TWI833216B - Semiconductor device with decoupling unit - Google Patents
Semiconductor device with decoupling unit Download PDFInfo
- Publication number
- TWI833216B TWI833216B TW111118389A TW111118389A TWI833216B TW I833216 B TWI833216 B TW I833216B TW 111118389 A TW111118389 A TW 111118389A TW 111118389 A TW111118389 A TW 111118389A TW I833216 B TWI833216 B TW I833216B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- alignment mark
- alignment marks
- dielectric layer
- layer structure
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 86
- 239000000463 material Substances 0.000 claims abstract description 105
- 239000000758 substrate Substances 0.000 claims abstract description 31
- 239000003989 dielectric material Substances 0.000 claims abstract description 16
- 230000004888 barrier function Effects 0.000 claims description 35
- 125000006850 spacer group Chemical group 0.000 claims description 7
- DMLAVOWQYNRWNQ-UHFFFAOYSA-N azobenzene Chemical compound C1=CC=CC=C1N=NC1=CC=CC=C1 DMLAVOWQYNRWNQ-UHFFFAOYSA-N 0.000 claims description 5
- 238000000034 method Methods 0.000 description 47
- 230000008569 process Effects 0.000 description 34
- 238000004519 manufacturing process Methods 0.000 description 26
- 238000005530 etching Methods 0.000 description 15
- 238000005229 chemical vapour deposition Methods 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 238000005137 deposition process Methods 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 239000011521 glass Substances 0.000 description 6
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 6
- 150000004767 nitrides Chemical class 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 4
- 239000005380 borophosphosilicate glass Substances 0.000 description 4
- 238000001312 dry etching Methods 0.000 description 4
- 229940104869 fluorosilicate Drugs 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 239000003361 porogen Substances 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010336 energy treatment Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910000951 Aluminide Inorganic materials 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910005540 GaP Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- RQQRTMXCTVKCEK-UHFFFAOYSA-N [Ta].[Mg] Chemical compound [Ta].[Mg] RQQRTMXCTVKCEK-UHFFFAOYSA-N 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910003468 tantalcarbide Inorganic materials 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Photovoltaic Devices (AREA)
- Wire Bonding (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Details Of Rigid Or Semi-Rigid Containers (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
本申請案主張美國第17/685,511及17/685,865號專利申請案之優先權(即優先權日為「2022年3月3日」),其內容以全文引用之方式併入本文中。 This application claims priority to U.S. Patent Application Nos. 17/685,511 and 17/685,865 (that is, the priority date is "March 3, 2022"), the contents of which are incorporated herein by reference in their entirety.
本揭露係有關於一種半導體元件,特別是關於一種具有去耦合單元的半導體元件。 The present disclosure relates to a semiconductor device, and in particular to a semiconductor device having a decoupling unit.
半導體元件用於各種電子應用,例如個人電腦、行動電話、數位相機及其他電子設備。半導體元件的尺寸持續地縮小,以滿足對於運算能力日益增長的需求。然而,在縮小尺寸的過程中會出現各種問題,而且這些問題不斷地增加。因此,在改善品質、良率、性能及可靠度並降低複雜性的方面仍然存在挑戰。 Semiconductor components are used in various electronic applications such as personal computers, mobile phones, digital cameras and other electronic devices. The size of semiconductor devices continues to shrink to meet the growing demand for computing power. However, various problems arise during the downsizing process, and these problems continue to increase. Therefore, challenges remain in improving quality, yield, performance and reliability while reducing complexity.
上文之「先前技術」說明僅係提供背景技術,並未承認上文之「先前技術」說明揭示本揭露之標的,不構成本揭露之先前技術,且上文之「先前技術」之任何說明均不應作為本案之「先前技術」的任一部分,不構成本揭露之先前技術。 The above description of "prior art" is only to provide background technology, and does not admit that the above description of "prior art" reveals the subject matter of the present disclosure. It does not constitute prior art of the present disclosure, and any description of the above "prior art" Neither should be regarded as any part of the "prior art" of this case and do not constitute prior art of this disclosure.
本揭露的一方面提供一種半導體元件,包括:一第一層結 構,包括位於一基板上方的該第一層結構的複數導電部件、及位於該第一層結構的該等導電部件之間的該第一層結構的一去耦合單元;一第一組密實對準標誌,包括位於該第一層結構的該去耦合單元上的一第一層對準標誌,且包括一螢光材料;一第二層結構,位於該第一層結構上,且包括位於該第一層結構的該等導電部件上方並偏離該第一層結構的該等導電部件的該第二層結構的複數導電部件、及位於該第一層結構上方並位於該第二層結構的該等導電部件之間的該第二層結構的一去耦合單元;以及一第一組間隔對準標誌,包括位於該第二層結構的該去耦合單元上的一第二層對準標誌,且包括一螢光材料,其中該第一層結構及該第二層結構的該去耦合單元包括一低k介電材料且分別包括一瓶形剖面輪廓。 One aspect of the present disclosure provides a semiconductor device, including: a first layer junction The structure includes a plurality of conductive components of the first layer structure located above a substrate, and a decoupling unit of the first layer structure located between the conductive components of the first layer structure; a first group of dense pairs an alignment mark, including a first layer alignment mark located on the decoupling unit of the first layer structure, and including a fluorescent material; a second layer structure, located on the first layer structure, and including a first layer alignment mark located on the first layer structure A plurality of conductive components of the second layer structure above the conductive components of the first layer structure and deviating from the conductive components of the first layer structure, and the conductive components of the second layer structure located above the first layer structure and located at the second layer structure a decoupling unit of the second layer structure between conductive components; and a first set of spaced alignment marks, including a second layer alignment mark located on the decoupling unit of the second layer structure, and Including a fluorescent material, wherein the decoupling unit of the first layer structure and the second layer structure includes a low-k dielectric material and each includes a bottle-shaped cross-sectional profile.
本揭露的另一方面提供一種半導體元件,包括位於一基板上的一第一層結構,且該第一層結構包括:位於該基板上方的該第一層結構的複數導電部件,及位於該第一層結構的該等導電部件之間的該第一層結構的一去耦合單元,且其包括一瓶形剖面輪廓;一第一組密實對準標誌,包括:位於該第一層結構的該去耦合單元上的該第一組密實對準標誌的一第一層對準標誌;一第一組間隔對準標誌,包括:根據一第一對稱軸與該第一組密實對準標誌的該第一層對準標誌互為鏡像的該第一組間隔對準標誌的一第一層對準標誌,其中該第一組密實對準標誌的該第一層對準標誌及該第一組間隔對準標誌的該第一層對準標誌包括一螢光材料,該第一層結構的該去耦合單元包括一低k介電材料。 Another aspect of the present disclosure provides a semiconductor device, including a first layer structure on a substrate, and the first layer structure includes: a plurality of conductive components of the first layer structure above the substrate, and a first layer structure on the substrate. a decoupling unit of the first layer structure between the conductive components of the layer structure, and which includes a bottle-shaped cross-sectional profile; a first set of dense alignment marks, including: the first layer structure located on the a first layer of alignment marks of the first set of dense alignment marks on the decoupling unit; a first set of spaced alignment marks, including: a first layer of alignment marks according to a first axis of symmetry and the first set of dense alignment marks A first layer of alignment marks of the first set of spaced alignment marks that are mirror images of each other, wherein the first level of alignment marks of the first set of dense alignment marks and the first set of spacers The first layer of the alignment mark includes a fluorescent material, and the decoupling unit of the first layer structure includes a low-k dielectric material.
本揭露的另一方面提供一種半導體元件的製造方法,包括在一基板上方形成一第一層結構,且該第一層結構包括:在該基板上方的複數導電部件,及在該等導電部件之間的一去耦合單元;在該第一層結構 的該去耦合單元上形成包括一第一層對準標誌的一第一組密實對準標誌;在該第一層結構上方形成一第二層結構,且其包括:在該第一層結構上方的複數導電部件,及在該等導電部件之間的一去耦合單元;以及在該第二層結構的該去耦合單元上形成包括一第二層對準標誌的一第一組間隔對準標誌,其中該第一層對準標誌及該第二層對準標誌包括一螢光材料,該第一層結構及該第二層結構的該去耦合單元包括一低k介電材料。 Another aspect of the present disclosure provides a method for manufacturing a semiconductor device, including forming a first layer structure above a substrate, and the first layer structure includes: a plurality of conductive components above the substrate, and between the conductive components a decoupling unit between; in the first layer structure A first set of dense alignment marks including a first layer alignment mark is formed on the decoupling unit; a second layer structure is formed above the first layer structure, and includes: above the first layer structure A plurality of conductive components, and a decoupling unit between the conductive components; and forming a first group of spaced alignment marks including a second layer alignment mark on the decoupling unit of the second layer structure , wherein the first layer alignment mark and the second layer alignment mark include a fluorescent material, and the decoupling unit of the first layer structure and the second layer structure includes a low-k dielectric material.
由於本揭露的半導體元件的設計,包含螢光材料的第一層對準標誌、第二層對準標誌、第三層對準標誌及第四層對準標誌可改善晶圓製造過程中的光學辨識度。結果,可提升製造半導體元件的良率。另外,去耦合單元可降低複數導電部件的寄生電容。 Due to the design of the semiconductor device of the present disclosure, the first layer of alignment marks, the second layer of alignment marks, the third layer of alignment marks and the fourth layer of alignment marks including fluorescent materials can improve the optics in the wafer manufacturing process. Recognition. As a result, the yield of manufacturing semiconductor devices can be improved. In addition, the decoupling unit can reduce the parasitic capacitance of the complex conductive components.
上文已相當廣泛地概述本揭露之特徵及技術優點,俾使下文之本揭露詳細描述得以獲得較佳瞭解。構成本揭露之申請專利範圍標的之其他特徵和優點將描述於下文。本揭露所屬技術領域中具有通常知識者應瞭解,可相當容易地利用下文揭示之概念與特定實施例作為修改或設計其他結構或製程而實現與本揭露相同之目的。本揭露所屬技術領域中具有通常知識者亦應瞭解,這類等效建構無法脫離後附之申請專利範圍所界定之本揭露的精神和範圍。 The foregoing has provided a rather broad overview of the features and technical advantages of the present disclosure in order to provide a better understanding of the detailed description of the present disclosure that follows. Additional features and advantages that form the subject of the patent claims of the present disclosure will be described below. It should be understood by those of ordinary skill in the art that the concepts and specific embodiments disclosed below can be easily used to modify or design other structures or processes to achieve the same purposes as the present disclosure. Those with ordinary knowledge in the technical field to which the present disclosure belongs should also understand that such equivalent constructions cannot depart from the spirit and scope of the present disclosure as defined in the appended patent application scope.
