TWI732489B - 應用心電圖快速偵測鉀離子異常之方法及其系統 - Google Patents

應用心電圖快速偵測鉀離子異常之方法及其系統 Download PDF

Info

Publication number
TWI732489B
TWI732489B TW109108808A TW109108808A TWI732489B TW I732489 B TWI732489 B TW I732489B TW 109108808 A TW109108808 A TW 109108808A TW 109108808 A TW109108808 A TW 109108808A TW I732489 B TWI732489 B TW I732489B
Authority
TW
Taiwan
Prior art keywords
electrocardiogram
blood
potassium
blood potassium
item
Prior art date
Application number
TW109108808A
Other languages
English (en)
Other versions
TW202137236A (zh
Inventor
林石化
林錦生
林嶔
Original Assignee
國防醫學院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國防醫學院 filed Critical 國防醫學院
Priority to TW109108808A priority Critical patent/TWI732489B/zh
Priority to US16/910,035 priority patent/US11596362B2/en
Application granted granted Critical
Publication of TWI732489B publication Critical patent/TWI732489B/zh
Publication of TW202137236A publication Critical patent/TW202137236A/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14546Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0006ECG or EEG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/332Portable devices specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/22Arrangements of medical sensors with cables or leads; Connectors or couplings specifically adapted for medical sensors
    • A61B2562/221Arrangements of sensors with cables or leads, e.g. cable harnesses
    • A61B2562/222Electrical cables or leads therefor, e.g. coaxial cables or ribbon cables

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Artificial Intelligence (AREA)
  • Physiology (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Cardiology (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本發明涉及一種應用心電圖快速偵測鉀離子異常之方法及其系統,其中該系統至少具有一向量轉換裝置,而向量轉換裝置包含有一處理單元及分別連接該處理單元之一傳輸單元、至少一記憶單元及至少一儲存單元,其中該等儲存單元至少具有一模型資料模組及一預測轉換模組,該模型資料模組中具有至少一血鉀模型資料,該血鉀模型資料至少包含有一參考心電圖與一相對應之血液檢測中的參考血鉀濃度,而該預測轉換模組可根據參考血鉀濃度將一待測心電圖轉換成一對應之預測血鉀濃度,藉由該向量轉換裝置可連接至少一心電圖生成裝置及至少一監測應用裝置,使得其得將由該心電生成裝置所取得之待測心電圖轉換成相對應之預測血鉀濃度,並顯示於該監測應用裝置上,進而供醫療人員能有效應用於監測與介入之機制,以降低心源性猝死之危險性。

