TWI831305B - Optical sensing device and optical sensing method thereof - Google Patents
Optical sensing device and optical sensing method thereof Download PDFInfo
- Publication number
- TWI831305B TWI831305B TW111127909A TW111127909A TWI831305B TW I831305 B TWI831305 B TW I831305B TW 111127909 A TW111127909 A TW 111127909A TW 111127909 A TW111127909 A TW 111127909A TW I831305 B TWI831305 B TW I831305B
- Authority
- TW
- Taiwan
- Prior art keywords
- output value
- sensor
- sensing signal
- signal
- voltage
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims description 15
- 238000000576 coating method Methods 0.000 claims abstract description 94
- 239000011248 coating agent Substances 0.000 claims abstract description 92
- 238000001228 spectrum Methods 0.000 claims abstract description 81
- 230000035945 sensitivity Effects 0.000 claims description 21
- 239000004332 silver Substances 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 102100032620 Cytotoxic granule associated RNA binding protein TIA1 Human genes 0.000 description 7
- 101000654853 Homo sapiens Cytotoxic granule associated RNA binding protein TIA1 Proteins 0.000 description 7
- 101100162020 Mesorhizobium japonicum (strain LMG 29417 / CECT 9101 / MAFF 303099) adc3 gene Proteins 0.000 description 7
- 101100434411 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) ADH1 gene Proteins 0.000 description 7
- 101150102866 adc1 gene Proteins 0.000 description 7
- 101150042711 adc2 gene Proteins 0.000 description 7
- 239000000463 material Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
Landscapes
- Spectrometry And Color Measurement (AREA)
Abstract
Description
本發明是有關一種光學感測裝置,特別是關於一種可用於感測相對色溫的光學感測裝置及方法。 The present invention relates to an optical sensing device, and in particular to an optical sensing device and method that can be used to sense relative color temperature.
相較於國際照明委員會(Commission Internationale de L'Eclairage;CIE)所制定的RGB色彩空間,使用CIE制定的XYZ色彩空間可以更準確的計算出相對色溫(Correlated Color Temperature;CCT)。圖1顯示CIE XYZ色彩空間的X光譜10、Y光譜12及Z光譜14。圖2顯示傳統的光學感測裝置20,用於感測光線產生一色溫值。光學感測裝置20包含三個感測器22、24及26及一處理電路(圖中未示)。感測器22包含一鍍膜222及一光二極體224,其中鍍膜222的光譜包括X光譜10。感測器24包含一鍍膜242及一光二極體244,其中鍍膜222的光譜包括Y光譜12。感測器26包含一鍍膜262及一光二極體264,其中鍍膜262的光譜包括Z光譜14。處理電路根據感測器22、24及26所輸出的感測信號決定該色溫值。 Compared with the RGB color space specified by the International Commission on Illumination (Commission Internationale de L'Eclairage; CIE), the relative color temperature (Correlated Color Temperature; CCT) can be calculated more accurately using the XYZ color space specified by the CIE. Figure 1 shows the X spectrum 10, Y spectrum 12 and Z spectrum 14 of the CIE XYZ color space. FIG. 2 shows a conventional optical sensing device 20 for sensing light to generate a color temperature value. The optical sensing device 20 includes three sensors 22, 24 and 26 and a processing circuit (not shown in the figure). The sensor 22 includes a coating 222 and a photodiode 224, wherein the spectrum of the coating 222 includes the X spectrum 10. The sensor 24 includes a coating 242 and a photodiode 244 , wherein the spectrum of the coating 222 includes the Y spectrum 12 . The sensor 26 includes a coating 262 and a photodiode 264 , wherein the spectrum of the coating 262 includes the Z spectrum 14 . The processing circuit determines the color temperature value according to the sensing signals output by the sensors 22, 24 and 26.
