TWI831541B - Abnormal current monitoring device and abnormal current monitoring method - Google Patents

Abnormal current monitoring device and abnormal current monitoring method Download PDF

Info

Publication number
TWI831541B
TWI831541B TW111150076A TW111150076A TWI831541B TW I831541 B TWI831541 B TW I831541B TW 111150076 A TW111150076 A TW 111150076A TW 111150076 A TW111150076 A TW 111150076A TW I831541 B TWI831541 B TW I831541B
Authority
TW
Taiwan
Prior art keywords
circuit
level
power element
current
short
Prior art date
Application number
TW111150076A
Other languages
Chinese (zh)
Inventor
吳至強
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW111150076A priority Critical patent/TWI831541B/en
Application granted granted Critical
Publication of TWI831541B publication Critical patent/TWI831541B/en

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

An abnormal current monitoring device and an abnormal current monitoring method are provided. The abnormal current monitoring device includes a first detecting circuit, a second detecting circuit and a controlling circuit. The first detecting circuit detects a first electrical parameter of a power component based on an i-th stage short-circuit time. The second detecting circuit detects a second electrical parameter of the power component to generate an i-th stage detecting signal based on the i-th stage short-circuit time. The controlling circuit generates an i-th stage heat estimation according to the first electrical parameter, to determine whether the power component is broken, and determines whether the power component operates abnormally according to the i-th stage detecting signal, to record the i-th stage heat estimation and the i-th stage short-circuit time, or to adjust the i-th stage short-circuit time as an i+1-th stage short-circuit time.

Description

電流異常監測裝置以及電流異常監測方法Current abnormality monitoring device and current abnormality monitoring method

本發明是有關於一種電子裝置,且特別是有關於一種電流異常監測裝置以及電流異常監測方法。 The present invention relates to an electronic device, and in particular, to a current abnormality monitoring device and a current abnormality monitoring method.

因應不同需求的電子產品,這些產品可使用各種材料以製造功率元件。為了小型化的需求,功率元件的尺寸越來越小,而縮短功率元件足以承受瞬間過電流(over current)的反應時間。在預設的反應時間內,當過電流的能量過大時,功率元件將受到輕微損傷而使中的氧化層被破壞。此時,功率元件雖然可以操作,但功率元件會產生漏電流(leakage current)而影響輸出功率。在另一方面,當過電流的能量更大時,功率元件將受到重度損傷而無法操作。 In response to electronic products with different needs, these products can use various materials to manufacture power components. In order to meet the demand for miniaturization, the size of power components is getting smaller and smaller, and the response time of the power components to withstand instantaneous overcurrent is shortened. Within the preset reaction time, when the energy of the overcurrent is too large, the power components will be slightly damaged and the oxide layer in them will be destroyed. At this time, although the power element can operate, the power element will generate leakage current and affect the output power. On the other hand, when the energy of the overcurrent is greater, the power components will be severely damaged and unable to operate.

一般而言,過電流偵測保護電路可通過檢測過電流以保護功率元件不會被重度損傷。然而,過電流偵測保護電路無法得知功率元件的受損情況,以致於無法排除電性異常的問題。 Generally speaking, overcurrent detection protection circuits can protect power components from serious damage by detecting overcurrent. However, the overcurrent detection protection circuit cannot know the damage of the power components, so it cannot eliminate the problem of electrical abnormalities.

本發明實施例提供一種電流異常監測裝置,能夠監測過電流的電性異常,並且能夠監測功率元件的健康度以排除漏電流所造成的電性異常問題。 Embodiments of the present invention provide a current abnormality monitoring device that can monitor electrical abnormalities of overcurrent and monitor the health of power components to eliminate electrical abnormality problems caused by leakage current.

本發明實施例的電流異常監測裝置適用於功率元件。電流異常監測裝置包括第一檢測電路、第二檢測電路以及控制電路。第一檢測電路耦接功率元件。第一檢測電路用以基於第i級短路時間,檢測功率元件的第一電性參數。第二檢測電路耦接功率元件。第二檢測電路用以基於第i級短路時間,檢測功率元件的第二電性參數以產生第i級檢測信號。控制電路耦接第一檢測電路以及第二檢測電路。控制電路用以根據第一電性參數以產生第i級熱量預估值以判斷功率元件是否損壞,並且用以根據第i級檢測信號判斷功率元件是否操作異常。當功率元件被判斷為損壞且操作異常時,控制電路記錄第i級熱量預估值以及第i級短路時間。當功率元件被判斷為非損壞且非操作異常時,控制電路調整第i級短路時間為第i+1級短路時間。i為大於等於零的整數。 The current abnormality monitoring device according to the embodiment of the present invention is suitable for power components. The current abnormality monitoring device includes a first detection circuit, a second detection circuit and a control circuit. The first detection circuit is coupled to the power component. The first detection circuit is used to detect the first electrical parameter of the power component based on the i-th stage short circuit time. The second detection circuit is coupled to the power component. The second detection circuit is used to detect the second electrical parameter of the power component based on the i-th level short-circuit time to generate the i-th level detection signal. The control circuit is coupled to the first detection circuit and the second detection circuit. The control circuit is used to generate an i-th level heat estimate based on the first electrical parameter to determine whether the power component is damaged, and to determine whether the power component operates abnormally based on the i-th level detection signal. When the power component is judged to be damaged and operating abnormally, the control circuit records the i-th level heat estimate and the i-th level short-circuit time. When the power component is judged to be non-damaged and not operating abnormally, the control circuit adjusts the i-th level short-circuit time to the i+1-th level short-circuit time. i is an integer greater than or equal to zero.

本發明實施例還提供一種電流異常監測方法。電流異常監測方法適用於功率元件,並且包括以下的步驟。通過第一檢測電路基於第i級短路時間,檢測功率元件的第一電性參數。通過第二檢測電路基於第i級短路時間,檢測功率元件的第二電性參數以產生第i級檢測信號。通過控制電路根據第一電性參數以產生第i級熱量預估值以判斷功率元件是否損壞,並且根據第i級檢測信 號判斷功率元件是否操作異常。當功率元件被判斷為損壞且操作異常時,通過控制電路記錄第i級熱量預估值以及第i級短路時間。當功率元件被判斷為非損壞且非操作異常時,通過控制電路調整第i級短路時間為第i+1級短路時間。i為大於等於零的整數。 An embodiment of the present invention also provides a current abnormality monitoring method. The current abnormality monitoring method is suitable for power components and includes the following steps. The first electrical parameter of the power component is detected based on the i-th stage short-circuit time through the first detection circuit. The second detection circuit detects the second electrical parameter of the power element based on the i-th level short-circuit time to generate an i-th level detection signal. The control circuit generates an i-th level heat estimate based on the first electrical parameter to determine whether the power component is damaged, and based on the i-th level detection signal No. to determine whether the power components are operating abnormally. When the power component is judged to be damaged and operating abnormally, the i-th level heat estimate and the i-th level short-circuit time are recorded through the control circuit. When the power component is judged to be non-damaged and not operating abnormally, the i-th level short-circuit time is adjusted to the i+1-th level short-circuit time through the control circuit. i is an integer greater than or equal to zero.

基於上述,本發明實施例的電流異常監測裝置以及電流異常監測方法可檢測功率元件不同的電性參數,並且根據這些電性參數以分別判斷功率元件是否發生過電流的電性異常而造成損壞,以及是否發生漏電流的電性異常而造成操作異常。如此一來,電流異常監測裝置能夠監測異常的過電流,並即時監測功率元件的健康度,以排除各種電性異常問題。 Based on the above, the current abnormality monitoring device and current abnormality monitoring method according to the embodiment of the present invention can detect different electrical parameters of the power components, and based on these electrical parameters, determine whether the power components are damaged due to electrical abnormalities due to overcurrent. And whether there is an electrical abnormality of leakage current that causes abnormal operation. In this way, the current abnormality monitoring device can monitor abnormal overcurrent and instantly monitor the health of the power components to eliminate various electrical abnormality problems.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, embodiments are given below and described in detail with reference to the accompanying drawings.

100、300:電流異常監測裝置 100, 300: Current abnormality monitoring device

110、310:第一檢測電路 110, 310: first detection circuit

120、320:第二檢測電路 120, 320: Second detection circuit

130、330:控制電路 130, 330: Control circuit

200:功率元件 200:Power components

311:示波器 311:Oscilloscope

321:差分電路 321: Differential circuit

322:積分電路 322: Integral circuit

323:比較電路 323: Comparison circuit

340:驅動電路 340: Drive circuit

350:短路保護電路 350: Short circuit protection circuit

360:信號產生器 360:Signal Generator

400:感性負載箝制電路 400: Inductive load clamp circuit

S1:電性參數 S1: Electrical parameters

S2:檢測信號 S2: detection signal

D1:二極體 D1: Diode

ESC,tot:熱量預估值 ESC,tot: estimated heat value

ID:輸出電流 ID: output current

IG:控制電流 IG: control current

IG’:經放大的控制電流 IG’: amplified control current

L1:電感器 L1:Inductor

L1~L4:線 L1~L4: Line

S210~S250:步驟 S210~S250: steps

S410~S460:模組 S410~S460: Module

TSC:短路時間 TSC: short circuit time

VDD:電源電壓 VDD: power supply voltage

Vref、Vref_1、Vref_2:參考電壓 Vref, Vref_1, Vref_2: reference voltage

VDS:輸出電壓 VDS: output voltage

VQG:檢測電壓 VQG: detection voltage

Vref_2_HL、Vref_2_LL:電壓值 Vref_2_HL, Vref_2_LL: voltage value

圖1是根據本發明一實施例所繪示的電流異常監測裝置的方塊圖。 FIG. 1 is a block diagram of a current abnormality monitoring device according to an embodiment of the present invention.