Description

應用心電圖快速偵測鉀離子異常之方法及其系統
本發明係隸屬一種偵測鉀離子之技術領域,具體而言係一種應用心電圖快速偵測鉀離子異常之方法,藉以能在配合使用人工智慧模型下,透過心電圖快速、且準確判斷鉀離子濃度,供應用於監測與介入之機制,以降低心源性猝死之危險性。
按,隨著醫療技術及電腦科技不斷的發展與普及,兩者的結合對疾病的治療、檢測及預防越來越多樣的應用,可以有效協助人們管理個人健康、疾病預防及治療。據統計數據全球每年有約三佰萬人死於心源性猝死,主要原因包含有心律不整、心肌梗塞與鉀離子不平衡〔血鉀症〕等。以其中鉀離子不平衡而言,由於血鉀濃度高低對於患有不同症狀的患者會有不同的生理反應,因此醫療人員對於不同血鉀濃度的患者所需進行的處理及治療方式也就不同,例如血鉀濃度最好在3.5-5.0meq/L,若血鉀濃度大於5.1meq/L時即為高血鉀症〔Hyperkalemia〕,而當血鉀濃度低於3.5meq/L時則為低血鉀症〔Hypokalemia〕。
而嚴重高、低血鉀是非常危急之急症,會引起嚴重的心臟 傳導異常,有肌肉無力及麻痺、感覺異常、心搏過緩、心律不整等症狀,例如血鉀濃度升到7meq/L時,通常會覺得全身無力,脈搏變慢,而血鉀濃度高到8.0meq/L時,就有心跳停止、猝死的危險。至於低血鉀症最常見的臨床症狀主要是心律不整、全身肌肉無力。其中當血鉀濃度下降到2.5-3mEq/L時,則會有抽筋、虛弱、不適、肌痛等症狀產生,而當血鉀濃度小於2.5mEq/L時,會發生致命性心律不整、吸吸衰竭等致命情況。
而早期患者檢查血鉀濃度只能透過驗血,且需要經過儀器進行分析,然驗血不僅需要侵入抽血,且驗血也需要一定的作業時間,如此對於急診中的患者而言會有延遲治療的現象,而有研究指出治療延遲會造成心源性猝死的危險性,如每延遲5分鐘會導致30天內的死亡率上升20%,每延遲10分鐘治療對將直接增加0.34%至3.31%的死亡率,這都能說明時效的重要性。
而心電圖(Electrocardiography,ECG)為記錄人體因心臟跳動導致電壓的變化,一般係以非侵入式的方式來擷取心電訊號,根據各國的研究顯示心電訊號為非線性曲線,且心電圖各波型之形狀及其間隔與心臟電氣特性具有直接關係。然心電圖的判斷是一門高深的學問,即使是受過訓練的專科醫師也未必能完全掌握。表1顯示了專科醫師對於心源性猝死主因之判讀準確度,我們能夠發現心電圖判讀對受過專業訓練的臨床醫師也是一個相當大的挑戰。但這類血鉀病人的情況經常需要在短時間內做出即時的診治,惟即時的診治是非常困難的,其主要原因在於醫師必須判斷型態學特徵,如低血鉀患者的心電圖上常會出現平緩或反轉的T波,以及ST段的下降,隨著血鉀進一步下降,PR間期將隨著P波增加而延長,但研究卻顯示各型態學特徵的出現率即使在事後嚴格的審查下也都非 常難被觀察到。
Figure 109108808-A0305-02-0006-3
因此心電圖被認為有必要開發電腦輔助診斷工具,希望能突破人類的極限而增加準確性。然而,這些較早期的研究準確度難以到達心臟科醫師的水準。主要係因為心臟科醫師在判讀心電圖時經常是使用形態學的變化,而這些形態眾多且難以被傳統的演算法定量,這是傳統機器學習技術的限制,我們很難預先定義好完整的特徵,並且沒有辦法清楚地描述人類的「感覺」,從而導致效果不彰。
為了彌補前述問題,近年來將利用機械學習的圖像辨識的精度已飛躍性地提昇至人工智慧(Artificial Intelligence,AI)的支援。近年來,利用深度學習的AI於各種醫療領域中受到關注,且具有深度學習功能的AI發揮與專科醫生同等的診斷能力。例如為了突破現有的心電圖輔助診斷工具無法有效定量的問題,近期Jama Cardiology發表一篇論文「Development and ValiKPtion of a Deep-Learning Model to Screen for Hyperkalemia From the Electrocardiogram」的研究,其透過深度學習模型的開發和驗證,利用上百萬份的心電圖對一個卷積深度神經網路〔Convolutional Neural Networks,CNN〕進行了訓練,使用2導程〔I和II〕或4導程〔I,II,V3和V5〕之心電圖訓練CNN,成功檢測血鉀水準為5.5mEq/L或更低,其敏感性為0.853-0.883、靈敏度為88.9%-91.3 %,而證實將人工智慧應用於ECG可以篩查高鉀血症。但其仍然僅能驗證患者的血鉀濃度是高於或低於5.5mEq/L,因此其僅適用於高血鉀症,導致無法有效依據不同的血鉀濃度做進一步的醫療判斷。
承如前述,由於對於不同的血鉀濃度需有不同的處理及治療方式,因此如能將心電圖轉換成準確的血鉀濃度,將可解決前述問題,故開發一種可以有效對血鉀濃度定量之心電圖輔助診斷工具係業界的重要課題。
除此之外,穿戴式生理監測裝置也正在改變醫療保健行業,使民眾隨時隨地都能夠監測自己的生理狀態和活動,也有能應用於遠程醫療、持續監測等優點,因此其也被廣泛應用於各場域中,而目前穿戴式生理監測裝置也發展到可以取得心電圖,如能與心電圖輔助診斷工具結合,用於長時間隨時追距患者的心電訊號,如預先偵測鉀離子異常,可有效監測及預防心源性猝死。
緣是,本發明即基於上述缺失深入探討,並藉由本發明人多年從事相關開發的經驗,而積極尋求解決之道,經不斷努力之研究與發展,終於成功的創作出一種應用心電圖快速偵測鉀離子異常之方法及其系統,以解決現有者因無法對血鉀濃度定量所造成的不便與困擾。
