TWI834034B - 核燃料護套、其總成、其製造方法、快中子反應器及用於該反應器之方法 - Google Patents

核燃料護套、其總成、其製造方法、快中子反應器及用於該反應器之方法 Download PDF

Info

Publication number
TWI834034B
TWI834034B TW110114872A TW110114872A TWI834034B TW I834034 B TWI834034 B TW I834034B TW 110114872 A TW110114872 A TW 110114872A TW 110114872 A TW110114872 A TW 110114872A TW I834034 B TWI834034 B TW I834034B
Authority
TW
Taiwan
Prior art keywords
layer
nuclear fuel
silicon carbide
substrate
sheath
Prior art date
Application number
TW110114872A
Other languages
English (en)
Other versions
TW202141528A (zh
Inventor
愛德華 J 拉霍達
保羅 費羅尼
福斯托 弗蘭切斯基尼
Original Assignee
美商西屋電器公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商西屋電器公司 filed Critical 美商西屋電器公司
Publication of TW202141528A publication Critical patent/TW202141528A/zh
Application granted granted Critical
Publication of TWI834034B publication Critical patent/TWI834034B/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/07Casings; Jackets characterised by their material, e.g. alloys
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C21/00Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
    • G21C21/02Manufacture of fuel elements or breeder elements contained in non-active casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本發明提供用於快中子反應器之核燃料護套、其總成、及其製造方法。該核燃料護套包括基材、第一層、及第二層。該基材包括管狀形狀。該第一層係沉積於基材的外表面上方。該第一層包括抗腐蝕性組合物。該第二層係設置於該第一層上方。該第二層包括經碳化矽滲透的碳化矽纖維。該第二層係經構造成抑制基材的向外潛變。

