TWI835609B - A modified magnetic iron metal organic framework, its preparation method and an electrochemical sensing set - Google Patents

A modified magnetic iron metal organic framework, its preparation method and an electrochemical sensing set Download PDF

Info

Publication number
TWI835609B
TWI835609B TW112111175A TW112111175A TWI835609B TW I835609 B TWI835609 B TW I835609B TW 112111175 A TW112111175 A TW 112111175A TW 112111175 A TW112111175 A TW 112111175A TW I835609 B TWI835609 B TW I835609B
Authority
TW
Taiwan
Prior art keywords
organic framework
metal organic
skeleton
target biological
biological substance
Prior art date
Application number
TW112111175A
Other languages
Chinese (zh)
Inventor
劉繼賢
曾忞揚
廖思評
普拉瓦詹 麥亞
吳為吉
Original Assignee
長庚大學
Filing date
Publication date
Application filed by 長庚大學 filed Critical 長庚大學
Application granted granted Critical
Publication of TWI835609B publication Critical patent/TWI835609B/en

Links

Abstract

The present invention provides a modified magnetic iron metal organic framework, comprising a magnetic iron metal organic framework, a chemical modifier and a capture probe, wherein the magnetic iron metal organic framework is composed of ferric ions, 2-methylimidazole and L-histidine formed metal organic frameworks. The magnetic iron metal organic framework includes an accommodation space, the magnetic nanoparticles are located in the accommodation space of the magnetic iron metal organic framework, and the chemical modifier and the capture probe are covalently connected to the surface of the magnetic iron metal organic framework. In addition, an electrochemical sensing set with a modified magnetic iron metal organic framework combined with an electrochemical sensor is also proposed, and it is confirmed that the problem of insufficient sensitivity of the traditional metal organic framework combined with the electrochemical sensor can be overcome.

Description

具有修飾的磁性鐵金屬有機骨架、其製備方法及電化學感測套組Modified magnetic iron-metal organic framework, preparation method thereof and electrochemical sensing kit

本發明關於一種金屬有機骨架的領域,特別關於金屬有機骨架的應用於電化學感測器進行目標生物物質分析的領域。 The present invention relates to the field of metal-organic frameworks, and in particular to the field of applying metal-organic frameworks to electrochemical sensors for analyzing target biological substances.

金屬有機骨架(metal-organic framework,MOF)是由金屬離子和配體藉由配位反應自組裝形成的具有分子內孔隙的有機-無機雜化材料,為目前無機材料領域及有機材料領域結合的代表,目前已有研究將金屬有機骨架應用於物質分離、物質吸附、催化劑、醫藥及生物感測等領域皆有相關的應用與發展。 Metal-organic framework (MOF) is an organic-inorganic hybrid material with intramolecular pores formed by self-assembly of metal ions and ligands through coordination reaction. It is the current combination of the fields of inorganic materials and organic materials. Representatives, there have been studies on the application of metal-organic frameworks in the fields of material separation, material adsorption, catalysts, medicine and biological sensing, and have related applications and developments.

一般金屬有機骨架應用於生物物質檢測是採用電化學方法,因此一般會結合電化學感測器,以形成基於金屬有機骨架的電化學感測器,其中電化學感測器通常為三電極系統,包括工作電極(working electrode,WE)、輔助電極(counter electrode,CE)與參考電極(reference electrode,RE),其中工作電極可以於電解質環境下隨著電壓變化作為電子提供者或電子接收者,其中輔助電極則是與工作電極對應的角色,當工作電極作為電子提供者時,輔助電極則作 為電子接收者,而當工作電極作為電子接收者時,輔助電極則作為電子提供者,其中參考電極則是提供穩定的相對電位作為參考。 Generally, metal organic frameworks are used in biological substance detection using electrochemical methods, so they are generally combined with electrochemical sensors to form electrochemical sensors based on metal organic frameworks. The electrochemical sensors are usually three-electrode systems. Including working electrode (WE), auxiliary electrode (CE) and reference electrode (RE), where the working electrode can act as an electron provider or electron receiver as the voltage changes in the electrolyte environment, where The auxiliary electrode plays a role corresponding to the working electrode. When the working electrode acts as an electron provider, the auxiliary electrode acts as As the electron receiver, when the working electrode acts as the electron receiver, the auxiliary electrode acts as the electron provider, and the reference electrode provides a stable relative potential as a reference.

不過金屬有機骨架結合電化學感測器應用於生物感測領域上仍有不少瓶頸,由於金屬有機骨架是由金屬離子和配體共同組成,然而金屬離子和配體的分子軌域和電子態的重疊性較差,導致電子轉移受到限制,造成電荷在金屬有機骨架移動速率較低,並且金屬有機骨架外金屬有機骨架受到化學不穩定性、導電性不足和粒徑較大之影響,影響金屬有機骨架結合電化學感測器對目標生物物質分析的靈敏度,導致許多基於金屬有機骨架的電化學感測器有靈敏度不足的問題。 However, there are still many bottlenecks in the application of metal-organic frameworks combined with electrochemical sensors in the field of biosensing. Since metal-organic frameworks are composed of metal ions and ligands, the molecular orbitals and electronic states of metal ions and ligands The overlap is poor, resulting in limited electron transfer, resulting in a low charge movement rate in the metal-organic framework, and the metal-organic framework outside the metal-organic framework is affected by chemical instability, insufficient conductivity, and large particle size, affecting the metal-organic framework. The sensitivity of the skeleton combined with the electrochemical sensor for the analysis of target biological substances has led to the problem of insufficient sensitivity of many electrochemical sensors based on metal organic frameworks.

本發明的一目的為解決基於金屬有機骨架的電化學感測器有靈敏度不足的問題。 An object of the present invention is to solve the problem of insufficient sensitivity of electrochemical sensors based on metal organic frameworks.

因此基於本發明的一目的,本發明提供一種具有修飾的磁性鐵金屬有機骨架,包括:磁性鐵金屬有機骨架、化學修飾物及捕獲探針,其中磁性鐵金屬有機骨架是由三價鐵離子、2-甲基咪唑及L-組胺酸經配位結合形成的金屬有機骨架,且磁性鐵金屬有機骨架內包括有容置空間,磁性奈米粒子位於磁性鐵金屬有機骨架的容置空間中,化學修飾物及捕獲探針共價連接至磁性鐵金屬有機骨架的表面;其中化學修飾物為硫堇;其中捕獲探針用於與檢體中的目標生物物質結合,且捕獲探針可為寡核苷酸、抗體或肽鏈。 Therefore, based on one purpose of the present invention, the present invention provides a modified magnetic iron metal organic framework, including: magnetic iron metal organic framework, chemical modifications and capture probes, wherein the magnetic iron metal organic framework is composed of ferric ions, A metal-organic framework formed by coordination combination of 2-methylimidazole and L-histidine, and the magnetic iron-metal organic framework includes an accommodation space, and the magnetic nanoparticles are located in the accommodation space of the magnetic iron-metal organic framework. The chemical modification and the capture probe are covalently connected to the surface of the magnetic iron metal organic framework; the chemical modification is thionine; the capture probe is used to bind to the target biological substance in the specimen, and the capture probe can be an oligo Nucleotides, antibodies or peptide chains.

其中檢體為唾液、尿液、血清、血漿、全血、細胞、細胞萃取物、淋巴液、腦脊髓液、羊水、肺泡沖洗液、汗液、淚液、痰液、胸水、腹水、關節液、精液或糞便。 The specimens include saliva, urine, serum, plasma, whole blood, cells, cell extracts, lymph, cerebrospinal fluid, amniotic fluid, alveolar flush fluid, sweat, tears, sputum, pleural effusion, ascites, synovial fluid, and semen. or feces.

其中生物物質為核酸、胜肽、蛋白質或化合物。 The biological substances are nucleic acids, peptides, proteins or compounds.

本發明提供具有修飾的磁性鐵金屬有機骨架的製備方法,步驟包括將1-乙基-3(3-二甲基氨基丙基)碳醯二亞、N-羥基琥珀醯亞胺、磁性鐵金屬有機骨架及水於室溫(25℃)下混合反應,再來以純水沖洗,接著添加硫堇、捕獲探針及水後,於室溫(25℃)下混合反應,以獲得具有修飾的磁性鐵金屬有機骨架。 The invention provides a method for preparing a modified magnetic iron metal organic framework. The steps include: 1-ethyl-3(3-dimethylaminopropyl)carbodiimide, N-hydroxysuccinimide, and magnetic iron metal The organic skeleton and water are mixed and reacted at room temperature (25°C), and then rinsed with pure water. Then, thionine, capture probe and water are added, and the reaction is mixed at room temperature (25°C) to obtain modified Magnetic ferrometal-organic framework.

其中本發明提供具有修飾的磁性鐵金屬有機骨架的製備方法中,進一步包括在完成添加硫堇、捕獲探針及水後,先以純水沖洗,再於烘箱進行烘乾,以獲得具有修飾的磁性鐵金屬有機骨架。 The present invention provides a method for preparing a modified magnetic iron metal organic framework, which further includes adding thionine, capture probe and water, first rinsing with pure water, and then drying in an oven to obtain a modified magnetic iron metal organic framework. Magnetic ferrometal-organic framework.

其中磁性鐵金屬有機骨架是由磁性奈米粒子、L-組胺酸、聚乙烯吡咯烷酮及水與甲醇混合反應,再來添加氯化鐵六水合物及水後於4℃靜置反應,最後加入2-甲基咪唑及甲醇後於室溫下混合反應形成。 Among them, the magnetic iron metal organic framework is composed of magnetic nanoparticles, L-histidine acid, polyvinylpyrrolidone, water and methanol. Then ferric chloride hexahydrate and water are added and left to react at 4°C. Finally, the It is formed by mixing 2-methylimidazole and methanol at room temperature.

其中磁性奈米粒子的粒徑小於1,000奈米(nanometer,nm)。 The particle size of the magnetic nanoparticles is less than 1,000 nanometer (nm).

本發明提供一種第一電化學感測套組,包括電化學感測器、如前所述的具有修飾的磁性鐵金屬有機骨架、檢測探針及氧化還原酵素;其中電化學感測器包括有工作電極,工作電極包括有用於偵測電流變化的表面,以及與表面相對的背面,工作電極的背面設置有磁鐵;其中檢測探針,用於與目標生物物質結合,且檢測探針上修飾有第一標記物;其中氧化還原酵素用於進行氧化還原反應,且氧化還原酵素上修飾有第二標記物,第二標記物用於與第一標記物結合。 The present invention provides a first electrochemical sensing kit, including an electrochemical sensor, a modified magnetic iron metal organic framework as described above, a detection probe and a redox enzyme; wherein the electrochemical sensor includes: The working electrode includes a surface for detecting changes in current, and a back surface opposite the surface. A magnet is provided on the back of the working electrode; a detection probe is used to combine with the target biological substance, and the detection probe is modified with A first label; wherein the redox enzyme is used to perform a redox reaction, and the redox enzyme is modified with a second label, and the second label is used to bind to the first label.

一種第二電化學感測套組,包括電化學感測器、如前所述的具有修飾的磁性鐵金屬有機骨架、捕獲探針及嵌入劑;其中電化學感測器,用於進行電化學分析,電化學感測器包括有工作電極,工作電極包括有用於偵測電流變化的表面,以及與表面相對的背面,工作電極的背面設置有磁鐵;其中捕獲探針為寡核苷酸;其中嵌入劑用於嵌入捕獲探針與目標生物物質的結合處,並進行氧化還原反應;其中捕獲探針為寡核苷酸;其中目標生物物質為核酸。 A second electrochemical sensing set, including an electrochemical sensor, a modified magnetic iron-metal organic framework as described above, a capture probe and an embedding agent; wherein the electrochemical sensor is used to perform electrochemistry Analysis, the electrochemical sensor includes a working electrode, the working electrode includes a surface for detecting current changes, and a backside opposite to the surface, and a magnet is provided on the backside of the working electrode; wherein the capture probe is an oligonucleotide; wherein The intercalating agent is used to embed the binding site between the capture probe and the target biological substance and perform a redox reaction; the capture probe is an oligonucleotide; and the target biological substance is a nucleic acid.

其中第二電化學感測套組,進一步包括檢測探針,檢測探針用於與目標生物物質結合,且嵌入劑會嵌入檢測探針與目標生物物質的結合處,其中檢測探針為寡核苷酸。 The second electrochemical sensing kit further includes a detection probe. The detection probe is used to combine with the target biological substance, and the intercalating agent will be embedded in the combination of the detection probe and the target biological substance, wherein the detection probe is an oligonuclear substance. glycosides.

其中電化學分析為微分脈衝伏安法(differential pulse voltammetry,DPV)、循環伏安法(cyclic voltammetry,CV)、電化學阻抗譜法(electrochemical impedance spectroscopy,EIS)或方波伏安法(square wave voltammetry,SWV)。 The electrochemical analysis is differential pulse voltammetry (DPV), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) or square wave voltammetry (square wave). voltammetry,SWV).

綜上所述,本發明為基於磁性鐵金屬有機骨架的電化學感測器的不僅克服一般金屬有機骨架結合電化學感測器靈敏度不足的問題,同時還具有良好的特異性,以及具有寬廣的定量範圍。 In summary, the present invention is an electrochemical sensor based on a magnetic iron metal organic framework that not only overcomes the problem of insufficient sensitivity of general metal organic framework combined electrochemical sensors, but also has good specificity and a broad range. Quantitative range.

圖1為MNP、骨架A、骨架B、骨架C及骨架D的傅立葉轉換紅外光譜儀分析的光譜圖。 Figure 1 is the spectral diagram analyzed by Fourier transform infrared spectrometer of MNP, skeleton A, skeleton B, skeleton C and skeleton D.

圖2為骨架A的晶體經掃描式電子顯微鏡拍攝的圖像。 Figure 2 is an image of the crystal of skeleton A taken by a scanning electron microscope.

圖3為骨架B的晶體經掃描式電子顯微鏡拍攝的圖像。 Figure 3 is an image of the crystal of skeleton B taken by a scanning electron microscope.

圖4為MNP的晶體經掃描式電子顯微鏡拍攝的圖像。 Figure 4 is an image of MNP crystals taken by a scanning electron microscope.

圖5為骨架C的晶體經掃描式電子顯微鏡拍攝的圖像。 Figure 5 is an image of the crystal of skeleton C taken by a scanning electron microscope.

圖6為骨架D的晶體經掃描式電子顯微鏡拍攝的圖像。 Figure 6 is an image of a crystal of skeleton D taken with a scanning electron microscope.

圖7為MNP、骨架C及骨架D的超導量子干涉儀器分析的磁滯曲線圖。 Figure 7 shows the hysteresis curves of MNP, skeleton C and skeleton D analyzed by superconducting quantum interference instruments.

圖8為對目標核酸水溶液使用第一電化學感測套組進行山葵過氧化酶測試,測量檢體分別為唾液、尿液及血清時,不同濃度的目標核酸水溶液所產生的電流強度的回歸分析圖。 Figure 8 is a regression analysis of the current intensity generated by target nucleic acid aqueous solutions of different concentrations when the target nucleic acid aqueous solution is tested for wasabi peroxidase using the first electrochemical sensing kit. The measurement specimens are saliva, urine and serum. Figure.

圖9為對目標核酸水溶液使用第二電化學感測套組進行嵌入劑測試,測量檢體分別為唾液、尿液及血清時,不同濃度的目標核酸水溶液所產生的電流強度的回歸分析圖。 Figure 9 is a regression analysis diagram of the current intensity generated by the target nucleic acid aqueous solution with different concentrations when the target nucleic acid aqueous solution is tested using the second electrochemical sensing kit for intercalating agents and the measurement specimens are saliva, urine and serum.

圖10為對目標病毒溶液使用第一電化學感測套組進行山葵過氧化酶測試及使用第二電化學感測套組進行嵌入劑測試,測量檢體為血清時,不同濃度的目標病毒溶液所產生的電流強度的回歸分析圖。 Figure 10 shows the target virus solution using the first electrochemical sensing kit for wasabi peroxidase testing and the second electrochemical sensing kit for intercalating agent testing. When the sample is serum, the target virus solutions at different concentrations are measured. Regression analysis plot of the current intensity produced.

圖11為對目標萃取液使用第一電化學感測套組進行山葵過氧化酶測試及使用第二電化學感測套組進行嵌入劑測試,測量檢體為血清時,不同濃度的目標萃取液所產生的電流強度的回歸分析圖。 Figure 11 shows the target extract using the first electrochemical sensing kit for wasabi peroxidase testing and the second electrochemical sensing kit for intercalating agent testing. When the sample is serum, different concentrations of the target extract are measured. Regression analysis plot of the current intensity produced.

圖12為對副甲狀腺素水溶液使用第一電化學感測套組進行山葵過氧化酶測試,測量檢體為血清時,不同濃度的副甲狀腺素水溶液所產生的電流強度的回歸分析圖。 Figure 12 is a regression analysis diagram of the current intensity generated by parathyroxine aqueous solutions of different concentrations when the first electrochemical sensing kit was used to test the wasabi peroxidase on the parathyroxine aqueous solution, and the measurement sample was serum.

圖13為對S蛋白溶液使用第一電化學感測套組進行山葵過氧化酶測試,測量檢體為血清時,不同濃度的S蛋白溶液所產生的電流強度的回歸分析圖。 Figure 13 is a regression analysis diagram of the current intensity generated by S protein solutions of different concentrations when the S protein solution is tested for wasabi peroxidase using the first electrochemical sensing kit, and the measurement sample is serum.

圖14為對微小核糖核酸溶液使用第二電化學感測套組進行嵌入劑測試,測量檢體為血清時,不同濃度的微小核糖核酸溶液所產生的電流強度的回歸分析圖。 Figure 14 is a regression analysis diagram of the current intensity generated by microRNA solutions of different concentrations when the microRNA solution is tested for intercalation using the second electrochemical sensing kit and the sample is serum.

雖然用以界定本發明的數值範圍與參數皆是約略的數值,此處已盡可能精確地呈現具體實施例中的相關數值。然而,任何數值本質上不可避免地含有因個別測試方法所致的標準差。在此處,「約」通常系指實際數值在一特定數值或一範圍的正負10%、5%、1%或0.5%之內。或者是,「約」一詞代表實際數值落在平均值的可接受標準誤差之內,是本發明所屬領域中具有通常知識者的考慮而定。因此,除非另有相反的說明,本說明書與附隨申請專利範圍所揭示的數值參數皆為約略的數值,且可視需求而更動。至少應將這些數值參數理解為所指出的有效位數與套用一般進位法所得到的數值。 Although the numerical ranges and parameters used to define the present invention are approximate values, the relevant values in the specific embodiments are presented as accurately as possible. Any numerical value, however, inherently contains the standard deviation resulting from the individual testing methods used. Here, "about" generally means that the actual value is within plus or minus 10%, 5%, 1% or 0.5% of a specific value or range. Alternatively, the word "about" means that the actual value falls within an acceptable standard error of the mean, which is determined by the considerations of a person of ordinary skill in the art to which this invention belongs. Therefore, unless otherwise stated to the contrary, the numerical parameters disclosed in this specification and the accompanying patent claims are approximate values and may be changed as required. At a minimum, these numerical parameters should be understood to mean the number of significant digits indicated and the value obtained by applying ordinary rounding.

於本發明的各個實施例中,所述「水溶液」中的溶劑皆為超純水,舉例如氯化鐵六水合物水溶液,即指以氯化鐵六水合物作為溶質,並以超純水作為溶劑,其他依此類推,但實際實施時不以超純水為限,亦可使用純水、去離子、水蒸餾水或二次蒸餾水作為溶劑。 In various embodiments of the present invention, the solvent in the "aqueous solution" is ultrapure water, for example, ferric chloride hexahydrate aqueous solution, which means that ferric chloride hexahydrate is used as the solute and ultrapure water is used. As the solvent, the rest can be deduced in the same way, but in actual implementation, it is not limited to ultrapure water. Pure water, deionized water, hydrodistilled water or double distilled water can also be used as the solvent.

於本發明的各個實施例中,所述「甲醇溶液」中的溶劑皆為甲醇,舉例如2-甲基咪唑甲醇溶液,即指以2-甲基咪唑作為溶質,並以甲醇作為溶劑,其他依此類推。 In various embodiments of the present invention, the solvent in the "methanol solution" is methanol. For example, 2-methylimidazole methanol solution means that 2-methylimidazole is used as the solute and methanol is used as the solvent. Others And so on.

以下於的電化學分析中皆以網版印刷三電極(TE-100,Zensor,台中)作為電化學感測器,網版印刷三電極包括工作電極(working electrode,WE)、輔助電極(counter electrode,CE)與參考電極(reference electrode,RE)),其中工作電極可以於電解質環境下隨著電壓變化作為電子提供者或電子接收者;其中輔助電極則是與工作電極對應的角色,當工作電極作為電子提供者時,輔助電極則作為電子接收者,而當工作電極作為電子接收者時,輔助電極則作為電子提供者;其中參考電極則是提供穩定的相對電位作為參考,其中電化學分析包括微分脈衝伏安法,但實際實施時不限於此,亦可為循環伏安法、電化學阻抗譜法或方波伏安法等電化學的分析方法;其中於循環伏安法及電化學阻抗譜法中,使用的電解質溶液為3mM鐵氰化鉀溶液,其中3mM鐵氰化鉀溶液的製備方法為將98.8mg的鐵氰化鉀並加入10ml的0.1M磷酸鹽緩衝液(Phosphate buffered saline,PBS)混合後即完成製備;其中於微分脈衝伏安法及方波伏安法中,使用的電解質溶液為對苯二酚/過氧化氫溶液或10mM的三羥甲基氨基甲烷鹽酸鹽(Tris-HCL)水溶液;其中於微分脈衝伏安法中使用的對苯二酚/過氧化氫溶液的製備方法,為混合為10mM的對苯二酚溶液及10mM的過氧化氫溶液以1:1的體積比進行混合即完成製備;其中10mM的對苯二酚溶液的製備方法為取11.2mg對苯二酚溶於0.1M的磷酸鹽緩衝液1mL後形成100mM的對苯二酚溶液,再來取100μL的100mM的對苯二酚溶液加入900μL的0.1M磷酸鹽緩衝液,以獲得10mM的對苯二酚溶液; 其中10mM的過氧化氫溶液為取1μL的10M的過氧化氫溶液,再來加入999μL的0.1M的磷酸鹽緩衝液,以獲得10mM的過氧化氫溶液。 In the following electrochemical analyses, a screen-printed three-electrode (TE-100, Zensor, Taichung) was used as an electrochemical sensor. The screen-printed three-electrode includes a working electrode (WE) and an auxiliary electrode (counter electrode). , CE) and reference electrode (reference electrode (RE)), where the working electrode can act as an electron provider or electron receiver as the voltage changes in the electrolyte environment; the auxiliary electrode plays a role corresponding to the working electrode. When the working electrode When acting as an electron provider, the auxiliary electrode acts as an electron receiver, and when the working electrode acts as an electron receiver, the auxiliary electrode acts as an electron provider; the reference electrode provides a stable relative potential as a reference, and electrochemical analysis includes Differential pulse voltammetry, but the actual implementation is not limited to this, it can also be electrochemical analysis methods such as cyclic voltammetry, electrochemical impedance spectroscopy or square wave voltammetry; among them, cyclic voltammetry and electrochemical impedance In the spectrometry method, the electrolyte solution used is 3mM potassium ferricyanide solution, where the 3mM potassium ferricyanide solution is prepared by adding 98.8 mg of potassium ferricyanide and 10 ml of 0.1M phosphate buffered saline (Phosphate buffered saline, The preparation is completed after mixing PBS); in differential pulse voltammetry and square wave voltammetry, the electrolyte solution used is hydroquinone/hydrogen peroxide solution or 10mM trishydroxymethylaminomethane hydrochloride ( Tris-HCL) aqueous solution; wherein the preparation method of the hydroquinone/hydrogen peroxide solution used in differential pulse voltammetry is to mix a 10mM hydroquinone solution and a 10mM hydrogen peroxide solution at a ratio of 1:1 The preparation is completed by mixing at a volume ratio of Take 100μL of 100mM hydroquinone solution and add 900μL of 0.1M phosphate buffer to obtain a 10mM hydroquinone solution; The 10mM hydrogen peroxide solution is to take 1 μL of 10M hydrogen peroxide solution, and then add 999 μL of 0.1M phosphate buffer to obtain a 10mM hydrogen peroxide solution.