因此,本發明之主要目的係在提供一種之應用心電圖快速偵測鉀離子異常之方法及其系統,藉以能利用患者心電訊號、且透過人工智慧的深度學習模型對血鉀濃度進行定量,讓醫療人員能依患者實際血鉀濃度提供相對應的治療。
其次,本發明之再一主要目的係在提供一種之應用心電圖快速偵測鉀離子異常之方法及其系統,其能快速判讀出血鉀濃度,讓醫療人員能即時進行相對應的處理。
又,本發明之另一主要目的係在提供一種之應用心電圖快速偵測鉀離子異常之方法及其系統,其能提供長時間隨時的追踪,供醫療人員即時監測與介入,以降低心源性猝死之危險性。
為此,本發明主要係透過下列的技術手段,來具體實現上述的各項目的與效能,而該應用心電圖快速偵測鉀離子異常之方法包含有: 一建置至少一血鉀模型資料之步驟:首先建立至少一血鉀模型資料,該血鉀模型資料利用一心電圖取得一相對應之血液檢測中的參考血鉀濃度(KR),其係選定該參考血鉀濃度(KR)在一個間隔單位為q的K1至K2之範圍內,並將該參考血鉀濃度(KR)之選定範圍轉換成一個具r位數編碼為「0與1」之二元數值序列,又各單位之參考血鉀濃度(KR)能被轉換為一個具有i個編碼為「1」之二元數值序列,其轉換可由公式(1)、(2)完成,其中:r=(K2-K1)/q…………………………………公式(1)
i=(KR-K1)/q…………………………………公式(2)
一取得至少一待測心電圖之步驟:取得至少一被監測者之待測心電圖;一轉換血鉀機率向量之步驟:其利用一卷積神經網路架構之模型將該待測心電圖根據該血鉀模型資料的二元數值序列之參考血鉀濃度進行預測,而求得一在r位數的二元數值序列間依序具有i個「1」之機率向量; 一求得預測血鉀濃度之步驟:在求得該被監測者之心電圖的機率向量後,利用一公式(3)KP=K1+qi,將該機率向量轉換成一預測血鉀濃度(KP)。
並使用下列系統來執行,該系統至少具有一向量轉換裝置;所述之向量轉換裝置包含有一處理單元及分別連接該處理單元之一傳輸單元、至少一記憶單元及至少一儲存單元,其中該等儲存單元至少具有一模型資料模組及一預測轉換模組,該模型資料模組中具有至少一血鉀模型資料,該血鉀模型資料至少包含有一心電圖與一相對應之血液檢測中的參考血鉀濃度,而該預測轉換模組使用如申請專利範圍第1項所述之應用心電圖快速偵測鉀離子異常之方法將一待測心電圖轉換成一對應之預測血鉀濃度;藉由該向量轉換裝置可連接至少一心電圖生成裝置及至少一監測應用裝置,使得其得將由該心電生成裝置所取得之待測心電圖轉換成相對應之預測血鉀濃度(KP),並顯示於該監測應用裝置上。
藉此,透過前述技術手段的具體實現,使本發明能可大幅增進其實用性,而能增加其附加價值,並能提高其經濟效益。
為使 貴審查委員能進一步了解本發明的構成、特徵及其他目的,以下乃舉本發明之若干較佳實施例,並配合圖式詳細說明如后,供讓熟悉該項技術領域者能夠具體實施。
10:心電圖生成裝置
11:電極單元
12:傳輸單元
15:心電圖資料庫
20:向量轉換裝置
21:處理單元
22:傳輸單元
221:擷取介口
222:輸出介口
23:記憶單元
231:唯讀記憶單元
232:隨機存取記憶單元
24:儲存單元
25:模型資料模組
26:預測轉換模組
261:導入預測模塊
262:加權平均模塊
263:總和輸出模塊
27:圖形處理單元
28:模型學習模組
30:監測應用裝置
31:傳輸單元
32:顯示單元
35:警報發送單元
第一圖:係本發明使用應用心電圖快速偵測鉀離子異常之系統的系統運作示意圖。
第二圖:係本發明使用應用心電圖快速偵測鉀離子異常之系統的系統架構示意圖。
第三圖:係本發明使用應用心電圖快速偵測鉀離子異常之系統中向量轉換裝置的架構示意圖。
第四圖:係本發明之系統中的模型資料模組的資料轉換示意圖。
第五圖:係本發明之系統的血鉀二元數值序列轉換示意圖。
第六圖:係本發明之血鉀二元數值序列轉換中的導入預測模塊運作示意圖。
第七圖:係本發明之血鉀二元數值序列轉換中的加權平均模塊運作示意圖。
第八圖:係本發明之血鉀二元數值序列轉換中的總和輸出模塊運作示意圖。
第九圖:係本發明使用應用心電圖快速偵測鉀離子異常之方法的流程架構示意圖。
本發明係一種應用心電圖快速偵測鉀離子異常之方法及其系統,隨附圖例示本發明之具體實施例及其構件中,所有關於前與後、左與右、頂部與底部、上部與下部、以及水平與垂直的參考,僅用於方便進行描述,並非限制本發明,亦非將其構件限制於任何位置或空間方向。圖式與說明書中所指定的尺寸,當可在不離開本發明之申請專利範圍內,根據本發明之具體實施例的設計與需求而進行變化。
如第一、二圖所示,本發明應用心電圖快速偵測鉀離子異常之系統包含有一心電圖生成裝置(10)、一向量轉換裝置(20)及一監測應用裝置(30),其中該心電圖生成裝置(10)、向量轉換裝置(20)及監測應用裝置(30)可以是組成一體式結構、兩兩組合結構或個別分離式結構,且如為分離式結構可以是利用有線技術〔如乙太網路〕、無線技術〔如Wi-Fi或3G以上行動通信〕相互連線,供相互傳輸資料。
其中該心電圖生成裝置(10)具有至少一可貼設於人體供偵測心電訊號之電極單元(11),而該心電圖生成裝置(10)之電極單元(11)可以選自至少1導程以上之導程,例如使用1導程、2導程、3導程、6導程、或12導程之電極單元(11)〔如Lead I、Lead II...Lead V6〕,供生成一相對應導程數之待測心電圖(D1),又該心電圖生成裝置(10)具有一傳輸單元(12),而該傳輸單元(12)可以利用有線技術或無線技術對上述之向量轉換裝置(20)傳輸該待測心電圖(D1),且該心電圖生成裝置(10)可以是一穿戴式生理監測裝置,供患者直接穿載以取得至少一待測心電圖(D1),供長時間隨時監測患者(如救護車上患者、慢性病患者等)。另根據某些實施例該心電圖生成裝置(10)也可以選自一個用於儲存至少一患者之至少一待測心電圖(D1)之心電圖資料庫(15)。