Description

核燃料護套、其總成、其製造方法、快中子反應器及用於該反應器之方法
本發明為關於用於快中子反應器之核燃料護套、其總成、及其製造方法。
核子快中子反應器利用快中子而非如於輕水反應器中般地利用熱中子來發電。快中子反應器通常利用液態金屬作為冷卻劑,其可接觸核燃料棒束。束內的各燃料棒可包括裝在護套內的核燃料。護套可為於快中子反應器之操作期間防止核燃料之分裂產物釋放至冷卻劑中的障壁。抑制護套的劣化呈現挑戰。
本申請案主張2020年4月24日提出申請之美國臨時申請案序號63/014,820的權利,將其全體內容以引用的方式併入本文中。
本發明提供一種用於快中子反應器之核燃料護套。該核燃料護套包括基材、第一層、及第二層。該基材包括管狀形狀。該第一層係沉積於基材的外表面上方。該第一層包括抗腐蝕性組合物。該第二層係設置於該第一層上方。該第二層包括經碳化矽滲透的碳化矽纖維。該第二層係經構造成抑制基材的向外潛變。
本發明亦提供一種用於快中子反應器之核燃料護套。該核燃料護套包括一基材及一層。該基材包括管狀形狀及該層係設置於該基材上方。該層包括經碳化矽滲透的碳化矽纖維。該層係經構造成抑制基材的向外潛變及抑制冷卻劑接觸基材。
本發明亦提供一種用來製備用於快中子反應器之核燃料棒的方法。該方法包括將第一層沉積於基材之外表面上方以形成經塗覆基材。該第一層包括抗腐蝕性組合物及該基材包括管狀形狀。將碳化矽纖維於一形體周圍堆積成層以產生碳化矽纖維的預形體。該預形體係利用液態陶瓷前驅體(pre-ceramic)聚合物及使該液態陶瓷前驅體聚合物分解成碳化矽、化學氣相滲透、化學氣相沉積、或其組合來經碳化矽滲透,以產生包含管狀形狀的第二層。將該第二層自該形體移除及將該經塗覆基材引入至界定於該第二層之管狀形狀中的空腔,以形成核燃料棒。
應瞭解,本說明書描述的多項發明不限於在本發明內容中所摘錄的多個示例。本說明書描述及示例各種其他態樣。
現將描述本發明的某些示例性態樣以能完全瞭解本說明書所揭露之組合物、物件、及方法之組成、功能、製造、和用途的原理。這些態樣的一或多個示例在圖式中示意說明。熟習該項技藝者將瞭解,本說明書具體描述及在圖式中示意說明的組合物、物件、和方法是非限制性示例性態樣,且本發明的各種示例的範疇僅界定於文後申請專利範圍。有關一示例性態樣之所示意說明或描述的多個特性可結合其他態樣的特性。這類修改和變化意欲包含在本發明的範疇內。
整個說明書中引用的「各種示例」、「一些示例」、「一種示例」、「一示例」或類似者,意指結合該示例所描述的一特定特性、結構、或特徵包含在一示例中。因此,在整個說明書中出現的詞組「在各種示例中」、「在一些示例中」、「在一種示例中」、「在一示例中」或類似者,不必然全都參考相同示例。此外,在一或多個示例中,可採用任何適當方式來結合特定特性、結構、或特徵。因此,有關一示例所示意說明或描述的特定特性、結構、或特徵可整個或部分而沒有限制結合另一示例或其他示例的特性、結構、或特徵。這類修改和變化意欲包含在本示例的範疇內。
如本說明書中使用,特別是有關多個層,用語「在...上」、「到...上」、「在...上方」和其變體(例如,「施加於...上方」、「形成於...上方」、「沉積於...上方」、「提供於...上方」、「位於...上方」、「電鍍於...上方」等)意指經施加、形成、沉積、提供、或者位於基材的表面上方,但不必然接觸該基材的表面。例如,一「施加於」基材上方的層不排除存在位於所施加的塗覆層和基材之間的相同或不同組成的另一塗覆層或其他塗覆層。同樣,一「施加於」一第一層上方的第二層並未排除存在位於所施加的第二層和所施加的第一層之間的相同或不同組成的另一層或其他層。
如本說明書的使用,「中間」意指所引用元件配置在兩元件之間,但是不必然接觸這些元件。因此,除非本說明書特別說明,否則在一第一元件和一第二元件「中間」的元件可以或可不相鄰或接觸第一元件及/或第二元件,且其他元件可配置在中間元件和第一及/或第二元件之間。
快中子反應器通常包括具有液態金屬冷卻劑(例如,鈉、鉛、鉛-鉍)及核燃料棒束的核心。該液態金屬冷卻劑循環通過核心以自核燃料棒束擷取熱。通常,核燃料棒束之核燃料棒包括管狀形狀。各核燃料棒可包括核燃料及護套,該護套可為於防止核燃料之分裂產物釋放至於快中子反應器之核心內循環之冷卻劑中的障壁。例如,該核燃料可密封於護套之空腔內,使得該核燃料不與冷卻劑實體接觸。隨冷卻劑溫度於快中子反應器之核心中提高,通常,護套的潛變強度增加。另外,隨核燃料於快中子反應器之操作期間燃燒,核燃料可產生分裂氣體,其可加壓護套內的空腔。因此,潛變強度減小及壓力增加之組合可導致護套失效。
本發明人已確定該護套可在高燃耗(burn ups) (例如,每公斤鈾大於200萬瓦*天(MWd/kgU))於其結構內形成空隙,其可由與高燃耗相關的中子損壞引起。因此,已針對快中子反應器避免高燃耗。此外,護套可自核燃料向外潛變及最終由於在燃料與護套之間的空隙形成而失效,從而導致燃料溫度提高,壓力累積於護套內導致護套向外潛變及/或護套腐蝕。在各種示例中,鉛快中子反應器中之不鏽鋼護套的腐蝕可在攝氏600度或更高之溫度下加速,及因此,鉛快中子反應器通常在攝氏550度或更低溫度下操作以確保安全餘裕。
因此,本發明提供一種用於快中子反應器之核燃料護套,其可包括提高的腐蝕效能及提高的抗潛變性,使得護套可維持期望的障蔽以防止在快中子反應器之各種操作參數(包括提高之溫度、提高之燃耗率、及主要冷卻劑之增加腐蝕性)內來自核燃料之分裂產物的釋放。