1A:半導體元件 1A: Semiconductor components
1B:半導體元件 1B: Semiconductor components
1C:半導體元件 1C: Semiconductor components
1D:半導體元件 1D: Semiconductor components
10:製造方法 10: Manufacturing method
100:第一層結構 100: First layer structure
101:基板 101:Substrate
111:第一介電層 111: First dielectric layer
113:第二介電層 113: Second dielectric layer
115:中間介電層 115: Intermediate dielectric layer
117:第三介電層 117:Third dielectric layer
119:第四介電層 119:Fourth dielectric layer
121:去耦合單元 121: Decoupling unit
121BS:底表面 121BS: Bottom surface
121SW:側壁 121SW: Side wall
121V:谷部 121V:Tanibe
130:導電部件 130: Conductive parts
131:底部阻障層 131: Bottom barrier layer
131SW:側壁 131SW: Side wall
135:中間導電層 135: Intermediate conductive layer
135SW:側壁 135SW: Side wall
133:頂部阻障層 133:Top barrier layer
133SW:側壁 133SW: Side wall
137:間隙壁阻障 137: Gap wall barrier
200:第二層結構 200:Second layer structure
211:第一介電層 211: First dielectric layer
213:第二介電層 213: Second dielectric layer
215:中間介電層 215: Intermediate dielectric layer
217:第三介電層 217:Third dielectric layer
219:第四介電層 219:Fourth dielectric layer
230:導電部件 230: Conductive parts
221:去耦合單元 221: Decoupling unit
300:第三層結構 300:Third layer structure
321:去耦合單元 321: Decoupling unit
330:導電部件 330: Conductive parts
400:第四層結構 400:Fourth layer structure
421:去耦合單元 421: Decoupling unit
430:導電部件 430: Conductive parts
501:第一材料 501:First material
503:第二材料 503: Second material
505:第三材料 505:Third material
507:第四材料 507:Fourth material
511:第一遮罩層 511: First mask layer
513:第二遮罩層 513: Second mask layer
515:第三遮罩層 515: The third mask layer
521:開口 521:Open your mouth
523:擴展開口 523:Extended opening
525:標誌開口 525: Logo opening
600-1:第一組密實對準標誌 600-1: The first set of dense alignment marks
600-2:第二組密實對準標誌 600-2: The second set of dense alignment marks
610:第一子集密實對準標誌 610: First subset of dense alignment marks
611:第一層對準標誌 611: First layer alignment mark
611SW:側壁 611SW: Side wall
611TS:頂表面 611TS: Top surface
611BS:底表面 611BS: Bottom surface
613:第二層對準標誌 613: Second layer alignment mark
615:第三層對準標誌 615: Third layer alignment mark
617:第四層對準標誌 617: Fourth layer alignment mark
620:第二子集密實對準標誌 620: Second subset of dense alignment marks
621:第一層對準標誌 621: First layer alignment mark
623:第二層對準標誌 623: Second layer alignment mark
625:第三層對準標誌 625: Third layer alignment mark
627:第四層對準標誌 627: Fourth layer alignment mark
630:第三子集密實對準標誌 630: The third subset of dense alignment marks
631:第一層對準標誌 631: First layer alignment mark
633:第二層對準標誌 633: Second layer alignment mark
635:第三層對準標誌 635: Third layer alignment mark
637:第四層對準標誌 637:Fourth layer alignment mark
641:第一層對準標誌 641: First layer alignment mark
643:第二層對準標誌 643: Second layer alignment mark
645:第三層對準標誌 645: Third layer alignment mark
647:第四層對準標誌 647: Fourth layer alignment mark
640:第四子集密實對準標誌 640: The fourth subset of dense alignment marks
700-1:第一組間隔對準標誌 700-1: The first set of interval alignment marks
700-2:第二組間隔對準標誌 700-2: The second set of interval alignment marks
710:第一子集間隔對準標誌 710: First subset interval alignment marks
711:第一層對準標誌 711: First layer alignment mark
713:第二層對準標誌 713: Second layer alignment mark
715:第三層對準標誌 715:Third layer alignment mark
717:第四層對準標誌 717: Fourth layer alignment mark
720:第二子集間隔對準標誌 720: Second subset interval alignment mark
721:第一層對準標誌 721: First layer alignment mark
723:第二層對準標誌 723: Second layer alignment mark
725:第三層對準標誌 725:Third layer alignment mark
727:第四層對準標誌 727: Fourth layer alignment mark
730:第三子集間隔對準標誌 730: Third subset interval alignment mark
731:第一層對準標誌 731: First layer alignment mark
733:第二層對準標誌 733: Second layer alignment mark
735:第三層對準標誌 735:Third layer alignment mark
737:第四層對準標誌 737: Fourth layer alignment mark
740:第四子集間隔對準標誌 740: Fourth subset interval alignment mark
741:第一層對準標誌 741: First layer alignment mark
743:第二層對準標誌 743: Second layer alignment mark
745:第三層對準標誌 745:Third layer alignment mark
747:第四層對準標誌 747: Fourth layer alignment mark
D1:距離 D1: distance
D2:距離 D2: distance
D3:距離 D3: distance
G1:距離 G1: distance
L1:長度 L1:Length
L2:長度 L2: length
L3:長度 L3: length
S1:第一對稱軸 S1: first axis of symmetry
S2:第二對稱軸 S2: Second axis of symmetry
S3:第三對稱軸 S3: Third axis of symmetry
S11:步驟 S11: Steps
S13:步驟 S13: Steps
S15:步驟 S15: Steps
S17:步驟 S17: Steps
T1:厚度 T1:Thickness
T2:厚度 T2:Thickness
T3:厚度 T3:Thickness
T4:厚度 T4:Thickness
T5:厚度 T5:Thickness
T6:厚度 T6:Thickness
T7:厚度 T7:Thickness
W1:寬度 W1: Width
W2:寬度 W2: Width
W3:寬度 W3: Width
W4:寬度 W4: Width
W5:寬度 W5: Width
W6:寬度 W6: Width
W7:寬度 W7: Width
本揭露的實施方式可從下列的詳細描述並結合參閱附圖得到最佳的理解。需注意的是,根據在業界的標準實務做法,各種特徵不一定是依照比例繪製。事實上,為了便於清楚討論,各種特徵的尺寸可任意放大或縮小。 Embodiments of the present disclosure can be best understood from the following detailed description in conjunction with the accompanying drawings. It should be noted that, in accordance with standard practice in the industry, various features are not necessarily drawn to scale. In fact, the dimensions of the various features may be arbitrarily expanded or reduced for clarity of discussion.
圖1以流程圖的形式例示本揭露一實施例的半導體元件的製造方法。 FIG. 1 illustrates a method for manufacturing a semiconductor device according to an embodiment of the present disclosure in the form of a flow chart.
圖2至11以剖面示意圖例示本揭露一實施例的半導體元件的製造流程的一部分。 2 to 11 illustrate a part of the manufacturing process of a semiconductor device according to an embodiment of the present disclosure using cross-sectional schematic diagrams.
圖12以平面示意圖例示本揭露一實施例的中間階段的半導體元件。 FIG. 12 illustrates a schematic plan view of a semiconductor device in an intermediate stage according to an embodiment of the present disclosure.
圖13是沿著圖12中的剖線A-A’的剖面示意圖,例示本揭露一實施例的半導體元件的製造流程的一部分。 13 is a schematic cross-sectional view along line A-A’ in FIG. 12 , illustrating a part of the manufacturing process of a semiconductor device according to an embodiment of the present disclosure.
圖14以平面示意圖例示本揭露一實施例的中間階段的半導體元件。 FIG. 14 illustrates a schematic plan view of a semiconductor device in an intermediate stage according to an embodiment of the present disclosure.
圖15是沿著圖14中的剖線A-A’的剖面示意圖,例示本揭露一實施例的半導體元件的製造流程的一部分。 FIG. 15 is a schematic cross-sectional view along line A-A’ in FIG. 14 , illustrating a part of the manufacturing process of a semiconductor device according to an embodiment of the present disclosure.
圖16以平面示意圖例示本揭露一實施例的中間階段的半導體元件。 FIG. 16 illustrates a schematic plan view of a semiconductor device in an intermediate stage according to an embodiment of the present disclosure.
圖17是沿著圖16中的剖線A-A’的剖面示意圖,例示本揭露一實施例的半導體元件的製造流程的一部分。 FIG. 17 is a schematic cross-sectional view along line A-A’ in FIG. 16 , illustrating a part of the manufacturing process of a semiconductor device according to an embodiment of the present disclosure.
圖18以平面示意圖例示本揭露另一實施例的半導體元件。 FIG. 18 illustrates a schematic plan view of a semiconductor device according to another embodiment of the present disclosure.
圖19是沿著圖18中的剖線A-A’及B-B’的剖面示意圖。 Fig. 19 is a schematic cross-sectional view along the cross-section lines A-A' and B-B' in Fig. 18.
圖20以平面示意圖例示本揭露另一實施例的半導體元件。 FIG. 20 is a schematic plan view illustrating a semiconductor device according to another embodiment of the present disclosure.
圖21是沿著圖20中的剖線A-A’及B-B’的剖面示意圖。 Fig. 21 is a schematic cross-sectional view along the cross-section lines A-A' and B-B' in Fig. 20.
圖22以平面示意圖例示本揭露另一實施例的半導體元件。 FIG. 22 illustrates a schematic plan view of a semiconductor device according to another embodiment of the present disclosure.
圖23是沿著圖22中的剖線A-A’及B-B’的剖面示意圖。 Fig. 23 is a schematic cross-sectional view along the cross-section lines A-A' and B-B' in Fig. 22.
圖24是沿著圖22中的剖線C-C’及D-D’的剖面示意圖。 Fig. 24 is a schematic cross-sectional view along the cross-section lines C-C' and D-D' in Fig. 22.
以下揭露的內容提供許多不同的實施例或範例,用於實施所提供標的的不同特徵。構件和排列的具體範例描述如下以簡化本揭露,而這些當然僅為範例,並非意圖加以限制。例如,在以下描述中,在第二特徵上方或上形成第一特徵可包含第一特徵和第二特徵被形成為直接接觸 的這種實施例,也可包含在第一特徵和第二特徵之間形成額外的特徵使得第一特徵和第二特徵可不直接接觸的這種實施例。另外,在本揭露的各種範例中可能會使用重複的參考符號及/或用字,重複的目的在於簡化與清楚說明,並非用以限定所討論的各種實施例及/或配置之間的關係。 The following disclosure provides many different embodiments, or examples, for implementing different features of the provided subject matter. Specific examples of components and arrangements are described below to simplify the present disclosure, and these are, of course, examples only and are not intended to be limiting. For example, in the following description, forming a first feature over or on a second feature may include the first feature and the second feature being formed in direct contact. Such embodiments may also include embodiments in which additional features are formed between the first feature and the second feature such that the first feature and the second feature may not be in direct contact. In addition, repeated reference symbols and/or words may be used in various examples of the present disclosure. The purpose of repetition is for simplicity and clarity of explanation, but is not intended to limit the relationship between the various embodiments and/or configurations discussed.
再者,空間相對用語例如「在...之下」、「在...下方」、「下」、「在...上方」、「上」等,是用以方便描述一構件或特徵與其他構件或特徵在圖式中的相對關係。這些空間相對用語旨在涵蓋除了圖式中所示之方位以外,元件在使用或操作時的不同方位。裝置可被另外定位(例如旋轉90度或其他方位),而本文所使用的空間相對敘述亦可相對應地進行解釋。 Furthermore, spatially relative terms such as "under", "below", "under", "above", "on", etc. are used to conveniently describe a component or feature Relative relationship to other components or features in the drawing. These spatially relative terms are intended to cover different orientations of the component in use or operation in addition to the orientation depicted in the drawings. The device may be otherwise oriented (e.g., rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
應理解的是,當一構件或層被稱為「連接至」或「耦接至」另一構件或層時,可以是直接連接或耦接至另一構件或層,或者可能存在中間構件或層。 It will be understood that when a component or layer is referred to as being "connected" or "coupled" to another component or layer, it can be directly connected or coupled to the other component or layer, or intervening components or layers may be present. layer.
應理解的是,雖然此處可能使用第一、第二等用語來描述各種構件,但這些構件不應受到這些用語的限制。除非另有說明,否則這些用語僅用於將一構件與另一構件區分。因此,例如,在不脫離本揭露的教示的情況下,以下討論的第一構件、第一組件或第一部分可以被稱為第二構件、第二組件或第二部分。 It will be understood that, although the terms first, second, etc. may be used herein to describe various components, these components should not be limited by these terms. Unless otherwise stated, these terms are only used to distinguish one component from another component. Thus, for example, a first element, component or section discussed below could be termed a second element, component or section without departing from the teachings of the present disclosure.
除非本文另有說明,否則當提及方位、佈局、位置、形狀、尺寸、數量或其他量度時,此處所使用的例如「相同」、「等同」、「平面」或「共平面」的用語並不一定表示完全相同的方位、佈局、位置、形狀、尺寸、數量或其他量度,而是旨在涵蓋例如由於製造製程而可能產生的變化在可接受範圍內幾乎相同的方位、佈局、位置、形狀、尺 寸、數量或其他量度。本文可能使用「大致上(substantially)」的用語來反映此含義。舉例而言,描述為「大致上相同」、「大致上等同」或「大致上平面」的物件可以是正好相同、等同或平面,或者也可以是在例如由於製造製程而可能產生的變化在可接受範圍內相同、等同或平面。 Unless otherwise indicated herein, terms such as "same," "identical," "planar" or "coplanar" when referring to orientation, arrangement, location, shape, size, quantity or other measure are not used herein. does not necessarily represent the exact same orientation, layout, location, shape, size, quantity or other measurement, but is intended to cover substantially the same orientation, layout, location, shape within an acceptable range of variations that may occur, for example, due to the manufacturing process ,ruler size, quantity or other measure. This article may use the term "substantially" to reflect this meaning. For example, items described as "substantially the same," "substantially identical," or "substantially planar" may be exactly the same, identical, or planar, or may be subject to changes that may occur, such as due to manufacturing processes. Accepts same, equal or flat within range.
在本揭露中,半導體元件通常是指可以透過利用半導體特性而起作用的元件,且電光元件、發光顯示元件、半導體電路及電子元件都包含在半導體元件的類別中。 In this disclosure, semiconductor components generally refer to components that can function by utilizing semiconductor characteristics, and electro-optical components, light-emitting display components, semiconductor circuits and electronic components are all included in the category of semiconductor components.
需注意的是,在本揭露的描述中,上方(above)或上(up)對應於方向Z的箭頭方向,下方(below)或下(down)對應於相反於方向Z的箭頭方向。 It should be noted that in the description of the present disclosure, above or up corresponds to the arrow direction of the direction Z, and below or down corresponds to the arrow direction opposite to the direction Z.
圖1以流程圖的形式例示本揭露一實施例的半導體元件1A的製造方法10。圖2至11以剖面示意圖例示本揭露一實施例的半導體元件1A的製造流程的一部分。圖12以平面示意圖例示本揭露一實施例的中間階段的半導體元件1A。圖13是沿著圖12中的剖線A-A’的剖面示意圖,例示本揭露一實施例的半導體元件1A的製造流程的一部分。 FIG. 1 illustrates a manufacturing method 10 of a semiconductor device 1A according to an embodiment of the present disclosure in the form of a flow chart. 2 to 11 illustrate a part of the manufacturing process of the semiconductor device 1A according to an embodiment of the present disclosure using cross-sectional schematic diagrams. FIG. 12 illustrates a schematic plan view of a semiconductor device 1A in an intermediate stage according to an embodiment of the present disclosure. FIG. 13 is a schematic cross-sectional view along the sectional line A-A’ in FIG. 12 , illustrating a part of the manufacturing process of the semiconductor device 1A according to an embodiment of the present disclosure.
參照圖1至5,在步驟S11中,可提供一基板101,可在基板101上形成一第一介電層111,可在第一介電層111上形成一第二介電層113,且可在第二介電層113上形成複數導電部件130。 Referring to Figures 1 to 5, in step S11, a substrate 101 can be provided, a first dielectric layer 111 can be formed on the substrate 101, a second dielectric layer 113 can be formed on the first dielectric layer 111, and A plurality of conductive components 130 may be formed on the second dielectric layer 113 .
參照圖2,基板101可包含完全由至少一種半導體材料所構成的半導體塊材基板、複數元件構件(為了清楚起見並未繪示)、複數介電層(為了清楚起見並未繪示)及複數導電部件(為了清楚起見並未繪示)。舉例來說,半導體塊材基板可由元素半導體(例如矽或鍺)、化合物半導體(例如矽鍺、碳化矽、砷化鎵、磷化鎵、磷化銦、砷化銦、銻化 銦、或其他III-V族化合物半導體或II-VI族化合物半導體)或其組合所構成。 Referring to FIG. 2 , the substrate 101 may include a semiconductor bulk substrate composed entirely of at least one semiconductor material, a plurality of component components (not shown for the sake of clarity), and a plurality of dielectric layers (not shown for the sake of clarity). and a plurality of conductive components (not shown for clarity). For example, the semiconductor bulk substrate can be made of elemental semiconductors (such as silicon or germanium), compound semiconductors (such as silicon germanium, silicon carbide, gallium arsenide, gallium phosphide, indium phosphide, indium arsenide, antimonide Indium, or other III-V compound semiconductors or II-VI compound semiconductors) or combinations thereof.