又如第三圖所示,該向量轉換裝置(20)可以是一與該心電圖生成裝置(10)連線之雲端伺服裝置或裝置〔如伺服器、個人電腦、可攜式裝置、智慧型手機等〕、又或一與該心電圖生成裝置(10)結合形成一體式之穿戴式生理監測裝置,而該向量轉換裝置(20)至少包含有一處理單元(21)〔Central Processing Unit,CPU〕、一傳輸單元(22)、至少一記憶單元(23)及至少一儲存單元(24),其中該處理單元(21) 用於執行系統之各項程式、指令及功能,而該傳輸單元(22)連接該處理單元(21),且該傳輸單元(22)則包含有至少一供連接該心電圖生成裝置(10)之擷取介口(221)及至少一供連接該監測應用裝置(30)之輸出介口(222),使得其可讓該向量轉換裝置(20)與該心電圖生成裝置(10)及該監測應用裝置(30)之間能利用該傳輸單元(22)相互傳輸各項資料、畫面或指令,而該記憶單元(23)電氣連接該處理單元(21),且該記憶單元(23)可以至少包含有一唯讀記憶單元(231)〔Read Only Memory,ROM〕與一隨機存取記憶單元(232)〔Random Access Memory,RAM〕,用於供儲存系統程式或指令、以及作為作業系統或其他正在執行中的程式的臨時資料儲存媒介,又各該儲存單元(24)可以有線或無線連接該處理單元(21),且該儲存單元(24)可以是一內部儲存設備或一外部儲存設備,如硬碟〔Hard Disk Drive,HDD〕、固態硬碟〔Solid State Disk,簡稱SSD〕或雲端硬碟〔Online Hard Drive〕,又該等儲存單元(24)可以儲存有供參考、比對及執行之一模型資料模組(25)、一預測轉換模組(26)及各種資料,使得該心電圖生成裝置(10)取得之待測心電圖(D1)可透過該模型資料庫(25)之比對及該預測轉換模組(26)之計算求得一預測血鉀濃度(KP)〔如第四圖所示〕。
再者,前述之模型資料模組(25)中具有至少一筆血鉀模型資料(MD),而各該血鉀模型資料(MD)至少包含有一參考心電圖與一相對應之血液檢測中的參考血鉀濃度(KR),其中該參考心電圖可以選自至少1導程以上之心電圖如1導程、2導程、3導程、6導程或12導程,且各該血鉀模型資料(MD)進一步可以包含症狀、用藥、年齡或性別等患者之特徵資料,使該血鉀模型資料(MD)能被分類得更為詳細。而參 考血鉀濃度(KR)則被限制在一個K1~K2之選定範圍內,並且為適用於後續的模型架構,其數值被編碼為「0與1」之二元數值序列,並以一個q值為間隔單位〔如q=0.01、0.1或1〕進行編碼,使該參考血鉀濃度(KR)之選定範圍可被轉換成具有r個位數〔公式(1)〕之二元數值序列,又每一個參考血鉀濃度(KR)將可被轉換為成具有i個位數〔公式(2)〕編碼為「1」之二元數值序列,因此該參考血鉀濃度(KR)與其二元數值序列的模型轉換可以由下列公式(1)、(2)完成,其中:r=(K2-K1)/q…………………………………公式(1)
i=(KR-K1)/q…………………………………公式(2)
其中i為在r個二元數值序列中編碼為「1」之位數
例如假定該參考血鉀濃度(KR)的選定範圍介於1.5mEq/L〔K1〕至7.5mEq/L〔K2〕之間,並以一個0.1mEq/L〔q〕為間隔單位進行編碼,如此參考血鉀濃度(KR)之選定範圍將可被轉換為60個位數〔r〕之二元數值序列,則該參考血鉀濃度(KR)選定的範圍為1.5+0.1i,其中編碼為「1」之位數i=0,1,2,3,…,60,按此設置。如此當參考血鉀濃度(KR)為1.5mEq/L時,其編碼為「1」之位數i=(1.5-1.5)/0.1=0,亦即其編碼為「1」之位數為0個位數,則參考血鉀濃度(KR)為1.5mEq/L的二元數值序列編碼應為〔0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0〕,再者,當參考血鉀濃度(KR)為4.0mEq/L時,則其編碼為「1」之位數i=(4.0-1.5)/0.1=25,亦即其編碼為「1」之位數為25個位數,則參考血鉀濃度(KR)為4.0mEq/L的二元數值序列編碼為〔1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0〕,依此類推;又該自我學習功能之預測轉換模組(26)為選自第三代人工智慧之卷積深度神經網路〔Convolutional Neural Network,CNN〕,如DenseNet架構(Dense Convolutional Network),且如第五圖所示,該預測轉換模組(26)至少包含一導入預測模塊(261)〔本發明定義為ECG lead block〕、一加權平均模塊(262)〔本發明定義為Attention block〕及一總和輸出模塊(263)〔本發明定義為Sum Output block〕等三個模塊。其中導入預測模塊(261)為一以序列向量為輸入的深度神經網路運算,令每一個導程將使用這個結構生成一導向預測值(D2)。其典型範例係如第六圖所示,這是一個基於DenseNet算法所設計的結構,其核心架構為叢密單元〔下稱Dense unit,DU〕,每一個Dense unit都是由一個連續的『第一卷積(conv)→批量歸一層(BN)→線性整流層(ReLU)→第二卷積→批量歸一層→線性整流層』等所組合而成,其中第一卷積具有4K個1×1卷積器,第二卷積具有K個3×1卷積器,K為整體模型共用之常數,我們設置為32。