參照圖1,提供用於快中子反應器之核燃料棒總成100的橫截面。核燃料棒總成100之長度可經選擇以適合期望的反應器類型。例如,核燃料棒總成100可針對快中子反應器包括在1米(m)至4米範圍內之長度。
核燃料棒總成100包括核燃料102及核燃料護套104。核燃料102可包括鈾、鈾合金、鈾化合物、鈽、鈽合金、鈽化合物、釷、釷合金、釷化合物、或其組合。鈾、鈾合金、或鈾化合物可包括鈾-238、鈾-235、鈾-234、或其組合。釷、釷合金、或釷化合物可包括釷-232。鈽、鈽合金、或鈽化合物可包括鈽-239、鈽-240、鈽-241、鈽-242、鈽-244、或其組合。
在各種示例中,核燃料102包含可利用非同位素分離氮(例如,UN)或同位素分離氮-15(例如,UN15)的氮化鈾或由其所組成。例如,UN15可包含基於UN15內之總氮原子至少50%氮-15的氮-15濃度,諸如,比方說,基於UN15內之總氮原子至少60%氮-15、至少70%氮-15、至少80%氮-15、或至少90%氮-15。利用氮化鈾可提高核燃料102的導熱性,其可改良反應器效能及最小化或防止在核燃料護套104與核燃料102之間形成共熔合金。在其中核燃料102包含UN或UN15的各種示例中,視燃料溫度而定,核燃料102可包含在至少15瓦/米/攝氏度至25瓦/米/攝氏度範圍內的導熱性。
通常,純氮化鈾由於氮化鈾與水間之反應性而不可用於輕水反應器中。因此,氮化鈾通常與另一材料合金化/組合,以在使用於輕水反應器中時降低此反應性。例如,在輕水反應器中,氮化鈾可包含10重量%至30重量%之鋯以降低與水的反應。然而,本發明人已確定此氮化鈾之反應性在快中子反應器中可能不成問題,乃因通常不存在水且不需要添加劑。快中子反應器燃料諸如鈾金屬可包含10重量%至30重量%之鋯以降低膨脹。
另外,用於輕水反應器之鈾金屬燃料中之鋯可在高於攝氏750度之溫度下與不鏽鋼護套形成共熔合金。因此,包含鋯之鈾金屬燃料的操作範圍通常限於低於攝氏600度。然而,本發明人已確定由於可將純氮化鈾使用於快中子反應器中,因此可在維持增加鈾密度及高燃料導熱性的同時避免共熔合金。與二氧化鈾相比之增加的鈾密度亦可導致在操作快中子反應器中的提高效率。在各種示例中,核燃料102可包含大於90重量%之氮化鈾,諸如,比方說,至少91重量%氮化鈾,至少95重量%氮化鈾,至少99重量%氮化鈾,或至少99.9重量%氮化鈾。
在其中核燃料102包含氮化鈾的各種示例中,核燃料102可視氮化鈾之燃耗而定,具有高於2500克耳文(Kelvin),諸如,比方說或高於3000克耳文之熔點。在其中核燃料102包含氮化鈾的各種示例中,核燃料102可具有3123克耳文之熔點。核燃料102之經提高的熔點可在快中子反應器之核心中實現冷卻劑之經提高的操作溫度及/或在快中子反應器之操作期間的提高安全因素。
核燃料護套104可藉由間隙114(例如,空隙空間)與核燃料102間隔開。間隙114可為在0.05 mm至2 mm之範圍內,諸如,比方說,0.2 mm至1 mm,或0.5 mm至1 mm。間隙114在核燃料102與核燃料護套104之間可不是均勻的且核燃料102可在某些位置接觸核燃料護套104。
核燃料護套104可包含管狀形狀。在各種示例中,核燃料護套104可包含如圖1中所繪示的六邊形管狀形狀。在各種其他示例中,核燃料護套104可為不同形狀,諸如,比方說,大致圓柱形(未圖示)。
核燃料護套104可包含基材106、視需要的第一層108、及第二層110。基材106可包含管狀形狀。例如,如所繪示,基材106包含六邊形管狀形狀。基材106可包含鋯、鋯合金、鐵、鐵合金、或其組合。例如,基材106可包含麻田散鐵不鏽鋼合金、沃斯田鐵不鏽鋼合金、或核能級鋯合金。核能級鋯合金可包含Zircalloy-2TM 、Zircalloy-4TM 、ZIRLOTM 、經最佳化的ZIRLOTM 、或其組合。例如,核能級合金可包含鋯合金組合物,其包含(全部基於鋯合金之總重量):0.5%至2.0%鈮;0.7%至1.5%錫;0.07%至0.14%鐵;至多0.03%碳;至多0.2%氧;及其餘為鋯和附帶的雜質。麻田散鐵不鏽鋼合金可包含HT-9。沃斯田鐵不鏽鋼合金可包含15-15Ti或氧化鋁形成沃斯田鐵(AFA;Alumina Forming Austenitic)鋼。
基材106可包含在0.2 mm至1 mm範圍內,諸如,比方說,0.4 mm至0.7 mm或0.5 mm至0.6 mm之壁厚度t0 。基材106之外徑d1 可在5 mm至15 mm範圍內,諸如,比方說,7 mm至12 mm,諸如,比方說,8 mm至11 mm或9 mm至10 mm。
第一層108可沉積於基材106之外表面106a上方。第一層108可包含抗腐蝕性組合物。例如,第一層108可與基材106直接接觸。抗腐蝕性組合物可經組態成抑制基材106在包括至少攝氏600度之操作溫度之各種操作條件下的氧化及/或化學降解。例如,第二層110可為多孔的且使流體(例如,在快中子反應器之核心中的冷卻劑)能夠輸送通過第二層110,使得流體可接觸第一層108。第一層108可實質上地塗覆基材106之外表面106a且第一層108可實質上不可透過流體。因此,第一層108可抑制或防止流體接觸基材106。
