TWI835158B - Image sensor and method for forming the same - Google Patents

Image sensor and method for forming the same Download PDF

Info

Publication number
TWI835158B
TWI835158B TW111120924A TW111120924A TWI835158B TW I835158 B TWI835158 B TW I835158B TW 111120924 A TW111120924 A TW 111120924A TW 111120924 A TW111120924 A TW 111120924A TW I835158 B TWI835158 B TW I835158B
Authority
TW
Taiwan
Prior art keywords
doped region
epitaxial layer
region
substrate
image sensor
Prior art date
Application number
TW111120924A
Other languages
Chinese (zh)
Other versions
TW202349692A (en
Inventor
楊宇宸
鍾志平
何明祐
Original Assignee
力晶積成電子製造股份有限公司
Filing date
Publication date
Application filed by 力晶積成電子製造股份有限公司 filed Critical 力晶積成電子製造股份有限公司
Priority to TW111120924A priority Critical patent/TWI835158B/en
Priority to CN202210691340.8A priority patent/CN117238932A/en
Publication of TW202349692A publication Critical patent/TW202349692A/en
Application granted granted Critical
Publication of TWI835158B publication Critical patent/TWI835158B/en

Links

Images

Abstract

The present disclosure provides an image sensor and a method for forming the same. The image sensor includes a substrate including a first and a second surfaces opposite to each other, a first isolation structure disposed in the substrate and extending into the substrate from the first surface to define a pixel region, an image sensing element disposed in the pixel region of the substrate, and a first and a second gate structures respectively disposed on the first surface of the substrate in the pixel region. The image sensing element includes a first and a fourth doped regions having first conductive types and a second and a third doped regions having second conductive types. The first doped region extends into the substrate from the second surface. The fourth doped region extends into the substrate from the first surface. The second doped region surrounds the first doped region and includes a portion between the first doped region and the fourth doped region. The third doped region is disposed between the second doped region and the fourth doped region.

Description

影像感測器及其形成方法Image sensor and method of forming same

本發明是有關於一種半導體結構及其形成方法,且特別是有關於一種影像感測器及其形成方法。 The present invention relates to a semiconductor structure and a method of forming the same, and in particular, to an image sensor and a method of forming the same.

影像感測器積體電路(integrated circuit,IC)廣泛地用於諸如相機、行動電話、車用鏡頭等裝置中。近年來,相較於電荷耦合裝置(charge-coupled device,CCD)而言,影像感測器互補金屬氧化物半導體(complementary metal-oxide semiconductor,CMOS)影像感測器由於功率消耗低、尺寸小、資料處理快、直接輸出資料以及製造成本低而越來越有優勢。因此,CMOS影像感測器在很大程度上取代了CCD影像感測器。一般而言,CMOS影像感測器可包含前側照明式(front-side illuminated,FSI)影像感測器及背側照明式(back-side illuminated,BSI)影像感測器。 Image sensor integrated circuits (ICs) are widely used in devices such as cameras, mobile phones, and automotive lenses. In recent years, compared with charge-coupled devices (CCD), image sensors complementary metal-oxide semiconductor (CMOS) image sensors have low power consumption, small size, Fast data processing, direct data output, and low manufacturing costs are becoming more and more advantageous. Therefore, CMOS image sensors have largely replaced CCD image sensors. Generally speaking, CMOS image sensors can include front-side illuminated (FSI) image sensors and back-side illuminated (BSI) image sensors.

然而,隨著裝置尺寸不斷地縮小,CMOS影像感測器的滿井容量(full well capacity,FWC)也跟著縮小,故如何使小尺寸的CMOS影像感測器具有足夠的滿井容量,以具有良好的靈敏 度和影像延遲(image lag),為本領域技術人員亟欲努力的目標之一。 However, as device sizes continue to shrink, the full well capacity (FWC) of CMOS image sensors also shrinks. Therefore, how to make small-sized CMOS image sensors have sufficient full well capacity to have good sensitivity The degree and image lag are one of the goals that those skilled in the art are eager to strive for.

本發明提供一種影像感測器及其形成方法,其藉由將影像感測元件中的具有第二導電型的第二摻雜區設計成圍繞具有第一導電型的第一摻雜區,以使影像感測元件包括額外的側向空乏電容(lateral depletion capacitance)。如此一來,影像感測器在小尺寸的設計下仍能具有足夠的滿井容量,使得影像感測器具有良好的靈敏度和影像延遲。 The present invention provides an image sensor and a method for forming the same, by designing the second doping region with the second conductivity type in the image sensing element to surround the first doping region with the first conductivity type. The image sensing element includes additional lateral depletion capacitance. In this way, the image sensor can still have sufficient full well capacity despite its small size design, so that the image sensor has good sensitivity and image delay.

本發明一實施例提供一種影像感測器,其包括基底、第一隔離結構、影像感測元件以及第一閘極結構和第二閘極結構。基底包括彼此相對的第一表面及第二表面。第一隔離結構設置於基底中且自第一表面延伸至基底中以界定畫素區。影像感測元件設置於基底的畫素區中且包括具有第一導電型的第一摻雜區、具有不同於第一導電型的第二導電型的第二摻雜區、具有第二導電型的第三摻雜區以及具有第一導電型的第四摻雜區。第一摻雜區自基底的第二表面延伸至基底中。第四摻雜區自基底的第一表面延伸至基底中。第二摻雜區圍繞第一摻雜區且包括設置在第一摻雜區和第四摻雜區之間的部分。第三摻雜區設置在第二摻雜區和第四摻雜區之間。第一閘極結構和第二閘極結構分別設置在基底的畫素區中的第一表面上。 An embodiment of the present invention provides an image sensor, which includes a substrate, a first isolation structure, an image sensing element, a first gate structure and a second gate structure. The base includes a first surface and a second surface opposite to each other. The first isolation structure is disposed in the substrate and extends from the first surface into the substrate to define the pixel area. The image sensing element is disposed in the pixel region of the substrate and includes a first doping region with a first conductivity type, a second doping region with a second conductivity type different from the first conductivity type, and a second doping region with a second conductivity type. a third doped region and a fourth doped region having a first conductivity type. The first doped region extends from the second surface of the substrate into the substrate. The fourth doped region extends from the first surface of the substrate into the substrate. The second doped region surrounds the first doped region and includes a portion disposed between the first doped region and the fourth doped region. The third doped region is disposed between the second doped region and the fourth doped region. The first gate structure and the second gate structure are respectively disposed on the first surface in the pixel area of the substrate.

在一些實施例中,第一摻雜區和第二摻雜區彼此接觸的界面呈杯狀輪廓,且杯狀輪廓的開口部分朝向基底的第二表面。 In some embodiments, the interface where the first doped region and the second doped region contact each other has a cup-shaped profile, and the opening portion of the cup-shaped profile faces the second surface of the substrate.

在一些實施例中,第一閘極結構較第二閘極結構靠近影像感測元件,且第三摻雜區和第四摻雜區各自包括與第一閘極結構接觸的部分。 In some embodiments, the first gate structure is closer to the image sensing element than the second gate structure, and the third doped region and the fourth doped region each include a portion in contact with the first gate structure.

在一些實施例中,影像感測器更包括彩色濾光片和微透鏡。彩色濾光片設置在基底的第二表面上。微透鏡設置在彩色濾光片上。 In some embodiments, the image sensor further includes color filters and microlenses. The color filter is disposed on the second surface of the substrate. Microlenses are provided on the color filter.

在一些實施例中,影像感測器更包括第二隔離結構,其設置在基底中且自基底的第二表面延伸至基底中。 In some embodiments, the image sensor further includes a second isolation structure disposed in the substrate and extending from the second surface of the substrate into the substrate.