圖2是根據本發明一實施例所繪示的電流異常監測方法的流程圖。 FIG. 2 is a flow chart of a current abnormality monitoring method according to an embodiment of the present invention.

圖3是根據本發明一實施例所繪示的電流異常監測裝置的方塊圖。 FIG. 3 is a block diagram of a current abnormality monitoring device according to an embodiment of the present invention.

圖4是根據本發明一實施例所繪示的電流異常監測方法的動 作示意圖。 Figure 4 is an illustration of the current abnormality monitoring method according to an embodiment of the present invention. Make a schematic diagram.

圖5是根據本發明圖3實施例所繪示的第二檢測電路的電路圖。 FIG. 5 is a circuit diagram of the second detection circuit according to the embodiment of FIG. 3 of the present invention.

圖6是根據本發明圖5實施例所繪示的第二檢測電路的動作示意圖。 FIG. 6 is a schematic diagram of the operation of the second detection circuit according to the embodiment of FIG. 5 of the present invention.

圖7是根據本發明圖5實施例所繪示的第二檢測電路的動作示意圖。 FIG. 7 is a schematic diagram of the operation of the second detection circuit according to the embodiment of FIG. 5 of the present invention.

本發明的部份實施例接下來將會配合附圖來詳細描述,以下的描述所引用的元件符號,當不同附圖出現相同的元件符號將視為相同或相似的元件,這些實施例只是本發明的一部份,並未揭示所有本發明的可實施方式,更確切的說,這些實施例只是本發明的專利申請範圍中的範例。 Some embodiments of the present invention will be described in detail below with reference to the accompanying drawings. The component symbols cited in the following description will be regarded as the same or similar components when the same component symbols appear in different drawings. These embodiments are only for the purpose of this disclosure. This part of the invention does not disclose all possible implementations of the invention. Rather, these embodiments are only examples within the scope of the patent application of the invention.

圖1是根據本發明一實施例所繪示的電流異常監測裝置的方塊圖,參考圖1,電流異常監測裝置100可適用於功率元件200,以監測功率元件200的多種電性異常問題,在本實施例中,功率元件200可例如是金氧半場效電晶體(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)、絕緣閘雙極電晶體(Insulated Gate Bipolar Transistor,IGBT)、碳化矽(SiC)或氮化鎵(GaN)所製成的半導體元件。 FIG. 1 is a block diagram of a current abnormality monitoring device according to an embodiment of the present invention. Referring to FIG. 1 , the current abnormality monitoring device 100 can be applied to the power component 200 to monitor various electrical abnormality problems of the power component 200 . In this embodiment, the power element 200 may be, for example, a Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET), an Insulated Gate Bipolar Transistor (IGBT), or a Silicon Carbide (SiC). ) or semiconductor components made of gallium nitride (GaN).

在本實施例中,電流異常監測裝置100可與功率元件200 被整合在相同的晶片中。前述的晶片可例如是系統單晶片(System on Chip,SOC),其中可包含微控制器、微處理器、數位訊號處理器等處理器(可例如是控制電路130)以及唯讀記憶體(ROM)、隨機存取記憶體(RAM)、電子可抹除可程式化唯讀記憶體(EEPROM)、快閃記憶體等記憶體,而可運行作業系統及應用程式。在本實施例中,此晶片可應用於馬達、電源轉換器或功率模組的電性測試裝置。 In this embodiment, the current abnormality monitoring device 100 can be connected to the power component 200 integrated on the same chip. The aforementioned chip may be, for example, a system on chip (SOC), which may include a microcontroller, a microprocessor, a digital signal processor and other processors (for example, the control circuit 130) and a read-only memory (ROM). ), random access memory (RAM), electronically erasable programmable read-only memory (EEPROM), flash memory and other memories to run operating systems and applications. In this embodiment, the chip can be applied to electrical testing devices of motors, power converters or power modules.

在圖1所示實施例中,電流異常監測裝置100可包括第一檢測電路110、第二檢測電路120以及控制電路130。第一檢測電路110以及第二檢測電路120分別耦接功率元件200。在本實施例中,第一檢測電路110可例如是過電流檢測電路,以監測功率元件200的過電流。第二檢測電路120可例如是漏電流檢測電路,以監測功率元件200的漏電流。 In the embodiment shown in FIG. 1 , the current abnormality monitoring device 100 may include a first detection circuit 110 , a second detection circuit 120 and a control circuit 130 . The first detection circuit 110 and the second detection circuit 120 are coupled to the power element 200 respectively. In this embodiment, the first detection circuit 110 may be, for example, an overcurrent detection circuit to monitor the overcurrent of the power component 200 . The second detection circuit 120 may be, for example, a leakage current detection circuit to monitor the leakage current of the power component 200 .

在本實施例中,控制電路130耦接第一檢測電路110以及第二檢測電路120。控制電路130可接收第一檢測電路110以及第二檢測電路120分別檢測到的資料或信號(可例如是參數S1以及信號S2),並據以執行關於電性異常的判斷操作。在本實施例中,控制電路130可例如是訊號轉換器、現場可程式化邏輯閘陣列(Field Programmable Gate Array,FPGA)、中央處理單元(Central Processing Unit,CPU),或是其他可程式化之一般用途或特殊用途的微處理器(Microprocessor)、數位訊號處理器(Digital Signal Processor,DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuits,ASIC)、可程式化邏輯裝置(Programmable Logic Device,PLD)或其他類似裝置或這些裝置的組合,其可載入並執行相關韌體或軟體,以實現計算與控制功能。 In this embodiment, the control circuit 130 is coupled to the first detection circuit 110 and the second detection circuit 120 . The control circuit 130 can receive the data or signals (for example, the parameter S1 and the signal S2) detected by the first detection circuit 110 and the second detection circuit 120 respectively, and perform a judgment operation regarding electrical abnormalities accordingly. In this embodiment, the control circuit 130 may be, for example, a signal converter, a field programmable gate array (Field Programmable Gate Array, FPGA), a central processing unit (Central Processing Unit, CPU), or other programmable devices. General-purpose or special-purpose microprocessors (Microprocessors), Digital Signal Processors (DSP), programmable controllers, special application integrated circuits (Application Specific Integrated Circuits (ASIC), Programmable Logic Device (PLD) or other similar devices or a combination of these devices, which can load and execute relevant firmware or software to implement computing and control functions.

圖2是根據本發明一實施例所繪示的電流異常監測方法的流程圖。參考圖1以及圖2,電流異常監測裝置100可執行如以下步驟S210~S250。在本實施例中,電流異常監測裝置100可重複執行步驟S210~S240,以監測並記錄功率元件200反應於不同短路時間的電性操作,直到功率元件200受損而無法操作以停止於步驟S250。下述實施例示例說明電流異常監測裝置100在第i級監測操作的步驟,並以第i級短路時間為示例說明,其中i為大於等於零的整數。 FIG. 2 is a flow chart of a current abnormality monitoring method according to an embodiment of the present invention. Referring to FIG. 1 and FIG. 2 , the current abnormality monitoring device 100 may perform the following steps S210 to S250. In this embodiment, the current abnormality monitoring device 100 can repeatedly execute steps S210 to S240 to monitor and record the electrical operations of the power component 200 in response to different short-circuit times until the power component 200 is damaged and cannot operate and stops at step S250. . The following embodiment illustrates the steps of the i-th level monitoring operation of the current abnormality monitoring device 100, and takes the i-th level short-circuit time as an example, where i is an integer greater than or equal to zero.

在步驟S210,第一檢測電路110基於第i級短路時間,檢測功率元件200的第一電性參數S1。第一檢測電路110將第一電性參數S1提供至控制電路130。在本實施例中,第一電性參數S1為關於過電流的電性參數,並可例如是包括功率元件200的輸出電流(例如是圖3所示的輸出電流ID)以及輸出電壓(例如是圖3所示的輸出電壓VDS)。 In step S210, the first detection circuit 110 detects the first electrical parameter S1 of the power component 200 based on the i-th stage short-circuit time. The first detection circuit 110 provides the first electrical parameter S1 to the control circuit 130 . In this embodiment, the first electrical parameter S1 is an electrical parameter related to overcurrent, and may include, for example, the output current of the power element 200 (for example, the output current ID shown in FIG. 3 ) and the output voltage (for example, The output voltage VDS shown in Figure 3).

在步驟S220,第二檢測電路120基於第i級短路時間,檢測功率元件200的第二電性參數以產生第i級檢測信號S2。第二檢測電路120將第i級檢測信號S2提供至控制電路130。在本實施例中,第二電性參數為關於漏電流的電性參數,並可例如是包 括功率元件200的控制電流(例如是圖3所示的控制電流IG)。 In step S220, the second detection circuit 120 detects the second electrical parameter of the power element 200 based on the i-th level short-circuit time to generate the i-th level detection signal S2. The second detection circuit 120 provides the i-th level detection signal S2 to the control circuit 130. In this embodiment, the second electrical parameter is an electrical parameter related to leakage current, and may include, for example, Including the control current of the power element 200 (for example, the control current IG shown in FIG. 3).