另外,第一層108可抵抗由於與冷卻劑接觸而引起的氧化及/或化學降解,藉此增進快中子反應器中核燃料棒總成100的操作範圍。第一層108可包含鈦、鈦合金、鋁、鋁合金、鉻、鉻合金、鋯、鋯合金、陶瓷、或其組合。例如,抗腐蝕性組合物可包含Ti2 AlC、TiAlN、Zr2 AlC、鉻、氮化鉻、氧化鋁、或其組合。在各種示例中,抗腐蝕性組合物可包含Ti2 AlC、TiAlN、Zr2 AlC、或其組合。
第一層108可包含在0.1微米至10微米範圍內,諸如,比方說,1微米至10微米、2微米至8微米、2微米至6微米、或3至5微米的厚度t1
第二層110可設置於第一層108上方且可於第一層108與第二層110中間界定間隙112(例如,空隙空間)。例如,第二層110可形成於包含空腔110a的管狀形狀中且可將基材106及第一層108之總成插於其中。間隙112可使基材106及第一層108在經第二層110結合及/或限制之前能夠膨脹預定量。間隙112可包含在50微米至2000微米範圍內,諸如,比方說,100微米至1000微米、500微米至1000微米、400微米至900微米、或600微米至800微米的尺寸d2 。間隙112在第二層110與第一層108之間可不是均勻的且第一層108可在某些位置處接觸第二層110。
第二層110可經構造以抑制基材106及第一層108相對於核燃料102向外潛變及/或限制基材106及第一層108。第二層110可包含經碳化矽滲透之碳化矽纖維,其可藉此形成強而硬及/或耐用的結構以支撐基材106之形狀。碳化矽可於不同溫度範圍(包括至少攝氏600度之溫度)內維持期望的硬度、強度、及耐久性。因此,第二層110亦可藉此在不同溫度範圍內限制基材106。
第二層110之碳化矽纖維可藉由液態陶瓷前驅體聚合物及使液態陶瓷前驅體聚合物分解成碳化矽、化學氣相滲透、化學氣相沉積、或其組合來經滲透。化學氣相滲透係一種使氣態材料在高溫下滲透至多孔預形體中的製程。例如,碳化矽纖維之化學氣相滲透可包括在反應器中將碳化矽纖維加熱至高溫(例如,至少攝氏1000度)及將氣態材料引入至包括碳化矽纖維之孔隙的反應器中。氣態材料可包括碳化矽前驅體(例如,三氯甲基矽烷)及視需要的稀釋劑(例如,氮)。三氯甲基矽烷在高溫下降解成碳化矽及氯化氫。碳化矽沉積於碳化矽纖維上(包括於碳化矽纖維之孔隙內及/或表面上)且可將氯化氫自反應器移除。在各種示例中,可在引入氣態材料之前將一中間層形成於碳化矽纖維上。化學氣相沉積類似於化學氣相滲透,僅除了在化學氣相沉積中碳化矽較於碳化矽纖維之孔隙中更多地沉積於碳化矽纖維之表面上。
在各種示例中,第二層110之碳化矽纖維可經化學氣相滲透及化學氣相沉積之組合滲透以達成第二層110之期望的孔隙度及/或厚度t2 。第二層110可包含在30微米至500微米範圍內,諸如,比方說,40微米至500微米、50微米至500微米、50微米至200微米、80微米至200微米、或50微米至100微米的厚度t2 。第二層110可包含在5體積%至30體積%範圍內,諸如,比方說,5%至20%、5%至15%、10%至15%、或5%至10%的孔隙度,全部以體積計。由於冷卻劑可穿透通過第二層110,因此孔隙度可於核燃料棒總成100之操作期間實現較高的熱輸送。
在各種示例中,可能希望減小第二層110的滲透性以防止穿透通過第二層110。例如,可使用碳化矽之額外的化學氣相沉積來於第二層110上形成實質上不可滲透的第三層116。在各種示例中,在使用第三層116時可不使用第一層108。例如,第三層116可抑制或防止在快中子反應器之核心中的冷卻劑接觸基材106。另外,碳化矽可為抗腐蝕性的。在各種其他示例中,可替代第三層116或與其結合而將另一層(未圖示)沉積於第二層110之與第三層116相對的側上。在各種示例中,核燃料棒總成100可經構造成經由抑制冷卻劑之穿透通過第二層110而用於輕水反應器中。例如,可能希望抑制蒸汽穿透通過可向核燃料棒總成100提供絕緣性質的第二層110。
核燃料束可經由將核燃料棒總成100之多個單元以六邊形或方形緊密堆積關係組裝而自其等產生。其後,可將核燃料束置於快中子反應器中。快中子反應器可包含液態金屬冷卻劑,諸如,比方說,鈉、鈉合金、鉛、鉛合金(例如,包含鉍之鉛合金)、或其組合。例如,快中子反應器可為利用鉛或鉛合金冷卻劑的鉛快中子反應器。鉛快中子反應器可利用核燃料棒總成100在至少攝氏600度(諸如,比方說,至少攝氏700度、至少攝氏800度、至少攝氏900度、至少攝氏1000度、或至少攝氏1400度)之核心冷卻劑溫度下操作。核心冷卻劑之高溫操作可經由藉由第二層110抑制基材106之向外潛變及/或藉由第一層108及/或第三層116防止腐蝕來達成。提高在快中子反應器之核心中之冷卻劑的操作溫度可提高在快中子反應器中之能量轉換過程的效率。
在各種示例中,快中子反應器可在至少300 MWd/kgU(諸如,比方說,至少350 MWd/kgU或至少400 MWd/kgU)之燃耗下操作核燃料棒總成100。增加的燃耗可提高快中子反應器的經濟效率。
參照圖2,提供一種製備用於快中子反應器之核燃料棒的方法。如所繪示,該方法可包括將視需要的第一層沉積於基材之外表面上方以形成經塗覆基材(步驟202)。該第一層包括抗腐蝕性組合物。該第一層可藉由物理氣相沉積、冷噴塗、熱噴塗、或其組合來沉積。