本發明一實施例提供一種形成影像感測器的方法,其包括以下步驟。在基底層中形成具有第一導電型的摻雜區。對基底層執行磊晶生長製程,以在基底層上形成磊晶層,並且使摻雜區擴散至磊晶層中,以形成自基底層延伸至磊晶層中的第一摻雜區,其中第一摻雜區具有第一導電型。在磊晶層中形成自磊晶層的第一表面延伸至磊晶層中的第一隔離結構以界定畫素區。於磊晶層的畫素區中形成圍繞第一摻雜區的第二摻雜區,其中第二摻雜區具有與第一導電型不同的第二導電型。於磊晶層的畫素區中分別形成具有第二導電型的第三摻雜區以及具有第一導電型的第四摻雜區。第四摻雜區自磊晶層的第一表面延伸至磊晶層中。第三摻雜區設置在第四摻雜區和第三摻雜區之間。第二摻雜區包括設置在第一摻雜區和第三摻雜區之間的部分。第一摻雜區、第二 摻雜區、第三摻雜區和第四摻雜區形成影像感測器的影像感測元件。 An embodiment of the present invention provides a method of forming an image sensor, which includes the following steps. A doped region having a first conductivity type is formed in the base layer. An epitaxial growth process is performed on the base layer to form an epitaxial layer on the base layer, and the doped region is diffused into the epitaxial layer to form a first doped region extending from the base layer to the epitaxial layer, wherein The first doped region has a first conductivity type. A first isolation structure extending from a first surface of the epitaxial layer to the epitaxial layer is formed in the epitaxial layer to define a pixel region. A second doped region surrounding the first doped region is formed in the pixel region of the epitaxial layer, wherein the second doped region has a second conductivity type different from the first conductivity type. A third doping region having a second conductivity type and a fourth doping region having a first conductivity type are respectively formed in the pixel region of the epitaxial layer. The fourth doped region extends from the first surface of the epitaxial layer into the epitaxial layer. The third doped region is disposed between the fourth doped region and the third doped region. The second doped region includes a portion disposed between the first doped region and the third doped region. The first doped region, the second The doped region, the third doped region and the fourth doped region form an image sensing element of the image sensor.

在一些實施例中,第一摻雜區和第二摻雜區彼此接觸的界面呈杯狀輪廓,且杯狀輪廓的開口部分朝向磊晶層的與第一表面相對的第二表面。 In some embodiments, the interface where the first doped region and the second doped region contact each other has a cup-shaped profile, and the opening portion of the cup-shaped profile faces the second surface of the epitaxial layer opposite to the first surface.

在一些實施例中,形成影像感測器的方法更包括在形成第三摻雜區和第四摻雜區之前,於磊晶層的第一表面上分別形成第一閘極結構和第二閘極結構。第一閘極結構較第二閘極結構靠近影像感測元件。第三摻雜區和第四摻雜區各自包括與第一閘極結構接觸的部分。 In some embodiments, the method of forming the image sensor further includes forming a first gate structure and a second gate structure on the first surface of the epitaxial layer before forming the third doped region and the fourth doped region. Extreme structure. The first gate structure is closer to the image sensing element than the second gate structure. Each of the third doped region and the fourth doped region includes a portion in contact with the first gate structure.

在一些實施例中,形成影像感測器的方法更包括在磊晶層的第一表面上形成內連線結構;在形成內連線結構後,移除基底層以暴露出磊晶層的與第一表面相對的第二表面;以及在磊晶層中形成自磊晶層的第二表面延伸至磊晶層中的第二隔離結構。 In some embodiments, the method of forming the image sensor further includes forming an interconnect structure on the first surface of the epitaxial layer; after forming the interconnect structure, removing the base layer to expose the epitaxial layer and the a second surface opposite the first surface; and a second isolation structure formed in the epitaxial layer extending from the second surface of the epitaxial layer to the epitaxial layer.

在一些實施例中,形成影像感測器的方法更包括在磊晶層的第二表面上形成彩色濾光片;以及在彩色濾光片上形成微透鏡。 In some embodiments, the method of forming an image sensor further includes forming a color filter on the second surface of the epitaxial layer; and forming microlenses on the color filter.

基於上述,在上述影像感測器及其形成方法中,由於影像感測元件中的具有第二導電型的第二摻雜區設計成圍繞具有第一導電型的第一摻雜區,以使影像感測元件包括額外的側向空乏電容(lateral depletion capacitance)。如此一來,影像感測器在小尺寸的設計下仍能具有足夠的滿井容量,使得影像感測器具有良 好的靈敏度和影像延遲。 Based on the above, in the above image sensor and its forming method, since the second doping region with the second conductivity type in the image sensing element is designed to surround the first doping region with the first conductivity type, so that The image sensing element includes additional lateral depletion capacitance. In this way, the image sensor can still have sufficient full well capacity despite its small size design, making the image sensor have good Good sensitivity and image delay.

1:影像感測器 1:Image sensor

10:支撐基底 10: Support base

100:基底層 100: Basal layer

102、116、118:摻雜區 102, 116, 118: Doped area

110:磊晶層、基底 110: Epitaxial layer, substrate

111、111a:第一摻雜區 111, 111a: first doped region

113:第二摻雜區 113: Second doping region

114:井區 114:Well area

115:第三摻雜區 115: The third doping region

117:第四摻雜區 117: The fourth doped region

120:介電層 120:Dielectric layer

122:內連線 122:Internal connection

124、C1、C2、C3、C4、GC1、GC2、GC3、GC4:導電接觸件 124. C1, C2, C3, C4, GC1, GC2, GC3, GC4: conductive contacts

130:彩色濾光片 130: Color filter

140:微透鏡 140: Microlens

GS1:第一閘極結構 GS1: first gate structure

GS2:第二閘極結構 GS2: Second gate structure

STI1:第一隔離結構 STI1: first isolation structure

STI2:第二隔離結構 STI2: Second isolation structure

TX:轉移電晶體 TX: transfer transistor

SF:源極隨耦器電晶體 SF: source follower transistor

Sel:列選擇電晶體 Sel: column select transistor

RST:重設電晶體 RST: reset transistor

PR:畫素區 PR: Pixel area

PD:影像感測元件 PD: image sensing element

S1:第一表面 S1: first surface

S2:第二表面 S2: Second surface

圖1至圖7是本發明一實施例的形成影像感測器的方法的示意圖。 1 to 7 are schematic diagrams of a method of forming an image sensor according to an embodiment of the present invention.

參照本實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似之參考號碼表示相同或相似之元件,以下段落將不再一一贅述。 The present invention will be described more fully with reference to the drawings of this embodiment. However, the present invention may also be embodied in various forms and should not be limited to the embodiments described herein. The thickness of layers and regions in the drawings are exaggerated for clarity. The same or similar reference numbers indicate the same or similar components, and will not be repeated one by one in the following paragraphs.

應當理解,當諸如元件被稱為在另一元件「上」或「連接到」另一元件時,其可以直接在另一元件上或與另一元件連接,或者也可存在中間元件。若當元件被稱為「直接在另一元件上」或「直接連接到」另一元件時,則不存在中間元件。如本文所使用的,「連接」可以指物理及/或電性連接,而「電性連接」或「耦合」可為二元件間存在其它元件。本文中所使用的「電性連接」可包括物理連接(例如有線連接)及物理斷接(例如無線連接)。 It will be understood that when an element is referred to as being "on" or "connected to" another element, it can be directly on or connected to the other element or intervening elements may also be present. When an element is referred to as being "directly on" or "directly connected to" another element, there are no intervening elements present. As used herein, "connection" may refer to a physical and/or electrical connection, and "electrical connection" or "coupling" may refer to the presence of other components between two components. "Electrical connection" as used herein may include physical connections (such as wired connections) and physical disconnections (such as wireless connections).

