TWI832380B - 基於心電圖診斷心臟狀態的方法與電子裝置 - Google Patents
基於心電圖診斷心臟狀態的方法與電子裝置 Download PDFInfo
- Publication number
- TWI832380B TWI832380B TW111131071A TW111131071A TWI832380B TW I832380 B TWI832380 B TW I832380B TW 111131071 A TW111131071 A TW 111131071A TW 111131071 A TW111131071 A TW 111131071A TW I832380 B TWI832380 B TW I832380B
- Authority
- TW
- Taiwan
- Prior art keywords
- electrocardiogram
- lead
- data
- leads
- file
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000013136 deep learning model Methods 0.000 claims abstract description 35
- 230000000747 cardiac effect Effects 0.000 claims description 19
- 239000013598 vector Substances 0.000 claims description 13
- 238000003745 diagnosis Methods 0.000 claims description 10
- 238000012549 training Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 11
- 208000029078 coronary artery disease Diseases 0.000 description 7
- 208000037170 Delayed Emergence from Anesthesia Diseases 0.000 description 6
- 210000004351 coronary vessel Anatomy 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000003759 clinical diagnosis Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 238000003491 array Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 208000024172 Cardiovascular disease Diseases 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000013499 data model Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 206010021143 Hypoxia Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 230000006793 arrhythmia Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Cardiology (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Artificial Intelligence (AREA)
- Databases & Information Systems (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physiology (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
提出一種基於心電圖診斷心臟狀態的方法與電子裝置。方法包含下列步驟。取得一心電圖檔案,且此心電圖檔案為第一檔案格式且包括多個導程的多個電位軌跡。將心電圖檔案轉換為第二檔案格式以獲取對應於多個導程的心電圖資料。心電圖檔案中相對於時間的各電位軌跡轉換為各個導程的心電圖資料。透過補零操作與堆疊操作而基於多個導程的心電圖資料產生關聯於多個導程的一整合心電圖資料。根據整合心電圖資料與深度學習模型產生心臟狀態的診斷結果。
Description
本揭露是有關於一種心電圖分析方法,且特別是有關於一種基於心電圖診斷心臟狀態的方法與電子裝置。
心血管疾病長年占據十大死因之一。由於心血管疾病並無明顯的病徵,故其對患者造成很大的威脅。心臟所需的氧氣主要由三條冠狀動脈分支供給。當供應心肌血液的任何一條冠狀動脈發生狹窄或阻塞時,會阻斷心臟的氧氣及養分供給而導致心肌缺氧,亦即罹患冠心病(Coronary Artery Disease,CAD),嚴重時可能導致病患死亡。