本發明提供一種具有修飾的磁性鐵金屬有機骨架,包括:磁性鐵金屬有機骨架、化學修飾物及捕獲探針,其中磁性鐵金屬有機骨架是由三價鐵離子、2-甲基咪唑及L-組胺酸經配位結合形成的金屬有機骨架,且磁性鐵金屬有機骨架內包括有容置空間,磁性奈米粒子位於磁性鐵金屬有機骨架的容置空間中,化學修飾物及捕獲探針共價連接至磁性鐵金屬有機骨架的表面;其中化學修飾物為硫堇;其中捕獲探針用於與檢體中的目標生物物質結合,且捕獲探針可為寡核苷酸、抗體或肽鏈。 The invention provides a modified magnetic iron metal organic framework, which includes: a magnetic iron metal organic framework, a chemical modification and a capture probe, wherein the magnetic iron metal organic framework is composed of ferric ions, 2-methylimidazole and L- A metal-organic framework is formed by coordination and combination of histidine acid, and the magnetic iron-metal organic framework includes an accommodation space. The magnetic nanoparticles are located in the accommodation space of the magnetic iron-metal organic framework. The chemical modifications and capture probes are Valently connected to the surface of the magnetic iron metal organic framework; wherein the chemical modification is thionine; wherein the capture probe is used to bind to the target biological substance in the specimen, and the capture probe can be an oligonucleotide, antibody or peptide chain .

於本發明的一實施例中,檢體為唾液、尿液、血清、血漿、全血、細胞、細胞萃取物、淋巴液、腦脊髓液、羊水、肺泡沖洗液、汗液、淚液、痰液、胸水、腹水、關節液、精液或糞便等臨床上常使用的檢體。 In one embodiment of the present invention, the specimen is saliva, urine, serum, plasma, whole blood, cells, cell extracts, lymph, cerebrospinal fluid, amniotic fluid, alveolar flushing fluid, sweat, tears, sputum, Commonly used clinical specimens include pleural effusion, ascites, synovial fluid, semen or feces.

於本發明的一實施例中,生物物質為核酸、胜肽、蛋白質或化合物。 In one embodiment of the invention, the biological substance is nucleic acid, peptide, protein or compound.

於本發明的一實施例中,磁性奈米粒子的粒徑小於1,000奈米。 In one embodiment of the present invention, the particle size of the magnetic nanoparticles is less than 1,000 nanometers.

為了使本發明所屬技術領域中具有通常知識者易於理解本發明的內容,以下結合實施例與圖式對本發明作進一步的說明,各個實施例僅用於說明本發明的技術特徵,提及的內容並非對本發明的限定。 In order to make it easy for those with ordinary knowledge in the technical field to understand the content of the present invention, the present invention will be further described below in conjunction with the embodiments and drawings. Each embodiment is only used to illustrate the technical features of the present invention. The mentioned content It does not limit the invention.

製備例1:具有修飾的磁性鐵金屬有機骨架的製備方法 Preparation Example 1: Preparation method of modified magnetic iron metal organic framework

步驟包括將1mL的0.064g/mL的1-乙基-3(3-二甲基氨基丙基)碳醯二亞水溶液及1mL的0.128g/mL的N-羥基琥珀醯亞胺水溶液至燒杯混合,以形成第一庫存溶液,接著取1mL的第一庫存溶液及1mL的1mg/mL的磁性鐵金屬有機骨架水溶液至離心管,接著於室溫(25℃)下以震盪器震盪反應1小時,使磁性鐵 金屬有機骨架上的L-組胺酸上的羧基活化後,再來以磁力座分離磁性鐵金屬有機骨架以移除上清液並使用超純水沖洗2次,接著於離心管中加入500μL的8mM的硫堇乙酸鹽水溶液及500μL的捕獲探針水溶液後,於室溫(25℃)下以震盪器震盪反應1小時,再來以磁力座分離完成修飾的磁性鐵金屬有機骨架並移除殘餘的液體,最後以超純水潤洗2次後於烘箱進行烘乾,即可獲得「修飾有捕獲探針及硫堇的磁性鐵金屬有機骨架」;其中硫堇乙酸鹽水溶液中所提供的硫堇即為化學修飾物;其中修飾有捕獲探針及硫堇的磁性鐵金屬有機骨架指於磁性鐵金屬有機骨架上經由與1-乙基-3(3-二甲基氨基丙基)碳醯二亞水溶液及1mL的0.128g/mL的N-羥基琥珀醯亞胺水溶液反應,使磁性鐵金屬有機骨架上的L-組胺酸的羧酸活化,進而得以與硫堇及捕獲探針形成共價連結,使磁性鐵金屬有機骨架的表面上修飾有捕獲探針及硫堇,而修飾有捕獲探針及硫堇的磁性鐵金屬有機骨架即為本發明所述的具有修飾的磁性鐵金屬有機骨架;以下於各實施例中「修飾有捕獲探針及硫堇的磁性鐵金屬有機骨架」皆以「骨架E」表示;於以下的實施例中,捕獲探針分別以第一捕獲探針、第二捕獲探針、第三捕獲探針及第四捕獲探針作為示範例,其中第一捕獲探針為寡核苷酸,且第一捕獲探針的核苷酸序列如序列表中的SEQ ID NO:1所示,第一捕獲探針的核苷酸序列由5’往3’方向依序為TTTTTTTTTTGCGCGACATTCCGAAGAA,總計有28個核苷酸、分子量為8,559.6Da且解鏈溫度(melting temperature,Tm)為55.5℃,而當捕獲探針為第一捕獲探針時,於「具有修飾的磁性鐵金屬有機骨架的製備方法」中的「......接著於離心管中加入500μL的8mM的硫堇乙酸鹽水溶液及500μL的捕獲探針水溶液後......」的步驟中,捕獲探針水溶液的濃度為0.2μM;其中第二捕獲探針為抗體,且為抗副甲狀腺素抗體的抗體(Anti-Parathyroid Hormone/PTH Antibody,Mouse Monoclonal,貨品編號:13192-MM02,SinoBiological),而當捕獲探針為第二捕獲探針時,於「具有修飾的磁性鐵金屬有機骨架的製備方法」中的「......接 著於離心管中加入500μL的8mM的硫堇乙酸鹽水溶液及500μL的捕獲探針水溶液後......」的步驟中,捕獲探針水溶液的濃度為500ng/mL;其中第三捕獲探針為抗體,且為抗新型冠狀病毒的S蛋白(Spike Protein)的抗體(COVID-19 S-Protein(S1RBD)ELISA Kit,貨品編號:ELV-COVID19S1-1,RayBiotech),而當捕獲探針為第三捕獲探針時,於「具有修飾的磁性鐵金屬有機骨架的製備方法」中的「......接著於離心管中加入500μL的8mM的硫堇乙酸鹽水溶液及500μL的捕獲探針水溶液後......」的步驟中,捕獲探針水溶液的濃度為500ng/mL;其中第四捕獲探針為寡核苷酸,且第四捕獲探針的核苷酸序列如序列表中的SEQ ID NO:2所示,第四捕獲探針的核苷酸序列由5’往3’方向依序為AGTGAATTCTACCAGTGCCATA,總計有22個核苷酸、分子量為6,927.6Da且解鏈溫度(melting temperature,Tm)為40.9℃,並且於檢測探針的3’端修飾有3'-胺基-修飾基C7,而當捕獲探針為第四捕獲探針時,於「具有修飾的磁性鐵金屬有機骨架的製備方法」中的「......接著於離心管中加入500μL的8mM的硫堇乙酸鹽水溶液及500μL的捕獲探針水溶液後......」的步驟中,捕獲探針水溶液的濃度為0.2μM;其中第一捕獲探針及第四捕獲探針皆為向生工有限公司(MDBio,Inc.)訂製合成,並且溶於純水中,原始濃度皆為100μM,於使用前再以純水分別稀釋至0.2μM;前述僅為捕獲探針的示範例,實際實施時不限於此,可以根據所欲偵測的目標生物物質設計對應的捕獲探針,並且捕獲探針不限於寡核苷酸或抗體,亦可為肽鏈等其他適體。 The step includes adding 1 mL of 0.064 g/mL 1-ethyl-3(3-dimethylaminopropyl)carbodiimide aqueous solution and 1 mL of 0.128 g/mL N-hydroxysuccinimide aqueous solution into a beaker and mixing , to form the first stock solution, then take 1 mL of the first stock solution and 1 mL of the 1 mg/mL magnetic iron metal organic framework aqueous solution into a centrifuge tube, and then shake the reaction with a oscillator for 1 hour at room temperature (25°C). make magnetic iron After the carboxyl groups on the L-histidine acid on the metal-organic framework are activated, the magnetic iron-metal-organic framework is separated using a magnetic stand to remove the supernatant and rinse twice with ultrapure water, and then add 500 μL of After adding 8mM thioacetate aqueous solution and 500μL capture probe aqueous solution, the reaction was carried out with a oscillator for 1 hour at room temperature (25°C), and then the modified magnetic iron-metal organic framework was separated using a magnetic stand and the remaining residues were removed. liquid, and finally rinsed twice with ultrapure water and dried in an oven to obtain a "magnetic iron metal organic framework modified with capture probes and thionine"; in which the sulfur provided in the thionine acetate aqueous solution Coryline is a chemical modification; the magnetic iron-metal organic framework modified with capture probe and thionine refers to the magnetic iron-metal organic framework via 1-ethyl-3 (3-dimethylaminopropyl) carbide The diacetyl aqueous solution reacts with 1 mL of 0.128 g/mL N-hydroxysuccinimide aqueous solution to activate the carboxylic acid of L-histidine on the magnetic iron metal organic framework, thereby forming co-organizers with thionine and the capture probe. The surface of the magnetic ferrometal organic framework is modified with capture probes and thionine through valence linkage, and the magnetic ferrometal organic framework modified with the capture probe and thionine is the modified magnetic ferrometal organic framework of the present invention. Framework; in the following examples, "magnetic iron-metal-organic framework modified with capture probes and thionine" is represented by "skeleton E"; in the following examples, the capture probes are respectively the first capture probe, The second capture probe, the third capture probe and the fourth capture probe are taken as examples, wherein the first capture probe is an oligonucleotide, and the nucleotide sequence of the first capture probe is such as SEQ in the sequence listing. As shown in ID NO: 1, the nucleotide sequence of the first capture probe from 5' to 3' direction is TTTTTTTTTTGCGCGACATTCGGAAGAA, with a total of 28 nucleotides, a molecular weight of 8,559.6 Da, and a melting temperature (Tm) ) is 55.5°C, and when the capture probe is the first capture probe, in "Preparation Method of Magnetic Iron Metal-Organic Framework with Modification"...then add 500 μL of 8mM to the centrifuge tube After the thioacetate aqueous solution and 500 μL of the capture probe aqueous solution..." In the step, the concentration of the capture probe aqueous solution is 0.2 μM; the second capture probe is an antibody and is anti-parathyroxine The antibody of the antibody (Anti-Parathyroid Hormone/PTH Antibody, Mouse Monoclonal, product number: 13192-MM02, SinoBiological), and when the capture probe is the second capture probe, in "Preparation of modified magnetic iron metal organic framework "..." in "Method" In the step of adding 500 μL of 8 mM thionine acetate aqueous solution and 500 μL of the capture probe aqueous solution into the centrifuge tube, the concentration of the capture probe aqueous solution is 500 ng/mL; among them, the third capture probe The antibody is an antibody against the S protein (Spike Protein) of the new coronavirus (COVID-19 S-Protein (S1RBD) ELISA Kit, product number: ELV-COVID19S1-1, RayBiotech), and when the capture probe is For the third capture probe, in "Preparation Method of Modified Magnetic Iron Metal-Organic Framework"...then add 500 μL of 8 mM thionine acetate aqueous solution and 500 μL of capture probe into the centrifuge tube. In the step of "after aqueous solution...", the concentration of the capture probe aqueous solution is 500ng/mL; the fourth capture probe is an oligonucleotide, and the nucleotide sequence of the fourth capture probe is as follows As shown in SEQ ID NO: 2 in the list, the nucleotide sequence of the fourth capture probe is AGTGAATTCTACCAGTGCCATA from 5' to 3' direction, with a total of 22 nucleotides, a molecular weight of 6,927.6 Da, and a melting temperature of ( melting temperature (Tm) is 40.9°C, and the 3' end of the detection probe is modified with a 3'-amino-modified group C7, and when the capture probe is the fourth capture probe, the "magnetic iron with modification" In the step "...then add 500 μL of 8mM thionine acetate aqueous solution and 500 μL of the capture probe aqueous solution..." in the "Preparation Method of Metal Organic Framework", The concentration of the capture probe aqueous solution is 0.2 μM; the first capture probe and the fourth capture probe are both customized and synthesized from MDBio, Inc. and dissolved in pure water. The original concentrations are both 100 μM, and then diluted to 0.2 μM with pure water before use; the above is only an example of a capture probe, and the actual implementation is not limited to this. The corresponding capture probe can be designed according to the target biological substance to be detected, and Capture probes are not limited to oligonucleotides or antibodies, but can also be peptide chains and other aptamers.

製備例2:具有修飾的磁性鐵金屬有機骨架中的磁性鐵金屬有機骨架的製備方法 Preparation Example 2: Preparation method of magnetic ferrometal organic framework in modified magnetic ferrometal organic framework

步驟包括將122.4mg的磁性奈米粒子、1mL的0.184M的L-組胺酸水溶液、2.75mL的甲醇及0.5g的聚乙烯吡咯烷酮添加至燒杯中,使用超音波 破碎機進行超音波震盪混合30分鐘完成混合,以形成第二庫存溶液,再來取250μL的0.2M氯化鐵六水合物水溶液及282μL的第二庫存溶液於離心管中進行混合,接著將離心管放置於冰箱於4℃反應1個小時,再來於離心管中加入141μL的0.54M的2-甲基咪唑甲醇溶液及327μL的甲醇,再來離心管於室溫(25℃)下以震盪器進行震盪混合反應2小時,接著將離心管放入離心機以3,000rpm離心1分鐘,再來移除上清液並留下沉澱物,此處的沉澱物即完成合成的磁性鐵金屬有機骨架,接著以甲醇沖洗3次,再來以丙酮沖洗1次,接著加入丙酮,並使丙酮的液面蓋過沉澱物,再來使用超音波破碎機以超音波震盪使沉澱物溶解於丙酮中,最後使用真空烘箱進行真空乾燥,即可完成磁性鐵金屬有機骨架的製備;其中磁性鐵金屬有機骨架指由氯化鐵六水合物提供的三價鐵離子為金屬離子,及以2-甲基咪唑和L-組胺酸為配體,其中金屬離子和配體經配位反應所形成的磁性鐵金屬有機骨架,磁性鐵金屬有機骨架包含有容置空間,而磁性奈米粒子則被包覆於容置空間中;其中聚乙烯吡咯烷酮用作為穩定劑,且使用的聚乙烯吡咯烷酮的平均分子量為10,000Da;以下於各實施例中「磁性鐵金屬有機骨架」皆以「骨架C」表示,因此前述的「具有修飾的磁性鐵金屬有機骨架」亦可以「具有修飾的骨架C」表示。 The steps include adding 122.4mg of magnetic nanoparticles, 1mL of 0.184M L-histidine acid aqueous solution, 2.75mL of methanol and 0.5g of polyvinylpyrrolidone into the beaker, using ultrasound The crusher performs ultrasonic vibration mixing for 30 minutes to complete the mixing to form a second stock solution. Then take 250 μL of 0.2M ferric chloride hexahydrate aqueous solution and 282 μL of the second stock solution in a centrifuge tube to mix, and then centrifuge Place the tube in the refrigerator for reaction at 4°C for 1 hour. Then add 141 μL of 0.54M 2-methylimidazole methanol solution and 327 μL of methanol into the centrifuge tube, and then shake the centrifuge tube at room temperature (25°C). The centrifuge was shaken and mixed for 2 hours, and then the centrifuge tube was put into a centrifuge and centrifuged at 3,000 rpm for 1 minute. The supernatant was removed and the precipitate was left. The precipitate here is the completed magnetic iron metal organic framework. , then rinse with methanol 3 times, then rinse with acetone once, then add acetone so that the acetone liquid level covers the sediment, and then use an ultrasonic crusher to use ultrasonic vibration to dissolve the sediment in acetone. Finally, a vacuum oven is used for vacuum drying to complete the preparation of the magnetic iron metal organic framework; the magnetic iron metal organic framework refers to the trivalent iron ions provided by ferric chloride hexahydrate as metal ions, and 2-methylimidazole. and L-histidine as a ligand, in which metal ions and ligands undergo a coordination reaction to form a magnetic iron-metal organic framework. The magnetic iron-metal organic framework contains accommodation space, and the magnetic nanoparticles are coated in In the accommodation space; polyvinylpyrrolidone is used as a stabilizer, and the average molecular weight of the polyvinylpyrrolidone used is 10,000 Da; in the following examples, the "magnetic iron metal organic framework" is represented by "skeleton C", so the aforementioned The "modified magnetic iron metal organic framework" can also be expressed as "modified framework C".

製備例3:骨架C中的磁性奈米粒子的製備方法 Preparation Example 3: Preparation method of magnetic nanoparticles in skeleton C

步驟包括將1.72g的氯化鐵六水合物及0.403g的氯化亞鐵放置於燒杯,並以80mL的超純水進行溶解以形成鐵離子溶液,再來將鐵離子溶液加熱至80℃後,其中氯化鐵六水合物及氯化亞鐵的莫耳比約為2:1,接著加入6.7mL的25-30wt%的氨水並於80℃的溫度下攪拌混合1小時,即完成初步磁性奈米粒子的製備,其中初步磁性奈米粒子為鐵離子溶液與氨水反應形成的具有 磁性的四氧化三鐵,再來添加20mL的0.04165g/mL的檸檬酸鈉水溶液後升溫至90℃,並於90℃的溫度下攪拌混合1小時,接著靜置於室溫(25℃)環境進行冷卻,直到冷卻至室溫(25℃),其中檸檬酸鈉水溶液中的檸檬酸根會結合至初步磁性奈米粒子的表面達到穩定結構的功效而表面結合有檸檬酸根的初步磁性奈米粒子,即為所述的磁性奈米粒子,且粒徑為1,000奈米以下,再來以磁力座分離磁性奈米粒子以移除上清液並使用超純水沖洗2次後,最後以烘箱烘乾,即完成磁性奈米粒子的製備;以下於各實施例中將「磁性奈米粒子」皆簡稱為「MNP」表示。其中磁性奈米粒子不以經本發明提供的製備磁性奈米粒子的方法製備獲得的磁性奈米粒子為限,亦可為其他粒徑小於1,000奈米的磁性粒子。 The steps include placing 1.72g of ferric chloride hexahydrate and 0.403g of ferrous chloride in a beaker, dissolving them with 80 mL of ultrapure water to form an iron ion solution, and then heating the iron ion solution to 80°C. , the molar ratio of ferric chloride hexahydrate and ferrous chloride is about 2:1, then add 6.7mL of 25-30wt% ammonia water and stir and mix at a temperature of 80°C for 1 hour to complete the preliminary magnetic properties Preparation of nanoparticles, wherein the preliminary magnetic nanoparticles are formed by the reaction of iron ion solution and ammonia water. Magnetic ferric iron oxide, then add 20 mL of 0.04165 g/mL sodium citrate aqueous solution, heat it to 90°C, stir and mix at 90°C for 1 hour, and then let it stand at room temperature (25°C). Cool until it is cooled to room temperature (25°C), in which the citrate radicals in the sodium citrate aqueous solution will be bound to the surface of the preliminary magnetic nanoparticles to stabilize the structure, and the preliminary magnetic nanoparticles with citrate radicals bound to the surface, These are the magnetic nanoparticles with a particle size of less than 1,000 nanometers. The magnetic nanoparticles are then separated using a magnetic stand to remove the supernatant, rinsed twice with ultrapure water, and finally dried in an oven. , that is, the preparation of magnetic nanoparticles is completed; in the following examples, "magnetic nanoparticles" will be referred to as "MNP" for short. The magnetic nanoparticles are not limited to those prepared by the method for preparing magnetic nanoparticles provided by the present invention, and can also be other magnetic particles with a particle size less than 1,000 nanometers.