在步驟S230,控制電路130根據第一電性參數S1以產生第i級熱量預估值以判斷功率元件200是否損壞。也就是說,控制電路130將基於第i級短路時間所檢測到的電流及/或電壓(即,第一電性參數S1)轉換成熱量參數(即,第i級熱量預估值),據以判斷過電流是否造成功率元件200損壞。 In step S230, the control circuit 130 generates an i-th level heat estimate according to the first electrical parameter S1 to determine whether the power element 200 is damaged. That is to say, the control circuit 130 converts the current and/or voltage (ie, the first electrical parameter S1) detected based on the i-th level short-circuit time into a heat parameter (ie, the i-th level heat estimate value), according to To determine whether the overcurrent causes damage to the power component 200 .

若判斷功率元件200為非損壞,表示功率元件200可以在第i級短路時間內承受此大電流,而未發生或不會發生過電流的電性異常。電流異常監測裝置100執行步驟S240以繼續監測。反之,若判斷功率元件200為損壞,表示功率元件200無法在第i級短路時間內承受對應的大電流,而已發生或將要發生過電流的電性異常。電流異常監測裝置100執行步驟S250以進一步監測功率元件200的健康度。 If the power element 200 is determined to be non-damaged, it means that the power element 200 can withstand this large current within the i-th level short-circuit time without any electrical abnormality of overcurrent occurring or not occurring. The current abnormality monitoring device 100 executes step S240 to continue monitoring. On the contrary, if the power element 200 is determined to be damaged, it means that the power element 200 cannot withstand the corresponding large current within the i-th level short-circuit time, and an electrical abnormality of overcurrent has occurred or will occur. The current abnormality monitoring device 100 executes step S250 to further monitor the health of the power component 200 .

此外,在步驟S230,控制電路130根據第i級檢測信號S2判斷功率元件200是否操作異常。也就是說,控制電路130分析基於第i級短路時間所檢測到的電流及/或電壓(即,第i級檢測信號S2),並據以判斷漏電流是否過大而使功率元件200無法操作。 In addition, in step S230, the control circuit 130 determines whether the power element 200 operates abnormally according to the i-th level detection signal S2. That is to say, the control circuit 130 analyzes the current and/or voltage detected based on the i-th level short-circuit time (ie, the i-th level detection signal S2), and determines based on whether the leakage current is too large to render the power element 200 inoperable.

若判斷功率元件200為非操作異常,表示功率元件200即使受損但仍可操作,而未發生或不會發生漏電流的電性異常,因此控制電路130判斷功率元件200為非操作異常。電流異常監測裝置100執行步驟S240。反之,若判斷功率元件200為操作異常, 表示功率元件200受損且無法操作,而已發生或將要發生漏電流的電性異常,因此控制電路130判斷功率元件200為操作異常。電流異常監測裝置100執行步驟S250。 If the power element 200 is determined to be non-operating abnormally, it means that the power element 200 can still operate even if it is damaged, and electrical abnormality of leakage current has not occurred or will not occur. Therefore, the control circuit 130 determines that the power element 200 is non-operating abnormal. The current abnormality monitoring device 100 executes step S240. On the contrary, if it is determined that the power component 200 is operating abnormally, It indicates that the power element 200 is damaged and cannot operate, and an electrical abnormality of leakage current has occurred or will occur. Therefore, the control circuit 130 determines that the power element 200 is operating abnormally. The current abnormality monitoring device 100 executes step S250.

在步驟S240,當功率元件200被判斷為非損壞且非操作異常時,控制電路130調整第i級短路時間為第i+1級短路時間,以使電流異常監測裝置100基於第i+1級短路時間重新執行步驟S210以繼續監測。也就是說,當功率元件200受損但仍可操作時,電流異常監測裝置100監測功率元件200反應於另一短路時間的操作。 In step S240, when the power element 200 is determined to be non-damaged and not operating abnormally, the control circuit 130 adjusts the i-th level short-circuit time to the i+1-th level short-circuit time, so that the current abnormality monitoring device 100 is based on the i+1-th level short-circuit time. During the short circuit time, step S210 is re-executed to continue monitoring. That is, when the power component 200 is damaged but still operable, the current abnormality monitoring device 100 monitors the operation of the power component 200 in response to another short circuit time.

在步驟S250,當功率元件200被判斷為損壞且操作異常時,控制電路130記錄第i級熱量預估值以及第i級短路時間。也就是說,當功率元件200受損並且無法操作時,電流異常監測裝置100記錄足以禁能功率元件200的電性參數。 In step S250, when the power element 200 is determined to be damaged and operates abnormally, the control circuit 130 records the i-th level heat estimation value and the i-th level short circuit time. That is to say, when the power component 200 is damaged and cannot operate, the current abnormality monitoring device 100 records electrical parameters that are sufficient to disable the power component 200 .

在此值得一提的是,電流異常監測裝置100可根據功率元件200的多個電性參數(即,第一電性參數S1以及第i級檢測信號S2)以判斷功率元件200是否發生過電流的電性異常而造成損壞,以及是否發生漏電流的電性異常而造成操作異常。因此,電流異常監測裝置100能夠估測功率元件200反應於過電流的保護觸發安全時間(即,短路時間),並且能夠即時監測功率元件200的健康度與電性異常的間題。 It is worth mentioning here that the current abnormality monitoring device 100 can determine whether an overcurrent occurs in the power element 200 based on multiple electrical parameters of the power element 200 (ie, the first electrical parameter S1 and the i-th level detection signal S2). Electrical abnormalities may cause damage, and whether electrical abnormalities such as leakage current may cause abnormal operation. Therefore, the current abnormality monitoring device 100 can estimate the protection triggering safety time (ie, short circuit time) of the power component 200 in response to overcurrent, and can real-time monitor the health and electrical abnormalities of the power component 200 .

圖3是根據本發明一實施例所繪示的電流異常監測裝置的方塊圖。參考圖3,電流異常監測裝置300可包括第一檢測電路 310、第二檢測電路320、控制電路330、驅動電路340以及短路保護電路350。圖3所示這些電路310一330可以參照圖1所示電流異常監測裝置100的相關說明並加以類推,在此不另重述。為了方便說明本案內容,在圖3中省略關於電阻器的標示與說明。 FIG. 3 is a block diagram of a current abnormality monitoring device according to an embodiment of the present invention. Referring to FIG. 3 , the current abnormality monitoring device 300 may include a first detection circuit 310. The second detection circuit 320, the control circuit 330, the driving circuit 340 and the short circuit protection circuit 350. For the circuits 310 to 330 shown in Figure 3, reference can be made to the relevant description of the current abnormality monitoring device 100 shown in Figure 1 and by analogy, and will not be repeated here. In order to facilitate the explanation of the content of this case, the labeling and description of the resistors are omitted in Figure 3.

在本實施例中,功率元件200可例如是以MOSFET實現的功率開關來示例說明。功率元件200與感性負載箝制電路400可串接在電源電壓VDD與接地端之間。感性負載箝制電路400可由控制電路330調整脈波寬度控制流經功率元件200的汲極端與源極端之間的電流(即,輸出電流ID)。在本實施例中,感性負載箝制電路400可包括並聯耦接的二極體D1以及電感器L1。 In this embodiment, the power component 200 may be, for example, a power switch implemented by a MOSFET. The power component 200 and the inductive load clamping circuit 400 may be connected in series between the power supply voltage VDD and the ground. The inductive load clamp circuit 400 can adjust the pulse width by the control circuit 330 to control the current flowing between the drain terminal and the source terminal of the power element 200 (ie, the output current ID). In this embodiment, the inductive load clamping circuit 400 may include a diode D1 and an inductor L1 coupled in parallel.

在本實施例中,驅動電路340耦接功率元件200以及控制電路330。驅動電路340可根據控制電路330的指令以輸出控制電流IG及特定的脈波寬度至功率元件200的控制端(即,閘極端)。舉例來說,驅動電路340可產生具有特定的脈波寬度(例如是第i級短路時間長度)以及特定的電壓準位的脈波信號,以作為控制電流IG。因此,功率元件200可反應於第i級短路時間,以根據此脈波信號來產生輸出電壓VDS以及輸出電流ID。 In this embodiment, the driving circuit 340 is coupled to the power element 200 and the control circuit 330 . The driving circuit 340 can output the control current IG and a specific pulse width to the control terminal (ie, the gate terminal) of the power element 200 according to the instruction of the control circuit 330 . For example, the driving circuit 340 can generate a pulse signal with a specific pulse width (such as the i-th stage short-circuit time length) and a specific voltage level as the control current IG. Therefore, the power element 200 can react to the i-th stage short-circuit time to generate the output voltage VDS and the output current ID according to the pulse signal.