為了檢查冠狀動脈的相關疾病,醫生常使用心電圖(Electrocardiogram,ECG)來進行非侵入式的檢查。目前臨床上,醫師常以12導程心電圖(12-Lead ECG)做初步判斷。在進行心電圖測量時,醫療人員會在病患的身體四肢及胸前心臟位置貼上貼片量測ECG訊號。目前來說,每個導程(lead)實際上是量測10秒鐘,但醫療設備所提供之PDF檔案格式的心電圖報告針對大部分導程僅會顯示2.5秒的訊號圖。也就是說,完整的12導程10秒的原始訊號數值並不會呈現於PDF檔案格式的心電圖報告之中。另外,雖然目前已有許多文獻公開CAD病患於心電圖中的多種顯著特徵,例如ST段上升(ST elevation),但心電圖依然存在難以用肉眼判斷的隱性特徵。因此,醫師往往需要進一步進行侵入式的心導管手術來進行確認。然而,心導管手術屬於侵入式的檢查手術,不僅存在風險,還可能引發併發症。因此,如何提出一種能有效輔助醫療人員進行疾病決策的心電圖分析方法是本領域人員致力的目標之一。
有鑑於此,本發明提供一種基於心電圖診斷心臟狀態的方法與電子裝置,其可根據通用檔案格式的心電圖檔案產生輔助醫療人員進行決策的診斷結果。
本發明實施例的一種基於心電圖診斷心臟狀態的方法,其包含下列步驟。取得一心電圖檔案,且此心電圖檔案為第一檔案格式且包括多個導程的多個電位軌跡。將心電圖檔案轉換為第二檔案格式以獲取對應於多個導程的心電圖資料。心電圖檔案中相對於時間的各電位軌跡轉換為各個導程的心電圖資料。透過補零操作與堆疊操作而基於多個導程的心電圖資料產生關聯於多個導程的一整合心電圖資料。根據整合心電圖資料與深度學習模型產生心臟狀態的診斷結果。
本發明實施例的一種電子裝置,其包括儲存裝置與處理器。處理器耦接儲存裝置,並經配置以執行下列步驟。取得一心電圖檔案,且此心電圖檔案為第一檔案格式且包括多個導程的多個電位軌跡。將心電圖檔案轉換為第二檔案格式以獲取對應於多個導程的心電圖資料。心電圖檔案中相對於時間的各電位軌跡轉換為各個導程的心電圖資料。透過補零操作與堆疊操作而基於多個導程的心電圖資料產生關聯於多個導程的一整合心電圖資料。根據整合心電圖資料與深度學習模型產生心臟狀態的診斷結果。
基於上述,於本發明的實施例中,可將第一檔案格式的心電圖檔案轉換為第二檔案格式,以自第二檔案格式的檔案中獲取對應於多個導程的心電圖資料。對多個導程的心電圖資料進行補零操作與堆疊操作可產生整合心電圖資料。於是,深度學習模型可根據整合心電圖資料來預估心臟狀態的診斷結果,而醫療人員可根據深度學習模型輸出的診斷結果更準確地評估患者的心臟狀態。
為了使本發明之內容可以被更容易明瞭,以下特舉實施例作為本發明確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。
圖1根據本發明的實施例繪示一種基於心電圖診斷心臟狀態的電子裝置100的示意圖。電子裝置100可包含儲存裝置110以及處理器120。
儲存裝置110用以儲存影像、資料與供處理器120存取的程式碼(例如作業系統、應用程式、驅動程式)等資料,其可以例如是任意型式的固定式或可移動式隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)、硬碟、固態硬碟(solid state drive,SSD)或類似元件或上述元件的組合。
處理器120耦接儲存裝置110,例如是中央處理單元(central processing unit,CPU)、應用處理器(application processor,AP),或是其他可程式化之一般用途或特殊用途的微處理器(microprocessor)、數位訊號處理器(digital signal processor,DSP)、影像訊號處理器(image signal processor,ISP)、圖形處理器(graphics processing unit,GPU)或其他類似裝置、積體電路或其組合。處理器120可存取並執行記錄在儲存裝置110中的指令、程式碼與軟體模組,以實現本發明實施例中的基於心電圖診斷心臟狀態的方法。以下即舉實施例說明電子裝置100執行基於心電圖診斷心臟狀態的方法的詳細步驟。
圖2是依據本發明一實施例繪示的基於心電圖診斷心臟狀態的方法的流程圖。請參照圖1與圖2,本實施例的方法適用於上述實施例中的電子裝置100,以下即搭配電子裝置100中的各項元件說明圖2各步驟的細節。
於步驟S210,處理器120取得一心電圖檔案。此心電圖檔案為第一檔案格式且包括多個導程的多個電位軌跡。通過接觸皮膚的電極捕捉心臟的電位傳動,心電圖(ECG)以時間為單位記錄心臟的電生理活動。於一些實施例中,心電圖測量設備可產生為第一檔案格式的心電圖檔案。處理器120可經由有線或無線資料傳輸技術取得心電圖測量設備產生的心電圖檔案。於一些實施例中,第一檔案格式可為一可攜式文件格式(portable document format,PDF)檔案格式,而這些導程可包括導程I、導程II、導程III、導程aVR、導程aVL、導程aVF、導程V1、導程V2、導程V3、導程V4、導程V5、導程V6其中至少兩者。
舉例而言,圖3是依據本發明一實施例繪示的心電圖檔案的示意圖。假設心電圖檔案31為PDF檔,且紀錄有病患資料P_info以及心電圖311。於本實施例中,心電圖311可為12導程(亦稱為12導聯)心電圖,但本發明不以此為限。心電圖311的橫軸代表以毫秒(ms)為單位的時間,而心電圖311的縱軸代表即以毫伏(mV)為單位的電位差。心電圖311紀錄有多個導程相對於時間的電位軌跡,而這些導程可包含導程I、導程II、導程III、導程aVR、導程aVL、導程aVF、導程V1、導程V2、導程V3、導程V4、導程V5與導程V6。例如,心電圖311包括導程I的電位軌跡ECG_t3、導程V6的電位軌跡ECG_t2,以及導程II的電位軌跡ECG_t1。然而,雖然圖3係以12導程為範例進行說明,但本發明並不以此為限。於一些實施例中,心電圖檔案記錄12導程其中至少二個導程的電位軌跡。