本文使用的「約」、「近似」或「實質上」包括所提到的值和在所屬技術領域中具有通常知識者能夠確定之特定值的可接受的偏差範圍內的平均值,考慮到所討論的測量和與測量相關的 誤差的特定數量(即,測量系統的限制)。例如,「約」可以表示在所述值的一個或多個標準偏差內,或±30%、±20%、±10%、±5%內。再者,本文使用的「約」、「近似」或「實質上」可依光學性質、蝕刻性質或其它性質,來選擇較可接受的偏差範圍或標準偏差,而可不用一個標準偏差適用全部性質。 As used herein, "about," "approximately" or "substantially" includes the recited value and the average within an acceptable range of deviations from the specific value that a person with ordinary skill in the art can determine, taking into account the Discussion of measurement and measurement related A specific amount of error (i.e., the limits of the measurement system). For example, "about" can mean within one or more standard deviations of the stated value, or within ±30%, ±20%, ±10%, ±5%. Furthermore, "about", "approximately" or "substantially" used in this article can be used to select a more acceptable deviation range or standard deviation based on optical properties, etching properties or other properties, and one standard deviation does not apply to all properties. .

使用本文中所使用的用語僅為闡述例示性實施例,而非限制本揭露。在此種情形中,除非在上下文中另有解釋,否則單數形式包括多數形式。 The terminology used herein is used only to describe illustrative embodiments and does not limit the disclosure. In such cases, the singular form includes the plural form unless the context dictates otherwise.

圖1至7是本發明一實施例的形成影像感測器的方法的示意圖。圖1至圖7中的(a)和(b)分別為沿不同剖線截取的剖面示意圖。舉例來說,圖5的(a)為沿圖5的(c)中所示出的剖線A-A’截取的剖面示意圖,而圖5的(b)為沿圖5的(c)中所示出的剖線B-B’截取的剖面示意圖。 1 to 7 are schematic diagrams of a method of forming an image sensor according to an embodiment of the present invention. (a) and (b) in Figures 1 to 7 are respectively schematic cross-sectional views taken along different sections. For example, (a) of Figure 5 is a schematic cross-sectional view taken along the cross-section line AA' shown in (c) of Figure 5 , and (b) of Figure 5 is a schematic cross-sectional view taken along the line AA' shown in (c) of Figure 5 A schematic cross-section taken along the section line BB' is shown.

首先,請參照圖1,在基底層100中形成具有第一導電型(例如P型)的摻雜區102。基底層100可為任何類型的半導體主體(例如矽、SiGe、SOI等)。在一些實施例中,基底層100可為具有第一導電型的塊狀半導體基底。在一些實施例中,可藉由離子植入製程以在距基底層100的表面的某一深度處形成摻雜區102。在一些實施例中,摻雜區102可形成為淺摻雜區,亦即,摻雜區102可鄰近基底層100的上述表面。 First, referring to FIG. 1 , a doped region 102 having a first conductivity type (eg, P type) is formed in the base layer 100 . Base layer 100 may be any type of semiconductor body (eg, silicon, SiGe, SOI, etc.). In some embodiments, the base layer 100 may be a bulk semiconductor substrate having a first conductivity type. In some embodiments, the doped region 102 may be formed at a certain depth from the surface of the base layer 100 through an ion implantation process. In some embodiments, the doped region 102 may be formed as a lightly doped region, that is, the doped region 102 may be adjacent to the above-mentioned surface of the base layer 100 .

接著,請參照圖2,對基底層100執行磊晶生長製程,以在基底層100上形成磊晶層110,並使摻雜區102擴散至磊晶層 110中,以形成自基底層100延伸至磊晶層110中的第一摻雜區111。第一摻雜區111具有第一導電型(例如P型)。在一些實施例中,磊晶層110可包括彼此相對的第一表面S1和第二表面S2。磊晶層110的第一表面S1可為遠離基底層100的表面。磊晶層110的第二表面S2可為基底層100與磊晶層110之間的界面。 Next, referring to FIG. 2 , an epitaxial growth process is performed on the base layer 100 to form an epitaxial layer 110 on the base layer 100 and to diffuse the doped region 102 into the epitaxial layer. 110 to form a first doped region 111 extending from the base layer 100 to the epitaxial layer 110 . The first doped region 111 has a first conductivity type (for example, P type). In some embodiments, the epitaxial layer 110 may include first and second surfaces S1 and S2 opposite each other. The first surface S1 of the epitaxial layer 110 may be a surface away from the base layer 100 . The second surface S2 of the epitaxial layer 110 may be an interface between the base layer 100 and the epitaxial layer 110 .

然後,請參照圖3,在磊晶層110中形成自磊晶層110的第一表面S1延伸至磊晶層110中的第一隔離結構STI1以界定畫素區(例如圖5的(c)所示出的畫素區PR)。在一些實施例中,在垂直第一表面S1的方向上,第一摻雜區111位於第一隔離結構STI1所界定的畫素區中。第一隔離結構STI1可包括一或多個介電材料。所述介電材料可包括氧化物(例如氧化矽)、正矽酸四乙酯(tetraethyl orthosilicate;TEOS)、氮化物(例如氮化矽、氮氧化矽等)、碳化物(例如碳化矽、碳氧化矽等)或類似者。第一隔離結構STI1可例如是淺溝槽隔離結構,但不以此為限。 Then, referring to FIG. 3 , a first isolation structure STI1 extending from the first surface S1 of the epitaxial layer 110 to the epitaxial layer 110 is formed in the epitaxial layer 110 to define the pixel area (for example, (c) of FIG. 5 The pixel area PR shown). In some embodiments, in a direction perpendicular to the first surface S1, the first doping region 111 is located in the pixel region defined by the first isolation structure STI1. The first isolation structure STI1 may include one or more dielectric materials. The dielectric material may include oxides (such as silicon oxide), tetraethyl orthosilicate (TEOS), nitrides (such as silicon nitride, silicon oxynitride, etc.), carbides (such as silicon carbide, carbon silicon oxide, etc.) or similar. The first isolation structure STI1 may be, for example, a shallow trench isolation structure, but is not limited thereto.

而後,於磊晶層110的畫素區中形成圍繞第一摻雜區111的第二摻雜區113,其中第二摻雜區113具有與第一導電型不同的第二導電型(例如N型)。如此一來,後續將描述的影像感測元件PD包括由第二摻雜區113圍繞第一摻雜區111的界面所形成之額外側向空乏電容,使得影像感測器(例如圖7所示出的影像感測器1)在小尺寸的設計下仍能夠具有足夠的滿井容量(FWC),以具有良好的靈敏度和影像延遲。在一些實施例中,第一摻雜區111和第二摻雜區113彼此接觸的界面可呈杯狀輪廓,其中杯狀輪廓 的開口部分朝向磊晶層110的第二表面S2。 Then, a second doped region 113 surrounding the first doped region 111 is formed in the pixel region of the epitaxial layer 110, wherein the second doped region 113 has a second conductivity type (for example, N) that is different from the first conductivity type. type). As a result, the image sensing element PD to be described later includes an additional lateral depletion capacitance formed by the interface of the second doping region 113 surrounding the first doping region 111, so that the image sensor (for example, as shown in FIG. 7 The resulting image sensor 1) can still have sufficient full well capacity (FWC) in a small size design to have good sensitivity and image delay. In some embodiments, the interface where the first doped region 111 and the second doped region 113 contact each other may have a cup-shaped profile, where the cup-shaped profile The opening portion faces the second surface S2 of the epitaxial layer 110 .