在本實施例中,短路保護電路350耦接功率元件200、第一檢測電路310以及第二檢測電路320。短路保護電路350可包括過電流保護(Over Current Protection,OCP)電路以及過電壓保護(Over Voltage Protection,OVP)電路。短路保護電路350可根據第i級檢測信號S2以判斷是否關斷功率元件200,並可在第i級 短路時間內切斷或不切斷流經功率元件200的路徑,以保護功率元件200。在一實施例中,短路保護電路350可根據第一電性參數S1及/或第i級檢測信號S2以保護功率元件200。 In this embodiment, the short circuit protection circuit 350 is coupled to the power component 200, the first detection circuit 310 and the second detection circuit 320. The short circuit protection circuit 350 may include an Over Current Protection (OCP) circuit and an Over Voltage Protection (OVP) circuit. The short circuit protection circuit 350 can determine whether to turn off the power component 200 based on the i-th level detection signal S2, and can The path flowing through the power component 200 is cut off or not cut off during the short circuit time to protect the power component 200 . In one embodiment, the short circuit protection circuit 350 can protect the power component 200 according to the first electrical parameter S1 and/or the i-th level detection signal S2.

在一些實施例中,電流異常監測裝置300還包括信號產生器360以及示波器311。信號產生器360耦接驅動電路340。信號產生器360可產生如上所述的脈波信號(即,控制電流IG),並通過驅動電路340輸出此脈波信號至功率元件200。在一實施例中,信號產生器360可與驅動電路340整合在一起。 In some embodiments, the current abnormality monitoring device 300 further includes a signal generator 360 and an oscilloscope 311. The signal generator 360 is coupled to the driving circuit 340 . The signal generator 360 can generate the pulse wave signal (ie, the control current IG) as described above, and output the pulse wave signal to the power element 200 through the driving circuit 340 . In one embodiment, the signal generator 360 may be integrated with the driving circuit 340 .

在一些實施例中,示波器311耦接功率元件200的二端。示波器311可檢測功率元件200的輸出電壓VDS以及輸出電流ID,以與第一檢測電路310協同操作。在一實施例中,示波器311可與第一檢測電路310整合在一起。 In some embodiments, the oscilloscope 311 is coupled to two ends of the power component 200 . The oscilloscope 311 can detect the output voltage VDS and the output current ID of the power component 200 to cooperate with the first detection circuit 310 . In one embodiment, the oscilloscope 311 can be integrated with the first detection circuit 310 .

圖4是根據本發明一實施例所繪示的電流異常監測方法的動作示意圖。參考圖3以及圖4,電流異常監測裝置300可執行如以下模組S410~S460。在本實施例中,電流異常監測裝置300可重複執行模組S410~S440,以監測並記錄功率元件200反應於不同短路時間的電性操作,直到功率元件200受損而無法操作以停止於模組S460。 FIG. 4 is an operational schematic diagram of a current abnormality monitoring method according to an embodiment of the present invention. Referring to FIG. 3 and FIG. 4 , the current abnormality monitoring device 300 can execute the following modules S410 to S460. In this embodiment, the current abnormality monitoring device 300 can repeatedly execute the modules S410 to S440 to monitor and record the electrical operations of the power component 200 in response to different short-circuit times until the power component 200 is damaged and cannot operate and stops in the mode. Group S460.

在模組S410,使用者可操作電流異常監測裝置300以設置第0級輸出電壓VDS以及第0級短路時間TSC。也就是說,使用者可設定電流異常監測裝置300的初始操作參數。在一些實施例中,第0級輸出電壓VDS以及第0級短路時間TSC可以是電流 異常監測裝置300出廠時的預設參數。下述實施例示例說明電流異常監測裝置300在第i級監測操作的步驟,並以第i級短路時間為示例說明,其中i為大於等於零的整數。 In module S410, the user can operate the current abnormality monitoring device 300 to set the 0th level output voltage VDS and the 0th level short circuit time TSC. That is to say, the user can set the initial operating parameters of the current abnormality monitoring device 300 . In some embodiments, the level 0 output voltage VDS and the level 0 short circuit time TSC may be the current The abnormality monitoring device 300 has preset parameters when it leaves the factory. The following embodiment illustrates the steps of the i-th level monitoring operation of the current abnormality monitoring device 300, and takes the i-th level short-circuit time as an example, where i is an integer greater than or equal to zero.

在模組S420,控制電路330接收來自第一檢測電路310的輸出電流ID以及輸出電壓VD(即,第一電性參數S1)。控制電路330根據前述的參數S1以判斷功率元件200是否損壞,以示例說明圖2中關於步驟S230的另一實施細節,並以二維圖例說明。在模組S420的圖例中,橫軸為電流異常監測裝置300的操作時間(單位例如是微秒(μs)),縱軸為電壓值、電流值以及熱量值(或能量值)。 In module S420, the control circuit 330 receives the output current ID and the output voltage VD (ie, the first electrical parameter S1) from the first detection circuit 310. The control circuit 330 determines whether the power element 200 is damaged according to the aforementioned parameter S1. Another implementation detail of step S230 in FIG. 2 is illustrated by an example and is illustrated with a two-dimensional diagram. In the illustration of the module S420, the horizontal axis is the operation time of the current abnormality monitoring device 300 (the unit is, for example, microseconds (μs)), and the vertical axis is the voltage value, current value, and heat value (or energy value).

詳細而言,控制電路330接收基於第i級短路時間TSC,對輸出電流ID與輸出電壓VDS的乘積進行積分計算所產生的第i級熱量預估值ESC,tot。在本實施例中,前述的積分計算可例如是由控制電路330執行。在一些實施例中,前述的積分計算可例如是由其他計算電路執行。其他計算電路可通過示波器311獲取輸出電流ID與輸出電壓VDS的波型信號並據以進行積分計算。 In detail, the control circuit 330 receives the i-th level heat estimation value ESC,tot generated by integrating the product of the output current ID and the output voltage VDS based on the i-th level short-circuit time TSC. In this embodiment, the aforementioned integral calculation may be performed, for example, by the control circuit 330 . In some embodiments, the aforementioned integral calculation may be performed, for example, by other calculation circuits. Other calculation circuits can obtain the waveform signals of the output current ID and the output voltage VDS through the oscilloscope 311 and perform integral calculations accordingly.

在本實施例中,前述的積分計算包括以下操作,控制電路330通過類比數位轉換器(Analog to Digital)以將輸出電流ID與輸出電壓VDS轉換為數位資料,以及基於相關韌體或軟體以進行數位積分。第i級熱量預估值ESC,tot可以被實現為下述公式(1)所示。公式(1)中的ESC為第i級熱量預估值ESC,tot,TSC為第i級短路時間TSC,VDS為輸出電壓VDS的電壓值,ID為輸出 電流ID的電流值,t為時間。 In this embodiment, the aforementioned integral calculation includes the following operations. The control circuit 330 converts the output current ID and the output voltage VDS into digital data through an analog to digital converter (Analog to Digital), and performs operations based on relevant firmware or software. Digital points. The i-th level heat estimation value ESC,tot can be implemented as shown in the following formula (1). ESC in formula (1) is the estimated heat value ESC,tot of the i-th stage, TSC is the short-circuit time TSC of the i-th stage, VDS is the voltage value of the output voltage VDS, and ID is the output Current value of current ID, t is time.

Figure 111150076-A0305-02-0014-1
Figure 111150076-A0305-02-0014-1

也就是說,在功率元件200反應於第i級短路時間TSC內,控制電路330累積輸出電流ID與輸出電壓VDS所形成的能量。控制電路330以預設效能(例如是接近100%)將前述的能量轉換成熱量(即,第i級熱量預估值ESC,tot)。 That is to say, during the i-th stage short-circuit time TSC when the power element 200 reacts, the control circuit 330 accumulates the energy formed by the output current ID and the output voltage VDS. The control circuit 330 converts the aforementioned energy into heat (ie, the i-th level heat estimate value ESC,tot) with a preset efficiency (eg, close to 100%).

接續上述說明,控制電路330比較第i級熱量預估值ESC,tot與參考熱量預估值,以判斷功率元件200是否損壞。在本實施例中,當第i級熱量預估值ESC,tot大於參考熱量預估值時,表示第i級熱量預估值ESC,tot過大而使功率元件200已發生或將要發生過電流的電性異常。此時,控制電路330判斷功率元件200為損壞。電流異常監測裝置300執行模組S430。 Continuing from the above description, the control circuit 330 compares the i-th level heat estimate value ESC,tot with the reference heat estimate value to determine whether the power component 200 is damaged. In this embodiment, when the i-th level heat estimation value ESC,tot is greater than the reference heat estimation value, it means that the i-th level heat estimation value ESC,tot is too large and overcurrent has occurred or will occur in the power element 200. Electrical abnormalities. At this time, the control circuit 330 determines that the power element 200 is damaged. The current abnormality monitoring device 300 executes module S430.

在另一方面,當第i級熱量預估值ESC,tot未大於參考熱量預估值時,表示第i級熱量預估值ESC,tot不足以使功率元件200發生過電流的電性異常。此時,控制電路330判斷功率元件200為未損壞。電流異常監測裝置300重新執行模組S420。 On the other hand, when the i-th level heat estimation value ESC,tot is not greater than the reference heat estimation value, it means that the i-th level heat estimation value ESC,tot is not enough to cause an electrical abnormality of overcurrent in the power element 200 . At this time, the control circuit 330 determines that the power element 200 is not damaged. The current abnormality monitoring device 300 re-executes the module S420.

