JP4127195B2 - Spectral intensity measuring device and calibration method thereof, spectral reflection characteristic measuring device and calibration method thereof - Google Patents

Spectral intensity measuring device and calibration method thereof, spectral reflection characteristic measuring device and calibration method thereof Download PDF

Info

Publication number
JP4127195B2
JP4127195B2 JP2003392457A JP2003392457A JP4127195B2 JP 4127195 B2 JP4127195 B2 JP 4127195B2 JP 2003392457 A JP2003392457 A JP 2003392457A JP 2003392457 A JP2003392457 A JP 2003392457A JP 4127195 B2 JP4127195 B2 JP 4127195B2
Authority
JP
Japan
Prior art keywords
light
light receiving
correction
receiving means
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003392457A
Other languages
Japanese (ja)
Other versions
JP2005156243A5 (en
JP2005156243A (en
Inventor
健二 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2003392457A priority Critical patent/JP4127195B2/en
Publication of JP2005156243A publication Critical patent/JP2005156243A/en
Publication of JP2005156243A5 publication Critical patent/JP2005156243A5/ja
Application granted granted Critical
Publication of JP4127195B2 publication Critical patent/JP4127195B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、被測定光の分光強度分布や、被測定試料の分光反射特性を測定するための装置およびそれらの校正方法に関し、特にそれらの測光回路の湿度ドリフトの補正に関する。   The present invention relates to a device for measuring the spectral intensity distribution of light to be measured and the spectral reflection characteristics of a sample to be measured, and a calibration method thereof, and more particularly to correction of humidity drift in these photometric circuits.

測定波長域の全波長の分光強度を同時に測定するポリクロメータは、測定効率が高く、瞬間光を測定できるなどの特徴から、被測定光の分光強度分布を測定する分光輝度計(分光強度測定装置)や、試料の分光反射特性を測定する分光測色計(分光反射特性測定装置)の分光手段として広く用いられている。図6は、一般的なポリクロメータ1の概略構成を示す断面図である。ポリクロメータ1は、ハウジング2に配置された入射開口3、受光センサアレイ4、前記入射開口3を通過した光束による入射開口3の波長分散像を前記受光センサアレイ4上に作成する回折格子5および結像光学系6から構成される。   A polychromator that measures the spectral intensity of all wavelengths in the measurement wavelength range at the same time has a high measurement efficiency and can measure instantaneous light. ) And spectral means of a spectrocolorimeter (spectral reflection characteristic measuring device) for measuring the spectral reflection characteristic of a sample. FIG. 6 is a cross-sectional view showing a schematic configuration of a general polychromator 1. The polychromator 1 includes an incident aperture 3 disposed in a housing 2, a light receiving sensor array 4, a diffraction grating 5 that creates a chromatic dispersion image of the incident aperture 3 by a light beam passing through the incident aperture 3 on the light receiving sensor array 4, and The imaging optical system 6 is comprised.

ここで、前記受光センサアレイ4には、大別して、CCDやCMOSなどの走査型のセンサアレイと、非走査のシリコンフォトダイオードアレイとがある。前記走査型のセンサアレイは、コンデンサに蓄積した各センサの光電流を順次読み出してゆき、単一の検知回路で全画素の出力信号を処理するので、処理回路の規模が小さく、小型化を図れるというメリットがある。しかしながら、ノイズ、ダイナミックレンジ、リニアリティなどの性能面で劣るため、高感度、高性能を要求される場合は、センサ毎に処理回路が必要になるという欠点はあるものの、シリコンフォトダイオードアレイが用いられることが多い。   Here, the light receiving sensor array 4 is roughly classified into a scanning sensor array such as a CCD and a CMOS, and a non-scanning silicon photodiode array. The scanning sensor array sequentially reads the photocurrent of each sensor accumulated in the capacitor and processes the output signals of all the pixels with a single detection circuit, so that the processing circuit can be reduced in size and size. There is a merit. However, because it is inferior in terms of performance such as noise, dynamic range, and linearity, when high sensitivity and high performance are required, a processing circuit is required for each sensor, but a silicon photodiode array is used. There are many cases.

図7に、前記シリコンフォトダイオードアレイに対応した処理回路11の一構成例を示す。この処理回路11は、複数チャネルCH1,CH2,・・・,CHnの画素センサ(フォトダイオード)毎に配置された電流電圧変換回路A1,A2,・・・,Anと、それらの電流電圧変換回路A1〜Anの出力を択一的に順次選択するマルチプレクサ12と、前記マルチプレクサ12からの出力を増幅するゲイン可変アンプ13と、前記ゲイン可変アンプ13からの出力をアナログ/デジタル変換するアナログ/デジタル変換器14とを備えて構成される。   FIG. 7 shows a configuration example of the processing circuit 11 corresponding to the silicon photodiode array. The processing circuit 11 includes current-voltage conversion circuits A1, A2,..., An arranged for each of pixel sensors (photodiodes) of a plurality of channels CH1, CH2,. Multiplexer 12 that alternatively and sequentially selects outputs A1 to An, gain variable amplifier 13 that amplifies the output from multiplexer 12, and analog / digital conversion that performs analog / digital conversion of the output from gain variable amplifier 13 And a container 14.

そして、前記電流電圧変換回路A1〜Anは、帰還抵抗RF1〜RFnの抵抗値、したがってゲインが異なり、前記ノイズ、ダイナミックレンジ、リニアリティなどで高い性能を有し、前記高感度(低輝度まで測定)、高性能が実現されている。しかしながら、そのような構成では、特にフォトダイオードの感度が低い(同じ入射光量でも、光電変換して得られる光電流が小さい)短波長側では、前記帰還抵抗RF1〜RFnには、しばしば数百MΩの高抵抗が用いられ、該電流電圧変換回路A1〜Anはハイゲインとなっている。   The current-voltage conversion circuits A1 to An have resistance values of the feedback resistors RF1 to RFn, and therefore have different gains, and have high performance in the noise, dynamic range, linearity, etc., and the high sensitivity (measured to low luminance). High performance has been realized. However, in such a configuration, the sensitivity of the photodiode is low (photocurrent obtained by photoelectric conversion is small even with the same incident light amount), and on the short wavelength side, the feedback resistors RF1 to RFn are often several hundred MΩ. Are used, and the current-voltage conversion circuits A1 to An have high gain.

ここで、フォトダイオードが発生する光電流を電圧に変換する一般的な電流電圧変換回路21の例を、図8に示す。この電流電圧変換回路21は、オペアンプAと、帰還抵抗Rfとを備えて構成され、光電流Ipに対応した電圧Vo=Ip*Rfを出力する。そして、前記のように微小な光電流Ipを検知するために、前記帰還抵抗Rfには、しばしば108Ωの高抵抗が用いられる。その場合、しばしば1011Ω程度になる基板パターン間のリーク抵抗の影響が無視できなくなる。主な影響として、外部電圧源Veからリーク抵抗Riを通じてオペアンプAの入力端に流れ込むリーク電流I1や、帰還抵抗Rfに並列に接続されるリーク抵抗Rf’がある。これらを考慮すると、前記出力電圧Voは、以下で表される。 Here, FIG. 8 shows an example of a general current-voltage conversion circuit 21 that converts the photocurrent generated by the photodiode into a voltage. The current-voltage conversion circuit 21 includes an operational amplifier A and a feedback resistor Rf, and outputs a voltage Vo = Ip * Rf corresponding to the photocurrent Ip. In order to detect the minute photocurrent Ip as described above, a high resistance of 10 8 Ω is often used as the feedback resistor Rf. In that case, the influence of the leakage resistance between the substrate patterns, which is often about 10 11 Ω, cannot be ignored. The main influence is the leakage current I1 flowing from the external voltage source Ve to the input terminal of the operational amplifier A through the leakage resistance Ri and the leakage resistance Rf ′ connected in parallel to the feedback resistance Rf. Considering these, the output voltage Vo is expressed as follows.