於步驟S220,處理器120將心電圖檔案轉換為第二檔案格式以獲取對應於多個導程的心電圖資料。其中,心電圖檔案之心電圖311中相對於時間的各電位軌跡轉換為各個導程的心電圖資料。具體而言,各個導程的心電圖資料可包括對應至多個取樣時間點的多筆電位值。
於一些實施例中,第二檔案格式包括一可縮放向量圖形(Scalable Vector Graphics,SVG)檔案格式,或其他向量圖形格式。SVG檔案格式遵從可延伸標記式語言(Extensible Markup Language,XML)語法,並用文字格式的描述性語言來描述圖像內容,因此是一種和圖像解析度無關的向量圖形格式。具體而言,透過將PDF檔案轉換為SVG檔案,處理器120可將心電圖檔案轉換為第二檔案格式。須說明的是,將PDF檔案格式轉換為SVG檔案格式屬於一種已知技術,於此不再贅述。須說明的是,於一些實施例中,透過將心電圖檔案轉換為向量圖形格式,處理器120可將心電圖檔案中各導程的電位軌跡還原為對應至多個取樣時間點的多筆電位值。
詳細而言,轉換為圖形向量格式的檔案可用文字格式的描述性語言來描述心電圖(如圖3所示心電圖311)中各導程的電位軌跡。於是,在獲取轉換為第二檔案格式的檔案之後,處理器120可根據第二檔案格式所定義的標籤(亦可稱為元素標籤),自轉換為第二檔案格式的檔案中獲取對應於各導程的軌跡描述座標資料。可知的,各導程的軌跡描述座標資料可用於描述各導程的電位軌跡。舉例而言,根據SVG檔案中的標籤<path>,處理器120可擷取出用於描述心電圖中各導程的電位軌跡的軌跡描述座標資料。詳細而言,由於各導程的電位軌跡於心電圖檔案中的呈現位置可以是已知資訊,因此處理器120可根據SVG檔案中的標籤<path>以及各導程的電位軌跡的呈現位置資訊來擷取各導程的電位軌跡的軌跡描述座標資料。
接著,於一些實施例中,處理器120可將各導程的軌跡描述座標資料轉換為對應於各導程的心電圖資料。具體而言,處理器120可將用以描述心電圖訊號波型(亦即各導程的電位軌跡)的軌跡描述座標資料轉換為以毫伏(mV)為單位且對應至多個取樣時間點的多筆電位值。
於步驟S230,處理器120透過補零(Zero padding)操作與堆疊(Stack)操作而基於多個導程的心電圖資料產生關聯於多個導程的一整合心電圖資料。詳細而言,心電圖檔案中大部分導程的電位軌跡會對應至局部時段,而心電圖檔案中至少一導程的電位軌跡會對應至完整時段。於一些實施例中,完整時段的長度例如為10秒,而上述局部時段例如是0~2.5秒、2.5秒~5秒、5秒~7.5秒與7.5秒~10秒。由於部份導程的電位軌跡是對應至局部時段,因此處理器120可對對應至局部時段的這些部份導程的心電圖資料進行補零操作,以使對應至局部時段的各導程的已補值心電圖資料的資料尺寸相同於對應至完整時段的至少一導程的心電圖資料的資料尺寸。
以圖3為例,心電圖量測設備所輸出的心電圖檔案31包括12導程心電圖。其中,心電圖311最底部的導程II的電位軌跡ECG_t1對應至完整時段「0~10秒」。導程I的電位軌跡ECG_t3對應至局部時段「0~2.5秒」。導程V3的電位軌跡ECG_t2對應至局部時段「7.5秒~10秒」。依此類推。須注意的是,心電圖311還包括導程II對應至局部時段「0秒~2.5秒」的電位軌跡ECG_t4。基此,在獲取各導程的心電圖資料後,處理器120將對導程I、導程II、導程III、導程aVR、導程aVL、導程aVF、導程V1、導程V2、導程V3、導程V4、導程V5與導程V6的心電圖資料進行補零操作。然而,圖3僅為示範性說明,並非用以限定本發明。
於一些實施例中,多個導程包括第一導程與第二導程。處理器120可基於第一導程的心電圖資料所對應的第一時間區間,針對第一時間區間以外的至少一第二時間區間進行補零操作而產生第一導程的已補值心電圖資料。第二導程的心電圖資料所對應的第三時間區間包括第一時間區間與至少一第二時間區間。詳細而言,處理器120是根據第一導程的心電圖資料所對應的第一時間區間(局部時段)與第二導程的心電圖資料所對應的第三時間區間(完整時段)來決定要進行補零操作的至少一第二時間區間。
此外,值得一提的是,於一些實施例中,多個導程更包括第三導程。基於第三導程的心電圖資料所對應的第四時間區間,處理器120可針對第四時間區間以外的至少一第五時間區間進行補零操作而產生第三導程的已補值心電圖資料。須注意的是,關於第一導程的至少一第二時間區間與關於第三導程的至少一第五時間區間部份不重疊。詳細來說,基於與第一導程相似的補零操作,處理器120可根據第三導程的心電圖資料所對應的第四時間區間(局部時段)與第二導程的心電圖資料所對應的第三時間區間(完整時段)來決定要進行補零操作的至少一第五時間區間。第二導程的心電圖資料所對應的第三時間區間包括第一時間區間與至少一第五時間區間。並且,若第一導程與第三導程對應至相異的局部時段,進行補零操作的第二時段與第五時段部份不重疊。