在一些實施例中,基板101可包含絕緣體上半導體結構,其從底部到頂部由操作基板、絕緣層及最頂部的半導體材料層所組成。操作基板及最頂部的半導體材料層可由與前述半導體塊材基板相同的材料所形成。絕緣層可為結晶或非結晶介電材料,例如氧化物及/或氮化物。例如,絕緣層可為介電氧化物,例如氧化矽。又例如,絕緣層可為介電氮化物,例氮化矽或氮化硼。再例如,絕緣層可包含介電氧化物及介電氮化物的疊層,例如以任何順序堆疊的氧化矽及氮化矽或氮化硼的疊層。絕緣層可具有大約10nm至200nm之間的厚度。 In some embodiments, the substrate 101 may include a semiconductor-on-insulator structure consisting from bottom to top of a handle substrate, an insulating layer, and a topmost semiconductor material layer. The operating substrate and the topmost semiconductor material layer may be formed of the same material as the aforementioned semiconductor bulk substrate. The insulating layer may be a crystalline or amorphous dielectric material, such as an oxide and/or nitride. For example, the insulating layer may be a dielectric oxide, such as silicon oxide. As another example, the insulating layer may be a dielectric nitride, such as silicon nitride or boron nitride. As another example, the insulating layer may comprise a stack of dielectric oxide and dielectric nitride, such as a stack of silicon oxide and silicon nitride or boron nitride stacked in any order. The insulating layer may have a thickness of between approximately 10 nm and 200 nm.
參照圖2,該等元件構件可形成於半導體塊材基板或最頂部的半導體材料層上。該等元件構件的一些部分可形成於半導體塊材基板或最頂部的半導體材料層內。該等元件構件可為電晶體,例如互補式金屬氧化物半導體電晶體、金屬氧化物半導體場效電晶體、鰭式場效電晶體、類似的電晶體、或其組合。 Referring to Figure 2, the device features may be formed on a semiconductor bulk substrate or a topmost layer of semiconductor material. Portions of these component features may be formed within the semiconductor bulk substrate or the topmost semiconductor material layer. The device components may be transistors, such as complementary metal oxide semiconductor transistors, metal oxide semiconductor field effect transistors, fin field effect transistors, similar transistors, or combinations thereof.
參照圖2,該等介電層可形成於半導體塊材基板或最頂部的半導體材料層上,並覆蓋該等元件構件。在一些實施例中,該等介電層可由例如氧化矽、硼磷矽酸鹽玻璃、未摻雜的矽酸鹽玻璃、氟化矽酸鹽玻璃、低k介電材料、類似的材料、或其組合所形成。低k介電材料可具有小於3.0或甚至小於2.5的介電常數。在一些實施例中,低k介電材料可具有小於2.0的介電常數。可藉由沉積製程(例如化學氣相沉積製程、電漿增強化學氣相沉積製程、或類似的沉積製程)形成多層介電層。可在沉積製程之後進行平坦化製程,以去除多餘的材料並為後續的製程步驟提供大致 上平坦的表面。 Referring to FIG. 2 , the dielectric layers may be formed on the semiconductor bulk substrate or the topmost semiconductor material layer and cover the device components. In some embodiments, the dielectric layers may be made of, for example, silicon oxide, borophosphosilicate glass, undoped silicate glass, fluorosilicate glass, low-k dielectric materials, similar materials, or formed by its combination. Low-k dielectric materials may have a dielectric constant less than 3.0 or even less than 2.5. In some embodiments, low-k dielectric materials may have a dielectric constant less than 2.0. The multilayer dielectric layer may be formed by a deposition process, such as a chemical vapor deposition process, a plasma enhanced chemical vapor deposition process, or a similar deposition process. A planarization process can be performed after the deposition process to remove excess material and provide a rough surface for subsequent process steps. on a flat surface.
參照圖2,該等導電部件可包含多層內連線層及多個導電通孔。內連線層可彼此分離且可沿著方向Z水平地設置於該等介電層內。導電通孔可連接沿著方向Z的相鄰內連線層及相鄰的元件構件與內連線層。在一些實施例中,導電通孔可改善散熱且可提供結構支撐。在一些實施例中,該等導電部件可由例如鎢、鈷、鋯、鉭、鈦、鋁、釕、銅、金屬碳化物(例如,碳化鉭、碳化鈦、碳化鉭鎂)、金屬氮化物(例如氮化鈦)、過渡金屬鋁化物、或其組合所形成。可在形成該等介電層的期間形成該等導電部件。 Referring to FIG. 2 , the conductive components may include multiple interconnect layers and multiple conductive vias. The interconnect layers may be separated from each other and may be disposed horizontally along the direction Z within the dielectric layers. The conductive vias can connect adjacent interconnect layers along the direction Z and adjacent component components and interconnect layers. In some embodiments, conductive vias may improve heat dissipation and may provide structural support. In some embodiments, the conductive components may be made of, for example, tungsten, cobalt, zirconium, tantalum, titanium, aluminum, ruthenium, copper, metal carbides (eg, tantalum carbide, titanium carbide, tantalum magnesium carbide), metal nitrides (eg, Titanium nitride), transition metal aluminides, or combinations thereof. The conductive features may be formed during formation of the dielectric layers.
在一些實施例中,該等元件構件及該等導電部件可共同構成基板101內的多個功能單元。在本揭露描述的內容中,一功能單元通常意指有關於功能的電路,其基於功能目的被區分成不同的單元。在一些實施例中,功能單元通常可為高度複雜的電路,例如處理器核心、記憶體控制器、或加速器單元。在一些其他實施例中,一功能單元的複雜性及功能性可能更加複雜或者比較簡單。 In some embodiments, the component components and the conductive components may together constitute multiple functional units within the substrate 101 . In the description of this disclosure, a functional unit generally refers to a circuit related to a function, which is divided into different units based on functional purposes. In some embodiments, functional units may typically be highly complex circuits, such as processor cores, memory controllers, or accelerator units. In some other embodiments, the complexity and functionality of a functional unit may be more complex or simpler.
參照圖2,在一些實施例中,第一介電層111可由例如氟矽酸鹽玻璃、硼磷矽酸鹽玻璃、旋塗低k介電層、化學氣相沉積低k介電層、或其組合所形成。在一些實施例中,第一介電層111可包含自平坦化材料,例如旋塗玻璃或旋塗低k介電材料(例如SiLKTM)。使用自平坦化介電材料可省略進行後續的平坦化步驟。在一些實施例中,可藉由沉積製程(包含例如化學氣相沉積、電漿增強化學氣相沉積、蒸鍍或旋塗)形成第一介電層111。 Referring to FIG. 2 , in some embodiments, the first dielectric layer 111 may be made of, for example, fluorosilicate glass, borophosphosilicate glass, a spin-coated low-k dielectric layer, a chemical vapor-deposited low-k dielectric layer, or formed by its combination. In some embodiments, first dielectric layer 111 may include a self-planarizing material, such as spin-on glass or spin-on low-k dielectric material (eg, SiLK ™ ). Using self-planarizing dielectric materials eliminates the need for subsequent planarization steps. In some embodiments, the first dielectric layer 111 may be formed by a deposition process, including, for example, chemical vapor deposition, plasma enhanced chemical vapor deposition, evaporation, or spin coating.
參照圖2,在一些實施例中,第二介電層113可為例如氮化 矽、氮氧化矽、氮氧化矽、類似的材料、或其組合。可藉由例如化學氣相沉積、電漿增強化學氣相沉積、或其他適用的沉積製程形成第二介電層113。在一些實施例中,第二介電層113可作為阻障層以防止濕氣進入下層(例如,第一介電層111及基板101)。在一些實施例中,第一介電層111的厚度T1大於第二介電層113的厚度T2。 Referring to FIG. 2 , in some embodiments, the second dielectric layer 113 may be, for example, a nitride Silicon, silicon oxynitride, silicon oxynitride, similar materials, or combinations thereof. The second dielectric layer 113 may be formed by, for example, chemical vapor deposition, plasma enhanced chemical vapor deposition, or other suitable deposition processes. In some embodiments, the second dielectric layer 113 may serve as a barrier layer to prevent moisture from entering underlying layers (eg, the first dielectric layer 111 and the substrate 101 ). In some embodiments, the thickness T1 of the first dielectric layer 111 is greater than the thickness T2 of the second dielectric layer 113 .
參照圖2,可在第二介電層113上形成一層第一材料501。第一材料501可為例如鈦、氮化鈦、鉭、氮化鉭、或類似的材料。可藉由例如化學氣相沉積、物理氣相沉積、濺鍍、或類似的方法形成這層第一材料501。一層第二材料503可形成於這層第一材料501上。這層第二材料503可為例如銅、銅合金、銀、金、鎢、鋁、鎳、或類似的材料。可藉由例如物理氣相沉積、濺鍍、或類似的方法形成這層第二材料503。一層第三材料505可形成於這層第二材料503上。在一些實施例中,第三材料505及第一材料501可包含相同的材料。在一些實施例中,第三材料505可為例如鈦、氮化鈦、鉭、氮化鉭、或類似的材料。可藉由例如化學氣相沉積、物理氣相沉積、濺鍍、或類似的方法形成這層第三材料505。 Referring to FIG. 2 , a layer of first material 501 may be formed on the second dielectric layer 113 . The first material 501 may be, for example, titanium, titanium nitride, tantalum, tantalum nitride, or similar materials. This layer of first material 501 may be formed by, for example, chemical vapor deposition, physical vapor deposition, sputtering, or similar methods. A layer of second material 503 may be formed on the layer of first material 501 . This layer of second material 503 may be, for example, copper, copper alloy, silver, gold, tungsten, aluminum, nickel, or similar materials. This layer of second material 503 may be formed by, for example, physical vapor deposition, sputtering, or similar methods. A layer of third material 505 may be formed on the layer of second material 503 . In some embodiments, the third material 505 and the first material 501 may include the same material. In some embodiments, the third material 505 may be, for example, titanium, titanium nitride, tantalum, tantalum nitride, or similar materials. This layer of third material 505 may be formed by, for example, chemical vapor deposition, physical vapor deposition, sputtering, or similar methods.
參照圖2,一第一遮罩層511可形成於這層第三材料505上。第一遮罩層511可為一光阻層且可包含該等導電部件130的圖案。 Referring to FIG. 2 , a first mask layer 511 may be formed on the layer of third material 505 . The first mask layer 511 may be a photoresist layer and may include patterns of the conductive components 130 .
參照圖3,可進行蝕刻製程(例如異向性乾式蝕刻製程)以去除第一材料501、第二材料503及第三材料505的一些部分。在蝕刻製程之後,留下的第一材料501可作為複數底部阻障層131,留下的第二材料503可作為複數中間導電層135,且留下的第三材料505可作為複數頂部阻障層133。在一些實施例中,蝕刻製程可為多階段的蝕刻製程且可為異向性。 Referring to FIG. 3 , an etching process (such as an anisotropic dry etching process) may be performed to remove portions of the first material 501 , the second material 503 and the third material 505 . After the etching process, the remaining first material 501 can serve as a plurality of bottom barrier layers 131 , the remaining second material 503 can serve as a plurality of intermediate conductive layers 135 , and the remaining third material 505 can serve as a plurality of top barriers. Layer 133. In some embodiments, the etching process may be a multi-stage etching process and may be anisotropic.
為了簡潔、清楚及便於說明,僅描述出一層底部阻障層131、一層中間導電層135及一層頂部阻障層133。在一些實施例中,底部阻障層131的厚度T3可大約相同於頂部阻障層133的厚度T4。在一些實施例中,底部阻障層131的厚度T3可大於頂部阻障層133的厚度T4。在一些實施例中,中間導電層135的厚度T5可大於底部阻障層131的厚度T3或頂部阻障層133的厚度T4。 For simplicity, clarity and ease of explanation, only one bottom barrier layer 131, one middle conductive layer 135 and one top barrier layer 133 are described. In some embodiments, the thickness T3 of the bottom barrier layer 131 may be approximately the same as the thickness T4 of the top barrier layer 133 . In some embodiments, the thickness T3 of the bottom barrier layer 131 may be greater than the thickness T4 of the top barrier layer 133 . In some embodiments, the thickness T5 of the middle conductive layer 135 may be greater than the thickness T3 of the bottom barrier layer 131 or the thickness T4 of the top barrier layer 133 .
參照圖4,一層第四材料507可順應性地形成於圖3所示之中間階段的半導體元件上方。第四材料507可為例如鈦、氮化鈦、鉭、氮化鉭、或類似的材料。可藉由例如原子層沉積、化學氣相沉積、物理氣相沉積、濺鍍、或類似的方法形成這層第四材料507。在一些實施例中,第四材料507及頂部阻障層133可包含相同的材料。 Referring to FIG. 4 , a layer of fourth material 507 may be compliantly formed over the semiconductor device in the intermediate stage shown in FIG. 3 . The fourth material 507 may be, for example, titanium, titanium nitride, tantalum, tantalum nitride, or similar materials. This layer of fourth material 507 may be formed by, for example, atomic layer deposition, chemical vapor deposition, physical vapor deposition, sputtering, or similar methods. In some embodiments, the fourth material 507 and the top barrier layer 133 may include the same material.