Vo=(Ip+I1)*(Rf+Rf’)
=Ip*(Rf+Rf’)+I1*(Rf+Rf’)
ここで、第2項はリーク電流I1の寄与であり、入射光を遮断(Ip=0)としたときの暗出力Vd=I1*(Rf+Rf’)を引くことで、以下のように影響を免れることができる。
Vo = (Ip + I1) * (Rf + Rf ′)
= Ip * (Rf + Rf ′) + I1 * (Rf + Rf ′)
Here, the second term is the contribution of the leakage current I1, and by subtracting the dark output Vd = I1 * (Rf + Rf ′) when the incident light is blocked (Ip = 0), the influence is avoided as follows. be able to.

Vo’=Vo−Vd=Ip*(Rf+Rf’)=Ip*Rf+Ip*Rf’
しかしながら、前記リーク抵抗Rf’の影響は回路のゲイン変化となって現れるものであり、これによる誤差Ip*Rf’は、光電流Ip(入射光量)に比例するため、簡単には補正できない。このリーク抵抗Rf’は、湿度によって変化して、たとえば数分単位でゲイン変動をもたらすので、精度はもちろん、安定性をも損なうことになる。近年の部品の小型化と基板パターンの精細化は、前記リーク抵抗Rf’を小さくしてしまい、その影響は大きくなる傾向にあり、とりわけ屋外を含む広い環境条件での使用が求められるポータブル機器では、大きな問題となる。
Vo ′ = Vo−Vd = Ip * (Rf + Rf ′) = Ip * Rf + Ip * Rf ′
However, the influence of the leak resistance Rf ′ appears as a change in the gain of the circuit, and the error Ip * Rf ′ due to this is proportional to the photocurrent Ip (incident light amount) and cannot be easily corrected. The leak resistance Rf ′ changes with humidity and causes a gain fluctuation, for example, in units of several minutes, so that accuracy as well as stability is impaired. Recent miniaturization of parts and refinement of substrate patterns have reduced the leakage resistance Rf ′, and its influence tends to increase. Especially in portable devices that are required to be used in a wide range of environmental conditions including outdoors. , It becomes a big problem.

そこで、このような問題を解決する従来技術として、たとえば以下のようなものが挙げられる。
1.帰還抵抗Rfを小さくする。
2.サイズの大きな部品を用い、パターン間距離を充分とる。
3.非特許文献1で示すように、前記図8において、高電位である接続点Pを取り囲むようにガードパターンGPを施し、仮想接地することで、基板との間の電位差を無くす。
4.基板に耐湿コートを施す。
OPアンプIC活用ノウハウ (玉村俊雄著 iQ出版 現場技術者実戦シリーズp153〜155)
Then, as a prior art which solves such a problem, the following is mentioned, for example.
1. The feedback resistance Rf is reduced.
2. Use large-sized parts and ensure sufficient distance between patterns.
3. As shown in Non-Patent Document 1, in FIG. 8, a guard pattern GP is applied so as to surround the connection point P having a high potential, and the potential difference from the substrate is eliminated by virtual grounding.
4). Apply a moisture resistant coat to the substrate.
OP Amplifier IC Utilization Know-how (Toshio Tamamura, iQ Publishing, Field Engineer Practical Series p153-155)

前記1の方法では、前記のような感度が犠牲になるという問題がある。また、前記2の方法では、小型化が犠牲になり、商品価値が低くなるという問題がある。   The method 1 has a problem that the sensitivity described above is sacrificed. Further, the method 2 has a problem that the product value is lowered at the expense of downsizing.

前記3の方法は、従来は比較的有効であったけれども、部品の小型化、パターンの精細化とともに困難になりつつある。また、基板表面が汚れると、効果が低下するという問題もある。   Although the method 3 has been relatively effective in the past, it is becoming difficult with the miniaturization of parts and the refinement of patterns. Further, when the substrate surface is dirty, there is a problem that the effect is lowered.

前記4の方法は、具体的には、湿気を通さない高密度な膜を、真空蒸着などによって蓄積して成膜するので、高い効果を得ることができるけれども、相当なコストアップを伴うという問題がある。   Specifically, the above-mentioned method 4 accumulates and forms a high-density film that does not allow moisture to pass through, for example, vacuum deposition, so that a high effect can be obtained, but there is a problem that a considerable cost increase is involved. There is.

本発明の目的は、湿度によるゲイン変化が生じても、これを補正して精度を維持することができる分光強度測定装置およびその校正方法ならびに分光反射特性測定装置およびその校正方法を低コストに提供することである。   An object of the present invention is to provide a low-cost spectral intensity measurement device, a calibration method thereof, a spectral reflection characteristic measurement device, and a calibration method thereof that can maintain the accuracy by correcting the gain change due to humidity. It is to be.

本発明の一態様の分光強度測定装置は、被測定光を波長分離手段で複数の波長成分に分
離して、複数の受光手段でそれぞれ受光し、各波長成分の分光強度を求めるようにした、分光輝度計と称される分光強度測定装置において、校正時に前記各受光手段を照明する補正用照明手段と、前記校正時には、前記補正用照明手段を点灯し、照明された各受光手段からの出力レベルを各受光手段に設定される補正係数と演算した結果が予め記憶されている基準値と一致するように前記補正係数を校正し、測定時には、各受光手段からの出力レベルを校正された補正係数と演算し、前記各波長成分の分光強度を求める演算制御手段とを含むことを特徴とする。
In the spectral intensity measuring device of one aspect of the present invention, the light to be measured is separated into a plurality of wavelength components by the wavelength separating unit, and received by the plurality of light receiving units, respectively, and the spectral intensity of each wavelength component is obtained. In a spectral intensity measurement device called a spectral luminance meter, correction illumination means for illuminating each light receiving means during calibration, and during the calibration, the correction illumination means is lit and output from each illuminated light receiving means result of the level calculated with correction coefficients set in the respective light receiving means, calibrates the correction coefficient to match the reference value stored in advance, at the time of measurement was calibrated output level from the light receiving means And a calculation control means for calculating a correction coefficient and calculating a spectral intensity of each wavelength component.

上記の構成によれば、被測定光を波長分離手段で複数の波長成分に分離して、複数の受光手段で各波長成分の分光強度を求めるようにした分光強度測定装置を校正するにあたって、分光強度測定装置は、前記波長分離手段で被測定光を複数の各波長成分に分離し、しかも低輝度まで測定するので、たとえばフォトダイオードと電流電圧変換回路とを備えて成る受光手段からの出力としては、微弱な光電流がハイゲインのアンプで増幅されることになる。そこで、所望とする感度を得るための前記ハイゲインを実現する、特に帰還抵抗に関して、湿度によるリーク抵抗が形成され、その影響を受けることになる。前記リーク抵抗の抵抗値は、前記湿度によって変化する。   According to the above configuration, when calibrating a spectral intensity measuring apparatus in which the light to be measured is separated into a plurality of wavelength components by the wavelength separating means and the spectral intensity of each wavelength component is obtained by the plurality of light receiving means, The intensity measuring device separates the light to be measured into a plurality of wavelength components by the wavelength separation means and measures to a low luminance. For example, as an output from a light receiving means comprising a photodiode and a current-voltage conversion circuit. In this case, a weak photocurrent is amplified by a high gain amplifier. Therefore, the leakage resistance due to humidity is formed and influenced by the high gain for obtaining the desired sensitivity, particularly the feedback resistance. The resistance value of the leak resistance varies depending on the humidity.