該方法可包括將矽纖維於一形體周圍堆積成層以產生碳化矽纖維之預形體(步驟204)。該形體可為一管、一心軸、或類似物件。堆積成層可包括沉積、包裹、編織、纏繞、或其組合。該碳化矽纖維之預形體在經碳化矽滲透之前可包含在30%至60%範圍內之孔隙度,諸如,比方說,大於30%至60%或35%至60%之孔隙度。
碳化矽纖維之預形體可經碳化矽滲透以利用液態陶瓷前驅體聚合物及使液態陶瓷前驅體聚合物分解成碳化矽、化學氣相滲透、化學氣相沉積、或其組合來形成包含管狀形狀的第二層(步驟206)。預形體經碳化矽滲透可減小碳化矽預形體之孔隙度及提高預形體之剛性。在各種示例中,滲透製程可包括化學氣相滲透及接著化學氣相沉積。在某些示例中,滲透製程可包括化學氣相沉積、化學氣相滲透、及接著化學氣相沉積。在各種示例中,化學氣相沉積係在將矽纖維於形體周圍堆積成層之前於該形體上進行。
可將第二層自該形體移除(步驟208)。可將經塗覆基材引入至界定於第二層之管狀形狀中的空腔以形成核燃料棒(步驟210)。在各種示例中,當將經塗覆基材引入至空腔時,可於第一層與第二層中間界定間隙。在其他示例中,可將核燃料插入至基材中並密封於其內。
根據本發明的各種態樣包括,但不限於,列於以下編號條項中的態樣。 1.     一種用於快中子反應器之核燃料護套,該核燃料護套包括: 一基材,其包括一管狀形狀; 一第一層,其沉積於該基材之一外表面上方,其中該第一層包含一抗腐蝕性組合物;及 一第二層,其設置於該第一層上方,該第二層包含經碳化矽滲透的碳化矽纖維,該第二層經構造以抑制該基材之向外潛變。 2.     如條項1之核燃料護套,其中該等碳化矽纖維係藉由液態陶瓷前驅體聚合物及使液態陶瓷前驅體聚合物分解成碳化矽、化學氣相滲透、化學氣相沉積、或其組合而經碳化矽滲透。 3.     如條項1至2中任一項之核燃料護套,其中於該第一層與該第二層中間界定一間隙。 4.     如條項1至3中任一項之核燃料護套,其中該抗腐蝕性組合物包含鈦、鈦合金、鋁、鋁合金、鉻、鉻合金、鋯、鋯合金、陶瓷、或其組合。 5.     如條項1至4中任一項之核燃料護套,其中該抗腐蝕性組合物包含Ti2AlC、TiAlN、Zr2AlC、鉻、氮化鉻、氧化鋁、或其組合。 6.     如條項1至5中任一項之核燃料護套,其中該基材包含鋯、鋯合金、鐵、鐵合金、或其組合。 7.     如條項1至6中任一項之核燃料護套,其中該基材包含麻田散鐵不鏽鋼合金、沃斯田鐵不鏽鋼合金、或核能級鋯合金。 8.     如條項1至7中任一項之核燃料護套,其中該第二層包含在5體積%至30體積%範圍內的孔隙度。 9.     如條項1至8中任一項之核燃料護套,其中該第一層包含在0.1微米至10微米範圍內的厚度。 10.    如條項1至9中任一項之核燃料護套,其中該第二層包含在30微米至500微米範圍內的厚度。 11.    一種核燃料棒總成,其包括: 如條項1至10中任一項之核燃料護套;及 設置於該核燃料護套內的核燃料。 12.    如條項11之核燃料棒總成,其中該核燃料包括鈾、鈾合金、鈾化合物、鈽、鈽合金、鈽化合物、釷、釷合金、釷化合物、或其組合。 13.    如條項11至12中任一項之核燃料棒總成,其中該核燃料包括氮化鈾。 14.    一種快中子反應器核電廠,其包括如條項11至13中任一項之核燃料棒總成。 15.    一種包括利用如條項11至13中任一項之核燃料棒總成在高於攝氏600度之操作溫度下操作鉛快中子反應器核電廠的方法。 16.    一種用於液態金屬快中子反應器之核燃料護套,該核燃料護套包括: 一基材,其包括一管狀形狀;及 一設置於該基材上方的層,該層包含經碳化矽滲透的碳化矽纖維,該層經構造以抑制該基材之向外潛變及抑制冷卻劑接觸該基材。 17.    一種製備用於液態金屬快中子反應器之核燃料棒的方法,該方法包括: 將一第一層沉積於一基材之一外表面上方以形成一經塗覆基材,其中該第一層包括一抗腐蝕性組合物及其中該基材包括一管狀形狀; 將碳化矽纖維於一形體周圍堆積成層以產生碳化矽纖維之一預形體; 利用化學氣相滲透、化學氣相沉積、或其組合使該預形體經碳化矽滲透以產生包含一管狀形狀的一第二層; 自該形體移除該第二層;及 將該經塗覆基材引入至界定於該第二層之該管狀形狀中的一空腔以形成該核燃料棒。 18.    如條項17之方法,其中該預形體在經碳化矽滲透之前包含在30%至60%範圍內之孔隙度。 19.    如條項17至18中任一項之方法,其進一步包括將一包含氮化鈾之核燃料引入至界定於該基材中的一空腔。 20.    如條項17至18中任一項之方法,其中該第一層係藉由物理氣相沉積、冷噴塗、熱噴塗、或其組合來沉積。
熟習該項技藝者將明白,為概念上的清楚,本說明書描述的組合物、物件、方法和伴隨其的討論係用作示例,並構想各種構造修改。因此,如本說明書的使用,所闡述的特定示例和所附的討論旨在於表示其的更一般性類別。通常,任何特定示例的使用旨在於表示其類別,且未包括的特定組件(例如,操作)、裝置、和物件不應視為限制。
在本說明書描述各種特性和特徵是要瞭解本發明的組成、結構、產生、功能、及/或操作,其中包含所揭露的組成、塗覆、和方法。應瞭解本說明書描述的本發明的各種特性和特徵可採取任何適當方式組合,而不管此特性和特徵是否在本說明書中明確組合描述。發明人和申請人明確意圖將此特性和特徵的組合包含在本說明書描述的本發明的範疇內。因此,可將申請專利範圍修改,採取任何組合形式記載在本說明書中明確或本質上所描述或採取明確或本質上所支持的任何特性和特徵。此外,即使在本說明書中未明確描述這些特性和特徵,但是申請人保留權利來修改請求項,以明確否定可能存在於先前技術中的特性和特徵。因此,任何此修改都不會在說明書或請求項中增加新的內容,並將符合書面揭露、揭露充分性、和所增加事項要求。