然而,鍍膜222的X光譜10,如圖1所示,包括左側的第一波峰101(低波峰)與右側的第二波峰102(高波峰),同時具有低波峰和高波峰的鍍膜222的調配難度大、製作較困難,而且需要用二氧化鈦(TiO2)或二氧化矽(SiO2)等較昂貴的材料來製作。此外,鍍膜222的X光譜實際上可能出現有如圖3所示的光譜權重失真、波峰不匹配以及波峰瑕疵等問題,或者是右邊波峰與左側波峰的高低比例偏離理想的1.06:0.35。「光譜權重失真」是指,原本不該有感度的位置, 卻出現感度。「波峰不匹配」是指,原本不該有波峰的位置卻出現波峰。「波峰瑕疵」是指,波峰位置有對應到,但波形有問題,可能是變形或是寬度過寬/過窄。由於光學感測裝置20的處理電路只能進行線性補償,無法僅針對單一波峰作補償,因此前述這些問題無法透過處理電路進行補償。一旦鍍膜222的X光譜10出現誤差,將會直接影響到光學感測裝置20的感測結果。而且,由於獲得理想的X光譜不易,因此光學感測裝置20的製程良率不高,成本較高。 However, the X spectrum 10 of the coating 222, as shown in Figure 1, includes the first peak 101 (low peak) on the left and the second peak 102 (high peak) on the right. The coating 222 has both low and high peaks. It is difficult to make and requires expensive materials such as titanium dioxide (TiO 2 ) or silicon dioxide (SiO 2 ). In addition, the X spectrum of coating 222 may actually have problems such as spectral weight distortion, peak mismatch, and peak defects as shown in Figure 3, or the height ratio of the right peak to the left peak deviates from the ideal 1.06:0.35. "Spectral weight distortion" means that sensitivity appears in positions where there should not be sensitivity. "Crest mismatch" means that a crest appears where there should not be a crest. "Crest defect" means that the position of the wave peak is corresponding, but there is a problem with the waveform, which may be deformed or the width is too wide/narrow. Since the processing circuit of the optical sensing device 20 can only perform linear compensation and cannot only compensate for a single wave peak, the aforementioned problems cannot be compensated by the processing circuit. Once an error occurs in the X spectrum 10 of the coating 222 , it will directly affect the sensing result of the optical sensing device 20 . Moreover, since it is difficult to obtain an ideal X spectrum, the process yield of the optical sensing device 20 is not high and the cost is high.
本發明的目的之一,在於提供一種製程良率較高的光學感測裝置及其光學感測方法。 One of the objects of the present invention is to provide an optical sensing device and an optical sensing method with a high process yield.
根據本發明,一種光學感測裝置,包括一第一感測器、一第二感測器、一第三感測器、一第四感測器以及一處理電路。該第一感測器包含一第一鍍膜,該第一鍍膜的光譜包括X光譜的第一波峰,該第一感測器用以感測光線產生一第一感測信號。該第二感測器包含一第二鍍膜,該第二鍍膜的光譜包括該X光譜的第二波峰,該第二感測器用以感測該光線產生一第二感測信號。該第三感測器包含一第三鍍膜,該第三鍍膜的光譜包括Y光譜,該第三感測器用以感測該光線以產生一第三感測信號。該第四感測器包含一第四鍍膜,該第四鍍膜的光譜包括Z光譜,該第四感測器用以感測該光線以產生一第四感測信號。該處理電路,連接該第一感測器、該第二感測器、該第三感測器及該第四感測器,該處理電路根據該第一感測信號與該第二感測信號產生一X輸出值,以及根據該第三感測信號及該第四感測信號分別產生一Y輸出值及一Z輸出值。 According to the present invention, an optical sensing device includes a first sensor, a second sensor, a third sensor, a fourth sensor and a processing circuit. The first sensor includes a first coating, the spectrum of the first coating includes the first peak of the X spectrum, and the first sensor is used to sense light to generate a first sensing signal. The second sensor includes a second coating, the spectrum of the second coating includes the second peak of the X spectrum, and the second sensor is used to sense the light to generate a second sensing signal. The third sensor includes a third coating, and the spectrum of the third coating includes a Y spectrum. The third sensor is used to sense the light to generate a third sensing signal. The fourth sensor includes a fourth coating, the spectrum of the fourth coating includes the Z spectrum, and the fourth sensor is used to sense the light to generate a fourth sensing signal. The processing circuit is connected to the first sensor, the second sensor, the third sensor and the fourth sensor, and the processing circuit is based on the first sensing signal and the second sensing signal. An X output value is generated, and a Y output value and a Z output value are generated according to the third sensing signal and the fourth sensing signal respectively.
根據本發明,一種光學感測方法包括:使用一第一感測器感測一光線產生一第一感測信號,其中該第一感測器包含一第一鍍膜,該第一鍍膜的光譜包括X光譜的第一波峰;使用一第二感測器感測該光線產生一第二感測信號,其中該第二感測器包含一第二鍍膜,該第二鍍膜的光譜包括該X光譜的第二波 峰;使用一第三感測器感測該光線產生一第三感測信號,其中該第三感測器包含一第三鍍膜,該第三鍍膜的光譜包括Y光譜;使用一第四感測器感測該光線產生一第四感測信號,其中該第四感測器包含一第四鍍膜,該第四鍍膜的光譜包括Z光譜;以及根據該第一感測信號與該第二感測信號產生一X輸出值,以及根據該第三感測信號及該第四感測信號分別產生一Y輸出值及一Z輸出值。 According to the present invention, an optical sensing method includes: using a first sensor to sense a light to generate a first sensing signal, wherein the first sensor includes a first coating, and the spectrum of the first coating includes The first peak of the X spectrum; using a second sensor to sense the light to generate a second sensing signal, wherein the second sensor includes a second coating, and the spectrum of the second coating includes the X spectrum second wave Peak; using a third sensor to sense the light to generate a third sensing signal, wherein the third sensor includes a third coating, and the spectrum of the third coating includes Y spectrum; using a fourth sensing The sensor senses the light to generate a fourth sensing signal, wherein the fourth sensor includes a fourth coating, and the spectrum of the fourth coating includes a Z spectrum; and according to the first sensing signal and the second sensing The signal generates an X output value, and generates a Y output value and a Z output value according to the third sensing signal and the fourth sensing signal respectively.