在本實施例中,參考熱量預估值是指功率元件200能夠承受的最大能量。當施加於功率元件200的能量高於參考熱量預估值時,功率元件200的至少一部份(例如是晶體表面或其氧化層)會受損。在本實施例中,參考熱量預估值關聯於功率元件200的大小。參考熱量預估值可例如是功率元件200的製造商預先提供的單位能量,或者是第三方廠商進行實驗所獲得的參數。 In this embodiment, the reference heat estimate value refers to the maximum energy that the power component 200 can withstand. When the energy applied to the power component 200 is higher than the reference heat estimate, at least a part of the power component 200 (such as the crystal surface or its oxide layer) will be damaged. In this embodiment, the reference heat estimate value is associated with the size of the power component 200 . The reference heat estimate may be, for example, the unit energy provided in advance by the manufacturer of the power component 200 , or parameters obtained by experiments conducted by a third-party manufacturer.

在模組S430,控制電路330判斷功率元件200為損壞。同時,第二檢測電路320根據控制電流IG以產生第i級檢測信號S2,以使控制電路330根據第i級檢測信號S2以進一步判斷功率元件200是否操作異常,以示例說明圖2中關於步驟S220以及步驟S230的另一實施細節。 In module S430, the control circuit 330 determines that the power component 200 is damaged. At the same time, the second detection circuit 320 generates the i-th level detection signal S2 according to the control current IG, so that the control circuit 330 further determines whether the power element 200 operates abnormally based on the i-th level detection signal S2. To illustrate the steps in FIG. 2 S220 and another implementation detail of step S230.

詳細而言,一併參考圖5,圖5是根據本發明圖3實施例所繪示的第二檢測電路的電路圖。在本實施例中,第二檢測電路320可包括差分電路321、積分電路322以及比較電路323。差分電路321的差分輸入端耦接功率元件200的控制端以擷取控制電流IG。積分電路322的反相輸入端耦接差分電路321的輸出端。積分電路322的非反相輸入端耦接接地端。比較電路323的反相輸入端耦接積分電路322的輸出端。比較電路323的非反相輸入端接收可變的參考電壓Vref。比較電路323的輸出端耦接圖3中的控制電路330以及短路保護電路350。為了方便說明本案內容,在圖5中省略關於電阻器以及電容器的標示與說明。 In detail, please refer to FIG. 5 , which is a circuit diagram of the second detection circuit according to the embodiment of FIG. 3 of the present invention. In this embodiment, the second detection circuit 320 may include a differential circuit 321, an integrating circuit 322 and a comparison circuit 323. The differential input terminal of the differential circuit 321 is coupled to the control terminal of the power element 200 to capture the control current IG. The inverting input terminal of the integrating circuit 322 is coupled to the output terminal of the differential circuit 321 . The non-inverting input terminal of the integrating circuit 322 is coupled to the ground terminal. The inverting input terminal of the comparison circuit 323 is coupled to the output terminal of the integrating circuit 322 . The non-inverting input terminal of the comparison circuit 323 receives the variable reference voltage Vref. The output terminal of the comparison circuit 323 is coupled to the control circuit 330 and the short-circuit protection circuit 350 in FIG. 3 . In order to facilitate the explanation of the contents of this case, the labels and descriptions of resistors and capacitors are omitted in Figure 5.

在本實施例中,差分電路321可作為運算放大器。差分電路321可根據控制電流IG以輸出經放大的控制電流IG’。在本實施例中,積分電路322可作為積分器。積分電路322可根據經放大的控制電流IG’進行積分操作以產生第i級檢測電壓VQG。前述的積分操作包括,利用積分電路322累計經放大的控制電流IG’的電荷。比較電路323可作為比較器。比較電路323可比較第i級檢測電壓VQG以及參考電壓Vref以產生第i級檢測信號S2。 在本實施例中,第i級檢測電壓VQG可對應於功率元件200的漏電流。參考電壓Vref可對應於功率元件200的參考漏電流。 In this embodiment, the differential circuit 321 can serve as an operational amplifier. The differential circuit 321 can output the amplified control current IG' according to the control current IG. In this embodiment, the integrating circuit 322 may serve as an integrator. The integrating circuit 322 may perform an integrating operation according to the amplified control current IG' to generate the i-th level detection voltage VQG. The aforementioned integration operation includes using the integration circuit 322 to accumulate the charge of the amplified control current IG'. The comparison circuit 323 may serve as a comparator. The comparison circuit 323 may compare the i-th level detection voltage VQG and the reference voltage Vref to generate the i-th level detection signal S2. In this embodiment, the i-th level detection voltage VQG may correspond to the leakage current of the power element 200 . The reference voltage Vref may correspond to the reference leakage current of the power element 200 .

在本實施例中,當第i級檢測電壓VQG的電壓值不大於參考電壓Vref的電壓值時,表示功率元件200的漏電流大小不大於參考漏電流。也就是說,功率元件200即使因過電流而受損,功率元件200仍可操作。此時,比較電路323產生具有第一值的第i級檢測信號S2。第一值可例如是低電壓參考準位或邏輯低準位。前述的第i級檢測信號S2可指示功率元件200受損且可操作,以使控制電路330判斷為非操作異常。電流異常監測裝置300執行模組S440。 In this embodiment, when the voltage value of the i-th level detection voltage VQG is not greater than the voltage value of the reference voltage Vref, it means that the leakage current of the power element 200 is not greater than the reference leakage current. That is, even if the power element 200 is damaged due to overcurrent, the power element 200 can still operate. At this time, the comparison circuit 323 generates the i-th level detection signal S2 having the first value. The first value may be, for example, a low voltage reference level or a logic low level. The aforementioned i-th level detection signal S2 may indicate that the power element 200 is damaged and operable, so that the control circuit 330 determines that there is no operating abnormality. The current abnormality monitoring device 300 executes module S440.

在另一方面,當第i級檢測電壓VQG的電壓值大於參考電壓Vref的電壓值時,表示功率元件200的漏電流大小大於參考漏電流。也就是說,功率元件200除了因過電流而受損之外,功率元件200的健康度低下而產生過大的漏電流。此時,比較電路323產生具有第二值的第i級檢測信號S2。第二值可例如是高電壓參考準位或邏輯高準位。前述的第i級檢測信號S2可指示功率元件200受損且無法操作,以使控制電路330判斷功率元件200為操作異常。電流異常監測裝置300執行模組S450。 On the other hand, when the voltage value of the i-th level detection voltage VQG is greater than the voltage value of the reference voltage Vref, it means that the leakage current of the power element 200 is greater than the reference leakage current. That is to say, in addition to being damaged by overcurrent, the health of the power element 200 is low and an excessive leakage current is generated. At this time, the comparison circuit 323 generates the i-th level detection signal S2 with the second value. The second value may be, for example, a high voltage reference level or a logic high level. The aforementioned i-th level detection signal S2 may indicate that the power component 200 is damaged and cannot operate, so that the control circuit 330 determines that the power component 200 operates abnormally. The current abnormality monitoring device 300 executes module S450.

在模組S440,當功率元件200被判斷為損壞並且非操作異常時,控制電路330拉長下一級監測操作中的短路時間,以調整第i+1級短路時間為第i級短路時間為加上參考短路時間。電流異常監測裝置300基於第i+1級短路時間重新執行模組S420以繼 續監測。在本實施例中,參考短路時間關聯於功率元件200的大小。參考短路時間可例如是功率元件200的製造商預先提供的單位時間,可例如是100奈秒(ns)。 In module S440, when the power element 200 is determined to be damaged and not operating abnormally, the control circuit 330 lengthens the short-circuit time in the next-level monitoring operation to adjust the i+1-th level short-circuit time to the i-th level short-circuit time. Upper reference short circuit time. The current abnormality monitoring device 300 re-executes the module S420 based on the i+1-th level short-circuit time to continue. Continue monitoring. In this embodiment, the reference short-circuit time is related to the size of the power component 200 . The reference short-circuit time may be, for example, a unit time provided in advance by the manufacturer of the power component 200 , and may be, for example, 100 nanoseconds (ns).

在模組S450,當功率元件200被判斷為損壞並且操作異常時,控制電路330根據第0級監測操作至第i級監測操作中的資料以繪製成表格或二維圖例。在模組S450的圖例中,橫軸為輸出電壓VDS的電壓值,縱軸為電流異常監測裝置300的短路時間TSC(單位例如是μs)。 In module S450, when the power element 200 is determined to be damaged and operates abnormally, the control circuit 330 draws a table or a two-dimensional legend based on the data in the 0th-level monitoring operation to the i-th level monitoring operation. In the illustration of the module S450, the horizontal axis is the voltage value of the output voltage VDS, and the vertical axis is the short-circuit time TSC of the current abnormality monitoring device 300 (the unit is, for example, μs).