於一些實施例中,處理器120可堆疊第一導程的已補值心電圖資料與第二導程的心電圖資料而產生關聯於多個導程的整合心電圖資料。詳細而言,在進行補值操作之後,對應至局部時段的各個導程的已補值心電圖資料的資料尺寸可皆相同於對應至完整時段的至少一導程的心電圖資料的資料尺寸。具體而言,第一導程的已補值心電圖資料與第二導程的心電圖資料皆可為1*S的資料陣列,其中S為完整時段內的取樣數量。例如,完整時段的時間長度為10秒且取樣率為每秒500個取樣數量,則S=5000。基此,處理器120可堆疊第一導程的已補值心電圖資料與第二導程的心電圖資料來產生2*S的整合心電圖資料。換言之,整合心電圖資料可為處理器120堆疊資料尺寸相同的多個資料陣列而產生的一經堆疊資料陣列。
舉例而言,圖4A與圖4B是依據本發明一實施例繪示的補零操作與堆疊操作的示意圖。請參照圖4A,在進行檔案格式轉換與資料擷取之後,處理器120可獲取12導程的心電圖資料41。請參照圖4B,處理器120可將12導程的心電圖資料41轉換為整合心電圖資料42。
請同時參照圖4A與圖4B。在處理器120獲取導程I對應至第一時間區間「0秒~2.5秒」的心電圖資料ECG_d1之後,處理器120基於導程II的第三時間區間「0秒~10秒」決定第一時間區間「0秒~2.5秒」以外的第二時間區間「2.5秒~10秒」。於是,對於導程I的心電圖資料ECG_d1,處理器120可針對第二時間區間「2.5秒~10秒」進行補零操作。亦即填加多個0至導程I的心電圖資料ECG_d1而產生導程I的已補值心電圖資料ECG_d1’。換言之,已補值心電圖資料ECG_d1’可包括心電圖資料ECG_d1與添加於其尾端的多個0。已補值心電圖資料ECG_d1’與心電圖資料ECG_d3可為資料尺寸相同的兩個資料陣列。
同理,在處理器120獲取導程aVL對應至第四時間區間「2.5秒~5秒」的心電圖資料ECG_d2之後,處理器120基於導程II的第三時間區間「0秒~10秒」決定第四時間區間「2.5秒~5秒」以外的第五時間區間「0秒~2.5秒」以及「5秒~10秒」。於是,對於導程aVL的心電圖資料ECG_d2,處理器120可針對第五時間區間「0秒~2.5秒」以及「5秒~10秒」進行補零操作。亦即填加多個0至導程aVL的心電圖資料ECG_d2而產生導程aVL的已補值心電圖資料ECG_d2’。換言之,已補值心電圖資料ECG_d2’可包括心電圖資料ECG_d2與添加於其頭部與尾端的多個0。已補值心電圖資料ECG_d2’與心電圖資料ECG_d3可為資料尺寸相同的兩個資料陣列。須注意的是,關聯於導程I的第二時間區間「2.5秒~10秒」與關聯於導程aVL的第五時間區間「0秒~2.5秒」以及「5秒~10秒」部份不重疊。
此外,基於上述說明,本領域具備通常知識者可理解如何依據相似操作來產生12導程各自的已補值心電圖資料。於此不贅述。於是,在處理器120獲取12導程各自對應的已補值心電圖資料之後,處理器120可堆疊12導程各自對應的已補值心電圖資料以及導程II的心電圖資料ECG_d3而產生整合心電圖資料42。然而,本發明對於這些導程的已補值心電圖資料的上下堆疊順序並不加以限制,圖4B僅為一示範性說明。由此可知,假設12導程各自對應的已補值心電圖資料為1*S的資料陣列,則整合心電圖資料42可為13*S的一個資料矩陣。
於步驟S240,處理器120根據整合心電圖資料與深度學習(deep learning,DL)模型產生心臟狀態的診斷結果。具體而言,處理器120可將整合心電圖資料輸入至預先訓練完成的深度學習模型,以使深度學習模型輸出心臟狀態的診斷結果。此深度學習模型例如為卷積深度神經網絡(Convolutional Neural Networks,CNN),其包括卷積層與全連接層。於一些實施例中,深度學習模型可學習並擷取整合心電圖資料中的特徵,並據以預測心臟狀態的診斷結果。心臟狀態的診斷結果可包括罹患冠心病的風險機率或患有其他心臟疾病(例如心律不整)的風險機率。
藉此,處理器120可將心臟狀態的診斷結果進行輸出,以提供給醫療人員進行參考。尤其是,本發明實施例中的整合心電圖資料保留有多個導程的心電圖資料於相對於時間上的關聯性,因此可提高深度學習模型的準確度。此外,透過將第一檔案格式的心電圖檔案轉換為SVG檔,處理器120無須去除心電圖中的心電圖紙格線,也可獲取更貼近於原始心電圖量測結果的心電圖資料。
圖5是依據本發明一實施例繪示的基於心電圖診斷心臟狀態的方法的流程圖。請參照圖1與圖5,本實施例的方法適用於上述實施例中的電子裝置100,以下即搭配電子裝置100中的各項元件說明圖5各步驟的細節。
於步驟S510,處理器120取得一心電圖檔案。於步驟S520,處理器120將心電圖檔案轉換為第二檔案格式而獲取對應於多個導程的心電圖資料。於步驟S530,處理器120透過補零操作與堆疊操作而基於多個導程的心電圖資料產生關聯於多個導程的一整合心電圖資料。步驟S510~步驟S530的詳細操作相似於圖2所示步驟S210~步驟S230的詳細操作,於此不再贅述。
須特別說明的是,於步驟S540,處理器120可根據第二檔案格式所定義的標籤獲取心電圖檔案所紀錄的病患資料。透過分析第二檔案格式的檔案中的標籤與病患資料位於心電圖檔案中已知的位置資訊,處理器120可獲取心電圖檔案所紀錄的病患資料。舉例而言,假設處理器120將心電圖檔案轉換為SVG檔,透過擷取標籤<tspan>元素的文字內容,處理器120可獲取病患資料。舉例而言,病患資料(例如圖3所示的病患資料P_info)可包括病患的年紀與性別等等。