而接著透過Dense unit的堆疊形成叢密模塊〔下稱Dense block〕,在Dense block中,所有Dense unit的連接皆以密集連接形式呈現,在同個Dense block中任意一個Dense unit都能夠接受前面所有Dense unit的輸出資訊。而為了增加預測轉換程式(26)的多樣性,額外存在一池化層模塊〔Pooling block〕來彌補Dense block無法進行降維的缺陷。Pooling block是由一個卷積步幅為2的Dense unit及步幅為2的池化層〔Pool〕疊加而成。而該導入預測模塊(261)主要結構就是透過Dense block與Pooling block的串接,而該預測轉換程式(26)網路的結 構在最開始包含一個連續的『批量歸一層→卷積→批量歸一層→線性整流層→池化層』,在這裡的卷積具有2K個7×1卷積器〔步輻為2×1〕,而這裡的池化層則是利用3×1池化器進行降維〔步輻為2×1〕。在這個初步的結構之後,將連續的『Dense block→Transition block→Dense block→Transition block→Dense block→Transition block→Dense block』進行串聯,在這裡的Dense block依序有3、3、6、6、3個Dense unit。在經過一系列的組合之後,再使用一個批量歸一層及線性整流層整理結果,隨後使用一個『全局平均池化層』進行最終的數據整合,並在最後使用一個全連接層〔FC〕作為模型最終輸出結果。
在經過該導入預測模塊(261)之後,針對每一導程的該導入預測值(D2)將分別有一個長度為N的特徵向量與長度為1的個別預測結果,而後這個特徵向量將會通過該加權平均模塊(262)進行權重預測。以第七圖之典型運算為例,該加權平均模塊(262)的結構為「全連接層→批量歸一層→線性整流層→全連接層→批量歸一層」,最終每個加權平均模塊(262)將會輸出一個加權數值(D3)。而12個導程的經過該加權平均模塊(262)之輸出將會一起通過一個Sofrmax函數限制其加總為100%,而後將此權重與該導入預測模塊(261)原始的導向預測值(D2)進行加權平均,獲得一個整體估計值(D4)。而在經過前述導入預測模塊(261)與加權平均模塊(262)之後,由於參考血鉀濃度(KR)已被編碼為「0與1」之二元數值序列,因此利用該總和輸出模塊(263)之結構來進行結果預測,如第八圖所示,而該總和輸出模塊(263)的運作原理係假定參考血鉀濃度的範圍是介於1.5至7.5之間,並以一個0.1為單位進行編碼,則將建構r個〔如60個〕具有「全連接層→Sigmoid output」的結構,而 模型的最終預測則為一個介於0至1的60個機率向量(D5),其中包含i個編碼為「1」之位數。
再經過該預測轉換模組(26)之導入預測模塊(261)、加權平均模塊(262)及總和輸出模塊(263)後得到一個介於0至1的r個〔如60個〕機率向量(60),其中包含i個編碼為「1」之位數,且經對比該模型資料模組(25)中相對應的心電圖及抽血檢測之參考血鉀濃度(KR)後利用一公式(3)可得到一個預測血鉀濃度(KP),之後上傳至該向量轉換裝置(20)之傳輸單元(22)的輸出介口(222),供前述之監測應用裝置(30)接收。
KP=K1+qi……………………………………公式(3)
而根據某些實施例,該向量轉換裝置(20)進一步可以包含有一連接該處理單元(21)之圖形處理單元(27)〔Graphics Processing Unit,GPU〕,供透過分析、深度學習和機器學習演算法來執行繪圖運算工作,以提高運算速度。
又,根據某些實施例,該向量轉換裝置(20)進一步包含有一卷積神經網路架構之模型學習模組(28),供生成新的用於診斷之血鉀模型資料(MD)。而該模型學習模組(28)係利用卷積神經網路以不監督方式辨識指定心電圖中的特徵值進行學習,且該模型學習模組(28)之卷積神經網路進行學習處理時的演算法可為公知的方法,並調整網路參數〔權重係數、偏差等〕。而且,由該模型學習模組(28)形成之血鉀模型資料(MD)〔結構資料及已學習的權重參數等〕例如與模型資料模組(25)或預測轉換模組(26)一同被儲存於該儲存單元(24)中;承如前述,該模型學習模組(28)於驅動深度學習模型訓練 的方法可以使用如公知的反向傳播法〔Backpropagation〕實施學習處理,首先需要先定義一個損失函數,這裡定義的損失函數為交叉熵〔cross-entropy〕之和如下,其中p i 為最終輸出的機率向量(D5),而y i 則為參考血鉀濃度(KR)經編碼後之二元數值序列:
Figure 109108808-A0305-02-0017-2
而在實際訓練時,將隨機裁減長度為k×2n〔如n=6〕的原始電位訊號數值序列,如模型資料模組(25)建置時使用每2毫秒紀錄1個訊號,並連續紀錄10秒,則序列長度總長為5,000,可隨機裁剪一段長度為1,024個數字序列〔k=16〕進行血鉀模型資料(MD)訓練。在上述設置滿足後就可開始進行血鉀模型資料(MD)的訓練,如以初始學習率為0.001之Adam進行優化學習並將參數設定為標準參數(β 1=0.9 & β 2=0.999),並且當整體損失不再下降後將其降低10倍,重複上述過程3次,並將L2正則化系數可設定為10-4
在每個訓練批量樣本的選擇上,可以在每次訓練時隨機產生大小為n的批量,如可設置n=50,並使用過採樣技術〔oversampling〕依資料量設定權重抽取樣本,如讓K+