このため、上記発明では、各受光手段からの出力レベルを補正するために、各受光手段には補正係数を設定し、演算制御手段において、前記各受光手段からの出力レベルを、たとえばその補正係数と乗算することで、前記湿度に対する補正を行うようにする。そして、比較的短い時間で変化する前記リーク抵抗の抵抗値に対応して、前記補正係数を校正するために、補正用照明手段を設け、これを前記校正時に点灯し、これによって得られた各受光手段からの出力レベルを各受光手段に設定される補正係数と演算した結果が予め記憶されている基準値と一致するように前記補正係数を校正することで、その時点での前記リーク抵抗によるゲインのずれを補正する。その後、実際の測定にあたっては、その校正された補正係数と各受光手段からの出力レベルとを演算し、前記各波長成分の分光強度を求める。 For this reason, in the above invention, in order to correct the output level from each light receiving means, a correction coefficient is set in each light receiving means, and in the calculation control means, the output level from each light receiving means is set to the correction coefficient, for example. To correct the humidity. Then, in order to calibrate the correction coefficient corresponding to the resistance value of the leak resistance that changes in a relatively short time, a correction illumination means is provided, which is lit during the calibration, and each of the obtained result of output level from the light receiving means and calculating a correction coefficient set in each light receiving means, by calibrating the correction coefficient to match the reference value stored in advance, the leakage resistance at that time Correct the gain shift caused by. Then, when the actual measurement, and calculates its calibrated correction factor and output level from the light receiving means, obtaining the spectral intensity of each wavelength component.

したがって、分光強度測定装置の湿度ドリフトの補正を、前記補正用照明手段を設けるとともに、測定シーケンスを一部変更するだけで、簡単かつ低コストに実現することができる。こうして、湿度によるゲイン変化を補正し、広い環境条件で精度を維持することができる。このことは、室外での使用が求められるポータブル機器で効果が大きい。   Therefore, the correction of the humidity drift of the spectral intensity measuring device can be realized simply and at low cost by providing the correction illumination means and partially changing the measurement sequence. In this way, gain change due to humidity can be corrected, and accuracy can be maintained under a wide range of environmental conditions. This is particularly effective for portable devices that are required to be used outdoors.

また、上記発明は、処理系の最前部であるセンサアレイへの入射光を入力信号とし、信号処理され、アナログ/デジタル変換されたデジタル信号出力を基にゲインを補正することになるので、入出力信号間の処理系のすべての要素に起因するゲイン変動を一括して補正することができ、変動要素が電流電圧変換回路に続く増幅系であっても、アナログ/デジタル変換器の基準電圧であっても、変動要因が湿度でなく、温度や経時的なものであっても、後述のモニター用受光手段およびその後段の処理系のゲインに変化がない限り、合わせて有効に補正することもできる。   In the above invention, the incident light to the sensor array which is the forefront of the processing system is used as an input signal, and the gain is corrected based on the digital signal output that has been subjected to signal processing and analog / digital conversion. Gain fluctuation caused by all the elements of the processing system between output signals can be corrected in a lump, and even if the fluctuation element is an amplification system following the current-voltage converter circuit, the reference voltage of the analog / digital converter Even if the fluctuation factor is not humidity but temperature and time-dependent, it can be corrected effectively together as long as there is no change in the gain of the monitor light receiving means and the processing system at the later stage. it can.

また、本発明の他の態様の分光強度測定装置は、前記受光手段に隣接して、前記補正用照明手段からの照明光のモニター用に、前記受光手段よりもゲイン変動が小さいモニター用受光手段をさらに備え、前記演算制御手段は、前記複数の受光手段から得た補正用出力を前記モニター用受光手段の出力で相対化することを特徴とする。   In addition, the spectral intensity measuring apparatus according to another aspect of the present invention provides a monitor light receiving unit that is adjacent to the light receiving unit and has a smaller gain variation than the light receiving unit for monitoring illumination light from the correction lighting unit. The calculation control means relativizes the correction output obtained from the plurality of light receiving means with the output of the monitor light receiving means.

上記の構成によれば、前記補正用照明手段からの照明光のモニター用に前記受光手段に隣接してモニター用受光手段を設け、後段のアンプのゲインを高くするとともに、前記帰還抵抗の抵抗値を小さくしたり、または前記帰還抵抗にディスクリートの大型部品を用いるなどして、該モニター用受光手段が、前記複数の受光手段と同程度のゲインでも、ゲイン変動が小さくなるようにする。   According to the above configuration, the monitoring light receiving means is provided adjacent to the light receiving means for monitoring the illumination light from the correction lighting means, the gain of the subsequent amplifier is increased, and the resistance value of the feedback resistor The monitor light-receiving means reduces the gain fluctuation even when the gain of the monitoring light-receiving means is similar to that of the plurality of light-receiving means.

したがって、前記モニター用受光手段で経年などによる前記補正用照明手段からの補正用の照明光強度の変化を検知し、さらに各受光手段からの補正用出力をそのモニター用受光手段の出力で相対化することで、その変化を相殺し、前記湿度ドリフトの補正を行う補正係数の設定を、一層正確に行うことができる。また、変動要因が修理や生産工程での処理系の部品交換であっても、前記相対化していることで、モニター用受光手段およびその後段の処理系のゲインに変化がない限り、自動的に補正することができる。   Therefore, the monitor light receiving means detects a change in correction illumination light intensity from the correction illumination means due to aging, etc., and further makes the correction output from each light receiving means relative to the output of the monitor light receiving means. By doing so, it is possible to more accurately set the correction coefficient for canceling the change and correcting the humidity drift. Moreover, even if the fluctuation factor is the replacement of the processing system parts in the repair or production process, it is automatically made as long as there is no change in the gain of the light receiving means for monitoring and the subsequent processing system because of the relative relationship. It can be corrected.

さらにまた、本発明の他の態様の分光強度測定装置は、前記モニター用受光手段の後段のアンプのゲインを高くするとともに、該モニター用受光手段における電流電圧変換回路の帰還抵抗の抵抗値を、1MΩ以下とすることを特徴とする。   Furthermore, the spectral intensity measuring device according to another aspect of the present invention increases the gain of the amplifier at the subsequent stage of the monitor light receiving means, and sets the resistance value of the feedback resistor of the current-voltage conversion circuit in the monitor light receiving means, It is characterized by being 1 MΩ or less.

上記の構成によれば、前記ハイゲインを実現するために、たとえば数百MΩに設定される各受光手段の帰還抵抗の抵抗値に対して、前記モニター用受光手段の後段のアンプのゲインを高くすることで、該モニター用受光手段の帰還抵抗の抵抗値が充分低く設定される。   According to the above configuration, in order to realize the high gain, the gain of the amplifier at the subsequent stage of the light receiving means for monitoring is increased with respect to the resistance value of the feedback resistance of each light receiving means set to, for example, several hundred MΩ. As a result, the resistance value of the feedback resistance of the light receiving means for monitoring is set sufficiently low.

