在圖16(a)之製程步驟中通道材料270為20.0奈米厚。進一步蝕刻回至通道區270(例如藉由一濕式蝕刻),減少了通道區270的厚度,例如至10.0奈米,因此鄰近的絕緣介電層203之間產生接近10.0奈米深的凹槽。得到如圖16(b)所示的中間記憶體結構1600。However, compared to the intermediate memory structure 1500 of FIG. 15( a ), the grooves of the composite layers 251 - 1 to 251 - 4 in FIG. 16( a ) are deeper. For example, for the target channel region 270 to be 10.0 nm thick, let the grooves of the composite layers 251-1 to 251-4 be 20.0 nm thick, so that the channel material 270 in the process step of FIG. 16(a) is 20.0 nm thick. Etching further back into the channel region 270 (e.g., by a wet etch) reduces the thickness of the channel region 270, for example, to 10.0 nm, thereby creating a groove approximately 10.0 nm deep between adjacent insulating dielectric layers 203 . The intermediate memory structure 1600 shown in FIG. 16(b) is obtained.

接著,鐵電性儲存層271可利用ALD技術沉積形成,界面介電層及鐵電性材料層在通道材料270上於鄰近的絕緣介電層203之間10奈米深的凹槽中。鐵電性材料層例如可利用重複循環的氧化鉿沉積和氧化鋯沉積(例如HfO 2:ZrO 2的比例為4:1)。得到如圖16(c)所示的中間記憶體結構1600。如圖16(c)所示,複合層的鐵電性儲存層271因為凹槽彼此藉由絕緣介電層203分離。 Next, the ferroelectric storage layer 271 can be formed by ALD deposition. The interfacial dielectric layer and the ferroelectric material layer are in the 10 nm deep groove between the adjacent insulating dielectric layers 203 on the channel material 270 . A layer of ferroelectric material may be used, for example, with repeated cycles of hafnium oxide deposition and zirconium oxide deposition (eg HfO 2 :ZrO 2 ratio 4:1). The intermediate memory structure 1600 shown in FIG. 16(c) is obtained. As shown in FIG. 16( c ), the ferroelectric storage layer 271 of the composite layer is separated from each other by the insulating dielectric layer 203 because of the grooves.

三維陣列之NOR記憶體組可以使用例如結合臨時申請案IV的圖2j至2t描述的製程步驟來完成。圖16(d)呈現一完成的三維陣列之NOR記憶體組的X-Z面橫截面圖,示意了(i)在井1605中的導電材料272(例如閘極)以及(ii)與鄰近閘極彼此電性隔離的氧化物1604。A three-dimensional array of NOR memory groups can be accomplished using, for example, the process steps described in connection with FIGS. 2j to 2t of Provisional Application IV. Figure 16(d) presents an X-Z cross-sectional view of a completed three-dimensional array of NOR memory groups, illustrating (i) the conductive material 272 (e.g., gate) in the well 1605 and (ii) the relationship between adjacent gates The oxide 1604 is electrically isolated.

圖17(a)-17(g)描繪根據本發明一實施例,形成三維記憶體陣列之薄膜FeFET電晶體組織為NOR記憶體組的一第三製程。在形成主動堆疊1701-1及1701-2並沉積至複合層251-1至251-4的凹槽內且蝕刻回一通道材料(例如p -摻雜非晶矽或多晶矽;例如20.0奈米厚)以曝露絕緣介電層203的側壁之後,圖17(a)示意X-Z平面橫截面的中間記憶體結構1700。如圖16(a),圖17(a)中鄰近的主動堆疊被溝槽(例如溝槽1702)分開且沿著Y方向延伸。進一步蝕刻回至通道區270(例如藉由一濕式蝕刻),減少了通道區270的厚度,例如至10.0奈米,因此鄰近的絕緣介電層203之間產生接近10.0奈米深的凹槽。得到如圖17(b)所示的中間記憶體結構1700。圖17(a)及17(b)的中間記憶體結構1700可以利用與前述討論分別用於形成圖16(a)及圖16(b)的中間記憶體結構1600,基本上相同的製程步驟形成。 17(a)-17(g) depict a third process for forming a three-dimensional memory array of thin-film FeFET transistors organized as NOR memory groups according to an embodiment of the present invention. In the recesses where active stacks 1701-1 and 1701-2 are formed and deposited into composite layers 251-1 to 251-4 and etched back a channel material (eg, p - doped amorphous silicon or polysilicon; eg, 20.0 nm thick ) to expose the sidewalls of the insulating dielectric layer 203 , FIG. 17( a ) illustrates the intermediate memory structure 1700 in cross-section on the XZ plane. As shown in FIG. 16( a ), adjacent active stacks in FIG. 17( a ) are separated by a trench (eg, trench 1702 ) and extend along the Y direction. Etching further back into the channel region 270 (e.g., by a wet etch) reduces the thickness of the channel region 270, for example, to 10.0 nm, thereby creating a groove approximately 10.0 nm deep between adjacent insulating dielectric layers 203 . The intermediate memory structure 1700 shown in Fig. 17(b) is obtained. The intermediate memory structure 1700 of Figures 17(a) and 17(b) can be formed using substantially the same process steps as previously discussed for forming the intermediate memory structure 1600 of Figures 16(a) and 16(b), respectively. .

然後,鐵電性儲存層271可利用前述的ALD技術沉積形成在中間記憶體結構1700上,舉例來說,結合前面的圖16(c),隨之通過進行非晶矽內襯1707的共形沉積(conformal deposition)。得到如圖17(c)所示的中間記憶體結構1700。各向異性乾式蝕刻步驟接著移除部分的非晶矽內襯1707,以曝露位在溝槽1702中絕緣介電層203的側壁上的部份鐵電性儲存層271,同時允許餘下的非晶矽內襯1707保護複合層251-1至251-4的凹槽中部份鐵電性儲存層271。各向異性乾式蝕刻也由中間記憶體結構1700的頂部濺射掉非晶矽內襯1707及鐵電性儲存層271。得到如圖17(d)所示的中間記憶體結構1700。Then, the ferroelectric storage layer 271 can be deposited and formed on the intermediate memory structure 1700 using the aforementioned ALD technique, for example, referring to the previous FIG. Conformal deposition. The intermediate memory structure 1700 shown in FIG. 17(c) is obtained. The anisotropic dry etching step then removes a portion of the amorphous silicon liner 1707 to expose a portion of the ferroelectric storage layer 271 on the sidewalls of the insulating dielectric layer 203 in the trench 1702 while allowing the remaining amorphous silicon The silicon lining 1707 protects part of the ferroelectric storage layer 271 in the grooves of the composite layers 251-1 to 251-4. The anisotropic dry etch also sputters away the amorphous silicon liner 1707 and the ferroelectric storage layer 271 from the top of the intermediate memory structure 1700 . The intermediate memory structure 1700 shown in Fig. 17(d) is obtained.

