TWI835958B - 對稱運動向量差寫碼的裝置及方法 - Google Patents

對稱運動向量差寫碼的裝置及方法 Download PDF

Info

Publication number
TWI835958B
TWI835958B TW108147006A TW108147006A TWI835958B TW I835958 B TWI835958 B TW I835958B TW 108147006 A TW108147006 A TW 108147006A TW 108147006 A TW108147006 A TW 108147006A TW I835958 B TWI835958 B TW I835958B
Authority
TW
Taiwan
Prior art keywords
video block
smvd
mvd
block
reference image
Prior art date
Application number
TW108147006A
Other languages
English (en)
Other versions
TW202038626A (zh
Inventor
羅健聰
修曉宇
賀玉文
楊華
Original Assignee
美商Vid衡器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商Vid衡器股份有限公司 filed Critical 美商Vid衡器股份有限公司
Publication of TW202038626A publication Critical patent/TW202038626A/zh
Application granted granted Critical
Publication of TWI835958B publication Critical patent/TWI835958B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/577Motion compensation with bidirectional frame interpolation, i.e. using B-pictures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

基於在目前寫碼塊的運動向量寫碼中是否使用對稱運動向量差(SMVD),可以針對目前寫碼塊繞過雙向光流(BDOF)。寫碼裝置(例如,編碼器或解碼器)可以至少部分地基於目前寫碼塊的SMVD指示來確定是否繞過目前寫碼塊的BDOF。寫碼裝置可以獲得SMVD指示,該SMVD指示表明SMVD是否用於目前寫碼塊的運動向量寫碼。如果SMVD指示表明SMVD用於目前寫碼塊的運動向量寫碼,則寫碼裝置可以針對目前寫碼塊繞過BDOF。如果寫碼裝置確定針對目前寫碼塊繞過BDOF,則該寫碼裝置可以在不執行BDOF下重建目前寫碼塊。