參照圖5,可進行蝕刻製程(例如異向性乾式蝕刻製程)以去除第四材料507的一些部分。在蝕刻製程之後,留下的第四材料507可作為複數間隙壁阻障137。該等間隙壁阻障137可形成為覆蓋頂部阻障層133的側壁133SW、中間導電層135的側壁135SW及底部阻障層131的側壁131SW。 Referring to FIG. 5 , an etching process (such as an anisotropic dry etching process) may be performed to remove portions of the fourth material 507 . After the etching process, the remaining fourth material 507 can serve as spacer barriers 137 . The spacer barriers 137 may be formed to cover the sidewalls 133SW of the top barrier layer 133 , the sidewalls 135SW of the middle conductive layer 135 , and the sidewalls 131SW of the bottom barrier layer 131 .
該等間隙壁阻障137、該等頂部阻障層133、該等中間導電層135及該等底部阻障層131共同構成該等導電部件130。 The spacer barriers 137 , the top barrier layers 133 , the middle conductive layers 135 and the bottom barrier layers 131 together constitute the conductive components 130 .
參照圖1及圖6至9,在步驟S13中,一中間介電層115可形成於第二介電層113上並環繞該等導電部件130,且一去耦合單元121可形成於中間介電層115內。 Referring to FIGS. 1 and 6 to 9 , in step S13 , an intermediate dielectric layer 115 may be formed on the second dielectric layer 113 and surrounds the conductive components 130 , and a decoupling unit 121 may be formed on the intermediate dielectric layer 113 . Within layer 115.
參照圖6,中間介電層115可形成於第二介電層113上並覆蓋該等導電部件130。可進行一平坦化製程,例如化學機械研磨,直到該 等導電部件130的頂表面露出,以去除多餘的材料並為後續的製程步驟提供大致上平坦的表面。在一些實施例中,中間介電層115可由具有與第二介電層113不同蝕刻速率的材料所形成。在一些實施例中,中間介電層115可由例如氧化矽、氮化矽、氮氧化矽、氮氧化矽、氟矽酸鹽玻璃、硼磷矽酸鹽玻璃、或其組合所形成。在一些實施例中,可透過例如化學氣相沉積、電漿增強化學氣相沉積、或其他適用的沉積製程形成中間介電層115。 Referring to FIG. 6 , an intermediate dielectric layer 115 may be formed on the second dielectric layer 113 and cover the conductive components 130 . A planarization process, such as chemical mechanical polishing, can be performed until the The top surface of conductive component 130 is exposed to remove excess material and provide a generally flat surface for subsequent processing steps. In some embodiments, the middle dielectric layer 115 may be formed of a material with a different etch rate than the second dielectric layer 113 . In some embodiments, the intermediate dielectric layer 115 may be formed of, for example, silicon oxide, silicon nitride, silicon oxynitride, silicon oxynitride, fluorosilicate glass, borophosphosilicate glass, or combinations thereof. In some embodiments, the intermediate dielectric layer 115 may be formed by, for example, chemical vapor deposition, plasma enhanced chemical vapor deposition, or other suitable deposition processes.
需注意的是,在本揭露的描述中,構件(或部件)沿著方向Z位於最高垂直高度的一表面稱為構件(或部件)的一頂表面。構件(或部件)沿著方向Z位於最低垂直高度的一表面稱為構件(或部件)的一底表面。 It should be noted that in the description of the present disclosure, a surface of the component (or component) located at the highest vertical height along the direction Z is called a top surface of the component (or component). A surface of a component (or component) located at the lowest vertical height along direction Z is called a bottom surface of the component (or component).
參照圖6,一第二遮罩層513可形成於中間介電層115上。在一些實施例中,中間介電層115可為一光阻層且可包含去耦合單元121的圖案。 Referring to FIG. 6 , a second mask layer 513 may be formed on the intermediate dielectric layer 115 . In some embodiments, the intermediate dielectric layer 115 may be a photoresist layer and may include a pattern of decoupling units 121 .
參照圖7,可進行異向性蝕刻製程以去除中間介電層115的一些部分並同時形成一開口521。在一些實施例中,異向性蝕刻製程可為異向性乾式蝕刻製程。在一些實施例中,在異向性蝕刻製程中,中間介電層115與第二介電層113的蝕刻速率比可介於大約100:1與大約1.05:1之間、大約15:1與大約2:1之間、或大約10:1與大約2:1之間。 Referring to FIG. 7 , an anisotropic etching process may be performed to remove some portions of the intermediate dielectric layer 115 and simultaneously form an opening 521 . In some embodiments, the anisotropic etching process may be an anisotropic dry etching process. In some embodiments, during the anisotropic etching process, the etch rate ratio of the middle dielectric layer 115 to the second dielectric layer 113 may be between about 100:1 and about 1.05:1, between about 15:1 and Between about 2:1, or between about 10:1 and about 2:1.
參照圖8,可進行擴展蝕刻製程以將開口521擴展成一擴展開口523。在一些實施例中,擴展蝕刻製程可為異向性蝕刻製程。在一些實施例中,擴展蝕刻製程可為濕式蝕刻製程。在一些實施例中,在擴展蝕刻製程中,中間介電層115與第二介電層113的蝕刻速率比可介於大約 100:1與大約1.05:1之間、大約15:1與大約2:1之間、或大約10:1與大約2:1之間。在一些實施例中,擴展開口523的側壁可為彎曲的。 Referring to FIG. 8 , an expansion etching process may be performed to expand the opening 521 into an expansion opening 523 . In some embodiments, the extended etching process may be an anisotropic etching process. In some embodiments, the extended etching process may be a wet etching process. In some embodiments, during the extended etching process, the etch rate ratio of the intermediate dielectric layer 115 to the second dielectric layer 113 may be between approximately Between 100:1 and about 1.05:1, between about 15:1 and about 2:1, or between about 10:1 and about 2:1. In some embodiments, the sidewalls of the expansion opening 523 may be curved.
參照圖9,可去除第二遮罩層513,且可沉積一絕緣材料以完全填充擴展開口523,並且可接著進行平坦化製程,例如化學機械研磨,直到該等導電部件130的頂表面露出,以去除多餘的材料,為後續的製程步驟提供大致上平坦的表面,且同時形成去耦合單元121。在一些實施例中,去耦合單元121可具有瓶形剖面輪廓。在一些實施例中,形成去耦合單元121的絕緣材料可為例如多孔低k材料。 Referring to FIG. 9 , the second mask layer 513 can be removed, and an insulating material can be deposited to completely fill the expansion opening 523 , and then a planarization process, such as chemical mechanical polishing, can be performed until the top surfaces of the conductive components 130 are exposed. Excess material is removed to provide a substantially flat surface for subsequent process steps, and at the same time, the decoupling unit 121 is formed. In some embodiments, decoupling unit 121 may have a bottle-shaped cross-sectional profile. In some embodiments, the insulating material forming decoupling unit 121 may be, for example, a porous low-k material.
在一些實施例中,形成去耦合單元121的絕緣材料可為一能量移除材料。能量移除材料可包含例如熱分解材料、光子分解材料、電子束分解材料、或其組合的材料。例如,能量移除材料可包含一基底材料及一可分解致孔劑材料,其一旦暴露於能量來源就會作為犧牲材料被去除。基底材料可包含甲基倍半矽氧烷基材料。可分解致孔劑材料可包含致孔劑有機化合物,其為能量移除材料的基底材料提供多孔性。可在平坦化製程之後藉由施加能量來源以進行能量處理。能量來源可包含熱、光或其組合。當使用熱作為能量來源時,能量處理的溫度可介於大約800℃與大約900℃之間。當使用光作為能量來源時,可使用紫外光。能量處理可以將可分解致孔劑材料從能量移除材料中去除,以產生空的空間(孔洞)而基底材料則保留在原位。空的空間(孔洞)可降低去耦合單元121的介電常數。 In some embodiments, the insulating material forming the decoupling unit 121 may be an energy removal material. Energy removal materials may include materials such as thermal decomposition materials, photon decomposition materials, electron beam decomposition materials, or combinations thereof. For example, the energy removal material may include a base material and a decomposable porogen material that is removed as a sacrificial material upon exposure to the energy source. The base material may include methyl sesquioxane-based material. The decomposable porogen material may comprise a porogen organic compound that provides porosity to the base material of the energy removal material. Energy processing can be performed by applying an energy source after the planarization process. The energy source may include heat, light, or a combination thereof. When using heat as the energy source, the temperature of the energy treatment may be between about 800°C and about 900°C. When using light as the energy source, ultraviolet light can be used. Energy treatment can remove the decomposable porogen material from the energy removal material to create empty spaces (pores) while the base material remains in place. The empty space (hole) can reduce the dielectric constant of the decoupling unit 121 .
參照圖9,去耦合單元121可形成於該等導電部件130之間。在一些實施例中,具有低介電常數的去耦合單元121可實現去耦合功能。在一些實施例中,去耦合單元121可降低該等導電部件130的寄生電 容。 Referring to FIG. 9 , the decoupling unit 121 may be formed between the conductive components 130 . In some embodiments, the decoupling unit 121 with a low dielectric constant may implement the decoupling function. In some embodiments, the decoupling unit 121 can reduce the parasitic current of the conductive components 130. Allow.
參照圖1及圖10至13,在步驟S15中,可在中間介電層115上形成一第三介電層117,且可在第三介電層117上形成一第四介電層119以構成一第一層結構100,並且可在在第一層結構100內形成一第一層對準標誌611及一第一層對準標誌711。 1 and 10 to 13, in step S15, a third dielectric layer 117 may be formed on the intermediate dielectric layer 115, and a fourth dielectric layer 119 may be formed on the third dielectric layer 117. A first layer structure 100 is formed, and a first layer alignment mark 611 and a first layer alignment mark 711 can be formed in the first layer structure 100 .
參照圖10,在一些實施例中,第三介電層117可由例如氟矽酸鹽玻璃、硼磷矽酸鹽玻璃、旋塗低k介電層、化學氣相沉積低k介電層、或其組合所形成。在一些實施例中,第三介電層117可包含自平坦化材料,例如旋塗玻璃或旋塗低k介電材料(例如SiLKTM)。使用自平坦化介電材料可省略進行後續的平坦化步驟。在一些實施例中,可藉由沉積製程(包含例如化學氣相沉積、電漿增強化學氣相沉積、蒸鍍或旋塗)形成第三介電層117。在一些實施例中,第三介電層117及第一介電層111可由相同的材料所形成。 Referring to FIG. 10 , in some embodiments, the third dielectric layer 117 may be made of, for example, fluorosilicate glass, borophosphosilicate glass, a spin-on low-k dielectric layer, a chemical vapor-deposited low-k dielectric layer, or formed by its combination. In some embodiments, third dielectric layer 117 may include a self-planarizing material, such as spin-on glass or spin-on low-k dielectric material (eg, SiLK ™ ). Using self-planarizing dielectric materials eliminates the need for subsequent planarization steps. In some embodiments, the third dielectric layer 117 may be formed by a deposition process, including, for example, chemical vapor deposition, plasma enhanced chemical vapor deposition, evaporation, or spin coating. In some embodiments, the third dielectric layer 117 and the first dielectric layer 111 may be formed of the same material.
參照圖10,在一些實施例中,第四介電層119可為例如氮化矽、氮氧化矽、氮氧化矽、類似的材料、或其組合。可藉由例如化學氣相沉積、電漿增強化學氣相沉積、或其他適用的沉積製程形成第四介電層119。在一些實施例中,第四介電層119可作為阻障層以防止濕氣進入下層(例如,第三介電層117及中間介電層115)。在一些實施例中,第三介電層117的厚度T6大於第四介電層119的厚度T7。 Referring to FIG. 10 , in some embodiments, the fourth dielectric layer 119 may be, for example, silicon nitride, silicon oxynitride, silicon oxynitride, similar materials, or combinations thereof. The fourth dielectric layer 119 may be formed by, for example, chemical vapor deposition, plasma enhanced chemical vapor deposition, or other suitable deposition processes. In some embodiments, the fourth dielectric layer 119 may serve as a barrier layer to prevent moisture from entering underlying layers (eg, the third dielectric layer 117 and the intermediate dielectric layer 115 ). In some embodiments, the thickness T6 of the third dielectric layer 117 is greater than the thickness T7 of the fourth dielectric layer 119 .
參照圖10,第一介電層111、第二介電層113、中間介電層115、第三介電層117及第四介電層119、去耦合單元121及該等導電部件130可共同構成第一層結構100。 Referring to FIG. 10 , the first dielectric layer 111 , the second dielectric layer 113 , the intermediate dielectric layer 115 , the third dielectric layer 117 and the fourth dielectric layer 119 , the decoupling unit 121 and the conductive components 130 can be used together. The first layer structure 100 is formed.
參照圖10,可在第一層結構100上形成一第三遮罩層515。 第三遮罩層515可為一光阻層且可包含第一層對準標誌611及第一層對準標誌711的圖案。 Referring to FIG. 10 , a third mask layer 515 may be formed on the first layer structure 100 . The third mask layer 515 may be a photoresist layer and may include patterns of the first layer alignment marks 611 and the first layer alignment marks 711 .
由於第一層對準標誌611及第一層對準標誌711同時被形成,因此為了簡潔和清楚起見,僅描述第一層對準標誌611的形成。 Since the first layer alignment mark 611 and the first layer alignment mark 711 are formed at the same time, for the sake of simplicity and clarity, only the formation of the first layer alignment mark 611 is described.