これによって、数百GΩ程度の前記リーク抵抗に対して、該モニター用受光手段のゲイン変動は殆どなく(充分小さく)、各受光手段のゲイン変動の略0.1%以下とすることができる。したがって、前記経年などによる前記補正用照明手段からの補正用の照射光強度の変化を、前記リーク抵抗の影響を受けることなく、検知することができる。   As a result, for the leak resistance of about several hundred GΩ, there is almost no gain fluctuation of the light receiving means for monitoring (sufficiently small), and the gain fluctuation of each light receiving means can be reduced to about 0.1% or less. Therefore, it is possible to detect a change in the irradiation light intensity for correction from the correction illumination unit due to the aging or the like without being affected by the leak resistance.

また、本発明の他の態様の分光強度測定装置では、前記補正用照明手段の点灯中は、前記被測定光を遮断する遮断手段を備えることを特徴とする。   The spectral intensity measuring device according to another aspect of the present invention is characterized by further comprising a blocking unit that blocks the measured light while the correction illumination unit is turned on.

上記の構成によれば、外部からの入射光の影響を受けずに、前記補正用照明手段からの補正用の照明光のみに基づいて、正確にゲイン変動を補正することができる。   According to the above configuration, it is possible to accurately correct the gain fluctuation based only on the correction illumination light from the correction illumination means without being affected by the incident light from the outside.

さらにまた、本発明の他の態様の分光強度測定装置は、前記補正用照明手段による照明光は、該補正用照明手段からの直達光であることを特徴とする。   Furthermore, the spectral intensity measuring device according to another aspect of the present invention is characterized in that the illumination light from the correction illumination means is direct light from the correction illumination means.

上記の構成によれば、補正用照明手段からの照明光は、直達光で受光手段へ到達する。したがって、前記波長分離手段や、短波長カットフィルタが設けられている場合には、その短波長カットフィルタも経ることなく、照明光が受光手段へ直接到達するので、特定の受光手段だけ照明光レベルが低下したりすることなく、均一に照明し、正確な校正を行うことができる。   According to said structure, the illumination light from the correction | amendment illumination means reaches | attains a light-receiving means with direct light. Therefore, when the wavelength separation means or the short wavelength cut filter is provided, the illumination light directly reaches the light receiving means without passing through the short wavelength cut filter. It is possible to illuminate uniformly and accurately calibrate without lowering.

また、本発明の一態様では、被測定光を複数の波長成分に分離して、各波長成分の分光強度を求めるようにした分光強度測定装置であって、前記各波長成分に分離された被測定光をそれぞれ受光する複数の受光手段、校正時に照明する補正用照明手段を備えた分光強度測定装置を校正するための方法において、前記補正用照明手段を点灯し、照明された各受光手段からの出力レベルを各受光手段に設定される補正係数と演算した結果が、予め記憶されている基準値と一致するように前記補正係数を校正し、測定時には、各受光手段からの出力レベルを校正された補正係数と演算し、前記各波長成分の分光強度を求めることを特徴とする。 Further, according to one aspect of the present invention, there is provided a spectral intensity measuring apparatus that separates measured light into a plurality of wavelength components and obtains the spectral intensity of each wavelength component, wherein the measured light is separated into the wavelength components. In a method for calibrating a spectral intensity measuring device including a plurality of light receiving means for receiving measurement light and a correction illumination means for illuminating at the time of calibration, the correction illumination means is turned on, and each of the illuminated light receiving means The correction coefficient is calibrated so that the result of calculating the output level with the correction coefficient set for each light receiving means matches the reference value stored in advance, and the output level from each light receiving means is calibrated during measurement. And calculating the spectral intensity of each wavelength component.

上記の構成によれば、被測定光を複数の波長成分に分離して、各波長成分の分光強度を求めるようにした分光強度測定装置を校正するにあたって、分光強度測定装置は、被測定光を波長分離手段で複数の各波長成分に分離し、しかも低輝度まで測定するので、たとえばフォトダイオードと電流電圧変換回路とを備えて成る受光手段からの出力としては、微弱な光電流がハイゲインのアンプで増幅されることになる。そこで、所望とする感度を得るための前記ハイゲインを実現する、特に帰還抵抗に関して、湿度によるリーク抵抗が形成され、その影響を受けることになる。前記リーク抵抗の抵抗値は、前記湿度によって変化する。   According to the above configuration, when calibrating a spectral intensity measuring apparatus that separates measured light into a plurality of wavelength components and obtains the spectral intensity of each wavelength component, the spectral intensity measuring apparatus converts the measured light into The wavelength separation means separates each wavelength component and measures even low luminance. For example, a weak photocurrent is a high gain amplifier as the output from the light receiving means comprising a photodiode and a current-voltage conversion circuit. Will be amplified. Therefore, the leakage resistance due to humidity is formed and influenced by the high gain for obtaining the desired sensitivity, particularly the feedback resistance. The resistance value of the leak resistance varies depending on the humidity.

このため、上記発明では、各受光手段からの出力レベルを補正するために、各受光手段には補正係数を設定し、演算制御手段において、前記各受光手段からの出力レベルを、たとえばその補正係数と乗算することで、前記湿度に対する補正を行うようにする。そして、比較的短い時間で変化する前記リーク抵抗の抵抗値に対応して、前記補正係数を設定するために、補正用照明手段を設け、これを前記校正時に点灯し、これによって得られた各受光手段からの出力レベルを各受光手段に設定される補正係数と演算した結果が予め記憶されている基準値と一致するように前記補正係数を校正することで、その時点での前記リーク抵抗によるゲインのずれを補正する。その後、実際の測定にあたっては、その校正された補正係数と各受光手段からの出力レベルとを演算し、前記各波長成分の分光強度を求める。 For this reason, in the above invention, in order to correct the output level from each light receiving means, a correction coefficient is set for each light receiving means, and in the calculation control means, the output level from each light receiving means is set to, for example, the correction coefficient. To correct the humidity. And in order to set the correction coefficient corresponding to the resistance value of the leak resistance that changes in a relatively short time, a correction illumination means is provided, which is lit during the calibration, and each of the obtained result of output level from the light receiving means and calculating a correction coefficient set in each light receiving means, by calibrating the correction coefficient to match the reference value stored in advance, the leakage resistance at that time Correct the gain shift caused by. Then, when the actual measurement, and calculates its calibrated correction factor and output level from the light receiving means, obtaining the spectral intensity of each wavelength component.

したがって、分光強度測定装置の湿度ドリフトの補正を、前記補正用照明手段を設けるとともに、測定シーケンスを一部変更するだけで、簡単かつ低コストに実現することができる。こうして、湿度によるゲイン変化を補正し、広い環境条件で精度を維持することができる。このことは、室外での使用が求められるポータブル機器で効果が大きい。   Therefore, the correction of the humidity drift of the spectral intensity measuring device can be realized simply and at low cost by providing the correction illumination means and partially changing the measurement sequence. In this way, gain change due to humidity can be corrected, and accuracy can be maintained under a wide range of environmental conditions. This is particularly effective for portable devices that are required to be used outdoors.

また、上記発明は、処理系の最前部であるセンサアレイへの入射光を入力信号とし、信号処理され、アナログ/デジタル変換されたデジタル信号出力を基にゲインを補正することになるので、入出力信号間の処理系のすべての要素に起因するゲイン変動を一括して補正することができ、変動要素が電流電圧変換回路に続く増幅系であっても、アナログ/デジタル変換の基準電圧であっても、変動要因が湿度でなく、温度や経時的なものであっても、合わせて有効に補正することもできる。   In the above invention, the incident light to the sensor array which is the forefront of the processing system is used as an input signal, and the gain is corrected based on the digital signal output that has been subjected to signal processing and analog / digital conversion. Gain fluctuations due to all elements of the processing system between output signals can be corrected in a lump. Even if the variable element is an amplification system following the current-voltage converter circuit, it is the reference voltage for analog / digital conversion. However, even if the fluctuation factor is not humidity but temperature or time-lapse, it can also be corrected effectively.