於步驟S550,處理器120可將整合心電圖資料與病患資料輸入至深度學習模型,以使深度學習模型輸出心臟狀態的診斷結果。也就是說,於一些實施例中,處理器120還可將病患資訊納入考量來判斷病患是否罹患冠心病的風險機率。於一些實施例中,處理器120還可病患資料進行標準化操作或編碼操作,以將病患資料轉換為適於輸入至深度學習模型的資料格式。舉例而言,處理器120可將病患資料中的性別「男」編碼為二位元碼「10」,並將病患資料中的性別「女」編碼為二位元碼「01」。或者,處理器120可將病患資料中的年紀除以100以獲取標準化年紀值。於一實施例中,處理器120可將經過上述處理的病患資料與整合心電圖資料進行串聯合併(Concatenate)操作。
舉例而言,圖6是依據本發明一實施例繪示的深度學習模型的示意圖。請參照圖6,深度學習模型DM1可包括卷積層61、BN層62、ReLU層63、多個殘差塊R1~RN、展開層FL、Concatenate操作C1以及全連接層FC。卷積層61可使用n*n的卷積核(convolution kernel)進行卷積運算,例如3*3的卷積核。BN層62進行批量歸一化(Batch Normalization,BN)操作。ReLU層63可使用修正線性單元(Rectified Linear Unit,ReLU)函數作為激勵函數。殘差塊R1~RN使用殘差學習策略而將前層輸出結合至後層輸出。各殘差塊R1~RN可包括卷積層與池化層等等。
然而,深度學習模型DM1僅為一示範性說明,本發明對於深度學習模型的模型架構並不加以限制。像是,卷積層61的數目與殘差塊R1~RN的數目等等可視實際應用情形來設計。
處理器120可將整合心電圖資料F1輸入至卷積層61以使殘差塊RN可輸出一或多個特徵向量。展開層FL可將上述這些攤平而產生一個N*1向量矩陣。此外,經處理的病患資料P_info’可表徵為一個M*1的向量矩陣。展開層FL所產生的N*1向量矩陣可透過串聯合併(concatenate)操作C1而與病患資料P_info’進行拼接,以產生一個(N+M)*1向量矩陣。接著,(N+M)*1向量矩陣將輸入至全連接層FC,全連接層FC可輸出心臟狀態的診斷結果S1。舉例而言,全連接層FC可例用softmax函數進行分類操作。
圖7是依據本發明一實施例繪示的訓練深度模型與應用深度模型的示意圖。請參照圖7,其說明訓練深度學習模型DM1與應用深度學習模型DM1的流程。
於深度學習模型DM1的訓練過程中,處理器120可獲取多個訓練心電圖檔案FT1,這些訓練心電圖檔案FT1可皆為PDF檔案格式。接著,於操作71中,處理器120可對這些訓練心電圖檔案FT1進行檔案格式轉換以及擷取心電圖資料與病患資料,並產生這些訓練心電圖檔案FT1中多個導程的電位軌跡的心電圖資料。於操作72中,處理器120可對訓練心電圖檔案FT1的心電圖資料進行補零操作與堆疊操作而獲取訓練心電圖檔案FT1的整合心電圖資料。於操作73中,處理器120可利用訓練心電圖檔案FT1的整合心電圖資料與病患資料來訓練深度學習模型DM1。其中,處理器120可依據訓練心電圖檔案FT1各自對應的真實臨床診斷結果T1來訓練深度學習模型DM1。真實臨床診斷結果T1例如是醫療人員判定有任一條冠狀動脈阻塞大於50%的標記或判定沒有冠狀動脈阻塞的標記。換言之,真實臨床診斷結果T1可包括患有冠心病的第一標記或正常狀態的第二標記。經訓練的深度學習模型DM1的模型參數可紀錄於儲存裝置120中。
於深度學習模型DM1的應用過程中,處理器120可獲取待診斷病患的心電圖檔案F1。接著,於操作71中,處理器120可對心電圖檔案F1進行檔案格式轉換以及擷取心電圖資料與病患資料,並產生心電圖檔案F1中多個導程的電位軌跡的心電圖資料。於操作72中,處理器120可對心電圖檔案F1的心電圖資料進行補零操作與堆疊操作,以獲取心電圖檔案F1的整合心電圖資料。處理器120可將心電圖檔案F1的整合心電圖資料與待診斷病患的變換資料輸入至經訓練的深度學習模型DM1,以使深度學習模型DM1輸出心臟狀態的診斷結果S1,亦即是否可能罹患CAD的風險機率。
綜上所述,於本發明的實施例中,可將心電圖檔案自第一檔案格式轉換為第二檔案格式。透過將第一檔案格式的心電圖檔案轉換為向量圖形檔案格式,本發明實施例無須去除心電圖中的心電圖紙格線,也可獲取更貼近於原始心電圖量測結果的心電圖資料。此外,本發明實施例中的整合心電圖資料保留有多個導程的心電圖資料於相對於時間上的關聯性,並將病患資料一併納入考量,因此可提高深度學習模型判斷患者的冠狀動脈的健康狀況的準確度。藉此,可讓相關醫療人員更為簡易地掌握心臟的狀況,從而降低做出錯誤評估的機率。
100:電子裝置
120:處理器
110:儲存裝置
31, F1:心電圖檔案
P_info, P_info’:病患資料
311:心電圖
ECG_t1,ECG_t2, ECG_t3:電位軌跡
41, ECG_d1, ECG_d2, ECG_d3:心電圖資料
42, F1:整合心電圖資料
ECG_d1’, ECG_d2’:已補值心電圖資料
61:卷積層
62:BN層
63:ReLU層
R1~RN:殘差塊
FL:展開層
C1:Concatenate操作
FC:全連接層
DM1:深度學習模型
S1:診斷結果
71~73:操作
FT1:訓練心電圖檔案
T1:真實臨床診斷結果
S210~S240、S510~S550:步驟
圖1是依據本發明一實施例繪示的電子裝置的示意圖。