參照圖11,可進行蝕刻製程,例如異向性乾式蝕刻製程,去除第四介電層119的一些部分、第三介電層117的一些部分及去耦合單元121的一些部分,以形成一標誌開口525。在一些實施例中,標誌開口525的側壁可為錐形的。需注意的是,標誌開口525用於形成第一層對準標誌611,而為了簡潔和清楚起見,用於形成第一層對準標誌711的標誌開口未繪示於圖11中。 Referring to FIG. 11 , an etching process, such as an anisotropic dry etching process, may be performed to remove some parts of the fourth dielectric layer 119 , some parts of the third dielectric layer 117 and some parts of the decoupling unit 121 to form a mark. Opening 525. In some embodiments, the sidewalls of the logo opening 525 may be tapered. It should be noted that the mark opening 525 is used to form the first layer alignment mark 611, and for the sake of simplicity and clarity, the mark opening used to form the first layer alignment mark 711 is not shown in FIG. 11 .
參照圖12及13,可形成一絕緣層以完全填充標誌開口525。絕緣層可包含螢光材料。在一些實施例中,螢光材料可為偶氮苯。在一些實施例中,可透過例如化學氣相沉積形成絕緣層。可進行一平坦化製程,例如化學機械研磨,直到第四介電層119露出,以去除多餘的材料並為後續的製程步驟提供大致上平坦的表面,同時將絕緣層變成第一層對準標誌611(及第一層對準標誌711)。由於第一層對準標誌611的輪廓由標誌開口525所決定,因此第一層對準標誌611的側壁611SW可以是錐形的。 Referring to Figures 12 and 13, an insulating layer may be formed to completely fill the logo opening 525. The insulating layer may contain fluorescent materials. In some embodiments, the fluorescent material can be azobenzene. In some embodiments, the insulating layer may be formed by, for example, chemical vapor deposition. A planarization process, such as chemical mechanical polishing, may be performed until the fourth dielectric layer 119 is exposed to remove excess material and provide a substantially flat surface for subsequent process steps, while turning the insulating layer into a first layer alignment mark 611 (and first layer alignment mark 711). Since the outline of the first layer alignment mark 611 is determined by the mark opening 525, the side wall 611SW of the first layer alignment mark 611 may be tapered.
在一些實施例中,去耦合單元121的側壁121SW的兩個谷部121V之間的寬度W1可大於第一層對準標誌611的頂表面611TS的寬度W2。在一些實施例中,第一對準標誌611的頂表面611TS的寬度W2可大於第一對準標誌611在中間介電層115與第三介電層117之間的界面處的寬度W3。在一些實施例中,第一層對準標誌611在中間介電層115與第三介 電層117之間的界面處的寬度W3可大於第一層對準標誌611的底表面611BS的寬度W4。在一些實施例中,第一層對準標誌611在中間介電層115與第三介電層117之間的界面處的寬度W3可大於去耦合單元121的底表面121BS的寬度W5。在一些實施例中,寬度W1和寬度W5之間的寬度比可介於大約1.5:1與大約1.1:1之間或介於大約1.3:1與大約1.1:1之間。 In some embodiments, the width W1 between the two valleys 121V of the side wall 121SW of the decoupling unit 121 may be greater than the width W2 of the top surface 611TS of the first layer alignment mark 611 . In some embodiments, the width W2 of the top surface 611TS of the first alignment mark 611 may be greater than the width W3 of the first alignment mark 611 at the interface between the middle dielectric layer 115 and the third dielectric layer 117 . In some embodiments, the first layer alignment mark 611 is between the intermediate dielectric layer 115 and the third dielectric layer. The width W3 at the interface between the electrical layers 117 may be greater than the width W4 of the bottom surface 611BS of the first layer alignment mark 611 . In some embodiments, the width W3 of the first layer alignment mark 611 at the interface between the middle dielectric layer 115 and the third dielectric layer 117 may be greater than the width W5 of the bottom surface 121BS of the decoupling unit 121 . In some embodiments, the width ratio between width W1 and width W5 may be between about 1.5:1 and about 1.1:1 or between about 1.3:1 and about 1.1:1.
包含螢光材料的第一層對準標誌611(及第一層對準標誌711)可改善後續的晶圓製造過程中的光學辨識度。 The first layer alignment marks 611 (and the first layer alignment marks 711 ) including fluorescent materials can improve optical visibility during subsequent wafer manufacturing processes.
參照圖12及13,在一些實施例中,第一層對準標誌611及第一層對準標誌711可互相遠離。在一些實施例中,可根據平面視角中的第一對稱軸S1以鏡像的方式形成第一層對準標誌611及第一層對準標誌711。 Referring to FIGS. 12 and 13 , in some embodiments, the first layer alignment mark 611 and the first layer alignment mark 711 may be far away from each other. In some embodiments, the first layer alignment mark 611 and the first layer alignment mark 711 may be formed in a mirror image according to the first symmetry axis S1 in a plan view.
圖14以平面示意圖例示本揭露一實施例的中間階段的半導體元件1A。圖15是沿著圖14中的剖線A-A’的剖面示意圖,例示本揭露一實施例的半導體元件1A的製造流程的一部分。圖16以平面示意圖例示本揭露一實施例的中間階段的半導體元件1A。圖17是沿著圖16中的剖線A-A’的剖面示意圖,例示本揭露一實施例的半導體元件1A的製造流程的一部分。需注意的是,為了清楚起見,圖20及21中省略了一些構件。 FIG. 14 illustrates a schematic plan view of a semiconductor device 1A in an intermediate stage according to an embodiment of the present disclosure. FIG. 15 is a schematic cross-sectional view along line A-A’ in FIG. 14 , illustrating a part of the manufacturing process of the semiconductor device 1A according to an embodiment of the present disclosure. FIG. 16 illustrates a schematic plan view of a semiconductor device 1A in an intermediate stage according to an embodiment of the present disclosure. FIG. 17 is a schematic cross-sectional view along line A-A’ in FIG. 16 , illustrating a part of the manufacturing process of the semiconductor device 1A according to an embodiment of the present disclosure. It should be noted that some components have been omitted from Figures 20 and 21 for the sake of clarity.
參照圖1及圖14至17,在步驟S17中,可在第一層結構100上方形成一第二層結構200、第二層對準標誌613、713、一第三層結構300、第三層對準標誌615、715、一第四層結構400及第四層對準標誌617、717。 Referring to Figure 1 and Figures 14 to 17, in step S17, a second layer structure 200, second layer alignment marks 613, 713, a third layer structure 300, and a third layer structure can be formed above the first layer structure 100. Alignment marks 615, 715, a fourth layer structure 400 and fourth layer alignment marks 617, 717.
參照圖14及15,第二層結構200可形成於第一層結構100上。第二層結構200可包含一第一介電層211、一第二介電層213、一中間 介電層215、一第三介電層217、一第四介電層219、複數導電部件230及一去耦合單元221。可採用與第一層結構100類似的步驟形成第二層結構200的前述構件,此處不再贅述。在一些實施例中,該等導電部件230可偏離該等導電部件130。去耦合單元221可形成於該等導電部件230之間。可採用與第一層對準標誌611類似的步驟在去耦合單元221上形成第二層對準標誌613,此處不再贅述。 Referring to FIGS. 14 and 15 , the second layer structure 200 may be formed on the first layer structure 100 . The second layer structure 200 may include a first dielectric layer 211, a second dielectric layer 213, an intermediate Dielectric layer 215, a third dielectric layer 217, a fourth dielectric layer 219, a plurality of conductive components 230 and a decoupling unit 221. The aforementioned components of the second layer structure 200 can be formed using steps similar to those of the first layer structure 100, which will not be described again here. In some embodiments, the conductive components 230 may be offset from the conductive components 130 . The decoupling unit 221 may be formed between the conductive components 230 . The second layer alignment mark 613 can be formed on the decoupling unit 221 using steps similar to the first layer alignment mark 611, which will not be described again here.
參照圖16及17,第三層結構300可形成於第二層結構200上。第三層對準標誌615、715可分別對應地形成於第三層結構300的去耦合單元321上。第四層結構400可形成於第三層結構300上。第四層對準標誌617、717可分別對應地形成於第四層結構400的去耦合單元421上。可分別對應地採用與第二層結構200及去耦合單元221類似的步驟形成前述構件,此處不再贅述。 Referring to FIGS. 16 and 17 , the third layer structure 300 may be formed on the second layer structure 200 . The third layer alignment marks 615 and 715 may be respectively formed on the decoupling unit 321 of the third layer structure 300. The fourth layer structure 400 may be formed on the third layer structure 300 . The fourth layer alignment marks 617 and 717 may be respectively formed on the decoupling unit 421 of the fourth layer structure 400. The aforementioned components can be formed using steps similar to the second layer structure 200 and the decoupling unit 221 respectively, which will not be described again here.
第一層對準標誌611、第二層對準標誌613、第三層對準標誌615及第四層對準標誌617可稱為第一子集密實對準標誌610。第一層對準標誌711、第二層對準標誌713、第三層對準標誌715及第四層對準標誌717可稱為第一子集間隔對準標誌710。 The first layer alignment marks 611 , the second layer alignment marks 613 , the third layer alignment marks 615 and the fourth layer alignment marks 617 may be referred to as the first subset of dense alignment marks 610 . The first layer alignment mark 711 , the second layer alignment mark 713 , the third layer alignment mark 715 and the fourth layer alignment mark 717 may be referred to as the first subset of spaced alignment marks 710 .
在一些實施例中,第一層對準標誌611在平面視角中可以是線狀。第一層對準標誌611可沿著方向Y延伸。 In some embodiments, the first layer alignment mark 611 may be linear in plan view. The first layer alignment mark 611 may extend along the direction Y.
在剖面視角中,第二層對準標誌613可位於第二層結構200內且可偏離第一層對準標誌611。換言之,第二層對準標誌613可不直接位於第一層對準標誌611的正上方。在平面視角中,第二層對準標誌613可以是線狀。第二層對準標誌613可沿著方向Y延伸且可在方向X上與第一層對準標誌611分隔。 In a cross-sectional view, the second layer alignment mark 613 may be located within the second layer structure 200 and may be offset from the first layer alignment mark 611 . In other words, the second layer alignment mark 613 may not be directly located directly above the first layer alignment mark 611 . In plan view, the second layer alignment mark 613 may be linear. The second layer alignment mark 613 may extend along the direction Y and may be spaced apart from the first layer alignment mark 611 in the direction X.
在剖面視角中,第三層對準標誌615可位於第三層結構300內且可偏離第二層對準標誌613。換言之,第三層對準標誌615可不直接位於第二層對準標誌613的正上方。在平面視角中,第三層對準標誌615可以是線狀。第三層對準標誌615可沿著方向Y延伸且可在方向X上與第二層對準標誌613分隔,第二層對準標誌613可位於第一層對準標誌611與第三層對準標誌615之間。 In a cross-sectional view, the third layer alignment mark 615 may be located within the third layer structure 300 and may be offset from the second layer alignment mark 613 . In other words, the third layer alignment mark 615 may not be directly located directly above the second layer alignment mark 613 . In plan view, the third layer alignment mark 615 may be linear. The third layer alignment mark 615 may extend along the direction Y and may be separated from the second layer alignment mark 613 in the direction between quasi-marks 615.
在剖面視角中,第四層對準標誌617可位於第四層結構400內且可偏離第三層對準標誌615。換言之,第四層對準標誌617可不直接位於第三層對準標誌615的正上方。在平面視角中,第四層對準標誌617可以是線狀。第四層對準標誌617可沿著方向Y延伸且可在方向X上與第三層對準標誌615分隔,第三層對準標誌615可設置於第二層對準標誌613與第四層對準標誌617之間。 In a cross-sectional view, the fourth layer alignment mark 617 may be located within the fourth layer structure 400 and may be offset from the third layer alignment mark 615 . In other words, the fourth layer alignment mark 617 may not be directly above the third layer alignment mark 615 . In plan view, the fourth layer alignment mark 617 may be linear. The fourth layer alignment mark 617 may extend along the direction Y and may be separated from the third layer alignment mark 615 in the direction X. The third layer alignment mark 615 may be disposed between the second layer alignment mark 613 and the fourth layer between alignment marks 617.
在一些實施例中,第一層對準標誌611、第二層對準標誌613、第三層對準標誌615及第四層對準標誌617可在方向Y上互相對準。在一些實施例中,第一層對準標誌611、第二層對準標誌613、第三層對準標誌615及第四層對準標誌617可不在方向Y上互相對準。 In some embodiments, the first layer alignment mark 611 , the second layer alignment mark 613 , the third layer alignment mark 615 and the fourth layer alignment mark 617 may be aligned with each other in the direction Y. In some embodiments, the first layer alignment mark 611 , the second layer alignment mark 613 , the third layer alignment mark 615 and the fourth layer alignment mark 617 may not be aligned with each other in the direction Y.
在一些實施例中,在平面視角中,第一層對準標誌611的長度L1可不同於第一層對準標誌611的寬度W2。例如,第一層對準標誌611的長度L1可大於第一層對準標誌611的寬度W2。在一些實施例中,第一層對準標誌611的長度L1可大致上相同於第一層對準標誌611的寬度W2。 In some embodiments, the length L1 of the first layer alignment mark 611 may be different from the width W2 of the first layer alignment mark 611 in a plan view. For example, the length L1 of the first layer alignment mark 611 may be greater than the width W2 of the first layer alignment mark 611 . In some embodiments, the length L1 of the first layer alignment mark 611 may be substantially the same as the width W2 of the first layer alignment mark 611 .
在一些實施例中,第二層對準標誌613、第三層對準標誌615、第四層對準標誌617的長度可大致上相同於第一層對準標誌611的長度L1。在一些實施例中,第二層對準標誌613、第三層對準標誌615、第 四層對準標誌617的長度可不同於第一層對準標誌611的長度L1。例如,第二層對準標誌613的長度L2可相同或不同於第一層對準標誌611的長度L1。 In some embodiments, the lengths of the second layer alignment marks 613 , the third layer alignment marks 615 , and the fourth layer alignment marks 617 may be substantially the same as the length L1 of the first layer alignment marks 611 . In some embodiments, the second layer alignment mark 613, the third layer alignment mark 615, the third layer alignment mark 615, and the third layer alignment mark 615. The length of the four-layer alignment mark 617 may be different from the length L1 of the first-layer alignment mark 611 . For example, the length L2 of the second layer alignment mark 613 may be the same as or different from the length L1 of the first layer alignment mark 611 .