在一些實施例中,可藉由離子植入製程以在距磊晶層110的第一表面S1的某一深度處形成第二摻雜區113。在一些實施例中,相較於磊晶層110的第二表面S2,第二摻雜區113較遠離磊晶層110的第一表面S1,也就是說,可採用深摻雜的方式於磊晶層110中形成第二摻雜區113。 In some embodiments, the second doped region 113 may be formed at a certain depth from the first surface S1 of the epitaxial layer 110 through an ion implantation process. In some embodiments, the second doped region 113 is further away from the first surface S1 of the epitaxial layer 110 than the second surface S2 of the epitaxial layer 110 . That is to say, a deep doping method can be used for the epitaxial layer 110 . A second doped region 113 is formed in the crystal layer 110 .

之後,於磊晶層110的畫素區中形成具有第一導電型(例如P型)的井區114。在一些實施例中,井區114自磊晶層110的第一表面S1延伸至磊晶層110中。在一些實施例中,井區114可與第二摻雜區113間隔開來。在一些實施例中,井區114可包括位在第一隔離結構STI1下方的部分。 Afterwards, a well region 114 having a first conductivity type (for example, P type) is formed in the pixel region of the epitaxial layer 110 . In some embodiments, the well region 114 extends from the first surface S1 of the epitaxial layer 110 into the epitaxial layer 110 . In some embodiments, well region 114 may be spaced apart from second doped region 113 . In some embodiments, well region 114 may include a portion beneath first isolation structure STI1.

接著,請參照圖4,於磊晶層110的第一表面S1上分別形成第一閘極結構GS1和第二閘極結構GS2。第一閘極結構GS1和第二閘極結構GS2可各自對應於轉移電晶體、源極隨耦器電晶體、列選擇電晶體或重設電晶體的閘極結構。在本實施例中,第一閘極結構GS1可為轉移電晶體的閘極結構,而第二閘極結構GS2可為重設電晶體的閘極結構。在一些實施例中,第一閘極結構GS1和第二閘極結構GS2可各自包括形成在磊晶層110的第一表面S1上的閘極(未示出)、形成在閘極與磊晶層110之間的閘介電層(未示出)以及形成在閘極側壁的閘極間隙壁(未示出)。閘極可包括任何可作為閘極的材料,例如多晶矽。閘介電層可包括任何可作為閘介電層的材料,例如氧化矽。閘極間隙壁可包括 任何可作為閘極間隙壁的材料,例如氮化矽。 Next, referring to FIG. 4 , a first gate structure GS1 and a second gate structure GS2 are respectively formed on the first surface S1 of the epitaxial layer 110 . The first gate structure GS1 and the second gate structure GS2 may each correspond to a gate structure of a transfer transistor, a source follower transistor, a column select transistor or a reset transistor. In this embodiment, the first gate structure GS1 may be the gate structure of the transfer transistor, and the second gate structure GS2 may be the gate structure of the reset transistor. In some embodiments, the first gate structure GS1 and the second gate structure GS2 may each include a gate (not shown) formed on the first surface S1 of the epitaxial layer 110, a gate formed between the gate and the epitaxial layer 110. A gate dielectric layer (not shown) between layers 110 and a gate spacer (not shown) formed on the gate sidewalls. The gate may include any material that can be used as a gate, such as polysilicon. The gate dielectric layer may include any material that may function as a gate dielectric layer, such as silicon oxide. Gate spacers may include Any material that can be used as a gate spacer, such as silicon nitride.

然後,於磊晶層110的畫素區中分別形成具有第二導電型(例如N型)的第三摻雜區115以及具有第一導電型(例如P型)的第四摻雜區117。第四摻雜區117形成為自磊晶層110的第一表面S1延伸至磊晶層110中,而第三摻雜區115形成在第四摻雜區117和第三摻雜區115之間,且第二摻雜區113包括設置在第一摻雜區111和第三摻雜區115之間的部分。第一摻雜區111、第二摻雜區113、第三摻雜區115和第四摻雜區117形成影像感測器的影像感測元件PD。 Then, a third doping region 115 having a second conductivity type (eg, N-type) and a fourth doping region 117 having a first conductivity type (eg, P-type) are respectively formed in the pixel region of the epitaxial layer 110 . The fourth doped region 117 is formed extending from the first surface S1 of the epitaxial layer 110 into the epitaxial layer 110 , and the third doped region 115 is formed between the fourth doped region 117 and the third doped region 115 , and the second doped region 113 includes a portion disposed between the first doped region 111 and the third doped region 115 . The first doped region 111, the second doped region 113, the third doped region 115 and the fourth doped region 117 form the image sensing element PD of the image sensor.

在一些實施例中,第三摻雜區115和第四摻雜區117可經由以下步驟形成。首先,可藉由離子植入製程以在距磊晶層110的第一表面S1的某一深度處形成與第二摻雜區113接觸的第三摻雜區115。在一些實施例中,第三摻雜區115可自磊晶層110的第一表面S1延伸至磊晶層110中。在一些實施例中,第一閘極結構GS1較第二閘極結構GS2靠近影像感測元件PD,且第三摻雜區115可包括與第一閘極結構GS1接觸的部分。接著,可藉由離子植入製程以在距磊晶層110的第一表面S1的某一深度處形成第四摻雜區117。在一些實施例中,第四摻雜區117可包括形成在第三摻雜區115中且與第一閘極結構GS1接觸的部分以及形成在磊晶層110中且與第一隔離結構STI1接觸的部分。在一些實施例中,第四摻雜區117可自磊晶層110的第一表面S1延伸至磊晶層110中。 In some embodiments, the third doped region 115 and the fourth doped region 117 may be formed through the following steps. First, the third doped region 115 in contact with the second doped region 113 can be formed at a certain depth from the first surface S1 of the epitaxial layer 110 through an ion implantation process. In some embodiments, the third doped region 115 may extend from the first surface S1 of the epitaxial layer 110 into the epitaxial layer 110 . In some embodiments, the first gate structure GS1 is closer to the image sensing element PD than the second gate structure GS2, and the third doped region 115 may include a portion in contact with the first gate structure GS1. Next, an ion implantation process may be used to form a fourth doped region 117 at a certain depth from the first surface S1 of the epitaxial layer 110 . In some embodiments, the fourth doped region 117 may include a portion formed in the third doped region 115 and in contact with the first gate structure GS1 and a portion formed in the epitaxial layer 110 and in contact with the first isolation structure STI1 part. In some embodiments, the fourth doped region 117 may extend from the first surface S1 of the epitaxial layer 110 into the epitaxial layer 110 .

之後,請繼續參照圖4,將摻雜區116和摻雜區118分別形成在第一閘極結構GS1和第二閘極結構GS2之間的磊晶層110中以及第二閘極結構GS2和第一隔離結構STI1之間的磊晶層110中。摻雜區116和摻雜區118可各自具有第二導電型(例如N型)。在一些實施例中,在第一閘極結構GS1和第二閘極結構GS2分別為轉移電晶體的閘極結構和重設電晶體的閘極結構的情況下,第一閘極結構GS1可配置成選擇性地控制電荷載子在影像感測元件PD與摻雜區116之間的移動。摻雜區116可為浮動結(floating node)且可經由後續將形成的內連線122和導電接觸件124與圖5所示出的源極隨耦器電晶體SF電性連接。摻雜區118可為與工作電壓(VDD)連接的汲極。 After that, please continue to refer to FIG. 4 to form the doping region 116 and the doping region 118 respectively in the epitaxial layer 110 between the first gate structure GS1 and the second gate structure GS2 and the second gate structure GS2 and GS2 respectively. in the epitaxial layer 110 between the first isolation structures STI1. Doped region 116 and doped region 118 may each have a second conductivity type (eg, N-type). In some embodiments, when the first gate structure GS1 and the second gate structure GS2 are respectively the gate structure of the transfer transistor and the gate structure of the reset transistor, the first gate structure GS1 may be configured To selectively control the movement of charge carriers between the image sensing element PD and the doped region 116 . The doped region 116 may be a floating node and may be electrically connected to the source follower transistor SF shown in FIG. 5 via interconnects 122 and conductive contacts 124 that will be formed later. The doped region 118 may be a drain connected to the operating voltage (VDD).