關於文後申請專利範圍,熟習該項技藝者應明白,其中所列舉的操作通常可採用任何順序執行。而且,雖然採用順序方式來呈現各種操作流程,但是應瞭解,可採用除了所示以外的其他順序來執行各種操作,或者可同時執行各種操作。除非另有特別說明,否則這些替代排序的範例可包括重疊、交錯、中斷、重新排序、遞增、準備、補充、同時、反向或其他變異排序。此外,除非另有特別說明,否則諸如「隨著」、「關於」或其他過去式形容詞之類的用語通常不意欲排除這類變異形式。
本說明書描述的發明可包括由本說明書描述的各種特性和特徵,由該等特性和特徵所組成、或本質上由該等特性和特徵所組成。多個用語「包括」(及任何形式的包括,諸如「包容」和「含有」)、「具有」(及任何形式的具有,諸如「具有」和「含有」)、「包含」(及任何形式的包含,諸如「包含」和「含有」)、和「包括」(及任何形式的包括,諸如「包括」和「含有」)都是開放式連接動詞。因此,「包容」、「具有」、「包含」、或「包括」一或多個特性及/或特徵的組合物、核燃料總成、或方法具有該特徵或這些特性及/或特徵,但不限於僅具有該特性或這些特性及/或特徵。同樣,「包容」、「具有」、「包含」、或「包括」一或多個特性及/或特徵的組合物、塗覆層、或製程的元件具有該特性或這些特性及/或特徵,但不限於僅具有該特性或這些特性及/或特徵,並可具有附加的特性及/或特徵。
除非特別說明,否則在包括申請專利範圍的本說明書中使用的文法冠詞「一」、「一個」和「該」旨在包含「至少一」或「一或多個」。因此,本說明書中使用該等冠詞來指示一個或一個以上(即,「至少一」)該冠詞的文法對象。舉例來說,「一組件」意指一或多個組件,因此,可考慮多於一個組件,並可採用或用於實施所述的組合物、塗覆層、和製程。不過,要瞭解,在某些情況下(而非其他情況),使用用語「至少一」或「一或多個」將不會導致任何解釋,其中這些用語不會用來將文法冠詞「一」、「一個」和「該」之標的限制成僅有一個。此外,除非使用的上下文另有要求,否則單數名詞的使用包含複數個,且複數個名詞的使用包含單數。
在本說明書中,除非特別說明,否則所有數值參數應認為在所有情況下均通過用語「約」作為開頭和修飾,其中數值參數具有用於確定參數數值的基礎測量技術的固有可變性特徵。至少,且不試圖將等同原則的應用限制於申請專利範圍的範疇,本說明書描述的每個數值參數應至少根據所列舉的有效數字的數目並通過應用普通四捨五入技術來解釋。
本說明書列舉的任何數值範圍包含在列舉範圍內所涵蓋的全部子範圍。例如,範圍「1到10」包含介於(且包含)所列舉最小值1和所列舉最大值10之間(即是,具有等於或大於1的最小值和等於或小於10的最大值)的所有子範圍。而且,本說明書所列舉的全部範圍包含所列舉範圍的端點。例如,一範圍「1到10」包含端點1和10。本說明書中列舉的任何最大數值限制旨在包含其中所涵蓋的全部較低數值限制,且本說明書中列舉的任何最小數值限制旨在包含其中所涵蓋的全部較高數值限制。因此,申請人保留修改本說明書(包含申請專利範圍)的權利,以明確列舉涵蓋在明確列舉範圍內的任何子範圍。本說明書本質上描述所有這些範圍。
除非特別說明,否則本說明書中確定的任何專利、公開案、或其他文獻整個併入本說明書供參考,但僅在所合併的材料不與在本說明書中明確闡述的現有描述、定義、陳述、示意說明、或其他揭露材料相衝突的範圍內。因此,且在必要的程度上,如本說明書中闡述的明確揭露內容取代併入參考的任何衝突材料。併入本說明書供參考,但與本說明書闡述的現有定義、陳述、或其他揭露材料相衝突的任何材料或其部分,僅以在併入材料與現有揭露材料之間不發生衝突的程度來併入。申請人保留修改本說明書以明確引用併入供參考的任何標的事項或其部分的權利。本說明書的修改以增加此所併入之標的事項將符合書面揭露、揭露充分性、和所增加事項要求。
雖然以上為說明之目的已描述本發明的特定示例,但是熟習該項技藝者將明白,在不悖離如文後申請專利範圍所限定本發明的情況,可對本發明的細節進行多種變型。
100:核燃料棒總成 102:核燃料 104:核燃料護套 106:基材 106a:基材106之外表面 108:第一層 110:第二層 110a:空腔 112:間隙 114:間隙 116:第三層 202、204、206、208、210:步驟 d1 :基材106之外徑 d2 :尺寸 t0 :壁厚度 t1 :第一層108之厚度 t2 :第二層110之厚度
藉由參考以下連同圖式的示例的描述,將變得更明白多個示例的特性和優點、及實現其的方式,並將更瞭解該等示例。
圖1係繪示根據本發明之核燃料棒總成之一示例的橫截面。
圖2係繪示根據本發明用來製造核燃料棒總成之方法之一示例的製程圖。
相對參考符號表示在所有圖式中的相對部件。本說明書闡述的示例係採用一形式來示意說明某些示例,且這些示例不應解釋為以任何方式限制多個示例的範疇。
100:核燃料棒總成
102:核燃料
104:核燃料護套
106:基材
106a:基材106之外表面
108:第一層
110:第二層
110a:空腔
112:間隙
114:間隙
116:第三層
d1:基材106之外徑
d2:尺寸
t0:壁厚度
t1:第一層108之厚度
t2:第二層110之厚度