Description

對稱運動向量差寫碼的裝置及方法 相關申請案的交叉引用
本申請案主張2018年12月21日提出的美國臨時專利申請案號62/783,437、2019年01月01日提出的美國臨時專利申請案號62/787,321、2019年01月15日提出的美國臨時專利申請案號62/792,710、2019年01月30日提出的美國臨時專利申請案號62/798,674以及2019年02月22日提出的美國臨時專利申請案號62/809,308的權益,其內容藉由引用整體併入本文。
視訊寫碼系統可以用於壓縮數位視訊信號,例如,以減少這種信號所需的儲存及/或傳輸頻寬。視訊寫碼系統可以包括基於塊、基於小波及/或基於物件的系統。該系統採用視訊寫碼技術,例如雙向運動補償預測(MCP),其可以藉由利用圖像之間的時間相關性以去除時間冗餘。這些技術可能增加在編碼及/或解碼期間執行的計算的複雜性。
基於在目前寫碼塊的運動向量寫碼中是否使用對稱運動向量差(SMVD),可以針對目前寫碼塊繞過雙向光流(BDOF)。
寫碼裝置(例如,編碼器或解碼器)可確定BDOF被賦能。該寫碼裝置可至少部分基於目前寫碼塊的SMVD指示來確定是否針對該目前寫碼塊繞過BDOF。寫碼裝置可以獲得SMVD指示,該SMVD指示用於表明SMVD是否用於目前寫碼塊的運動向量寫碼。如果SMVD指示表明SMVD用於目前寫碼塊的運動向量寫碼,則寫碼裝置可以針對目前寫碼塊繞過BDOF。如果寫碼裝置確定針對目前寫碼塊繞過BDOF,則其可以重建目前寫碼塊而不執行BDOF。
目前寫碼塊的運動向量差(MVD)可表明目前寫碼塊的運動向量預測(MVP)與目前寫碼塊的運動向量(MV)之間的差。可基於目前寫碼塊的空間相鄰塊及/或目前寫碼塊的時間相鄰塊的MV來確定目前寫碼塊的MVP。
如果SMVD指示表明SMVD用於目前寫碼塊的運動向量寫碼,則寫碼裝置可以接收與第一參考圖像列表相關聯的第一運動向量寫碼資訊。該寫碼裝置可基於與第一參考圖像列表相關聯的第一運動向量寫碼資訊以及與第一參考圖像列表相關聯的MVD以及與第二參考圖像列表相關聯的MVD對稱來確定與第二參考圖像列表相關聯的第二運動向量寫碼資訊。
在範例中,如果SMVD指示表明SMVD用於目前寫碼塊的運動向量寫碼,則寫碼裝置可解析與位元串流中的第一參考圖像列表相關聯的第一MVD。該寫碼裝置可基於該第一MVD且該第一MVD以及與第二參考圖像列表相關聯的第二MVD彼此對稱而確定與第二參考圖像列表相關聯的第二MVD。
如果該寫碼裝置確定針對該目前寫碼塊不繞過BDOF,那麼該寫碼裝置可至少部分基於與該目前寫碼塊中的位置相關聯的梯度來精化該目前寫碼塊的(例如,每一)子塊的運動向量。
寫碼裝置可以接收序列級SMVD指示,其表明SMVD是否被賦能用於圖像序列。如果SMVD被賦能用於圖像序列,則寫碼裝置可以基於該序列級SMVD指示來獲得與目前寫碼塊相關聯的SMVD指示。
CU:寫碼單元
N2、N3、S1、X2、Xn:介面
MCP:雙向運動補償預測
MVD:運動向量差
100:通信系統
102、102a、102b、102c、102d:無線傳輸/接收單元(WTRU)
104、113:無線電存取網路(RAN)
106、115:核心網路(CN)
108:公共交換電話網路(PSTN)
110:網際網路
112:其他網路
114a、114b:基地台
116:空中介面
118:處理器
120:收發器
122:傳輸/接收元件
124:揚聲器/麥克風
126:小鍵盤
128:顯示器/觸控板
130:非可移記憶體
132:可移記憶體
134:電源
136:全球定位系統(GPS)晶片組
138:週邊設備
160a、160b、160c:e節點B
162:移動性管理實體(MME)
164:服務閘道(SGW)
166:封包資料網路(PDN)閘道(或PGW)
180a、180b、180c:gNB
182a、182b:存取及移動性管理功能(AMF)
183a、183b:對話管理功能(SMF)
184a、184b:使用者平面功能(UPF)
185a、185b:資料網路(DN)
202:輸入視訊訊號
204:變換
206:量化
208、414:熵寫碼模組
210:逆量化
212:逆變換
216:目前視訊塊
220、302、602:視訊位元串流
226:預測塊
260:空間預測
262:時間預測
264、364、422、506、610、706:參考圖像儲存器
266、366、420:迴路濾波器
280:模式決策塊
308:熵解碼模組
310、416、612:逆量化模組
312、418、614:逆變換模組
320、620:重建視訊
360、406、606:空間預測模組
362:運動補償預測模組
402:輸入視訊位元串流
404:模式決策模組
408、608:運動預測模組
410:變換模組
412:量化模組
424:輸出視訊位元串流
500:估計模組
502:權重值估計模組
504:運動估計模組
604:熵解碼器
618:迴路濾波器模組
700:預測模組
702:加權平均模組
704:運動補償模組
圖1A是示出了可以實施所揭露的一個或複數實施例的示範性通信系統的系統圖。
圖1B是示出了根據實施例的可以在圖1A所示的通信系統內使用的範例的無線傳輸/接收單元(WTRU)的系統圖。
圖1C是示出了根據實施例的可以在圖1A所示的通信系統內使用的示範性無線電存取網路(RAN)和示範性核心網路(CN)的系統圖。
圖1D是示出了根據實施例的可以在圖1A所示的通信系統內使用的另一示範性RAN和另一示範性CN的系統圖。
圖2是用於編碼器的示範性基於塊的混合視訊編碼框架的圖。
圖3是用於解碼器的示範性基於塊的視訊解碼框架的圖。
圖4是支援使用CU權重的雙向預測(例如,GBi)的示範性視訊編碼器的圖。
圖5是用於編碼器的支援使用CU權重的雙向預測的示範性模組的圖。
圖6是支援使用CU權重的雙向預測的示範性基於塊的視訊解碼器的圖。
圖7是用於解碼器的支援使用CU權重的雙向預測的示範性模組的圖。
圖8示出了示範性雙向光流。
圖9示出了示範性四參數仿射模式。
圖10示出了示範性六參數仿射模式。
圖11示出了示範性非仿射運動對稱MVD(例如,MVD1=-MVD0)。
圖12示出了示範性運動向量差(MVD)搜尋點(一個或複數)(例如,用於合併模式MVD)。
圖13示出了示範性仿射運動對稱MVD。
從以下結合附圖以示範性方式給出的描述中可以更詳細地理解本發明。
圖1A是示出了可以實施所揭露的一個或複數實施例的示範性通信系統100的圖。該通信系統100可以是為複數無線使用者提供例如語音、資料、視訊、訊息傳遞、廣播等內容的多重存取系統。該通信系統100可以經由共用包括無線頻寬的系統資源而使複數無線使用者能夠存取此類內容。舉例來說,通信系統100可以使用一種或多種通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)、零尾唯一字DFT擴展OFDM(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、資源塊濾波OFDM以及濾波器組多載波(FBMC)等等。
如圖1A所示,通信系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d、RAN 104/113、CN 106/115、公共交換電話網路(PSTN)108、網際網路110以及其他網路112,然而應該瞭解,所揭露的實施例設想了任意數量的WTRU、基地台、網路及/或網路元件。WTRU 102a、102b、102c、102d中的每一個可以是被配置為在無線環境中操作及/或通信的任何類型的裝置。舉例來說,任一WTRU 102a、102b、102c、102d都可被稱為“站”及/或“STA”,其可以被配置為傳送及/或接收無線信號、並且可以包括使用者設備(UE)、行動站、固定或行動用戶單元、基於訂用的單 元、呼叫器、行動電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、小筆電、個人電腦、無線感測器、熱點或Mi-Fi裝置、物聯網(IoT)裝置、手錶或其他可穿戴裝置、頭戴顯示器(HMD)、車輛、無人機、醫療設備及應用(例如遠端手術)、工業設備及應用(例如機器人及/或在工業及/或自動處理鏈環境中操作的其他無線裝置)、消費類電子裝置、以及在商業及/或工業無線網路上操作的裝置等等。WTRU 102a、102b、102c、102d的任一者可被可互換地稱為UE。
通信系統100還可以包括基地台114a及/或基地台114b。每一個基地台114a及/或基地台114b可以是被配置為與WTRU 102a、102b、102c、102d中的至少一者介接以促進其存取一個或複數通信網路(例如CN106/115、網際網路110、及/或其他網路112)的任何類型的裝置。例如,基地台114a、114b可以是基地收發站(BTS)、節點B、e節點B、本地節點B、本地e節點B、gNB、NR節點B、站點控制器、存取點(AP)、以及無線路由器等等。雖然每一個基地台114a、114b都被描述為單一元件,然而應該瞭解,基地台114a、114b可以包括任何數量的互連基地台及/或網路元件。
基地台114a可以是RAN 104/113的一部分,並且該RAN還可以包括其他基地台及/或網路元件(未顯示),例如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點等等。基地台114a及/或基地台114b可被配置為在稱為胞元(未顯示)的一個或複數載波頻率上傳輸及/或接收無線信號。這些頻率可以處於許可頻譜、未許可頻譜或是許可與未許可頻譜的組合中。胞元可以為相對固定或者有可能隨時間變化的特定地理區域提供無線服務覆蓋。胞元可被進一步分成胞元扇區。例如,與基地台114a相關聯的胞元可被分為三個扇區。因此,在一個實施例中,基地台114a可以包括三個收發器,也就是說,一個收發器用於胞元的每一個扇區。在實施例中, 基地台114a可以使用多輸入多輸出(MIMO)技術、並且可以為胞元的每一個扇區使用複數收發器。例如,波束成形可以用於在期望的空間方向上傳輸及/或接收信號。
基地台114a、114b可以經由空中介面116以與WTRU 102a、102b、102c、102d中的一者或多者進行通信,其中該空中介面可以是任何適當的無線通訊鏈路(例如射頻(RF)、微波、釐米波、毫米波、紅外線(IR)、紫外線(UV)、可見光等等)。空中介面116可以使用任何適當的無線電存取技術(RAT)來建立。
更具體地說,如上所述,通信系統100可以是多重存取系統、並且可以使用一種或多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA以及SC-FDMA等等。例如,RAN 104/113中的基地台114a與WTRU 102a、102b、102c可以實施例如通用行動電信系統(UMTS)陸地無線電存取(UTRA)之類的無線電技術,其中該技術可以使用寬頻CDMA(WCDMA)來建立空中介面115/116/117。WCDMA可以包括如高速封包存取(HSPA)及/或演進型HSPA(HSPA+)之類的通信協定。HSPA可以包括高速下鏈(DL)封包存取(HSDPA)及/或高速UL封包存取(HSUPA)。
在實施例中,基地台114a和WTRU 102a、102b、102c可以實施例如演進型UMTS陸地無線電存取(E-UTRA)之類的無線電技術,其中該技術可以使用長期演進(LTE)及/或先進LTE(LTE-A)及/或先進LTE Pro(LTE-A Pro)來建立空中介面116。
在實施例中,基地台114a和WTRU 102a、102b、102c可以實施例如NR無線電存取之類的無線電技術,其中該無線電技術可以使用新型無線電(NR)來建立空中介面116。
在實施例中,基地台114a和WTRU 102a、102b、102c可以實施多種無線電存取技術。例如,基地台114a和WTRU 102a、102b、102c可以一起實施LTE無線電存取和NR無線電存取(例如使用雙連接(DC)原理)。因此,WTRU 102a、102b、102c使用的空中介面可以經由多種類型的無線電存取技術、及/或向/從多種類型的基地台(例如eNB和gNB)發送的傳輸來表徵。
在其他實施例中,基地台114a和WTRU 102a、102b、102c可以實施以下的無線電技術,例如IEEE 802.11(即無線高保真(WiFi))、IEEE 802.16(全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、暫行標準2000(IS-2000)、暫行標準95(IS-95)、暫行標準856(IS-856)、全球行動通信系統(GSM)、用於GSM演進的增強資料速率(EDGE)以及GSM EDGE(GERAN)等等。
圖1A中的基地台114b例如可以是無線路由器、本地節點B、本地e節點B或存取點、並且可以使用任何適當的RAT來促進例如營業場所、住宅、車輛、校園、工業設施、空中走廊(例如供無人機使用)以及道路等等的局部區域中的無線連接。在一個實施例中,基地台114b與WTRU 102c、102d可以實施IEEE 802.11之類的無線電技術來建立無線區域網(WLAN)。在實施例中,基地台114b與WTRU 102c、102d可以實施IEEE 802.15之類的無線電技術來建立無線個人區域網(WPAN)。在再一個實施例中,基地台114b和WTRU 102c、102d可使用基於蜂巢的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等等)來建立微微胞元或毫微微胞元。如圖1A所示,基地台114b可以具有至網際網路110的直接連接。因此,基地台114b不需要經由CN 106/115來存取網際網路110。
RAN 104/113可以與CN 106/115進行通信,該CN可以是被配置為向WTRU 102a、102b、102c、102d中的一個或複數提供語音、資料、應用及/或網際網路協定語音(VoIP)服務的任何類型的網路。該資料可以具有不同的服務品質(QoS)需求,例如不同的輸送量需求、潛時需求、容錯需求、可靠性需求、資料輸送量需求、以及移動性需求等等。CN 106/115可以提供呼叫控制、記帳服務、基於移動位置的服務、預付費呼叫、網際網路連接、視訊分發等等、及/或可以執行使用者驗證之類的高階安全功能。雖然在圖1A中沒有顯示,然而應該瞭解,RAN 104/113及/或CN 106/115可以直接或間接地與其他RAN進行通信,該其他RAN使用了與RAN 104/113相同的RAT、或不同的RAT。例如,除了與可以使用NR無線電技術的RAN 104/113連接之外,CN 106/115還可以與使用GSM、UMTS、CDMA 2000、WiMAX、E-UTRA或WiFi無線電技術的另一RAN(未顯示)通信。
CN 106/115還可以充當供WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110及/或其他網路112的閘道。PSTN 108可以包括提供簡易老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括使用了公共通信協定(例如傳輸控制協定/網際網路協定(TCP/IP)網際網路協定族中的TCP、使用者資料報協定(UDP)及/或IP)的全球性互連電腦網路裝置系統。網路112可以包括由其他服務供應者擁有及/或操作的有線或無線通訊網路。例如,網路112可以包括與一個或複數RAN連接的另一個CN,其中該一個或複數RAN可以與RAN 104/113使用相同RAT或不同RAT。
通信系統100中的一些或所有WTRU 102a、102b、102c、102d可以包括多模能力(例如WTRU 102a、102b、102c、102d可以包括在不同無線鏈路上與不同無線網路通信的複數收發器)。例如,圖1A所示的WTRU 102c 可被配置為與使用基於蜂巢的無線電技術的基地台114a通信、以及與可以使用IEEE 802無線電技術的基地台114b通信。
圖1B是示出了示範性WTRU 102的系統圖。如圖1B所示,WTRU 102可以包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源134、全球定位系統(GPS)晶片組136及/或其他週邊設備138等等。應該瞭解的是,在保持符合實施例的同時,WTRU 102還可以包括前述元件的任何子組合。
處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、複數微處理器、與DSP核心關聯的一個或複數微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式閘陣列(FPGA)電路、其他任何類型的積體電路(IC)以及狀態機等等。處理器118可以執行信號寫碼、資料處理、功率控制、輸入/輸出處理、及/或其他任何能使WTRU 102在無線環境中操作的功能。處理器118可以耦合至收發器120,收發器120可以耦合至傳輸/接收元件122。雖然圖1B將處理器118和收發器120描述為單獨元件,然而應該瞭解,處理器118和收發器120也可以集成在一個電子元件或晶片中。
傳輸/接收元件122可被配置為經由空中介面116以傳輸信號至基地台(例如基地台114a)或接收來自基地台(例如基地台114a)的信號。舉個例子,在一個實施例中,傳輸/接收元件122可以是被配置為傳輸及/或接收RF信號的天線。例如,在實施例中,傳輸/接收元件122可以是被配置為傳輸及/或接收IR、UV或可見光信號的放射器/偵測器。在再一個實施例中,傳輸/接收元件122可被配置為傳輸及/或接收RF和光信號。應該瞭解的是,傳輸/接收元件122可以被配置為傳輸及/或接收無線信號的任何組合。
雖然在圖1B中將傳輸/接收元件122描述為是單一元件,但是WTRU 102可以包括任何數量的傳輸/接收元件122。更具體地說,WTRU 102可以使用MIMO技術。因此,在一個實施例中,WTRU 102可以包括經由空中介面116以傳輸及接收無線信號的兩個或複數傳輸/接收元件122(例如複數天線)。