而後,請參照圖5,在磊晶層110的第一表面S1上形成內連線結構。在一些實施例中,內連線結構可包括形成於磊晶層110的第一表面S1上的介電層120、形成於介電層120中的導電接觸件(如圖5的(b)所示出的導電接觸件124和圖5的(c)所示出的導電接觸件C1、C2、C3、C4、GC1、GC2、GC3、GC4)以及形成於介電層120中的內連線122。 Then, referring to FIG. 5 , an interconnect structure is formed on the first surface S1 of the epitaxial layer 110 . In some embodiments, the interconnect structure may include a dielectric layer 120 formed on the first surface S1 of the epitaxial layer 110 and a conductive contact formed in the dielectric layer 120 (as shown in (b) of FIG. 5 The conductive contacts 124 shown and the conductive contacts C1, C2, C3, C4, GC1, GC2, GC3, GC4) shown in FIG. 5(c) and the interconnects 122 formed in the dielectric layer 120 .

介電層120可包括一層或多層的介電層。在一些實施例中,介電層120可包括絕緣材料,例如二氧化矽、SiCOH、氟矽酸鹽玻璃、磷酸鹽玻璃(例如,硼磷酸鹽矽酸鹽玻璃)或類似者中的一或多者。在一些實施例中,導電接觸件124、C1、C2、C3、C4、GC1、GC2、GC3、GC4可包括導電材料,例如銅、鎢、釕、 鋁及/或類似者。 Dielectric layer 120 may include one or more dielectric layers. In some embodiments, dielectric layer 120 may include an insulating material such as one or more of silicon dioxide, SiCOH, fluorosilicate glass, phosphate glass (eg, borophosphate silicate glass), or the like. By. In some embodiments, conductive contacts 124, C1, C2, C3, C4, GC1, GC2, GC3, GC4 may include conductive materials such as copper, tungsten, ruthenium, Aluminum and/or similar.

請參照圖5的(c),在一些實施例中,影像感測器可包括轉移電晶體TX、源極隨耦器電晶體SF、列選擇電晶體Sel及重設電晶體RST。導電接觸件GC1、GC2、GC3、GC4可分別與轉移電晶體TX、重設電晶體RST、極隨耦器電晶體SF和列選擇電晶體Sel的閘極結構連接。轉移電晶體TX可通過導電接觸件C1和內連線結構與源極隨耦器電晶體SF連接。導電接觸件C2可通過內連線結構連接至工作電壓。導電接觸件C3可通過內連線結構連接至畫素電源電壓。導電接觸件C4可通過內連線結構連接至輸出線。在一些實施例中,圖5的(a)圖為沿圖5的(c)圖中所示出的剖線A-A’截取的剖面圖,而圖5的(b)圖為沿圖5的(c)圖中所示出的剖線B-B’截取的剖面圖,故圖5的(c)所示出的導電接觸件C1和導電接觸件C2可對應到圖5的(b)所示出的導電接觸件124,且圖5的(b)所示出的第一閘極結構GS1和第二閘極結構GS2可分別對應到圖5的(c)所示出的轉移電晶體TX的閘極結構和重設電晶體RST的閘極結構。 Referring to (c) of FIG. 5 , in some embodiments, the image sensor may include a transfer transistor TX, a source follower transistor SF, a column selection transistor Sel, and a reset transistor RST. The conductive contacts GC1, GC2, GC3 and GC4 can be respectively connected to the gate structures of the transfer transistor TX, the reset transistor RST, the pole follower transistor SF and the column selection transistor Sel. The transfer transistor TX can be connected to the source follower transistor SF via the conductive contact C1 and the interconnect structure. The conductive contact C2 can be connected to the operating voltage via an interconnection structure. The conductive contact C3 can be connected to the pixel power supply voltage through an interconnect structure. Conductive contact C4 may be connected to the output line through an interconnection structure. In some embodiments, (a) of FIG. 5 is a cross-sectional view taken along line AA' shown in (c) of FIG. 5 , and (b) of FIG. 5 is a cross-sectional view taken along line AA' shown in FIG. 5(c) . (c) is a cross-sectional view taken along the section line BB', so the conductive contact C1 and the conductive contact C2 shown in (c) of Figure 5 can correspond to (b) of Figure 5 The conductive contact 124 is shown, and the first gate structure GS1 and the second gate structure GS2 shown in FIG. 5(b) can respectively correspond to the transfer transistor shown in FIG. 5(c) The gate structure of TX and the gate structure of reset transistor RST.

接著,請參照圖5和圖6,在形成內連線結構後,將內連線結構的介電層120接合至支撐基底10上。舉例而言,在一些實施例中,支撐基底10可包括半導體材料,例如矽。然後,在將介電層120接合至支撐基底10後,可藉由薄化製程來移除基底層100以暴露出磊晶層110的第二表面S2,如此可允許輻射(例如光)更容易地傳遞至影像感測元件PD。在一些實施例中,在經過薄化 製程後,第一摻雜區111於基底層100的部分也跟著被移除,而形成自磊晶層110的第二表面S2延伸至磊晶層110中的第一摻雜區111a。在一些實施例中,可藉由蝕刻及/或機械研磨來進行薄化製程。 Next, please refer to FIGS. 5 and 6 , after forming the interconnect structure, the dielectric layer 120 of the interconnect structure is bonded to the supporting substrate 10 . For example, in some embodiments, support substrate 10 may include a semiconductor material, such as silicon. Then, after the dielectric layer 120 is bonded to the supporting substrate 10, the base layer 100 can be removed through a thinning process to expose the second surface S2 of the epitaxial layer 110, which allows radiation (eg, light) to be more easily to the image sensing element PD. In some embodiments, after thinning After the process, the portion of the first doped region 111 in the base layer 100 is also removed, and a first doped region 111a extending from the second surface S2 of the epitaxial layer 110 to the epitaxial layer 110 is formed. In some embodiments, the thinning process can be performed by etching and/or mechanical grinding.