本發明的光學感測裝置的鍍膜製作較為簡單,也可以使用較便宜的材料來製作。此外,由於第一感測器及第二感測器的光譜只有單個波峰,因此即使第一鍍膜及第二鍍膜的光譜出現問題,本發明的光學感測裝置也可以透過該處理電路進行線性補償來解決,因而可以具有較高的製程良率。 The coating of the optical sensing device of the present invention is relatively simple to produce and can also be produced using cheaper materials. In addition, since the spectra of the first sensor and the second sensor have only a single peak, even if there is a problem with the spectra of the first coating and the second coating, the optical sensing device of the present invention can perform linear compensation through the processing circuit. To solve the problem, it can have a higher process yield.
10:X光譜 10:X spectrum
101:第一波峰 101:The first wave peak
102:第二波峰 102:Second wave peak
12:Y光譜 12:Y spectrum
14:Z光譜 14:Z spectrum
20:光學感測裝置 20: Optical sensing device
22:感測器 22: Sensor
222:鍍膜 222:Coating
224:光二極體 224:Photodiode
24:感測器 24: Sensor
242:鍍膜 242:Coating
244:光二極體 244:Photodiode
26:感測器 26: Sensor
262:鍍膜 262:Coating
264:光二極體 264:Photodiode
30:光學感測裝置 30: Optical sensing device
31:第一感測器 31: First sensor
311:第一鍍膜 311: First coating
312:光二極體 312:Photodiode
32:第二感測器 32: Second sensor
321:第二鍍膜 321: Second coating
322:光二極體 322:Photodiode
33:第三感測器 33:Third sensor
331:第三鍍膜 331:Third coating
332:光二極體 332:Photodiode
34:第四感測器 34:Fourth sensor
341:第四鍍膜 341: The fourth coating
342:光二極體 342:Photodiode
35:處理電路 35: Processing circuit
351:感度提升電路 351: Sensitivity improvement circuit
352:色彩處理單元 352: Color processing unit
3521:暫存器 3521: Temporary register
3522:第一乘法器 3522: First multiplier
3523:第二乘法器 3523: Second multiplier
3524:第三乘法器 3524: The third multiplier
3525:第四乘法器 3525: Fourth multiplier
3526:加法器 3526: Adder
3527:計算電路 3527: Calculation circuit
圖1顯示CIE XYZ色彩空間的X光譜、Y光譜及Z光譜。 Figure 1 shows the X spectrum, Y spectrum, and Z spectrum of the CIE XYZ color space.
圖2顯示傳統的光學感測裝置。 Figure 2 shows a conventional optical sensing device.
圖3顯示傳統鍍膜的X光譜。 Figure 3 shows the X spectrum of conventional coatings.
圖4顯示本發明的光學感測裝置。 Figure 4 shows the optical sensing device of the present invention.
圖5顯示圖4中第一鍍膜、第二鍍膜、第三鍍膜及第四鍍膜所具有的光譜。 Figure 5 shows the spectra of the first coating film, the second coating film, the third coating film and the fourth coating film in Figure 4.
圖6顯示本發明處理電路的第二實施例。 Figure 6 shows a second embodiment of the processing circuit of the present invention.
圖7顯示圖4及圖6中的色彩處理單元的實施例。 FIG. 7 shows an embodiment of the color processing unit in FIGS. 4 and 6 .
圖8顯示本發明的光學感測方法。 Figure 8 shows the optical sensing method of the present invention.