詳細而言,控制電路330記錄各級監測操作中功率元件200的熱量預估值ESC,tot以及輸出電流ID,並以輸出電壓VDS以及短路時間TSC為變數以獲得模組S450所示圖例。因此,控制電路330可獲得功率元件200反應於各種短路時間TSC的電性操作特性,例如是過電流承受性以及對應的電壓值、電流值等。 In detail, the control circuit 330 records the estimated heat value ESC, tot and the output current ID of the power component 200 in various levels of monitoring operations, and uses the output voltage VDS and the short-circuit time TSC as variables to obtain the legend shown in module S450. Therefore, the control circuit 330 can obtain the electrical operating characteristics of the power component 200 in response to various short-circuit times TSC, such as over-current tolerance and corresponding voltage values, current values, etc.

在模組S460,控制電路330可存取模組S450中所記錄的表格或二維圖例等資料。前述的資料例如是功率元件200在各級監測操作中的熱量預估值ESC,tot以及短路時間TSC。在一些實施例中,模組S450中所記錄的表格或二維圖例可作為功率元件200及其相同規格的其他元件的電性操作參考,以應用於功率元件200的保護電路中。 In module S460, the control circuit 330 can access data such as tables or two-dimensional legends recorded in module S450. The aforementioned data is, for example, the estimated heat value ESC, tot and the short-circuit time TSC of the power component 200 in various levels of monitoring operations. In some embodiments, the table or two-dimensional legend recorded in the module S450 can be used as an electrical operation reference for the power component 200 and other components with the same specifications, so as to be applied in the protection circuit of the power component 200 .

圖6是根據本發明圖5實施例所繪示的第二檢測電路的動作示意圖。在圖6中,橫軸為比較電路323的反相輸入端上(即,第i級檢測電壓VQG)的電荷(單位例如是庫倫(C)),縱軸為電 壓值。圖7是根據本發明圖5實施例所繪示的第二檢測電路的動作示意圖。在圖7中,橫軸為第二檢測電路320的操作時間(單位例如是μs),縱軸為電壓值。 FIG. 6 is a schematic diagram of the operation of the second detection circuit according to the embodiment of FIG. 5 of the present invention. In FIG. 6 , the horizontal axis is the charge (unit, for example, Coulomb (C)) on the inverting input terminal of the comparison circuit 323 (ie, the i-th level detection voltage VQG), and the vertical axis is the electric charge. pressure value. FIG. 7 is a schematic diagram of the operation of the second detection circuit according to the embodiment of FIG. 5 of the present invention. In FIG. 7 , the horizontal axis represents the operation time of the second detection circuit 320 (unit is, for example, μs), and the vertical axis represents the voltage value.

參考圖5至圖7,在一些習知的檢測電路中,比較電路是根據參考電壓Vref_1以進行比較操作。參考電壓Vref_1具有固定的電壓值。因此,當比較電路的非反相輸入端上具有不同電荷量時,或者當比較電路操作於任意時間點時,比較電路是以相同的參考值作為比較基準。然而,當功率元件200承受不同的負載時,比較電路的非反相輸入端上的電荷或電壓(對應圖5檢測電壓VQG)具有不同的對應值,以使比較電路輸出誤判的比較結果。 Referring to FIGS. 5 to 7 , in some conventional detection circuits, the comparison circuit performs comparison operations based on the reference voltage Vref_1. The reference voltage Vref_1 has a fixed voltage value. Therefore, when the non-inverting input terminals of the comparison circuit have different charge amounts, or when the comparison circuit operates at any point in time, the comparison circuit uses the same reference value as the comparison basis. However, when the power element 200 is subjected to different loads, the charge or voltage on the non-inverting input terminal of the comparison circuit (corresponding to the detection voltage VQG in FIG. 5 ) has different corresponding values, so that the comparison circuit outputs a false comparison result.

在本實施例中,第i級檢測電壓VQG的電壓值越小,表示此節點上的電荷量越小,並且對應的漏電流的電流值越小。漏電流的電流值越小,表示功率元件200所承受的負載越小(即,輕載),或者電源電壓VDD的電壓值越小(例如是400V)。在另一方面,第i級檢測電壓VQG的電壓值越大,表示此節點上的電荷量越大,並且對應的漏電流的電流值越大。漏電流的電流值越大,表示功率元件200所承受的負載越大(即,重載),或者電源電壓VDD的電壓值越大(例如是800V)。 In this embodiment, the smaller the voltage value of the i-th level detection voltage VQG, the smaller the amount of charge on this node, and the smaller the corresponding current value of the leakage current. The smaller the current value of the leakage current, the smaller the load the power element 200 bears (ie, light load), or the smaller the voltage value of the power supply voltage VDD (for example, 400V). On the other hand, the greater the voltage value of the i-th level detection voltage VQG, the greater the amount of charge on this node, and the greater the corresponding current value of the leakage current. The larger the current value of the leakage current, the larger the load the power element 200 bears (ie, heavy load), or the larger the voltage value of the power supply voltage VDD (for example, 800V).

應注意的是,第二檢測電路320或控制電路330可根據功率元件200的負載,調整比較電路323的非反相輸入端所接收的參考電壓Vref的電壓值,並示例性出示於圖6的參考電壓Vref_2。在圖6中,當電荷量越小時,參考電壓Vref_2具有第一電壓值 Vref2_LL,以作為輕載時的參考值。當電荷量越大時,參考電壓Vref_2具有第二電壓值Vref2_HL,以作為重載時的參考值。第一電壓值Vref2_LL小於第二電壓值Vref2_HL。 It should be noted that the second detection circuit 320 or the control circuit 330 can adjust the voltage value of the reference voltage Vref received by the non-inverting input terminal of the comparison circuit 323 according to the load of the power component 200, and is exemplarily shown in FIG. 6 Reference voltage Vref_2. In Figure 6, when the charge amount is smaller, the reference voltage Vref_2 has a first voltage value Vref2_LL, as a reference value at light load. When the amount of charge is larger, the reference voltage Vref_2 has a second voltage value Vref2_HL as a reference value during overloading. The first voltage value Vref2_LL is smaller than the second voltage value Vref2_HL.

在一些如圖7所示的例子中,假設功率元件200具有輕載且未發生漏電流的電性異常時,第i級檢測電壓VQG示例性出示於線L1。因應功率元件200具有輕載,參考電壓Vref_2具有電壓值Vref2_LL。此時,第i級檢測電壓VQG的電壓值低於電壓值Vref2_LL,因此比較電路323輸出指示為功率元件200受損且可操作的第i級檢測信號S2。 In some examples as shown in FIG. 7 , assuming that the power element 200 has a light load and no electrical abnormality of leakage current occurs, the i-th level detection voltage VQG is exemplarily shown on the line L1 . In response to the light load of the power device 200, the reference voltage Vref_2 has a voltage value Vref2_LL. At this time, the voltage value of the i-th level detection voltage VQG is lower than the voltage value Vref2_LL, so the comparison circuit 323 outputs the i-th level detection signal S2 indicating that the power element 200 is damaged and operable.

假設功率元件200具有重載且未發生漏電流的電性異常時,第i級檢測電壓VQG示例性出示於線L2。因應功率元件200具有重載,參考電壓Vref_2具有電壓值Vref2_HL。此時,第i級檢測電壓VQG的電壓值低於電壓值Vref2_HL,因此比較電路323輸出指示為功率元件200受損且可操作的第i級檢測信號S2。應注意的是,在習知的檢測電路中,比較電路會認為檢測電壓的電壓值大於電壓值Vref_1而輸出錯誤指示的檢測信號。 Assuming that the power element 200 has a heavy load and no electrical abnormality of leakage current occurs, the i-th level detection voltage VQG is exemplarily shown on the line L2. In response to the heavy load of the power element 200, the reference voltage Vref_2 has a voltage value Vref2_HL. At this time, the voltage value of the i-th level detection voltage VQG is lower than the voltage value Vref2_HL, so the comparison circuit 323 outputs the i-th level detection signal S2 indicating that the power element 200 is damaged and operable. It should be noted that in the conventional detection circuit, the comparison circuit will consider that the voltage value of the detection voltage is greater than the voltage value Vref_1 and output a detection signal indicating an error.

假設功率元件200具有輕載且發生漏電流的電性異常時,第i級檢測電壓VQG示例性出示於線L3。因應功率元件200具有輕載,參考電壓Vref_2具有電壓值Vref2_LL。此時,第i級檢測電壓VQG的電壓值高於電壓值Vref2_LL,因此比較電路323輸出指示為功率元件200受損且無法操作的第i級檢測信號S2。 Assuming that the power element 200 has a light load and an electrical abnormality of leakage current occurs, the i-th level detection voltage VQG is exemplarily shown on the line L3. In response to the light load of the power device 200, the reference voltage Vref_2 has a voltage value Vref2_LL. At this time, the voltage value of the i-th level detection voltage VQG is higher than the voltage value Vref2_LL, so the comparison circuit 323 outputs the i-th level detection signal S2 indicating that the power element 200 is damaged and cannot operate.

假設功率元件200具有重載且發生漏電流的電性異常時, 第i級檢測電壓VQG示例性出示於線L4。因應功率元件200具有重載,參考電壓Vref_2具有電壓值Vref2_HL。此時,第i級檢測電壓VQG的電壓值高於電壓值Vref2_HL,因此比較電路323輸出指示為功率元件200受損且無法操作的第i級檢測信號S2。 Assuming that the power component 200 is heavily loaded and electrical abnormality occurs due to leakage current, The i-th level detection voltage VQG is exemplarily shown on line L4. In response to the heavy load of the power element 200, the reference voltage Vref_2 has a voltage value Vref2_HL. At this time, the voltage value of the i-th level detection voltage VQG is higher than the voltage value Vref2_HL, so the comparison circuit 323 outputs the i-th level detection signal S2 indicating that the power element 200 is damaged and cannot operate.