さらにまた、本発明の他の態様の分光反射特性測定装置は、照明手段からの照明光によって照明された被測定試料の反射光および前記照明光そのものである参照光を、波長分離手段でそれぞれ複数の波長成分に分離して、前記反射光および参照光毎に設けられた複数の受光手段でそれぞれ受光し、演算制御手段で相互に対応する各波長成分の受光レベルの相対比を求めることで、前記被測定試料の分光反射特性を求めるようにした分光反射特性測定装置において、校正時に前記反射光用および参照光用の各受光手段を照明する補正用照明手段を備え、前記演算制御手段は、前記校正時には、補正用照明手段を点灯し、照明された各受光手段からの出力レベルの相対比を各受光手段に設定される補正係数と演算した結果が予め記憶されている基準値と一致するように前記補正係数を校正し、測定時には、各受光手段からの出力レベルの相対比を校正された補正係数と演算し、前記各波長成分の相対比を求めることを特徴とする。 Furthermore, in the spectral reflection characteristic measuring apparatus according to another aspect of the present invention, a plurality of reflected lights of the sample to be measured illuminated by the illumination light from the illumination means and reference light that is the illumination light itself are each provided by the wavelength separation means. The light components are respectively received by a plurality of light receiving means provided for each of the reflected light and the reference light, and the arithmetic control means obtains the relative ratio of the light receiving levels of the corresponding wavelength components, In the spectral reflection characteristic measuring apparatus configured to obtain the spectral reflection characteristic of the sample to be measured, the spectral reflection characteristic measuring apparatus includes correction illumination means for illuminating each of the reflected light and reference light receiving means during calibration, and the calculation control means includes: wherein at the time of calibration, and lighting the correction illumination means, a result of the relative ratio of the output level from the light receiving means are illuminated computed and the correction coefficient set in each light receiving means is prestored Calibrating the correction coefficient to match the reference value, at the time of measurement, it calculates a correction coefficient which is calibrated relative ratio of the output level from the light receiving means, and characterized by determining the relative ratio of the respective wavelength components To do.

上記の構成によれば、積分球内などで、被測定試料を照明手段からの照明光によって照明し、それによる反射光を波長分離手段で複数の波長成分に分離して、前記各波長成分毎の受光手段でそれぞれ受光する一方、前記照明光そのものである参照光も同様に、波長分離手段で複数の波長成分に分離して、前記各波長成分毎の受光手段でそれぞれ受光し、演算制御手段で相互に対応する各波長成分の受光レベルの相対比を求めることで、前記被測定試料の分光反射特性を求めるようにした、分光測色計と称される分光反射特性測定装置を校正するにあたって、該分光反射特性測定装置は、前記波長分離手段で被測定光および参照光を複数の各波長成分に分離するので、たとえばフォトダイオードと電流電圧変換回路とを備えて成る受光手段からの出力としては、微弱な光電流がハイゲインのアンプで増幅されることになる。そこで、所望とする感度を得るための前記ハイゲインを実現する、特に帰還抵抗に関して、湿度によるリーク抵抗が形成され、その影響を受けることになる。前記リーク抵抗の抵抗値は、前記湿度によって変化する。   According to the above configuration, the sample to be measured is illuminated with illumination light from the illuminating means in an integrating sphere, etc., and the reflected light is separated into a plurality of wavelength components by the wavelength separating means, and each wavelength component is separated. In the same manner, the reference light, which is the illumination light itself, is also separated into a plurality of wavelength components by the wavelength separating means and received by the light receiving means for each wavelength component, respectively, and the arithmetic control means In calibrating a spectral reflection characteristic measuring device called a spectrocolorimeter, which calculates the spectral reflection characteristic of the sample to be measured by determining the relative ratio of the light receiving levels of the respective wavelength components corresponding to each other. The spectral reflection characteristic measuring apparatus separates the light to be measured and the reference light into a plurality of wavelength components by the wavelength separating means, so that, for example, from the light receiving means comprising a photodiode and a current-voltage conversion circuit. The output will be weak photocurrent is amplified by the amplifier high gain. Therefore, the leakage resistance due to humidity is formed and influenced by the high gain for obtaining the desired sensitivity, particularly the feedback resistance. The resistance value of the leak resistance varies depending on the humidity.

このため、上記発明では、各波長成分の出力の相対比を補正するために、各波長成分の前記相対比の補正係数を設定し、演算制御手段において、前記相対比を求めるとともに、たとえばその補正係数と乗算することで、前記湿度に対する補正を行うようにする。そして、比較的短い時間で変化する前記リーク抵抗の抵抗値に対応して、前記補正係数を設定するために、補正用照明手段を設け、これを前記校正時に点灯し、これによって得られた各波長成分の相対比を各波長成分に設定される補正係数と演算した結果が予め記憶されている基準値と一致するように前記補正係数を校正することで、その時点での前記リーク抵抗によるゲインのずれを補正する。その後、実際の測定にあたっては、その校正された補正係数と各波長成分の相対比とを演算し、前記被測定試料の分光反射特性を求める。 For this reason, in the above invention, in order to correct the relative ratio of the output of each wavelength component, the correction coefficient of the relative ratio of each wavelength component is set, and the arithmetic control means obtains the relative ratio and, for example, corrects it. The humidity is corrected by multiplying by a coefficient. And in order to set the correction coefficient corresponding to the resistance value of the leak resistance that changes in a relatively short time, a correction illumination means is provided, which is lit during the calibration, and each of the obtained results the relative ratio of the wavelength component calculated with correction coefficients set in respective wavelength components, by calibrating the correction coefficient to match the reference value stored in advance, by the leak resistance at the time Correct the gain deviation. Then, when the actual measurement, and calculates its calibrated correction coefficient and the relative ratio of each wavelength component, determine the spectral reflection characteristics of the sample to be measured.

したがって、分光反射特性測定装置の湿度ドリフトの補正を、前記補正用照明手段を設けるとともに、測定シーケンスを一部変更するだけで、簡単かつ低コストに実現することができる。こうして、湿度によるゲイン変化を補正し、広い環境条件で精度を維持することができる。このことは、室外での使用が求められるポータブル機器で効果が大きい。   Therefore, the correction of the humidity drift of the spectral reflection characteristic measuring apparatus can be realized simply and at low cost by providing the correction illumination means and changing a part of the measurement sequence. In this way, gain change due to humidity can be corrected, and accuracy can be maintained under a wide range of environmental conditions. This is particularly effective for portable devices that are required to be used outdoors.

また、上記発明は、処理系の最前部であるセンサアレイへの入射光を入力信号とし、信号処理され、アナログ/デジタル変換されたデジタル信号出力を基にゲインを補正することになるので、入出力信号間の処理系のすべての要素に起因するゲイン変動を一括して補正することができ、変動要素が電流電圧変換回路に続く増幅系であっても、アナログ/デジタル変換器の基準電圧であっても、変動要因が湿度でなく、温度や経時的なものであっても、合わせて有効に補正することもできる。   In the above invention, the incident light to the sensor array which is the forefront of the processing system is used as an input signal, and the gain is corrected based on the digital signal output that has been subjected to signal processing and analog / digital conversion. Gain fluctuation caused by all the elements of the processing system between output signals can be corrected in a lump, and even if the fluctuation element is an amplification system following the current-voltage converter circuit, the reference voltage of the analog / digital converter Even if the variation factor is not the humidity but the temperature and the time, it can be corrected effectively.