收發器120可被配置為對傳輸/接收元件122所要傳輸的信號進行調變、以及對傳輸/接收元件122接收的信號進行解調。如上所述,WTRU 102可以具有多模能力。因此,收發器120可以包括允許WTRU 102經由多種RAT(例如NR和IEEE 802.11)來進行通信的複數收發器。
WTRU 102的處理器118可以耦合到揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元)、並且可以接收來自這些元件的使用者輸入資料。處理器118還可以向揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以從例如非可移記憶體130及/或可移記憶體132之類的任何適當的記憶體中存取訊號、以及將資料儲存至這些記憶體。非可記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或是其他任何類型的記憶儲存裝置。可移記憶體132可以包括用戶身份模組(SIM)卡、記憶條、安全數位(SD)記憶卡等等。在其他實施例中,處理器118可以從那些並非實際位於WTRU 102的記憶體存取資訊、以及將資料儲存至這些記憶體,例如,此類記憶體可以位於伺服器或家用電腦(未顯示)。
處理器118可以接收來自電源134的電力、並且可被配置分發及/或控制用於WTRU 102中的其他元件的電力。電源134可以是為WTRU 102供電的任何適當裝置。例如,電源134可以包括一個或複數乾電池組(如鎳鎘 (Ni-Cd)、鎳鋅(Ni-Zn)、鎳氫(NiMH)、鋰離子(Li-ion)等等)、太陽能電池以及燃料電池等等。
處理器118還可以耦合到GPS晶片組136,該晶片組可被配置為提供與WTRU 102的目前位置相關的位置資訊(例如經度和緯度)。作為來自GPS晶片組136的資訊的補充或替代,WTRU 102可以經由空中介面116接收來自基地台(例如基地台114a、114b)的位置資訊、及/或根據從兩個或複數附近基地台接收的信號時序來確定其位置。應該瞭解的是,在保持符合實施例的同時,WTRU 102可以用任何適當的定位方法來獲取位置資訊。
處理器118可以進一步耦合到其他週邊設備138,其中該週邊設備可以包括提供附加特徵、功能及/或有線或無線連接的一個或複數軟體及/或硬體模組。例如,週邊設備138可以包括加速度計、電子指南針、衛星收發器、數位相機(用於照片和視訊)、通用序列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、藍牙®模組、調頻(FM)無線電單元、數位音樂播放器、媒體播放器、視訊遊戲機模組、網際網路瀏覽器、虛擬實境及/或增強現實(VR/AR)裝置、以及活動追蹤器等等。週邊設備138可以包括一個或複數感測器,該感測器可以是以下的一者或多者:陀螺儀、加速度計、霍爾效應感測器、磁強計、方位感測器、鄰近感測器、溫度感測器、時間感測器、地理位置感測器、高度計、光感測器、觸摸感測器、磁力計、氣壓計、姿勢感測器、生物測定感測器及/或濕度感測器。
WTRU 102可以包括全雙工無線電裝置,其中對於該無線電裝置,一些或所有信號(例如與用於UL(例如對傳輸而言)和下鏈(例如對接收而言)的特定子訊框相關聯)的接收或傳輸可以是並行及/或同時的。全雙工無線電裝置可以包括經由硬體(例如扼流圈)或是經由處理器(例如單獨的處理器(未顯示)或是經由處理器118)的信號處理來減小及/或基本消 除自干擾的干擾管理單元。在實施例中,WTRU 102可以包括傳輸或接收一些或所有信號(例如與用於UL(例如對傳輸而言)或下鏈(例如對接收而言)的特定子訊框相關聯)的半雙工無線電裝置。
圖1C是示出了根據實施例的RAN 104和CN 106的系統圖。如上所述,RAN 104可以使用E-UTRA無線電技術以經由空中介面116而與WTRU 102a、102b、102c進行通信。該RAN 104還可以與CN 106進行通信。
RAN 104可以包括e節點B 160a、160b、160c,然而應該瞭解,在保持符合實施例的同時,RAN 104可以包括任何數量的e節點B。每一個e節點B 160a、160b、160c都可以包括經由空中介面116以與WTRU 102a、102b、102c通信的一個或複數收發器。在一個實施例中,e節點B 160a、160b、160c可以實施MIMO技術。因此,舉例來說,e節點B 160a可以使用複數天線以向WTRU 102a傳輸無線信號、及/或接收來自WTRU 102a的無線信號。
每一個e節點B 160a、160b、160c都可以關聯於特定胞元(未顯示)、並且可被配置為處理無線電資源管理決策、切換決策、UL及/或DL中的使用者排程等等。如圖1C所示,e節點B 160a、160b、160c彼此可以經由X2介面進行通信。
圖1C所示的CN 106可以包括移動性管理實體(MME)162、服務閘道(SGW)164以及封包資料網路(PDN)閘道(或PGW)166。雖然前述的每一個元件都被描述為是CN 106的一部分,然而應該瞭解,這些元件中的任一元件都可以由CN操作者之外的實體擁有及/或操作。
MME 162可以經由S1介面被連接到RAN 104中的每一個e節點B 160a、160b、160c、並且可以充當控制節點。例如,MME 162可以負責驗證WTRU 102a、102b、102c的使用者、執行承載啟動/停用、以及在WTRU 102a、102b、102c的初始連結期間選擇特定的服務閘道等等。MME 162還可以提 供用於在RAN 104與使用其他無線電技術(例如GSM或WCDMA)的其他RAN(未顯示)之間進行切換的控制平面功能。
SGW 164可以經由S1介面被連接到RAN 104中的每一個e節點B 160a、160b、160c。SGW 164通常可以路由及轉發至/來自WTRU 102a、102b、102c的使用者資料封包。SGW 164還可以執行其他功能,例如在e節點B間的切換期間錨定使用者平面、在DL資料可供WTRU 102a、102b、102c使用時觸發傳呼、以及管理並儲存WTRU 102a、102b、102c的上下文等等。
SGW 164可以連接到PGW 166,該PGW 166可以為WTRU 102a、102b、102c提供封包交換網路(例如網際網路110)存取,以促進WTRU 102a、102b、102c與IP賦能的裝置之間的通信。
CN 106可以促進與其他網路的通信。例如,CN 106可以為WTRU 102a、102b、102c提供對電路切換式網路(例如PSTN 108)的存取,以促進WTRU 102a、102b、102c與傳統的陸線通信裝置之間的通信。例如,CN 106可以包括IP閘道(例如IP多媒體子系統(IMS)伺服器)或與之進行通信,並且該IP閘道可以充當CN 106與PSTN 108之間的介面。此外,CN 106可以為WTRU 102a、102b、102c提供針對其他網路112的存取,其中該網路可以包括其他服務供應者擁有及/或操作的其他有線或無線網路。
雖然在圖1A至圖1D中將WTRU描述為無線終端,然而應該想到的是,在某些典型實施例中,此類終端與通信網路可以使用(例如暫時或永久性)有線通信介面。
在典型的實施例中,其他網路112可以是WLAN。
採用基礎設施基本服務集(BSS)模式的WLAN可以具有用於該BSS的存取點(AP)以及與該AP相關聯的一個或複數站(STA)。該AP可以存取或是介接至分散式系統(DS)或是將訊務攜入及/或攜出BSS的另一類型 的有線/無線網路。源自BSS外部且至STA的訊務可以經由AP到達並被遞送至STA。源自STA且至BSS外部的目的地的訊務可被發送至AP,以遞送到各自的目的地。在BSS內的STA之間的訊務可以經由AP來發送,例如其中源STA可以向AP發送訊務並且AP可以將訊務遞送至目的地STA。在BSS內的STA之間的訊務可被認為及/或稱為點到點訊務。該點到點訊務可以在源與目的地STA之間(例如在其間直接)用直接鏈路建立(DLS)來發送。在某些典型實施例中,DLS可以使用802.11e DLS或802.11z隧道化DLS(TDLS))。使用獨立BSS(IBSS)模式的WLAN不具有AP,並且處於該IBSS內部或是使用該IBSS的STA(例如所有STA)彼此可以直接通信。在這裡,IBSS通信模式有時可被稱為“特定(ad-hoc)”通信模式。
在使用802.11ac基礎設施操作模式或類似的操作模式時,AP可以在固定通道(例如主通道)上傳送信標。該主通道可以具有固定寬度(例如20MHz的頻寬)或是經由傳訊動態設定的寬度。主通道可以是BSS的操作通道、並且可被STA用來與AP建立連接。在某些典型實施例中,(例如在802.11系統中)可以實施具有衝突避免的載波偵聽多重存取(CSMA/CA)。對於CSMA/CA,包括AP的STA(例如每一個STA)可以感測主通道。如果特定STA感測到/偵測到及/或確定主通道繁忙,那麼該特定STA可以回退。在給定的BSS中,一個STA(例如只有一個站)可以在任何給定時間進行傳輸。
高輸送量(HT)STA可以使用40MHz寬的通道來進行通信,例如,藉由將20MHz寬的主通道與20MHz寬的相鄰或不相鄰通道進行組合以形成40MHz寬的通道。
超高輸送量(VHT)STA可以支援20MHz、40MHz、80MHz及/或160MHz寬的通道。40MHz及/或80MHz通道可以藉由組合連續的20 MHz通道來形成。160MHz通道可以藉由組合8個連續的20MHz通道或者藉由組合兩個不連續的80MHz通道(這種組合可被稱為80+80配置)來形成。對於80+80配置,在通道編碼之後,資料可被傳遞並經過分段解析器,該分段解析器可以將資料分成兩個流。在每一個流上可以單獨執行反向快速傅立葉變換(IFFT)處理以及時域處理。該流可被映射在兩個80MHz通道上,並且資料可以由傳輸STA來傳送。在接收STA的接收器上,用於80+80配置的上述操作可以被顛倒,並且組合資料可被發送至媒體存取控制(MAC)。
802.11af和802.11ah支援1GHz以下的操作模式。相對於802.11n以及802.11ac中使用的通道操作頻寬及載波,在802.11af和802.11ah中的通道操作頻寬及載波減小。802.11af在TV白空間(TVWS)頻譜中支援5MHz、10MHz以及20MHz頻寬,並且802.11ah支援使用非TVWS頻譜的1MHz、2MHz、4MHz、8MHz以及16MHz頻寬。依照典型實施例,802.11ah可以支援儀錶類型控制/機器類型通信(例如巨集覆蓋區域中的MTC裝置)。MTC裝置可以具有某種能力,例如包括了支援(例如只支援)某些及/或有限頻寬的有限的能力。MTC裝置可以包括電池,並且該電池的電池壽命高於臨界值(例如以用於維持很長的電池壽命)。
可以支援複數通道和通道頻寬的WLAN系統(例如802.11n、802.11ac、802.11af以及802.11ah)包括了可被指定為主通道的通道。該主通道的頻寬可以等於BSS中的所有STA所支援的最大公共操作頻寬。主通道的頻寬可以由在BSS中操作的所有STA中的STA設定及/或限制、且支援最小頻寬操作模式。在802.11ah的範例中,即使BSS中的AP和其他STA支援2MHz、4MHz、8MHz、16MHz及/或其他通道頻寬操作模式,但對支援(例如只支援)1MHz模式的STA(例如MTC類型的裝置)來說,主通道的寬度可以是1MHz。載波感測及/或網路分配向量(NAV)設定可以取決於主通 道的狀態。如果主通道繁忙(例如因為STA(其只支援1MHz操作模式)對AP進行傳輸),那麼即使大多數的頻帶保持空閒並且可供使用,也可以認為整個可用頻帶繁忙。
在美國,可供802.11ah使用的可用頻帶是從902MHz到928MHz。在韓國,可用頻帶是從917.5MHz到923.5MHz。在日本,可用頻帶是從916.5MHz到927.5MHz。依照國家碼,可用於802.11ah的總頻寬是6MHz到26MHz。
圖1D是示出了根據實施例的RAN 113和CN 115的系統圖。如上所述,RAN 113可以使用NR無線電技術經由空中介面116以與WTRU 102a、102b、102c進行通信。RAN 113還可以與CN 115進行通信。
RAN 113可以包括gNB 180a、180b、180c,但是應該瞭解,在保持符合實施例的同時,RAN 113可以包括任何數量的gNB。每一個gNB 180a、180b、180c都可以包括一個或複數收發器,以經由空中介面116來與WTRU 102a、102b、102c通信。在一個實施例中,gNB 180a、180b、180c可以實施MIMO技術。例如,gNB 180a、180b、180c可以使用波束成形以向gNB 180a、180b、180c傳輸信號及/或從gNB 180a、180b、180c接收信號。因此,舉例來說,gNB 180a可以使用複數天線以向WTRU 102a傳輸無線信號、及/或接收來自WTRU 102a的無線信號。在實施例中,gNB 180a、180b、180c可以實施載波聚合技術。例如,gNB 180a可以向WTRU 102a傳輸複數分量載波(未顯示)。這些分量載波的子集可以處於未許可頻譜上,而其餘的分量載波則可以處於許可頻譜上。在實施例中,gNB 180a、180b、180c可以實施協調多點(CoMP)技術。例如,WTRU 102a可以接收來自gNB 180a和gNB 180b(及/或gNB 180c)的協調傳輸。
WTRU 102a、102b、102c可以使用與可縮放參數配置相關聯的傳輸以與gNB 180a、180b、180c進行通信。例如,對於不同的傳輸、不同的胞元及/或不同的無線傳輸頻譜部分,OFDM符號間距及/或OFDM子載波間距可以是不同的。WTRU 102a、102b、102c可以使用具有不同或可縮放長度的子訊框或傳輸時間間隔(TTI)(例如包括了不同數量的OFDM符號及/或持續不同的絕對時間長度)以與gNB 180a、180b、180c進行通信。
gNB 180a、180b、180c可被配置為與採用獨立配置及/或非獨立配置的WTRU 102a、102b、102c進行通信。在獨立配置中,WTRU 102a、102b、102c可以在不存取其他RAN(例如e節點B 160a、160b、160c)下與gNB 180a、180b、180c進行通信。在獨立配置中,WTRU 102a、102b、102c可以使用gNB 180a、180b、180c中的一者或多者作為行動錨點。在獨立配置中,WTRU 102a、102b、102c可以使用未許可頻帶中的信號以與gNB 180a、180b、180c進行通信。在非獨立配置中,WTRU 102a、102b、102c會在與另一RAN(例如e節點B 160a、160b、160c)進行通信/連接的同時與gNB 180a、180b、180c進行通信/連接。舉例來說,WTRU 102a、102b、102c可以實施DC原理以基本同時地與一個或複數gNB 180a、180b、180c以及一個或複數e節點B 160a、160b、160c進行通信。在非獨立配置中,e節點B 160a、160b、160c可以充當WTRU 102a、102b、102c的行動錨點,並且gNB 180a、180b、180c可以提供附加的覆蓋及/或輸送量,以服務WTRU 102a、102b、102c。
每一個gNB 180a、180b、180c都可以關聯於特定胞元(未顯示)、並且可以被配置為處理無線電資源管理決策、切換決策、UL及/或DL中的使用者排程、支援網路截割、實施雙連接性、實施NR與E-UTRA之間的互通、路由使用者平面資料至使用者平面功能(UPF)184a、184b、以及路由 控制平面資訊至存取及移動性管理功能(AMF)182a、182b等等。如圖1D所示,gNB 180a、180b、180c彼此可以經由Xn介面通信。
圖1D所示的CN 115可以包括至少一個AMF 182a、182b、至少一個UPF 184a、184b、至少一個對話管理功能(SMF)183a、183b、並且有可能包括資料網路(DN)185a、185b。雖然每一個前述元件都被描述了CN 115的一部分,但是應該瞭解,這些元件中的任一元件都可以被CN操作者之外的其他實體擁有及/或操作。
AMF 182a、182b可以經由N2介面被連接到RAN 113中的一個或複數gNB 180a、180b、180c、並且可以充當控制節點。例如,AMF 182a、182b可以負責驗證WTRU 102a、102b、102c的使用者、支援網路截割(例如處理具有不同需求的不同協定資料單元(PDU)對話)、選擇特定的SMF 183a、183b、管理註冊區域、終止NAS傳訊、以及移動性管理等等。AMF 182a、182b可以使用網路截割,以基於WTRU 102a、102b、102c使用的服務類型來定製為WTRU 102a、102b、102c提供的CN支援。例如,針對不同的用例,可以建立不同的網路切片,例如依賴於超可靠低潛時(URLLC)存取的服務、依賴於增強型大規模行動寬頻(eMBB)存取的服務、及/或用於機器類型通信(MTC)存取的服務等等。AMF 182可以提供用於在RAN 113與使用其他無線電技術(例如LTE、LTE-A、LTE-A Pro及/或例如WiFi之類的非3GPP存取技術)的其他RAN(未顯示)之間切換的控制平面功能。
SMF 183a、183b可以經由N11介面被連接到CN 115中的AMF 182a、182b。SMF 183a、183b還可以經由N4介面被連接到CN 115中的UPF 184a、184b。SMF 183a、183b可以選擇和控制UPF 184a、184b、並且可以經由UPF 184a、184b來配置訊務路由。SMF 183a、183b可以執行其他功能,例如管理和分配UE IP位址、管理PDU對話、控制策略實施和QoS、以及提供下鏈 資料通知等等。PDU對話類型可以是基於IP的、不基於IP的、以及基於乙太網路的等等。