接著,用以移除鐵電性材料層(例如鋯摻雜氧化HZO)的濕式蝕刻由絕緣介電層203的側壁移除了鐵電性儲存層271。得到如圖17(e)所示的中間記憶體結構1700。餘下的非晶矽內襯1707接著可以通過濕式蝕刻移除。得到如圖17(f)所示的中間記憶體結構1700。Next, a wet etch to remove the ferroelectric material layer (eg, zirconium-doped HZO) removes the ferroelectric storage layer 271 from the sidewalls of the insulating dielectric layer 203 . The intermediate memory structure 1700 shown in Fig. 17(e) is obtained. The remaining amorphous silicon liner 1707 can then be removed by wet etching. The intermediate memory structure 1700 shown in FIG. 17(f) is obtained.

然後,三維陣列之NOR記憶體組可以使用例如結合臨時申請案IV的圖2j至2t描述的製程步驟來完成。圖17(g)呈現一完成的三維陣列之NOR記憶體組的X-Z面橫截面圖,示意了(i)在井1705中的導電材料272(例如閘極)以及(ii)與鄰近閘極彼此電性隔離的氧化物1704。Then, a three-dimensional array of NOR memory groups can be completed using, for example, the process steps described in connection with FIGS. 2j to 2t of Provisional Application IV. Figure 17(g) presents an X-Z cross-sectional view of a completed three-dimensional array of NOR memory groups, illustrating (i) the conductive material 272 (eg, gate) in the well 1705 and (ii) the relationship between adjacent gates The oxide 1704 is electrically isolated.

根據本發明中另一實施例,FeFET 1353的通道區270可以用8.0至15.0厚的氧化半導體材料(例如銦鋅氧化物 (InZnO或IZO))形成。IZO通道區具有高遷移率的優點,可提升切換性能且無需擔心電子或電洞穿隧。舉例來說,相較於厚度相當的鋁氧化鋯(aluminum zirconium oxide,AZO) 的電子遷移率為5.6 cm 2/V,10.0奈米厚的IZO薄膜的電子遷移率為40.6 cm 2/V。此外,共源區及共位線可以由金屬(例如鉬Mo)形成。FeFET 1353的鐵電性儲存層可以由前述任何的鐵電性儲存層(例如一SiON界面介電層及一HZO鐵電性材料層)來提供。由於這個FeFET不具有p/n接面,在寫入狀態下來自FeFET的任何漏電流都相對較小。因此,這樣的FeFET特別有利於高溫應用。這樣的FeFET也可以一相對短的通道長度來建構,因為在影響通道區的任何退火步驟期間,不需要餘量來允許摻雜劑從大量摻雜的半導體共位線和共源線擴散。金屬共位線和共源線也減少了主動複合層的厚度(例如,40.0奈米的共位線或共源線,40.0奈米的通道區及30.0奈米的SiOC界面介電層,總合為一相對較薄的150.0奈米)。共源及汲極區也可利用一犧牲材料來建構,犧牲材料在後期金屬更換(metal-replacement)步驟中被替換。 According to another embodiment of the present invention, the channel region 270 of the FeFET 1353 may be formed with 8.0 to 15.0 thick oxide semiconductor material such as indium zinc oxide (InZnO or IZO). The IZO channel region has the advantage of high mobility, which improves switching performance without worrying about electron or hole tunneling. For example, compared to 5.6 cm 2 /V for aluminum zirconium oxide (AZO) with a comparable thickness, the electron mobility of a 10.0 nm thick IZO film is 40.6 cm 2 /V. In addition, the common source region and the common bit line can be formed of metal (such as molybdenum Mo). The ferroelectric storage layer of FeFET 1353 can be provided by any of the ferroelectric storage layers described above, such as a SiON interfacial dielectric layer and a HZO ferroelectric material layer. Since this FeFET does not have a p/n junction, any leakage current from the FeFET in the written state is relatively small. Therefore, such FeFETs are particularly beneficial for high temperature applications. Such FeFETs can also be constructed with a relatively short channel length, since no margin is required to allow dopant diffusion from heavily doped semiconductor common-bit and common-source lines during any annealing steps affecting the channel region. Metal common-site lines and common-source lines also reduce the thickness of the active recombination layer (for example, 40.0nm common-site line or common-source line, 40.0nm channel region and 30.0nm SiOC interface dielectric layer, total for a relatively thin 150.0 nm). The common source and drain regions can also be constructed using a sacrificial material that is replaced in a later metal-replacement step.

於此揭露的三維”水平”NOR記憶體組的FeFETs具有顯著的優點,因為它們在構建本文公開的三維記憶體結構(例如,記憶體結構1300、1500、 1600或1700)時,為鐵電性儲存層(例如圖15(d)、16(d)或17(j)中的鐵電性儲存層271)提供了相對較大的表面積,同時由於其相對於基板的垂直方向之優點,僅在半導體基板上需要非常小的佔地面積。這種較大的表面積在抹除及寫入狀態下提供了電壓的緊密分佈,而在高度縮放平面(highly-scaled planar)的FeFET中很難實現。The FeFETs of the three-dimensional "horizontal" NOR memory groups disclosed herein have significant advantages in that they are ferroelectric when constructing the three-dimensional memory structures disclosed herein (e.g., memory structures 1300, 1500, 1600, or 1700) The storage layer (such as the ferroelectric storage layer 271 in Figure 15(d), 16(d) or 17(j)) provides a relatively large surface area, and due to its vertical orientation with respect to the substrate, only in the A very small footprint is required on the semiconductor substrate. This large surface area provides a tight distribution of voltages in the erased and written states, which is difficult to achieve in highly-scaled planar FeFETs.