さらにまた、比測定であって、前記分光強度測定装置におけるモニター用受光手段を設ける必要のない該分光反射特性測定装置では、処理系のいかなる部品交換によるゲイン変化も補正されるので、生産や修理での部品交換に伴う再校正を減らし、一層のコスト削減を図ることができる。すなわち、部品交換しても再校正の必要がないので、ゲイン校正のための設備のない各地の修理拠点で殆どの修理が可能になり、また修理に要する期間が短縮されるというユーザーメリットも生まれる。   Furthermore, in the spectral reflection characteristic measuring apparatus which is a ratio measurement and does not require the light receiving means for monitoring in the spectral intensity measuring apparatus, a gain change due to any part replacement of the processing system is corrected, so that production and repair are possible. This reduces the recalibration associated with the replacement of parts at, thereby further reducing costs. In other words, there is no need for recalibration even if parts are replaced, so that most repairs can be made at various repair bases that do not have equipment for gain calibration, and the time required for repair can be shortened. .

また、本発明の他の態様の分光反射特性測定装置では、前記補正用照明手段による照明光は、該補正用照明手段からの直達光であることを特徴とする。   In the spectral reflection characteristic measuring apparatus according to another aspect of the present invention, the illumination light from the correction illumination unit is direct light from the correction illumination unit.

上記の構成によれば、補正用照明手段からの照明光は、直達光で受光手段へ到達する。したがって、前記波長分離手段や、短波長カットフィルタが設けられている場合には、その短波長カットフィルタも経ることなく、照明光が受光手段へ直接到達するので、特定の受光手段だけ照明光レベルが低下したりすることなく、均一に照明し、正確な校正を行うことができる。   According to said structure, the illumination light from the correction | amendment illumination means reaches | attains a light-receiving means with direct light. Therefore, when the wavelength separation means or the short wavelength cut filter is provided, the illumination light directly reaches the light receiving means without passing through the short wavelength cut filter. It is possible to illuminate uniformly and accurately calibrate without lowering.

さらにまた、本発明の他の態様では、照明手段からの照明光によって照明された被測定試料の反射光および前記照明光そのものである参照光を、それぞれ複数の波長成分に分離して受光し、相互に対応する各波長成分の受光レベルの相対比を求めることで、前記被測定試料の分光反射特性を求めるようにした分光反射特性測定装置であって、前記反射光および参照光の各波長成分に分離された被測定光をそれぞれ受光する複数の受光手段を、校正時に照明する補正用照明手段を備えた分光反射特性測定装置を校正するための方法において、前記補正用照明手段を点灯し、照明された反射光および参照光用の各受光手段からの相互に対応する各波長成分の受光レベルの相対比を、前記各波長成分に設定される補正係数と演算した結果が、予め記憶されている基準値と一致するように前記補正係数を校正し、測定時には、前記各波長成分の出力の相対比を校正された補正係数と演算し、前記被測定試料の分光反射特性を求めることを特徴とする。 Furthermore, in another aspect of the present invention, the reflected light of the sample to be measured illuminated by the illumination light from the illumination means and the reference light that is the illumination light itself are separated into a plurality of wavelength components and received. A spectral reflection characteristic measuring apparatus for obtaining a spectral reflection characteristic of the sample to be measured by obtaining a relative ratio of light receiving levels of each wavelength component corresponding to each other, wherein each wavelength component of the reflected light and the reference light In the method for calibrating a spectral reflection characteristic measuring apparatus provided with a correction illumination means for illuminating a plurality of light receiving means that respectively receive light to be measured separated at the time of calibration, the correction illumination means is turned on, The result of calculating the relative ratio of the received light levels of the corresponding wavelength components from the respective light receiving means for the reflected reflected light and the reference light with the correction coefficient set for each wavelength component is recorded in advance. The correction coefficient is calibrated so as to coincide with the reference value that is set, and at the time of measurement, the relative ratio of the output of each wavelength component is calculated with the calibrated correction coefficient, and the spectral reflection characteristic of the sample to be measured is obtained. It is characterized by.

上記の構成によれば、照明手段からの照明光によって照明された被測定試料の反射光および前記照明光そのものである参照光を、それぞれ複数の波長成分に分離して、相互に対応する各波長成分の受光レベルの相対比を求めることで、前記被測定試料の分光反射特性を求めるようにした分光反射特性測定装置を校正するにあたって、分光反射特性測定装置は、前記反射光および照明光を波長分離手段で複数の各波長成分に分離し、しかも低輝度まで測定するので、たとえばフォトダイオードと電流電圧変換回路とを備えて成る受光手段からの出力としては、微弱な光電流がハイゲインのアンプで増幅されることになる。そこで、所望とする感度を得るための前記ハイゲインを実現する、特に帰還抵抗に関して、湿度によるリーク抵抗が形成され、その影響を受けることになる。前記リーク抵抗の抵抗値は、前記湿度によって変化する。 According to the above configuration, the reflected light of the sample to be measured illuminated by the illumination light from the illumination means and the reference light that is the illumination light itself are separated into a plurality of wavelength components, respectively, and the wavelengths corresponding to each other are separated. In calibrating the spectral reflection characteristic measuring apparatus that calculates the spectral reflection characteristic of the sample to be measured by calculating the relative ratio of the light reception levels of the components, the spectral reflection characteristic measuring apparatus uses the reflected light and the illumination light as wavelengths. The light is separated into a plurality of wavelength components by the separating means and measured to a low luminance. For example, a weak photocurrent is output by a high gain amplifier as an output from the light receiving means comprising a photodiode and a current-voltage conversion circuit. It will be amplified. Therefore, to achieve the high gain in order to obtain the sensitivity of the desired, in particular with respect to the feedback resistor, the leak resistance due to humidity is formed, will be affected in its. The resistance value of the leak resistance varies depending on the humidity.

このため、上記発明では、各波長成分の出力の相対比を補正するために、各波長成分の前記相対比の補正係数を設定し、演算制御手段において、前記相対比を求めるとともに、たとえばその補正係数と乗算することで、前記湿度に対する補正を行うようにする。そして、比較的短い時間で変化する前記リーク抵抗の抵抗値に対応して、前記補正係数を校正するために、補正用照明手段を設け、これを前記校正時に点灯し、これによって得られた各波長成分の相対比を各波長成分に設定される補正係数と演算した結果が予め記憶されている基準値と一致するように前記補正係数を校正することで、その時点での前記リーク抵抗によるゲインのずれを補正する。その後、実際の測定にあたっては、その校正された補正係数と各波長成分の相対比とを演算し、前記被測定試料の分光反射特性を求める。 For this reason, in the above invention, in order to correct the relative ratio of the output of each wavelength component, the correction coefficient of the relative ratio of each wavelength component is set, and the arithmetic control means obtains the relative ratio and, for example, corrects it. The humidity is corrected by multiplying by a coefficient. Then, in order to calibrate the correction coefficient corresponding to the resistance value of the leak resistance that changes in a relatively short time, a correction illumination means is provided, which is lit during the calibration, and each of the obtained results the relative ratio of the wavelength component calculated with correction coefficients set in respective wavelength components, by calibrating the correction coefficient to match the reference value stored in advance, by the leak resistance at the time Correct the gain deviation. Then, when the actual measurement, and calculates its calibrated correction coefficient and the relative ratio of each wavelength component, determine the spectral reflection characteristics of the sample to be measured.