實驗例1:測試對骨架C進行不同化學修飾對電子傳遞速率常數的影響: Experimental Example 1: Test the effect of different chemical modifications on the skeleton C on the electron transfer rate constant:

為了確認不同化學修飾對骨架C的電子傳遞能力的影響,其中因此分別對骨架C進行化學修飾,使骨架C上帶有化學修飾物,其中化學修飾物分別為甲苯胺藍(toluidine blue,TBO)、中性紅(neutral red,NR)及硫堇(thionine,Thi),以形成具有甲苯胺藍修飾的骨架C、具有中性紅修飾的骨架C及具有硫堇修飾的骨架C,其中具有甲苯胺藍修飾的骨架C及具有中性紅修飾的骨架C的製備方法與「具有修飾的磁性鐵金屬有機骨架的製備方法」基本一致,差異在於「......接著於離心管中加入500μL的8mM的硫堇乙酸鹽水溶液及500μL的捕獲探針水溶液後......」的步驟中的將「500μL的8mM的硫堇乙酸鹽水溶液及500μL的捕獲探針水溶液」分別取代為「1mL的4mM的甲苯胺藍水溶液」、「1mL的4mM的中性紅水溶液」及「1mL的4mM的硫堇乙酸鹽水溶液」,因此最後獲得的產物分別為具有甲苯胺藍修飾的骨架C、具有中性紅修飾的骨架C及具有硫堇修飾的骨架C,再來以0.1M磷酸鹽緩衝液為溶劑分別將具有甲苯胺藍修 飾的骨架C、具有中性紅修飾的骨架C及具有硫堇修飾的骨架C分別稀釋為1mg/mL的濃度後各取5μL添加至工作電極的表面,接著添加95μL的3mM鐵氰化鉀溶液於工作電極的表面作為電解質溶液,最後進行循環伏安法分析,並進行二重複實驗;其中工作電極包括有用於偵測電流變化的表面,以及與表面相對的背面,工作電極的背面設置有磁鐵,藉由磁力使具有甲苯胺藍修飾的骨架C、具有中性紅修飾的骨架C及具有硫堇修飾的骨架C可以固定於工作電極的表面;其中循環伏安法分析中分別以10、12、14及16mV/s的掃描速率進行分析並以經由Lavagnini改良的Nicholson方程式換算得出電子傳遞速率常數(ks),電子速率常數的單位為「平方公分/秒(cm2/s)」;其中由於為進行二重複實驗,因此電子傳遞速率常數的數值表示為「平均值±標準差」,實驗結果顯示具有甲苯胺藍修飾的骨架C的電子傳遞速率常數為0.001293±0.000249cm2/s,具有中性紅修飾的骨架C的電子傳遞速率常數為0.00147±0.0000099cm2/s,具有硫堇修飾的骨架C的電子傳遞速率常數為0.002813±0.000377cm2/s具有硫堇修飾的骨架C的電子傳遞速率常數大於具有甲苯胺藍修飾的骨架C的電子傳遞速率常數及具有中性紅修飾的骨架C的電子傳遞速率常數,代表具有硫堇修飾的骨架C具有最佳的電子傳遞能力。 In order to confirm the impact of different chemical modifications on the electron transfer ability of skeleton C, the skeleton C was chemically modified to have chemical modifications on the skeleton C. The chemical modifications were toluidine blue (TBO). , neutral red (NR) and thionine (Thi) to form a skeleton C modified with toluidine blue, a skeleton C modified with neutral red and a skeleton C modified with thionine, wherein there is The preparation method of the aniline blue modified skeleton C and the neutral red modified skeleton C is basically the same as the "preparation method of the modified magnetic iron metal organic framework", the difference is that "...then add it to the centrifuge tube In the step "After 500 μL of 8 mM thionine acetate aqueous solution and 500 μL of the capture probe aqueous solution..." replace "500 μL of 8 mM thionine acetate aqueous solution and 500 μL of the capture probe aqueous solution" with respectively "1mL of 4mM toluidine blue aqueous solution", "1mL of 4mM neutral red aqueous solution" and "1mL of 4mM thionine acetate aqueous solution", so the finally obtained products are respectively skeleton C with toluidine blue modification, The skeleton C with neutral red modification and the skeleton C with thionine modification, and then using 0.1M phosphate buffer as the solvent, respectively combine the skeleton C with toluidine blue modification, the skeleton C with neutral red modification and the skeleton C with sulfur. The cordy modified framework C was diluted to a concentration of 1 mg/mL, and 5 μL of each was added to the surface of the working electrode. Then, 95 μL of 3mM potassium ferricyanide solution was added to the surface of the working electrode as the electrolyte solution, and finally cyclic voltammetry analysis was performed. , and conducted two repeated experiments; the working electrode includes a surface for detecting current changes, and a backside opposite to the surface. A magnet is provided on the backside of the working electrode, and the magnetic force makes the toluidine blue-modified skeleton C, with a medium The sex red-modified framework C and the thionine-modified framework C can be fixed on the surface of the working electrode; cyclic voltammetry analysis is performed at scanning rates of 10, 12, 14 and 16 mV/s respectively and is modified by Lavagnini. The electron transfer rate constant (ks) is obtained by converting the Nicholson equation. The unit of the electron rate constant is "square centimeters per second (cm 2 /s)". Since this is a duplicate experiment, the value of the electron transfer rate constant is expressed as "Mean ± standard deviation", the experimental results show that the electron transfer rate constant of skeleton C with toluidine blue modification is 0.001293±0.000249cm 2 /s, and the electron transfer rate constant of skeleton C with neutral red modification is 0.00147±0.0000099 cm 2 /s, the electron transfer rate constant of skeleton C with thionine modification is 0.002813±0.000377cm 2 /s The electron transfer rate constant of skeleton C with thionine modification is greater than the electron transfer rate of skeleton C with toluidine blue modification The constant and the electron transfer rate constant of the skeleton C with neutral red modification represent that the skeleton C with thionine modification has the best electron transfer ability.

為了進行後續的定性分析,因此底下提出製備例4、製備例5及製備例6,藉以製備獲得鐵-咪唑有機骨架、鐵-組胺酸-咪唑有機骨架及具有硫堇修飾的骨架C作為定性分析中的比較例。 In order to carry out subsequent qualitative analysis, Preparation Example 4, Preparation Example 5 and Preparation Example 6 are proposed below to prepare iron-imidazole organic framework, iron-histidine-imidazole organic framework and framework C with thionine modification as qualitative Comparative examples in the analysis.

製備例4:製備鐵-咪唑有機骨架的製備方法 Preparation Example 4: Preparation method of iron-imidazole organic framework

步驟包括將250μL的0.2M的氯化鐵六水合物水溶液、375μL的0.54M的2-甲基咪唑甲醇溶液及375μL的甲醇至離心管於室溫(25℃)下以震盪器震盪反應2小時,再來將離心管放入離心機以3,000rpm離心1分鐘,接著移除上清液並留下沉澱物,其中沉澱物即完成合成的鐵-咪唑有機骨架,再來先對沉澱 物以甲醇沖洗3次,接著丙酮沖洗1次,以洗去殘餘的液體,再來於離心管中加入丙酮,並使丙酮的液面蓋過沉澱物,接著使用超音波破碎機以超音波震盪使沉澱物溶解於丙酮中,最後使用真空烘箱進行乾燥,即可完成鐵-咪唑有機骨架的製備,其中鐵-咪唑有機骨架指由氯化鐵六水合物提供的三價鐵離子為金屬離子,及以2-甲基咪唑為配體經配位反應所形成的金屬有機骨架;以下於各實施例中「鐵-咪唑有機骨架」皆以「骨架A」表示。 The steps include adding 250 μL of 0.2M ferric chloride hexahydrate aqueous solution, 375 μL of 0.54M 2-methylimidazole methanol solution and 375 μL of methanol into a centrifuge tube and shaking with a shaker for 2 hours at room temperature (25°C). , then put the centrifuge tube into a centrifuge and centrifuge at 3,000 rpm for 1 minute. Then remove the supernatant and leave the precipitate. The precipitate is the iron-imidazole organic skeleton that completes the synthesis. Next, clean the precipitate first. Rinse the substance with methanol three times, and then rinse it once with acetone to wash away the remaining liquid. Then add acetone to the centrifuge tube and make the acetone liquid level cover the sediment. Then use an ultrasonic crusher to vibrate with ultrasonic waves. Dissolve the precipitate in acetone, and finally dry it in a vacuum oven to complete the preparation of the iron-imidazole organic skeleton, where the iron-imidazole organic skeleton refers to the ferric ions provided by ferric chloride hexahydrate as metal ions. And a metal-organic framework formed by coordination reaction with 2-methylimidazole as a ligand; in the following examples, the "iron-imidazole organic framework" is represented by "framework A".

製備例5:製備鐵-組胺酸-咪唑有機骨架的製備方法 Preparation Example 5: Preparation method of iron-histidine-imidazole organic framework

步驟包括:將250μL的0.2M氯化鐵六水合物水溶液及100μL的0.184M的L-組胺酸水溶液至離心管,再來放置於冰箱於4℃反應1小時,完成鐵-組胺酸溶液的製備,接著添加375μL的0.54M的2-甲基咪唑甲醇溶液及275μL的甲醇至鐵-組胺酸溶液中,再來於室溫(25℃)下以震盪器震盪反應2小時,接著將離心管放入離心機以3,000rpm離心1分鐘,再來移除上清液並留下沉澱物,其中沉澱物即完成合成的鐵-組胺酸-咪唑有機骨架,接著先對沉澱物以甲醇沖洗3次,再來以丙酮沖洗1次,以洗去殘餘的液體,接著於離心管中加入丙酮,並使丙酮的液面蓋過沉澱物,並使用超音波破碎機以超音波震盪使沉澱物溶解於丙酮中,最後使用真空烘箱進行真空乾燥,即可完成鐵-組胺酸-咪唑有機骨架的製備,其中鐵-組胺酸-咪唑有機骨架指由氯化鐵六水合物提供的三價鐵離子為金屬離子,及以2-甲基咪唑和L-組胺酸為配體經配位反應所形成的金屬有機骨架;以下於各實施例中「鐵-組胺酸-咪唑有機骨架」皆以「骨架B」表示。 The steps include: add 250 μL of 0.2M ferric chloride hexahydrate aqueous solution and 100 μL of 0.184M L-histidine acid aqueous solution into a centrifuge tube, then place it in the refrigerator at 4°C for 1 hour to react to complete the iron-histidine acid solution. Preparation, then add 375 μL of 0.54M 2-methylimidazole methanol solution and 275 μL of methanol to the iron-histidine acid solution, and then shake the reaction with a shaker for 2 hours at room temperature (25°C), and then Place the centrifuge tube into a centrifuge and centrifuge at 3,000 rpm for 1 minute. Remove the supernatant and leave the precipitate. The precipitate is the iron-histidine-imidazole organic skeleton that has been synthesized. The precipitate is then treated with methanol. Rinse 3 times and then rinse once with acetone to wash away the remaining liquid. Then add acetone to the centrifuge tube and make the acetone liquid level cover the sediment. Use an ultrasonic crusher to vibrate the sediment with ultrasonic waves. Dissolve the substance in acetone, and finally use a vacuum oven for vacuum drying to complete the preparation of the iron-histidine acid-imidazole organic framework, where the iron-histidine acid-imidazole organic framework refers to the three-phase iron-histidine acid-imidazole organic framework provided by ferric chloride hexahydrate. Valent iron ions are metal ions, and a metal-organic framework formed by coordination reaction with 2-methylimidazole and L-histidine acid as ligands; in the following examples, "iron-histidine-imidazole organic framework" ” are all represented by “Skeleton B”.

製備例6:製備具有硫堇修飾的骨架C的製備方法 Preparation Example 6: Preparation method for preparing skeleton C with thionine modification

步驟與「具有修飾的磁性鐵金屬有機骨架的製備方法」基本一致,差異在於「......接著於離心管中加入500μL的8mM的硫堇乙酸鹽水溶液及500μL 的捕獲探針水溶液後......」的步驟中的「500μL的8mM的硫堇乙酸鹽水溶液及500μL的捕獲探針水溶液」改為「1mL的4mM的硫堇乙酸鹽水溶液」,即可獲得「具有硫堇修飾的骨架C」,其中具有硫堇修飾的骨架C指於骨架C上經由與1-乙基-3(3-二甲基氨基丙基)碳醯二亞水溶液及1mL的0.128g/mL的N-羥基琥珀醯亞胺水溶液反應,使骨架C上的L-組胺酸的羧酸活化,進而得以與硫堇形成共價連結,使骨架C上帶有硫堇修飾;以下於各實施例中「具有硫堇修飾的骨架C」皆以「骨架D」表示,並且骨架D即不包括捕獲探針的骨架E,換言之,骨架E即為進一步修飾有捕獲探針的骨架D。 The steps are basically the same as the "Preparation method of modified magnetic iron metal-organic framework", the difference is that "...then add 500 μL of 8mM thionine acetate aqueous solution and 500 μL into the centrifuge tube In the step "After capturing the probe aqueous solution...", "500 μL of 8mM thionine acetate aqueous solution and 500 μL of the capture probe aqueous solution" is changed to "1mL of 4mM thionine acetate aqueous solution", that is "Skeleton C with thionine modification" can be obtained, wherein skeleton C with thionine modification refers to the preparation of skeleton C with 1-ethyl-3(3-dimethylaminopropyl)carbodioxide aqueous solution and 1 mL The reaction of 0.128g/mL N-hydroxysuccinimide aqueous solution activates the carboxylic acid of L-histidine on the skeleton C, and then forms a covalent link with thionine, so that the skeleton C is modified with thionine. ; In the following examples, "skeleton C with thionine modification" is represented by "skeleton D", and skeleton D is the skeleton E that does not include the capture probe. In other words, the skeleton E is the skeleton E that is further modified with a capture probe. Skeleton D.

為方便後續理解,於此綜合前述各項簡稱,MNP為「磁性奈米粒子」,骨架A為「鐵-咪唑有機骨架」,骨架B為「鐵-組胺酸-咪唑有機骨架」,骨架C為「磁性鐵金屬有機骨架」,骨架D為「具有硫堇修飾的骨架C」,骨架E為「修飾有捕獲探針及硫堇的磁性鐵金屬有機骨架」。 To facilitate subsequent understanding, the abbreviations mentioned above are summarized here. MNP is "magnetic nanoparticles", skeleton A is "iron-imidazole organic skeleton", skeleton B is "iron-histidine acid-imidazole organic skeleton", and skeleton C is "magnetic ferrometal organic framework", framework D is "skeleton C modified with thionine", and framework E is "magnetic ferrometal organic framework modified with capture probe and thionine".

於以下進行定性分析,其中定性分析包括動態光散射粒徑分析儀及界面電位分析儀(particle size and zeta potential analyzer)分析、傅立葉轉換紅外光譜儀(Fouries transform infrared,FITR)分析、掃描式電子顯微鏡(scanning electron microscope,SEM)分析及超導量子干涉元件磁量儀(superconducting quantum interference devicema gnetometer)分析。 Qualitative analysis was carried out as follows, which includes dynamic light scattering particle size analyzer and interface potential analyzer (particle size and zeta potential analyzer) analysis, Fourier transform infrared spectrometer (Fouries transform infrared, FITR) analysis, scanning electron microscope ( scanning electron microscope (SEM) analysis and superconducting quantum interference device magnetometer (superconducting quantum interference device magnetometer) analysis.

實驗例2:動態光散射粒徑分析儀及界面電位分析儀分析 Experimental Example 2: Dynamic light scattering particle size analyzer and interface potential analyzer analysis

藉由將各個樣品溶於超純水以形成對應的樣品水溶液,並以動態光散射粒徑分析儀及界面電位分析儀以光散射法分析各個樣品溶液中各個樣品的平均粒徑,其中樣品包括MNP、骨架A、骨架B、骨架C及骨架D,其中各個樣品的平均粒徑的數值呈現方式皆為「平均值±標準差」,平均粒徑的單位為「奈 米(nanometer,nm)」,實驗結果顯示MNP的平均粒徑為308.0±26.28nm、骨架A的平均粒徑為253.7±22.49nm,而引入L-組胺酸形成的骨架B的平均粒徑為281.6±20.33nm,再進一步引入MNP形成的骨架C的平均粒徑為439.2±17.23nm,而加上硫堇修飾後形成的骨架D的平均粒徑則為491.7±42.72nm。 By dissolving each sample in ultrapure water to form a corresponding sample aqueous solution, and using a dynamic light scattering particle size analyzer and an interface potential analyzer to analyze the average particle size of each sample in each sample solution using the light scattering method, the samples include MNP, skeleton A, skeleton B, skeleton C and skeleton D. The numerical presentation method of the average particle size of each sample is "mean ± standard deviation", and the unit of the average particle size is "nanometers". nanometer (nm)", the experimental results show that the average particle size of MNP is 308.0±26.28nm, the average particle size of skeleton A is 253.7±22.49nm, and the average particle size of skeleton B formed by introducing L-histidine acid is 281.6±20.33nm, the average particle diameter of framework C formed by further introducing MNP is 439.2±17.23nm, and the average particle diameter of framework D formed after adding thionine modification is 491.7±42.72nm.

實驗例3:傅立葉轉換紅外光譜儀分析 Experimental example 3: Fourier transform infrared spectrometer analysis

請參閱圖1,傅立葉轉換紅外光譜儀用於分析各個樣品中的分子震動狀況以識別出各個官能基,各個樣品於分析前皆先以加壓錠劑法進行前處理,其中於加壓錠劑法中使用的分散劑皆為溴化鉀(KBr),其中樣品包括骨架A、骨架B、MNP、骨架C及骨架D,X軸為波數,其中波數為波長的倒數,因此X軸的單位為cm-1,Y軸為穿透度(Transmittance),Y軸單位為%,為實驗結果顯示骨架B於可以觀察到1633cm-1處的C=C官能基、3743cm-1處的N-H官能基、2349cm-1處的C=N-C官能基及3416cm-1處的O-H官能基,其中2349cm-1處的C=N-C官能基為2-甲基咪唑的官能基特徵;MNP由於主體結構為四氧化三鐵,因此可以明顯觀察到585cm-1處的Fe-O官能基,為MNP的主要官能基特徵;骨架C及骨架D因為皆包含有L-組胺酸,因此可以觀察到1099cm-1處的C-H官能基,並且因為骨架C及骨架D皆包含有MNP,因此也可以觀察到585cm-1處的Fe-O官能基,同時由於骨架C及骨架D也包含2-甲基咪唑,因此也可以觀察到2349cm-1處的C=N-C官能基,此外骨架D由於修飾有硫堇,因此3416cm-1處的O-H官能基的訊號更加明顯證明硫堇有成功修飾在樣品上。 Please refer to Figure 1. Fourier transform infrared spectrometer is used to analyze the molecular vibration conditions in each sample to identify each functional group. Each sample is pre-processed by the pressurized tablet method before analysis. Among them, the pressurized tablet method The dispersants used in are all potassium bromide (KBr), and the samples include skeleton A, skeleton B, MNP, skeleton C and skeleton D. The X-axis is the wave number, where the wave number is the reciprocal of the wavelength, so the unit of the X-axis is cm -1 , the Y-axis is Transmittance, and the Y-axis unit is %. The experimental results show that the C=C functional group at 1633cm -1 and the NH functional group at 3743cm -1 of the skeleton B can be observed. , C=NC functional group at 2349cm -1 and OH functional group at 3416cm -1 , among which the C=NC functional group at 2349cm -1 is the functional group characteristic of 2-methylimidazole; MNP has a main structure of tetroxide Fe-O functional group at 585 cm -1 can be clearly observed, which is the main functional group characteristic of MNP; skeleton C and skeleton D both contain L-histidine, so it can be observed at 1099 cm -1 CH functional group, and because both skeleton C and skeleton D contain MNP, the Fe-O functional group at 585 cm -1 can also be observed. At the same time, since skeleton C and skeleton D also contain 2-methylimidazole, so also The C=NC functional group at 2349cm -1 can be observed. In addition, since skeleton D is modified with thionine, the signal of the OH functional group at 3416cm -1 is more obvious, proving that thionine is successfully modified on the sample.

實驗例4:掃描式電子顯微鏡分析 Experimental Example 4: Scanning Electron Microscope Analysis

請參閱圖2、圖3、圖4、圖5及圖6,為掃描式電子顯微鏡於相同放大倍率下拍攝各個樣品的晶體結構的圖像,其中樣品包括骨架A、骨架B、 MNP、骨架C、骨架D;如圖2所示,骨架A的晶體結構呈現為接近立方體結構;如圖3所示,骨架B的晶體結構則是呈現不規則塊狀結構;如圖4、圖5及圖6所示,MNP的晶體、骨架C的晶體及骨架D的晶體皆呈現顆粒堆疊狀結構。 Please refer to Figure 2, Figure 3, Figure 4, Figure 5 and Figure 6, which are images of the crystal structure of each sample taken by a scanning electron microscope at the same magnification. The samples include skeleton A, skeleton B, MNP, skeleton C, skeleton D; as shown in Figure 2, the crystal structure of skeleton A presents a nearly cubic structure; as shown in Figure 3, the crystal structure of skeleton B presents an irregular block structure; Figure 4, Figure 5 and 6, the crystals of MNP, the crystals of framework C, and the crystals of framework D all present a particle stacking structure.

實驗例5:超導量子干涉元件磁量儀分析 Experimental example 5: Superconducting quantum interference element magnetometer analysis

請參閱圖7,使用超導量子干涉元件磁量儀對各個樣品進行分析,其中超導量子干涉儀器(Superconducting quantum interference devicema gnetometer)對各個樣品施加不同強度的磁場,使得各個樣品的磁性產生強度變化,其中對各個樣品施加磁場強度範圍為-10,000至10,000奧斯特(Oersted,Oe),並觀察各個樣品根據施加的磁場強度產生的對應的磁性變化,其中磁性的單位為電磁單位/公克(emu/g),以獲得各個樣品的磁滯曲線圖,其中樣品包括MNP、骨架C、骨架D,其中MNP由於主體為具有磁性的四氧化三鐵,因此可以觀察到偵測到的磁性強度隨著磁場有明顯的變化,因此以MNP作為的參考標的;其中MNP的磁性強度變化範圍為-60.5827emu/g至60.64334emu/g,骨架C的磁性強度變化範圍為-62.0049emu/g至61.98947emu/g,骨架D的磁性強度變化範圍為-55.8825emu/g至55.82392emu/g,其中骨架C的磁性強度變化範圍與MNP的磁性強度變化範圍相近;其中骨架D的磁性強度變化範圍較MNP的磁性強度變化範圍及骨架C的磁性強度變化範圍窄,不過本實驗證實即使骨架D仍然隨著磁場強度變化有明顯的磁性強度變化,因此證實骨架C及骨架D皆成功包覆磁性奈米粒子,並且證實骨架C及骨架D皆具有磁性。 Please refer to Figure 7. Each sample was analyzed using a superconducting quantum interference device magnetometer. The superconducting quantum interference device (Superconducting quantum interference device) applied magnetic fields of different strengths to each sample, causing the magnetism of each sample to change in intensity. , in which a magnetic field intensity range of -10,000 to 10,000 Oersted (Oersted, Oe) is applied to each sample, and the corresponding magnetic changes produced by each sample according to the applied magnetic field intensity are observed, where the unit of magnetism is electromagnetic unit/gram (emu) /g) to obtain the hysteresis curves of each sample, in which the samples include MNP, skeleton C, and skeleton D. Among them, MNP is mainly composed of magnetic ferroferric oxide, so it can be observed that the detected magnetic intensity increases with The magnetic field changes significantly, so MNP is used as the reference standard; the magnetic intensity range of MNP is -60.5827emu/g to 60.64334emu/g, and the magnetic intensity range of skeleton C is -62.0049emu/g to 61.98947emu/ g, the magnetic intensity variation range of skeleton D is -55.8825emu/g to 55.82392emu/g. The magnetic intensity variation range of framework C is similar to that of MNP. The magnetic intensity variation range of framework D is larger than that of MNP. The intensity change range and the magnetic intensity change range of skeleton C are narrow. However, this experiment confirmed that even skeleton D still has obvious magnetic intensity changes as the magnetic field intensity changes. Therefore, it is confirmed that both skeleton C and skeleton D successfully coated magnetic nanoparticles, and It is confirmed that both skeleton C and skeleton D are magnetic.