UPF 184a、184b可以經由N3介面被連接到RAN 113中的一或複數gNB 180a、180b、180c,這樣可以為WTRU 102a、102b、102c提供封包交換網路(例如網際網路110)存取,以促進WTRU 102a、102b、102c與IP賦能的裝置之間的通信,UPF 184、184b可以執行其他功能,例如路由及轉發封包、實施使用者平面策略、支援多宿主PDU對話、處理使用者平面QoS、快取下鏈封包、以及提供移動性錨定等等。
CN 115可以促進與其他網路的通信。例如,CN 115可以包括或者可以與充當CN 115與PSTN 108之間的介面的IP閘道(例如IP多媒體子系統(IMS)伺服器)進行通信。此外,CN 115可以為WTRU 102a、102b、102c提供針對其他網路112的存取,該其他網路112可以包括其他服務供應者擁有及/或操作的其他有線或無線網路。在一個實施例中,WTRU 102a、102b、102c可以經由與UPF 184a、184b介接的N3介面、以及介於UPF 184a、184b與本地資料網路(DN)185a、185b之間的N6介面以經由UPF 184a、184b被連接到DN 185a、185b。
鑒於圖1A至圖1D以及圖1A至圖1D的對應描述,在這裡對照以下的一項或多項描述的一個或複數或所有功能可以由一個或複數仿真裝置(未顯示)來執行:WTRU 102a-d、基地台114a-b、e節點B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-b、UPF 184a-b、SMF 183a-b、DN 185a-b及/或這裡描述的一個或複數任何其他裝置。仿真裝置可以是被配置為仿真這裡描述的一個或複數或所有功能的一個或複數裝置。舉例來說,仿真裝置可用於測試其他裝置及/或模擬網路及/或WTRU功能。
仿真裝置可被設計為在實驗室環境及/或操作者網路環境中實施其他裝置的一項或多項測試。例如,該一個或複數仿真裝置可以在被完全或部分作為有線及/或無線通訊網路一部分實施及/或部署的同時執行一個或複數或所有功能,以測試通信網路內的其他裝置。該一個或複數仿真裝置可以在被暫時作為有線及/或無線通訊網路的一部分實施或部署的同時執行一個或複數或所有功能。該仿真裝置可以直接耦合到另一裝置以執行測試、及/或可以使用空中無線通訊來執行測試。
一個或複數仿真裝置可以在未被作為有線及/或無線通訊網路一部分實施或部署的同時執行包括所有功能的一個或複數功能。例如,該仿真裝置可以在測試實驗室及/或未被部署(例如測試)的有線及/或無線通訊網路的測試場景中使用,以實施一個或複數元件的測試。該一個或複數仿真裝置可以是測試裝置。該仿真裝置可以使用直接的RF耦合及/或經由RF電路(例如,該電路可以包括一個或複數天線)的無線通訊來傳輸及/或接收資料。
視訊寫碼系統可以用於壓縮數位視訊信號,這可以減少視訊訊號的儲存需求及/或傳輸頻寬。視訊寫碼系統可以包括基於塊、基於小波及/或基於物件的系統。基於塊的視訊寫碼系統可以包括MPEG-1/2/4第2部分、H.264/MPEG-4第10部分AVC、VC-1、高效視訊寫碼(HEVC)及/或通用視訊寫碼(VVC)。
基於塊的視訊寫碼系統可以包括基於塊的混合視訊寫碼框架。圖2是用於編碼器的示範性基於塊的混合視訊編碼框架的圖。編碼器可以包括WTRU。輸入視訊訊號202可以被逐塊處理。塊尺寸(例如,擴展的塊尺寸,例如寫碼單元(CU))可以壓縮高解析度(例如,1080p及以上)視訊訊號。舉例來說,CU可包括64×64像素或更多。CU可被分割為預測單元(PU), 及/或可使用單獨預測。對於輸入視訊塊(例如,巨集塊(MB)及/或CU),可執行空間預測260及/或時間預測262。空間預測260(例如,訊框內預測)可使用來自視訊圖像/切片中的寫碼相鄰塊的樣本(例如,參考樣本)的像素來預測目前視訊塊。空間預測260可以減少例如視訊訊號中固有的空間冗餘。運動預測262(例如,訊框間預測及/或時間預測)可使用來自寫碼視訊圖像的重建像素(例如)來預測目前視訊塊。運動預測262可以減少例如視訊訊號中固有的時間冗餘。視訊塊的運動預測信號可藉由一個或複數運動向量而被傳訊、及/或可表明目前塊與/或目前塊的參考塊之間的運動量及/或運動方向。如果支援複數參考圖像以用於(例如,每一)視訊塊,那麼可發送視訊塊的參考圖像索引。參考圖像索引可以用於識別運動預測信號可以從參考圖像儲存器264中的哪個參考圖像導出。
在空間預測260及/或運動預測262之後,編碼器中的模式決策塊280可例如基於速率失真最佳化來確定預測模式(例如,最佳預測模式)。可以從目前視訊塊216中減去預測塊,及/或可以使用變換204及/或量化206對預測殘差進行去相關,以實現位元率,例如目標位元率。經量化的殘差係數可在逆量化210處被逆量化及/或在逆變換212處被逆變換,例如以形成重建的殘差,該重建的殘差可被添加到預測塊226,例如以形成重建的視訊塊。重建的視訊塊可被放入參考圖像儲存器264中及/或重建的視訊塊可被用於對視訊塊(例如,未來視訊塊)進行寫碼之前,可在迴路濾波器266處對重建的視訊塊應用迴路內濾波(例如,解塊濾波器及/或適應性迴路濾波器)。為了形成輸出視訊位元串流220,寫碼模式(例如,訊框間或訊框內)、預測模式資訊、運動資訊及/或量化的殘差係數可以被發送(例如,可以全部被發送)到熵寫碼模組208,例如,以被壓縮及/或緊縮以形成位元串流。
圖3是用於解碼器的示範性基於塊的視訊解碼框架的圖。解碼器可以包括WTRU。視訊位元串流302(例如,圖2中的視訊位元串流220)可以在熵解碼模組308處被拆開(例如,首先被拆開)及/或熵解碼。寫碼模式和預測資訊可以被發送到空間預測模組360(例如,如果被訊框內寫碼)及/或發送到運動補償預測模組362(例如,如果被訊框間寫碼及/或時間寫碼)以形成預測塊。可將殘差變換係數發送到逆量化模組310及/或逆變換模組312,例如以重建殘差塊。在326處可將預測塊及/或殘差塊加在一起。重建塊可例如在將重建塊儲存在參考圖像儲存器364中之前在迴路濾波器366處經歷迴路內濾波。參考圖像儲存器364中的重建視訊320可被發送到顯示裝置及/或用於預測視訊塊(例如,未來視訊塊)。
在視訊編解碼器中使用雙向運動補償預測(MCP)可以藉由利用圖像之間的時間相關性來去除時間冗餘。雙向預測信號可以藉由使用權重值(例如,0.5)組合兩個單向預測信號來形成。在某些視訊中,亮度特性可從一個參考圖像到另一參考圖像快速改變。因此,預測技術可藉由將全域或局部權重和偏移值應用於參考圖像中的一個或複數樣本值來補償亮度隨時間的變化(例如,衰落轉變)。
可使用CU權重來執行雙向預測模式中的MCP。例如,可以使用使用CU權重的雙向預測來執行MCP。使用CU權重的雙向預測(BCW)的範例可以包括廣義雙向預測(GBi)。可基於權重(一個或複數)及/或對應於與參考圖像列表(一個或複數)相關聯的運動向量的運動補償預測信號(一個或複數)等中的一或多者來計算雙向預測信號。在範例中,可使用等式1來計算雙向預測模式中的樣本x處的預測信號(如所給出)。
P[x]=w 0 * P 0[x+v 0]+w 1 * P 1[x+v 1] 等式1
P[x]可以表示位於圖像位置x處的樣本x的所得預測信號。P i [x+v i ]可以表示使用第i個列表(例如,列表0、列表1等)的運動向量(MV)v i的x的運動補償預測信號。w 0w 1可表示應用於塊及/或CU的預測信號(一個或複數)上的兩個權重值。例如,w 0w 1可表示跨越塊及/或CU中的樣本共用的兩個權重值。藉由調整一個或複數權重值可以獲得各種預測信號。如等式1所示,藉由調整權重值w 0w 1,可以獲得各種預測信號。
權重值w 0w 1的一些配置可表明預測,例如單向預測及/或雙向預測。例如,(w 0,w 1)=(1,0)可以與具有參考列表L0的單向預測相關聯地使用。(w 0,w 1)=(0,1)可以與利用參考列表L1的單向預測相關聯地使用。(w 0,w 1)=(0.5,0.5)可以與具有兩個參考列表(例如,L1和L2)的雙向預測相關聯地使用。
可在CU級傳訊權重(一個或複數)。在範例中,可針對每一CU傳訊權重值w 0w 1。可使用CU權重來執行雙向預測。可以將對權重的約束應用於一對權重。約束可以是預先配置的。例如,用於權重的約束可以包括w 0+w 1=1。可以傳訊權重。所傳訊的權重可以用於確定另一權重。舉例來說,在對CU權重具有約束的情況下,可傳訊僅一個權重。可以減少傳訊開銷。權重對的範例可以包括{(4/8,4/8),(3/8,5/8),(5/8,3/8),(-2/8,10/8),(10/8,-2/8)}。
例如,當要使用不相等的權重時,可以基於對權重的約束來導出權重。寫碼裝置可以接收權重指示並且基於該權重指示確定第一權重。該寫碼裝置可基於該所確定的第一權重及對該權重的該約束導出第二權重。
等式2可以被使用。在範例中,等式2可以基於等式1和w 0+w 1=1的約束而產生。
P[x]=(1-w 1)* P 0[x+v 0]+w 1 * P 1[x+v 1] 等式2
權重值(例如,w 0及/或w 1)可以被離散化。可以減少權重傳訊開銷。在範例中,可將雙向預測CU權重值w 1離散化。離散權重值w 1可以包括例如-2/8、3/8、4/8、5/8、6/8、及/或10/8等中的一個或複數。權重指示可用於表明將用於CU(例如,用於雙向預測)的權重。權重指示的範例可以包括權重索引。在範例中,每個權重值可以由索引值表明。
圖4是支援BCW(例如GBi)的示範性視訊編解碼器的圖。如圖4所示的範例中所描述的編碼裝置可以是WTRU或者可以包括WTRU。編碼器可以包括模式決策模組404、空間預測模組406、運動預測模組408、變換模組410、量化模組412、逆量化模組416、逆變換模組418、迴路濾波器420、參考圖像儲存器422和熵寫碼模組414。在實施例中,編碼器的一些或所有模組或元件(例如,空間預測模組406)可以與結合圖2描述的那些相同或相似。另外,空間預測模組406和運動預測模組408可以是像素域預測模組。因此,輸入視訊位元串流402可以用與輸入視訊位元串流202類似的方式被處理,以輸出視訊位元串流424。運動預測模組408可進一步包括對使用CU權重的雙向預測的支援。因此,運動預測模組408可以用加權平均方式組合兩個單獨預測信號。進一步的,可以在輸入視訊位元串流402中傳訊所選擇的權重索引。
圖5是用於編碼器的支援使用CU權重的雙向預測的示範性模組的圖。圖5示出了估計模組500的方塊圖。估計模組500可用於編碼器的運動預測模組中,例如運動預測模組408。估計模組500可以結合BCW(例如GBi)使用。估計模組500可包括權重值估計模組502及運動估計模組504。估計模組500可以利用兩步過程來產生訊框間預測信號,例如最終訊框間預測信號。運動估計模組504可以使用從參考圖像儲存器506接收的一個或複數參考圖像、並藉由搜尋指向(例如,兩個)參考塊的兩個最佳運動向量(MV) 來執行運動估計。權重值估計模組502可搜尋最佳權重索引以使目前視訊塊與雙向預測之間的加權雙向預測誤差最小化。廣義雙向預測的預測信號可被計算為兩個預測塊的加權平均。
圖6是支援使用CU權重的雙向預測的示範性基於塊的視訊解碼器的圖。圖6示出了可以對來自編碼器的位元串流進行解碼的示範性視訊解碼器的方塊圖。編碼器可以支援BCW及/或與結合圖4描述的編碼器共用一些相似性。在圖6所示的範例中描述的解碼器可以包括WTRU。如圖6所示,解碼器可以包括熵解碼器604、空間預測模組606、運動預測模組608、參考圖像儲存器610、逆量化模組612、逆變換模組614和迴路濾波器模組618。解碼器模組的一些或全部模組可以與結合圖3描述的那些模組相同或相似。舉例來說,可在616處將預測塊及/或殘差塊加在一起。視訊位元串流602可被處理以產生重建視訊620,該重建視訊可被發送到顯示裝置及/或用於預測視訊塊(例如,未來視訊塊)。運動預測模組608還可以包括對BCW的支援。寫碼模式及/或預測資訊可用於使用空間預測或支援BCW的MCP來導出預測信號。對於BCW,可接收塊運動資訊及/或權重值(例如,呈表明權重值的索引的形式)且對其進行解碼以產生預測塊。
圖7是用於解碼器的支援使用CU權重的雙向預測的示範性模組的圖。圖7示出了預測模組700的方塊圖。預測模組700可用於解碼器的運動預測模組中,例如運動預測模組608。預測模組700可以與BCW結合使用。預測模組700可包括加權平均模組702和運動補償模組704,其可從參考圖像儲存器706接收一或複數參考圖像。預測模組700可使用塊運動資訊和權重值以將BCW的預測信號計算為(例如,兩個)運動補償的預測塊的加權平均。
視訊寫碼中的雙向預測可基於複數(例如,兩個)時間預測塊的組合。在範例中,CU和塊可互換使用。時間預測塊可被組合。在範例中,可 使用進行平均來組合從重建的參考圖像獲得的兩個時間預測塊。雙向預測可基於塊的運動補償。在雙向預測中,在(例如,兩個)預測塊之間可觀察到相對小的運動。
雙向光流(BDOF)可用於例如補償在預測塊之間觀察到的相對小的運動。BDOF可以被應用來補償塊內的樣本的這種運動。在一個範例中,BDOF可以補償塊內的各個樣本的這種運動。這可以提高運動補償預測的效率。
BDOF可以包括精化與塊相關聯的一個或複數運動向量。在範例中,BDOF可包括在使用雙向預測時在基於塊的運動補償預測上執行的樣本式運動精化。BDOF可以包括導出樣本的一個或複數精化運動向量。作為BDOF的範例,塊中的單獨樣本的精化的運動向量的導出可基於光流模型。
BDOF可以包括基於下列中的一項或多項來精化與塊相關聯的子塊的運動向量:塊中的位置;與塊中的位置相關聯的梯度(例如,水平、及/或垂直等);及/或與該位置的對應參考圖像列表相關聯的樣本值等。等式3可用於導出樣本的精化運動向量。如等式3所示,I (k)(x,y)可以表示從參考圖像列表k(k=0,1)導出的預測塊的座標(x,y)處的樣本值。
Figure 108147006-A0305-02-0028-1
Figure 108147006-A0305-02-0028-2
可以是樣本的水平和垂直梯度。(x,y)處的運動精化(v x ,v y )可使用等式3導出。等式3可以基於光流模型是有效的假設。
Figure 108147006-A0305-02-0028-3
圖8示出了示範性雙向光流。在圖8中,(MV x0 ,MV y0 )和(MV x1 ,MV y1 )可以表明塊級運動向量。塊級運動向量可用於產生預測塊I (0)I (1)。例如,可以藉由最小化運動精化之後的一個或複數樣本的運動向量值(例如,圖8中的目前圖像與後向參考圖像A之間的運動向量、以及目前圖像與前向參 考圖像B之間的運動向量)之間的差△,來計算樣本位置(x,y)處的運動精化參數(v x ,v y )。可以使用例如等式4來計算運動精化之後的樣本的運動向量值之間的差△。
Figure 108147006-A0305-02-0029-4
可以假設運動精化對於樣本是一致的,例如在一個單元(例如,4×4塊)內的樣本。這種假設可以支援所導出的運動精化的規律性。例如,可以藉由最小化每一4×4塊周圍的6×6視窗Ω內的△來導出
Figure 108147006-A0305-02-0029-5
的值,如等式5所示。
Figure 108147006-A0305-02-0029-6
在範例中,BDOF可以包括漸進(progressive)技術,其可以最佳化水平方向(例如,第一方向)和垂直方向(例如,第二方向)上的運動精化,例如,以與等式5相關聯地使用。這可能導致等式6。
Figure 108147006-A0305-02-0029-74
其中
Figure 108147006-A0305-02-0029-76
可以是輸出小於或等於輸入的最大值的地板函數。th BIO 可以是運動精化值(例如,臨界值),以防止例如由於寫碼雜訊和不規則的局部運動而導致的錯誤傳播。例如,運動精化值可以是218-BD 。例如,如等式7和等式8所示,可以計算S 1S 2S 3S 5S 6的值。
Figure 108147006-A0305-02-0029-7
其中
Figure 108147006-A0305-02-0029-8
在水平方向和垂直方向中,等式8中的BDOF梯度可以藉由計算L0/L1預測塊的樣本位置處的複數相鄰樣本之間的差來獲得。在範例中,可以例如使用等式9,根據在每個L0/L1預測塊的一個樣本位置處導出的梯度的方向,以水平地或垂直地計算兩個相鄰樣本之間的差。
Figure 108147006-A0305-02-0030-9
在等式7中,L的值可以是內部BDOF的位元度增加,例如以保持資料精度。L可以被設定為5。等式6中的調節參數rm可以如等式10所示被定義(例如,以避免除以較小值)。
r=500.4 BD-8 m=700.4 BD-8 等式10BD可以是輸入視訊的位元度。可藉由沿著運動軌跡內插L0/L1預測樣本(例如,基於光流等式3和由等式6導出的運動精化)來計算目前CU的雙向預測信號(例如,最終雙向預測信號)。可使用等式11來計算目前CU的雙向預測信號。
Figure 108147006-A0305-02-0030-10
shifto offset 可為應用於組合L0和L1預測信號以用於雙向預測的偏移和右移,其可分別設定為等於15-BD和1≪(14-BD)+2.(1≪13);rnd(.)可以是將輸入值捨入到最接近的整數值的捨入函數。
在特定視訊內可以有各種類型的運動,例如放大/縮小、旋轉、透視運動和其他不規則運動。平移運動模型及/或仿射運動模型可應用於MCP。仿射運動模型可為四參數及/或六參數。可傳訊用於(例如,每一) 經訊框間寫碼的CU的第一旗標以表明平移運動模型或仿射運動模型是否應用於訊框間預測。如果應用仿射運動模型,那麼可發送第二旗標以表明模型是四參數還是六參數。
四參數仿射運動模型可包括用於水平及垂直方向上的平移運動的兩個參數、用於水平及垂直方向上的縮放運動的一個參數、及/或用於水平及垂直方向上的旋轉運動的一個參數。水平縮放參數可以等於垂直縮放參數。水平旋轉參數可以等於垂直旋轉參數。可使用在(例如,目前)CU的左上角和右上角處界定的兩個控制點位置處的兩個運動向量來寫碼四參數仿射運動模型。