Figure 109108808-A0305-02-0017-4
2.5、2.5<K+
Figure 109108808-A0305-02-0017-5
3.5、3.5<K+<5.5、5.5
Figure 109108808-A0305-02-0017-6
K+<6.5、6.5
Figure 109108808-A0305-02-0017-7
K+等5個組別保持平衡。
除了上面的部分之外,還有一些資料擴增方法可用來增加血鉀模型資料(MD)的準確度,如:
1.每次訓練時隨機將預測轉換模組(26)之12個加權平均模塊(262)中的6個重新指定為0,這讓血鉀模型資料(MD)在訓練時永遠都只能看到半張心電圖(ECG)。
2.訓練過程中使用一個序列長度為50的零向量作為模版, 隨機的遮蔽心電圖(ECG)不定區域的波型。
3.在訓練時隨機將心跳數重設為原始心跳數的80%至120%,再從調整大小後的序列中抽取長度為k×26的序列進行訓練。
而在該模型資料模組(25)於實際應用時,若向量轉換裝置(20)給出的預測血鉀濃度(KP)結果為一長度為N的機率向量,其中每個機率值介於0至1之間。假定參考血鉀濃度(KR)的範圍是介於1.5至7.5之間,並以0.1為單位進行編碼,則預測血鉀濃度(KP)給出預測如下〔1,1,1,1,1,1,1,1,1,0.9,0.8,0.7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0〕時,則會將此向量累加後除以10再加上1.5得到2.64mEq/L的血鉀濃度。另外由於向量轉換裝置(20)在訓練時是使用裁剪後的數值序列進行運算,因此在實際預測時,須將原始心電訊號(D1)序列以固定間格裁剪為長度為k×26的數值向量,並將多個預測結果進行簡單平均給出最終預測,如在實際應用時則使用前1,024個數字序列和後1,024個數字序列預測結果之平均。
再者,根據某些實施例,該向量轉換裝置(20)之模型資料模組(25)、預測轉換模組(26)及模型學習模組(28)可以一同儲存於同一儲存單元(24)或分別儲存於不同儲存單元(24)中。
又如第一、二圖所示,至於該監測應用裝置(30)具有一傳輸單元(31),而該傳輸單元(31)可以利用有線技術或無線技術接收上述之向量轉換裝置(20)傳送來之偵測值及/或心電訊號,且該監測應用裝置(30)具有一顯示單元(32),該顯示單元(32)可供顯示預測血鉀濃度(KP)及/或心電訊號(D1)生成之心電圖,讓醫療人員能依患者實際 血鉀濃度提供對應的處理及治療,供醫療人員判讀預測血鉀濃度(KP),另根據某些實施例,該監測應用裝置(30)進一步具有一警報發送單元(35),該警報發送單元(35)可向急救人員、責任醫師或遠端監管裝置發送偵測之預測血鉀濃度(KP)及/或心電訊號(D1)生成之心電圖,供醫療人員即時監測與介入,以降低心源性猝死之危險性。
而本發明進一步包含一個使用前述應用心電圖快速偵測鉀離子異常之系統的方法,如第九圖所示,該方法之施實步驟包含有:一建置至少一血鉀模型資料之步驟(S01):首先建立至少一血鉀模型資料,該血鉀模型資料利用一心電圖取得一相對應之血液檢測中的參考血鉀濃度(KR),其係選定該參考血鉀濃度(KR)在一個間隔單位為q的K1至K2之範圍內,並將該參考血鉀濃度(KR)之選定範圍轉換成一個具r位數編碼為「0與1」之二元數值序列,又各單位之參考血鉀濃度(KR)能被轉換為一個具有i個編碼為「1」之二元數值序列,其轉換可由公式(1)、(2)完成,其中:r=(K2-K1)/q…………………………………公式(1)
i=(KR-K1)/q…………………………………公式(2)
一取得至少一待測心電圖之步驟(S02):取得一被監測者之待測心電圖;一轉換血鉀機率向量之步驟(S03):接著利用該被監測者之心電圖進行轉換,其包含利用卷積神經網路架構之一導入預測、一加權平均及一總和輸出的方式,其中利用導入預測的方式將被監控者心電圖以序列向量輸入並生成一導向預測值,之後透過加權平均的方式進行權重預測,並以導向預測值為輸入進行加權與平均而取得一整體估計值,之後利 用該總和輸出方式根據該血鉀模型資料的二元數值序列之參考血鉀濃度進行結果預測,而求得一在r位數的二元數值序列間依序具有i個「1」之機率向量;一求得預測血鉀濃度之步驟(S04):在求得該被監測者之心電圖的機率向量後,利用一公式(3)KP=K1+qi,將該機率向量轉換成一預測血鉀濃度(KP)。
且該應用心電圖快速偵測鉀離子異常之系統的方法進一步包含有一模型學習之步驟,其係利用卷積神經網路以不監督方式辨識指定心電圖中的特徵值進行學習,且該模型學習模組之卷積神經網路進行學習處理時的演算法可為公知的方法,並調整網路參數,供生成新的用於診斷之血鉀模型資料。
綜上所述,可以理解到本發明為一創意極佳之發明創作,除了有效解決習式者所面臨的問題,更大幅增進功效,且在相同的技術領域中未見相同或近似的產品創作或公開使用,同時具有功效的增進,故本發明已符合發明專利有關「新穎性」與「進步性」的要件,乃依法提出發明專利之申請。
10:心電圖生成裝置
20:向量轉換裝置
21:處理單元
22:傳輸單元
221:擷取介口
222:輸出介口
23:記憶單元
231:唯讀記憶單元
232:隨機存取記憶單元
24:儲存單元
25:模型資料模組
26:預測轉換模組
261:導入預測模塊
262:加權平均模塊
263:總和輸出模塊
27:圖形處理單元
28:模型學習模組
30:監測應用裝置