於此揭露的FeFETs通過調整在三維”水平”NOR記憶體串中的儲存電晶體,如同臨時申請案III-IV中揭露的來說明。不過,FeFETs也可以通過基本上應用本文公開的原理和方法,通過調整三維”垂直”NOR記憶體串中的儲存電晶體來形成,如同臨時申請案V中所揭露。The FeFETs disclosed herein are illustrated by aligning storage transistors in three-dimensional "horizontal" NOR memory strings, as disclosed in provisional applications III-IV. However, FeFETs can also be formed by substantially applying the principles and methods disclosed herein by tuning the storage transistors in three-dimensional "vertical" NOR memory strings, as disclosed in Provisional Application V.

以上詳細描述提供了本發明具體實施方式的描繪,但本發明並不限於此。在本發明的範圍內可以進行許多變化和修改。舉例來說,雖然前面詳細描述說明本發明採用半導體層(例如多晶矽層)之間具有PN接面之薄膜場效電晶體,本發明也可應用於無接面(junction-less)的電晶體。在一些實施例中,這樣的無接面電晶體可包含具有導電氧化物通道區的薄膜無接面電晶體。在一些實施例中,適合的導電金屬氧化物包含氧化鎵、氧化鋅、氧化銦(例如,銦鎵氧化鋅(IGZO) 和氧化銦鋅(IZO))及使用適當的製備或包含合適的雜質進行調變或調製其電荷載子之遷移率的任何適合的導電金屬氧化物。舉例來說,在一實施例中,低電阻導電材料(例如,氮化鈦(TiN)內襯鎢(W)、鎢、鈷、鉬))之無接面電晶體提供了源極及汲極區,以及導電金屬氧化物(例如IGZO)提供了通道區,取代了具有N +多晶矽源極及汲極區以及P -多晶矽通道區之多晶矽薄膜場效電晶體。 The above detailed description provides a depiction of specific embodiments of the invention but the invention is not limited thereto. Many variations and modifications are possible within the scope of the invention. For example, although the foregoing detailed description shows that the present invention uses thin film field effect transistors with PN junctions between semiconductor layers (such as polysilicon layers), the present invention is also applicable to junction-less transistors. In some embodiments, such a junctionless transistor may comprise a thin film junctionless transistor with a conductive oxide channel region. In some embodiments, suitable conductive metal oxides include gallium oxide, zinc oxide, indium oxide (e.g., indium gallium zinc oxide (IGZO) and indium zinc oxide (IZO)) and Any suitable conductive metal oxide that modulates or modulates the mobility of its charge carriers. For example, in one embodiment, a junctionless transistor of low resistance conductive material (eg, titanium nitride (TiN) lined with tungsten (W), tungsten, cobalt, molybdenum) provides the source and drain region, and a conductive metal oxide (such as IGZO) provides the channel region, replacing the polysilicon thin film field effect transistor with N + polysilicon source and drain regions and P - polysilicon channel region.

以下申請權利範圍闡述了本發明。The following claims set forth the invention.

101、102:線 110:通道區 111:穿隧介電次層 112:電荷捕捉次層 113:阻擋介電次層 114:閘電極 120:材料 203:隔離介電層(絕緣介電層 204-1~204-4:記憶體組 204a、204e:導體層 204b、204d:N +摻雜非晶矽或多晶矽層 204c:氧化層 250:通道層 251:電荷儲存層 251-1~251-4:複合層 252:閘電極或局部字元線 254-1~254-4:NOR記憶體組 270:通道區(通道材料) 271:鐵電性儲存層 272:閘電極或局部字元線(導電材料) 301、302、514、1001、1002、1201:箭頭 401:寫入狀態臨界電壓 402:抹除狀態臨界電壓 501:通道區 502:穿隧介電層 503:電荷捕捉層 511:導帶邊界 512:價帶邊界 515:電子能量 516:電洞能量 601:基底 602:穿隧介電層 603:低導帶台階之阻障介電層 604:電荷捕捉層 605:阻擋介電層 606:閘電極 607:氧化鋁(Al2O3)層 608:二氧化矽(SiO2)層 610:阻擋介電層 615:電子能量偏移 1202:阻障高度 1300:NOR記憶體組 1301-1、1301-2:堆疊 1302:矽基板 1303:儲存電晶體 1350:三維陣列 1351-1、1351-2:主動堆疊 1353:鐵電性場效電晶體(FeFET) 1401、1402、1403、1404:波形 1500:中間記憶體結構 1501-1、1501-2:主動堆疊 1502:溝槽 1504:介電材料 1505:井(橢圓形井) 1510:X-Y橫截面 1600:中間記憶體結構 1601-1、1601-2:主動堆疊 1602:溝槽 1604:氧化物 1605:井 1700:中間記憶體結構 1701-1、1701-2:主動堆疊 1702:溝槽 1704:氧化物 1705:井 1707:非晶矽內襯 a、b、b’、c、d、A、B:參數 A-A’:線 I d汲電流 V g閘電壓 X、Y、Z:方向 101, 102: line 110: channel region 111: tunneling dielectric sublayer 112: charge trapping sublayer 113: blocking dielectric sublayer 114: gate electrode 120: material 203: isolation dielectric layer (insulating dielectric layer 204- 1~204-4: memory group 204a, 204e: conductor layer 204b, 204d: N + doped amorphous silicon or polysilicon layer 204c: oxide layer 250: channel layer 251: charge storage layer 251-1~251-4: Composite layer 252: gate electrode or local word line 254-1~254-4: NOR memory group 270: channel area (channel material) 271: ferroelectric storage layer 272: gate electrode or local word line (conductive material ) 301, 302, 514, 1001, 1002, 1201: Arrow 401: Writing state critical voltage 402: Erasing state critical voltage 501: Channel region 502: Tunneling dielectric layer 503: Charge trapping layer 511: Conduction band boundary 512 : valence band boundary 515: electron energy 516: hole energy 601: substrate 602: tunneling dielectric layer 603: barrier dielectric layer with low conduction band step 604: charge trapping layer 605: blocking dielectric layer 606: gate electrode 607: aluminum oxide (Al2O3) layer 608: silicon dioxide (SiO2) layer 610: blocking dielectric layer 615: electron energy offset 1202: barrier height 1300: NOR memory group 1301-1, 1301-2: stacking 1302 : Silicon substrate 1303: Storage transistor 1350: Three-dimensional array 1351-1, 1351-2: Active stacking 1353: Ferroelectric field effect transistor (FeFET) 1401, 1402, 1403, 1404: Waveform 1500: Intermediate memory structure 1501 -1, 1501-2: Active stacking 1502: Trench 1504: Dielectric material 1505: Well (oval well) 1510: XY cross section 1600: Intermediate memory structure 1601-1, 1601-2: Active stacking 1602: Groove Groove 1604: oxide 1605: well 1700: intermediate memory structure 1701-1, 1701-2: active stack 1702: trench 1704: oxide 1705: well 1707: amorphous silicon lining a, b, b', c , d, A, B: parameters A-A': line I d drain current V g gate voltage X, Y, Z: direction