圖9示出了示範性四參數仿射模式。圖9示出了塊的示範性仿射運動場。如圖9所示,該塊可以由兩個控制點運動向量(V0,V1)描述。基於控制點運動,一個仿射寫碼塊的運動場(v x ,v y )可以在等式12中描述。
Figure 108147006-A0305-02-0031-11
在等式12中,(v 0x ,v 0y )可以是左上角控制點的運動向量。(v 1x ,v 1y )可以是右上角控制點的運動向量。w可為CU的寬度。仿射寫碼的CU的運動場可以4×4塊級別導出。舉例來說,(v x ,v y )可針對目前CU內的4×4塊中的每一塊而導出且應用於對應的4×4塊。
在等式12中,(v 0x ,v 0y )可以是左上角控制點的運動向量。(v 1x ,v 1y )可以是右上角控制點的運動向量。w可為CU的寬度。仿射寫碼的CU的運動場可以4×4塊級別導出。舉例來說,(v x ,v y )可針對目前CU內的4×4塊中的每一塊而導出且應用於對應的4×4塊。
可以疊代地估計該四個參數。在步驟k的運動向量對可以表示為
Figure 108147006-A0305-02-0031-12
,原始亮度信號可以表示為I(i,j),以及預測亮度信 號可以表示為I' k (i,j)。空間梯度
Figure 108147006-A0305-02-0032-15
Figure 108147006-A0305-02-0032-18
可以分別使用在水平和垂直方向上應用於預測信號I' k (i,j)的Sobel濾波器來導出。等式1的導數可以表示為等式13。
Figure 108147006-A0305-02-0032-19
在等式13中,(a,b)可以是增量平移參數,以及(c,d)可以是步驟k處的增量縮放和旋轉參數。控制點處的增量MV可以用其座標(如等式14和等式15)來導出。例如,(0,0)、(w,0)可以分別是左上和右上控制點的座標。
Figure 108147006-A0305-02-0032-20
Figure 108147006-A0305-02-0032-21
基於光流等式,亮度變化與空間梯度和時間移動之間的關係可以表示為等式16。
Figure 108147006-A0305-02-0032-22
用等式13取代
Figure 108147006-A0305-02-0032-23
Figure 108147006-A0305-02-0032-25
可以產生針對參數(a,b,c,d)的等式17。
Figure 108147006-A0305-02-0032-26
如果CU中的樣本滿足等式17,可以使用例如最小平方計算來導出參數集(a,b,c,d)。在步驟(k+1)處,可以利用等式14和15導出兩個控制點處的運動向量
Figure 108147006-A0305-02-0032-27
,並且它們可以被捨入到特定精度(例如,1/4像素)。使用疊代,可以精化兩個控制點處的運動向量,直到當參數(a,b,c,d)可以是零或者疊代次數滿足預定限制時其收斂為止。
六參數仿射運動模型可包括用於水平方向及垂直方向上的平移移動的兩個參數、用於縮放運動的一個參數、用於水平方向上的旋轉運動的一個參數、用於縮放運動的一個參數及/或用於垂直方向上的旋轉運動的一個參數。可在三個控制點處用三個運動向量對六參數仿射運動模型進行寫碼。圖10示出了示範性六參數仿射模式。如圖10中所示,可在CU的左上角、右上角及/或左下角界定用於六參數仿射寫碼CU的三個控制點。左上控制點處的運動可以與平移運動相關。右上控制點處的運動可以與水平方向上的旋轉和縮放運動相關。左下控制點處的運動可以與垂直方向上的旋轉和縮放運動相關。在六參數仿射運動模型中,水平方向上的旋轉和縮放運動可與垂直方向上的那些運動不同。在範例中,每個子塊的運動向量(v x ,v y )可以使用三個運動向量作為控制點從等式18和19導出:
Figure 108147006-A0305-02-0033-28
Figure 108147006-A0305-02-0033-29
在等式18和19中,(v 2x ,v 2y )可以是左下控制點的運動向量。(xy)可以是子塊的中心位置。wh可以是CU的寬度和高度。
可(例如)以類似方式估計六參數仿射模型的六個參數。例如,等式20可以基於等式13產生。
Figure 108147006-A0305-02-0033-30
在等式20中,對於步驟k,(ab)可以是增量平移參數。(cd)可以是水平方向的增量縮放和旋轉參數。(ef)可以是垂直方向的增量縮放和旋轉參數。例如,等式21可以基於等式16產生。
Figure 108147006-A0305-02-0033-31
可藉由考慮CU內的樣本使用最小平方計算導出參數集(abcdef)。左上控制點的運動向量
Figure 108147006-A0305-02-0034-32
可以使用等式14來計算。右上控制點的運動向量
Figure 108147006-A0305-02-0034-33
可以使用等式22來計算。右上控制點的運動向量
Figure 108147006-A0305-02-0034-34
可以使用等式23來計算。
Figure 108147006-A0305-02-0034-37
Figure 108147006-A0305-02-0034-38
對於雙向預測,可以存在對稱的MV差。在一些範例中,前向參考圖像和後向參考圖像中的運動向量可為對稱的,例如,歸因於雙向預測中的運動軌跡的連續性。
SMVD可以是訊框間寫碼模式。利用SMVD,第一參考圖像列表(例如,參考圖像列表1)的MVD可與第二參考圖像列表(例如,參考圖像列表0)的MVD對稱。可傳訊一個參考圖像列表的運動向量寫碼資訊(例如,MVD),且可不傳訊另一參考圖像列表的運動向量資訊。舉例來說,可基於所傳訊的運動向量資訊和參考圖像列表的運動向量資訊是對稱的來確定另一參考圖像列表的運動向量資訊。在範例中,可傳訊參考圖像列表0的MVD且可不傳訊列表1的MVD。可以使用等式24A來計算利用該模式所寫碼的MV。
Figure 108147006-A0305-02-0034-39
其中下標表示參考圖像列表0或1,x表示水平方向且y表示垂直方向。
如等式24A所示,目前寫碼塊的MVD可表明目前寫碼塊的MVP與目前寫碼塊的MV之間的差。本領域中具有通常知識者應理解,MVP可基於目前寫碼塊的一個或複數空間相鄰塊、及/或目前寫碼塊的時間相鄰塊的 MV來確定。等式24A可在圖11中示出。圖11示出了示範性非仿射運動對稱MVD(例如,MVD1=-MVD0)。如等式24A所示和圖11所示,目前寫碼塊的MV可等於目前寫碼塊的MVP與目前寫碼塊的MVD(或負MVD,取決於參考圖像列表)的總和。如等式24A所示且如圖11中所示,參考圖像列表1的MVD(MVD1)可等於SMVD的參考圖像列表0的MVD(MVD0)的負值。參考圖像列表0的MV預測子(MVP)(MVP0)可或可不與參考圖像列表1的MVP(MVP1)對稱。MVP0可以等於MVP1的負值或者可以不等於MVP1的負值。如等式24A所示,目前寫碼塊的MV可以等於目前寫碼塊的MVP與目前寫碼塊的MVD之和。基於等式24A,參考圖像列表0的MV(MV0)可以不等於參考圖像列表1的MV(MV1)的負值。參考圖像列表0的MV MV0可以與參考圖像列表1的MV MV1對稱或不對稱。
SMVD可用於雙向預測,在這種情況下:參考圖像列表0包括前向參考圖像,且參考圖像列表1包括後向參考圖像;或者參考圖像列表0包括後向參考圖像且參考圖像列表1包括前向參考圖像。
利用SMVD,可以不傳訊參考圖像列表0和列表1的參考圖像索引。它們可以如下導出。如果參考圖像列表0包括前向參考圖像且參考圖像列表1包括後向參考圖像,那麼可將列表0中的參考圖像索引設定為與目前圖像最近的前向參考圖像,且可將列表1的參考圖像索引設定為與目前圖像最近的後向參考圖像。如果參考圖像列表0包括後向參考圖像且參考圖像列表1包括前向參考圖像,那麼可將列表0中的參考圖像索引設定為與目前圖像最近的後向參考圖像,且可將列表1的參考圖像索引設定為與目前圖像最近的前向參考圖像。
對於SMVD,可能不需要針對任一列表傳訊參考圖像索引。可傳訊一個參考圖像列表(例如,列表0)的MVD的一個集合。可減少雙向預測寫碼的傳訊開銷。
在合併模式中,可導出及/或使用(例如,直接使用)運動資訊來產生目前CU的預測樣本。可以使用具有運動向量差(MMVD)的合併模式。可以傳訊合併旗標以指定MMVD是否用於CU。MMVD旗標可以在發送跳過旗標之後被傳訊。
在MMVD中,在選擇合併候選者之後,可藉由MVD資訊來精化合併候選者。可傳訊MVD資訊。該MVD資訊可包括合併候選者旗標、用以指定運動幅度的距離索引及/或用於表示運動方向的索引中的一或多者。在MMVD中,合併列表中的複數候選者(例如,前兩個)候選者中的一者可被選擇用作MV基礎。合併候選者旗標可表明使用哪一候選者。
距離索引可以指定運動幅度資訊及/或可以表明從起點(例如,從被選擇作為MV基礎的候選者)的預定義偏移。圖12示出了一個或複數示範性運動向量差(MVD)搜尋點。如圖12所示,中心點可以是起始點MV。如圖12所示,圓點中的圖案可以表明不同的搜尋順序(例如,從最接近中心MV的圓點到更遠離中心MV的圓點)。如圖12所示,可以將偏移添加到起始點MV的水平分量及/或垂直分量。表1中示出了距離索引和預定義偏移的示範性關係。
Figure 108147006-A0305-02-0036-40
方向索引可表示相對於起始點的MVD方向。方向索引可以表示如表2所示的四個方向中的任一個。MVD符號的意義可根據一個或複數起始點MV的資訊而變化。當該起始點具有單一預測MV或一對雙向預測MV,且兩個列表都指向目前圖像的同一側時,表2中的符號可以指定添加到一個或複數起始MV的MV偏移的符號。例如,當兩個參考的圖像順序計數(POC)都大於目前圖像的POC、或都小於目前圖像的POC時,符號可以指定被添加到一個或複數起始MV的MV偏移的符號。當該起始點具有一對雙向預測MV且兩個列表指向該目前圖像的不同側時(例如,當一個參考的POC大於該目前圖像的POC,且另一參考的POC小於該目前圖像的POC時),表2中的符號可指定被添加到該起始點MV的列表0MV分量的MV偏移的符號,且添加到列表1MV的MV偏移的符號可具有相反值。
Figure 108147006-A0305-02-0037-42
可使用用於雙向預測寫碼的對稱模式。本文描述的一或複數特徵可與用於雙向預測寫碼的對稱模式相關聯地使用,例如,其在範例中可增加寫碼效率及/或降低複雜性。對稱模式可以包括SMVD。本文描述的一個或複數特徵可以與SMVD和一個或複數其它寫碼工具(例如,使用CU權重的雙向預測(BCW或BPWA)、BDOF及/或仿射模式)的協同操作相關聯。本文描述的一個或複數特徵可用於編碼(例如,編碼器最佳化),其可包括用於平移及/或仿射運動的快速運動估計。
SMVD寫碼特徵可以包括以下一者或多者:限制(restriction)、傳訊、及/或SMVD搜尋特徵及/或類似特徵。
SMVD模式的應用可以基於CU的大小。例如,對於相對小的CU(例如,具有不大於64的區域的CU),限制可不允許SMVD。對於相對大的CU(例如,大於32x32的CU),限制可不允許SMVD。如果限制不允許SMVD用於CU,則對稱MVD傳訊可以被跳過或禁用於CU,及/或寫碼裝置(例如,編碼器)可以不搜尋對稱MVD。
SMVD模式的應用可以基於目前圖像與參考圖像之間的POC距離。SMVD的寫碼效率可針對相對大的POC距離(例如,POC距離大於或等於8)而降低。如果參考圖像(例如,任何參考圖像)到目前圖像之間的POC距離相對較大,那麼可禁用SMVD。如果SMVD被禁用,則對稱MVD傳訊可被跳過或禁用,及/或寫碼裝置(例如,編碼器)可不搜尋對稱MVD。
SMVD模式的應用可以被限制在一個或複數時間層。在範例中,較低時間層可以指具有距目前圖像較大POC距離的參考圖像,其具有階層的GOP結構。SMVD的寫碼效率可對於較低的時間層而降低。對於相對低的時間層(例如,時間層0和1),可以不允許SMVD寫碼。如果SMVD不被允許,則對稱MVD傳訊可被跳過或禁用,及/或寫碼裝置(例如,編碼器)可不搜尋對稱MVD。
在SMVD寫碼中,參考圖像列表中的一者的MVD可被傳訊(例如,顯式地被傳訊)。在範例中,寫碼裝置(例如,解碼器)可解析與位元串流中的第一參考圖像列表相關聯的第一MVD。該寫碼裝置可基於該第一MVD且該第一MVD和該第二MVD彼此對稱而確定與第二參考圖像列表相關聯的第二MVD。
寫碼裝置(例如,解碼器)可識別哪個參考圖像列表的MVD被傳訊,例如,參考圖像列表0還是參考圖像列表1的MVD被傳訊。在範例中, 參考圖像列表0的MVD可被傳訊(例如,總是被傳訊)。可獲得(例如,導出)參考圖像列表1的MVD。
可選擇其MVD被傳訊(例如,明確地被傳訊)的參考圖像列表。可以應用以下中的一個或複數。可傳訊指示(例如,旗標)以表明選擇哪一參考圖像列表。可選擇具有到目前圖像的較小POC距離的參考圖像列表。如果該參考圖像列表的該POC距離相同,那麼可預先確定參考圖像列表以打破所述聯繫。舉例來說,如果參考圖像列表的POC距離相同,那麼可選擇參考圖像列表0。
可傳訊參考圖像列表(例如,一個參考圖像列表)的MVP索引。在一些範例中,可傳訊(例如,顯式地傳訊)兩個參考圖像列表的MVP候選者的索引。可傳訊參考圖像列表的MVP索引(例如,僅一個參考圖像列表的MVP索引),例如以減少傳訊開銷。可例如如本文該導出其它參考圖像列表的MVP索引。LX可為參考圖像列表,其MVP索引被傳訊(例如,顯式地被傳訊),且i可為所傳訊的MVP索引。mvp’可以從LX的MVP導出,如等式24所示。
Figure 108147006-A0305-02-0039-43
其中POC LX POC 1-LX POC curr 可分別為列表LX參考圖像、列表(1-LX)參考圖像和目前圖像的POC。並且從參考圖像列表(1-LX)的MVP列表中,可以選擇最接近mvp’的MVP,例如,如等式25所示,
Figure 108147006-A0305-02-0039-44
其中j可以是參考圖像列表(1-LX)的MVP索引。LX可為參考圖像列表,其MVD被傳訊(例如,顯式地被傳訊)。
表3示出了可支援用於非仿射寫碼模式的對稱MVD傳訊的示範性CU語法。
Figure 108147006-A0305-02-0040-45
Figure 108147006-A0305-02-0041-46
例如,例如sym_mvd_flag旗標之類的指示可以表明SMVD是否被用於目前寫碼塊(例如,雙向預測寫碼的CU)的運動向量寫碼。
例如refIdxSymL0之類的指示可以表明參考圖像列表0中的參考圖像索引。指示被設定為-1的refIdxSymL0可以表明SMVD不可用,並且sym_mvd_flag可以不存在。
例如refIdxSymL1之類的指示可以表明參考圖像列表1中的參考圖像索引。具有-1值的refIdxSymL1指示可以表明SMVD不適用,並且sym_mvd_flag可以不存在。
在範例中,當參考圖像列表0包括前向參考圖像且參考圖像列表1包括後向參考圖像時,或當參考圖像列表0包括後向參考圖像且參考圖像列表1包括前向參考圖像時,SMVD可適用。否則,SMVD可能不適用。例如,當SMVD不可用時,SMVD指示的傳訊(例如CU級的sym_mvd_flag旗標)可被跳過。寫碼裝置(例如,解碼器)可執行一個或複數條件檢查。如表3所示,可以執行兩個條件檢查(例如,refIdxSymL0>-1和refIdxSymL1>-1)。可以執行一個或複數條件檢查以確定是否使用SMVD指示。如表3所 示,可以執行兩個條件檢查(例如refIdxSymL0>-1和refIdxSymL1>-1)以確定是否接收到SMVD指示。在範例中,為了使解碼器檢查這些條件,解碼器可在特定CU解析之前等待目前圖像的參考圖像列表(例如,列表0及列表1)的構造。在一些實例中,即使兩個經檢查的條件(例如refIdxSymL0>-1和refIdxSymL1>-1)都為真,編碼器也可以不將SMVD用於CU(例如,以節省編碼複雜度)。
SMVD指示可以處於CU級並且與目前寫碼塊相關聯。CU級SMVD指示可以基於更高級的指示來獲得。在範例中,CU級SMVD指示(例如sym_mvd_flag旗標)的存在可由更高級指示控制(例如,替代地或附加地)。舉例來說,可在切片級、圖塊級、圖塊群組級或在圖像參數集(PPS)級、在序列參數集(SPS)級及/或在任何語法級中傳訊SMVD賦能的指示,例如sym_mvd_enabled_flag旗標,其中參考圖像列表由與該語法級相關聯的CU共用。例如,可以在切片標頭中放置切片級旗標。在範例中,寫碼裝置(例如,解碼器)可以接收序列級SMVD指示,該指示用於表明是否針對圖像序列賦能SMVD。如果SMVD對於序列被賦能,則寫碼裝置可以基於序列級SMVD指示獲得與目前寫碼塊相關聯的SMVD指示。
利用更高級的SMVD賦能指示,例如sym_mvd_enabled_flag旗標,CU級解析可被執行而不檢查一個或複數條件(例如,這裡描述的)。SMVD可以在比CU級更高的級別上被賦能或禁用(例如,根據編碼器的判斷)。表4示出了可以支援SMVD模式的示範性語法。
Figure 108147006-A0305-02-0042-47
Figure 108147006-A0305-02-0043-48
Figure 108147006-A0305-02-0044-50