圖2是依據本發明一實施例繪示的基於心電圖診斷心臟狀態的方法的流程圖。
圖3是依據本發明一實施例繪示的心電圖檔案的示意圖。
圖4A與圖4B是依據本發明一實施例繪示的補零操作與堆疊操作的示意圖。
圖5是依據本發明一實施例繪示的基於心電圖診斷心臟狀態的方法的流程圖。
圖6是依據本發明一實施例繪示的深度學習模型的示意圖。
圖7是依據本發明一實施例繪示的訓練深度模型與應用深度模型的示意圖。
S210~S240:步驟
Claims (9)
- 一種基於心電圖診斷心臟狀態的方法,包括:取得一心電圖檔案,其中該心電圖檔案為第一檔案格式且包括多個導程的多個電位軌跡;將該心電圖檔案轉換為第二檔案格式以獲取對應於多個導程的心電圖資料,其中該心電圖檔案中相對於時間的各該些電位軌跡轉換為各該些導程的心電圖資料;透過一補零操作與一堆疊操作而基於該些導程的心電圖資料產生關聯於該些導程的一整合心電圖資料;以及根據該整合心電圖資料與一深度學習模型產生一心臟狀態的診斷結果,其中該些導程包括一第一導程與一第二導程,透過該補零操作與該堆疊操作而基於該些導程的心電圖資料產生關聯於該些導程的該整合心電圖資料的步驟包括:基於該第一導程的心電圖資料所對應的第一時間區間,針對該第一時間區間以外的至少一第二時間區間進行該補零操作而產生該第一導程的已補值心電圖資料,其中該第二導程的心電圖資料所對應的第三時間區間包括該第一時間區間與該至少一第二時間區間。
- 如請求項1所述的基於心電圖診斷心臟狀態的方法,其中該第一檔案格式包括一可攜式文件格式(portable document format,PDF)檔案格式,而該第二檔案格式包括一可縮放向量圖形(Scalable Vector Graphics,SVG)檔案格式。
- 如請求項2所述的基於心電圖診斷心臟狀態的方法,其中將該心電圖檔案轉換為該第二檔案格式而獲取對應於該些導程的心電圖資料的步驟包括:根據該第二檔案格式所定義的標籤,自轉換為該第二檔案格式的檔案中獲取對應於各該些導程的軌跡描述座標資料,其中各該些導程的軌跡描述座標資料用於描述各該些導程的電位軌跡;以及將各該些導程的軌跡描述座標資料轉換為對應於各該些導程的心電圖資料。
- 如請求項1所述的基於心電圖診斷心臟狀態的方法,其中根據該整合心電圖資料與該深度學習模型產生該心臟狀態的診斷結果的步驟包括:將該整合心電圖資料與病患資料輸入至該深度學習模型,以使該深度學習模型輸出該心臟狀態的診斷結果。
- 如請求項4所述的基於心電圖診斷心臟狀態的方法,所述方法還包括:根據該第二檔案格式所定義的標籤獲取該心電圖檔案紀錄的該病患資料。
- 如請求項1所述的基於心電圖診斷心臟狀態的方法,其中該些導程包括導程I、導程II、導程III、導程aVR、導程aVL、 導程aVF、導程V1、導程V2、導程V3、導程V4、導程V5、導程V6其中至少兩者。
- 如請求項1所述的基於心電圖診斷心臟狀態的方法,其中該些導程包括一第三導程,透過該補零操作與該堆疊操作而基於該些導程的心電圖資料產生關聯於該些導程的該整合心電圖資料的步驟包括:基於該第三導程的心電圖資料所對應的第四時間區間,針對該第四時間區間以外的至少一第五時間區間進行該補零操作而產生該第三導程的已補值心電圖資料,其中該至少一第二時間區間與該至少一第五時間區間部份不重疊。
- 如請求項1所述的基於心電圖診斷心臟狀態的方法,其中透過該補零操作與該堆疊操作而基於該些導程的心電圖資料產生關聯於該些導程的該整合心電圖資料的步驟包括:堆疊該第一導程的已補值心電圖資料與該第二導程的心電圖資料而產生關聯於該些導程的該整合心電圖資料。
- 一種電子裝置,包括:一儲存裝置;以及一處理器,耦接該儲存裝置,並經配置以:取得一心電圖檔案,其中該心電圖檔案為第一檔案格式;將該心電圖檔案轉換為第二檔案格式以獲取對應於多個導程的心電圖資料,其中各該些導程的心電圖資料包括相對於時間的電位軌跡; 透過一補零操作與一堆疊操作而基於該些導程的心電圖資料產生關聯於該些導程的一整合心電圖資料;以及根據該整合心電圖資料與一深度學習模型產生一心臟狀態的診斷結果,其中該些導程包括一第一導程與一第二導程,該處理器還經配置以:基於該第一導程的心電圖資料所對應的第一時間區間,針對該第一時間區間以外的至少一第二時間區間進行該補零操作而產生該第一導程的已補值心電圖資料,其中該第二導程的心電圖資料所對應的第三時間區間包括該第一時間區間與該至少一第二時間區間。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111131071A TWI832380B (zh) | 2022-08-18 | 2022-08-18 | 基於心電圖診斷心臟狀態的方法與電子裝置 |
US18/087,750 US20240062899A1 (en) | 2022-08-18 | 2022-12-22 | Electronic device and method for diagnosing heart state based on electrocardiogram |
CN202310053157.XA CN117582233A (zh) | 2022-08-18 | 2023-02-03 | 基于心电图诊断心脏状态的方法及电子装置 |