圖1為一典型的儲存電晶體之一能帶圖,其包括一通道區及一閘電極之間介電材料及儲存電荷的多種次層。FIG. 1 is an energy band diagram of a typical storage transistor, which includes a channel region and a dielectric material between gate electrodes and various sublayers for storing charge.

圖2為不同偏壓條件下,各種二氧化矽之厚度的典型直接穿隧電流密度(閘電流)。Figure 2 shows typical direct tunneling current densities (gate currents) for various SiO2 thicknesses under different bias conditions.

圖3(a)及圖3(b)分別描繪在寫入及抹除操作期間,電子直接穿隧進入電荷捕捉次層112及躍出電荷捕捉次層112。FIG. 3( a ) and FIG. 3( b ) depict electrons tunneling directly into and out of the charge-trapping sublayer 112 during write and erase operations, respectively.

圖4為在一儲存電晶體中寫入窗期超過10 9次的寫入及抹除循環的一演化圖,其描繪了寫入狀態臨界電壓(Vth)401及抹除狀態臨界電壓(Vth)402。 FIG. 4 is an evolution diagram of write and erase cycles with a write window period exceeding 10 9 times in a storage transistor, which depicts write state threshold voltage (Vth) 401 and erase state threshold voltage (Vth) 402.

圖5為一示例之儲存電晶體的能帶圖,具有通道區501、穿隧介電層502及電荷捕捉層503。FIG. 5 is an energy band diagram of an exemplary storage transistor, which has a channel region 501 , a tunneling dielectric layer 502 and a charge trapping layer 503 .

圖6(a)、圖6(b)及圖6(c)分別示意(i)在一儲存電晶體的基板501、穿隧介電層502及電荷捕捉層503的導帶之最低能階(lowest energy levels of the conduction bands);(ii)在未施加一電壓下,在儲存電晶體之前述層的導帶之最低能階;及(iii)當施加一抹除電壓,基板501及電荷捕捉層503之間的電子能量偏移515。Fig. 6 (a), Fig. 6 (b) and Fig. 6 (c) respectively show (i) the lowest energy level ( lowest energy levels of the conduction bands); (ii) when no voltage is applied, the lowest energy level of the conduction band of the aforementioned layer of the storage transistor; and (iii) when an erasing voltage is applied, the substrate 501 and the charge trapping layer Electron energy offset 515 between 503 .

圖7(a)、圖7(b)及圖7(c)分別示意(i)在一儲存電晶體之基板601、穿隧介電層602、低導帶台階(LCBO)之阻障介電603及電荷捕捉層604的相對導帶補償差(relative conduction band offsets);(ii)在未施加一電壓下,儲存電晶體之前述層的能帶圖;及(iii)當施加一抹除電壓時,基板601及電荷捕捉層604之間的電子能量偏移615。Fig. 7(a), Fig. 7(b) and Fig. 7(c) respectively show (i) the barrier dielectric in the substrate 601 of a storage transistor, the tunnel dielectric layer 602, and the low conduction band step (LCBO). 603 and the charge trapping layer 604 relative conduction band offsets (relative conduction band offsets); (ii) without applying a voltage, the energy band diagram of the aforementioned layers of the storage transistor; and (iii) when an erase voltage is applied , the electron energy shift 615 between the substrate 601 and the charge trapping layer 604 .

圖8(a)、圖8(b)及圖8(c)描繪了圖7(a)-圖7(c)中介電層602-604的導帶台階參數。FIG. 8(a), FIG. 8(b) and FIG. 8(c) depict the conduction band step parameters of the dielectric layers 602-604 in FIG. 7(a)-FIG. 7(c).

圖9(a)示意圖7(a)之儲存電晶體中直接穿隧,以及圖9(b)及圖9(c)分別示意圖7(b)-圖7(c)之儲存電晶體中MFN穿隧。Figure 9(a) schematic diagram 7(a) direct tunneling in the storage transistor, and Figure 9(b) and Figure 9(c) respectively schematic diagram 7(b)-Figure 7(c) MFN tunneling in the storage transistor tunnel.

圖10(a)及圖10(b)為基於橫跨穿隧介電層602的一伏特壓降下寫入及抹除操作期間結構之能帶圖(也就是一寫入操作期間下: b=1 eV,以及一抹除操作期間下: b’=1 eV)。 10(a) and FIG. 10(b) are energy band diagrams of the structures during write and erase operations based on a voltage drop across the tunneling dielectric layer 602 (that is, during a write operation: b =1 eV , and during an erase operation: b'=1 eV ).

圖11(a)、圖11(b)、圖11(c)及圖11(d)為本發明中儲存電晶體的各種模擬結果。Fig. 11(a), Fig. 11(b), Fig. 11(c) and Fig. 11(d) are various simulation results of the storage transistor in the present invention.

圖12(a)為一抹除操作期間一儲存電晶體中閘極堆疊之導帶的能帶圖。Figure 12(a) is a band diagram of the conduction band of a gate stack in a storage transistor during an erase operation.

圖12(b)為一抹除操作期間一儲存電晶體中閘極堆疊之導帶的能帶圖,根據本發明一實施例中儲存電晶體具有額外的氧化鋁層607於阻擋介電層610中。Figure 12(b) is an energy band diagram of the conduction band of the gate stack in a storage transistor with an additional aluminum oxide layer 607 in the blocking dielectric layer 610 according to an embodiment of the present invention during an erase operation .

圖13(a)為根據本發明一實施例由本文所述之薄膜儲存電晶體所形成的一三維陣列1300的反或閘(NOR)記憶體組的一截面圖。FIG. 13( a ) is a cross-sectional view of a three-dimensional array 1300 of a Negative OR (NOR) memory group formed by the thin film storage transistors described herein according to an embodiment of the present invention.