圖4顯示本發明的光學感測裝置30,其包括一第一感測器31、第二感測器32、第三感測器33、第四感測器34及處理電路35。第一感測器31感測光線產生一第一感測信號S1,第一感測器31包含一第一鍍膜311及一光二極體312,其中第一鍍膜311的光譜包括X光譜10的第一波峰101(低波峰)。第二感測器32感 測光線產生一第二感測信號S2,第二感測器32包含一第二鍍膜321及一光二極體322,其中第二鍍膜321的光譜包括X光譜10的第二波峰102(高波峰)。第三感測器33感測光線產生一第三感測信號S3,第三感測器33包含一第三鍍膜331及一光二極體332,其中第三鍍膜331的光譜包括Y光譜12。第四感測器34感測光線產生一第四感測信號S4,第四感測器34包含一第四鍍膜341及一光二極體342,其中第四鍍膜341的光譜包括Z光譜14。處理電路35根據第一感測信號S1、第二感測信號S2、第三感測信號S3及第四感測信號S4決定一色溫值CT。連接光學感測裝置30的終端裝置(圖中未示),例如客戶端平台,可以根據色溫值CT判斷相對色溫。 FIG. 4 shows the optical sensing device 30 of the present invention, which includes a first sensor 31 , a second sensor 32 , a third sensor 33 , a fourth sensor 34 and a processing circuit 35 . The first sensor 31 senses light to generate a first sensing signal S1. The first sensor 31 includes a first coating 311 and a photodiode 312, where the spectrum of the first coating 311 includes the X-spectrum 10 A peak of 101 (low peak). Second sensor 32 sense The metering light generates a second sensing signal S2. The second sensor 32 includes a second coating 321 and a photodiode 322. The spectrum of the second coating 321 includes the second peak 102 (high peak) of the X spectrum 10. . The third sensor 33 senses light to generate a third sensing signal S3. The third sensor 33 includes a third coating 331 and a photodiode 332, wherein the spectrum of the third coating 331 includes the Y spectrum 12. The fourth sensor 34 senses light to generate a fourth sensing signal S4. The fourth sensor 34 includes a fourth coating 341 and a photodiode 342, wherein the spectrum of the fourth coating 341 includes the Z spectrum 14. The processing circuit 35 determines a color temperature value CT according to the first sensing signal S1, the second sensing signal S2, the third sensing signal S3 and the fourth sensing signal S4. A terminal device (not shown in the figure) connected to the optical sensing device 30, such as a client platform, can determine the relative color temperature according to the color temperature value CT.
如圖5所示,第一感測器31、第二感測器32、第三感測器33及第四感測器34的光譜都只包含一個波峰,因此第一鍍膜311、第二鍍膜321、第三鍍膜331及第四鍍膜341的製作較為簡單,也可以使用較便宜的材料來製作。在一實施例中,第一鍍膜311、第二鍍膜321、第三鍍膜331及第四鍍膜341的材料包括但不限於銀。即使鍍膜311、鍍膜321、鍍膜331及鍍膜341的光譜有瑕疵,光學感測裝置30也可以透過處理電路35進行線性補償來解決。因此光學感測裝置30的製程良率較高。 As shown in FIG. 5 , the spectra of the first sensor 31 , the second sensor 32 , the third sensor 33 and the fourth sensor 34 each contain only one peak. Therefore, the first coating 311 and the second coating 321. The third coating film 331 and the fourth coating film 341 are relatively simple to produce and can also be produced using cheaper materials. In one embodiment, the materials of the first coating film 311 , the second coating film 321 , the third coating film 331 and the fourth coating film 341 include but are not limited to silver. Even if the spectra of the coatings 311 , 321 , 331 and 341 are defective, the optical sensing device 30 can also perform linear compensation through the processing circuit 35 to solve the problem. Therefore, the process yield of the optical sensing device 30 is relatively high.
在圖4的實施例中,處理電路35包括一感度提升電路351、一第一跨阻放大器TIA1、一第二跨阻放大器TIA2、一第三跨阻放大器TIA4、一第四跨阻放大器TIA4、一第一類比數位轉換器ADC1、一第二類比數位轉換器ADC2、一第三類比數位轉換器ADC3、一第四類比數位轉換器ADC4以及一色彩處理單元352。感度提升電路351連接第一感測器31、第二感測器32、第三感測器33及第四感測器34,用以補償第一感測信號S1、第二感測信號S2、第三感測信號S3及第四感測信號S4以分別產生一第五感測信號S5、一第六感測信號S6、一第七感測信號S7及一第八感測信號S8。第一跨阻放大器TIA1連接感度提升電路351,將第五感測信號S5轉換為一第一電壓A1。第二跨阻放大器TIA2連接感度提升電路 351,將第六感測信號S6轉換為一第二電壓A2。第三跨阻放大器TIA3連接感度提升電路351,將第七感測信號S7轉換為一第三電壓A3。第四跨阻放大器TIA4連接感度提升電路351,將第八感測信號S8轉換為一第四電壓A4。第一類比數位轉換器ADC1連接第一跨阻放大器TIA1,將第一電壓A1轉換為一第一數位信號D1。第二類比數位轉換器ADC2連接第二跨阻放大器TIA2,將第二電壓A2轉換為一第二數位信號D2。第三類比數位轉換器ADC3連接第三跨阻放大器TIA3,將第三電壓A3轉換為一第三數位信號D3。第四類比數位轉換器ADC4連接第四跨阻放大器TIA4,將第四電壓A4轉換為一第四數位信號D4。色彩處理單元352連接第一類比數位轉換器ADC1、第二類比數位轉換器ADC2、第三類比數位轉換器ADC3及第四類比數位轉換器ADC4,根據第一數位信號D1、第二數位信號D2、第三數位信號D3及第四數位信號D4決定色溫值CT。 