綜上所述,本發明實施例的電流異常監測裝置以及電流異常監測方法是根據功率元件反應於多級短路時間內的輸出電壓、輸出電流以及控制電流來判斷功率元件是否因過電流而受損,以及判斷功率元件在受損後是否發生漏電流的操作異常。如此一來,電流異常監測裝置能夠估測功率元件在不同保護觸發安全時間(即,短路時間)內的操作特性,同時也能夠即時監控功率元件的電性操作(即,健康度)。在部分實施例中,參考電壓是因應功率元件的負載而變化,因此比較電路可基於可變的參考電壓以產生檢測信號,據以提高檢測的準確度。 To sum up, the current abnormality monitoring device and current abnormality monitoring method according to the embodiment of the present invention determine whether the power element is damaged due to overcurrent based on the output voltage, output current and control current of the power element in response to the multi-level short circuit time. , and determine whether abnormal operation of leakage current occurs after power components are damaged. In this way, the current abnormality monitoring device can estimate the operating characteristics of the power component within different protection triggering safety times (ie, short circuit time), and can also monitor the electrical operation (ie, health) of the power component in real time. In some embodiments, the reference voltage changes in response to the load of the power component, so the comparison circuit can generate a detection signal based on the variable reference voltage, thereby improving detection accuracy.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed above through embodiments, they are not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some modifications and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the appended patent application scope.

S210~S250:步驟 S210~S250: steps

Claims (20)

一種電流異常監測裝置,適用於功率元件,包括:第一檢測電路,耦接所述功率元件,用以基於第i級短路時間,檢測所述功率元件的第一電性參數;第二檢測電路,耦接所述功率元件,用以基於所述第i級短路時間,檢測所述功率元件的第二電性參數以產生第i級檢測信號;以及控制電路,耦接所述第一檢測電路以及所述第二檢測電路,用以根據所述第一電性參數以產生第i級熱量預估值以判斷所述功率元件是否損壞,並且用以根據所述第i級檢測信號判斷所述功率元件是否操作異常,其中當所述功率元件被判斷為損壞且操作異常時,所述控制電路記錄所述第i級熱量預估值以及所述第i級短路時間,並且當所述功率元件被判斷為非損壞且非操作異常時,所述控制電路調整所述第i級短路時間為第i+1級短路時間,其中i為大於等於零的整數。 A current abnormality monitoring device suitable for power components, including: a first detection circuit coupled to the power component for detecting the first electrical parameter of the power component based on the i-th level short circuit time; a second detection circuit , coupled to the power element, for detecting the second electrical parameter of the power element to generate an i-th level detection signal based on the i-th level short-circuit time; and a control circuit, coupled to the first detection circuit and the second detection circuit, used to generate an i-th level heat estimate based on the first electrical parameter to determine whether the power component is damaged, and to determine the i-th level detection signal based on the Whether the power element operates abnormally, wherein when the power element is judged to be damaged and operates abnormally, the control circuit records the i-th stage heat estimate value and the i-th stage short circuit time, and when the power element When it is determined that there is no damage and no abnormal operation, the control circuit adjusts the i-th level short-circuit time to the i+1-th level short-circuit time, where i is an integer greater than or equal to zero. 如請求項1所述的電流異常監測裝置,其中所述第一電性參數包括所述功率元件的輸出電流以及輸出電壓。 The current abnormality monitoring device according to claim 1, wherein the first electrical parameter includes an output current and an output voltage of the power component. 如請求項2所述的電流異常監測裝置,其中所述控制電路接收基於所述第i級短路時間,對所述輸出電流與所述輸出電壓的乘積進行積分計算所產生的所述第i級熱量預估值。 The current abnormality monitoring device according to claim 2, wherein the control circuit receives the i-th level generated by integrating the product of the output current and the output voltage based on the i-th level short-circuit time. Calorie estimate. 如請求項1所述的電流異常監測裝置,其中當所述第i級熱量預估值大於參考熱量預估值時,所述控制電路判斷所述功率元件為損壞,其中所述參考熱量預估值關聯於所述功率元件的大小。 The current abnormality monitoring device according to claim 1, wherein when the i-th level heat estimate value is greater than a reference heat estimate value, the control circuit determines that the power element is damaged, wherein the reference heat estimate value The value is related to the size of the power element. 如請求項1所述的電流異常監測裝置,其中所述第二電性參數包括所述功率元件的控制電流。 The current abnormality monitoring device according to claim 1, wherein the second electrical parameter includes the control current of the power component. 如請求項5所述的電流異常監測裝置,其中所述第二檢測電路包括:差分電路,耦接所述功率元件的控制端,用以根據所述控制電流以輸出經放大的所述控制電流;積分電路,耦接所述差分電路,用以根據經放大的所述控制電流進行積分操作以產生第i級檢測電壓;以及比較電路,耦接所述積分電路以及所述控制電路,用以比較所述第i級檢測電壓以及參考電壓以產生所述第i級檢測信號。 The current abnormality monitoring device according to claim 5, wherein the second detection circuit includes: a differential circuit coupled to the control end of the power element for outputting the amplified control current according to the control current. ; An integrating circuit, coupled to the differential circuit, for performing an integrating operation according to the amplified control current to generate the i-th level detection voltage; and a comparison circuit, coupled to the integrating circuit and the control circuit, for The i-th level detection voltage is compared with a reference voltage to generate the i-th level detection signal. 如請求項6所述的電流異常監測裝置,其中當所述第i級檢測電壓的電壓值不大於所述參考電壓的電壓值時,所述第i級檢測信號具有第一值,以使所述控制電路判斷所述功率元件為非操作異常,其中所述第i+1級短路時間為所述第i級短路時間加上參考短路時間。 The current abnormality monitoring device according to claim 6, wherein when the voltage value of the i-th level detection voltage is not greater than the voltage value of the reference voltage, the i-th level detection signal has a first value, so that the i-th level detection signal has a first value. The control circuit determines that the power element is non-operationally abnormal, wherein the i+1-th level short-circuit time is the i-th level short-circuit time plus a reference short-circuit time. 如請求項6所述的電流異常監測裝置,其中當所述第i級檢測電壓的電壓值大於所述參考電壓的電壓值時,所述第i級檢 測信號具有第二值,以使所述控制電路判斷所述功率元件為操作異常。 The current abnormality monitoring device according to claim 6, wherein when the voltage value of the i-th level detection voltage is greater than the voltage value of the reference voltage, the i-th level detection voltage The detection signal has a second value, so that the control circuit determines that the power component operates abnormally. 如請求項6所述的電流異常監測裝置,其中所述第二檢測電路根據所述功率元件的負載以調整所述參考電壓的電壓值。 The current abnormality monitoring device of claim 6, wherein the second detection circuit adjusts the voltage value of the reference voltage according to the load of the power component. 如請求項1所述的電流異常監測裝置,還包括:驅動電路,耦接所述功率元件以及所述控制電路,用以輸出控制電流至所述功率元件的控制端;以及短路保護電路,耦接所述功率元件、所述第一檢測電路以及所述第二檢測電路,用以根據所述第i級檢測信號以判斷是否關斷所述功率元件。 The current abnormality monitoring device according to claim 1, further comprising: a drive circuit coupled to the power element and the control circuit for outputting a control current to the control end of the power element; and a short-circuit protection circuit, coupled to The power element, the first detection circuit and the second detection circuit are connected to determine whether to turn off the power element according to the i-th level detection signal. 一種電流異常監測方法,適用於功率元件,包括:通過第一檢測電路,基於第i級短路時間,檢測所述功率元件的第一電性參數;通過第二檢測電路,基於所述第i級短路時間,檢測所述功率元件的第二電性參數以產生第i級檢測信號;通過控制電路,根據所述第一電性參數以產生第i級熱量預估值以判斷所述功率元件是否損壞,並且根據所述第i級檢測信號判斷所述功率元件是否操作異常;當所述功率元件被判斷為損壞且操作異常時,通過所述控制電路,記錄所述第i級熱量預估值以及所述第i級短路時間;以及當所述功率元件被判斷為非損壞且非操作異常時,通過所述 控制電路,調整所述第i級短路時間為第i+1級短路時間,其中i為大於等於零的整數。 A current abnormality monitoring method, suitable for power components, including: detecting the first electrical parameter of the power component based on the i-th level short-circuit time through a first detection circuit; using a second detection circuit, based on the i-th level short-circuit time During the short circuit time, the second electrical parameter of the power component is detected to generate the i-th level detection signal; through the control circuit, the i-th level heat estimation value is generated according to the first electrical parameter to determine whether the power component is Damage, and determine whether the power element operates abnormally according to the i-th level detection signal; when the power element is determined to be damaged and operates abnormally, the i-th level heat estimate is recorded through the control circuit And the i-th stage short circuit time; and when the power component is judged to be non-damaged and non-operating abnormal, through the A control circuit that adjusts the i-th level short-circuit time to the i+1-th level short-circuit time, where i is an integer greater than or equal to zero. 如請求項11所述的電流異常監測方法,其中所述第一電性參數包括所述功率元件的輸出電流以及輸出電壓。 The current abnormality monitoring method according to claim 11, wherein the first electrical parameter includes the output current and output voltage of the power component. 如請求項12所述的電流異常監測方法,其中根據所述第一電性參數以產生第i級熱量預估值以判斷所述功率元件是否損壞並且根據所述第i級檢測信號判斷所述功率元件是否操作異常的步驟包括:通過所述控制電路,接收基於所述第i級短路時間,對所述輸出電流與所述輸出電壓的乘積進行積分計算所產生的所述第i級熱量預估值。 The current abnormality monitoring method according to claim 12, wherein the i-th level heat estimate is generated according to the first electrical parameter to determine whether the power element is damaged and the i-th level detection signal is used to determine whether the power element is damaged. The step of determining whether the power element operates abnormally includes: receiving, through the control circuit, the i-th level heat predetermined value generated by integrating the product of the output current and the output voltage based on the i-th level short-circuit time. Valuation. 如請求項11所述的電流異常監測方法,其中根據所述第一電性參數以產生所述第i級熱量預估值以判斷所述功率元件是否損壞並且根據所述第i級檢測信號判斷所述功率元件是否操作異常的步驟包括:通過所述控制電路,當所述第i級熱量預估值大於參考熱量預估值時,判斷所述功率元件為損壞,其中所述參考熱量預估值關聯於所述功率元件的大小。 The current abnormality monitoring method according to claim 11, wherein the i-th level heat estimate is generated according to the first electrical parameter to determine whether the power element is damaged and the i-th level detection signal is used to determine whether the power element is damaged. The step of determining whether the power element operates abnormally includes: using the control circuit, when the i-th level heat estimate value is greater than a reference heat estimate value, determining that the power element is damaged, wherein the reference heat estimate value The value is related to the size of the power element. 如請求項11所述的電流異常監測方法,其中所述第二電性參數包括所述功率元件的控制電流。 The current abnormality monitoring method according to claim 11, wherein the second electrical parameter includes the control current of the power component. 如請求項15所述的電流異常監測方法,其中基於所述第i級短路時間,檢測所述功率元件的所述第二電性參數以產生所述第i級檢測信號的步驟包括:通過第二檢測電路的差分電路,根據所述控制電流以輸出經放大的所述控制電流;通過第二檢測電路的積分電路,根據經放大的所述控制電流進行積分操作以產生第i級檢測電壓;以及通過第二檢測電路的比較電路,比較所述第i級檢測電壓以及參考電壓以產生所述第i級檢測信號。 The current abnormality monitoring method according to claim 15, wherein based on the i-th level short-circuit time, the step of detecting the second electrical parameter of the power element to generate the i-th level detection signal includes: The differential circuit of the second detection circuit outputs the amplified control current according to the control current; the integrating circuit of the second detection circuit performs an integration operation according to the amplified control current to generate the i-th level detection voltage; And through the comparison circuit of the second detection circuit, the i-th level detection voltage and the reference voltage are compared to generate the i-th level detection signal. 如請求項16所述的電流異常監測方法,其中根據所述第一電性參數以產生第i級熱量預估值以判斷所述功率元件是否損壞並且根據所述第i級檢測信號判斷所述功率元件是否操作異常的步驟包括:當所述第i級檢測電壓的電壓值不大於所述參考電壓的電壓值時,所述第i級檢測信號具有第一值,通過所述控制電路判斷所述功率元件為非操作異常,其中所述第i+1級短路時間為所述第i級短路時間加上參考短路時間。 The current abnormality monitoring method according to claim 16, wherein the i-th level heat estimate is generated according to the first electrical parameter to determine whether the power element is damaged and the i-th level detection signal is used to determine whether the power element is damaged. The step of determining whether the power element operates abnormally includes: when the voltage value of the i-th level detection voltage is not greater than the voltage value of the reference voltage, the i-th level detection signal has a first value, and the control circuit determines whether the The power element is non-operationally abnormal, and the i+1-th level short-circuit time is the i-th level short-circuit time plus a reference short-circuit time. 如請求項16所述的電流異常監測方法,其中根據所述第一電性參數以產生第i級熱量預估值以判斷所述功率元件是否損壞並且根據所述第i級檢測信號判斷所述功率元件是否操作異常的步驟包括:當所述第i級檢測電壓的電壓值大於所述參考電壓的電壓值 時,所述第i級檢測信號具有第二值,通過所述控制電路判斷所述功率元件為操作異常。 The current abnormality monitoring method according to claim 16, wherein the i-th level heat estimate is generated according to the first electrical parameter to determine whether the power element is damaged and the i-th level detection signal is used to determine whether the power element is damaged. The step of determining whether the power component operates abnormally includes: when the voltage value of the i-th level detection voltage is greater than the voltage value of the reference voltage When , the i-th level detection signal has a second value, and the control circuit determines that the power element is operating abnormally. 如請求項16所述的電流異常監測方法,還包括:通過所述第二檢測電路,根據所述功率元件的負載以調整所述參考電壓的電壓值。 The current abnormality monitoring method according to claim 16, further comprising: adjusting the voltage value of the reference voltage according to the load of the power component through the second detection circuit. 如請求項11所述的電流異常監測方法,還包括:通過驅動電路,輸出控制電流至所述功率元件的控制端;以及通過短路保護電路,根據所述第i級檢測信號以判斷是否關斷所述功率元件。 The current abnormality monitoring method as described in claim 11 further includes: outputting a control current to the control end of the power component through a drive circuit; and using a short-circuit protection circuit to determine whether to shut down based on the i-th level detection signal. The power components.
TW111150076A 2022-12-27 2022-12-27 Abnormal current monitoring device and abnormal current monitoring method TWI831541B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111150076A TWI831541B (en) 2022-12-27 2022-12-27 Abnormal current monitoring device and abnormal current monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111150076A TWI831541B (en) 2022-12-27 2022-12-27 Abnormal current monitoring device and abnormal current monitoring method