之後,請參照圖6,在磊晶層110中形成自磊晶層110的第二表面S2延伸至磊晶層110中的第二隔離結構STI2。在一些實施例中,第二隔離結構STI2在垂直於磊晶層110的第二表面S2的方向上與第一隔離結構STI1重疊。在一些實施例中,第二隔離結構STI2可在垂直於磊晶層110的方向上與第一隔離結構STI1間隔開來。在另一些實施例中,第二隔離結構STI2可與第一隔離結構STI1接觸。在一些替代實施例中,第二隔離結構STI2可貫穿第一隔離結構STI1的一部分。第二隔離結構STI2可包括一或多個介電材料。所述介電材料可包括氧化物(例如氧化矽)、正矽酸四乙酯(tetraethyl orthosilicate;TEOS)、氮化物(例如氮化矽、氮氧化矽等)、碳化物(例如碳化矽、碳氧化矽等)或類似者。第二隔離結構STI2可例如是深溝槽隔離結構,但不以此為限。在一些實施例中,第二隔離結構STI2可將入射輻射實質上限制在畫素區中,以避免相鄰的兩個相鄰畫素區之間產生串擾的問題。 Afterwards, referring to FIG. 6 , a second isolation structure STI2 extending from the second surface S2 of the epitaxial layer 110 to the epitaxial layer 110 is formed in the epitaxial layer 110 . In some embodiments, the second isolation structure STI2 overlaps the first isolation structure STI1 in a direction perpendicular to the second surface S2 of the epitaxial layer 110 . In some embodiments, the second isolation structure STI2 may be spaced apart from the first isolation structure STI1 in a direction perpendicular to the epitaxial layer 110 . In other embodiments, the second isolation structure STI2 may be in contact with the first isolation structure STI1. In some alternative embodiments, the second isolation structure STI2 may penetrate a portion of the first isolation structure STI1. The second isolation structure STI2 may include one or more dielectric materials. The dielectric material may include oxides (such as silicon oxide), tetraethyl orthosilicate (TEOS), nitrides (such as silicon nitride, silicon oxynitride, etc.), carbides (such as silicon carbide, carbon silicon oxide, etc.) or similar. The second isolation structure STI2 may be, for example, a deep trench isolation structure, but is not limited thereto. In some embodiments, the second isolation structure STI2 can substantially limit the incident radiation in the pixel area to avoid crosstalk problems between two adjacent pixel areas.

然後,請參照圖7,在磊晶層110的第二表面S2上形成彩色濾光片130。彩色濾光片130可形成於畫素區上方。彩色濾光片130彼此接觸的界面可位於第二隔離結構STI2上。彩色濾光片130由允許具有特定波長範圍的輻射(例如光)透射,同時阻擋波 長在指定範圍之外的光的材料形成。在一些實施例中,彩色濾光片130可由單體、聚合物或類似者形成。 Then, referring to FIG. 7 , a color filter 130 is formed on the second surface S2 of the epitaxial layer 110 . The color filter 130 may be formed over the pixel area. The interface where the color filters 130 contact each other may be located on the second isolation structure STI2. Color filter 130 allows transmission of radiation (eg, light) having a specific range of wavelengths while blocking waves A material formed from light that grows outside the specified range. In some embodiments, color filter 130 may be formed from a monomer, a polymer, or the like.

而後,在彩色濾光片130上形成微透鏡140,以形成影像感測器1。在一些實施例中,可藉由將微透鏡材料沉積於彩色濾光片130上(例如藉由旋塗方法或沉積製程)來形成微透鏡140。在微透鏡材料上方圖案化具有彎曲上表面的微透鏡模板(圖中未繪示)。微透鏡模板可包括使用分佈曝光劑量曝光(例如對於負型光阻,曲率底部處暴露較多光且曲率頂部處暴露較少光)、顯影以及烘烤以形成圓化形狀的光阻材料。接著藉由根據微透鏡模板選擇性地蝕刻微透鏡材料來形成微透鏡140。 Then, microlenses 140 are formed on the color filter 130 to form the image sensor 1 . In some embodiments, the microlens 140 may be formed by depositing microlens material on the color filter 130 (eg, by a spin coating method or a deposition process). A microlens template with a curved upper surface is patterned over the microlens material (not shown). The microlens template may include photoresist material that is exposed using a distributed exposure dose (eg, for a negative photoresist, more light is exposed at the bottom of the curvature and less light is exposed at the top of the curvature), developed, and baked to form a rounded shape. Microlenses 140 are then formed by selectively etching the microlens material according to the microlens template.

基於上述,在上述形成影像感測器的方法中,由於影像感測元件PD中的第二摻雜區113形成為圍繞第一摻雜區111a的兩側端和底端,故影像感測元件PD除了包括在垂直方向上的空乏電容,其還包括在橫向方向上的側向空乏電容(lateral depletion capacitance)。如此一來,影像感測器1在小尺寸的設計下仍能具有足夠的滿井容量,使得影像感測器1具有良好的靈敏度和影像延遲。另一方面,由於第一摻雜區111是藉由在背側(例如圖7所示出的第二表面S2)以磊晶生長製程形成,故可避免前側(例如圖7所示出的第一表面S1)在高能量摻雜中所帶來的傷害,以避免晶格缺陷所導致的暗電流。 Based on the above, in the above method of forming an image sensor, since the second doped region 113 in the image sensing element PD is formed to surround both sides and the bottom of the first doped region 111a, the image sensing element In addition to the depletion capacitance in the vertical direction, PD also includes lateral depletion capacitance in the lateral direction. In this way, the image sensor 1 can still have sufficient full well capacity despite its small size design, so that the image sensor 1 has good sensitivity and image delay. On the other hand, since the first doped region 111 is formed by an epitaxial growth process on the back side (such as the second surface S2 shown in FIG. 7 ), it can avoid the front side (such as the second surface S2 shown in FIG. 7 ). A surface S1) is damaged during high-energy doping to avoid dark current caused by lattice defects.

以下,將藉由圖7的(b)來說明影像感測器1。應注意的是,圖7的(b)所示出的影像感測器1可藉由上述的方法形成,但 不限於此方法。 Hereinafter, the image sensor 1 will be explained using (b) of FIG. 7 . It should be noted that the image sensor 1 shown in FIG. 7(b) can be formed by the above method, but Not limited to this method.

請參照圖7的(b),影像感測器1包括基底110、第一隔離結構STI1、影像感測元件PD以及第一閘極結構GS1和第二閘極結構GS2。 Referring to (b) of FIG. 7 , the image sensor 1 includes a substrate 110, a first isolation structure STI1, an image sensing element PD, and a first gate structure GS1 and a second gate structure GS2.

基底110可包括彼此相對的第一表面S1及第二表面S2。在本實施例中,基底110可為形成於具有與磊晶層的第一導電型(例如P型)相同的第一導電型的塊狀矽基底上的磊晶層,或在影像感測器1的製造中自其移除塊狀矽基底的P型磊晶層,故基底110在上述製造過程中又稱為磊晶層110。在本實施例中,影像感測器1為背側照明式(BSI)影像感測器,影像感測元件PD可將自基底110的第二表面S2朝向基底110的第一表面S1入射的輻射(例如光)轉換為電訊號。 The substrate 110 may include a first surface S1 and a second surface S2 opposite to each other. In this embodiment, the substrate 110 may be an epitaxial layer formed on a bulk silicon substrate having a first conductivity type that is the same as the first conductivity type of the epitaxial layer (eg, P type), or an epitaxial layer formed on an image sensor. In the manufacturing of 1, the P-type epitaxial layer of the bulk silicon substrate is removed from it, so the substrate 110 is also called the epitaxial layer 110 in the above manufacturing process. In this embodiment, the image sensor 1 is a backside illumination (BSI) image sensor, and the image sensing element PD can transmit radiation incident from the second surface S2 of the substrate 110 toward the first surface S1 of the substrate 110 (such as light) into electrical signals.

第一隔離結構STI1可設置於基底110中且自第一表面S1延伸至基底110中以界定畫素區(如圖5的(c)所示出的畫素區PR)。在一些實施例中,影像感測器1可更包括設置在基底110中且自基底110的第二表面S2延伸至基底110中的第二隔離結構STI2。 The first isolation structure STI1 may be disposed in the substrate 110 and extend from the first surface S1 into the substrate 110 to define a pixel region (the pixel region PR shown in (c) of FIG. 5 ). In some embodiments, the image sensor 1 may further include a second isolation structure STI2 disposed in the substrate 110 and extending from the second surface S2 of the substrate 110 into the substrate 110 .