In the embodiment of FIG. 4 , the processing circuit 35 includes a sensitivity boosting circuit 351 , a first transimpedance amplifier TIA1 , a second transimpedance amplifier TIA2 , a third transimpedance amplifier TIA4 , and a fourth transimpedance amplifier TIA4 . a first analog-to-digital converter ADC1, a second analog-to-digital converter ADC2, a third analog-to-digital converter ADC3, a fourth analog-to-digital converter ADC4 and a color processing unit 352. The sensitivity boost circuit 351 is connected to the first sensor 31, the second sensor 32, the third sensor 33 and the fourth sensor 34 to compensate the first sensing signal S1, the second sensing signal S2, The third sensing signal S3 and the fourth sensing signal S4 are used to respectively generate a fifth sensing signal S5, a sixth sensing signal S6, a seventh sensing signal S7 and an eighth sensing signal S8. The first transimpedance amplifier TIA1 is connected to the sensitivity boosting circuit 351 to convert the fifth sensing signal S5 into a first voltage A1. The second transimpedance amplifier TIA2 is connected to the sensitivity improvement circuit 351. Convert the sixth sensing signal S6 into a second voltage A2. The third transimpedance amplifier TIA3 is connected to the sensitivity boosting circuit 351 to convert the seventh sensing signal S7 into a third voltage A3. The fourth transimpedance amplifier TIA4 is connected to the sensitivity boosting circuit 351 to convert the eighth sensing signal S8 into a fourth voltage A4. The first analog-to-digital converter ADC1 is connected to the first transimpedance amplifier TIA1 to convert the first voltage A1 into a first digital signal D1. The second analog-to-digital converter ADC2 is connected to the second transimpedance amplifier TIA2 to convert the second voltage A2 into a second digital signal D2. The third analog-to-digital converter ADC3 is connected to the third transimpedance amplifier TIA3 to convert the third voltage A3 into a third digital signal D3. The fourth analog-to-digital converter ADC4 is connected to the fourth transimpedance amplifier TIA4 to convert the fourth voltage A4 into a fourth digital signal D4. The color processing unit 352 is connected to the first analog-to-digital converter ADC1, the second analog-to-digital converter ADC2, the third analog-to-digital converter ADC3, and the fourth analog-to-digital converter ADC4. According to the first digital signal D1, the second digital signal D2, The third digital signal D3 and the fourth digital signal D4 determine the color temperature value CT.
由於本發明的光學感測裝置30需要四個感測器31、32、33及34,因此本發明的光學感測裝置30使用感度提升電路351補償感度。具體來說,感度提升電路351可以將第一感測器31、第二感測器32、第三感測器33及第四感測器34輸出的第一感測信號S1、第二感測信號S2、第三感測信號S3及第四感測信號S4分別乘上4/3以產生第五感測信號S5、第六感測信號S6、第七感測信號S7及第八感測信號S8。 Since the optical sensing device 30 of the present invention requires four sensors 31, 32, 33 and 34, the optical sensing device 30 of the present invention uses a sensitivity boosting circuit 351 to compensate for the sensitivity. Specifically, the sensitivity improvement circuit 351 can convert the first sensing signal S1 and the second sensing signal S1 output by the first sensor 31 , the second sensor 32 , the third sensor 33 and the fourth sensor 34 into The signal S2, the third sensing signal S3 and the fourth sensing signal S4 are respectively multiplied by 4/3 to generate the fifth sensing signal S5, the sixth sensing signal S6, the seventh sensing signal S7 and the eighth sensing signal. S8.