對於寫碼裝置(例如,編碼器),可以有不同的方法來確定是否賦能SMVD、並相應地設定sym_mvd_enabled_flag的值。這裡的一個或複數範例可以被組合以確定是否賦能SMVD、並相應地設定sym_mvd_enabled_flag的值。舉例來說,編碼器可藉由檢查參考圖像列表來確定是否賦能SMVD。如果前向和後向參考圖像都存在,sym_mvd_enabled_flag旗標可被設定為等於真以賦能SMVD。例如,編碼器可基於目前圖像與(一個或複數)前向及/或後向參考圖像之間的一個或複數時間距離來確定是否賦能SMVD。當參考圖像遠離目前圖像時,SMVD模式可能無效。如果前向或後向參考圖像遠離目前圖像,則編碼器可以禁用SMVD。寫碼裝置可以基於目前圖像和參考圖像之間的時間距離的值(例如,臨界值)來設定高級SMVD賦能指示的值。舉例來說,為了降低編碼複雜性,編碼器可使用(例如,僅使用)較高等級控制旗標來針對具有前向和反向參考圖像的圖像賦能SMVD,使得這兩個參考圖像到目前圖像的最大時間距離小於值(例如,臨界值)。舉例來說,編碼器可基於(例如,目前圖像的)時間層確定是否賦能SMVD。相對低的時間層可表明目前圖像遠離參考圖像,且在此情況下,SMVD可能無效。編碼器可確定目前圖像屬於相對低的時間層(例如,低於臨界值,例如1、2)、且可針對此目前圖像禁用SMVD。例如,sym_mvd_enabled_flag可被設定為假以禁用SMVD。舉例來說,編碼器可基於與目前圖像的時間層相同的時間層處的先前寫碼圖像的統計資料來確定是否賦能SMVD。統計資料可包括經雙向預測寫碼的CU的平均POC距離(例如,目前圖像(一個或複數)與目前圖像(一個或 複數)的兩個參考圖像的時間中心之間的距離(一個或複數)的平均值)。R0、R1可為用於雙向預測寫碼的CU的參考圖像。poc(x)可以是圖像x的POC。兩個參考圖像和目前圖像(current_picture)的POC距離(CUi)可以使用等式26來計算。可以使用等式27來計算雙向預測寫碼CU的平均POC距離AvgDist。
Distance(CUi)=|2*poc(current_picture)-poc(R0)-poc(R1)| 等式26
Figure 108147006-A0305-02-0045-51
變數N可表明可具有前向和後向參考圖像兩者的雙向預測寫碼CU的總數。例如,如果AvgDist小於一值(例如,預定義的臨界值),sym_mvd_enabled_flag可由編碼器設定為真以賦能SMVD;否則,sym_mvd_enabled_flag可被設定為假以禁用SMVD。
在一些範例中,可傳訊MVD值(一個或複數)。在一些範例中,可傳訊方向索引與距離索引的組合,且可不傳訊MVD值(一個或複數)。如表1和表2所示的示範性方向表和示範性距離表可用於傳訊和導出MVD資訊。舉例來說,距離索引0與方向索引0的組合可表明MVD(1/2,0)。
可在例如單向預測搜尋和雙向預測搜尋之後執行對稱MVD搜尋。單向預測搜尋可以用於搜尋指向單向預測參考塊的最佳MV。雙向預測搜尋可用於搜尋指向雙向預測的兩個參考塊的兩個最佳MV。可執行搜尋以找到候選對稱MVD,例如,最佳對稱MVD。在範例中,可針對對稱MVD搜尋疊代地評估搜尋點集合。疊代可以包括對搜尋點集合的評估。該搜尋點集合可以形成以例如先前疊代的最佳MV為中心的搜尋模式。對於第一疊代,搜尋模式可以初始MV為中心。初始MV的選擇可能影響總體結果。可評估初始MV候選者集合。可例如基於速率失真成本來確定用於對稱MVD搜尋的初始MV。在一範例中,具有最低速率失真成本的MV候選者可被選擇作為 用於對稱MVD搜尋的初始MV。例如,可藉由對雙向預測誤差和參考圖像列表0的MVD寫碼的加權速率求和來估計速率失真成本。初始MV候選者的集合可以包括從單向預測搜尋獲得的MV(一個或複數)、從雙向預測搜尋獲得的MV(一個或複數)和來自高級運動向量預測子(AMVP)列表的MV中的一者或多者。可從單向預測搜尋中獲得每一參考圖像的至少一個MV。
可以應用提前終止,例如以降低複雜性。如果雙向預測成本大於一值(例如,臨界值),則可以(例如,由編碼器)應用提前終止。在範例中,例如,在初始MV選擇之前,如果從雙向預測搜尋獲得的MV的速率失真成本大於一值(例如,臨界值),則對稱MVD的搜尋可以終止。例如,該值可以被設定為單向預測成本的倍數(例如,1.1倍)。在範例中,例如在初始MV選擇之後,如果與初始MV相關聯的速率失真成本高於一值(例如,臨界值),則對稱MVD搜尋可以終止。例如,該值可以被設定為單向預測成本和雙向預測成本中的最低值的倍數(例如,1.1倍)。
在SMVD模式與其他寫碼工具之間可以存在交互作用。可以執行以下中的一者或多者:對稱仿射MVD寫碼;將SMVD與使用CU權重(BCW或BPWA)的雙向預測組合;或者將SMVD與BDOF組合。
可使用對稱仿射MVD寫碼。仿射運動模型參數可由控制點運動向量表示。4參數仿射模型可由兩個控制點MV表示,且6參數仿射模型可由三個控制點MV表示。在等式12中示出的範例可以是由兩個控制點MV(例如,左上控制點MV(v0)和右上控制點MV(v1))表示的4參數仿射運動模型。左上控制點MV可以表示平移運動。左上控制點MV可以具有對應的對稱MV,例如,與跟隨運動軌跡的前向和後向參考圖像相關聯的對稱MV。SMVD模式可以被應用於左上控制點。其它控制點MV可以表示縮放、旋轉及/或剪切映射的組合。SMVD可以不被應用到其他控制點MV。
SMVD可以被應用於左上控制點(例如,僅應用於左上控制點),並且其他控制點MV可以被設定為其各自的MV預測子(一個或複數)。
可傳訊與第一參考圖像列表相關聯的控制點的MVD。可基於與第一參考圖像列表相關聯的控制點的MVD以及與第一參考圖像列表相關聯的控制點的MVD對稱於與第二參考圖像列表相關聯的控制點的MVD來獲得與第二參考圖像列表(一個或複數)相關聯的控制點(一個或複數)的MVD(一個或複數)。在範例中,當應用對稱仿射MVD模式時,可傳訊與參考圖像列表0相關聯的控制點的MVD(例如,可僅傳訊參考圖像列表0的控制點MVD)。可以基於對稱屬性來導出與參考圖像列表1相關聯的控制點的MVD。可不傳訊與參考圖像列表1相關聯的控制點的MVD。
可導出與參考圖像列表相關聯的控制點MV。例如,可以使用等式28來導出參考圖像列表0和參考圖像列表1的控制點0(左上)的控制點MV。
Figure 108147006-A0305-02-0047-52
等式28可以在圖13中示出。圖13示出了示範性仿射運動對稱MVD。如等式28所示和如圖13所示,目前寫碼塊的左上控制點MV可等於目前寫碼塊左上控制點的MVP和目前寫碼塊左上控制點的MVD(或負MVD,取決於參考圖像列表)之和。如等式28所示和如圖13所示,與參考圖像列表1相關聯的左上控制點MVD可等於與參考圖像列表0相關聯的左上控制點MVD的負值以用於對稱仿射MVD寫碼。
其它控制點的MV可以至少使用仿射MVP預測來導出,例如,如公式29中所示。
Figure 108147006-A0305-02-0047-53
在等式28-30中,下標的第一維度可表明參考圖像列表。下標的第二維可以表明控制點索引。
第一參考圖像列表的平移MVD(例如,mvdx 0,0 ,mvdy 0,0)可應用於第二參考圖像列表的左上控制點MV(例如,mvx 1,0 ,mvy 1,0)導出。第一參考圖像列表的平移MVD(例如,mvdx 0,0 ,mvdy 0,0)可不應用於第二參考圖像列表的其它控制點MV(例如,mvx 1,j ,mvy 1,j)導出。在對稱仿射MVD導出的一些範例中,參考圖像列表0的平移MVD(mvdx 0,0 ,mvdy 0,0)可應用於(例如,僅應用於)參考圖像列表1的左上控制點MV導出。列表1的其它控制點MV可以與對應的預測子(一個或複數)相同,例如,如等式30所示。
Figure 108147006-A0305-02-0048-54
表5示出了可用於傳訊結合仿射模式使用SMVD(例如,對稱仿射MVD寫碼)的示範性語法。
Figure 108147006-A0305-02-0048-55
Figure 108147006-A0305-02-0049-56
例如,可以基於仿射間指示及/或SMVD指示來確定是否使用仿射SMVD。例如,當仿射間指示inter_affine_flag是1並且SMVD指示sym_mvd_flag[x0][y0]是1時,可以應用仿射SMVD。當仿射間指示inter_affine_flag是0並且SMVD指示sym_mvd_flag[x0][y0]是1時,可以應用 非仿射運動SMVD。如果SMVD指示sym_mvd_flag[x0][y0]為0,則SMVD不可以被應用。
可傳訊參考圖像列表(例如,參考圖像列表0)中的控制點的MVD。在範例中,可傳訊參考圖像列表中的控制點的子集的MVD值(一個或複數)。舉例來說,可傳訊參考圖像列表0中的左上控制點的MVD。可以跳過參考圖像列表0中的其它控制點的MVD的傳訊,並且例如,可以將這些控制點的MVD設定為0。其它控制點的MV可基於參考圖像列表0中的左上控制點的MVD而導出。例如,可以如等式31所示導出其MVD未被傳訊的控制點的MV。
Figure 108147006-A0305-02-0050-57
表6示出了可以用於與仿射模式結合地傳訊與SMVD模式相關的資訊的示範性語法。
Figure 108147006-A0305-02-0050-58
Figure 108147006-A0305-02-0051-59
例如僅左上MVD旗標等指示可表明是否僅傳訊參考圖像列表(例如,參考圖像列表0)中的左上控制點的MVD,或是否傳訊參考圖像列表中的控制點的MVD。可在CU級傳訊此指示。表7示出了可以用於與仿射模式結合地傳訊與SMVD模式相關的資訊的示範性語法。
Figure 108147006-A0305-02-0051-60
Figure 108147006-A0305-02-0052-61
Figure 108147006-A0305-02-0053-62
在範例中,可以傳訊方向索引和距離索引的組合,如本文關於MMVD所描述的。示範性方向表和示範性距離表在表1和表2中示出。舉例來說,距離索引0與方向索引0的組合可表示MVD(1/2,0)。
在範例中,可傳訊指示(例如,旗標)以表明傳訊哪些參考圖像列表的MVD。可以不傳訊其它參考圖像列表的MVD;它們可以被導出。
本文中針對平移運動對稱MVD寫碼所描述的一個或複數限制可應用於仿射運動對稱MVD寫碼,例如以減少複雜性及/或減少傳訊開銷。
利用對稱仿射MVD模式,可減少傳訊開銷。可以提高寫碼效率。
雙向預測運動估計可用於搜尋仿射模型的對稱MVD。在範例中,為了找到仿射模型的對稱MVD(例如,仿射模型的最佳對稱MVD),可在單向預測搜尋之後應用雙向預測運動估計。可如本文所描述導出參考圖像列表0及/或參考圖像列表1的參考圖像。初始控制點MV可從單向預測搜尋結果、雙向預測搜尋結果及/或來自仿射AMVP列表的MV中的一或多者來選擇。可以選擇控制點MV(例如,具有最低速率失真成本的控制點MV)作為初始MV。寫碼裝置(例如,編碼器)可以檢查以下一種或多種情況:在第一情況中,可針對參考圖像列表0以傳訊對稱MVD,且可基於對稱映射(使用等式28及/或等式29)導出參考圖像列表1的控制點MV;在第二種情 況中,可傳訊參考圖像列表1的對稱MVD,且可基於對稱映射導出參考圖像列表0的控制點MV。第一種情況可以在此用作範例。對稱MVD搜尋技術可基於單向預測搜尋結果來應用。給定參考圖像列表1中的控制點MV預測子,可以應用使用預定義搜尋模式(例如,菱形模式、及/或立方模式等)的疊代搜尋。在疊代(例如,每次疊代)中,MVD可藉由搜尋模式來精化,且參考圖像列表0及參考圖像列表1中的控制點MV可使用等式28及/或等式29導出。可評估與參考圖像列表0和參考圖像列表1的控制點MV對應的雙向預測誤差。例如,可藉由對雙向預測誤差和參考圖像列表0的MVD寫碼的加權速率求和來估計速率失真成本。在範例中,在搜尋候選者期間具有低(例如,最低)速率失真成本的MVD可被視為對稱MVD搜尋過程的最佳MVD。可以例如使用這裡描述的基於光流的技術來精化例如右上和左下控制點MV之類的其它控制點MV。
可執行用於對稱仿射MVD寫碼的對稱MVD搜尋。在範例中,可以首先搜尋例如平移參數之類的參數集,隨後是非平移參數搜尋。在範例中,可藉由(例如,聯合地)考慮參考圖像列表0和參考圖像列表1的MVD來執行光流搜尋。對於4參數仿射模型,列表0 MVD的示範性光流等式可在等式32中示出。
Figure 108147006-A0305-02-0054-63
其中
Figure 108147006-A0305-02-0054-64
可表示第k次疊代中的列表0預測,並且
Figure 108147006-A0305-02-0054-65
Figure 108147006-A0305-02-0054-66
可表示列表0預測的空間梯度。
參考圖像列表1可具有平移變化(例如,可僅具有平移變化)。平移變化可具有與參考圖像列表0相同的幅度,但在相反方向上,這是對稱仿 射MVD的條件。用於參考圖像列表1 MVD的示範性光流等式可以在等式33中示出。
Figure 108147006-A0305-02-0055-67
可以分別對列表0預測和列表1預測應用BCW權重w 0w 1。對稱仿射模型的示範性光學等式可以在等式34中示出。
Figure 108147006-A0305-02-0055-68
其中
Figure 108147006-A0305-02-0055-69
Figure 108147006-A0305-02-0055-70
Figure 108147006-A0305-02-0055-71
Figure 108147006-A0305-02-0055-72
Figure 108147006-A0305-02-0055-73
可以估計參數a,b,c,d(例如,藉由最小均方誤差計算)。
對稱6參數仿射模型的示範性光流等式可以在等式35中示出。
I' k (i,j)-I(i,j)=G x (i,j).ic+G x (i,j).jd+G y (i,j).ie+G y (i,j).jf+H x (i,j).a+H y (i,j).b 等式35
參數a,b,c,d,e,f可以藉由最小均方誤差計算來估計。當執行聯合光流運動搜尋時,可以聯合地最佳化仿射參數。可以提高性能。
可以應用提前終止,例如以降低複雜性。在範例中,例如,在初始MV選擇之前,如果雙向預測成本大於一值(例如,臨界值),則可以終止搜尋。例如,該值可以被設定為單向預測成本的倍數,例如,單向預測成本的1.1倍。在範例中,寫碼裝置(例如,編碼器)可在對稱仿射MVD的ME開始之前將目前最佳仿射運動估計(ME)成本(考慮單向預測和雙向預測仿射搜尋)與非仿射ME成本進行比較。如果目前最佳仿射ME成本大於非仿射ME成本乘以值(例如,例如1.1之類的臨界值),則寫碼裝置可跳過對 稱仿射MVD的ME。在範例中,例如在初始MV選擇之後,如果初始MV的成本高於值(例如,臨界值),則跳過仿射對稱MVD搜尋。例如,該值可以是單向預測成本和雙向預測成本中的最低值的倍數(例如,設定為1.1倍)。在範例中,該值可被設定為非仿射ME成本的倍數(例如1.1倍)。
SMVD模式可以與BCW結合。當BCW被賦能於目前CU時,SMVD可以用一種或多種方式被應用。在某些範例中,當(例如,僅當)BCW權重是相等的權重(例如,0.5)時,SMVD可被賦能;並且,對於其它BCW權重,SMVD可以被禁用。在這種情況下,SMVD旗標可以在BCW權重索引之前被傳訊,並且BCW權重索引的傳訊可以有條件地由SMVD旗標控制。當SMVD指示(例如SMVD旗標)可以具有值1時,可以跳過BCW權重索引的傳訊。解碼器可以推斷SMVD指示具有值0,其可以對應於用於雙向預測平均的相等權重。當SMVD旗標為0時,BCW權重索引可以被寫碼用於雙向預測模式。在當BCW權重是相等權重時SMVD可以被賦能且對於其它BCW權重被禁用的範例中,BCW索引有時可以被跳過。在一些範例中,SMVD可以完全與BCW結合。可針對顯式雙向預測模式傳訊SMVD旗標及BCW權重索引。對(例如,編碼器的)SMVD的MVD搜尋可以在雙向預測平均期間考慮BCW權重索引。SMVD搜尋可以基於一個或複數(例如,所有)可能的BCW權重的評估。
寫碼工具(例如,雙向光流(BDOF))可與一個或複數其它寫碼工具/模式相關聯地使用。BDOF可以與SMVD結合使用。BDOF是否應用於寫碼塊可取決於是否使用SMVD。SMVD可以基於寫碼塊級別的對稱MVD的假設。如果執行BDOF,則BDOF可用於基於光流以精化子塊MV。光流可以基於在子塊級的對稱MVD的假設。
BDOF可以與SMVD結合使用。在範例中,寫碼裝置(例如,解碼器或編碼器)可以接收SMVD及/或BDOF被賦能的一個或複數指示。可以針對目前圖像賦能BDOF。該寫碼裝置可以確定是否要繞過BDOF或者對目前寫碼塊執行BDOF。寫碼裝置可以基於SMVD指示(例如sym_mvd_flag[x0][y0])來確定是否繞過BDOF。在一些範例中,BDOF可以與BIO互換使用。
寫碼裝置可以確定是否針對目前寫碼塊繞過BDOF。如果SMVD模式用於目前寫碼塊的運動向量寫碼,則可以針對目前寫碼塊繞過BDOF,例如,以降低解碼複雜性。如果SMVD不被用於目前寫碼塊的運動向量寫碼,則寫碼裝置可以例如基於至少另一條件來確定是否賦能目前寫碼塊的BDOF。
寫碼裝置可以獲得SMVD指示(例如sym_mvd_flag[x0][y0])。SMVD指示可以表明SMVD是否用於目前寫碼塊的運動向量寫碼。
可以基於是否繞過BDOF的確定來重建目前寫碼塊。對於SMVD模式,可在CU級傳訊(例如,顯式地傳訊)MVD。
該寫碼裝置可經配置以基於繞過BDOF的該確定而使用不具有BDOF的SMVD來執行運動向量寫碼。
儘管以上以特定的組合描述了特徵和元件,但是本領域中具有通常知識者將理解,每個特徵或元件可以單獨使用或與其它特徵和元件任何組合使用。另外,本文描述的方法可以在電腦程式、軟體或韌體中實現,該電腦程式、軟體或韌體併入電腦可讀媒體中以由電腦或處理器執行。電腦可讀媒體的範例包括電子信號(經由有線或無線連接傳輸)和電腦可讀儲存媒體。電腦可讀儲存媒體的範例包括但不限於,唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體記憶體裝置、例 如內部硬碟以及可移磁碟的磁性媒體、磁光媒體、以及例如CD-ROM磁碟以及數位多功能磁碟(DVD)的光學媒體。與軟體相關聯的處理器可以用於實現在WTRU、UE、終端、基地台、RNC或任何主機電腦中使用的射頻收發器。
202:輸入視訊訊號
204:變換
206:量化
208:熵寫碼模組
210:逆量化
212:逆變換
216:目前視訊塊
220:視訊位元串流
226:預測塊
260:空間預測
262:時間預測
264:參考圖像儲存器
266:迴路濾波器
280:模式決策塊