圖13(b) 為根據本發明一實施例中於三維陣列1350中NOR記憶體組的主動堆疊1351-1及1351-2,且每一個NOR記憶體組包含許多個FeFET作為儲存電晶體。FIG. 13( b ) shows active stacks 1351 - 1 and 1351 - 2 of NOR memory groups in a three-dimensional array 1350 according to an embodiment of the present invention, and each NOR memory group includes many FeFETs as storage transistors.

圖14(a)呈現了一典型的FeFET中,汲電流對應一閘電壓的遲滯 (hysteresis)。Figure 14(a) presents the hysteresis of sink current versus gate voltage in a typical FeFET.

圖14(b)呈現了根據本發明實施例中一反或閘記憶體陣列中一薄膜FeFET中,汲電流(I d)對應一施加閘電壓(V g)的理想遲滯 (hysteresis)。 FIG. 14( b ) shows the ideal hysteresis of the drain current (I d ) corresponding to an applied gate voltage (V g ) in a thin film FeFET in an NOR memory array according to an embodiment of the present invention.

圖15(a)、圖15(b)、圖15(c)及圖15(d)描繪根據本發明一實施例,形成三維記憶體陣列之薄膜FeFET電晶體組織為NOR記憶體組的一第一製程。Fig. 15(a), Fig. 15(b), Fig. 15(c) and Fig. 15(d) depict according to an embodiment of the present invention, the thin film FeFET transistor structure forming a three-dimensional memory array is a first NOR memory group One process.

圖16(a)、圖16(b)、圖16(c)及圖16(d)描繪根據本發明一實施例,形成三維記憶體陣列之薄膜FeFET電晶體組織為NOR記憶體組的一第二製程。Fig. 16(a), Fig. 16(b), Fig. 16(c) and Fig. 16(d) depict a first embodiment of a NOR memory group in which the thin film FeFET transistors forming a three-dimensional memory array are organized according to an embodiment of the present invention Second process.

圖17(a)、圖17(b)、圖17(c) 、圖17(d) 、圖17(e) 、圖17(f)及圖17(g) 描繪根據本發明一實施例,形成三維記憶體陣列之薄膜FeFET電晶體組織為NOR記憶體組的一第三製程。Figure 17(a), Figure 17(b), Figure 17(c), Figure 17(d), Figure 17(e), Figure 17(f) and Figure 17(g) depict according to an embodiment of the present invention, forming The thin film FeFET transistor structure of the three-dimensional memory array is a third process of the NOR memory group.

為了便於附圖之間的交叉引用,相同的元件被分配了相同的符號標記。In order to facilitate cross-referencing between the figures, the same elements are assigned the same reference numerals.

203:隔離介電層(絕緣介電層 203: isolation dielectric layer (insulation dielectric layer

204a、204e:導體層 204a, 204e: conductor layer

204b、204d:N+摻雜非晶矽或多晶矽層 204b, 204d: N + doped amorphous silicon or polysilicon layer

204c:氧化層 204c: oxide layer

250:通道層 250: channel layer

254-1~254-4:NOR記憶體組 254-1~254-4: NOR memory group

270:通道區(通道材料) 270: Channel area (channel material)

271:鐵電性儲存層 271: Ferroelectric storage layer

272:閘電極或局部字元線(導電材料) 272: Gate electrode or local word line (conductive material)

1350:三維陣列 1350: Three-dimensional array

1351-1、1351-2:主動堆疊 1351-1, 1351-2: active stacking

1353:鐵電性場效電晶體(FeFET) 1353: Ferroelectric Field Effect Transistor (FeFET)

Claims (42)