EP23191781.6A EP4327745A1 (en) | 2022-08-18 | 2023-08-16 | Electronic device and method for diagnosing heart state based on electrocardiogram |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111131071A TWI832380B (zh) | 2022-08-18 | 2022-08-18 | 基於心電圖診斷心臟狀態的方法與電子裝置 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI832380B true TWI832380B (zh) | 2024-02-11 |
TW202410064A TW202410064A (zh) | 2024-03-01 |
Family
ID=87580145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111131071A TWI832380B (zh) | 2022-08-18 | 2022-08-18 | 基於心電圖診斷心臟狀態的方法與電子裝置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240062899A1 (zh) |
EP (1) | EP4327745A1 (zh) |
CN (1) | CN117582233A (zh) |
TW (1) | TWI832380B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170330075A1 (en) * | 2016-05-12 | 2017-11-16 | Siemens Healthcare Gmbh | System and method for deep learning based cardiac electrophysiology model personalization |
TWI727678B (zh) * | 2020-02-26 | 2021-05-11 | 美商宇心生醫股份有限公司 | 自動心電圖數據處理方法 |
TWI752798B (zh) * | 2020-01-17 | 2022-01-11 | 長佳智能股份有限公司 | 心律分類模型建立方法 |
TWI768624B (zh) * | 2020-12-28 | 2022-06-21 | 財團法人國家衛生研究院 | 預測冠狀動脈的阻塞的電子裝置和方法 |
-
2022
- 2022-08-18 TW TW111131071A patent/TWI832380B/zh active
- 2022-12-22 US US18/087,750 patent/US20240062899A1/en active Pending
-
2023
- 2023-02-03 CN CN202310053157.XA patent/CN117582233A/zh active Pending
- 2023-08-16 EP EP23191781.6A patent/EP4327745A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170330075A1 (en) * | 2016-05-12 | 2017-11-16 | Siemens Healthcare Gmbh | System and method for deep learning based cardiac electrophysiology model personalization |
TWI752798B (zh) * | 2020-01-17 | 2022-01-11 | 長佳智能股份有限公司 | 心律分類模型建立方法 |
TWI727678B (zh) * | 2020-02-26 | 2021-05-11 | 美商宇心生醫股份有限公司 | 自動心電圖數據處理方法 |
TWI768624B (zh) * | 2020-12-28 | 2022-06-21 | 財團法人國家衛生研究院 | 預測冠狀動脈的阻塞的電子裝置和方法 |
Non-Patent Citations (1)
Title |
---|
網路文獻 中華大學生物資訊學系 網頁式心電圖訊號擷取分析系統之建構與應用 行政院國家科學委員會專題研究計畫 成果報告 20051030 http://chur.chu.edu.tw/bitstream/987654321/38197/1/bio_15_01.pdf * |
Also Published As
Publication number | Publication date |
---|---|
CN117582233A (zh) | 2024-02-23 |
EP4327745A1 (en) | 2024-02-28 |
TW202410064A (zh) | 2024-03-01 |
US20240062899A1 (en) | 2024-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Çınar et al. | Classification of normal sinus rhythm, abnormal arrhythmia and congestive heart failure ECG signals using LSTM and hybrid CNN-SVM deep neural networks | |