Claims (20)

  1. 一種用於視訊解碼的裝置,包括:一處理器,被配置為:針對包括一視訊塊的一圖像確定雙向光流(BDOF)被賦能;獲得與該視訊塊相關聯的一對稱運動向量差(SMVD)指示,其中該SMVD指示表明SMVD是否被用於針對該視訊塊的一運動向量(MV)的一確定;基於與該視訊塊相關聯的該SMVD指示來確定是否針對該視訊塊繞過BDOF,其中該處理器被配置為基於SMVD用於針對該視訊塊的該MV的該確定的條件而確定針對該視訊塊繞過BDOF;以及基於是否針對該視訊塊繞過BDOF的該確定來解碼該圖像。
  2. 如請求項1所述的裝置,其中SMVD使用該視訊塊的一運動向量差(MVD),且該MVD表明該視訊塊的一運動向量預測子(MVP)與該視訊塊的該MV之間的一差。
  3. 如請求項2所述的裝置,其中該視訊塊的該MVP是基於該視訊塊的一空間相鄰塊的一MV或該視訊塊的一時間相鄰塊的一MV而被確定。
  4. 如請求項1所述的裝置,其中,基於該SMVD指示表明SMVD被用於針對該視訊塊的該MV的該確定的條件,該處理器被配置為:接收與一第一參考圖像列表相關聯的一第一MV資訊;以及基於與該第一參考圖像列表相關聯的該第一MV資訊確定與一第二參考圖像列表相關聯的一第二MV資訊,其中與該第一參考圖像列表相關聯的一運動向量差(MVD)、以及與該第二參考圖像列表相關聯的一MVD是對稱的。
  5. 如請求項1所述的裝置,其中,基於該SMVD指示表明SMVD被用於針對該視訊塊的該MV的該確定的條件,該處理器被配置為: 解析與一視訊資料中的一第一參考圖像列表相關聯的一第一運動向量差(MVD);以及基於該第一MVD而確定與一第二參考圖像列表相關聯的一第二MVD,其中該第一MVD與該第二MVD彼此對稱。
  6. 如請求項1所述的裝置,其中基於針對該視訊塊不繞過BDOF的一確定,該處理器被配置為:至少部分地基於與該視訊塊中的一位置相關聯的梯度來精化與該視訊塊的一子塊相關聯的一MV。
  7. 如請求項1所述的裝置,其中該處理器被配置為接收表明SMVD是否針對一圖像序列被賦能的一序列級SMVD指示,該視訊塊被包括於在該序列中的該圖像中,其中,基於SMVD針對該序列被賦能的條件,該處理器被配置為基於該序列級SMVD指示以獲得與該視訊塊相關聯的該SMVD指示。
  8. 如請求項1所述的裝置,其中基於是否針對該視訊塊繞過BDOF的該確定解碼該圖像包括基於繞過BDOF的該確定而在不執行BDOF下重建該視訊塊。
  9. 一種用於視訊解碼的方法,包括:針對包括一視訊塊的一圖像確定雙向光流(BDOF)被賦能;獲得與該視訊塊相關聯的一對稱運動向量差(SMVD)指示,其中該SMVD指示表明SMVD是否被用於針對該視訊塊的一運動向量(MV)的一確定;基於與該視訊塊相關聯的該SMVD指示來確定是否針對該視訊塊繞過BDOF,其中基於SMVD被用於針對該視訊塊的該MV的該確定的條件,該方法包括針對該視訊塊繞過BDOF;以及基於是否針對該視訊塊繞過BDOF的該確定來解碼該圖像。
  10. 如請求項9所述的方法,其中SMVD使用該視訊塊的一運動向量差(MVD),且該MVD表明該視訊塊的一運動向量預測子(MVP)與該視訊塊的該MV之間的一差。
  11. 如請求項10所述的方法,其中該視訊塊的該MVP是基於該視訊塊的一空間相鄰塊的一MV或該視訊塊的一時間相鄰塊的一MV而被確定。
  12. 如請求項9所述的方法,其中,基於該SMVD指示表明SMVD被用於針對該視訊塊該MV的該確定的條件,該方法包括:接收與一第一參考圖像列表相關聯的一第一MV資訊;以及基於與該第一參考圖像列表相關聯的該第一MV資訊確定與一第二參考圖像列表相關聯的一第二MV資訊,其中與該第一參考圖像列表相關聯的一運動向量差(MVD)、以及與該第二參考圖像列表相關聯的一MVD是對稱的。
  13. 如請求項9所述的方法,其中,基於該SMVD指示表明SMVD被用於針對該視訊塊的該MV的該確定的條件,該方法包括:解析與一視訊資料中的一第一參考圖像列表相關聯的一第一運動向量差(MVD);以及基於該第一MVD而確定與一第二參考圖像列表相關聯的一第二MVD,其中該第一MVD與該第二MVD彼此對稱。
  14. 如請求項9所述的方法,其中,基於針對該視訊塊不繞過BDOF的一確定,該方法包括:至少部分地基於與該視訊塊中的一位置相關聯的梯度來精化該視訊塊的一子塊的一MV。
  15. 一種用於視訊編碼的裝置,包括:一處理器,被配置為:針對包括一視訊塊的一圖像確定雙向光流(BDOF)被賦能; 確定一對稱運動向量差(SMVD)是否針對該視訊塊被賦能;基於該SMVD是否針對該視訊塊被賦能的該確定來確定是否針對該視訊塊繞過BDOF,其中該處理器被配置為基於SMVD針對該視訊塊被賦能的一條件確定針對該視訊塊繞過BDOF;以及基於是否針對該視訊塊繞過BDOF的該確定來編碼該圖像。
  16. 如請求項15所述的裝置,其中基於該SMVD針對該視訊塊被賦能的一條件,該處理器被配置為:獲得與一第一參考圖像列表相關聯的一第一運動向量差(MVD),其中與該第一參考圖像列表相關聯的該第一MVD以及與一第二參考圖像列表相關聯的一第二MVD是對稱的;以及在一視訊資料中包含與該第一參考圖像列表相關聯的該第一MVD的一指示,其中該視訊資料不包含與該第二參考圖像列表相關聯的該第二MVD的一指示。
  17. 如請求項15所述的裝置,其中針對該視訊塊的一運動向量差(MVD)表明該視訊塊的一運動向量預測子(MVP)與該視訊塊的該MV之間的一差,以及其中該視訊塊的該MVP是基於該視訊塊的一空間相鄰塊或該視訊塊的一時間相鄰塊的一MV而被確定。
  18. 一種用於視訊編碼的方法,包括:針對包括一視訊塊的一圖像確定雙向光流(BDOF)被賦能;確定一對稱運動向量差(SMVD)是否針對該視訊塊被賦能;基於該SMVD是否針對該視訊塊被賦能的該確定來確定是否針對該視訊塊繞過BDOF,其中基於SMVD針對該視訊塊被賦能的一條件,該方法包括針對該視訊塊繞過BDOF;以及基於針是否對該視訊塊繞過BDOF的該確定來編碼該圖像。
  19. 如請求項18所述的方法,其中基於該SMVD針對該視訊塊被賦能的一條件,該方法包括:獲得與一第一參考圖像列表相關聯的一第一運動向量差(MVD),其中與該第一參考圖像列表相關聯的該第一MVD以及與一第二參考圖像列表相關聯的一第二MVD是對稱的;以及在一視訊資料中包含與該第一參考圖像列表相關聯的該第一MVD的一指示,其中該視訊資料不包含與該第二參考圖像列表相關聯的該第二MVD的一指示。
  20. 如請求項18所述的方法,其中基於針對該視訊塊不繞過BDOF的一確定,該方法包括至少部分地基於與該視訊塊中的一位置相關聯的梯度來精化與該視訊塊的一子塊相關聯的一MV。
TW108147006A 2018-12-21 2019-12-20 對稱運動向量差寫碼的裝置及方法 TWI835958B (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US201862783437P 2018-12-21 2018-12-21
US62/783,437 2018-12-21
US201962787321P 2019-01-01 2019-01-01
US62/787,321 2019-01-01
US201962792710P 2019-01-15 2019-01-15
US62/792,710 2019-01-15
US201962798674P 2019-01-30 2019-01-30
US62/798,674 2019-01-30
US201962809308P 2019-02-22 2019-02-22
US62/809,308 2019-02-22