Claims (16)

  1. 一種應用心電圖快速偵測鉀離子異常之方法,其包含有:一建置至少一血鉀模型資料之步驟:建立至少一血鉀模型資料,該血鉀模型資料利用至少一參考心電圖取得至少一相對應之血液檢測中的參考血鉀濃度(KR),其係選定該參考血鉀濃度在一個間隔單位為q的K1至K2之範圍內,並將該參考血鉀濃度之選定範圍轉換成一個具r位數編碼為「0與1」之二元數值序列,又各單位之參考血鉀濃度(KR)能被轉換為一個具有i個編碼為「1」之二元數值序列,其轉換可由公式(1)、(2)完成,其中:r=(K2-K1)/q…………………………………公式(1) i=(KR-K1)/q…………………………………公式(2)一取得至少一待測心電圖之步驟:取得至少一被監測者之待測心電圖;一轉換血鉀機率向量之步驟:其利用一卷積神經網路架構之模型將該待測心電圖根據該血鉀模型資料的二元數值序列之參考血鉀濃度進行預測,而求得一在r位數的二元數值序列間依序具有i個「1」之機率向量;一求得預測血鉀濃度之步驟:在求得該被監測者之心電圖的機率向量後,利用一公式(3)KP=K1+qi,將該機率向量轉換成一預測血鉀濃度(KP)。
  2. 如申請專利範圍第1項所述應用心電圖快速偵測鉀離子異常之方法,其中該心電圖可以選自12導程之心電訊號所生成。
  3. 如申請專利範圍第1項所述應用心電圖快速偵測鉀離子異常之方法,其中該方法進一步包含有一模型學習之步驟,其係利用卷積神經網路以不監督方式辨識指定心電圖中的特徵值進行學習,且該模型學 習模組之卷積神經網路進行學習處理時的演算法可為公知的方法,並調整網路參數,供生成新的用於診斷之血鉀模型資料。
  4. 一種應用心電圖快速偵測鉀離子異常之系統,該系統至少具有一向量轉換裝置;所述之向量轉換裝置包含有一處理單元及分別連接該處理單元之一傳輸單元、至少一記憶單元及至少一儲存單元,其中該等儲存單元至少具有一模型資料模組及一預測轉換模組,該模型資料模組中具有至少一血鉀模型資料,該血鉀模型資料至少包含有一心電圖與一相對應之血液檢測中的參考血鉀濃度,而該預測轉換模組使用如申請專利範圍第1項所述之應用心電圖快速偵測鉀離子異常之方法將一待測心電圖轉換成一對應之預測血鉀濃度;藉由該向量轉換裝置可連接至少一心電圖生成裝置及至少一監測應用裝置,使得其得將由該心電生成裝置所取得之待測心電圖轉換成相對應之預測血鉀濃度,並顯示於該監測應用裝置上。
  5. 如申請專利範圍第4項所述之系統,其中該向量轉換裝置進一步可以包含有一連接該處理單元之圖形處理單元,供提高運算速度。
  6. 如申請專利範圍第4項所述之系統,其中該向量轉換裝置進一步包含有一模型學習模組,且該模型學習模組係利用卷積神經網路以不監督方式辨識指定心電圖中的特徵值進行學習,且該模型學習模組之卷積神經網路進行學習處理時的演算法可為公知的方法,並調整網路參數,供生成新的用於診斷之血鉀模型資料。
  7. 如申請專利範圍第4項所述之系統,其中該傳輸單元包含有至少一供連接該心電圖生成裝置之擷取介口及至少一供連接該監測應用裝置之輸出介口。
  8. 如申請專利範圍第4項所述之系統,其中該記憶單元可以至少包含有一唯讀記憶單元與一隨機存取記憶單元,用於供儲存系統程式或指令、以及作為作業系統或其他正在執行中的程式的臨時資料儲存媒介。
  9. 如申請專利範圍第4項所述之系統,其中該儲存單元可以有線或無線連接該處理單元。
  10. 如申請專利範圍第9項所述之系統,其中該儲存單元可以是一內部儲存設備或一外部儲存設備。
  11. 如申請專利範圍第10項所述之系統,其中該向量轉換裝置可以是一雲端伺服裝置。
  12. 如申請專利範圍第4項所述之系統,其中該向量轉換裝置可以與該心電圖生成裝置結合形成一體之穿戴式生理監測裝置。
  13. 如申請專利範圍第4項所述之系統,其中所述,其中該心電圖生成裝置、向量轉換裝置及監測應用裝置可以是組成一體式結構。
  14. 如申請專利範圍第6項所述之系統,其中該向量轉換裝置之模型資料模組、預測轉換模組及模型學習模組可以一同儲存於同一儲存單元。
  15. 如申請專利範圍第4項所述之系統,其中該監測應用裝置具有一具有一顯示單元,該顯示單元可供顯示預測血鉀濃度及/或心電訊號生成之心電圖。
  16. 如申請專利範圍第4項所述之系統,其中該監測應用裝置進一步具有一可向遠端發送預測血鉀濃度及/或心電訊號生成之心電圖之警報發送單元,供通知遠端醫療人員即時監測與介入。
TW109108808A 2020-03-17 2020-03-17 應用心電圖快速偵測鉀離子異常之方法及其系統 TWI732489B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW109108808A TWI732489B (zh) 2020-03-17 2020-03-17 應用心電圖快速偵測鉀離子異常之方法及其系統
US16/910,035 US11596362B2 (en) 2020-03-17 2020-06-23 Method and system for quickly detecting an abnormal concentration of potassium ions in blood from an electrocardiogram