一種在一半導體基板之一平面上形成的三維陣列中記憶體組,該記憶體組包括: 一第一、一第二及一第三電晶體材料層,該第三電晶體材料層被形成以接觸該第一電晶體材料層及該第二電晶體材料層; 複數個導體;以及 一鐵電性儲存層,位於該些導體及該第三電晶體材料層之間,其中(i) 該第一、該第二及該第三電晶體材料層、該鐵電性儲存層及該些導體形成用於該記憶體組的複數個鐵電性場效電晶體(FeFET); (ii) 該第一及第二電晶體材料層分別地提供一共位元線及一共源線給該些鐵電性場效電晶體; (iii) 該第三電晶體材料層提供一通道區給該記憶體組中每一個該鐵電性場效電晶體; (iv) 該鐵電性儲存層提供一極化層給每一個該鐵電性場效電晶體; 以及(v) 每一個該導體提供一閘電極給該記憶體組中該些鐵電性場效電晶體的一者。 A memory group in a three-dimensional array formed on a plane of a semiconductor substrate, the memory group comprising: a first, a second and a third layer of transistor material, the third layer of transistor material formed to contact the first layer of transistor material and the second layer of transistor material; a plurality of conductors; and a ferroelectric storage layer located between the conductors and the third transistor material layer, wherein (i) the first, the second and the third transistor material layers, the ferroelectric storage layer and the These conductors form a plurality of ferroelectric field effect transistors (FeFETs) for the memory set; (ii) the first and second transistor material layers respectively provide a common bit line and a common source line to the ferroelectric field effect transistor; (iii) the third transistor material layer provides a channel area to each of the ferroelectric field effect transistors in the memory group; (iv) the ferroelectric storage layer provides a a polarization layer for each of the ferroelectric field effect transistors; and (v) each of the conductors provides a gate electrode to one of the ferroelectric field effect transistors in the memory bank. 一種如申請專利範圍第1項的記憶體組,其中該第一及該第二電晶體材料層各包含一第一導電型態之一半導體層,及該第三電晶體材料層包含不同於該第一導電型態的一第二導電型態之一半導體層。A memory group as claimed in item 1 of the scope of the patent application, wherein each of the first and second transistor material layers includes a semiconductor layer of a first conductivity type, and the third transistor material layer includes a semiconductor layer different from the A semiconductor layer of the first conductivity type and a second conductivity type. 一種如申請專利範圍第1項的記憶體組,其中該第一及該第二電晶體材料層各包含一金屬層,及該第三電晶體材料層包含一導體金屬氧化物。A memory group according to claim 1, wherein the first and second transistor material layers each include a metal layer, and the third transistor material layer includes a conductive metal oxide. 一種如申請專利範圍第3項的記憶體組,其中該金屬層包含一或多個氮化鈦內襯鎢(titanium nitride-lined tungsten)、鎢、鈷及鉬。A memory set according to claim 3, wherein the metal layer comprises one or more of titanium nitride-lined tungsten, tungsten, cobalt and molybdenum. 一種如申請專利範圍第3項的記憶體組,其中該導體金屬氧化物包含一或多個: 氧化鎵、氧化鋅及氧化銦。A memory group as claimed in item 3 of the patent application, wherein the conductive metal oxide comprises one or more of: gallium oxide, zinc oxide and indium oxide. 一種如申請專利範圍第5項的記憶體組,其中該氧化銦包含一或多個: 銦鎵鋅氧化物 (IGZO)、銦鋅氧化物 (IZO) 和任何具有可藉由包含一或多種雜質來調變電荷載子遷移率的導電金屬氧化物。A memory group as claimed in claim 5, wherein the indium oxide comprises one or more of: indium gallium zinc oxide (IGZO), indium zinc oxide (IZO) and any Conductive metal oxides to modulate charge carrier mobility. 一種如申請專利範圍第1項的記憶體組,其中該記憶體組的該些鐵電性場效電晶體(FeFET)組成一反或閘(NOR)記憶體組。A memory group as claimed in item 1 of the scope of the patent application, wherein the ferroelectric field effect transistors (FeFETs) of the memory group form a Negative OR gate (NOR) memory group. 一種如申請專利範圍第1項的記憶體組,其中該鐵電性儲存層包含一界面介電層及一鐵電性材料層。A memory group according to item 1 of the scope of the patent application, wherein the ferroelectric storage layer includes an interfacial dielectric layer and a ferroelectric material layer. 一種如申請專利範圍第8項的記憶體組,其中該界面介電層包含一具有一大於3.9介電系數的金屬。A memory group according to claim 8, wherein the interfacial dielectric layer comprises a metal with a dielectric coefficient greater than 3.9. 一種如申請專利範圍第8項的記憶體組,其中該界面介電層包含一或多個氧化鋯 (ZrO 2)、氮氧化矽 (SiON)、氮化矽 (Si 3N 4) 或氧化矽 (SiO 2)。 A memory assembly as claimed in claim 8, wherein the interfacial dielectric layer comprises one or more of zirconia (ZrO 2 ), silicon oxynitride (SiON), silicon nitride (Si 3 N 4 ) or silicon oxide (SiO 2 ). 一種如申請專利範圍第8項的記憶體組,其中該界面介電層具有一1.5及2.0之間的折射率。A memory group according to claim 8, wherein the interfacial dielectric layer has a refractive index between 1.5 and 2.0. 一種如申請專利範圍第8項的記憶體組,其中該界面介電層的厚度在0.0至2.0奈米之間。A memory group as claimed in claim 8, wherein the interface dielectric layer has a thickness between 0.0 and 2.0 nanometers. 一種如申請專利範圍第8項的記憶體組,其中該界面介電層包含當該鐵電性材料層直接沉積在該第三半導體層上固有地形成的一原始氧化物。A memory device according to claim 8, wherein the interfacial dielectric layer includes a native oxide inherently formed when the ferroelectric material layer is directly deposited on the third semiconductor layer. 一種如申請專利範圍第8項的記憶體組,其中該界面介電層包含氧化矽(SiO 2)及一高 k介電材料。 A memory group according to claim 8, wherein the interfacial dielectric layer includes silicon oxide (SiO 2 ) and a high- k dielectric material. 一種如申請專利範圍第14項的記憶體組,其中該高 k介電材料包含氧化鋯(ZrO 2)。 A memory device according to claim 14, wherein the high- k dielectric material comprises zirconia (ZrO 2 ). 一種如申請專利範圍第8項的記憶體組,其中該鐵電性材料層包含一鋯摻雜氧化鉿 (HfO 2:Zr或HZO)、一鋁摻雜氧化鉿 (HfO 2:Al)、一矽摻雜氧化鉿 (HfO 2:Si) 或一鑭摻雜氧化鉿 (HfO 2:La ),或其任何組合。 A memory group according to item 8 of the scope of the patent application, wherein the ferroelectric material layer comprises a zirconium-doped hafnium oxide (HfO 2 :Zr or HZO), an aluminum-doped hafnium oxide (HfO 2 :Al), a Silicon-doped hafnium oxide (HfO 2 :Si) or lanthanum-doped hafnium oxide (HfO 2 :La ), or any combination thereof. 一種如申請專利範圍第16項的記憶體組,其中該鋯摻雜氧化鉿 (HZO)包含鉿鋯氧化物 (HfZrO)、鉿鋯氧氮化物 (HfZrON)、鉿鋯鋁氧化物 (HfZrAlO)、其任何組合,或任何包含鋯雜質的其他鉿氧化物。A memory group according to item 16 of the scope of the patent application, wherein the zirconium-doped hafnium oxide (HZO) includes hafnium zirconium oxide (HfZrO), hafnium zirconium oxynitride (HfZrON), hafnium zirconium aluminum oxide (HfZrAlO), Any combination thereof, or any other hafnium oxide containing zirconium impurities. 一種如申請專利範圍第8項的記憶體組,其中該三維陣列的記憶體組被組成使得每一個該鐵電性場效電晶體(FeFET)的該鐵電性材料層與其他記憶體組中的該些鐵電性場效電晶體(FeFETs) 的該鐵電性材料層分離。A memory group as in item 8 of the scope of the patent application, wherein the memory group of the three-dimensional array is composed such that the ferroelectric material layer of each of the ferroelectric field effect transistors (FeFET) and other memory groups The ferroelectric material layers of the ferroelectric field effect transistors (FeFETs) are separated. 一種如申請專利範圍第1項的記憶體組,其中該鐵電性儲存層使用原子層沉積(ALD)技術在200 °C 至330 °C之間的溫度下沉積在該第三半導體層上。A memory set according to claim 1, wherein the ferroelectric storage layer is deposited on the third semiconductor layer at a temperature between 200°C and 330°C using atomic layer deposition (ALD). 