したがって、分光反射特性測定装置の湿度ドリフトの補正を、前記補正用照明手段を設けるとともに、測定シーケンスを一部変更するだけで、簡単かつ低コストに実現することができる。こうして、湿度によるゲイン変化を補正し、広い環境条件で精度を維持することができる。このことは、室外での使用が求められるポータブル機器で効果が大きい。   Therefore, the correction of the humidity drift of the spectral reflection characteristic measuring apparatus can be realized simply and at low cost by providing the correction illumination means and changing a part of the measurement sequence. In this way, gain change due to humidity can be corrected, and accuracy can be maintained under a wide range of environmental conditions. This is particularly effective for portable devices that are required to be used outdoors.

また、上記発明は、処理系の最前部であるセンサアレイへの入射光を入力信号とし、信号処理され、アナログ/デジタル変換されたデジタル信号出力を基にゲインを補正することになるので、入出力信号間の処理系のすべての要素に起因するゲイン変動を一括して補正することができ、変動要素が電流電圧変換回路に続く増幅系であっても、アナログ/デジタル変換器の基準電圧であっても、変動要因が湿度でなく、温度や経時的なものであっても、合わせて有効に補正することもできる。   In the above invention, the incident light to the sensor array which is the forefront of the processing system is used as an input signal, and the gain is corrected based on the digital signal output that has been subjected to signal processing and analog / digital conversion. Gain fluctuation caused by all the elements of the processing system between output signals can be corrected in a lump, and even if the fluctuation element is an amplification system following the current-voltage converter circuit, the reference voltage of the analog / digital converter Even if the variation factor is not the humidity but the temperature and the time, it can be corrected effectively.

さらにまた、比測定であって、前記分光強度測定装置におけるモニター用受光手段を設ける必要のない該分光反射特性測定装置では、処理系のいかなる部品交換によるゲイン変化も補正されるので、生産や修理での部品交換に伴う再校正を減らし、一層のコスト削減を図ることができる。すなわち、部品交換しても再校正の必要がないので、ゲイン校正のための設備のない各地の修理拠点で殆どの修理が可能になり、また修理に要する期間が短縮されるというユーザーメリットも生まれる。   Furthermore, in the spectral reflection characteristic measuring apparatus which is a ratio measurement and does not require the light receiving means for monitoring in the spectral intensity measuring apparatus, a gain change due to any part replacement of the processing system is corrected, so that production and repair are possible. This reduces the recalibration associated with the replacement of parts at, thereby further reducing costs. In other words, there is no need for recalibration even if parts are replaced, so that most repairs can be made at various repair bases that do not have equipment for gain calibration, and the time required for repair can be shortened. .

本発明の各態様の分光強度測定装置は、以上のように、被測定光を複数の波長成分に分離して、複数の受光手段で各波長成分の分光強度を求めるようにした、分光輝度計と称される分光強度測定装置を校正するにあたって、該分光強度測定装置では、受光手段において、微弱な光電流がハイゲインのアンプで増幅されることになり、所望とする感度を得るための前記ハイゲインを実現する、特に帰還抵抗に関して、湿度によるリーク抵抗が形成され、その影響を受けることになるので、各受光手段には補正係数を設定し、前記各受光手段からの出力レベルを、たとえばその補正係数と乗算することで、前記湿度に対する補正を行うようにする。さらに、比較的短い時間で変化する前記リーク抵抗の抵抗値に対応して、前記補正係数を設定するために、補正用照明手段を設け、これを前記校正時に点灯し、これによって得られた各受光手段からの出力レベルを各受光手段に設定される補正係数と演算した結果が予め記憶されている基準値と一致するように前記補正係数を校正することで、その時点での前記リーク抵抗によるゲインのずれを補正する。その後、実際の測定にあたっては、その校正された補正係数と各受光手段からの出力レベルとを演算し、前記各波長成分の分光強度を求める。 As described above, the spectral intensity measuring device according to each aspect of the present invention is a spectral luminance meter in which the light to be measured is separated into a plurality of wavelength components and the spectral intensity of each wavelength component is obtained by a plurality of light receiving means. When calibrating a spectral intensity measuring device referred to as above, in the spectral intensity measuring device, a weak photocurrent is amplified by a high gain amplifier in the light receiving means, and the high gain for obtaining a desired sensitivity is obtained. In particular, with respect to the feedback resistance, a leakage resistance due to humidity is formed and is affected by this. Therefore, a correction coefficient is set for each light receiving means, and the output level from each light receiving means is corrected, for example, The humidity is corrected by multiplying by a coefficient. Furthermore, in order to set the correction coefficient corresponding to the resistance value of the leak resistance that changes in a relatively short time, a correction illumination means is provided, which is lit during the calibration, result of output level from the light receiving means and calculating a correction coefficient set in each light receiving means, by calibrating the correction coefficient to match the reference value stored in advance, the leakage resistance at that time Correct the gain shift caused by. Then, when the actual measurement, and calculates its calibrated correction factor and output level from the light receiving means, obtaining the spectral intensity of each wavelength component.

それゆえ、分光強度測定装置の湿度ドリフトの補正を、前記補正用照明手段を設けるとともに、測定シーケンスを一部変更するだけで、簡単かつ低コストに実現することができる。   Therefore, correction of the humidity drift of the spectral intensity measuring device can be realized simply and at low cost by providing the correction illumination means and changing part of the measurement sequence.

さらにまた、本発明の各態様の分光反射特性測定装置は、以上のように、積分球内などで、被測定試料を照明手段からの照明光によって照明し、それによる反射光を複数の波長成分に分離して、前記各波長成分毎の受光手段でそれぞれ受光する一方、前記照明光そのものである参照光も同様に複数の波長成分に分離して、前記各波長成分毎の受光手段でそれぞれ受光し、相互に対応する各波長成分の受光レベルの相対比を求めることで、前記被測定試料の分光反射特性を求めるようにした、分光測色計と称される分光反射特性測定装置を校正するにあたって、該分光反射特性測定装置では、受光手段において、微弱な光電流がハイゲインのアンプで増幅されることになり、所望とする感度を得るための前記ハイゲインを実現する、特に帰還抵抗に関して、湿度によるリーク抵抗が形成され、その影響を受けることになるので、各波長成分の前記相対比には補正係数を設定し、前記相対比を、たとえばその補正係数と乗算することで、前記湿度に対する補正を行うようにする。さらに、比較的短い時間で変化する前記リーク抵抗の抵抗値に対応して、前記補正係数を設定するために、補正用照明手段を設け、これを前記校正時に点灯し、これによって得られた各波長成分の相対比を各波長成分に設定される補正係数と演算した結果が予め記憶されている基準値と一致するように前記補正係数を校正することで、その時点での前記リーク抵抗によるゲインのずれを補正する。その後、実際の測定にあたっては、その校正された補正係数と各波長成分の相対比とを演算し、前記被測定試料の分光反射特性を求める。

Furthermore, as described above, the spectral reflection characteristic measuring apparatus of each aspect of the present invention illuminates the sample to be measured with illumination light from the illuminating means in an integrating sphere or the like, and reflects the reflected light with a plurality of wavelength components. The reference light, which is the illumination light itself, is similarly separated into a plurality of wavelength components and received by the light receiving means for each wavelength component. Then, a spectral reflection characteristic measuring device called a spectrocolorimeter that calibrates the spectral reflection characteristic of the sample to be measured by determining the relative ratio of the light receiving levels of the corresponding wavelength components is calibrated. In this spectral reflection characteristic measuring apparatus, a weak photocurrent is amplified by a high gain amplifier in the light receiving means, and the high gain for obtaining a desired sensitivity is realized, particularly a feedback resistor. , A leakage resistance due to humidity is formed and is affected by it, so that a correction coefficient is set for the relative ratio of each wavelength component, and the relative ratio is multiplied by the correction coefficient, for example, Make corrections for humidity. Furthermore, in order to set the correction coefficient corresponding to the resistance value of the leak resistance that changes in a relatively short time, a correction illumination means is provided, which is lit during the calibration, results the relative ratio of the wavelength component calculated with correction coefficients set in respective wavelength components, by calibrating the correction coefficient to match the reference value stored in advance, by the leak resistance at the time Correct the gain deviation. Then, when the actual measurement, and calculates its calibrated correction coefficient and the relative ratio of each wavelength component, determine the spectral reflection characteristics of the sample to be measured.