Publications (2)

Publication Number Publication Date
TW202038626A TW202038626A (zh) 2020-10-16
TWI835958B true TWI835958B (zh) 2024-03-21

Family

ID=69191238

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108147006A TWI835958B (zh) 2018-12-21 2019-12-20 對稱運動向量差寫碼的裝置及方法

Country Status (8)

Country Link
US (2) US11546604B2 (zh)
EP (1) EP3900343A1 (zh)
JP (1) JP2022516433A (zh)
KR (1) KR20210113187A (zh)
CN (1) CN113615186B (zh)
IL (2) IL310462A (zh)
TW (1) TWI835958B (zh)
WO (1) WO2020132272A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2021008468A (es) * 2019-01-14 2021-08-19 Interdigital Vc Holdings Inc Metodo y aparato para codificacion y decodificacion de video con flujo optico bi-direccional adaptado a prediccion ponderada.
US11025936B2 (en) * 2019-01-25 2021-06-01 Tencent America LLC Method and apparatus for video coding
WO2020156517A1 (en) * 2019-01-31 2020-08-06 Beijing Bytedance Network Technology Co., Ltd. Fast algorithms for symmetric motion vector difference coding mode
CN113383548A (zh) * 2019-02-03 2021-09-10 北京字节跳动网络技术有限公司 Mv精度和mv差编解码之间的相互作用
WO2020184920A1 (ko) * 2019-03-08 2020-09-17 한국전자통신연구원 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
JP7303330B2 (ja) * 2019-04-28 2023-07-04 北京字節跳動網絡技術有限公司 対称動きベクトル差分符号化
EP3977741A4 (en) * 2019-05-30 2023-05-24 Beijing Dajia Internet Information Technology Co., Ltd. SYMMETRICAL MOTION VECTOR DIFFERENCE MODE SIGNALING METHODS AND APPARATUS
CN114080814A (zh) * 2019-06-13 2022-02-22 Lg电子株式会社 基于运动矢量预测的图像/视频编码方法和装置
CA3143556A1 (en) * 2019-06-14 2020-12-17 Lg Electronics Inc. Method and device for image coding using motion vector differences
KR20210158399A (ko) * 2019-06-24 2021-12-30 엘지전자 주식회사 인터 예측 기반 영상 코딩 방법 및 장치
KR102640263B1 (ko) 2019-06-24 2024-02-23 엘지전자 주식회사 움직임 벡터를 이용한 영상 코딩 방법 및 장치
KR102640262B1 (ko) 2019-06-24 2024-02-23 엘지전자 주식회사 움직임 벡터 차분들을 이용한 영상 코딩 방법 및 장치
US11943448B2 (en) * 2021-11-22 2024-03-26 Tencent America LLC Joint coding of motion vector difference

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170094305A1 (en) * 2015-09-28 2017-03-30 Qualcomm Incorporated Bi-directional optical flow for video coding
US20180278949A1 (en) * 2017-03-22 2018-09-27 Qualcomm Incorporated Constraining motion vector information derived by decoder-side motion vector derivation
TW201840190A (zh) * 2017-03-16 2018-11-01 聯發科技股份有限公司 用於視訊編解碼的基於雙向光流的運動細化的方法及裝置
WO2018212110A1 (ja) * 2017-05-19 2018-11-22 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 符号化装置、復号装置、符号化方法及び復号方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9503720B2 (en) * 2012-03-16 2016-11-22 Qualcomm Incorporated Motion vector coding and bi-prediction in HEVC and its extensions
US9615090B2 (en) * 2012-12-28 2017-04-04 Qualcomm Incorporated Parsing syntax elements in three-dimensional video coding
EP3251353A1 (en) * 2015-01-29 2017-12-06 VID SCALE, Inc. Palette coding modes and palette flipping
TWI816224B (zh) * 2015-06-08 2023-09-21 美商Vid衡器股份有限公司 視訊解碼或編碼方法及裝置
GB2561507B (en) * 2016-01-07 2021-12-22 Mediatek Inc Method and apparatus for affine merge mode prediction for video coding system
US11638027B2 (en) * 2016-08-08 2023-04-25 Hfi Innovation, Inc. Pattern-based motion vector derivation for video coding
CN116866593A (zh) * 2016-11-28 2023-10-10 韩国电子通信研究院 对图像编码/解码的方法和设备及存储比特流的记录介质
US10931969B2 (en) * 2017-01-04 2021-02-23 Qualcomm Incorporated Motion vector reconstructions for bi-directional optical flow (BIO)
CN107123128B (zh) * 2017-04-24 2019-07-16 南京邮电大学 一种保证准确性的车辆运动状态估计方法
CN108256511B (zh) * 2018-03-15 2022-03-29 太原理工大学 基于视频编码码流的人体运动检测方法
MX2021007225A (es) * 2018-12-17 2021-09-21 Interdigital Vc Holdings Inc Combinacion de herramientas de codificacion de diferencia de vector de movimiento con otros modos de movimiento.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170094305A1 (en) * 2015-09-28 2017-03-30 Qualcomm Incorporated Bi-directional optical flow for video coding
TW201840190A (zh) * 2017-03-16 2018-11-01 聯發科技股份有限公司 用於視訊編解碼的基於雙向光流的運動細化的方法及裝置
US20180278949A1 (en) * 2017-03-22 2018-09-27 Qualcomm Incorporated Constraining motion vector information derived by decoder-side motion vector derivation
WO2018212110A1 (ja) * 2017-05-19 2018-11-22 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 符号化装置、復号装置、符号化方法及び復号方法

Also Published As

Publication number Publication date
IL310462A (en) 2024-03-01
US20220150505A1 (en) 2022-05-12
CN113615186B (zh) 2024-05-10
JP2022516433A (ja) 2022-02-28
IL284179B1 (en) 2024-02-01
CN113615186A (zh) 2021-11-05
WO2020132272A1 (en) 2020-06-25
US20230125740A1 (en) 2023-04-27
IL284179A (en) 2021-08-31
TW202038626A (zh) 2020-10-16
KR20210113187A (ko) 2021-09-15
EP3900343A1 (en) 2021-10-27
IL284179B2 (en) 2024-06-01
US11546604B2 (en) 2023-01-03

Similar Documents

Publication Publication Date Title
TWI835958B (zh) 對稱運動向量差寫碼的裝置及方法
CN112806005B (zh) 用于视频译码的双向预测
CN111345041B (zh) 解码、编码视频数据的方法和设备
JP7168593B2 (ja) 双方向オプティカルフローに基づいた動き補償予測
JP7382332B2 (ja) マージモード用のサブブロック動き導出およびデコーダサイド動きベクトル精緻化
US20230188748A1 (en) Bi-directional optical flow method with simplified gradient derivation
US11979595B2 (en) Symmetric merge mode motion vector coding
US20240196004A1 (en) Affine motion estimation for affine model-based video coding
CN113316936A (zh) 基于历史的运动向量预测