一種如申請專利範圍第19項的記憶體組,其中該溫度在270 °C 及330 °C之間。A memory group as claimed in claim 19, wherein the temperature is between 270°C and 330°C. 一種如申請專利範圍第19項的記憶體組,其中該鐵電性儲存層在一溫度於400 °C 及1000 °C之間下經過一沉積後退火步驟。A memory set according to claim 19, wherein the ferroelectric storage layer undergoes a post-deposition annealing step at a temperature between 400°C and 1000°C. 一種如申請專利範圍第1項的記憶體組,其中每一個該導體包含鎢(W)、鉬(Mo)、鋁(Al)、釕(Ru)、鉭(Ta)、鈦(Ti)或其任何組合或其合金。A memory group as claimed in item 1 of the scope of the patent application, wherein each of the conductors comprises tungsten (W), molybdenum (Mo), aluminum (Al), ruthenium (Ru), tantalum (Ta), titanium (Ti) or Any combination or alloy thereof. 一種如申請專利範圍第1項的記憶體組,其中每一個該鐵電性場效電晶體(FeFET)的一導通狀態臨界(conducting state)電壓大於0.0伏特。A memory group as claimed in claim 1, wherein each of the ferroelectric field effect transistors (FeFET) has a conducting state threshold (conducting state) voltage greater than 0.0 volts. 一種如申請專利範圍第23項的記憶體組,其中該第三電晶體材料層是硼摻雜。A memory set according to claim 23, wherein the third transistor material layer is boron doped. 一種如申請專利範圍第1項的記憶體組,其中每一個該鐵電性場效電晶體(FeFET)在其導通狀態之臨界電壓及在其非導通狀態之臨界電壓之間具有一1.0伏特至2.0伏特的窗期。A memory group as claimed in claim 1, wherein each of the ferroelectric field-effect transistors (FeFET) has a voltage between its critical voltage in its conduction state and its critical voltage in its non-conduction state with a voltage of 1.0 volts to 2.0 volt window. 一種如申請專利範圍第1項的記憶體組,其中該第三電晶體材料層在一寫入操作期間是浮動,其中該寫入操作與偏壓一同進行以提供一閘極引致汲極漏電(GIDL)效應。A memory group as claimed in claim 1, wherein the third transistor material layer is floating during a write operation, wherein the write operation is performed together with a bias voltage to provide a gate induced drain leakage ( GIDL) effect. 一種如申請專利範圍第1項的記憶體組,其中該三維陣列中記憶體組藉由絕緣介電層彼此分離。A memory group according to item 1 of the patent scope, wherein the memory groups in the three-dimensional array are separated from each other by an insulating dielectric layer. 一種如申請專利範圍第27項的記憶體組,其中該鐵電性儲存層之至少一部份利用一選擇性原子層沉積技術沉積在該絕緣介電層上,該選擇性原子層沉積技術涉及自組裝單層(SAMs)作用在該絕緣介電層上。A memory group as claimed in claim 27, wherein at least a part of the ferroelectric storage layer is deposited on the insulating dielectric layer using a selective atomic layer deposition technique, the selective atomic layer deposition technique involves Self-assembled monolayers (SAMs) act on this insulating dielectric layer. 一種如申請專利範圍第27項的記憶體組,其中該自組裝單層(SAMs)包含具有羥基末端的物質。A memory set according to claim 27, wherein the self-assembled monolayers (SAMs) comprise substances with hydroxyl ends. 一種如申請專利範圍第1項的記憶體組,其中該記憶體組的該些鐵電性場效電晶體(FeFETs)沿著一基本上平行於該平面之方向排列。A memory group as claimed in claim 1, wherein the ferroelectric field effect transistors (FeFETs) of the memory group are arranged along a direction substantially parallel to the plane. 一種如申請專利範圍第1項的記憶體組,其中該記憶體組的該些鐵電性場效電晶體(FeFETs)沿著一基本上垂直於該平面之方向排列。A memory group according to claim 1, wherein the ferroelectric field effect transistors (FeFETs) of the memory group are arranged along a direction substantially perpendicular to the plane. 一種如申請專利範圍第1項的記憶體組,其中每一個該鐵電性場效電晶體(FeFET)的該通道區之一表面積大於在該半導體基板之該平面上的該鐵電性場效電晶體(FeFET)的佔位面積。A memory group as claimed in claim 1, wherein a surface area of the channel region of each of the ferroelectric field effect transistors (FeFET) is larger than the ferroelectric field effect on the plane of the semiconductor substrate The footprint of a transistor (FeFET). 一種在一三維記憶體陣列中的薄膜鐵電性場效電晶體(FeFET)包含由一氧化物半導體材料形成的一通道區,及一金屬源極區或一金屬位元線。A thin film ferroelectric field effect transistor (FeFET) in a three-dimensional memory array includes a channel region formed of an oxide semiconductor material, and a metal source region or a metal bit line. 一種如申請專利範圍第33項的薄膜鐵電性場效電晶體,其中該氧化物半導體材料包含氧化銦鋅(InZnO或IZO)。A thin-film ferroelectric field-effect transistor according to claim 33 of the patent application, wherein the oxide semiconductor material includes indium zinc oxide (InZnO or IZO). 一種如申請專利範圍第33項的薄膜鐵電性場效電晶體,其中該通道區是8.0至12.0奈米厚。A thin film ferroelectric field effect transistor according to claim 33, wherein the channel region is 8.0 to 12.0 nanometers thick. 一種如申請專利範圍第33項的薄膜鐵電性場效電晶體,其中當該通道區的一厚度大於6.0奈米,該通道區的一電子遷移率大於或等於12.0 cm 2/V。 A thin film ferroelectric field effect transistor according to claim 33 of the patent application, wherein when the thickness of the channel region is greater than 6.0 nm, the electron mobility of the channel region is greater than or equal to 12.0 cm 2 /V. 一種如申請專利範圍第33項的薄膜鐵電性場效電晶體,其中該金屬源極區或該金屬位元線包含鉬。A thin film ferroelectric field effect transistor according to claim 33, wherein the metal source region or the metal bit line contains molybdenum. 一種如申請專利範圍第33項的薄膜鐵電性場效電晶體,其中該薄膜鐵電性場效電晶體是一記憶體組上複數個薄膜鐵電性場效電晶體的一者。A thin-film ferroelectric field-effect transistor according to item 33 of the scope of the patent application, wherein the thin-film ferroelectric field-effect transistor is one of a plurality of thin-film ferroelectric field-effect transistors on a memory group. 一種如申請專利範圍第38項的薄膜鐵電性場效電晶體,其中該記憶體組組成一該複數個薄膜鐵電性場效電晶體(FeFETs)的反或閘(NOR)記憶體組。A thin-film ferroelectric field-effect transistor as claimed in claim 38 of the patent application, wherein the memory group constitutes a Negative OR (NOR) memory group of the plurality of thin-film ferroelectric field-effect transistors (FeFETs). 一種如申請專利範圍第38項的薄膜鐵電性場效電晶體,其中該記憶體組是一半導體基板之一平面上方形成的複數個記憶體組之一者。A thin-film ferroelectric field-effect transistor according to item 38 of the scope of the patent application, wherein the memory group is one of a plurality of memory groups formed above a plane of a semiconductor substrate. 一種如申請專利範圍第40項的薄膜鐵電性場效電晶體,其中每一個該記憶體組的該複數個薄膜鐵電性場效電晶體沿著一基本上平行於該平面之方向排列。A thin film ferroelectric field effect transistor according to claim 40 of the patent application, wherein the plurality of thin film ferroelectric field effect transistors of each memory group are arranged along a direction substantially parallel to the plane. 一種如申請專利範圍第40項的薄膜鐵電性場效電晶體,其中每一個該記憶體組的該複數個薄膜鐵電性場效電晶體沿著一基本上垂直於該平面之方向排列。A thin-film ferroelectric field-effect transistor according to claim 40 of the patent application, wherein the plurality of thin-film ferroelectric field-effect transistors of each memory group are arranged along a direction substantially perpendicular to the plane.
TW111105758A 2021-02-22 2022-02-17 Thin-film storage transistor with ferroelectric storage layer TWI836349B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163152266P 2021-02-22 2021-02-22
US63/152,266 2021-02-22
US202163153273P 2021-02-24 2021-02-24
US63/153,273 2021-02-24