經由前述實驗例2、實驗例3、實驗例4及實驗例5的實驗結果證明本發明的骨架D與其他比較例之間於平均粒徑、官能基、晶體外觀上確實具有差異性,並且骨架D具有磁性,因此可以藉由如磁力座或磁鐵進行吸引,藉 以分離骨架D,因此以下測試進一步修飾有捕獲探針的骨架D結合電化學感測器應用於對所欲檢測的目標生物物質進行檢測的功效,即骨架E結合電化學生物感測器應用於對所欲檢測的目標生物物質進行檢測領域的功效,因此本發明提供以下的電化學感測套組,並於後續進行以各個實驗條件進行山葵過氧化酶測試及嵌入劑測試。 The experimental results of the aforementioned Experimental Example 2, Experimental Example 3, Experimental Example 4 and Experimental Example 5 prove that there are indeed differences between the skeleton D of the present invention and other comparative examples in terms of average particle size, functional groups, and crystal appearance, and the skeleton D is magnetic, so it can be attracted by a magnetic base or magnet. To separate the skeleton D, the following test is performed on the efficacy of the skeleton D further modified with a capture probe combined with an electrochemical sensor to detect the target biological substance to be detected, that is, the skeleton E combined with an electrochemical biosensor is used The present invention provides the following electrochemical sensing kit for detecting target biological substances to be detected, and subsequently performs wasabi peroxidase testing and intercalating agent testing under various experimental conditions.

本發明的提供一種電化學感測套組,包括:電化學感測器、骨架E、檢測探針及氧化還原酵素,其中電化學感測器用於進行電化學分析,電化學感測器包括有工作電極,工作電極包括有用於偵測電流變化的表面,以及與表面相對的背面,工作電極的背面設置有磁鐵;其中檢測探針用於與目標生物物質結合,且檢測探針上修飾有第一標記物;其中氧化還原酵素用於進行氧化還原反應,且氧化還原酵素上修飾有第二標記物,第二標記物用於與第一標記物結合;其中捕獲探針可為寡核苷酸、抗體或肽鏈;其中檢測探針可為寡核苷酸、抗體或肽鏈;其中目標生物物質可為核酸、胜肽、蛋白質或化合物;以下稱此電化學感測套組為第一電化學感測套組,後續進行山葵過氧化酶測試的實驗例中皆為使用第一電化學感測套組進行測試。 The invention provides an electrochemical sensing kit, which includes: an electrochemical sensor, a skeleton E, a detection probe and an oxidation-reduction enzyme. The electrochemical sensor is used for electrochemical analysis, and the electrochemical sensor includes: The working electrode includes a surface for detecting current changes and a back surface opposite the surface. A magnet is provided on the back of the working electrode; the detection probe is used to combine with the target biological substance, and the detection probe is modified with a third A label; wherein the redox enzyme is used to perform a redox reaction, and the redox enzyme is modified with a second label, and the second label is used to bind to the first label; wherein the capture probe can be an oligonucleotide , antibody or peptide chain; wherein the detection probe can be an oligonucleotide, antibody or peptide chain; wherein the target biological substance can be a nucleic acid, peptide, protein or compound; hereinafter referred to as the first electrochemical sensing kit The first electrochemical sensing kit was used in the subsequent experimental examples of wasabi peroxidase testing.

於本發明提供另一種電化學感測套組,包括:電化學感測器、骨架E、檢測探針及嵌入劑,其中電化學感測器用於進行電化學分析,電化學感測器包括有工作電極,工作電極包括有用於偵測電流變化的表面,以及與表面相對的背面,工作電極的背面設置有磁鐵;其中檢測探針用於與目標生物物質結合;其中嵌入劑用於嵌入捕獲探針與目標生物物質的結合處,以及嵌入檢測探針與目標生物物質的結合處,並進行氧化還原反應;其中捕獲探針及檢測探針皆為寡核苷酸;其中該目標生物物質為核酸;以下稱此電化學感測套組為 第二電化學感測套組,後續進行嵌入劑測試的實驗例中皆為使用第二電化學感測套組進行測試。於本發明的一實施例中,第二電化學感測套組可不包括檢測探針。 The present invention provides another electrochemical sensing kit, including: an electrochemical sensor, a skeleton E, a detection probe and an embedding agent, wherein the electrochemical sensor is used for electrochemical analysis, and the electrochemical sensor includes: The working electrode includes a surface for detecting changes in current, and a backside opposite to the surface. A magnet is provided on the backside of the working electrode; the detection probe is used to combine with the target biological substance; and the embedding agent is used to embed the capture probe. The binding site between the needle and the target biological substance, and the binding site between the embedded detection probe and the target biological substance, and a redox reaction is performed; the capture probe and the detection probe are both oligonucleotides; and the target biological substance is nucleic acid. ;Hereinafter referred to as this electrochemical sensing kit The second electrochemical sensing set, the second electrochemical sensing set is used in subsequent experimental examples of testing the embedding agent. In an embodiment of the invention, the second electrochemical sensing set may not include a detection probe.

於以下使用第一電化學感測套組進行山葵過氧化酶測試及使用第二電化學感測套組進行嵌入劑測試中,使用的目標生物物質樣品為包括第一目標生物物質的樣品或包括第二目標生物物質的樣品、包括第三目標生物物質的樣品及包括第四目標生物物質的樣品的樣品進行測試,其中第一目標生物物質、第二目標生物物質、第三目標生物物質及第四目標生物物質皆作為目標生物物質的示範例,其中第一目標生物物質為人工合成的新型冠狀病毒(SARS-CoV-2)的N基因(N-gene)的部分片段,第一目標生物物質如序列表中的SEQ ID NO:3所示,第一目標生物物質的核苷酸序列由5’往3’方向依序為TTCTTCGGAATGTCGCGCTTTTTTCAATGCTGCAATCGTGCGTCA,總計有45個核苷酸、分子量為13,774.9Da且解鏈溫度為69.1℃;其中包括有第一目標生物物質的樣品以下提供三種態樣,第一種態樣為向生工有限公司(MDBio,Inc.)訂製合成第一目標生物物質,其中第一目標生物物質為溶於純水中,並且第一目標生物物質的濃度為100μM,以下將第一種態樣稱為「目標核酸水溶液」;第二種態樣為向中央研究院的RNAiCore核心設施訂製的攜帶有第一目標生物物質的質體的重組慢病毒,以下稱為「目標病毒」,目標病毒於後續進行各項測試前會先以聚合酶連鎖反應進行目標病毒的複製,使目標病毒達到所欲的複製數;第三種態樣為進一步使用開啟基因(CatchGene)股份有限公司的病毒DNA/RNA萃取套組(Vrial DNA/RNA Kit)萃取目標病毒的病毒核酸,其中病毒核酸即包括第一目標生物物質,萃取方法依照病毒DNA/RNA萃取套組的產品操作指引步驟進行,以獲得包括第一目標 生物物質的核酸萃取液,以下將包括第一目標生物物質的核酸萃取液稱為「目標萃取液」,目標萃取液於後續進行各項測試前會進行核酸定量以確認目標萃取液的濃度;其中第二目標生物物質為副甲狀腺素,其中包括第二目標生物物質的樣品為副甲狀腺素溶液(Parathyroid Hormone/PTH Protein,Human,Recombinant(aa 32-65,GST Tag),貨品編號:13192-H09E,SinoBiological);其中第三目標生物物質為新型冠狀病毒的S蛋白,其中包括第三目標生物物質的樣品為新型冠狀病毒的棘蛋白溶液(COVID-19 S-Protein(S1RBD)ELISA Kit,貨品編號:ELV-COVID 19S1-1,RayBiotech),以下簡稱為「目標蛋白溶液」;其中第四目標生物物質為人工合成的微小核糖核酸(microRNA)的序列,其中微小核糖核酸以miRNA-183作為示範例,第四目標生物物質如序列表中的SEQ ID NO:4所示,第四目標生物物質的核苷酸序列由5’往3’方向依序為UAUGGCACUGGUAGAAUUCACU,總計有22個核苷酸,包括第四目標生物物質的樣品為為向生工有限公司(MDBio,Inc.)訂製合成第四目標生物物質,其中第四目標生物物質為溶於純水中,並且第四目標生物物質的濃度為100μM,以下稱為「微小核糖核酸溶液」;另外,為了模擬臨床上所欲檢測的目標生物物質存在於檢體中的狀態,因此將檢體先經由離心機以15,000rpm離心3分鐘使雜質沉澱,並取檢體離心後的上清液作為稀釋液,其中稀釋液用於稀釋包括第一目標生物物質的樣品或包括第二目標生物物質的樣品,於以下測試中用於製備稀釋液的檢體包括唾液、尿液及血清,但實際實施時不限於此,檢體除了唾液、尿液及血清外,亦可為血漿、全血、細胞、細胞萃取物、淋巴液、腦脊髓液、羊水、肺泡沖洗液、汗液、淚液、痰液、胸水、腹水、關節液、精液或糞便等其它於臨床上使用的檢體。 In the following wasabi peroxidase test using the first electrochemical sensing set and the intercalator test using the second electrochemical sensing set, the target biological substance sample used is a sample including the first target biological substance or includes Samples of the second target biological substance, samples including the third target biological substance and samples including the fourth target biological substance are tested, wherein the first target biological substance, the second target biological substance, the third target biological substance and the third target biological substance are tested. The four target biological substances are all examples of target biological substances. The first target biological substance is a partial fragment of the synthetic N-gene of the new coronavirus (SARS-CoV-2). As shown in SEQ ID NO: 3 in the sequence listing, the nucleotide sequence of the first target biological substance from 5' to 3' direction is TTCTTCGGAATGTCGCGCTTTTTTCAATGCTGCAATCGTGCGTCA, with a total of 45 nucleotides, a molecular weight of 13,774.9Da, and melted The temperature is 69.1°C; including samples containing the first target biological substance. The following three modes are provided. The first mode is to customize the synthesis of the first target biological substance from MDBio, Inc., of which the first The target biological substance is dissolved in pure water, and the concentration of the first target biological substance is 100 μM. Hereinafter, the first aspect is called "target nucleic acid aqueous solution"; the second aspect is to the RNAiCore core facility of Academia Sinica The customized recombinant lentivirus carrying the plasmid of the first target biological substance is hereinafter referred to as the "target virus". Before subsequent tests, the target virus will first replicate the target virus through a polymerase chain reaction, so that the target virus The virus reaches the desired replication number; the third method is to further use the viral DNA/RNA extraction kit (Vrial DNA/RNA Kit) of CatchGene Co., Ltd. to extract the viral nucleic acid of the target virus, where the viral nucleic acid is Including the first target biological substance, the extraction method is carried out in accordance with the product operating instructions of the viral DNA/RNA extraction kit to obtain the first target biological substance. The nucleic acid extraction solution of biological substances, hereafter the nucleic acid extraction solution including the first target biological substance will be referred to as the "target extraction solution". The target extraction solution will undergo nucleic acid quantification to confirm the concentration of the target extraction solution before subsequent tests; The second target biological substance is parathyroid hormone, and the sample including the second target biological substance is parathyroid hormone solution (Parathyroid Hormone/PTH Protein, Human, Recombinant (aa 32-65, GST Tag), product number: 13192-H09E , SinoBiological); the third target biological substance is the S protein of the new coronavirus, and the sample including the third target biological substance is the spike protein solution of the new coronavirus (COVID-19 S-Protein (S1RBD) ELISA Kit, item number : ELV-COVID 19S1-1, RayBiotech), hereinafter referred to as the "target protein solution"; the fourth target biological substance is the sequence of a synthetic microRNA (microRNA), of which microRNA-183 is used as an example , the fourth target biological substance is shown as SEQ ID NO: 4 in the sequence listing. The nucleotide sequence of the fourth target biological substance is UUAGGCACUGGUAGAAUUCACU from 5' to 3' direction, with a total of 22 nucleotides, including The sample of the fourth target biological substance is customized to synthesize the fourth target biological substance from MDBio, Inc., in which the fourth target biological substance is dissolved in pure water, and the concentration of the fourth target biological substance is is 100 μM, hereafter referred to as "microRNA solution"; in addition, in order to simulate the state in which the target biological substances to be detected clinically are present in the specimen, the specimen is first centrifuged at 15,000 rpm for 3 minutes to remove impurities. Precipitate, and take the supernatant after centrifugation of the specimen as a diluent, where the diluent is used to dilute the sample including the first target biological substance or the sample including the second target biological substance, and is used to prepare the diluent in the following tests Samples include saliva, urine, and serum, but the actual implementation is not limited to these. In addition to saliva, urine, and serum, samples can also be plasma, whole blood, cells, cell extracts, lymph, cerebrospinal fluid, Amniotic fluid, alveolar flushing fluid, sweat, tears, sputum, pleural effusion, ascites, synovial fluid, semen or feces and other samples used clinically.

使用第一電化學感測套組進行山葵過氧化酶測試的方法: 步驟包括製備各個檢測樣品,其中製備各個檢測樣品的方法為以稀釋液對目標生物物質樣品進行稀釋,以完成各個檢測樣品的製備;再來將骨架E浸泡於3wt%的牛血清蛋白水溶液中以震盪器震盪混合10分鐘,以對骨架E的進行封閉,其中3wt%牛血清蛋白水溶液為封閉緩衝液;接著以磁力座分離完成封閉的骨架E,並以0.1M的磷酸鹽緩衝液沖洗5次,以移除殘餘的封閉緩衝液;再來以0.1M的磷酸鹽緩衝液完成沖洗的骨架E變為1mg/mL的濃度,以形成1mg/mL的骨架E溶液;接著將20μL的1mg/mL的骨架E溶液分別添加至20μL的各個檢測樣品,並以震盪器震盪混合反應15分鐘,使各個檢測樣品中的目標生物物質被骨架E上的捕獲探針所捕獲;再來以磁力座分離各個檢測樣品中的骨架E,並以0.1M的磷酸鹽緩衝液沖洗3次,以移除殘餘的液體;接著將與各個檢測樣品反應完成的各個骨架E分別加入檢測探針水溶液靜置反應,使檢測探針與被骨架E上的捕獲探針捕獲的目標生物物質結合;再來以磁力座分離與檢測探針水溶液反應完成的各個骨架E,並先以0.1wt%的十二烷基硫酸鈉水溶液沖洗1次,再以0.1M的磷酸鹽緩衝液沖洗2次,以移除殘留的液體,其中於本步驟使用0.1wt%的十二烷基硫酸鈉水溶液後,再以0.1M的磷酸鹽緩衝液沖洗,相較於僅使用十二烷基硫酸鈉水溶液沖洗,或僅使用0.1M的磷酸鹽緩衝液沖洗,更能將未與骨架E反應的檢測探針沖洗乾淨,藉以降低後續進行電流強度偵測時的背景值訊號干擾;接著將沖洗後的各個骨架E,分別加入以0.1M的磷酸鹽緩衝液進行稀釋的氧化還原酵素進行反應,使氧化還原酵素上的第二標記物結合至檢測探針的第一標記物;再來以磁力座分離與氧化還原酵素反應完成的的各個骨架E,並以0.1M磷酸鹽緩衝液沖洗5次,以移除殘餘的液體;接著將完成沖洗的各個骨架E分別加入20μL的0.1M磷酸鹽緩衝液以配製為1mg/mL的濃度,再分別取5μL添加 至電化學感測器的工作電極的表面,而工作電極的背面設置的磁鐵會藉由磁力使骨架E固定於工作電極的表面;再來添加95μL的電解質溶液於工作電極表面,最後進行電化學分析,其中電化學分析使用微分脈衝伏安法進行分析進行電流強度的測量,並進行三重複實驗,因此電流強度的數值根據三重複實驗結果表示為「平均值±標準差」;其中電解質溶液為對苯二酚/過氧化氫溶液;其中電化學感測器、骨架E、檢測探針及氧化還原酵素皆為第一電化學感測套組所提供;其中微分脈衝伏安法分析使用的參數中,幅度為75mV,電壓範圍為200mV至-400mV、脈衝週期為125ms、脈衝寬度為115ms及增量參數為20mV;其中氧化還原酵素以標記有鏈球親生物素蛋白的山葵過氧化酶(Streptavidin conjugated Horseradish peroxidase,SHRP,貨品編號:DY998,R&D,USA Florida)作為示範例,其中鏈球親生物素蛋白即為第二標記物,並且於「......接著將沖洗後的各個骨架E,分別加入以0.1M的磷酸鹽緩衝液進行稀釋的氧化還原酵素進行反應,使氧化還原酵素上的第二標記物結合至檢測探針上的第一標記物......」的步驟中,為以0.1M的磷酸鹽緩衝液對標記有鏈球親生物素蛋白的山葵過氧化酶進行25倍稀釋或200倍稀釋,且反應的時間為10分鐘或15分鐘;於以下的實施例中,檢測探針分別以第一檢測探針、第二檢測探針、第三檢測探針作為示範例,其中第一檢測探針為寡核苷酸,且檢測探針的核苷酸序列如序列表中的SEQ ID NO:5所示,檢測探針的核苷酸序列由5’往3’方向依序為TGTAGCACGATTGCAGCATTG,總計有21個核苷酸、分子量為6,886.7Da且解鏈溫度為52.4℃,並且於檢測探針的5’端修飾有第一標記物,其中第一標記物為生物素(biotin),而當檢測探針為第一檢測探針時,於「使用第一電化學感測套組進行山葵過氧化酶測試的方法」中的「......接著將與各個檢測樣品反應完成的各個骨架E分別加入檢測探針水溶液靜 置反應,使檢測探針與被骨架E上的捕獲探針捕獲的目標生物物質結合......」的步驟中,加入的檢測探針水溶液的體積為20μL,並且檢測探針的濃度為0.25μM,而靜置反應時間為15分鐘,其中第一檢測探針為向生工有限公司(MDBio,Inc.)訂製合成,並且第一檢測探針溶於純水中,且濃度為100μM,於使用前再以純水稀釋至0.25μM;其中第二檢測探針為修飾有第一標記物的抗副甲狀腺素抗體(Anti-Parathyroid Hormone/PTH Antibody,Rabbit Polyclonal,貨品編號:13192-T08,SinoBiological),其中第一標記物為生物素,而當檢測探針為第二檢測探針時,於「使用第一電化學感測套組進行山葵過氧化酶測試的方法」中的「......接著將與各個檢測樣品反應完成的各個骨架E分別加入檢測探針水溶液靜置反應,使檢測探針與被骨架E上的捕獲探針捕獲的目標生物物質結合......」的步驟中,加入的檢測探針水溶液的體積為20μL,並且檢測探針的濃度為500ng/mL,而靜置反應時間為10分鐘;其中第三檢測探針為修飾有第一標記物的二級抗體(Anti-Parathyroid Hormone/PTH Antibody,Rabbit Polyclonal,貨品編號:13192-T08,SinoBiological),其中第一標記物為生物素,而當檢測探針為第三檢測探針時,於「使用第一電化學感測套組進行山葵過氧化酶測試的方法」中的「......接著將與各個檢測樣品反應完成的各個骨架E分別加入檢測探針水溶液靜置反應,使檢測探針與被骨架E上的捕獲探針捕獲的目標生物物質結合......」的步驟中,加入的檢測探針水溶液的體積為20μL,並且檢測探針的濃度為500ng/mL,而靜置反應時間為10分鐘;前述僅為檢測探針的示範例,實際實施時不限於此,可以根據所欲偵測的生物物質及使用的捕獲探針類型設計對應的檢測探針,並且檢測探針不限於寡核苷酸或抗體,亦可為肽鏈等適體。 Method for wasabi peroxidase testing using the First Electrochemical Sensing Kit: The steps include preparing each test sample, wherein the method of preparing each test sample is to dilute the target biological material sample with a diluent to complete the preparation of each test sample; and then soak the skeleton E in a 3wt% bovine serum albumin aqueous solution. Shake and mix with a oscillator for 10 minutes to block the skeleton E, in which 3wt% bovine serum albumin aqueous solution is the blocking buffer; then separate the blocked skeleton E with a magnetic stand and wash it 5 times with 0.1M phosphate buffer. , to remove the residual blocking buffer; then use 0.1M phosphate buffer to complete the washing of the scaffold E to a concentration of 1 mg/mL to form a 1 mg/mL scaffold E solution; then add 20 μL of 1 mg/mL The skeleton E solution was added to 20 μL of each test sample, and the mixture was mixed and reacted with a oscillator for 15 minutes, so that the target biological substances in each test sample were captured by the capture probe on the skeleton E; then the magnetic base was used to separate each sample. Detect the skeleton E in the sample and wash it three times with 0.1M phosphate buffer to remove the residual liquid; then add each skeleton E that has reacted with each test sample to the detection probe aqueous solution and let it stand for reaction. The detection probe is combined with the target biological substance captured by the capture probe on the skeleton E; then the magnetic base is used to separate each skeleton E that has reacted with the detection probe aqueous solution, and is first treated with 0.1wt% sodium dodecyl sulfate. Rinse once with aqueous solution and then rinse twice with 0.1M phosphate buffer to remove residual liquid. After using 0.1wt% sodium dodecyl sulfate aqueous solution in this step, rinse with 0.1M phosphate buffer. Buffer flushing, compared with only flushing with sodium dodecyl sulfate aqueous solution, or only flushing with 0.1M phosphate buffer, can better flush out the detection probes that have not reacted with the skeleton E, thereby reducing the subsequent current. The background value signal interferes with the intensity detection; then, each washed skeleton E is added with redox enzyme diluted in 0.1M phosphate buffer for reaction, so that the second label on the redox enzyme is bound to Detect the first label of the probe; then use a magnetic base to separate each skeleton E that has completed the reaction with the redox enzyme, and wash it 5 times with 0.1M phosphate buffer to remove the remaining liquid; then complete the washing Add 20 μL of 0.1M phosphate buffer to each scaffold E to prepare a concentration of 1 mg/mL, and then add 5 μL of to the surface of the working electrode of the electrochemical sensor, and the magnet provided on the back of the working electrode will fix the skeleton E to the surface of the working electrode through magnetic force; then add 95 μL of electrolyte solution to the surface of the working electrode, and finally perform electrochemistry Analysis, in which the electrochemical analysis uses differential pulse voltammetry for analysis to measure the current intensity, and perform three repeated experiments, so the value of the current intensity is expressed as "mean ± standard deviation" based on the results of the three repeated experiments; the electrolyte solution is Hydroquinone/hydrogen peroxide solution; the electrochemical sensor, skeleton E, detection probe and redox enzyme are all provided by the first electrochemical sensing kit; the parameters used in differential pulse voltammetry analysis Medium, the amplitude is 75mV, the voltage range is 200mV to -400mV, the pulse period is 125ms, the pulse width is 115ms, and the increment parameter is 20mV; the oxidoreductase is Streptavidin conjugated wasabi peroxidase (Streptavidin conjugated). Horseradish peroxidase, SHRP, product number: DY998, R&D, USA Florida) is used as an example, in which streptavidin is the second marker, and "...then each washed skeleton E, Add redox enzyme diluted with 0.1M phosphate buffer to react, so that the second label on the redox enzyme binds to the first label on the detection probe..." , the wasabi peroxidase labeled with streptavidin was diluted 25 times or 200 times with 0.1M phosphate buffer, and the reaction time was 10 minutes or 15 minutes; in the following examples, The detection probes take the first detection probe, the second detection probe, and the third detection probe as examples respectively. The first detection probe is an oligonucleotide, and the nucleotide sequence of the detection probe is as shown in the sequence list. As shown in SEQ ID NO: 5, the nucleotide sequence of the detection probe is TGTAGCACGATTGCAGCATTG from 5' to 3' direction, with a total of 21 nucleotides, a molecular weight of 6,886.7Da, and a melting temperature of 52.4°C. And the 5' end of the detection probe is modified with a first label, wherein the first label is biotin, and when the detection probe is the first detection probe, in "using the first electrochemical sensing "Method of Kit for Wasabi Peroxidase Test"...Then add each skeleton E that has reacted with each test sample to the detection probe aqueous solution for static In the step of "setting up a reaction to combine the detection probe with the target biological material captured by the capture probe on the skeleton E...", the volume of the detection probe aqueous solution added is 20 μL, and the concentration of the detection probe is 0.25 μM, and the standing reaction time is 15 minutes. The first detection probe is customized and synthesized from MDBio, Inc., and the first detection probe is dissolved in pure water, and the concentration is 100μM, dilute it with pure water to 0.25μM before use; the second detection probe is an anti-parathyroid hormone antibody modified with the first marker (Anti-Parathyroid Hormone/PTH Antibody, Rabbit Polyclonal, product number: 13192- T08, SinoBiological), in which the first marker is biotin, and when the detection probe is the second detection probe, in "Method for Wasabi Peroxidase Test Using the First Electrochemical Sensing Kit" ...Then, each framework E that has reacted with each detection sample is added to the detection probe aqueous solution and left to react, so that the detection probe combines with the target biological substance captured by the capture probe on the framework E... ..." step, the volume of the added detection probe aqueous solution is 20 μL, and the concentration of the detection probe is 500ng/mL, and the standing reaction time is 10 minutes; the third detection probe is modified with the first The secondary antibody of the marker (Anti-Parathyroid Hormone/PTH Antibody, Rabbit Polyclonal, product number: 13192-T08, SinoBiological), where the first marker is biotin, and when the detection probe is the third detection probe, In the "Method for testing wasabi peroxidase using the first electrochemical sensing kit", "...then add each skeleton E that has reacted with each test sample to the detection probe aqueous solution and let it stand for reaction , the detection probe is combined with the target biological substance captured by the capture probe on the skeleton E..." In the step, the volume of the detection probe aqueous solution added is 20 μL, and the concentration of the detection probe is 500ng /mL, and the standing reaction time is 10 minutes; the above is only an example of a detection probe, and the actual implementation is not limited to this. The corresponding detection probe can be designed according to the biological substance to be detected and the type of capture probe used. needle, and the detection probe is not limited to oligonucleotides or antibodies, but can also be aptamers such as peptide chains.