Claims (19)

  1. 一種用於快中子反應器之核燃料護套,該核燃料護套包括:一基材,其包括一管狀形狀;一第一層,其沉積於該基材之一外表面上方,其中該第一層包含一抗腐蝕性組合物;及一第二層,其設置於該第一層上方,該第二層包含經碳化矽滲透的碳化矽纖維,該第二層經構造以抑制該基材之向外潛變,且其中於該第一層與該第二層中間界定一間隙。
  2. 如請求項1所述之核燃料護套,其中該碳化矽纖維係藉由液態陶瓷前驅體聚合物及使該液態陶瓷前驅體聚合物分解成碳化矽、化學氣相滲透、化學氣相沉積、或其組合而經碳化矽滲透。
  3. 如請求項1所述之核燃料護套,其中該抗腐蝕性組合物包含鈦、鈦合金、鋁、鋁合金、鉻、鉻合金、鋯、鋯合金、陶瓷、或其組合。
  4. 如請求項1所述之核燃料護套,其中該抗腐蝕性組合物包含Ti2AlC、TiAlN、Zr2AlC、鉻、氮化鉻、氧化鋁、或其組合。
  5. 如請求項1所述之核燃料護套,其中該基材包含鋯、鋯合金、鐵、鐵合金、或其組合。
  6. 如請求項1所述之核燃料護套,其中該基材包含麻田散鐵不鏽鋼合金、沃斯田鐵不鏽鋼合金、或核能級鋯合金。
  7. 如請求項1所述之核燃料護套,其中該第二層包含在5體積%至30體積%範圍內的孔隙度。
  8. 如請求項1所述之核燃料護套,其中該第一層包含在0.1微米至10微米範圍內的厚度。
  9. 如請求項1所述之核燃料護套,其中該第二層包含在30微米至500微米範圍內的厚度。
  10. 一種核燃料棒總成,其包括:如請求項1所述之核燃料護套;及設置於該核燃料護套內的核燃料。
  11. 如請求項10所述之核燃料棒總成,其中該核燃料包括鈾、鈾合金、鈾化合物、鈽、鈽合金、鈽化合物、釷、釷合金、釷化合物、或其組合。
  12. 如請求項10所述之核燃料棒總成,其中該核燃料包括氮化鈾。
  13. 一種快中子反應器,其包括如請求項10所述之核燃料棒總成。
  14. 一種用於快中子反應器之方法,其包括利用如請求項10所述之核燃料棒總成在高於攝氏600度之操作溫度下操作鉛快中子反應器。
  15. 一種用於快中子反應器之核燃料護套,該核燃料護套包括:一基材,其包括一管狀形狀;一第一層,其沉積於該基材之一外表面上方;及一第二層,其設置於該第一層上方,該第二層包含經碳化矽滲透的碳化矽纖維,該第二層經構造以抑制該基材之向外潛變及抑制冷卻劑接觸該基材,且其中於該第一層與該第二層中間界定一間隙。
  16. 一種製備用於快中子反應器之核燃料棒的方法,該方法包括以下步驟:將一第一層沉積於一基材之一外表面上方以形成一經塗覆基材,其中該第一層包括一抗腐蝕性組合物及其中該基材包括一管狀形狀;將碳化矽纖維於一形體周圍堆積成層以產生碳化矽纖維之一預形體;利用液態陶瓷前驅體聚合物及使該液態陶瓷前驅體聚合物分解成碳化矽、化學氣相滲透、化學氣相沉積、或其組合使該預形體經碳化矽滲透以產生包含一管狀形狀的一第二層; 自該形體移除該第二層;及將該經塗覆基材引入至界定於該第二層之該管狀形狀中的一空腔以形成該核燃料棒,且其中於該經塗覆基材之該第一層與該第二層中間界定一間隙。
  17. 如請求項16所述之方法,其中該預形體在經碳化矽滲透之前包含在30%至60%範圍內之孔隙度。
  18. 如請求項16所述之方法,其進一步包括將包含氮化鈾之一核燃料引入至界定於該基材中的一空腔。
  19. 如請求項16所述之方法,其中該第一層係藉由物理氣相沉積、冷噴塗、熱噴塗、或其組合來沉積。
TW110114872A 2020-04-24 2021-04-26 核燃料護套、其總成、其製造方法、快中子反應器及用於該反應器之方法 TWI834034B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063014820P 2020-04-24 2020-04-24
US63/014,820 2020-04-24