在另一實施例中,感度提升電路351也可以整合至第一跨阻放大器TIA1、第二跨阻放大器TIA2、第三跨阻放大器TIA3及第四跨阻放大器TIA4中。圖6顯示處理電路35的第二實施例。在圖6中,處理電路35包括一第一跨阻放大器TIA1、一第二跨阻放大器TIA2、一第三跨阻放大器TIA4、一第四跨阻放大器TIA4、一第一類比數位轉換器ADC1、一第二類比數位轉換器ADC2、一第三類比數位轉換器ADC3、一第四類比數位轉換器ADC4以及一色彩處理單元352。第一跨阻放大器TIA1連接第一感測器31,根據一補償增益G1(圖中未示)將第一感 測信號S1放大並轉換為一第一電壓A1。第二跨阻放大器TIA2連接第二感測器32,根據一補償增益G2(圖中未示)將第二感測信號S2放大並轉換為一第二電壓A2。第三跨阻放大器TIA3連接第三感測器33,根據一補償增益G3(圖中未示)將第三感測信號S3放大並轉換為一第三電壓A3。第四跨阻放大器TIA4連接第四感測器34,根據一補償增益G4(圖中未示)將第四感測信號S4放大並轉換為一第四電壓A4。第一類比數位轉換器ADC1連接第一跨阻放大器TIA1,將第一電壓A1轉換為一第一數位信號D1。第二類比數位轉換器ADC2連接第二跨阻放大器TIA2,將第二電壓A2轉換為一第二數位信號D2。第三類比數位轉換器ADC3連接第三跨阻放大器TIA3,將第三電壓A3轉換為一第三數位信號D3。第四類比數位轉換器ADC4連接第四跨阻放大器TIA4,將第四電壓A4轉換為一第四數位信號D4。色彩處理單元352連接第一類比數位轉換器ADC1、第二類比數位轉換器ADC2、第三類比數位轉換器ADC3及第四類比數位轉換器ADC4,根據第一數位信號D1、第二數位信號D2、第三數位信號D3及第四數位信號D4決定色溫值CT。在此實施例中,補償增益G1、G2、G3及G4是用以補償感度。在一實施例中,補償增益G1、G2、G3及G4可以是4/3,如此一來,在感測器的總數固定的情況下(例如6×6的感測矩陣),本發明也可以達到傳統光學感測裝置20的感度水準。 In another embodiment, the sensitivity improvement circuit 351 can also be integrated into the first transimpedance amplifier TIA1, the second transimpedance amplifier TIA2, the third transimpedance amplifier TIA3 and the fourth transimpedance amplifier TIA4. Figure 6 shows a second embodiment of the processing circuit 35. In FIG. 6 , the processing circuit 35 includes a first transimpedance amplifier TIA1, a second transimpedance amplifier TIA2, a third transimpedance amplifier TIA4, a fourth transimpedance amplifier TIA4, a first analog-to-digital converter ADC1, a second analog-to-digital converter ADC2, a third analog-to-digital converter ADC3, a fourth analog-to-digital converter ADC4 and a color processing unit 352. The first transimpedance amplifier TIA1 is connected to the first sensor 31 and converts the first sensor according to a compensation gain G1 (not shown in the figure). The measurement signal S1 is amplified and converted into a first voltage A1. The second transimpedance amplifier TIA2 is connected to the second sensor 32 and amplifies the second sensing signal S2 according to a compensation gain G2 (not shown in the figure) and converts it into a second voltage A2. The third transimpedance amplifier TIA3 is connected to the third sensor 33 and amplifies the third sensing signal S3 according to a compensation gain G3 (not shown in the figure) and converts it into a third voltage A3. The fourth transimpedance amplifier TIA4 is connected to the fourth sensor 34 to amplify and convert the fourth sensing signal S4 into a fourth voltage A4 according to a compensation gain G4 (not shown in the figure). The first analog-to-digital converter ADC1 is connected to the first transimpedance amplifier TIA1 to convert the first voltage A1 into a first digital signal D1. The second analog-to-digital converter ADC2 is connected to the second transimpedance amplifier TIA2 to convert the second voltage A2 into a second digital signal D2. The third analog-to-digital converter ADC3 is connected to the third transimpedance amplifier TIA3 to convert the third voltage A3 into a third digital signal D3. The fourth analog-to-digital converter ADC4 is connected to the fourth transimpedance amplifier TIA4 to convert the fourth voltage A4 into a fourth digital signal D4. The color processing unit 352 is connected to the first analog-to-digital converter ADC1, the second analog-to-digital converter ADC2, the third analog-to-digital converter ADC3, and the fourth analog-to-digital converter ADC4. According to the first digital signal D1, the second digital signal D2, The third digital signal D3 and the fourth digital signal D4 determine the color temperature value CT. In this embodiment, the compensation gains G1, G2, G3 and G4 are used to compensate the sensitivity. In one embodiment, the compensation gains G1, G2, G3 and G4 can be 4/3. In this way, when the total number of sensors is fixed (for example, a 6×6 sensing matrix), the present invention can also The sensitivity level of the traditional optical sensing device 20 is reached.
在上述的實施例中,第一~第八感測信號為電流信號,跨阻放大器將接收到的電流信號放大並且轉換成電壓信號。 In the above embodiment, the first to eighth sensing signals are current signals, and the transimpedance amplifier amplifies and converts the received current signals into voltage signals.