使用第二電化學感測套組進行嵌入劑測試的方法: 步驟包括製備各個檢測樣品,其中製備各個檢測樣品的方法為以稀釋液對目標生物物質樣品進行稀釋,以完成各個檢測樣品的製備;再來將骨架E浸泡於3wt%的牛血清蛋白水溶液中以震盪器震盪混合10分鐘,以對骨架E的進行封閉,其中3wt%牛血清蛋白水溶液為封閉緩衝液;接著以磁力座分離完成封閉的骨架E,並以0.1M的磷酸鹽緩衝液沖洗5次,以移除殘餘的封閉緩衝液;再來以0.1M的磷酸鹽緩衝液完成沖洗的骨架E變為1mg/mL的濃度,以形成1mg/mL的骨架E溶液;接著將20μL的1mg/mL的骨架E溶液分別添加至10μL的各個檢測樣品,並加入檢測探針水溶液及嵌入劑後,以震盪器震盪混合反應10分鐘,使各個檢測樣品中的目標生物物質被骨架E上的捕獲探針所捕獲,並使檢測探針與被骨架E上的捕獲探針捕獲的目標生物物質結合,而嵌入劑則會嵌入捕獲探針和目標生物物質的雜交處,以及嵌入檢測探針和目標生物物質的雜交處;再來以磁力座分離與各個檢測樣品、檢測探針水溶液及嵌入劑反應完成的各個骨架E,並先以0.1wt%的十二烷基硫酸鈉水溶液沖洗1次,再以0.1M的磷酸鹽緩衝液沖洗2次,以移除殘留的液體,其中於本步驟使用0.1wt%的十二烷基硫酸鈉水溶液後,再以0.1M的磷酸鹽緩衝液沖洗,相較於僅使用十二烷基硫酸鈉水溶液沖洗,或僅使用0.1M的磷酸鹽緩衝液沖洗,更能將未與骨架E反應的檢測探針沖洗乾淨,藉以降低後續進行電流強度偵測時的背景值訊號干擾;接著將完成沖洗的各個骨架E分別加入20μL的0.1M磷酸鹽緩衝液以配製為1mg/mL的濃度,再分別取5μL添加至電化學感測器的工作電極的表面,而工作電極的背面設置的磁鐵會藉由磁力使骨架E固定於工作電極的表面;再來添加95μL的電解質溶液於工作電極表面,最後進行電化學分析,其中電化學分析使用微分脈衝伏安法,以進行電流強度的測量,並進行三重複實驗,因此電流強度的數值根據三重複實 驗結果表示為「平均值±標準差」;其中電解質溶液為10mM的三羥甲基氨基甲烷鹽酸鹽水溶液;其中電化學感測器、骨架E、檢測探針及嵌入劑皆為第二電化學感測套組所提供;其中微分脈衝伏安法分析使用的參數中,幅度為75mV,電壓範圍為0mV至-800mV、脈衝週期為125ms、脈衝寬度為115ms及增量參數為20mV;其中嵌入劑以中性紅(neutral red)作為示範例,並且於「......接著將20μL的1mg/mL的骨架E溶液分別添加至10μL的各個檢測樣品,並加入檢測探針水溶液及嵌入劑後,以震盪器震盪混合反應10分鐘,使各個檢測樣品中的目標生物物質被骨架E上的捕獲探針所捕獲,並使檢測探針與被骨架E上的捕獲探針捕獲的目標生物物質結合,而嵌入劑則會嵌入捕獲探針和目標生物物質的雜交處,以及嵌入檢測探針和目標生物物質的雜交處......」的步驟中為加入5μL的4mM的中性紅;於以下的實施例中,檢測探針以前述「使用第一電化學感測套組進行山葵過氧化酶測試的步驟」所述的第一檢測探針作為示範例,且於「使用第二電化學感測套組進行嵌入劑測試的方法」中的「......接著將20μL的1mg/mL的骨架E溶液分別添加至10μL的各個檢測樣品,並加入檢測探針水溶液及嵌入劑後,以震盪器震盪混合反應10分鐘,使各個檢測樣品中的目標生物物質被骨架E上的捕獲探針所捕獲,並使檢測探針與被骨架E上的捕獲探針捕獲的目標生物物質結合,而嵌入劑則會嵌入捕獲探針和目標生物物質的雜交處,以及嵌入檢測探針和目標生物物質的雜交處.......」的步驟中,加入的檢測探針水溶液的體積為5μL,並且檢測探針水溶液的濃度為1μM;前述僅為檢測探針的示範例,實際實施時不限於此,可以根據所欲偵測的生物物質及使用的捕獲探針類型設計對應的檢測探針。 Method for intercalator testing using a second electrochemical sensing set: The steps include preparing each test sample, wherein the method of preparing each test sample is to dilute the target biological material sample with a diluent to complete the preparation of each test sample; and then soak the skeleton E in a 3wt% bovine serum albumin aqueous solution. Shake and mix with a oscillator for 10 minutes to block the skeleton E, in which 3wt% bovine serum albumin aqueous solution is the blocking buffer; then separate the blocked skeleton E with a magnetic stand and wash it 5 times with 0.1M phosphate buffer. , to remove the residual blocking buffer; then use 0.1M phosphate buffer to complete the washing of the scaffold E to a concentration of 1 mg/mL to form a 1 mg/mL scaffold E solution; then add 20 μL of 1 mg/mL The skeleton E solution was added to 10 μL of each detection sample, and after adding the detection probe aqueous solution and the intercalating agent, use a oscillator to mix and react for 10 minutes, so that the target biological substances in each detection sample were captured by the capture probe on the skeleton E. Captured, and the detection probe is combined with the target biological substance captured by the capture probe on the skeleton E, and the intercalator will be embedded in the hybridization point of the capture probe and the target biological substance, and the detection probe and the target biological substance will be embedded The hybridization place; then use a magnetic base to separate each framework E that has reacted with each detection sample, detection probe aqueous solution and intercalating agent, and first wash it once with 0.1wt% sodium dodecyl sulfate aqueous solution, and then rinse it with 0.1 Rinse twice with M phosphate buffer to remove residual liquid. In this step, after using 0.1wt% sodium dodecyl sulfate aqueous solution, rinse with 0.1M phosphate buffer. Compared with only Using sodium dodecyl sulfate aqueous solution or only 0.1M phosphate buffer can rinse the detection probes that have not reacted with the framework E, thereby reducing the background signal during subsequent current intensity detection. Interference; then add 20 μL of 0.1M phosphate buffer to each skeleton E that has been rinsed to prepare a concentration of 1 mg/mL, and then add 5 μL to the surface of the working electrode of the electrochemical sensor, and the working electrode The magnet set on the back will fix the skeleton E on the surface of the working electrode through magnetic force; then add 95 μL of electrolyte solution to the surface of the working electrode, and finally perform electrochemical analysis. The electrochemical analysis uses differential pulse voltammetry to measure the current. The intensity was measured and three replicate experiments were performed, so the value of the current intensity was based on the three replicate experiments. The test results are expressed as "mean ± standard deviation"; the electrolyte solution is 10mM trishydroxymethylaminomethane hydrochloride aqueous solution; the electrochemical sensor, skeleton E, detection probe and embedding agent are all second electrochemical Provided by the scientific sensing kit; among the parameters used in differential pulse voltammetry analysis, the amplitude is 75mV, the voltage range is 0mV to -800mV, the pulse period is 125ms, the pulse width is 115ms and the incremental parameter is 20mV; which is embedded The agent uses neutral red as an example, and in "...then add 20 μL of 1 mg/mL framework E solution to 10 μL of each detection sample, and add the detection probe aqueous solution and embedded After reagent, use a oscillator to mix and react for 10 minutes, so that the target biological substances in each detection sample are captured by the capture probe on the skeleton E, and the detection probe and the target organism captured by the capture probe on the skeleton E are Substances are combined, and the intercalating agent will embed into the hybridization point between the capture probe and the target biological material, and embed into the hybridization point between the detection probe and the target biological material..." In the step of adding 5 μL of 4mM neutral Red; in the following examples, the detection probe is the first detection probe described in the aforementioned "Steps of Using the First Electrochemical Sensing Kit to Test Wasabi Peroxidase" as an example, and in "Using the First Electrochemical Sensing Kit" "Method of 2 Electrochemical Sensing Kits for Intercalant Testing"... Then add 20 μL of 1 mg/mL framework E solution to 10 μL of each test sample, and add the detection probe aqueous solution and After inserting the intercalating agent, use a oscillator to mix and react for 10 minutes, so that the target biological substances in each detection sample are captured by the capture probe on the skeleton E, and the detection probe and the target captured by the capture probe on the skeleton E are Biological substances are combined, and the intercalating agent will be embedded at the hybridization point between the capture probe and the target biological substance, and the detection probe will be embedded into the hybridization point between the detection probe and the target biological substance..." In the step of adding the detection probe The volume of the aqueous solution is 5 μL, and the concentration of the detection probe aqueous solution is 1 μM; the above is only an example of the detection probe, and the actual implementation is not limited to this. It can be designed according to the biological substances to be detected and the type of capture probe used. Corresponding detection probe.

實驗例6:對目標核酸水溶液使用第一電化學感測套組進行山葵過氧化酶測試 Experimental Example 6: Using the first electrochemical sensing kit on a target nucleic acid aqueous solution to test wasabi peroxidase

請參閱表1及圖8,於實驗例6中對目標核酸水溶液使用第一電化學感測套組進行山葵過氧化酶測試,步驟請參照「使用第一電化學感測套組進行山葵過氧化酶測試的方法」,其中使用的目標生物物質樣品為包括第一目標生物物質的樣品,其中包括第一目標生物物質的樣品為目標核酸水溶液;其中檢體分別為唾液、尿液及血清,並取各個檢體離心後的上清液作為稀釋液;其中骨架E上的捕獲探針為第一捕獲探針,由於第一捕獲探針具有與第一目標生物物質的一部分核苷酸序列互補的核苷酸序列,因此骨架E上的第一捕獲探針可以透過雜交的方式捕獲第一目標生物物質;其中於「以稀釋液對目標生物物質樣品進行稀釋,以完成各個檢測樣品的製備」的步驟中,為對目標核酸水溶液進行序列稀釋,使目標核酸水溶液的濃度分別為0.005fM、0.05fM、0.5fM、5fM、50fM、500fM、5,000fM及50,000fM以作為各個檢測樣品;其中檢測探針為第一檢測探針,第一檢測探針包括有與第一目標生物物質的另一部分核苷酸序列互補的核苷酸序列,因此第一檢測探針可以透過雜交的方式與第一目標生物物質結合,並且由於第一檢測探針的5’端修飾有生物素(biotin),因此標記有鏈球親生物素蛋白的山葵過氧化酶上的鏈球親生物素蛋白會與生物素結合,因此當骨架E上的第一捕獲探針捕獲第一目標生物物質後,第一檢測探針會結合至被骨架E捕獲的第一目標生物物質,並且第一檢測探針上的生物素會與標記有鏈球親生物素蛋白的山葵過氧化酶上的鏈球親生物素蛋白結合,而標記有鏈球親生物素蛋白的山葵過氧化酶中的山葵過氧化酶會進行氧化還原反應,因此於電化學分析中可以偵測到進行氧化還原反應時產生的電流變化,且隨著標記有鏈球親生物素蛋白的山葵 過氧化酶的濃度越高,電流強度也會越大;其中於「......接著將沖洗後的各個骨架E,分別加入以0.1M的磷酸鹽緩衝液進行稀釋的氧化還原酵素進行反應,使氧化還原酵素上的第二標記物結合至檢測探針上的第一標記物......」的步驟中,為以0.1M的磷酸鹽緩衝液對標記有鏈球親生物素蛋白的山葵過氧化酶進行25倍稀釋,且反應的時間為15分鐘;實驗例6的實驗結果如表1及圖8所示,表1為使用的檢體分別為唾液、尿液及血清時,於各個濃度的目標核酸水溶液下測量到的電流強度,其中目標核酸水溶液的濃度單位為fM,其中電流強度的單位為μA,並且根據使用的檢體種類進行分組,分別為唾液、血清及尿液;另外根據表1的實驗數據,分別對檢體為唾液、尿液及血清的組別進行回歸分析,經由回歸分析獲得回歸直線的回歸方程式如下所述,其中檢體為唾液的回歸方程式表示為:I=0.4217×ln(x)+7.8546,回歸方程式的決斷係數為0.9548,斜率為0.4217μA/fM,最低偵測濃度的標準差為0.1340μA,計算出偵測極限(limit of detection,LOD)值為0.9533fM;其中檢體為尿液的回歸方程式表示為:I=0.3059×ln(x)+9.4438,回歸方程式的決斷係數為0.9873,斜率為0.3059μA/fM,最低偵測濃度的標準差為0.0391μA,計算出偵測極限值為0.3067fM;其中檢體為血清的回歸方程式表示為:I=0.445×ln(x)+7.0396,回歸方程式的決斷係數為0.9873,斜率為0.445μA/fM,最低偵測濃度的標準差為0.1115μA,計算出偵測極限值為0.4511fM;於各個回歸方程式中,其中I代表電流強度,單位為μA;其中ln(x)代表目標核酸水溶液的濃度,單位為fM;其中斜率指回歸直線的斜率,單位為μA/fM;其中最低偵測濃度的標準差指於目標核酸水溶液的濃度為0.005fM的組別中,由三重複實驗結果獲得的電流強度值計算獲得的標準差,單位為μA;其中偵測極限值的單位為fM,其中偵測極限值的計算方式為以3倍的最低偵測濃度訊號標準差除以回歸直線 的斜率,以下於各個實施例中偵測極限值的計算皆依此方式計算。偵測極限值的計算式如下:

Figure 112111175-A0305-02-0030-2
Please refer to Table 1 and Figure 8. In Experimental Example 6, the first electrochemical sensing kit was used to perform a wasabi peroxidase test on the target nucleic acid aqueous solution. For the steps, please refer to "Using the First Electrochemical Sensing Kit to Perform Wasabi Peroxidase" Enzyme test method", in which the target biological substance sample used is a sample including the first target biological substance, wherein the sample including the first target biological substance is a target nucleic acid aqueous solution; the specimens are saliva, urine and serum respectively, and Take the supernatant after centrifugation of each specimen as a diluent; the capture probe on the skeleton E is the first capture probe, because the first capture probe has a nucleotide sequence complementary to a part of the first target biological material. Nucleotide sequence, so the first capture probe on the backbone E can capture the first target biological substance through hybridization; where "the target biological substance sample is diluted with a diluent to complete the preparation of each detection sample" In the step, the target nucleic acid aqueous solution is serially diluted so that the concentrations of the target nucleic acid aqueous solution are 0.005fM, 0.05fM, 0.5fM, 5fM, 50fM, 500fM, 5,000fM and 50,000fM respectively as each detection sample; wherein the detection probe It is a first detection probe. The first detection probe includes a nucleotide sequence that is complementary to another part of the nucleotide sequence of the first target biological substance. Therefore, the first detection probe can hybridize with the first target biological substance. Substances bind, and since the 5' end of the first detection probe is modified with biotin, the streptavidin on the wasabi peroxidase labeled with streptavidin will bind to biotin, so when After the first capture probe on the skeleton E captures the first target biological substance, the first detection probe will bind to the first target biological substance captured by the skeleton E, and the biotin on the first detection probe will be labeled with Streptavidin binds to the streptavidin on wasabi peroxidase, and the wasabi peroxidase in streptavidin-labeled wasabi peroxidase undergoes a redox reaction, so in electrochemical analysis The current change generated during the redox reaction can be detected, and the higher the concentration of wasabi peroxidase labeled with streptavidin, the greater the current intensity; among them, "... Then, each washed scaffold E is added with redox enzyme diluted in 0.1M phosphate buffer for reaction, so that the second label on the redox enzyme binds to the first label on the detection probe. ....." In the step, the wasabi peroxidase labeled with streptavidin was diluted 25 times with 0.1M phosphate buffer, and the reaction time was 15 minutes; the experiment of Experimental Example 6 The results are shown in Table 1 and Figure 8. Table 1 shows the current intensity measured under various concentrations of target nucleic acid aqueous solutions when the samples used were saliva, urine and serum. The concentration unit of the target nucleic acid aqueous solution is fM. , where the unit of current intensity is μA, and is divided into groups according to the types of specimens used, namely saliva, serum and urine; in addition, according to the experimental data in Table 1, the specimens are divided into groups of saliva, urine and serum. Carry out regression analysis and obtain the regression equation of the regression line through regression analysis as follows. The regression equation where the specimen is saliva is expressed as: I=0.4217×ln(x)+7.8546. The determination coefficient of the regression equation is 0.9548 and the slope is 0.4217. μA/fM, the standard deviation of the lowest detection concentration is 0.1340μA, and the calculated limit of detection (LOD) value is 0.9533fM; the regression equation where the sample is urine is expressed as: I=0.3059×ln( x)+9.4438, the determination coefficient of the regression equation is 0.9873, the slope is 0.3059μA/fM, the standard deviation of the lowest detection concentration is 0.0391μA, and the calculated detection limit value is 0.3067fM; where the sample is serum, the regression equation represents is: I=0.445×ln(x)+7.0396, the determination coefficient of the regression equation is 0.9873, the slope is 0.445μA/fM, the standard deviation of the lowest detection concentration is 0.1115μA, and the calculated detection limit value is 0.4511fM; In each regression equation, I represents the current intensity in μA; ln(x) represents the concentration of the target nucleic acid aqueous solution in fM; the slope refers to the slope of the regression line in μA/fM; the minimum detection concentration is The standard deviation refers to the standard deviation calculated from the current intensity values obtained from the results of three repeated experiments in a group with a target nucleic acid aqueous solution concentration of 0.005fM, the unit is μA; the unit of the detection limit value is fM, where the detection limit value is The detection limit is calculated by dividing three times the standard deviation of the lowest detected concentration signal by the slope of the regression line. The detection limit in the following embodiments is calculated in this manner. The calculation formula of detection limit value is as follows:
Figure 112111175-A0305-02-0030-2

圖8為根據表1的實驗數據,及根據表1的實驗數據分別對檢體為唾液、尿液及血清的組別進行回歸分析的結果,所繪成的回歸分析圖;圖8中X軸為目標核酸水溶液的濃度,X軸單位為fM,Y軸為測得的電流強度,Y軸單位為μA,並且根據使用的檢體種類進行分組,分別為唾液、血清及尿液。 Figure 8 is a regression analysis graph drawn based on the experimental data in Table 1 and the results of regression analysis on the groups of saliva, urine and serum as specimens according to the experimental data in Table 1; the X-axis in Figure 8 is the concentration of the target nucleic acid aqueous solution, the X-axis unit is fM, the Y-axis is the measured current intensity, the Y-axis unit is μA, and they are grouped according to the type of specimen used, namely saliva, serum and urine.