Publications (2)

Publication Number Publication Date
TW202141528A TW202141528A (zh) 2021-11-01
TWI834034B true TWI834034B (zh) 2024-03-01

Family

ID=75919395

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110114872A TWI834034B (zh) 2020-04-24 2021-04-26 核燃料護套、其總成、其製造方法、快中子反應器及用於該反應器之方法

Country Status (7)

Country Link
US (1) US20230223159A1 (zh)
EP (1) EP4139940A1 (zh)
JP (1) JP2023523277A (zh)
KR (1) KR20230002500A (zh)
AU (1) AU2021258211A1 (zh)
TW (1) TWI834034B (zh)
WO (1) WO2021216875A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240145104A1 (en) * 2022-11-02 2024-05-02 Westinghouse Electric Company Llc Use of oxidation resistant coatings to increase thin walled cladding tensile strength to increase uranium loadings

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW368666B (en) * 1996-04-12 1999-09-01 Crs Holdings Inc Process for fabricating a cladding for a nuclear fuel rod
TW373186B (en) * 1997-03-27 1999-11-01 Siemens Power Corp Nuclear fuel rod for pressurized water reactor
US9548139B2 (en) * 2011-08-01 2017-01-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Multilayer tube in ceramic matrix composite material, resulting nuclear fuel cladding and associated manufacturing processes
US20180268947A1 (en) * 2017-03-15 2018-09-20 Rolls-Royce Power Engineering Plc Method of manufacture
WO2019060154A2 (en) * 2017-09-18 2019-03-28 Westinghouse Electric Company Llc HIGH-TEMPERATURE CERAMIC NUCLEAR FUEL SYSTEM FOR LIGHT-WATER REACTORS AND FAST CALIPORER-LEAD REACTORS
EP3117439B1 (en) * 2014-03-12 2019-05-15 Westinghouse Electric Company Llc Ceramic reinforced zirconium alloy nuclear fuel cladding with intermediate oxidation resistant layer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9982350B2 (en) * 2015-12-02 2018-05-29 Westinghouse Electric Company Llc Multilayer composite fuel clad system with high temperature hermeticity and accident tolerance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW368666B (en) * 1996-04-12 1999-09-01 Crs Holdings Inc Process for fabricating a cladding for a nuclear fuel rod
TW373186B (en) * 1997-03-27 1999-11-01 Siemens Power Corp Nuclear fuel rod for pressurized water reactor
US9548139B2 (en) * 2011-08-01 2017-01-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Multilayer tube in ceramic matrix composite material, resulting nuclear fuel cladding and associated manufacturing processes
EP3117439B1 (en) * 2014-03-12 2019-05-15 Westinghouse Electric Company Llc Ceramic reinforced zirconium alloy nuclear fuel cladding with intermediate oxidation resistant layer
US20180268947A1 (en) * 2017-03-15 2018-09-20 Rolls-Royce Power Engineering Plc Method of manufacture
WO2019060154A2 (en) * 2017-09-18 2019-03-28 Westinghouse Electric Company Llc HIGH-TEMPERATURE CERAMIC NUCLEAR FUEL SYSTEM FOR LIGHT-WATER REACTORS AND FAST CALIPORER-LEAD REACTORS

Also Published As

Publication number Publication date
WO2021216875A1 (en) 2021-10-28
EP4139940A1 (en) 2023-03-01
JP2023523277A (ja) 2023-06-02
KR20230002500A (ko) 2023-01-05
US20230223159A1 (en) 2023-07-13
TW202141528A (zh) 2021-11-01
AU2021258211A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
EP3383644B1 (en) Multilayer composite fuel clad system with high temperature hermeticity and accident tolerance
EP3117440B1 (en) Double-sealed fuel rod end plug for ceramic-containing cladding
FI92355B (fi) Ydinpolttoaine-elementti sekä menetelmä ydinpolttoaineen komposiittiverhoussäiliön käsittelemiseksi
EP3117439B1 (en) Ceramic reinforced zirconium alloy nuclear fuel cladding with intermediate oxidation resistant layer
WO2014199459A1 (ja) 管状体および管状体の製造方法
JP7367020B2 (ja) 軽水炉運転中のSiC被覆管を沈静化させるための被膜及び表面改質
JP2016531080A (ja) SiC基材に放電プラズマにより端栓を焼結させた燃料被覆管
TWI834034B (zh) 核燃料護套、其總成、其製造方法、快中子反應器及用於該反應器之方法
Snead et al. SiC/SiC Cladding Materials Properties Handbook
KR20190035933A (ko) SiC 복합 세라믹을 제조하기 위한 공정
CN106631078A (zh) 一种碳化硅复合包壳管的制备方法
US20230343475A1 (en) Channel boxes for a boiling water reactor and methods of manufacture thereof
TWI842994B (zh) 用於沸水反應堆之通道盒及其製造方法以及用於阻止通道盒非均勻溶脹及變形之方法
CN106747453B (zh) 一种SiC复合纤维缠绕包壳的高温裂解处理方法
US20210253485A1 (en) TUBULAR BODY CONTAINING SiC FIBERS
Koyanagi et al. Issue update to LWR SiC/SiC cladding handbook of properties
Feinroth A Multi-Layered Ceramic Composite for Impermeable Fuel Cladding for COmmercial Wate Reactors