Publications (2)

Publication Number Publication Date
TW202240869A true TW202240869A (en) 2022-10-16
TWI836349B TWI836349B (en) 2024-03-21

Family

ID=82931163

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111105758A TWI836349B (en) 2021-02-22 2022-02-17 Thin-film storage transistor with ferroelectric storage layer

Country Status (2)

Country Link
TW (1) TWI836349B (en)
WO (1) WO2022178083A1 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236076B1 (en) * 1999-04-29 2001-05-22 Symetrix Corporation Ferroelectric field effect transistors for nonvolatile memory applications having functional gradient material
US6407435B1 (en) * 2000-02-11 2002-06-18 Sharp Laboratories Of America, Inc. Multilayer dielectric stack and method
US7687891B2 (en) * 2007-05-14 2010-03-30 Infineon Technologies Ag Diode having one or more zones of a first conductivity type and one or more zones of a second conductivity type each located within a layer of the second conductivity type
KR101468594B1 (en) * 2008-07-31 2014-12-04 삼성전자주식회사 Oxide Semiconductor and Thin Film Transistor comprising the same
KR101476817B1 (en) * 2009-07-03 2014-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device including transistor and manufacturing method thereof
US8988937B2 (en) * 2012-10-24 2015-03-24 Sandisk Technologies Inc. Pre-charge during programming for 3D memory using gate-induced drain leakage
WO2016004388A1 (en) * 2014-07-03 2016-01-07 Yale University Circuitry for ferroelectric fet-based dynamic random access memory and non-volatile memory
US20170062456A1 (en) * 2015-08-31 2017-03-02 Cypress Semiconductor Corporation Vertical division of three-dimensional memory device
KR20190001455A (en) * 2017-06-27 2019-01-04 에스케이하이닉스 주식회사 Ferroelectric Memory Device
DE112017007888T5 (en) * 2017-09-29 2020-05-07 Intel Corporation FERROELECTRIC DOUBLE GATE FIELD EFFECT TRANSISTOR

Also Published As

Publication number Publication date
TWI836349B (en) 2024-03-21
WO2022178083A1 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
US10043567B2 (en) Multilevel ferroelectric memory cell for an integrated circuit
US10211223B2 (en) Vertical ferroelectric memory device and a method for manufacturing thereof
US10014317B2 (en) Three-dimensional non-volatile NOR-type flash memory
CN107408558B (en) Memory cell with high-k charge trapping layer
US20220052202A1 (en) Electronic device including ferroelectric layer
TWI415269B (en) High-κ capped blocking dieletric bandgap engineered sonos and monos
US11515330B2 (en) Three-dimensional ferroelectric random-access memory (FeRAM)
US20220173251A1 (en) Thin-film storage transistor with ferroelectric storage layer
US9368510B1 (en) Method of forming memory cell with high-k charge trapping layer
US20080237694A1 (en) Integrated circuit, cell, cell arrangement, method for manufacturing an integrated circuit, method for manufacturing a cell, memory module
US8546944B2 (en) Multilayer dielectric memory device
US8546862B2 (en) Memory cell, an array, and a method for manufacturing a memory cell
US11784234B2 (en) Ferroelectric channel field effect transistor
Kim et al. High performance ferroelectric field-effect transistors for large memory-window, high-reliability, high-speed 3D vertical NAND flash memory
TWI767512B (en) Cool electron erasing in thin-film storage transistors
US20210057488A1 (en) Memory device and manufacturing method thereof
TW200924168A (en) Planar double gate transistor storage cell
Grenouillet et al. Reliability assessment of hafnia-based ferroelectric devices and arrays for memory and AI applications
TWI470774B (en) Nand flash with non-trapping switch transistors
KR100652135B1 (en) Organic non-volatile memory fabricated by multi-layer of quantum dots and method for manufacturing the same
TWI836349B (en) Thin-film storage transistor with ferroelectric storage layer
US20220328525A1 (en) Semiconductor memory devices and methods of manufacturing thereof
CN102315223A (en) High-performance planar floating gate flash memory device structure and manufacturing method thereof
Tsai et al. High-Performance Charge-Trapping Flash Memory Device With an Ultrathin 2.5-nm Equivalent-$\hbox {Si} _ {3}\hbox {N} _ {4} $-Thickness Trapping Layer
US20230292486A1 (en) Semiconductor structure, method for manufacturing semiconductor structure, memory and method for manufacturing memory