Figure 112111175-A0305-02-0030-1
Figure 112111175-A0305-02-0030-1

實驗例7:對目標核酸水溶液使用第二電化學感測套組進行嵌入劑測試 Experimental Example 7: Using the second electrochemical sensing set to test the intercalating agent on the target nucleic acid aqueous solution

請參閱表2及圖9,於實驗例7中對目標核酸水溶液使用第二電化學感測套組進行嵌入劑測試,步驟請參照「使用第二電化學感測套組進行嵌入劑測試的方法」,其中使用的目標生物物質樣品為包括第一目標生物物質的樣品,其中包括第一目標生物物質的樣品為目標核酸水溶液;其中檢體分別為唾液、尿液及血清,並取各個檢體離心後的上清液作為稀釋液;其中骨架E上的 捕獲探針為第一捕獲探針;其中於「以各個稀釋液對目標生物物質樣品進行稀釋,以完成各個檢測樣品的製備」的步驟中,為對目標核酸水溶液進行序列稀釋,使目標核酸水溶液的濃度分別為0.005fM、0.05fM、0.5fM、5fM、50fM、500fM、5,000fM及50,000fM以作為各個檢測樣品;其中檢測探針為第一檢測探針,由於嵌入劑會嵌入核酸雜交處,因此嵌入劑會嵌入第一捕獲探針和第一目標生物物質的雜交處,以及嵌入第一檢測探針和第一目標生物物質的雜交處,並且嵌入劑會進行氧化還原反應,因此於電化學分析中可以偵測到進行氧化還原反應時產生的電流變化,且隨著標記有嵌入劑的濃度越高,電流強度也會越大;實驗例7的實驗結果如表2及圖9所示,表2為使用的檢體分別為唾液、尿液及血清時,於各個濃度的目標核酸水溶液測量到的電流強度,其中目標核酸水溶液的濃度單位為fM,其中電流強度的單位為μA,並且根據使用的檢體種類進行分組,分別為唾液、血清及尿液;另外根據表2的實驗數據,分別對檢體為唾液、尿液及血清的組別進行回歸分析,經由回歸分析獲得回歸直線的回歸方程式如下所述,其中檢體為唾液的回歸方程式表示為:I=0.1131×ln(x)+6.9965,回歸方程式的決斷係數為0.9581,斜率為0.1131μA/fM,最低偵測濃度的標準差為0.1457μA,計算出偵測極限值為3.8647fM;其中檢體為尿液的回歸方程式表示為I=0.1844×ln(x)+7.4896,回歸方程式的決斷係數為0.9879,斜率為0.1844μA/fM,最低偵測濃度的標準差為0.1709μA,計算出偵測極限值為2.7804fM;其中檢體為血清的回歸方程式表示為:I=0.3942×ln(x)+7.1625,回歸方程式的決斷係數為0.977,斜率為0.3942μA/fM,最低偵測濃度的標準差為0.0252μA,計算出偵測極限值為0.1918fM;於各個回歸方程式中,其中I代表電流強度,單位為μA;其中ln(x)代表目標核 酸水溶液的濃度,單位為fM;其中斜率指回歸直線的斜率,單位為μA/fM;其中最低偵測濃度的標準差指於目標核酸水溶液的濃度為0.005fM的組別中,由三重複實驗結果獲得的電流強度值計算獲得的標準差,單位為μA;其中偵測極限值的單位為fM。圖9為根據表2的實驗數據,及根據表2的實驗數據分別對檢體為唾液、尿液及血清的組別進行回歸分析的結果,所繪成的回歸分析圖;圖9中X軸為目標核酸水溶液的濃度,X軸單位為fM,Y軸為測得的電流強度,Y軸單位為μA,並且根據使用的檢體種類進行分組,分別為唾液、血清及尿液。 Please refer to Table 2 and Figure 9. In Experimental Example 7, the target nucleic acid aqueous solution was tested using the second electrochemical sensing kit for the intercalating agent. For the steps, please refer to "Method for testing the intercalating agent using the second electrochemical sensing kit." ”, the target biological substance sample used is a sample including the first target biological substance, and the sample including the first target biological substance is a target nucleic acid aqueous solution; the samples are saliva, urine and serum, and each sample is taken The supernatant after centrifugation was used as diluent; among them, the The capture probe is the first capture probe; in the step of "diluting the target biological material sample with each diluent to complete the preparation of each detection sample", the target nucleic acid aqueous solution is serially diluted so that the target nucleic acid aqueous solution The concentrations are 0.005fM, 0.05fM, 0.5fM, 5fM, 50fM, 500fM, 5,000fM and 50,000fM respectively as each detection sample; the detection probe is the first detection probe. Since the intercalating agent will be embedded in the nucleic acid hybridization site, Therefore, the intercalating agent will be embedded in the hybridization site of the first capture probe and the first target biological substance, and will be embedded in the hybridization site of the first detection probe and the first target biological substance, and the intercalating agent will undergo an oxidation-reduction reaction, so it is suitable for electrochemistry. During the analysis, the current change generated during the redox reaction can be detected, and as the concentration of the labeled intercalator is higher, the current intensity will be greater; the experimental results of Experimental Example 7 are shown in Table 2 and Figure 9. Table 2 shows the current intensity measured in target nucleic acid aqueous solutions of various concentrations when the specimens used are saliva, urine and serum. The concentration unit of the target nucleic acid aqueous solution is fM, and the unit of current intensity is μA. According to The types of specimens used are divided into groups, namely saliva, serum and urine. In addition, according to the experimental data in Table 2, regression analysis is performed on the groups where the specimens are saliva, urine and serum. The regression line is obtained through regression analysis. The regression equation is as follows. The regression equation where the specimen is saliva is expressed as: I=0.1131×ln(x)+6.9965. The determination coefficient of the regression equation is 0.9581, the slope is 0.1131μA/fM, and the standard deviation of the lowest detection concentration is 0.1457μA, and the calculated detection limit is 3.8647fM; the regression equation where the sample is urine is expressed as I=0.1844×ln(x)+7.4896, the determination coefficient of the regression equation is 0.9879, and the slope is 0.1844μA/fM , the standard deviation of the lowest detection concentration is 0.1709μA, and the detection limit value is calculated to be 2.7804fM; the regression equation where the sample is serum is expressed as: I=0.3942×ln(x)+7.1625, and the determination coefficient of the regression equation is 0.977, the slope is 0.3942μA/fM, the standard deviation of the lowest detection concentration is 0.0252μA, and the calculated detection limit is 0.1918fM; in each regression equation, I represents the current intensity in μA; where ln(x ) represents the target core The concentration of the acid aqueous solution, in fM; where the slope refers to the slope of the regression line, in μA/fM; where the standard deviation of the lowest detection concentration refers to the group in which the concentration of the target nucleic acid aqueous solution is 0.005fM, from three repeated experiments The standard deviation obtained by calculating the current intensity value obtained as a result is in μA; the unit of the detection limit value is fM. Figure 9 is a regression analysis graph drawn based on the experimental data in Table 2 and the results of regression analysis on the groups of saliva, urine and serum as specimens according to the experimental data in Table 2; the X-axis in Figure 9 is the concentration of the target nucleic acid aqueous solution, the X-axis unit is fM, the Y-axis is the measured current intensity, the Y-axis unit is μA, and they are grouped according to the type of specimen used, namely saliva, serum and urine.

Figure 112111175-A0305-02-0032-3
Figure 112111175-A0305-02-0032-3

經由實驗例6及實驗例7的實驗結果,證實本發明提供的第一電化學感測套組及第二電化學感測套組於進行第一目標生物物質的檢測上,不僅具有高靈敏度,並且隨著添加的目標核酸溶液的濃度越高,產生的電流強度也越大,並且可以經由回歸方程式由偵測到的電流大小推算出目標核酸溶液的濃度,進而達到定量的效果且可定量的濃度範圍為0.005fM至50,000fM。 Through the experimental results of Experimental Example 6 and Experimental Example 7, it is confirmed that the first electrochemical sensing kit and the second electrochemical sensing kit provided by the present invention not only have high sensitivity in detecting the first target biological substance, And as the concentration of the added target nucleic acid solution becomes higher, the intensity of the current generated becomes greater, and the concentration of the target nucleic acid solution can be calculated from the detected current through the regression equation, thereby achieving a quantitative effect and being quantifiable. Concentration range is 0.005fM to 50,000fM.

本發明進一步測試使用第一電化學感測套組進行山葵過氧化酶測試及使用第二電化學感測套組進行嵌入劑測試中,是否會受到非目標生物物 質的干擾,因此使用第一目標生物物質作為目標生物物質的示範例,使用六鹼基錯配位序列、三鹼基錯配位序列、單鹼基錯配位序列及隨機序列作為非目標生物物質的示範例;其中六鹼基錯配位序列的核苷酸序列如序列表中的SEQ ID NO:6所示,六鹼基錯配位序列的核苷酸序列由5’往3’方向依序為TTCTTCGGAATGTCGCGCTTTTTTTGGCATTGCAATCGTGCTACA,總計有45個核苷酸、分子量為13,790Da且解鏈溫度為68.2℃,其中第26至第31個核苷酸為與第一目標生物物質具有差異的核苷酸;其中三鹼基錯配位序列的核苷酸序列如序列表中的SEQ ID NO:7所示,三鹼基錯配位序列的核苷酸序列由5’往3’方向依序為TTCTTCGGAATGTCGCGCTTTTTTTGGTGCTGCAATCGTGCTACA,總計有45個核苷酸、分子量為13,805Da且解鏈溫度為69.1℃,其中第25至第27個核苷酸為與第一目標生物物質具有差異的核苷酸;其中單鹼基錯配位序列的核苷酸序列如序列表中的SEQ ID NO:8所示,單鹼基錯配位序列的核苷酸序列由5’往3’方向依序為TTCTTCGGAATGTCGCGCTTTTTTCAATGCTGCAATCGTGCTGCA,總計有45個核苷酸、分子量為13,775Da且解鏈溫度為69.0℃,其中第43個核苷酸為與第一目標生物物質具有差異的核苷酸;其中隨機序列的核苷酸序列如序列表中的SEQ ID NO:9所示,隨機序列的核苷酸序列由5’往3’方向依序為AAGTAATACGACTCACTATAGGGATGGTAGCGTGAGCAAGG,總計有41個核苷酸、分子量為13,060Da且解鏈溫度為68.4℃;其中六鹼基錯配位序列、三鹼基錯配位序列、單鹼基錯配位序列及隨機序列序列皆是向生工有限公司(MD Bio,Inc.)訂製合成,並且皆溶於純水中,且濃度皆為100μM,因此分別獲得100μM的六鹼基錯配位序列水溶液、100μM的三鹼基錯配位序列水溶液、100μM的單鹼基錯配位序列水溶液、100μM的隨機序列水溶液及100μM的六鹼基錯 配位序列水溶液。 The present invention further tests whether non-target biological substances will be detected when using the first electrochemical sensing set to perform the wasabi peroxidase test and using the second electrochemical sensing set to perform the intercalating agent test. Therefore, the first target biological substance is used as an example of the target biological substance, and a six-base mismatch sequence, a three-base mismatch sequence, a single-base mismatch sequence, and a random sequence are used as non-target biological substances. An example of a substance; the nucleotide sequence of the six-base mismatch sequence is shown in SEQ ID NO: 6 in the sequence listing, and the nucleotide sequence of the six-base mismatch sequence is from 5' to 3' direction. The order is TTCTTCGGAATGTCGCGCTTTTTTTGGCATTGCAATCGTGCTACA, with a total of 45 nucleotides, a molecular weight of 13,790 Da and a melting temperature of 68.2°C, of which the 26th to 31st nucleotides are nucleotides that are different from the first target biological substance; where The nucleotide sequence of the three-base mismatch sequence is shown as SEQ ID NO: 7 in the sequence listing. The nucleotide sequence of the three-base mismatch sequence from 5' to 3' direction is TTCTTCGGAATGTCGCGCTTTTTTTGGTGCTGCAATCGTGCTACA, totaling It has 45 nucleotides, a molecular weight of 13,805 Da, and a melting temperature of 69.1°C. The 25th to 27th nucleotides are nucleotides that are different from the first target biological substance; among them, there is a single base mismatch. The nucleotide sequence of the sequence is shown in SEQ ID NO: 8 in the sequence listing. The nucleotide sequence of the single-base mismatch sequence from 5' to 3' direction is TTCTTCGGAATGTCGCGCTTTTTTCAATGCTGCAATCGTGCTGCA, with a total of 45 nucleotides. , with a molecular weight of 13,775 Da and a melting temperature of 69.0°C, in which the 43rd nucleotide is a nucleotide that is different from the first target biological substance; the random sequence of nucleotide sequences is such as SEQ ID NO in the sequence listing :9, the nucleotide sequence of the random sequence is AAGTAATACGACTCACTATAGGGATGGTAGCGTGAGCAAGG from 5' to 3' direction, with a total of 41 nucleotides, a molecular weight of 13,060 Da and a melting temperature of 68.4°C; six bases are mismatched. The sequence, three-base mismatch sequence, single-base mismatch sequence and random sequence sequence are all customized and synthesized from MD Bio, Inc., and are all dissolved in pure water, and the concentration All are 100 μM, so 100 μM six-base mismatch sequence aqueous solution, 100 μM three-base mismatch sequence aqueous solution, 100 μM single-base mismatch sequence aqueous solution, 100 μM random sequence aqueous solution, and 100 μM six-base aqueous solution were obtained. base error Coordination sequence aqueous solution.

實驗例8:對目標生物物質及非目標生物物質使用第一電化學感測套組進行山葵過氧化酶測試 Experimental Example 8: Testing wasabi peroxidase on target biological substances and non-target biological substances using the first electrochemical sensing kit

請參閱表3,於實驗例8中對目標生物物質及非目標生物物質使用第一電化學感測套組進行山葵過氧化酶測試,步驟與「使用第一電化學感測套組進行山葵過氧化酶測試的方法」基本一致,其中檢體分別為血清,並取檢體離心後的上清液作為稀釋液;其中骨架E上的捕獲探針為第一捕獲探針;其中檢測探針為第一檢測探針;其中於「......接著將沖洗後的各個骨架E,分別加入以0.1M的磷酸鹽緩衝液進行稀釋的氧化還原酵素進行反應,使氧化還原酵素上的第二標記物結合至檢測探針上的第一標記物......」的步驟中,為以0.1M的磷酸鹽緩衝液對標記有鏈球親生物素蛋白的山葵過氧化酶進行25倍稀釋,且反應的時間為15分鐘;實驗例8與「使用第一電化學感測套組進行山葵過氧化酶測試的方法」差異在於「......以稀釋液對目標生物物質樣品進行稀釋,以完成各個檢測樣品的製備......」的步驟中,改以稀釋液分別將目標核酸水溶液、六鹼基錯配位序列水溶液、三鹼基錯配位序列水溶液、單鹼基錯配位序列水溶液及隨機序列水溶液稀釋至50,000fM以作為各個檢測樣品,並且進一步包括一個空白對照組,空白對照組為僅使用稀釋液作為檢測樣品的對照組;實驗例8的實驗結果如表3所示,表3為使用的檢體為血清,於各個檢測樣品測量到的電流強度,其中以檢測樣品中所包含的溶質作為分組,因此分組包括第一目標生物物質、六鹼基錯配位序列、三鹼基錯配位序列、單鹼基錯配位序列及隨機序列,另外還包括有空白對照組;其中電流強度的單位為μA;實驗例8的實驗結果顯示檢測樣品包括第一目標生物物質的電流強度明顯大於檢測樣品包括其他非目標生物物質的電流強度及空白 對照組的電流強度。 Please refer to Table 3. In Experimental Example 8, the first electrochemical sensing kit was used to conduct a wasabi peroxidase test on target biological substances and non-target biological substances. The steps are the same as "Using the First Electrochemical Sensing Kit to Test Wasabi Peroxidase". The method of oxidase test is basically the same, in which the specimens are serum, and the supernatant after centrifugation of the specimen is taken as the diluent; the capture probe on the skeleton E is the first capture probe; the detection probe is The first detection probe; wherein "...then add oxidoreductase diluted with 0.1M phosphate buffer to each of the washed scaffolds E for reaction, so that the third oxidoreductase on the oxidoreductase In the step of "binding the second labeling substance to the first labeling substance on the detection probe...", wasabi peroxidase labeled with streptavidin protein was subjected to 25 times in 0.1M phosphate buffer. dilute, and the reaction time is 15 minutes; the difference between Experimental Example 8 and "Method for testing wasabi peroxidase using the first electrochemical sensing kit" is that "... use diluent to test the target biological material sample Dilute to complete the preparation of each test sample..." In the step, use diluent to dilute the target nucleic acid aqueous solution, the six-base mismatch sequence aqueous solution, the three-base mismatch sequence aqueous solution, and the single-base mismatch sequence aqueous solution. The base mismatch sequence aqueous solution and the random sequence aqueous solution were diluted to 50,000 fM as each detection sample, and further included a blank control group. The blank control group was a control group that only used the diluent as the detection sample; experimental results of Experimental Example 8 As shown in Table 3, Table 3 shows the current intensity measured in each test sample when the sample used is serum. The solute contained in the test sample is used as a group. Therefore, the group includes the first target biological substance, six bases Mismatch sequence, three-base mismatch sequence, single-base mismatch sequence and random sequence, in addition to a blank control group; the unit of current intensity is μA; the experimental results of Experimental Example 8 show that the test sample includes The current intensity of the first target biological substance is significantly greater than the current intensity of the test sample including other non-target biological substances and the blank Current intensity in the control group.

Figure 112111175-A0305-02-0035-5
Figure 112111175-A0305-02-0035-5

實驗例9:對目標生物物質及非目標生物物質使用第二電化學感測套組進行嵌入劑測試中的影響 Experimental Example 9: Effects of using the second electrochemical sensing set on intercalator testing on target biological substances and non-target biological substances.

請參閱表4,於實驗例9中對目標生物物質即非目標生物物質使用第二電化學感測套組進行嵌入劑測試,步驟與「使用第二電化學感測套組進行嵌入劑測試的方法」基本一致,其中檢體分別為血清,並取檢體離心後的上清液作為稀釋液;其中骨架E上的捕獲探針為第一捕獲探針;其中檢測探針為第一檢測探針;實驗例9與「使用第二電化學感測套組進行嵌入劑測試的方法」差異在於「......以稀釋液對目標生物物質樣品進行稀釋,以完成各個檢測樣品的製備......」的步驟中,改以稀釋液分別將目標核酸水溶液、六鹼基錯配位序列水溶液、三鹼基錯配位序列水溶液、單鹼基錯配位序列水溶液及隨機序列水溶液稀釋至50,000fM以作為各個檢測樣品,並且進一步包括一個空白對照組,空白對照組為僅使用稀釋液作為檢測樣品的對照組;實驗例9的實驗結果如表4所示,表4為使用的檢體為血清,於各個檢測樣品測量到的電流強度,其中以檢測樣品中所包括的目標生物物質或非目標生物物質作為分組,因此分組 包括第一目標生物物質、六鹼基錯配位序列、三鹼基錯配位序列、單鹼基錯配位序列及隨機序列,另外還包括有空白對照組;其中電流強度的單位為μA;實驗例9的實驗結果顯示目標核酸水溶液的電流強度明顯大於其他非目標生物物質的電流強度及空白對照組的電流強度,進一步驗證本發明提供的骨架E結合電化學感測器具有良好的特異性。 Please refer to Table 4. In Experimental Example 9, the target biological substance, that is, the non-target biological substance, was tested using the second electrochemical sensing set. The method is basically the same, in which the specimens are serum, and the supernatant after centrifugation of the specimen is taken as the diluent; the capture probe on the skeleton E is the first capture probe; the detection probe is the first detection probe Needle; The difference between Experimental Example 9 and "Method of using the second electrochemical sensing kit for intercalator testing" is that "...the target biological substance sample is diluted with a diluent to complete the preparation of each test sample ..." step, use diluents to dilute the target nucleic acid aqueous solution, the six-base mismatch sequence aqueous solution, the three-base mismatch sequence aqueous solution, the single-base mismatch sequence aqueous solution and the random sequence. The aqueous solution was diluted to 50,000fM to serve as each test sample, and further included a blank control group. The blank control group was a control group that only used the diluent as the test sample; the experimental results of Experimental Example 9 are shown in Table 4. Table 4 shows the use The sample is serum, and the current intensity measured in each test sample is grouped by the target biological substance or non-target biological substance included in the test sample, so the grouping Including the first target biological substance, six-base mismatch sequence, three-base mismatch sequence, single-base mismatch sequence and random sequence, and also includes a blank control group; the unit of current intensity is μA; The experimental results of Experimental Example 9 show that the current intensity of the target nucleic acid aqueous solution is significantly greater than the current intensity of other non-target biological substances and the current intensity of the blank control group, further verifying that the skeleton E combined with the electrochemical sensor provided by the present invention has good specificity .

Figure 112111175-A0305-02-0036-8
Figure 112111175-A0305-02-0036-8

經由實驗例8的實驗結果及實驗例9的實驗結果,證實本發明提供的第一電化學感測套組及第一電化學感測套組皆具有良好的特異性,可以區別與第一目標生物物質與其他非目標生物物質。 Through the experimental results of Experimental Example 8 and the experimental results of Experimental Example 9, it is confirmed that both the first electrochemical sensing kit and the first electrochemical sensing kit provided by the present invention have good specificity and can distinguish the first target. Biological substances and other non-target biological substances.