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109108808A TWI732489B (zh) 2020-03-17 2020-03-17 應用心電圖快速偵測鉀離子異常之方法及其系統

Publications (2)

Publication Number Publication Date
TWI732489B true TWI732489B (zh) 2021-07-01
TW202137236A TW202137236A (zh) 2021-10-01

Family

ID=77746427

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109108808A TWI732489B (zh) 2020-03-17 2020-03-17 應用心電圖快速偵測鉀離子異常之方法及其系統

Country Status (2)

Country Link
US (1) US11596362B2 (zh)
TW (1) TWI732489B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114886404B (zh) * 2022-07-13 2022-10-28 西南民族大学 一种电子设备、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200800206A (en) * 2005-07-11 2008-01-01 Abbott Lab Methods for determining how to treat congestive heart failure
TW200946108A (en) * 2008-04-18 2009-11-16 Sanofi Aventis Use of dronedarone or a pharmaceutically acceptable salt thereof, for the preparation of a medicament for regulating the potassium level in the blood
US9707255B2 (en) * 2012-07-11 2017-07-18 ZS Pharma, Inc. Microporous zirconium silicate for the treatment of hyperkalemia in hypercalcemic patients and improved calcium-containing compositions for the treatment of hyperkalemia
CN110650671A (zh) * 2015-11-23 2020-01-03 梅奥医学教育和研究基金会 处理用于分析物评估的生理电数据

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018148690A1 (en) * 2017-02-10 2018-08-16 Alivecor, Inc. Systems and methods of analyte measurement analysis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200800206A (en) * 2005-07-11 2008-01-01 Abbott Lab Methods for determining how to treat congestive heart failure
TW200946108A (en) * 2008-04-18 2009-11-16 Sanofi Aventis Use of dronedarone or a pharmaceutically acceptable salt thereof, for the preparation of a medicament for regulating the potassium level in the blood
US9707255B2 (en) * 2012-07-11 2017-07-18 ZS Pharma, Inc. Microporous zirconium silicate for the treatment of hyperkalemia in hypercalcemic patients and improved calcium-containing compositions for the treatment of hyperkalemia
CN110650671A (zh) * 2015-11-23 2020-01-03 梅奥医学教育和研究基金会 处理用于分析物评估的生理电数据

Also Published As

Publication number Publication date
TW202137236A (zh) 2021-10-01
US11596362B2 (en) 2023-03-07
US20210290180A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
Çınar et al. Classification of normal sinus rhythm, abnormal arrhythmia and congestive heart failure ECG signals using LSTM and hybrid CNN-SVM deep neural networks
CN110459328B (zh) 临床监护设备
Sridhar et al. Accurate detection of myocardial infarction using non linear features with ECG signals
CN111657926B (zh) 一种基于多导联信息融合的心律失常分类方法
Xia et al. Generative adversarial network with transformer generator for boosting ECG classification
Tiwari et al. A smart decision support system to diagnose arrhythymia using ensembled ConvNet and ConvNet-LSTM model
CN116782829A (zh) 用于将生物电信号数据转换为数值向量的方法和装置及利用其分析疾病的方法和装置
Adetiba et al. Automated detection of heart defects in athletes based on electrocardiography and artificial neural network
Gao Diagnosing abnormal electrocardiogram (ECG) via deep learning
TWI688371B (zh) 心房顫動信號型態擷取及輔助診斷智能裝置
TWI732489B (zh) 應用心電圖快速偵測鉀離子異常之方法及其系統
Chen et al. A novel imbalanced dataset mitigation method and ECG classification model based on combined 1D_CBAM-autoencoder and lightweight CNN model
Ramachandran et al. Classification of Electrocardiography Hybrid Convolutional Neural Network‐Long Short Term Memory with Fully Connected Layer
US20230181120A1 (en) System and method for testing for sars-cov-2/covid-19 based on wearable medical sensors and neural networks
Bukhari et al. A Smart Heart Disease Diagnostic System Using Deep Vanilla LSTM.
Cao et al. Multi-channel lightweight convolutional neural network for remote myocardial infarction monitoring
Zhu et al. Exercise fatigue diagnosis method based on short-time Fourier transform and convolutional neural network
CN114521900B (zh) 一种基于迁移学习心律失常分类识别的方法
Petty et al. Evaluating deep learning algorithms for real-time arrhythmia detection
Tran et al. A predictive model for ECG signals collected from specialized IoT devices using deep learning
Chavan et al. Estimation of Prediction for Heart Failure Chances Using Various Machine Learning Algorithms
Dube et al. An Empirical study of the IoT arrhythmia detection methods: Review and research gaps
TWI783561B (zh) 應用心電圖快速偵測急性心肌梗塞之方法及其系統
Maran MULTI-LAYERED ARCHITECTURE CONVOLUTION NEURAL NETWORKS FOR DIAGNOSING AND PREDICTING HEART DISEASES ON MULTI-MODAL
US20230238133A1 (en) Ecg search and interpretation based on a dual ecg and text embedding model