圖7顯示圖4及圖6中的色彩處理單元352的實施例。色彩處理單元352包括一暫存器3521、一第一乘法器3522、一第二乘法器3523、一第三乘法器3524、一第四乘法器3525、一加法器3526及一計算電路3527。暫存器3521是用以儲存及提供一第一校準係數C1、一第二校準係數C2、一第三校準係數C3及一第四校準係數C4。第一乘法器3522連接暫存器3521及第一類比數位轉換器ADC1,用以將第一數位信號D1乘上第一校準係數C1產生一第一子輸出值SO1。第二乘 法器3523連接暫存器3521及第二類比數位轉換器ADC2,用以將第二數位信號D2乘上第二校準係數C2產生一第二子輸出值SO2。加法器3526連接第一乘法器3522及第二乘法器3523,用以將第一子輸出值SO1與第二子輸出值SO2相加產生X輸出值XO。第三乘法器3524連接暫存器3521及第三類比數位轉換器ADC3,將第三數位信號D3乘上第三校準係數C3以產生Y輸出值YO。第四乘法器3525連接暫存器3521及第四類比數位轉換器ADC4,將第四數位信號D4乘上第四校準係數C4以產生Z輸出值ZO。計算電路3527連接第三乘法器3524、第四乘法器3525及加法器3526,根據X輸出值XO、Y輸出值YO與Z輸出值ZO產生色溫值CT。 FIG. 7 shows an embodiment of the color processing unit 352 in FIGS. 4 and 6 . The color processing unit 352 includes a register 3521, a first multiplier 3522, a second multiplier 3523, a third multiplier 3524, a fourth multiplier 3525, an adder 3526 and a calculation circuit 3527. The register 3521 is used to store and provide a first calibration coefficient C1, a second calibration coefficient C2, a third calibration coefficient C3 and a fourth calibration coefficient C4. The first multiplier 3522 is connected to the register 3521 and the first analog-to-digital converter ADC1, and is used to multiply the first digital signal D1 by the first calibration coefficient C1 to generate a first sub-output value SO1. second ride The multiplier 3523 is connected to the register 3521 and the second analog-to-digital converter ADC2, and is used to multiply the second digital signal D2 by the second calibration coefficient C2 to generate a second sub-output value SO2. The adder 3526 is connected to the first multiplier 3522 and the second multiplier 3523, and is used to add the first sub-output value SO1 and the second sub-output value SO2 to generate the X output value XO. The third multiplier 3524 is connected to the register 3521 and the third analog-to-digital converter ADC3, and multiplies the third digital signal D3 by the third calibration coefficient C3 to generate the Y output value YO. The fourth multiplier 3525 is connected to the register 3521 and the fourth analog-to-digital converter ADC4, and multiplies the fourth digital signal D4 by the fourth calibration coefficient C4 to generate the Z output value ZO. The calculation circuit 3527 is connected to the third multiplier 3524, the fourth multiplier 3525 and the adder 3526, and generates the color temperature value CT according to the X output value XO, the Y output value YO and the Z output value ZO.
從上述說明當能了解本發明的光學感測方法,可以表達如圖8所示,包括下列步驟:步驟S10:使用一第一感測器感測一光線產生一第一感測信號,其中該第一感測器包含一第一鍍膜,該第一鍍膜的光譜包括X光譜的第一波峰;步驟S11:使用一第二感測器感測該光線產生一第二感測信號,其中該第二感測器包含一第二鍍膜,該第二鍍膜的光譜包括該X光譜的第二波峰;步驟S12:使用一第三感測器感測該光線產生一第三感測信號,其中該第三感測器包含一第三鍍膜,該第三鍍膜的光譜包括Y光譜;步驟S13:使用一第四感測器感測該光線產生一第四感測信號,其中該第四感測器包含一第四鍍膜,該第四鍍膜的光譜包括Z光譜;步驟S14:根據該第一感測信號與該第二感測信號產生一X輸出值,以及根據該第三感測信號及該第四感測信號分別產生一Y輸出值及一Z輸出值;以及步驟S15:根據該X輸出值、該Y輸出值與該Z輸出值產生一色溫值。 From the above description, it can be understood that the optical sensing method of the present invention can be expressed as shown in Figure 8 and includes the following steps: Step S10: Use a first sensor to sense a light to generate a first sensing signal, wherein the The first sensor includes a first coating, and the spectrum of the first coating includes the first peak of the X spectrum; Step S11: Use a second sensor to sense the light to generate a second sensing signal, wherein the first The two sensors include a second coating, and the spectrum of the second coating includes the second peak of the X spectrum; Step S12: Use a third sensor to sense the light to generate a third sensing signal, wherein the third sensor The three sensors include a third coating, and the spectrum of the third coating includes the Y spectrum; Step S13: Use a fourth sensor to sense the light to generate a fourth sensing signal, wherein the fourth sensor includes A fourth coating, the spectrum of the fourth coating includes Z spectrum; Step S14: Generate an X output value according to the first sensing signal and the second sensing signal, and generate an X output value according to the third sensing signal and the fourth sensing signal. The sensing signals respectively generate a Y output value and a Z output value; and step S15: generate a color temperature value according to the X output value, the Y output value and the Z output value.
以上所述僅是本發明的實施例而已,並非對本發明做任何形式上的限制,雖然本發明已以實施例揭露如上,然而並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明技術方案的範圍內,當可利用上述揭示的技術內容作出些許更動或修飾為等同變化的等效實施例,但凡是未脫離本發明技術方案的內容,依據本發明的技術實質對以上實施例所作的任何簡單修改、等同變化與修飾,均仍屬於本發明技術方案的範圍內。 The above are only embodiments of the present invention, and do not limit the present invention in any form. Although the present invention has been disclosed in the embodiments above, they are not used to limit the present invention. Anyone with ordinary knowledge in the technical field, Without departing from the scope of the technical solution of the present invention, the technical content disclosed above can be used to make some changes or modifications to equivalent embodiments with equivalent changes. Any simple modifications, equivalent changes and modifications made to the above embodiments still fall within the scope of the technical solution of the present invention.