在一些實施例中,第二層對準標誌613、第三層對準標誌615、第四層對準標誌617的寬度可大致上相同於第一層對準標誌611的寬度W2。在一些實施例中,第二層對準標誌613、第三層對準標誌615、第四層對準標誌617的寬度可不同於第一層對準標誌611的寬度W2。例如,第二層對準標誌613的寬度W6可相同或不同於第一層對準標誌611的寬度W2。 In some embodiments, the widths of the second layer alignment marks 613 , the third layer alignment marks 615 , and the fourth layer alignment marks 617 may be substantially the same as the width W2 of the first layer alignment marks 611 . In some embodiments, the widths of the second layer alignment marks 613 , the third layer alignment marks 615 , and the fourth layer alignment marks 617 may be different from the width W2 of the first layer alignment marks 611 . For example, the width W6 of the second layer alignment mark 613 may be the same as or different from the width W2 of the first layer alignment mark 611 .
在一些實施例中,在平面視角中,第一層對準標誌611的寬度W2可不同於第一層對準標誌611與第二層對準標誌613之間的距離D1。例如,第一層對準標誌611的寬度W2可大於第一層對準標誌611與第二層對準標誌613之間的距離D1。在一些實施例中,第一層對準標誌611的寬度W2可大致上相同於第一層對準標誌611與第二層對準標誌613之間的距離D1。 In some embodiments, the width W2 of the first layer alignment mark 611 may be different from the distance D1 between the first layer alignment mark 611 and the second layer alignment mark 613 in a plan view. For example, the width W2 of the first layer alignment mark 611 may be greater than the distance D1 between the first layer alignment mark 611 and the second layer alignment mark 613 . In some embodiments, the width W2 of the first layer alignment mark 611 may be substantially the same as the distance D1 between the first layer alignment mark 611 and the second layer alignment mark 613 .
在一些實施例中,在平面視角中,第一層對準標誌611、第二層對準標誌613、第三層對準標誌615及第四層對準標誌617之間的距離D1、D2、D3可大致上相同。在一些實施例中,在平面視角中,第一層對準標誌611、第二層對準標誌613、第三層對準標誌615及第四層對準標誌617之間的距離D1、D2、D3可不相同。例如,第一層對準標誌611與第二層對準標誌613之間的距離D1可大於或小於第二層對準標誌613與第三層對準標誌615之間的距離D2。 In some embodiments, in a plan view, the distances D1, D2, D3 can be substantially the same. In some embodiments, in a plan view, the distances D1, D2, D3 is different. For example, the distance D1 between the first layer alignment mark 611 and the second layer alignment mark 613 may be greater or smaller than the distance D2 between the second layer alignment mark 613 and the third layer alignment mark 615 .
第一層對準標誌611、第二層對準標誌613、第三層對準標 誌615及第四層對準標誌617可包含一螢光材料。在一些實施例中,螢光材料可為偶氮苯。包含螢光材料的第一層對準標誌611、第二層對準標誌613、第三層對準標誌615及第四層對準標誌617可改善晶圓製造過程中的光學辨識度。 The first layer alignment mark 611, the second layer alignment mark 613, the third layer alignment mark The mark 615 and the fourth layer alignment mark 617 may include a fluorescent material. In some embodiments, the fluorescent material can be azobenzene. The first layer of alignment marks 611 , the second layer of alignment marks 613 , the third layer of alignment marks 615 and the fourth layer of alignment marks 617 including fluorescent materials can improve optical visibility during the wafer manufacturing process.
參照圖16及17,可根據第一對稱軸S1以鏡像的方式形成第一子集間隔對準標誌710及第一子集密實對準標誌610。詳細而言,可根據第一對稱軸S1以鏡像的方式形成第一層對準標誌711及第一層對準標誌611。可根據第一對稱軸S1以鏡像的方式形成第二層對準標誌713及第二層對準標誌613。可根據第一對稱軸S1以鏡像的方式形成第三層對準標誌715及第三層對準標誌615。第四層對準標誌717及第四層對準標誌617可根據第一對稱軸S1以鏡像的方式設置。 Referring to FIGS. 16 and 17 , the first subset of spacing alignment marks 710 and the first subset of dense alignment marks 610 may be formed in a mirror image according to the first symmetry axis S1 . Specifically, the first layer alignment mark 711 and the first layer alignment mark 611 may be formed in a mirror image according to the first symmetry axis S1. The second layer alignment mark 713 and the second layer alignment mark 613 may be formed in a mirror image according to the first symmetry axis S1. The third layer alignment mark 715 and the third layer alignment mark 615 may be formed in a mirror image according to the first symmetry axis S1. The fourth layer alignment mark 717 and the fourth layer alignment mark 617 may be arranged in a mirror image according to the first symmetry axis S1.
第一層對準標誌711、第二層對準標誌713、第三層對準標誌715及第四層對準標誌717可包含一螢光材料。在一些實施例中,螢光材料可為偶氮苯。包含螢光材料的第一層對準標誌711、第二層對準標誌713、第三層對準標誌715及第四層對準標誌717可改善晶圓製造過程中的光學辨識度。 The first layer alignment mark 711, the second layer alignment mark 713, the third layer alignment mark 715 and the fourth layer alignment mark 717 may include a fluorescent material. In some embodiments, the fluorescent material can be azobenzene. The first layer of alignment marks 711 , the second layer of alignment marks 713 , the third layer of alignment marks 715 and the fourth layer of alignment marks 717 including fluorescent materials can improve optical visibility during the wafer manufacturing process.
圖18以平面示意圖例示本揭露另一實施例的半導體元件1B。圖19是沿著圖18中的剖線A-A’及B-B’的剖面示意圖。需注意的是,為了清楚起見,圖18及19中省略了一些構件。 FIG. 18 illustrates a schematic plan view of a semiconductor device 1B according to another embodiment of the present disclosure. Fig. 19 is a schematic cross-sectional view along the cross-section lines A-A' and B-B' in Fig. 18. It should be noted that some components have been omitted from Figures 18 and 19 for the sake of clarity.
參照圖18及19,半導體元件1B可具有與圖16及17所例示的結構相似的結構。圖18及19中與圖16及17相同或相似的構件標記成類似的標號且省略重複的描述。 Referring to FIGS. 18 and 19 , the semiconductor element 1B may have a structure similar to that illustrated in FIGS. 16 and 17 . Components in FIGS. 18 and 19 that are the same as or similar to those in FIGS. 16 and 17 are marked with similar numbers and repeated descriptions are omitted.
參照圖18及19,半導體元件1B可包含一第二子集密實對準 標誌620。第一子集密實對準標誌610及第二子集密實對準標誌620可構成一第一組密實對準標誌600-1。第二子集密實對準標誌620可包含一第一層對準標誌621、一第二層對準標誌623、一第三層對準標誌625及一第四層對準標誌627。 Referring to Figures 18 and 19, the semiconductor device 1B may include a second subset of densely aligned Flag 620. The first subset of dense alignment marks 610 and the second subset of dense alignment marks 620 may form a first set of dense alignment marks 600-1. The second subset of dense alignment marks 620 may include a first layer alignment mark 621, a second layer alignment mark 623, a third layer alignment mark 625, and a fourth layer alignment mark 627.
參照圖圖18及19,在一些實施例中,第一層對準標誌621在平面視角中可以是線狀。第一層對準標誌621可沿著方向Y延伸,且第一層對準標誌621可在方向X上與第三層對準標誌615對準並在方向Y上與第三層對準標誌615分隔。在剖面視角中,第一層對準標誌621可設置於第一層結構100內及對應的去耦合單元121上。 Referring to Figures 18 and 19, in some embodiments, the first layer alignment mark 621 may be linear in plan view. The first layer alignment mark 621 may extend along the direction Y, and the first layer alignment mark 621 may be aligned with the third layer alignment mark 615 in the direction X and with the third layer alignment mark 615 in the direction Y Separate. In a cross-sectional view, the first layer alignment mark 621 may be disposed in the first layer structure 100 and on the corresponding decoupling unit 121 .
在剖面視角中,第二層對準標誌623可位於第二層結構200內且偏離第一層對準標誌621,並位於對應的去耦合單元221上。換言之,第二層對準標誌623可不直接位於第一層對準標誌621的正上方。在平面視角中,第二層對準標誌623可以是線狀。第二層對準標誌623可沿著方向Y延伸且可在方向X上與第一層對準標誌621分隔,第二層對準標誌623可在方向X上與第四層對準標誌617對準並在方向Y上與第四層對準標誌617分隔。 In a cross-sectional view, the second layer alignment mark 623 may be located within the second layer structure 200 and offset from the first layer alignment mark 621 and located on the corresponding decoupling unit 221 . In other words, the second layer alignment mark 623 may not be directly located directly above the first layer alignment mark 621 . In plan view, the second layer alignment mark 623 may be linear. The second layer alignment mark 623 may extend along the direction Y and may be separated from the first layer alignment mark 621 in the direction X. The second layer alignment mark 623 may be aligned with the fourth layer alignment mark 617 in the direction X. aligned and separated from the fourth layer alignment mark 617 in direction Y.
在剖面視角中,第三層對準標誌625可位於第三層結構300內且偏離第二層對準標誌623,並位於對應的去耦合單元321上。換言之,第三層對準標誌625可不直接位於第二層對準標誌623的正上方。在平面視角中,第三層對準標誌625可以是線狀。第三層對準標誌625可沿著方向Y延伸且可在方向X上與第一層對準標誌621分隔,第三層對準標誌625可在方向X上與第一層對準標誌621對準並在方向Y上與第一層對準標誌621分隔。 In a cross-sectional view, the third layer alignment mark 625 may be located within the third layer structure 300 and offset from the second layer alignment mark 623 and located on the corresponding decoupling unit 321 . In other words, the third layer alignment mark 625 may not be directly located directly above the second layer alignment mark 623 . In plan view, the third layer alignment mark 625 may be linear. The third layer alignment mark 625 may extend along the direction Y and may be separated from the first layer alignment mark 621 in the direction X. The third layer alignment mark 625 may be aligned with the first layer alignment mark 621 in the direction X. aligned and separated from the first layer alignment mark 621 in direction Y.
在剖面視角中,第四層對準標誌627可位於第四層結構400內且偏離第三層對準標誌625,並位於對應的去耦合單元421上。換言之,第四層對準標誌627可不直接位於第三層對準標誌625的正上方。在平面視角中,第四層對準標誌627可以是線狀。第四層對準標誌627可沿著方向Y延伸且可在方向X上與第三層對準標誌625分隔,例如,第四層對準標誌627可設置於第一層對準標誌621與第三層對準標誌625之間。在另一範例中,第四層對準標誌627可在方向X上與第二層對準標誌613對準,且第四層對準標誌627可在方向Y上與第二層對準標誌623分隔。 In a cross-sectional view, the fourth layer alignment mark 627 may be located within the fourth layer structure 400 and offset from the third layer alignment mark 625 and located on the corresponding decoupling unit 421 . In other words, the fourth layer alignment mark 627 may not be directly above the third layer alignment mark 625 . In plan view, the fourth layer alignment mark 627 may be linear. The fourth layer alignment mark 627 may extend along the direction Y and may be separated from the third layer alignment mark 625 in the direction X. For example, the fourth layer alignment mark 627 may be disposed between the first layer alignment mark 621 and the third layer alignment mark 625 Between the three layers of alignment marks 625. In another example, the fourth layer alignment mark 627 can be aligned with the second layer alignment mark 613 in the direction X, and the fourth layer alignment mark 627 can be aligned with the second layer alignment mark 623 in the direction Y. Separate.
在一些實施例中,第一層對準標誌621、第二層對準標誌623、第三層對準標誌625及第四層對準標誌627可在方向Y上互相對準。在一些實施例中,第一層對準標誌621、第二層對準標誌623、第三層對準標誌625及第四層對準標誌627可不在方向Y上互相對準。 In some embodiments, the first layer alignment mark 621 , the second layer alignment mark 623 , the third layer alignment mark 625 and the fourth layer alignment mark 627 may be aligned with each other in the direction Y. In some embodiments, the first layer alignment mark 621 , the second layer alignment mark 623 , the third layer alignment mark 625 and the fourth layer alignment mark 627 may not be aligned with each other in the direction Y.
在一些實施例中,第一層對準標誌621的寬度W7可大致上相同於第一層對準標誌611的寬度W2。在一些實施例中,第一層對準標誌621的寬度W7可不同於第一層對準標誌611的寬度W2。在一些實施例中,第一層對準標誌621的長度L3可大致上相同於第一層對準標誌611的長度L1。在一些實施例中,第一層對準標誌621的長度L3可不同於第一層對準標誌611的長度L1。 In some embodiments, the width W7 of the first layer alignment mark 621 may be substantially the same as the width W2 of the first layer alignment mark 611 . In some embodiments, the width W7 of the first layer alignment mark 621 may be different from the width W2 of the first layer alignment mark 611 . In some embodiments, the length L3 of the first layer alignment mark 621 may be substantially the same as the length L1 of the first layer alignment mark 611 . In some embodiments, the length L3 of the first layer alignment mark 621 may be different from the length L1 of the first layer alignment mark 611 .