實驗例10:對目標病毒溶液使用第一電化學感測套組進行山葵過氧化酶測試,以及對目標病毒溶液使用第二電化學感測套組進行嵌入劑測試 Experimental Example 10: Using the first electrochemical sensing set to test the target virus solution for wasabi peroxidase, and using the second electrochemical sensing set to test the target virus solution for the intercalator

請參閱表5及圖10,實驗例10中對目標病毒使用第一電化學感測套組進行山葵過氧化酶測試,步驟請參照「使用第一電化學感測套組進行山葵過氧化酶測試的方法」,其中使用的目標生物物質樣品為包括第一目標生物物質的樣品,其中包括第一目標生物物質的樣品為目標病毒,其中檢體為血清,並取檢體離心後的上清液作為稀釋液,其中骨架E上的捕獲探針為第一捕獲探 針,其中於「以稀釋液對目標生物物質樣品進行稀釋,以完成各個檢測樣品的製備」的步驟中,為先對目標病毒進行聚合酶連鎖反應進行擴增後再以稀釋液進行序列稀釋以形成目標病毒溶液,並使目標病毒溶液的濃度分別為6.5複製數/μL、65複製數/μL、650複製數/μL、6,500複製數/μL、65,000複製數/μL、650,000複製數/μL及6,500,000複製數/μL作為各個檢測樣品;其中檢測探針為第一檢測探針,其中檢測探針為第一檢測探針;其中於「......接著將沖洗後的各個骨架E,分別加入以0.1M的磷酸鹽緩衝液進行稀釋的氧化還原酵素進行反應,使氧化還原酵素上的第二標記物結合至檢測探針上的第一標記物......」的步驟中,為以0.1M的磷酸鹽緩衝液對標記有鏈球親生物素蛋白的山葵過氧化酶進行25倍稀釋,且反應的時間為15分鐘;另外,實驗例10中對目標病毒使用第二電化學感測套組進行嵌入劑測試,步驟請參照「使用第二電化學感測套組進行嵌入劑測試的方法」,其中使用的目標生物物質樣品為包括第一目標生物物質的樣品,其中包括第一目標生物物質的樣品為目標病毒,其中檢體為血清,並取各個檢體離心後的上清液作為稀釋液,其中骨架E上的捕獲探針為第一捕獲探針,其中於「以稀釋液對目標生物物質樣品進行稀釋,以完成各個檢測樣品的製備」的步驟中,為對目標病毒進行序列稀釋以形成目標病毒溶液,並使目標病毒的濃度分別為6.5複製數/μL、65複製數/μL、650複製數/μL、6,500複製數/μL、65,000複製數/μL、650,000複製數/μL及6,500,000複製數/μL作為各個檢測樣品,其中檢測探針為第一檢測探針;實驗例10的實驗結果如表5及圖10所示,表5為使用的檢體分別為血清時,於各個濃度的目標病毒溶液測量到的電流強度,其中目標病毒溶液的濃度單位為複製數/μL,其中電流強度的單位為μA,並且根據使用的測試方法進行分組,分別為山葵過氧化酶測試及嵌入劑 測試;另外根據表5的實驗數據,分別對使用的測試方法為山葵過氧化酶測試及嵌入劑測試的組別進行回歸分析,經由回歸分析獲得回歸直線的回歸方程式如下所述,其中於山葵過氧化酶測試的回歸方程式為I=0.3252×ln(x)+5.6362, 回歸方程式的決斷係數為0.9653,斜率為0.3252

Figure 112111175-A0305-02-0038-17
,最低偵測濃度的標準 差為0.3037μA,計算出偵測極限值為2.8017複製數/μL;其中於嵌入劑測試的回歸方程式為I=0.3372×ln(x)+3.6967,回歸方程式的決斷係數為0.8884,斜率為 0.3372
Figure 112111175-A0305-02-0038-11
,最低偵測濃度的標準差為0.2554μA,計算出偵測極限值為2.2 722複製數/μL;於各個回歸方程式中,其中I代表電流強度,單位為μA;其中ln(x)代表目標病毒溶液的濃度,單位為複製數/μL;斜率指回歸直線的斜率,單 位為
Figure 112111175-A0305-02-0038-15
;其中最低偵測濃度的標準差指於目標病毒溶液的濃度為0.005複 製數/μL的組別中,由三重複實驗結果獲得的電流強度值計算獲得的標準差,單位為μA;其中偵測極限值的單位為複製數/μL。圖10為根據表5的實驗數據,及根據表5的實驗數據分別對使用的測試方法為山葵過氧化酶測試及嵌入劑測試的組別進行回歸分析的結果,所繪成的回歸分析圖;圖10中X軸為目標病毒溶液的濃度,X軸單位為複製數/μL,Y軸為測得的電流強度,Y軸單位為μA,並且根據使用的測試方法為山葵過氧化酶測試及嵌入劑測試。 Please refer to Table 5 and Figure 10. In Experimental Example 10, the first electrochemical sensing kit was used to perform a wasabi peroxidase test on the target virus. For the steps, please refer to "Using the First Electrochemical Sensing Kit to Test Wasabi Peroxidase.""Method", the target biological substance sample used is a sample including the first target biological substance, the sample including the first target biological substance is the target virus, the sample is serum, and the supernatant after centrifugation of the sample is taken As a diluent, the capture probe on the skeleton E is the first capture probe. In the step of "diluting the target biological substance sample with the diluent to complete the preparation of each detection sample", the target virus is first Perform polymerase chain reaction for amplification and then perform serial dilutions with diluents to form target virus solutions, with the concentrations of the target virus solutions being 6.5 copy number/μL, 65 copy number/μL, 650 copy number/μL, and 6,500. Copy number/μL, 65,000 copy number/μL, 650,000 copy number/μL and 6,500,000 copy number/μL are used as each detection sample; where the detection probe is the first detection probe, where the detection probe is the first detection probe; where "...then add redox enzyme diluted with 0.1M phosphate buffer to each washed scaffold E to react, so that the second label on the redox enzyme binds to the detection probe. In the step of "The first label on the needle...", wasabi peroxidase labeled with streptavidin was diluted 25 times with 0.1M phosphate buffer, and the reaction time was 15 minutes; in addition, in Experimental Example 10, the target virus was tested using the second electrochemical sensing kit for the intercalating agent. For the steps, please refer to "Method for testing the intercalating agent using the second electrochemical sensing kit", in which the The target biological substance sample is a sample including the first target biological substance, wherein the sample including the first target biological substance is the target virus, wherein the sample is serum, and the supernatant after centrifugation of each sample is taken as a diluent, wherein the skeleton The capture probe on E is the first capture probe, in which in the step of "diluting the target biological material sample with a diluent to complete the preparation of each detection sample", the target virus is serially diluted to form the target virus. solution, and the concentrations of the target virus are 6.5 copy number/μL, 65 copy number/μL, 650 copy number/μL, 6,500 copy number/μL, 65,000 copy number/μL, 650,000 copy number/μL and 6,500,000 copy number/ μL is used as each detection sample, in which the detection probe is the first detection probe; the experimental results of Experimental Example 10 are shown in Table 5 and Figure 10. Table 5 shows the target virus at various concentrations when the samples used are serum. The current intensity measured by the solution, where the concentration unit of the target virus solution is copy number/μL, where the unit of current intensity is μA, and is grouped according to the test method used, which are wasabi peroxidase test and intercalator test; in addition According to the experimental data in Table 5, regression analysis was performed on the groups using the wasabi peroxidase test and the intercalating agent test. The regression equation of the regression line obtained through regression analysis is as follows, among which in the wasabi peroxidase test The regression equation of is I=0.3252×ln(x)+5.6362, the determination coefficient of the regression equation is 0.9653, and the slope is 0.3252
Figure 112111175-A0305-02-0038-17
, the standard deviation of the lowest detection concentration is 0.3037μA, and the calculated detection limit is 2.8017 copies/μL; the regression equation for the intercalator test is I=0.3372×ln(x)+3.6967, and the determination coefficient of the regression equation is 0.8884, and the slope is 0.3372
Figure 112111175-A0305-02-0038-11
, the standard deviation of the lowest detection concentration is 0.2554μA, and the detection limit is calculated to be 2.2 722 copies/μL; in each regression equation, I represents the current intensity, in μA; where ln(x) represents the target virus The concentration of the solution, the unit is copy number/μL; the slope refers to the slope of the regression line, the unit is
Figure 112111175-A0305-02-0038-15
;The standard deviation of the lowest detection concentration refers to the standard deviation calculated from the current intensity values obtained from the results of three replicate experiments in a group with a target virus solution concentration of 0.005 copy number/μL, the unit is μA; where the detection Limit values are expressed in copies/μL. Figure 10 is a regression analysis chart drawn based on the experimental data in Table 5 and the results of the regression analysis for the groups using the wasabi peroxidase test and the intercalator test respectively according to the experimental data in Table 5; In Figure 10, the X-axis is the concentration of the target virus solution, the X-axis unit is the copy number/μL, the Y-axis is the measured current intensity, the Y-axis unit is μA, and according to the test method used, it is wasabi peroxidase test and embedding agent testing.

Figure 112111175-A0305-02-0038-9
Figure 112111175-A0305-02-0038-9
Figure 112111175-A0305-02-0039-10
Figure 112111175-A0305-02-0039-10

實驗例11:對目標萃取液使用第一電化學感測套組進行山葵過氧化酶測試,以及對目標萃取液使用第二電化學感測套組進行嵌入劑測試 Experimental Example 11: Using the first electrochemical sensing set to test the wasabi peroxidase on the target extract, and using the second electrochemical sensing set to test the intercalating agent on the target extract.

請參閱表6及圖11,實驗例11中對目標萃取液使用第一電化學感測套組進行山葵過氧化酶測試,步驟請參照與「使用第一電化學感測套組進行山葵過氧化酶測試的方法」,其中使用的目標生物物質樣品為包括第一目標生物物質的樣品,其中包括第一目標生物物質的樣品為目標萃取液,其中檢體為血清,並取檢體離心後的上清液作為稀釋液,其中骨架E上的捕獲探針為第一捕獲探針,其中於「以稀釋液對目標生物物質樣品進行稀釋,以完成各個檢測樣品的製備」的步驟中,為對目標萃取液進行序列稀釋,使目標萃取液的濃度分別為0.005fM、0.05fM、0.5fM、5fM、50fM、500fM、5,000fM及50,000fM作為各個檢測樣品,其中檢測探針為第一檢測探針,其中於「......接著將沖洗後的各個骨架E,分別加入以0.1M的磷酸鹽緩衝液進行稀釋的氧化還原酵素進行反應,使氧化還原酵素上的第二標記物結合至檢測探針上的第一標記物......」的步驟中,為以0.1M的磷酸鹽緩衝液對標記有鏈球親生物素蛋白的山葵過氧化酶進行25倍稀釋,且反應的時間為15分鐘,其中檢測探針為第一檢測探針;其中於「......接著將沖洗後的各個骨架E,分別加入以0.1M的磷酸鹽緩衝液進行稀釋的氧化還原酵素進行反應,使氧化還原酵素上的第二標記物結合至檢測探針上的第一標記物......」的步驟中,為以0.1M的磷酸鹽緩衝液對標記 有鏈球親生物素蛋白的山葵過氧化酶進行25倍稀釋,且反應的時間為15分鐘;另外,實驗例11中對目標萃取液使用第二電化學感測套組進行嵌入劑測試,步驟請參照「使用第二電化學感測套組進行嵌入劑測試的方法」,其中使用的目標生物物質樣品為包括第一目標生物物質的樣品,其中包括第一目標生物物質的樣品為目標萃取液,其中檢體為血清,並取各個檢體離心後的上清液作為稀釋液,其中骨架E上的捕獲探針為第一捕獲探針,其中於「以稀釋液對目標生物物質樣品進行稀釋,以完成各個檢測樣品的製備」的步驟中,為對目標萃取液進行序列稀釋,使目標萃取液的濃度分別為0.005fM、0.05fM、0.5fM、5fM、50fM、500fM、5,000fM及50,000fM,其中檢測探針為第一檢測探針;實驗例11的實驗結果如表6及圖11所示,表6為使用的檢體分別為血清時,於各個濃度的目標萃取液測量到的電流強度,其中目標萃取液的濃度單位為fM,其中電流強度的單位為μA,並且根據測試方法進行分組,分為山葵過氧化酶測試及嵌入劑測試;另外根據表6的實驗數據,分別對使用的測試方法為山葵過氧化酶測試及嵌入劑測試的組別進行回歸分析,經由回歸分析獲得回歸直線的回歸方程式如下所述,其中於山葵過氧化酶測試的回歸方程式為I=0.3249×ln(x)+1.9529,回歸方程式的決斷係數為0.9653,斜率為0.3249μA/fM,最低偵測濃度的標準差為0.0416μA,計算出偵測極限值為0.3841fM;其中於嵌入劑測試的回歸方程式為為I=0.8411×ln(x)+6.9862,回歸方程式的決斷係數為0.9653,斜率為0.3252μA/fM,最低偵測濃度的標準差為0.2183μA,計算出偵測極限值為2.0138fM;於各個回歸方程式中,其中I代表電流強度,單位為μA;其中ln(x)代表目標萃取液的濃度,單位為fM;斜率指回歸直線的斜率,單位為μA/fM;其中最低偵測濃度的標準差指於目標萃取液的濃度為0.005fM的組別中,由三重複 實驗結果獲得的電流強度值計算獲得的標準差,單位為μA;其中偵測極限值的單位為fM。圖11為根據表6的實驗數據,及根據表6的實驗數據分別對使用的測試方法為山葵過氧化酶測試及嵌入劑測試的組別進行回歸分析的結果,所繪成的回歸分析圖;圖11中X軸為目標萃取液的濃度,X軸單位為fM,Y軸為測得的電流強度,Y軸單位為μA,並且根據使用的測試方法為山葵過氧化酶測試及嵌入劑測試。 Please refer to Table 6 and FIG. 11. In Experimental Example 11, the target extract was tested for wasabi peroxidase using the first electrochemical sensing kit. The steps are as described in “Method for testing wasabi peroxidase using the first electrochemical sensing kit”. The target biological substance sample used is a sample including the first target biological substance, the sample including the first target biological substance is the target extract, the specimen is serum, and the supernatant after the specimen is centrifuged is used as the diluent. The capture probe on the skeleton E is the first capture probe. In the step of "preparing each test sample by diluting the target extract solution sequentially, the target extract solution has a concentration of 0.005fM, 0.05fM, 0.5fM, 5fM, 50fM, 500fM, 5,000fM and 50,000fM as each test sample, wherein the detection probe is the first detection probe, wherein in "...... then, each of the washed skeletons E is respectively added with a redox enzyme diluted with a 0.1M phosphate buffer for reaction, In the step of "... then, the washed skeleton E is respectively added with the redox enzyme diluted with 0.1M phosphate buffer to react with the second marker on the redox enzyme to bind to the first marker on the detection probe...", the wasabi peroxidase labeled with streptavidin is diluted 25 times with 0.1M phosphate buffer, and the reaction time is 15 minutes, wherein the detection probe is the first detection probe; wherein in the step of "... then, the washed skeleton E is respectively added with the redox enzyme diluted with 0.1M phosphate buffer to react with the second marker on the redox enzyme to bind to the detection probe In the step of "the first marker ...", the wasabi peroxidase labeled with spheroidal avidin was diluted 25 times with 0.1M phosphate buffer, and the reaction time was 15 minutes; in addition, in Experimental Example 11, the target extract was tested for the embedding agent using the second electrochemical sensing kit, and the steps are referred to the "method for testing the embedding agent using the second electrochemical sensing kit", wherein the target biological substance sample used is a sample including the first target biological substance, and the sample including the first target biological substance is the target extract, The sample is serum, and the supernatant after centrifugation of each sample is taken as the diluent, wherein the capture probe on the skeleton E is the first capture probe, wherein in the step of "diluting the target biological substance sample with the diluent to complete the preparation of each test sample", the target extract is serially diluted so that the concentration of the target extract is 0.005fM, 0.05fM, 0.5fM, 5fM, 50fM, 500fM, 5,000fM and 50,000fM respectively, wherein the detection probe is the first detection probe; Experimental Example 1 The experimental results of 1 are shown in Table 6 and FIG. 11. Table 6 shows the current intensity measured at each concentration of the target extract when the specimen used is serum, wherein the concentration unit of the target extract is fM, wherein the unit of the current intensity is μA, and the test methods are divided into wasabi peroxidase test and intercalating agent test. In addition, according to the experimental data in Table 6, regression analysis is performed on the groups using the wasabi peroxidase test and the intercalating agent test, respectively. The regression equation of the regression line obtained by regression analysis is as follows, wherein the wasabi peroxidase test and the intercalating agent test are respectively used. The regression equation for sunflower peroxidase test is I=0.3249×ln(x)+1.9529, the coefficient of determination of the regression equation is 0.9653, the slope is 0.3249μA/fM, the standard deviation of the lowest detection concentration is 0.0416μA, and the detection limit is calculated to be 0.3841fM; the regression equation for intercalator test is I=0.8411×ln(x)+6.9862, the coefficient of determination of the regression equation is 0.9653, the slope is 0.3252μA/fM, and the lowest detection concentration is The standard deviation of the minimum detection concentration is 0.2183μA, and the detection limit is calculated to be 2.0138fM. In each regression equation, I represents the current intensity, and the unit is μA; ln(x) represents the concentration of the target extract, and the unit is fM; the slope refers to the slope of the regression line, and the unit is μA/fM; the standard deviation of the lowest detection concentration refers to the standard deviation calculated from the current intensity values obtained from the three repeated experimental results in the group with a target extract concentration of 0.005fM, and the unit is μA; the detection limit is fM. Figure 11 is a regression analysis chart drawn based on the experimental data in Table 6 and the results of regression analysis of the test methods used in Table 6, respectively, for the groups of the wasabi peroxidase test and the embedding agent test; in Figure 11, the X-axis is the concentration of the target extract, the X-axis unit is fM, the Y-axis is the measured current intensity, the Y-axis unit is μA, and the test methods used are the wasabi peroxidase test and the embedding agent test.

Figure 112111175-A0305-02-0041-18
Figure 112111175-A0305-02-0041-18

實驗例12:對副甲狀腺素溶液使用第一電化學感測套組進行山葵過氧化酶測試 Experimental Example 12: Wasabi peroxidase test using the first electrochemical sensing kit on parathyroxine solution

請參閱圖12,實驗例12中對副甲狀腺素溶液使用第一電化學感測套組進行山葵過氧化酶測試,步驟請參照「使用第一電化學感測套組進行山葵過氧化酶測試的方法」,其中使用的目標生物物質樣品為包括第二目標生物物質的樣品,其中包括第二目標生物物質的樣品為副甲狀腺素溶液,其中檢體為血清,並取檢體離心後的上清液作為稀釋液,其中骨架E上的捕獲探針為第三捕獲探針,其中於「以稀釋液對目標生物物質樣品進行稀釋,以完成各個檢 測樣品的製備」的步驟中,為對副甲狀腺素溶液進行序列稀釋,使副甲狀腺素溶液的濃度分別為0.0001pg/mL、0.001pg/mL、0.01pg/mL、0.1pg/mL、1pg/mL、10pg/mL及100pg/mL作為各個檢測樣品,其中檢測探針為第二檢測探針,其中於「......接著將沖洗後的各個骨架E,分別加入以0.1M的磷酸鹽緩衝液進行稀釋的氧化還原酵素進行反應,使氧化還原酵素上的第二標記物結合至檢測探針上的第一標記物......」的步驟中,為以0.1M的磷酸鹽緩衝液對標記有鏈球親生物素蛋白的山葵過氧化酶進行200倍稀釋,且反應的時間為10分鐘;實驗例12的實驗結果如表7及圖12所示,表7為使用的檢體為血清,對各個濃度的副甲狀腺素溶液分別進行山葵過氧化酶測試所測量到的電流強度,其中副甲狀腺素溶液的濃度單位為pg/mL,其中電流強度的單位為μA;另外根據表7實驗的實驗數據進行回歸分析,經由回歸分析獲得回歸直線的回歸方程式如下所述,其中檢體為唾液的回歸方程式表示為:I=0.2371×ln(x)+9.3338,斜率為0.2 371

Figure 112111175-A0305-02-0042-19
,回歸方程式的決斷係數為0.9812,最低偵測濃度的標準差為0.12 μA,計算出偵測極限值為1.51pg/mL,於回歸方程式中,其中I代表電流強度,單位為μA;其中ln(x)代表副甲狀腺素溶液的濃度,單位為pg/mL;斜率指回歸 直線的斜率,單位為
Figure 112111175-A0305-02-0042-20
其中最低偵測濃度的標準差指於副甲狀腺素溶液 的濃度為0.0001pg/mL的組別中,由三重複實驗結果獲得的電流強度值計算獲得的標準差,單位為μA;其中偵測極限值的單位為pg/mL。圖12為根據表7的實驗數據,及根據表7的實驗數據進行回歸分析的結果,所繪成的回歸分析圖;圖12中X軸為副甲狀腺素溶液的濃度,X軸單位為pg/mL,Y軸為測得的電流強度,Y軸單位為μA。 Please refer to Figure 12. In Experimental Example 12, the parathyroxine solution was tested using the first electrochemical sensing kit for wasabi peroxidase. For the steps, please refer to "Using the First Electrochemical Sensing Kit to Test Wasabi Peroxidase""Method", the target biological substance sample used is a sample including the second target biological substance, the sample including the second target biological substance is a parathyroxine solution, the sample is serum, and the supernatant after centrifugation of the sample is taken liquid as a diluent, in which the capture probe on the skeleton E is the third capture probe. In the step of "diluting the target biological substance sample with the diluent to complete the preparation of each detection sample", for the parathyroid The parathyroxine solution was serially diluted so that the concentrations of the parathyroxine solution were 0.0001pg/mL, 0.001pg/mL, 0.01pg/mL, 0.1pg/mL, 1pg/mL, 10pg/mL and 100pg/mL as each test sample. , wherein the detection probe is the second detection probe, in which "...then add oxidoreductase diluted with 0.1M phosphate buffer to each scaffold E after washing for reaction, so that The second label on the redox enzyme is bound to the first label on the detection probe..." In the step, wasabi labeled with streptavidin was treated with 0.1M phosphate buffer. The peroxidase was diluted 200 times, and the reaction time was 10 minutes; the experimental results of Experimental Example 12 are shown in Table 7 and Figure 12. Table 7 shows that the sample used is serum, and the parathyroxine solutions of various concentrations are respectively The current intensity measured by the wasabi peroxidase test, in which the concentration unit of parathyroxine solution is pg/mL, and the unit of current intensity is μA; in addition, regression analysis is performed based on the experimental data of the experiment in Table 7, and obtained through regression analysis The regression equation of the regression line is as follows. The regression equation when the specimen is saliva is expressed as: I=0.2371×ln(x)+9.3338, with a slope of 0.2 371
Figure 112111175-A0305-02-0042-19
, the determination coefficient of the regression equation is 0.9812, the standard deviation of the lowest detection concentration is 0.12 μA, and the calculated detection limit is 1.51pg/mL. In the regression equation, I represents the current intensity in μA; where ln ( x) represents the concentration of parathyroxine solution, the unit is pg/mL; the slope refers to the slope of the regression line, the unit is
Figure 112111175-A0305-02-0042-20
The standard deviation of the lowest detection concentration refers to the standard deviation calculated from the current intensity values obtained from the results of three replicate experiments in the group with a parathyroxine solution concentration of 0.0001pg/mL, in μA; where the detection limit Values are in pg/mL. Figure 12 is a regression analysis graph drawn based on the experimental data in Table 7 and the results of regression analysis based on the experimental data in Table 7; the X-axis in Figure 12 is the concentration of parathyroxine solution, and the X-axis unit is pg/ mL, the Y-axis is the measured current intensity, and the Y-axis unit is μA.