影像感測元件PD可設置於基底110的畫素區中且包括具有第一導電型(例如P型)的第一摻雜區111a、具有不同於第一導電型的第二導電型(例如N型)的第二摻雜區113、具有第二導電型(例如N型)的第三摻雜區115以及具有第一導電型(例如P型)的第四摻雜區117。第一摻雜區111a可自基底110的第 二表面S2延伸至基底110中。第四摻雜區117可自基底110的第一表面S1延伸至基底110中。第二摻雜區113可圍繞第一摻雜區111a且可包括設置在第一摻雜區111a和第四摻雜區117之間的部分。第三摻雜區115可設置在第二摻雜區113和第四摻雜區117之間。在一些實施例中,第一摻雜區111a和第二摻雜區113彼此接觸的界面呈杯狀輪廓,且杯狀輪廓的開口部分朝向基底110的第二表面S2。在一些實施例中,杯狀輪廓在某一剖面呈現U型或ㄇ字型,但不以此為限。 The image sensing device PD may be disposed in a pixel region of the substrate 110 and include a first doped region 111a having a first conductivity type (e.g., P type), a second doped region 113 having a second conductivity type (e.g., N type) different from the first conductivity type, a third doped region 115 having the second conductivity type (e.g., N type), and a fourth doped region 117 having the first conductivity type (e.g., P type). The first doped region 111a may extend from the second surface S2 of the substrate 110 into the substrate 110. The fourth doped region 117 may extend from the first surface S1 of the substrate 110 into the substrate 110. The second doped region 113 may surround the first doped region 111a and may include a portion disposed between the first doped region 111a and the fourth doped region 117. The third doped region 115 may be disposed between the second doped region 113 and the fourth doped region 117. In some embodiments, the interface where the first doped region 111a and the second doped region 113 contact each other is a cup-shaped profile, and the opening portion of the cup-shaped profile faces the second surface S2 of the substrate 110. In some embodiments, the cup-shaped profile is U-shaped or U-shaped in a certain cross section, but is not limited thereto.

第一閘極結構GS1和第二閘極結構GS2可分別設置在基底110的畫素區中的第一表面S1上。在一些實施例中,第一閘極結構GS1較第二閘極結構GS2靠近影像感測元件PD。在一些實施例中,第三摻雜區115和第四摻雜區117可各自包括與第一閘極結構GS1接觸的部分。 The first gate structure GS1 and the second gate structure GS2 may be respectively disposed on the first surface S1 in the pixel area of the substrate 110 . In some embodiments, the first gate structure GS1 is closer to the image sensing element PD than the second gate structure GS2. In some embodiments, the third doped region 115 and the fourth doped region 117 may each include a portion in contact with the first gate structure GS1.

在一些實施例中,影像感測器1可更包括設置在基底110的第二表面S2上的彩色濾光片130以及設置在彩色濾光片130上的微透鏡140。 In some embodiments, the image sensor 1 may further include a color filter 130 disposed on the second surface S2 of the substrate 110 and a microlens 140 disposed on the color filter 130 .

綜上所述,在上述實施例中的影像感測器及其形成方法中,由於影像感測元件中的具有第二導電型的第二摻雜區設計成圍繞具有第一導電型的第一摻雜區,以使影像感測元件包括額外的側向空乏電容。如此一來,影像感測器在小尺寸的設計下仍能具有足夠的滿井容量,使得影像感測器具有良好的靈敏度和影像延遲。另一方面,由於第一摻雜區是藉由在影像感測器的背側以 磊晶生長製程形成,故可避免影像感測器的前側在高能量摻雜中所帶來的傷害,以避免晶格缺陷所導致的暗電流。 To sum up, in the image sensor and its forming method in the above embodiments, since the second doping region with the second conductivity type in the image sensing element is designed to surround the first doping region with the first conductivity type, Doping the region so that the image sensing element includes additional lateral depletion capacitance. In this way, the image sensor can still have sufficient full well capacity despite its small size design, so that the image sensor has good sensitivity and image delay. On the other hand, since the first doping region is formed on the back side of the image sensor by It is formed by an epitaxial growth process, so it can avoid damage to the front side of the image sensor caused by high-energy doping and avoid dark current caused by lattice defects.

1:影像感測器 10:支撐基底 116、118:摻雜區 110:磊晶層 111a:第一摻雜區 113:第二摻雜區 114:井區 115:第三摻雜區 117:第四摻雜區 120:介電層 122:內連線 124:導電接觸件 130:彩色濾光片 140:微透鏡 GS1:第一閘極結構 GS2:第二閘極結構 STI1:第一隔離結構 STI2:第二隔離結構 PD:影像感測元件 S1:第一表面 S2:第二表面 1:Image sensor 10: Support base 116, 118: Doped area 110: Epitaxial layer 111a: first doped region 113: Second doping region 114:Well area 115: The third doping region 117: The fourth doped region 120:Dielectric layer 122:Internal connection 124: Conductive contacts 130: Color filter 140: Microlens GS1: first gate structure GS2: Second gate structure STI1: First isolation structure STI2: Second isolation structure PD: image sensing element S1: first surface S2: Second surface

Claims (10)