在一些實施例中,第二層對準標誌623、第三層對準標誌625、第四層對準標誌627的長度可大致上相同於第一層對準標誌621的長度L3。在一些實施例中,第二層對準標誌623、第三層對準標誌625、第四層對準標誌627的長度可不同於第一層對準標誌621的長度L3。在一些實施例中,第二層對準標誌623、第三層對準標誌625、第四層對準標誌 627的寬度可大致上相同於第一層對準標誌621的寬度W7。在一些實施例中,第二層對準標誌623、第三層對準標誌625、第四層對準標誌627的寬度可不同於第一層對準標誌621的寬度W7。 In some embodiments, the lengths of the second layer alignment marks 623 , the third layer alignment marks 625 , and the fourth layer alignment marks 627 may be substantially the same as the length L3 of the first layer alignment marks 621 . In some embodiments, the lengths of the second layer alignment marks 623 , the third layer alignment marks 625 , and the fourth layer alignment marks 627 may be different from the length L3 of the first layer alignment marks 621 . In some embodiments, the second layer alignment mark 623, the third layer alignment mark 625, the fourth layer alignment mark The width of 627 may be substantially the same as the width W7 of the first layer alignment mark 621 . In some embodiments, the widths of the second layer alignment marks 623 , the third layer alignment marks 625 , and the fourth layer alignment marks 627 may be different from the width W7 of the first layer alignment marks 621 .
在一些實施例中,第一層對準標誌611的長度L1可大致上相同於第三層對準標誌615與第一層對準標誌621之間的距離G1。在一些實施例中,第一層對準標誌611的長度L1可不同於第三層對準標誌615與第一層對準標誌621之間的距離G1。例如,第一層對準標誌611的長度L1可大於第三層對準標誌615與第一層對準標誌621之間的距離G1。 In some embodiments, the length L1 of the first layer alignment mark 611 may be substantially the same as the distance G1 between the third layer alignment mark 615 and the first layer alignment mark 621 . In some embodiments, the length L1 of the first layer alignment mark 611 may be different from the distance G1 between the third layer alignment mark 615 and the first layer alignment mark 621 . For example, the length L1 of the first layer alignment mark 611 may be greater than the distance G1 between the third layer alignment mark 615 and the first layer alignment mark 621 .
在一些實施例中,第一層對準標誌611的寬度W2可大致上相同於第三層對準標誌615與第一層對準標誌621之間的距離G1。在一些實施例中,第一層對準標誌611的寬度W2可不同於第三層對準標誌615與第一層對準標誌621之間的距離G1。例如,第一層對準標誌611的寬度W2可大於第三層對準標誌615與第一層對準標誌621之間的距離G1。 In some embodiments, the width W2 of the first layer alignment mark 611 may be substantially the same as the distance G1 between the third layer alignment mark 615 and the first layer alignment mark 621 . In some embodiments, the width W2 of the first layer alignment mark 611 may be different from the distance G1 between the third layer alignment mark 615 and the first layer alignment mark 621 . For example, the width W2 of the first layer alignment mark 611 may be greater than the distance G1 between the third layer alignment mark 615 and the first layer alignment mark 621 .
在一些實施例中,第一層對準標誌621、第二層對準標誌623、第三層對準標誌625及第四層對準標誌627可包含一螢光材料。在一些實施例中,螢光材料可為偶氮苯。包含螢光材料的第一層對準標誌621、第二層對準標誌623、第三層對準標誌625及第四層對準標誌627可改善晶圓製造過程中的光學辨識度。 In some embodiments, the first layer alignment marks 621 , the second layer alignment marks 623 , the third layer alignment marks 625 and the fourth layer alignment marks 627 may include a fluorescent material. In some embodiments, the fluorescent material can be azobenzene. The first layer of alignment marks 621 , the second layer of alignment marks 623 , the third layer of alignment marks 625 and the fourth layer of alignment marks 627 including fluorescent materials can improve optical visibility during the wafer manufacturing process.
圖20以平面示意圖例示本揭露另一實施例的半導體元件1C。圖21是沿著圖20中的剖線A-A’及B-B’的剖面示意圖。需注意的是,為了清楚起見,圖20及21中省略了一些構件。 FIG. 20 illustrates a semiconductor device 1C according to another embodiment of the present disclosure in a schematic plan view. Fig. 21 is a schematic cross-sectional view along the cross-section lines A-A' and B-B' in Fig. 20. It should be noted that some components have been omitted from Figures 20 and 21 for the sake of clarity.
參照圖20及21,半導體元件1C可具有與圖16及17所例示的結構相似的結構。圖20及21中與圖16及17相同或相似的構件標記成類似 的標號且省略重複的描述。 Referring to FIGS. 20 and 21 , the semiconductor element 1C may have a structure similar to that illustrated in FIGS. 16 and 17 . Components in Figures 20 and 21 that are identical or similar to those in Figures 16 and 17 are marked similarly. labels and omit repeated descriptions.
參照圖圖20及21,半導體元件1C可包含一第三子集密實對準標誌630。第三子集密實對準標誌630及第一子集密實對準標誌610可根據第二對稱軸S2以鏡像的方式設置。詳細而言,第三子集密實對準標誌630可包含一第一層對準標誌631、一第二層對準標誌633、一第三層對準標誌635及一第四層對準標誌637。第一層對準標誌631及第一層對準標誌611可根據第二對稱軸S2以鏡像的方式設置,第二層對準標誌633及第二層對準標誌613可根據第二對稱軸S2以鏡像的方式設置,第三層對準標誌635及第三層對準標誌615可根據第二對稱軸S2以鏡像的方式設置,且第四層對準標誌637及第四層對準標誌617可根據第二對稱軸S2以鏡像的方式設置。 Referring to FIGS. 20 and 21 , the semiconductor device 1C may include a third subset of dense alignment marks 630 . The third subset of dense alignment marks 630 and the first subset of dense alignment marks 610 may be arranged in a mirror image according to the second axis of symmetry S2. In detail, the third subset of dense alignment marks 630 may include a first layer alignment mark 631, a second layer alignment mark 633, a third layer alignment mark 635 and a fourth layer alignment mark 637. . The first layer alignment mark 631 and the first layer alignment mark 611 can be arranged in a mirror image according to the second symmetry axis S2, and the second layer alignment mark 633 and the second layer alignment mark 613 can be arranged according to the second symmetry axis S2. The third layer alignment mark 635 and the third layer alignment mark 615 can be arranged in a mirror image manner according to the second symmetry axis S2, and the fourth layer alignment mark 637 and the fourth layer alignment mark 617 It can be arranged in a mirror image according to the second axis of symmetry S2.
圖22以平面示意圖例示本揭露另一實施例的半導體元件1D。圖23是沿著圖22中的剖線A-A’及B-B’的剖面示意圖。圖24是沿著圖22中的剖線C-C’及D-D’的剖面示意圖。需注意的是,為了清楚起見,圖22至24中省略了一些構件。 FIG. 22 illustrates a schematic plan view of a semiconductor device 1D according to another embodiment of the present disclosure. Fig. 23 is a schematic cross-sectional view along the cross-section lines A-A' and B-B' in Fig. 22. Fig. 24 is a schematic cross-sectional view along the cross-section lines C-C' and D-D' in Fig. 22. It should be noted that some components have been omitted from Figures 22 to 24 for the sake of clarity.
參照圖22至24,半導體元件1D可具有與圖20及21所例示的結構相似的結構。圖22至24中與圖20及21相同或相似的構件標記成類似的標號且省略重複的描述。 Referring to FIGS. 22 to 24 , the semiconductor element 1D may have a structure similar to that illustrated in FIGS. 20 and 21 . Components in FIGS. 22 to 24 that are the same as or similar to those in FIGS. 20 and 21 are marked with similar reference numerals and repeated descriptions are omitted.
參照圖22至24,半導體元件1D可包含一第二子集密實對準標誌620、一第三子集密實對準標誌630、一第四子集密實對準標誌640、一第二子集間隔對準標誌720、一第三子集間隔對準標誌730及一第四子集間隔對準標誌740。第一子集密實對準標誌610及第二子集密實對準標誌620共同構成一第一組密實對準標誌600-1。第三子集密實對準標誌630 及第四子集密實對準標誌640共同構成一第二組密實對準標誌600-2。第一子集間隔對準標誌710及第二子集間隔對準標誌720共同構成一第一組間隔對準標誌700-1。第三子集間隔對準標誌730及第四子集間隔對準標誌740共同構成一第二組間隔對準標誌700-2。 Referring to FIGS. 22 to 24 , the semiconductor device 1D may include a second subset of dense alignment marks 620 , a third subset of dense alignment marks 630 , a fourth subset of dense alignment marks 640 , and a second subset of spacers. Alignment mark 720, a third subset spacing alignment mark 730, and a fourth subset spacing alignment mark 740. The first subset of dense alignment marks 610 and the second subset of dense alignment marks 620 together form a first group of dense alignment marks 600-1. Third subset dense alignment mark 630 and the fourth subset of dense alignment marks 640 together form a second group of dense alignment marks 600-2. The first subset of spacing alignment marks 710 and the second subset of spacing alignment marks 720 together form a first group of spacing alignment marks 700-1. The third subset of spacing alignment marks 730 and the fourth subset of spacing alignment marks 740 together form a second group of spacing alignment marks 700-2.
參照圖22至24,第二子集密實對準標誌620可以類似於圖18及19所例示的方式設置,且此處不再贅述。第三子集密實對準標誌630可以類似於圖20及21所例示的方式設置,且此處不再贅述。 Referring to FIGS. 22 to 24 , the second subset of dense alignment marks 620 may be arranged in a manner similar to that illustrated in FIGS. 18 and 19 , and will not be described again here. The third subset dense alignment mark 630 may be arranged in a manner similar to that illustrated in FIGS. 20 and 21 , and will not be described again here.
參照圖22至24,第二子集間隔對準標誌720可包含一第一層對準標誌721、一第二層對準標誌723、一第三層對準標誌725及一第四層對準標誌727。第二子集間隔對準標誌720及第二子集密實對準標誌620可根據第一對稱軸S1以鏡像的方式設置。 Referring to FIGS. 22 to 24 , the second subset of spaced alignment marks 720 may include a first layer alignment mark 721 , a second layer alignment mark 723 , a third layer alignment mark 725 and a fourth layer alignment mark. Flag 727. The second subset of spaced alignment marks 720 and the second subset of dense alignment marks 620 may be arranged in a mirror image according to the first axis of symmetry S1.
參照圖22至24,第三子集間隔對準標誌730可包含一第一層對準標誌731、一第二層對準標誌733、一第三層對準標誌735及一第四層對準標誌737。第三子集間隔對準標誌730可根據第三對稱軸S3以與第一子集間隔對準標誌710互為鏡像的方式設置,或者第三子集間隔對準標誌730可根據第一對稱軸S1以與第三子集密實對準標誌630互為鏡像的方式設置,且此處不再贅述。 Referring to FIGS. 22 to 24 , the third subset of spaced alignment marks 730 may include a first layer alignment mark 731 , a second layer alignment mark 733 , a third layer alignment mark 735 and a fourth layer alignment mark 735 . Flag 737. The third subset spacing alignment mark 730 may be disposed in a mirror image of the first subset spacing alignment mark 710 according to the third axis of symmetry S3, or the third subset spacing alignment mark 730 may be arranged in accordance with the first symmetry axis S3 S1 is set in a mirror image manner with the third subset dense alignment mark 630 and will not be described again here.
參照圖22至24,第四子集間隔對準標誌740可包含一第一層對準標誌741、一第二層對準標誌743、一第三層對準標誌745及一第四層對準標誌747。第四子集間隔對準標誌740可根據第三對稱軸S3以與第二子集間隔對準標誌720互為鏡像的方式設置,或者第四子集間隔對準標誌740可根據第一對稱軸S1以與第四子集密實對準標誌640互為鏡像的方式設置,且此處不再贅述。 Referring to FIGS. 22 to 24 , the fourth subset spacing alignment mark 740 may include a first layer alignment mark 741 , a second layer alignment mark 743 , a third layer alignment mark 745 and a fourth layer alignment mark 745 . Flag 747. The fourth subset spacing alignment mark 740 may be arranged in a mirror image of the second subset spacing alignment mark 720 according to the third axis of symmetry S3, or the fourth subset spacing alignment mark 740 may be arranged according to the first symmetry axis S3 S1 is set in a mirror image manner with the fourth subset dense alignment mark 640 and will not be described again here.
本揭露的一方面提供一種半導體元件,包括:一第一層結構,包括位於一基板上方的該第一層結構的複數導電部件、及位於該第一層結構的該等導電部件之間的該第一層結構的一去耦合單元;一第一組密實對準標誌,包括位於該第一層結構的該去耦合單元上的一第一層對準標誌,且包括一螢光材料;一第二層結構,位於該第一層結構上,且包括位於該第一層結構的該等導電部件上方並偏離該第一層結構的該等導電部件的該第二層結構的複數導電部件、及位於該第一層結構上方並位於該第二層結構的該等導電部件之間的該第二層結構的一去耦合單元;以及一第一組間隔對準標誌,包括位於該第二層結構的該去耦合單元上的一第二層對準標誌,且包括一螢光材料,其中該第一層結構及該第二層結構的該去耦合單元包括一低k介電材料且分別包括一瓶形剖面輪廓。 One aspect of the present disclosure provides a semiconductor device, including: a first layer structure, including a plurality of conductive components of the first layer structure located above a substrate, and the conductive components located between the first layer structure a decoupling unit of the first layer structure; a first set of dense alignment marks, including a first layer alignment mark located on the decoupling unit of the first layer structure and including a fluorescent material; a first layer alignment mark A two-layer structure located on the first layer structure and including a plurality of conductive components of the second layer structure located above the conductive components of the first layer structure and offset from the conductive components of the first layer structure, and a decoupling unit of the second layer structure located above the first layer structure and between the conductive components of the second layer structure; and a first set of spaced alignment marks, including one located on the second layer structure a second layer alignment mark on the decoupling unit and includes a fluorescent material, wherein the decoupling unit of the first layer structure and the second layer structure includes a low-k dielectric material and each includes a Bottle shaped profile.