Figure 112111175-A0305-02-0043-21
Figure 112111175-A0305-02-0043-21

實驗例13:對目標蛋白溶液使用第一電化學感測套組進行山葵過氧化酶測試 Experimental Example 13: Using the first electrochemical sensing kit to test the target protein solution for wasabi peroxidase

請參閱圖13,實驗例13中對目標蛋白溶液使用第一電化學感測套組進行山葵過氧化酶測試,步驟請參照「使用第一電化學感測套組進行山葵過氧化酶測試的方法」,其中使用的目標生物物質樣品為包括第二目標生物物質的樣品,其中包括第二目標生物物質的樣品為目標蛋白溶液,其中檢體為血清,並取檢體離心後的上清液作為稀釋液,其中骨架E上的捕獲探針為第三捕獲探針,其中於「以稀釋液對目標生物物質樣品進行稀釋,以完成各個檢測樣品的製備」的步驟中,為對目標蛋白溶液進行序列稀釋,使目標蛋白溶液的濃度分別為3.125ng/mL、6.25ng/mL、12.5ng/mL、25ng/mL、50ng/mL、100ng/mL及200ng/mL作為各個檢測樣品,其中檢測探針為第三檢測探針,其中於「......接著將沖洗後的各個骨架E,分別加入以0.1M的磷酸鹽緩衝液進行稀釋的氧化還原酵素進行反應,使氧化還原酵素上的第二標記物結合至檢測探針上的第一標記物......」的步驟中,為以0.1M的磷酸鹽緩衝液對標記有鏈球親生物 素蛋白的山葵過氧化酶進行200倍稀釋,且反應的時間為10分鐘;實驗例12的實驗結果如表7及圖12所示,表7為使用的檢體為血清,對各個濃度的目標蛋白溶液分別進行山葵過氧化酶測試所測量到的電流強度,其中目標蛋白溶液的濃度單位為ng/mL,其中電流強度的單位為μA;另外根據表8實驗的實驗數據進行回歸分析,經由回歸分析獲得回歸直線的回歸方程式如下所述,其中檢體為 唾液的回歸方程式表示為:I=0.9999×ln(x)+3.2009,斜率為0.9999

Figure 112111175-A0305-02-0044-24
, 回歸方程式的決斷係數為0.9812,最低偵測濃度的標準差為0.11μA,計算出偵測極限值為0.33ng/mL,於回歸方程式中,其中I代表電流強度,單位為μA;其中ln(x)代表目標蛋白溶液的濃度,單位為ng/mL;斜率指回歸直線的斜率,單 位為
Figure 112111175-A0305-02-0044-23
其中最低偵測濃度的標準差指於目標蛋白溶液的濃度為3.125ng/ mL的組別中,由三重複實驗結果獲得的電流強度值計算獲得的標準差,單位為μA;其中偵測極限值的單位為ng/mL。圖13為根據表8的實驗數據,及根據表8的實驗數據進行回歸分析的結果,所繪成的回歸分析圖;圖13中X軸為目標蛋白溶液的濃度,X軸單位為ng/mL,Y軸為測得的電流強度,Y軸單位為μA。 Please refer to Figure 13. In Experimental Example 13, the target protein solution was tested for wasabi peroxidase using the first electrochemical sensing kit. For the steps, please refer to "Method for testing wasabi peroxidase using the first electrochemical sensing kit." ”, the target biological substance sample used is a sample including the second target biological substance, the sample including the second target biological substance is the target protein solution, the sample is serum, and the supernatant after centrifugation of the sample is taken as Diluent, in which the capture probe on the skeleton E is the third capture probe, and in the step of "diluting the target biological substance sample with the diluent to complete the preparation of each detection sample", the target protein solution is Serial dilution, so that the concentrations of the target protein solution are 3.125ng/mL, 6.25ng/mL, 12.5ng/mL, 25ng/mL, 50ng/mL, 100ng/mL and 200ng/mL as each detection sample, in which the detection probe is the third detection probe, in which "...then add redox enzyme diluted with 0.1M phosphate buffer to each of the washed scaffolds E for reaction, so that the oxidoreductase on the redox enzyme In the step of binding the second label to the first label on the detection probe...", wasabi peroxidase labeled with streptavidin was subjected to 200 ℃ in 0.1M phosphate buffer. Double dilution, and the reaction time is 10 minutes; the experimental results of Experimental Example 12 are shown in Table 7 and Figure 12. Table 7 shows that the sample used is serum, and the wasabi peroxidase test was performed on the target protein solutions of various concentrations. The measured current intensity, in which the concentration unit of the target protein solution is ng/mL, and the unit of current intensity is μA; in addition, regression analysis is performed according to the experimental data of the experiment in Table 8, and the regression equation of the regression line obtained through regression analysis is as follows The regression equation in which the specimen is saliva is expressed as: I=0.9999×ln(x)+3.2009, with a slope of 0.9999
Figure 112111175-A0305-02-0044-24
, the determination coefficient of the regression equation is 0.9812, the standard deviation of the lowest detection concentration is 0.11μA, and the calculated detection limit is 0.33ng/mL. In the regression equation, I represents the current intensity in μA; where ln ( x) represents the concentration of the target protein solution, the unit is ng/mL; the slope refers to the slope of the regression line, the unit is
Figure 112111175-A0305-02-0044-23
The standard deviation of the lowest detection concentration refers to the standard deviation calculated from the current intensity values obtained from the results of three replicate experiments in the group with a target protein solution concentration of 3.125ng/mL, in μA; where the detection limit value The unit is ng/mL. Figure 13 is a regression analysis graph drawn based on the experimental data in Table 8 and the results of regression analysis based on the experimental data in Table 8; the X-axis in Figure 13 is the concentration of the target protein solution, and the X-axis unit is ng/mL , the Y-axis is the measured current intensity, and the Y-axis unit is μA.

Figure 112111175-A0305-02-0044-22
Figure 112111175-A0305-02-0044-22

實驗例14:對微小核糖核酸溶液使用第一電化學感測套組進行山葵過氧化酶測試,以及對目標萃取液使用第二電化學感測套組進行嵌入劑測試 Experimental Example 14: Using the first electrochemical sensing kit to test the wasabi peroxidase on the microRNA solution, and using the second electrochemical sensing kit to test the intercalating agent on the target extraction solution

請參閱表9及圖14,實驗例14中對微小核糖核酸溶液使用第二電化學感測套組進行嵌入劑測試,步驟與「使用第二電化學感測套組進行嵌入劑測試的方法」基本一致,其中使用的目標生物物質樣品為包括第四目標生物物質的樣品,其中包括第四目標生物物質的樣品為微小核糖核酸溶液,其中檢體為血清,並取各個檢體離心後的上清液作為稀釋液,其中骨架E上的捕獲探針為第四捕獲探針,其中於「以稀釋液對目標生物物質樣品進行稀釋,以完成各個檢測樣品的製備」的步驟中,為對微小核糖核酸溶液進行序列稀釋,使微小核糖核酸溶液濃度分別為5fM、50fM、500fM及5,000fM;實驗例14與「使用第二電化學感測套組進行嵌入劑測試的方法」差異在於「......接著將20μL的1mg/mL的骨架E溶液分別添加至10μL的各個檢測樣品,並加入檢測探針水溶液及嵌入劑後,以震盪器震盪混合反應10分鐘,使各個檢測樣品中的目標生物物質被骨架E上的捕獲探針所捕獲,並使檢測探針與被骨架E上的捕獲探針捕獲的目標生物物質結合,而嵌入劑則會嵌入捕獲探針和目標生物物質的雜交處,以及嵌入檢測探針和目標生物物質的雜交處......」的步驟中的「......並加入檢測探針水溶液及嵌入劑後......」改為僅加入嵌入劑,且加入的嵌入劑為10μL的2mM的中性紅;實驗例14的實驗結果如表9及圖14所示,表9為使用的檢體分別為血清時,於各個濃度的微小核糖核酸溶液測量到的電流強度,其中微小核糖核酸溶液的濃度單位為fM,其中電流強度的單位為μA,另外根據表9的實驗數據進行回歸分析,經由回歸分析獲得回歸直線的回歸方程式如下所述,回歸方程式為I =1.6875×ln(x)+6.698,回歸方程式的決斷係數為0.984,斜率為1.6875μA/fM,最低偵測濃度的標準差為0.31μA,計算出偵測極限值為0.55fM;其中I代表電流強度,單位為μA;其中ln(x)代表目標萃取液的濃度,單位為fM;斜率指回歸直線的斜率,單位為μA/fM;其中最低偵測濃度的標準差指於目標萃取液的濃度為5fM的組別中,由三重複實驗結果獲得的電流強度值計算獲得的標準差,單位為μA;其中偵測極限值的單位為fM。圖14為根據表9的實驗數據,及根據表9的實驗數據進行回歸分析的結果,所繪成的回歸分析圖;圖11中X軸為目標萃取液的濃度,X軸單位為fM,Y軸為測得的電流強度,Y軸單位為μA。 Please refer to Table 9 and Figure 14. In Experimental Example 14, the microRNA solution was tested using the second electrochemical sensing kit for the intercalating agent. The steps were the same as "Method for testing the intercalating agent using the second electrochemical sensing kit." Basically the same, the target biological substance sample used is a sample including the fourth target biological substance, the sample including the fourth target biological substance is a microRNA solution, the sample is serum, and the supernatant of each sample after centrifugation is taken The supernatant is used as a diluent, and the capture probe on the skeleton E is the fourth capture probe. In the step of "diluting the target biological substance sample with the diluent to complete the preparation of each detection sample," The ribonucleic acid solution was serially diluted so that the concentrations of the microRNA solution were 5fM, 50fM, 500fM and 5,000fM respectively; the difference between Experimental Example 14 and "Method of using the second electrochemical sensing kit for intercalator testing" is that ".. ....Then add 20 μL of 1 mg/mL framework E solution to 10 μL of each detection sample, and add the detection probe aqueous solution and intercalating agent, then shake and mix with a oscillator for 10 minutes to make the The target biological substance is captured by the capture probe on the skeleton E, and the detection probe is combined with the target biological substance captured by the capture probe on the skeleton E, and the intercalating agent embeds the hybridization of the capture probe and the target biological substance. In the step "...and after adding the detection probe aqueous solution and the intercalating agent..." in the step "..." Only the intercalating agent is added, and the intercalating agent added is 10 μL of 2mM neutral red; the experimental results of Experimental Example 14 are shown in Table 9 and Figure 14. Table 9 shows the results at various concentrations when the specimen used is serum. The current intensity measured by the microRNA solution, where the concentration unit of the microRNA solution is fM, and the unit of current intensity is μA. In addition, regression analysis is performed based on the experimental data in Table 9, and the regression equation of the regression line is obtained through regression analysis. As explained below, the regression equation is I =1.6875×ln(x)+6.698, the determination coefficient of the regression equation is 0.984, the slope is 1.6875μA/fM, the standard deviation of the lowest detection concentration is 0.31μA, and the calculated detection limit value is 0.55fM; where I represents the current Intensity, in μA; where ln(x) represents the concentration of the target extraction solution, in fM; the slope refers to the slope of the regression line, in μA/fM; where the standard deviation of the lowest detection concentration refers to the concentration of the target extraction solution In the 5fM group, the standard deviation is calculated from the current intensity values obtained from the results of three repeated experiments, in μA; the unit of the detection limit value is fM. Figure 14 is a regression analysis graph drawn based on the experimental data in Table 9 and the results of regression analysis based on the experimental data in Table 9; in Figure 11, the X-axis is the concentration of the target extraction solution, and the X-axis unit is fM, Y The axis is the measured current intensity, and the Y-axis unit is μA.

Figure 112111175-A0305-02-0046-26
Figure 112111175-A0305-02-0046-26

綜上所述,本發明提供一種具有修飾的磁性鐵金屬有機骨架、其製備方法及包含具有修飾的磁性鐵金屬有機骨架的電化學感測套組,並經由各個實施例證實具有修飾的磁性鐵金屬有機骨架結合電化學感測器進行目標生物物質的分析,不僅克服一般金屬有機骨架結合電化學感測器靈敏度不足的問題,同時還具有良好的特異性,以及具有寬廣的定量範圍,為金屬有機框架結合電化學感測器用於生物物質分析的領域作出貢獻。 In summary, the present invention provides a modified magnetic iron metal organic framework, a preparation method thereof and an electrochemical sensing kit including a modified magnetic iron metal organic framework, and has been confirmed by various examples to have modified magnetic iron. The analysis of target biological substances by combining metal organic frameworks with electrochemical sensors not only overcomes the problem of insufficient sensitivity of general metal organic frameworks combined with electrochemical sensors, but also has good specificity and a wide quantitative range, making it a good choice for metals. Contributions to the field of organic frameworks combined with electrochemical sensors for analysis of biological substances.

A0101_OR_PSEQ.xmlA0101_OR_PSEQ.xml

Claims (10)

一種具有修飾的磁性鐵金屬有機骨架,包括:一磁性鐵金屬有機骨架、一化學修飾物及一捕獲探針,其中該磁性鐵金屬有機骨架是由三價鐵離子、2-甲基咪唑及L-組胺酸經配位結合形成的金屬有機骨架,且該磁性鐵金屬有機骨架內包括有一容置空間,該容置空間中容置有一磁性奈米粒子,該化學修飾物及該捕獲探針共價連接至該金屬有機骨架的表面;其中該化學修飾物為硫堇;其中該捕獲探針用於與一檢體中的一目標生物物質結合;其中該捕獲探針為寡核苷酸、抗體或肽鏈。A modified magnetic iron metal organic framework, including: a magnetic iron metal organic framework, a chemical modification and a capture probe, wherein the magnetic iron metal organic framework is composed of ferric ions, 2-methylimidazole and L -A metal-organic framework formed by coordination and combination of histidine acid, and the magnetic ferro-metal organic framework includes an accommodation space in which a magnetic nanoparticle, the chemical modification and the capture probe are accommodated Covalently connected to the surface of the metal organic framework; wherein the chemical modification is thionine; wherein the capture probe is used to bind to a target biological substance in a sample; wherein the capture probe is an oligonucleotide, Antibodies or peptide chains. 如請求項1所述的具有修飾的磁性鐵金屬有機骨架,其中該目標生物物質為核酸、胜肽、蛋白質或化合物。The modified magnetic iron-metal organic framework as described in claim 1, wherein the target biological substance is a nucleic acid, a peptide, a protein or a compound. 如請求項1所述的具有修飾的磁性鐵金屬有機骨架,其中磁性鐵金屬有機骨架是由磁性奈米粒子、L-組胺酸、聚乙烯吡咯烷酮及水與甲醇混合反應,再來添加氯化鐵六水合物及水後於4°C靜置反應,最後加入2-甲基咪唑及甲醇後於室溫下混合反應形成。The modified magnetic iron-metal organic framework as described in claim 1, wherein the magnetic iron-metal organic framework is composed of magnetic nanoparticles, L-histidine acid, polyvinylpyrrolidone, water and methanol, and then chlorine is added Iron hexahydrate and water are then left to react at 4°C. Finally, 2-methylimidazole and methanol are added and mixed at room temperature to react. 如請求項3所述的具有修飾的磁性鐵金屬有機骨架,其中磁性奈米粒子的粒徑小於1,000奈米。The modified magnetic ferrometal-organic framework as described in claim 3, wherein the particle size of the magnetic nanoparticles is less than 1,000 nanometers. 如請求項1所述的具有修飾的磁性鐵金屬有機骨架,其中該檢體為唾液、尿液、血清、血漿、全血、細胞、細胞萃取物、淋巴液、腦脊髓液、羊水、肺泡沖洗液、汗液、淚液、痰液、胸水、腹水、關節液、精液或糞便。The modified magnetic iron metal organic framework as described in claim 1, wherein the sample is saliva, urine, serum, plasma, whole blood, cells, cell extracts, lymph, cerebrospinal fluid, amniotic fluid, alveolar wash fluid, sweat, tears, sputum, pleural effusion, ascites, joint fluid, semen or feces. 一種如請求項1所述的具有修飾的磁性鐵金屬有機骨架的製備方法,步驟包括將1-乙基-3(3-二甲基氨基丙基)碳醯二亞、N-羥基琥珀醯亞胺、磁性鐵金屬有機骨架及水於室溫下混合反應,再來以純水沖洗,接著添加硫堇、捕獲探針及水後於室溫下混合反應,以獲得具有修飾的金屬有機骨架。A method for preparing a modified magnetic iron metal organic framework as described in claim 1, the steps include adding 1-ethyl-3(3-dimethylaminopropyl)carbodioxide and N-hydroxysuccinidine Amine, magnetic iron metal organic framework and water are mixed and reacted at room temperature, and then rinsed with pure water. Then thionine, capture probe and water are added and mixed and reacted at room temperature to obtain a modified metal organic framework. 如請求項6所述的製備方法,進一步包括:於完成添加硫堇、捕獲探針及水後於室溫下混合反應後,先以純水沖洗,再於烘箱進行烘乾,以獲得具有修飾的金屬有機骨架。The preparation method as described in claim 6, further comprising: after completing the addition of thionine, capture probe and water, mixing the reaction at room temperature, first rinsing with pure water, and then drying in an oven to obtain modified of metal-organic frameworks. 一種電化學感測套組,包括:一電化學感測器,包括一工作電極,該工作電極包括有用於偵測電流變化的一表面,以及與該表面相對的一背面,該工作電極的該背面設置有一磁鐵;一如請求項1所述的具有修飾的磁性鐵金屬有機骨架;一檢測探針,用於與該目標生物物質結合,且該檢測探針上修飾有一第一標記物;以及一氧化還原酵素,用於進行一氧化還原反應,且該氧化還原酵素上修飾有一第二標記物,該第二標記物用於與該第一標記物結合。An electrochemical sensing kit includes: an electrochemical sensor, including a working electrode, the working electrode includes a surface for detecting current changes, and a back surface opposite to the surface, the working electrode A magnet is provided on the back; a modified magnetic ferrometal-organic framework as described in claim 1; a detection probe for binding to the target biological substance, and a first marker is modified on the detection probe; and An oxidation-reduction enzyme is used to perform an oxidation-reduction reaction, and the oxidation-reduction enzyme is modified with a second label, and the second label is used to bind to the first label. 一種電化學感測套組,包括:一電化學感測器,用於進行一電化學分析,該電化學感測器包括一工作電極,該工作電極包括有用於偵測電流變化的一表面,以及與該表面相對的一背面,該工作電極的該背面設置有一磁鐵;一如請求項1所述的具有修飾的磁性鐵金屬有機骨架;以及一嵌入劑,用於嵌入該捕獲探針與該目標生物物質的結合處,並進行一氧化還原反應;其中該捕獲探針為寡核苷酸;其中該目標生物物質為核酸。An electrochemical sensing kit includes: an electrochemical sensor for performing an electrochemical analysis, the electrochemical sensor includes a working electrode, and the working electrode includes a surface for detecting current changes, And a back side opposite to the surface, the back side of the working electrode is provided with a magnet; a modified magnetic iron metal organic framework as described in claim 1; and an embedding agent for embedding the capture probe and the The target biological substance binds and undergoes an oxidation-reduction reaction; the capture probe is an oligonucleotide; and the target biological substance is a nucleic acid. 如請求項9所述的電化學感測套組,進一步包括一檢測探針,該檢測探針用於與該目標生物物質結合,且該嵌入劑會嵌入該檢測探針與該目標生物物質的結合處,其中該檢測探針為寡核苷酸。The electrochemical sensing kit according to claim 9, further comprising a detection probe, the detection probe is used to combine with the target biological substance, and the intercalating agent will be embedded in the detection probe and the target biological substance. The binding site, wherein the detection probe is an oligonucleotide.
TW112111175A 2023-03-24 A modified magnetic iron metal organic framework, its preparation method and an electrochemical sensing set TWI835609B (en)

Publications (1)

Publication Number Publication Date
TWI835609B true TWI835609B (en) 2024-03-11

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114146686A (en) 2020-09-07 2022-03-08 天津科技大学 Preparation method and application of magnetic metal organic framework material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114146686A (en) 2020-09-07 2022-03-08 天津科技大学 Preparation method and application of magnetic metal organic framework material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
期刊 Yanzi Wu, Yujie Ma, Guanhong Xu, Fangdi Wei, Yunsu Ma, Quan Song, Xu Wang, Tang Tang, Yueyue Song, Menglan Shi, Xiaoman Xu, Qin H ., Metal-organic framework coated Fe3O4 magnetic nanoparticles with peroxidase-like activity for colorimetric sensing of cholesterol" Sensors and Actuators B: Chemical Volume 249, October 2017, Pages 195-202

Similar Documents

Publication Publication Date Title
Li et al. A label-free electrochemiluminescence aptasensor for thrombin based on novel assembly strategy of oligonucleotide and luminol functionalized gold nanoparticles
Qu et al. Electrochemical immunosensor based on electron transfer mediated by graphene oxide initiated silver enhancement
Zhu et al. Amperometric immunosensor for simultaneous detection of three analytes in one interface using dual functionalized graphene sheets integrated with redox-probes as tracer matrixes
Ling et al. Application of biosensor surface immobilization methods for aptamer
CN107841527B (en) Fluorescence detection method for detecting thrombin by using aptamer and magnetic material
Liu et al. Electrogenerated chemiluminescence aptasensor for lysozyme based on copolymer nanospheres encapsulated black phosphorus quantum dots
KR101814385B1 (en) Complex of labeled probe and water-soluble carrier
Cheng et al. A simple electrochemical aptasensor for ultrasensitive protein detection using cyclic target-induced primer extension
Shen et al. Highly sensitive electrochemical stripping detection of hepatitis B surface antigen based on copper-enhanced gold nanoparticle tags and magnetic nanoparticles
Zhu et al. Simultaneous detection of four biomarkers with one sensing surface based on redox probe tagging strategy
Wang et al. Hydroxylamine amplified gold nanoparticle-based aptameric system for the highly selective and sensitive detection of platelet-derived growth factor
Li et al. Sensitive electrochemical immunosensor for cancer biomarker with signal enhancement based on nitrodopamine-functionalized iron oxide nanoparticles
Li et al. A sensitive electrochemical aptasensor based on water soluble CdSe quantum dots (QDs) for thrombin determination
Su et al. Target-induced charge reduction of aptamers for visual detection of lysozyme based on positively charged gold nanoparticles
Liu et al. A novel aptamer-mediated CuInS 2 quantum dots@ graphene oxide nanocomposites-based fluorescence “turn off–on” nanosensor for highly sensitive and selective detection of kanamycin
Guo et al. Sensitive detection of patulin based on DNase Ⅰ-assisted fluorescent aptasensor by using AuNCs-modified truncated aptamer
Yin et al. Ultrasensitive electrochemical immunoassay based on cadmium ion-functionalized PSA@ PAA nanospheres
Tan et al. Hybrid peptide-molecularly imprinted polymer interface for electrochemical detection of vancomycin in complex matrices
Lin et al. Cascade signal amplification for electrochemical immunosensing by integrating biobarcode probes, surface-initiated enzymatic polymerization and silver nanoparticle deposition
Wang et al. Simultaneously fluorescence detecting thrombin and lysozyme based on magnetic nanoparticle condensation
Yao et al. An aptamer-based chemiluminescence method for ultrasensitive detection of platelet-derived growth factor by cascade amplification combining rolling circle amplification with hydroxylamine-enlarged gold nanoparticles
CN111004836B (en) Bidirectional amplification ratio type electrochemical aptamer sensor and application thereof
Yan et al. DNA aptamer folding on magnetic beads for sequential detection of adenosine and cocaine by substrate-resolved chemiluminescence technology
Wang et al. Ultrasensitive electrochemical DNA biosensor based on a tetrahedral structure and proximity-dependent surface hybridization
Cao et al. Homogenous growth of gold nanocrystals for quantification of PSA protein biomarker