30:光學感測裝置 30: Optical sensing device
31:第一感測器 31: First sensor
311:第一鍍膜 311: First coating
312:光二極體 312:Photodiode
32:第二感測器 32: Second sensor
321:第二鍍膜 321: Second coating
322:光二極體 322:Photodiode
33:第三感測器 33:Third sensor
331:第三鍍膜 331:Third coating
332:光二極體 332:Photodiode
34:第四感測器 34:Fourth sensor
341:第四鍍膜 341: The fourth coating
342:光二極體 342:Photodiode
35:處理電路 35: Processing circuit
351:感度提升電路 351: Sensitivity improvement circuit
352:色彩處理單元 352: Color processing unit
Claims (12)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210939489.3A CN115541034A (en) | 2022-01-27 | 2022-08-05 | Optical sensing device and optical sensing method thereof |
US17/979,730 US12203866B2 (en) | 2022-01-27 | 2022-11-02 | Optical sensing device and optical sensing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202263303953P | 2022-01-27 | 2022-01-27 | |
US63/303,953 | 2022-01-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202331211A TW202331211A (en) | 2023-08-01 |
TWI831305B true TWI831305B (en) | 2024-02-01 |
Family
ID=88559273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111127909A TWI831305B (en) | 2022-01-27 | 2022-07-26 | Optical sensing device and optical sensing method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI831305B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4547074A (en) * | 1981-05-08 | 1985-10-15 | Omron Tateisi Electronics Co. | Color sensing device |
US20060215162A1 (en) * | 2005-03-23 | 2006-09-28 | Colman Shannon | Reflectance sensor for integral illuminant-weighted CIE color matching filters |
US20200149967A1 (en) * | 2017-05-16 | 2020-05-14 | Ams Ag | Optical sensor and method for detecting electromagnetic radiation |
TW202104857A (en) * | 2019-05-28 | 2021-02-01 | 德商Ams傳感器德國有限公司 | Spectral reconstruction with multi-channel color sensors |
-
2022
- 2022-07-26 TW TW111127909A patent/TWI831305B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4547074A (en) * | 1981-05-08 | 1985-10-15 | Omron Tateisi Electronics Co. | Color sensing device |
US20060215162A1 (en) * | 2005-03-23 | 2006-09-28 | Colman Shannon | Reflectance sensor for integral illuminant-weighted CIE color matching filters |
US20200149967A1 (en) * | 2017-05-16 | 2020-05-14 | Ams Ag | Optical sensor and method for detecting electromagnetic radiation |
TW202104857A (en) * | 2019-05-28 | 2021-02-01 | 德商Ams傳感器德國有限公司 | Spectral reconstruction with multi-channel color sensors |
Also Published As
Publication number | Publication date |
---|---|
TW202331211A (en) | 2023-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7889249B2 (en) | System and method for canceling dark photocurrent in a color sensor circuit | |
US7649220B2 (en) | Photodetector having dark current correction | |
US10057530B2 (en) | High dynamic range imaging sensor array | |
US8981975B2 (en) | Data processing device and data processing system | |
JP2001091361A (en) | Method and apparatus for temperature measurement calibration and current measurement | |
TWI831305B (en) | Optical sensing device and optical sensing method thereof | |
CN109738068B (en) | Method for correcting nonlinearity of response value of multispectral camera | |
CN115541034A (en) | Optical sensing device and optical sensing method thereof | |
Schidl et al. | LED wavelength determination sensor system with BiCMOS triple junction photodetector | |
JP4127195B2 (en) | Spectral intensity measuring device and calibration method thereof, spectral reflection characteristic measuring device and calibration method thereof | |
JP2001094424A (en) | A/d converter | |
JP2019117144A (en) | Light detection device, correction coefficient calculation device and correction coefficient calculation method | |
JP2007292642A (en) | Photometric device and measuring method in photometric device | |
JP2812132B2 (en) | Multiplication circuit with calibration function | |
JPH0690088B2 (en) | Color sensor circuit | |
Гур'єв | Method for determination of the spectral mismatch correction factors for the luminous responsivity of photometers when measuring the characteristics of LED lamps | |
RU2462693C2 (en) | Pyrometer | |
TW202444112A (en) | Optical sensing device and electronic device having the optical sensing device | |
Labusov et al. | Measuring the quantum efficiency of multielement photodetectors in the spectral range between 180 and 800 nm | |
US20040118995A1 (en) | Correction for non-linearities in FTIR photo detectors | |
JPH02118421A (en) | How to measure photon number | |
JPH0770520B2 (en) | End point determination method and device | |
Joh et al. | Use color sensors for precise measurement | |
JPS6156926A (en) | Compensating device of radiation detector | |
JPH02115729A (en) | Photometric device and its manufacturing method |