本揭露的另一方面提供一種半導體元件,包括位於一基板上的一第一層結構,且該第一層結構包括:位於該基板上方的該第一層結構的複數導電部件,及位於該第一層結構的該等導電部件之間的該第一層結構的一去耦合單元,且其包括一瓶形剖面輪廓;一第一組密實對準標誌,包括:位於該第一層結構的該去耦合單元上的該第一組密實對準標誌的一第一層對準標誌;一第一組間隔對準標誌,包括:根據一第一對稱軸與該第一組密實對準標誌的該第一層對準標誌互為鏡像的該第一組間隔對準標誌的一第一層對準標誌,其中該第一組密實對準標誌的該第一層對準標誌及該第一組間隔對準標誌的該第一層對準標誌包括一螢光材料,該第一層結構的該去耦合單元包括一低k介電材料。 Another aspect of the present disclosure provides a semiconductor device, including a first layer structure on a substrate, and the first layer structure includes: a plurality of conductive components of the first layer structure above the substrate, and a first layer structure on the substrate. a decoupling unit of the first layer structure between the conductive components of the layer structure, and which includes a bottle-shaped cross-sectional profile; a first set of dense alignment marks, including: the first layer structure located on the a first layer of alignment marks of the first set of dense alignment marks on the decoupling unit; a first set of spaced alignment marks, including: a first layer of alignment marks according to a first axis of symmetry and the first set of dense alignment marks A first layer of alignment marks of the first set of spaced alignment marks that are mirror images of each other, wherein the first level of alignment marks of the first set of dense alignment marks and the first set of spacers The first layer of the alignment mark includes a fluorescent material, and the decoupling unit of the first layer structure includes a low-k dielectric material.
本揭露的另一方面提供一種半導體元件的製造方法,包括在一基板上方形成一第一層結構,且該第一層結構包括:在該基板上方的 複數導電部件,及在該等導電部件之間的一去耦合單元;在該第一層結構的該去耦合單元上形成包括一第一層對準標誌的一第一組密實對準標誌;在該第一層結構上方形成一第二層結構,且其包括:在該第一層結構上方的複數導電部件,及在該等導電部件之間的一去耦合單元;以及在該第二層結構的該去耦合單元上形成包括一第二層對準標誌的一第一組間隔對準標誌,其中該第一層對準標誌及該第二層對準標誌包括一螢光材料,該第一層結構及該第二層結構的該去耦合單元包括一低k介電材料。 Another aspect of the present disclosure provides a method for manufacturing a semiconductor device, including forming a first layer structure above a substrate, and the first layer structure includes: above the substrate A plurality of conductive components, and a decoupling unit between the conductive components; forming a first set of dense alignment marks including a first layer alignment mark on the decoupling unit of the first layer structure; in A second layer structure is formed above the first layer structure, and includes: a plurality of conductive components above the first layer structure, and a decoupling unit between the conductive components; and on the second layer structure A first group of spaced alignment marks including a second layer of alignment marks is formed on the decoupling unit, wherein the first layer of alignment marks and the second layer of alignment marks include a fluorescent material, and the first layer of alignment marks The layer structure and the decoupling unit of the second layer structure include a low-k dielectric material.
由於本揭露的半導體元件的設計,包含螢光材料的第一層對準標誌611、621、631、641、711、721、731、741、第二層對準標誌613、623、633、643、713、723、733、743、第三層對準標誌615、625、635、645、715、725、735、745及第四層對準標誌617、627、637、647、717、727、737、747可改善晶圓製造過程中的光學辨識度。結果,可提升製造半導體元件1A、1B、1C、1D的良率。另外,去耦合單元121、221、321、421可降低複數導電部件130、230、330、430的寄生電容。 Due to the design of the semiconductor device of the present disclosure, the first layer of alignment marks 611, 621, 631, 641, 711, 721, 731, 741, the second layer of alignment marks 613, 623, 633, 643, 713, 723, 733, 743, third layer alignment marks 615, 625, 635, 645, 715, 725, 735, 745 and fourth layer alignment marks 617, 627, 637, 647, 717, 727, 737, 747 improves optical resolution during wafer manufacturing. As a result, the yield of manufacturing semiconductor elements 1A, 1B, 1C, and 1D can be improved. In addition, the decoupling units 121, 221, 321, and 421 can reduce the parasitic capacitance of the plurality of conductive components 130, 230, 330, and 430.
雖然已詳述本揭露及其優點,然而應理解可進行各種變化、取代與替代而不脫離申請專利範圍所定義之本揭露的精神與範圍。例如,上述討論的許多製程可用不同的方法實施且以其他製程或其組合加以替代。 Although the disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and substitutions can be made without departing from the spirit and scope of the disclosure as defined by the claimed claims. For example, many of the processes discussed above may be implemented in different ways and replaced with other processes or combinations thereof.
再者,本申請案的範圍並不受限於說明書中所述之製程、機械、製造、物質組成物、手段、方法與步驟之特定實施例。所屬技術領域中具有通常知識者可自本揭露的揭示內容理解,可根據本揭露而使用與本文所述之對應實施例具有相同功能或是達到實質上相同結果之現存或是 未來發展之製程、機械、製造、物質組成物、手段、方法、或步驟。據此,此等製程、機械、製造、物質組成物、手段、方法、或步驟係包含於本申請案之申請專利範圍內。 Furthermore, the scope of the present application is not limited to the specific embodiments of the process, machinery, manufacture, material compositions, means, methods and steps described in the specification. A person of ordinary skill in the art will understand from the disclosure of this disclosure that existing or existing devices that have the same functions or achieve substantially the same results as the corresponding embodiments described herein can be used in accordance with this disclosure. Future development of processes, machinery, manufacturing, material compositions, means, methods, or steps. Accordingly, such processes, machines, manufacturing, material compositions, means, methods, or steps are included in the patentable scope of this application.
1A:半導體元件 1A: Semiconductor components
100:第一層結構 100: First layer structure
101:基板 101:Substrate
121:去耦合單元 121: Decoupling unit
130:導電部件 130: Conductive parts
200:第二層結構 200:Second layer structure
230:導電部件 230: Conductive parts
221:去耦合單元 221: Decoupling unit
300:第三層結構 300:Third layer structure
321:去耦合單元 321: Decoupling unit
330:導電部件 330: Conductive parts
400:第四層結構 400:Fourth layer structure
421:去耦合單元 421: Decoupling unit
430:導電部件 430: Conductive parts
611:第一層對準標誌 611: First layer alignment mark
613:第二層對準標誌 613: Second layer alignment mark
615:第三層對準標誌 615: Third layer alignment mark
617:第四層對準標誌 617: Fourth layer alignment mark
711:第一層對準標誌 711: First layer alignment mark
713:第二層對準標誌 713: Second layer alignment mark
715:第三層對準標誌 715:Third layer alignment mark
717:第四層對準標誌 717: Fourth layer alignment mark
Claims (13)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/685,511 US20230282568A1 (en) | 2022-03-03 | 2022-03-03 | Semiconductor device with decoupling unit |
US17/685,865 | 2022-03-03 | ||
US17/685,865 US20230282593A1 (en) | 2022-03-03 | 2022-03-03 | Semiconductor device with decoupling unit and method for fabricating the same |
US17/685,511 | 2022-03-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202336973A TW202336973A (en) | 2023-09-16 |
TWI833216B true TWI833216B (en) | 2024-02-21 |
Family
ID=87424601
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111118389A TWI833216B (en) | 2022-03-03 | 2022-05-17 | Semiconductor device with decoupling unit |
TW111118390A TWI803321B (en) | 2022-03-03 | 2022-05-17 | Semiconductor device with decoupling unit and method for fabricating the same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111118390A TWI803321B (en) | 2022-03-03 | 2022-05-17 | Semiconductor device with decoupling unit and method for fabricating the same |
Country Status (1)
Country | Link |
---|---|
TW (2) | TWI833216B (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060103033A1 (en) * | 2004-11-12 | 2006-05-18 | Asml Netherlands B.V. | Marker structure and method for controlling alignment of layers of a multi-layered substrate |
TW200705135A (en) * | 2005-03-31 | 2007-02-01 | Sandisk 3D Llc | Masking of repeated overlay and alignment marks to allow reuse of photomasks in a vertical structure |
TW200712799A (en) * | 2005-09-07 | 2007-04-01 | United Microelectronics Corp | Stacked alignment mark and alignment method of photolithography process |
TW201027283A (en) * | 2009-01-05 | 2010-07-16 | Nanya Technology Corp | Method for wafer alignment |
US20120229807A1 (en) * | 2011-03-08 | 2012-09-13 | United Microelectronics Corp. | Mark structure and method for measuring alignment accuracy between former layer and latter layer |
TW201407741A (en) * | 2012-08-01 | 2014-02-16 | Fitipower Integrated Tech Inc | Semiconductor device having alignment mark and display device using same |
US20170170129A1 (en) * | 2014-09-26 | 2017-06-15 | Semiconductor Manufacturing International (Shanghai) Corporation | Photolithography alignment mark structures and semiconductor structures |
US20190148123A1 (en) * | 2017-11-13 | 2019-05-16 | Taiwan Semiconductor Manufacturing Co., Ltd. | Overlay-shift measurement system and method for manufacturing semiconductor structure and measuring alignment mark of semiconductor structure |
TW201929227A (en) * | 2017-10-17 | 2019-07-16 | 美商高通公司 | Visible alignment markers/landmarks for CAD-to-silicon backside image alignment |
TW202021088A (en) * | 2018-11-21 | 2020-06-01 | 大陸商長江存儲科技有限責任公司 | Bonding alignment mark at a bonding interface |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11410948B2 (en) * | 2019-09-25 | 2022-08-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor structure and manufacturing method thereof |
TW202114108A (en) * | 2019-09-27 | 2021-04-01 | 台灣積體電路製造股份有限公司 | Package structure and manufacturing method thereof |
US10978405B1 (en) * | 2019-10-29 | 2021-04-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated fan-out package |
US11362038B2 (en) * | 2020-05-28 | 2022-06-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Photolithography alignment process for bonded wafers |
-
2022
- 2022-05-17 TW TW111118389A patent/TWI833216B/en active
- 2022-05-17 TW TW111118390A patent/TWI803321B/en active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060103033A1 (en) * | 2004-11-12 | 2006-05-18 | Asml Netherlands B.V. | Marker structure and method for controlling alignment of layers of a multi-layered substrate |
TW200705135A (en) * | 2005-03-31 | 2007-02-01 | Sandisk 3D Llc | Masking of repeated overlay and alignment marks to allow reuse of photomasks in a vertical structure |
TW200712799A (en) * | 2005-09-07 | 2007-04-01 | United Microelectronics Corp | Stacked alignment mark and alignment method of photolithography process |
TW201027283A (en) * | 2009-01-05 | 2010-07-16 | Nanya Technology Corp | Method for wafer alignment |
US20120229807A1 (en) * | 2011-03-08 | 2012-09-13 | United Microelectronics Corp. | Mark structure and method for measuring alignment accuracy between former layer and latter layer |
TW201407741A (en) * | 2012-08-01 | 2014-02-16 | Fitipower Integrated Tech Inc | Semiconductor device having alignment mark and display device using same |
US20170170129A1 (en) * | 2014-09-26 | 2017-06-15 | Semiconductor Manufacturing International (Shanghai) Corporation | Photolithography alignment mark structures and semiconductor structures |
TW201929227A (en) * | 2017-10-17 | 2019-07-16 | 美商高通公司 | Visible alignment markers/landmarks for CAD-to-silicon backside image alignment |
US20190148123A1 (en) * | 2017-11-13 | 2019-05-16 | Taiwan Semiconductor Manufacturing Co., Ltd. | Overlay-shift measurement system and method for manufacturing semiconductor structure and measuring alignment mark of semiconductor structure |
TW202021088A (en) * | 2018-11-21 | 2020-06-01 | 大陸商長江存儲科技有限責任公司 | Bonding alignment mark at a bonding interface |
Also Published As
Publication number | Publication date |
---|---|
TWI803321B (en) | 2023-05-21 |
TW202336974A (en) | 2023-09-16 |
TW202336973A (en) | 2023-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8518824B2 (en) | Self aligning via patterning | |
US20160086887A1 (en) | Method of Fine Line Space Resolution Lithography for Integrated Circuit Features Using Double Patterning Technology | |
TW201810591A (en) | Semiconductor device and method for manufacturing the same | |
TWI817380B (en) | Semiconductor device having integral alignment marks with decoupling features and method for fabricating the same | |
US10199265B2 (en) | Variable space mandrel cut for self aligned double patterning | |
TWI803157B (en) | Semiconductor device with alignment marks and method for fabricating the same | |
TWI833216B (en) | Semiconductor device with decoupling unit | |
US11121026B2 (en) | Semiconductor device and method of manufacture | |
US11791328B2 (en) | Method for fabricating semiconductor device with integrated decoupling and alignment features | |
US11380615B2 (en) | Tight pitch wirings and capacitor(s) | |
CN116705765A (en) | Semiconductor device and method for manufacturing the same | |
US20230282568A1 (en) | Semiconductor device with decoupling unit | |
US10879108B2 (en) | Topographic planarization method for lithography process | |
TWI809745B (en) | Semiconductor device with integrated decoupling and alignment features | |
US12113028B2 (en) | Semiconductor device with integrated decoupling and alignment features | |
TWI825807B (en) | Method for fabricating semiconductor device with contact structure | |
US12094833B2 (en) | Semiconductor device with alignment marks and method for fabricating the same | |
TWI779583B (en) | Semiconductor device with multi-layer connecting structure and method for fabricating the same | |
US12094834B2 (en) | Semiconductor device with alignment marks and method for fabricating the same | |
US20230105066A1 (en) | Semiconductor device with uneven electrode surface and method for fabricating the same | |
CN117133712A (en) | Method for manufacturing semiconductor element |