一種影像感測器,包括:基底,包括彼此相對的第一表面及第二表面;第一隔離結構,設置於所述基底中且自所述第一表面延伸至所述基底中以界定畫素區;影像感測元件,設置於所述基底的所述畫素區中且包括具有第一導電型的第一摻雜區、具有不同於所述第一導電型的第二導電型的第二摻雜區、具有所述第二導電型的第三摻雜區以及具有所述第一導電型的第四摻雜區,其中所述第一摻雜區自所述基底的所述第二表面延伸至所述基底中,所述第四摻雜區自所述基底的所述第一表面延伸至所述基底中,所述第二摻雜區圍繞所述第一摻雜區且包括設置在所述第一摻雜區和所述第四摻雜區之間的部分,且所述第三摻雜區設置在所述第二摻雜區和所述第四摻雜區之間;以及第一閘極結構和第二閘極結構,分別設置在所述基底的所述畫素區中的所述第一表面上。 An image sensor includes: a substrate including a first surface and a second surface opposite each other; a first isolation structure disposed in the substrate and extending from the first surface to the substrate to define pixels Region; an image sensing element, which is disposed in the pixel region of the substrate and includes a first doping region with a first conductivity type, a second doping region with a second conductivity type different from the first conductivity type. a doping region, a third doping region having the second conductivity type and a fourth doping region having the first conductivity type, wherein the first doping region is formed from the second surface of the substrate Extending into the substrate, the fourth doped region extends from the first surface of the substrate into the substrate, the second doped region surrounds the first doped region and includes a a portion between the first doped region and the fourth doped region, and the third doped region is disposed between the second doped region and the fourth doped region; and A gate structure and a second gate structure are respectively disposed on the first surface in the pixel area of the substrate. 如請求項1所述的影像感測器,其中所述第一摻雜區和所述第二摻雜區彼此接觸的界面呈杯狀輪廓,且所述杯狀輪廓的開口部分朝向所述基底的所述第二表面。 The image sensor of claim 1, wherein the interface where the first doped region and the second doped region contact each other has a cup-shaped profile, and the opening portion of the cup-shaped profile faces the substrate of the second surface. 如請求項1所述的影像感測器,其中所述第一閘極結構較所述第二閘極結構靠近所述影像感測元件,且所述第三摻雜區和所述第四摻雜區各自包括與所述第一閘極結構接觸的部分。 The image sensor of claim 1, wherein the first gate structure is closer to the image sensing element than the second gate structure, and the third doped region and the fourth doped region Each of the hybrid regions includes a portion in contact with the first gate structure. 如請求項1所述的影像感測器,更包括:彩色濾光片,設置在所述基底的所述第二表面上;以及微透鏡,設置在所述彩色濾光片上。 The image sensor of claim 1, further comprising: a color filter disposed on the second surface of the substrate; and a microlens disposed on the color filter. 如請求項1所述的影像感測器,更包括:第二隔離結構,設置在所述基底中且自所述基底的所述第二表面延伸至所述基底中。 The image sensor of claim 1, further comprising: a second isolation structure disposed in the substrate and extending from the second surface of the substrate into the substrate. 一種形成影像感測器的方法,包括:在基底層中形成具有第一導電型的摻雜區;對所述基底層執行磊晶生長製程,以在所述基底層上形成磊晶層,並且使所述摻雜區擴散至所述磊晶層中,以形成自所述基底層延伸至所述磊晶層中的第一摻雜區,其中所述第一摻雜區具有所述第一導電型;在所述磊晶層中形成自所述磊晶層的第一表面延伸至所述磊晶層中的第一隔離結構以界定畫素區;於所述磊晶層的所述畫素區中形成圍繞所述第一摻雜區的第二摻雜區,其中所述第二摻雜區具有與所述第一導電型不同的第二導電型;以及於所述磊晶層的所述畫素區中分別形成具有所述第二導電型的第三摻雜區以及具有所述第一導電型的第四摻雜區,其中所述第四摻雜區自所述磊晶層的所述第一表面延伸至所述磊晶層中,所述第三摻雜區設置在所述第四摻雜區和所述第三摻雜區之間,且所述第二摻雜區包括設置在所述第一摻雜區和所 述第三摻雜區之間的部分,且所述第一摻雜區、所述第二摻雜區、所述第三摻雜區和所述第四摻雜區形成所述影像感測器的影像感測元件。 A method of forming an image sensor, including: forming a doped region with a first conductivity type in a base layer; performing an epitaxial growth process on the base layer to form an epitaxial layer on the base layer, and The doped region is diffused into the epitaxial layer to form a first doped region extending from the base layer into the epitaxial layer, wherein the first doped region has the first Conductive type; forming a first isolation structure in the epitaxial layer extending from the first surface of the epitaxial layer to the epitaxial layer to define a pixel area; in the picture of the epitaxial layer A second doped region surrounding the first doped region is formed in the element region, wherein the second doped region has a second conductivity type different from the first conductivity type; and in the epitaxial layer A third doping region having the second conductivity type and a fourth doping region having the first conductivity type are respectively formed in the pixel region, wherein the fourth doping region is formed from the epitaxial layer. The first surface extends into the epitaxial layer, the third doped region is disposed between the fourth doped region and the third doped region, and the second doped region including being disposed in the first doped region and the The portion between the third doped regions, and the first doped region, the second doped region, the third doped region and the fourth doped region form the image sensor image sensing element. 如請求項6所述的形成影像感測器的方法,其中所述第一摻雜區和所述第二摻雜區彼此接觸的界面呈杯狀輪廓,且所述杯狀輪廓的開口部分朝向所述磊晶層的與所述第一表面相對的第二表面。 The method of forming an image sensor according to claim 6, wherein the interface where the first doped region and the second doped region contact each other has a cup-shaped profile, and the opening portion of the cup-shaped profile faces A second surface of the epitaxial layer opposite to the first surface. 如請求項6所述的形成影像感測器的方法,更包括:在形成所述第三摻雜區和所述第四摻雜區之前,於所述磊晶層的所述第一表面上分別形成第一閘極結構和第二閘極結構,其中所述第一閘極結構較所述第二閘極結構靠近所述影像感測元件,且所述第三摻雜區和所述第四摻雜區各自包括與所述第一閘極結構接觸的部分。 The method of forming an image sensor as claimed in claim 6, further comprising: before forming the third doped region and the fourth doped region, forming on the first surface of the epitaxial layer A first gate structure and a second gate structure are respectively formed, wherein the first gate structure is closer to the image sensing element than the second gate structure, and the third doped region and the third gate structure are Each of the four doped regions includes a portion in contact with the first gate structure. 如請求項6所述的形成影像感測器的方法,更包括:在所述磊晶層的所述第一表面上形成內連線結構;在形成所述內連線結構後,移除所述基底層以暴露出所述磊晶層的與所述第一表面相對的第二表面;以及在所述磊晶層中形成自所述磊晶層的所述第二表面延伸至所述磊晶層中的第二隔離結構。 The method of forming an image sensor as claimed in claim 6, further comprising: forming an interconnect structure on the first surface of the epitaxial layer; and after forming the interconnect structure, removing the interconnect structure. The base layer is configured to expose a second surface of the epitaxial layer opposite to the first surface; and the epitaxial layer is formed in the epitaxial layer extending from the second surface of the epitaxial layer to the epitaxial layer. Second isolation structure in the crystal layer. 如請求項9所述的形成影像感測器的方法,更包括:在所述磊晶層的所述第二表面上形成彩色濾光片;以及 在所述彩色濾光片上形成微透鏡。 The method of forming an image sensor according to claim 9, further comprising: forming a color filter on the second surface of the epitaxial layer; and Microlenses are formed on the color filter.
TW111120924A 2022-06-06 2022-06-06 Image sensor and method for forming the same TWI835158B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111120924A TWI835158B (en) 2022-06-06 Image sensor and method for forming the same
CN202210691340.8A CN117238932A (en) 2022-06-06 2022-06-17 Image sensor and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111120924A TWI835158B (en) 2022-06-06 Image sensor and method for forming the same

Publications (2)

Publication Number Publication Date
TW202349692A TW202349692A (en) 2023-12-16
TWI835158B true TWI835158B (en) 2024-03-11

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190371845A1 (en) 2018-06-05 2019-12-05 Brillnics Inc. Pixel structure for image sensors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190371845A1 (en) 2018-06-05 2019-12-05 Brillnics Inc. Pixel structure for image sensors

Similar Documents

Publication Publication Date Title
US11728366B2 (en) Extra doped region for back-side deep trench isolation
US9754994B2 (en) Image sensors including conductive pixel separation structures and methods of fabricating the same
KR102254861B1 (en) An image sensor having improved full well capacity and related method of formation
US8519499B2 (en) Solid-state image sensor and method of manufacturing the same
US9553119B2 (en) Methods of forming an image sensor
US20080265348A1 (en) Method of Manufacturing an Image Sensor and Image Sensor
TWI691066B (en) A pixel sensor, method for forming same and an image sensor
KR20140105970A (en) Image sensor and method of forming the same
US7256469B2 (en) Solid-state image pickup device
CN208570610U (en) Back side illumination image sensor
TWI835158B (en) Image sensor and method for forming the same
CN114664876B (en) Image sensor and manufacturing method thereof
US11502117B2 (en) Image sensor including conductive connection pattern
TW202349692A (en) Image sensor and method for forming the same
TWI782650B (en) Manufacturing method of backside illuminated image sensor
KR100769124B1 (en) CMOS image sensor and method for manufacturing the same
TWI815124B (en) Image sensor and method of forming the same
TWI826139B (en) Back side illumination image sensor and method of manufacturing the same
US20090050892A1 (en) Cmos image sensor and method for manufacturing the same
TWI796083B (en) Image sensor and manufacturing method thereof
KR20100077986A (en) Image sensor and method for manufacturing the sensor
CN116435317A (en) Image sensor integrated chip and forming method thereof
CN118073379A (en) Backside illuminated image sensor and manufacturing method thereof
KR20060077244A (en) Cmos image sensor and method for manufacturing the same