US9949714B2 (en) | Method, electronic apparatus, and computer readable medium of constructing classifier for disease detection | |
US20220093216A1 (en) | Discovering novel features to use in machine learning techniques, such as machine learning techniques for diagnosing medical conditions | |
Deng et al. | Extracting cardiac dynamics within ECG signal for human identification and cardiovascular diseases classification | |
Li et al. | SLC-GAN: An automated myocardial infarction detection model based on generative adversarial networks and convolutional neural networks with single-lead electrocardiogram synthesis | |
Hao et al. | Multi-branch fusion network for Myocardial infarction screening from 12-lead ECG images | |
KR102437594B1 (ko) | 전기적 바이오 시그널 데이터를 수치 벡터로 변환하는 방법 및 장치, 이를 이용하여 질병을 분석하는 방법 및 장치 | |
Chen et al. | Automated ECG classification based on 1D deep learning network | |
Xia et al. | Generative adversarial network with transformer generator for boosting ECG classification | |
CN106725426A (zh) | 一种心电信号分类的方法及系统 | |
EP4162876A1 (en) | Electrocardiogram generation device based on generative adversarial network algorithm, and method thereof | |
CN112906748A (zh) | 基于残差网络的12导联ecg心律失常检测分类模型构建方法 | |
Parsa et al. | Staged inference using conditional deep learning for energy efficient real-time smart diagnosis | |
Smith et al. | The reconstruction of a 12-lead electrocardiogram from a reduced lead set using a focus time-delay neural network | |
CN112562860A (zh) | 分类模型的训练方法及装置、冠心病辅助筛查方法及装置 | |
EP4449441A1 (en) | A computer implemented method and a system | |
CN116913504A (zh) | 用于单导联心律失常诊断的自监督多视图知识蒸馏方法 | |
Rath et al. | LSTM-based cardiovascular disease detection using ECG signal | |
TWI832380B (zh) | 基於心電圖診斷心臟狀態的方法與電子裝置 | |
Dias et al. | 2d image-based atrial fibrillation classification | |
Zhang et al. | Multi-scale and multi-channel information fusion for exercise electrocardiogram feature extraction and classification | |
CN116304765A (zh) | 一种基于谱空间表示学习的ecg波形聚类方法及系统 | |
TWI732489B (zh) | 應用心電圖快速偵測鉀離子異常之方法及其系統 | |
Ogrezeanu et al. | Deep learning based myocardial ischemia detection in ECG signals | |
Kanna et al. | Cardiac arrhythmia detector using cnn application |