Publications (1)

Publication Number Publication Date
TWI831541B true TWI831541B (en) 2024-02-01

Family

ID=90824698

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111150076A TWI831541B (en) 2022-12-27 2022-12-27 Abnormal current monitoring device and abnormal current monitoring method

Country Status (1)

Country Link
TW (1) TWI831541B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010151835A2 (en) * 2009-06-25 2010-12-29 Server Technology, Inc. Power distribution apparatus with input and output power sensing and method of use
US20130090869A1 (en) * 2009-03-04 2013-04-11 Server Technology, Inc. Monitoring power-related parameters in a power distribution unit
TW202024821A (en) * 2018-12-27 2020-07-01 日商三菱電機股份有限公司 Abnormality diagnosis device and abnormality diagnosis method
CN114428216A (en) * 2021-12-31 2022-05-03 优跑汽车技术(上海)有限公司 Battery current detection method and device and storage medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130090869A1 (en) * 2009-03-04 2013-04-11 Server Technology, Inc. Monitoring power-related parameters in a power distribution unit
US20140218008A1 (en) * 2009-03-04 2014-08-07 Server Technology, Inc. Monitoring power-related parameters in a power distribution unit
WO2010151835A2 (en) * 2009-06-25 2010-12-29 Server Technology, Inc. Power distribution apparatus with input and output power sensing and method of use
TW202024821A (en) * 2018-12-27 2020-07-01 日商三菱電機股份有限公司 Abnormality diagnosis device and abnormality diagnosis method
CN114428216A (en) * 2021-12-31 2022-05-03 优跑汽车技术(上海)有限公司 Battery current detection method and device and storage medium

Similar Documents

Publication Publication Date Title
US10164625B2 (en) Semiconductor switching element driver circuit with operation based on temperature
JP6924207B2 (en) Coupling temperature and current detection
US9935577B2 (en) Semiconductor device and fault detecting method
CN107276571B (en) System and method for high side power switch
US11063422B2 (en) Power semiconductor module and power converter
JP2011258623A (en) Power semiconductor system
DE102010042905A1 (en) Semiconductor component with detection of thermally induced errors
JP2019526963A (en) Integrated circuits for fast temperature detection of semiconductor switching devices.
US11387642B2 (en) Overcurrent sense control of semiconductor device
US9300198B2 (en) Semiconductor device, including temperature sensing circut
US10224713B2 (en) Load driving device
CN111562477A (en) On-line state monitoring and fault judging system of power semiconductor device
JP2019165347A (en) Drive device and power module
CN111313731B (en) Intelligent power module
US11722053B2 (en) Over current protection concept for negative load current of power device gate drivers
US20220069815A1 (en) Semiconductor device
TWI831541B (en) Abnormal current monitoring device and abnormal current monitoring method
US9000830B2 (en) Method and apparatus for protecting transistors
US20210210953A1 (en) Protection circuit, corresponding system and method
JP2008301617A (en) Protective device for power converter
JP7105706B2 (en) power module
US20140320162A1 (en) Wiring state detection device and intelligent power module
JPH11340459A (en) Temperature detecting circuit
WO2021248333A1 (en) Buck circuit, buck apparatus and circuit control method
US11435395B2 (en) Circuit and method to detect defects in a power switching device