それゆえ、分光反射特性測定装置の湿度ドリフトの補正を、前記補正用照明手段を設けるとともに、測定シーケンスを一部変更するだけで、簡単かつ低コストに実現することができる。   Therefore, correction of the humidity drift of the spectral reflection characteristic measuring apparatus can be realized simply and at low cost by providing the correction illumination means and partially changing the measurement sequence.

[実施の形態1]
図1は、本発明の実施の一形態の分光強度測定装置である分光輝度計31の構成を模式的に示す断面図である。この分光輝度計31は、大略的に、ポリクロメータ32と、受光光学系33と、シャッタ装置34と、処理回路35と、演算制御回路36とを備えて構成される。
[Embodiment 1]
FIG. 1 is a cross-sectional view schematically showing a configuration of a spectral luminance meter 31 that is a spectral intensity measuring apparatus according to an embodiment of the present invention. The spectral luminance meter 31 generally includes a polychromator 32, a light receiving optical system 33, a shutter device 34, a processing circuit 35, and an arithmetic control circuit 36.

被測定光は、受光光学系33を介して、前記ポリクロメータ32の入射開口SLに収束する。前記入射開口SLの前には、前記演算制御回路36によって制御されるシャッタ装置34が設けられており、被測定光の入射が制御される。具体的には、非測定時や後述の校正時には遮蔽され、測光時には開放される。   The light to be measured converges on the entrance aperture SL of the polychromator 32 via the light receiving optical system 33. In front of the entrance aperture SL, a shutter device 34 controlled by the arithmetic control circuit 36 is provided to control the incidence of the light to be measured. Specifically, it is shielded at the time of non-measurement and at the time of calibration described later, and is opened at the time of photometry.

前記入射開口SLから入射した被測定光は、結像光学系39によって平行光束となって回折格子40に入射し、波長ごとに異なる方向に分散反射され、再び結像光学系39を介して、前記入射開口SLが形成された壁面側に設けられた受光センサアレイSA上に前記入射開口SLの分散像を形成する。   The light to be measured that has entered from the entrance aperture SL is converted into a parallel light flux by the imaging optical system 39 and is incident on the diffraction grating 40, and is dispersedly reflected in different directions for each wavelength, and again through the imaging optical system 39. A dispersion image of the incident aperture SL is formed on the light receiving sensor array SA provided on the wall surface where the incident aperture SL is formed.

前記受光センサアレイSAは、図2に示すように、n個(たとえばn=32)の画素センサS1,S2,・・・,Snが等間隔に並んだ前記シリコンフォトダイオードアレイから成り、画素センサS2〜Snには、たとえば400〜700nmの単色光による前記入射開口SLの分散像が作成される。前記受光センサアレイSAの各画素センサS1〜Snの出力は、前記図7で示す処理回路11から成る処理回路35の処理を経て、演算制御回路36に送られる。前記受光センサアレイSAと処理回路35とは、受光手段を構成する。演算制御手段である演算制御回路36は、各受光手段の出力信号s1〜snから、後述するようにして、被測定光の分光強度を求めて出力する。   As shown in FIG. 2, the light receiving sensor array SA includes the silicon photodiode array in which n (for example, n = 32) pixel sensors S1, S2,..., Sn are arranged at equal intervals. In S2 to Sn, for example, a dispersion image of the incident aperture SL is formed by monochromatic light of 400 to 700 nm. The outputs of the pixel sensors S1 to Sn of the light receiving sensor array SA are sent to the arithmetic control circuit 36 through the processing of the processing circuit 35 comprising the processing circuit 11 shown in FIG. The light receiving sensor array SA and the processing circuit 35 constitute light receiving means. The arithmetic control circuit 36 which is an arithmetic control means calculates | requires and outputs the spectral intensity of the to-be-measured light from the output signals s1-sn of each light-receiving means as mentioned later.

注目すべきは、ポリクロメータ32には、照明手段であるゲイン補正用LED42が設けられていることである。このゲイン補正用LED42は、前記演算制御回路36によって点灯制御され、具体的には、後述の校正時には点灯され、非測定時および測定時には消灯される。さらに、その点灯時の各受光手段の出力信号s11〜s1nから、演算制御回路36が、後述するように、前記図8で示す帰還抵抗Rf’によるオペアンプAの湿度ドリフトを補正することである。   It should be noted that the polychromator 32 is provided with a gain correction LED 42 as an illumination means. The gain correction LED 42 is controlled to be turned on by the arithmetic control circuit 36. Specifically, the gain correction LED 42 is turned on during calibration, which will be described later, and is turned off during non-measurement and measurement. Further, the arithmetic control circuit 36 corrects the humidity drift of the operational amplifier A by the feedback resistor Rf 'shown in FIG. 8, as will be described later, from the output signals s11 to s1n of the respective light receiving means at the time of lighting.

上述のように構成される分光輝度計31において、以下に前記湿度ドリフトに対する校正動作を説明する。演算制御回路36は、シャッタを開いて被測定光に対する各受光手段の出力信号s21〜s2nを、前記マルチプレクサ12によって順次取込んで記憶する。その直後に、シャッタを閉じて補正用LED42を発光させ、その出力光で照明された各受光手段の前記出力信号s11〜s1nも、同様に順次取込んで記憶する。   In the spectral luminance meter 31 configured as described above, the calibration operation for the humidity drift will be described below. The arithmetic control circuit 36 opens the shutter, and sequentially receives the output signals s21 to s2n of each light receiving means for the light to be measured by the multiplexer 12 and stores them. Immediately thereafter, the shutter is closed to cause the correction LED 42 to emit light, and the output signals s11 to s1n of the respective light receiving means illuminated with the output light are sequentially captured and stored in the same manner.

前記補正用LED42は、受光センサアレイSAの全画素センサS1〜Snをほぼ一様に照明するように配置される。また、この補正用LED42の出力光は、回折格子40を経ず、直接受光センサアレイSAに照射されるので、各受光手段の出力信号s11〜s1nは、前記結像光学系39や回折格子40などの分光光学系の分光特性およびその変化や、出力光の波長変化の影響を受けない。   The correction LED 42 is arranged to illuminate all the pixel sensors S1 to Sn of the light receiving sensor array SA substantially uniformly. Further, since the output light of the correction LED 42 is directly irradiated to the light receiving sensor array SA without passing through the diffraction grating 40, the output signals s11 to s1n of the respective light receiving means are the imaging optical system 39 and the diffraction grating 40. It is not affected by the spectral characteristics of the spectroscopic optical system and the change thereof and the wavelength change of the output light.

一方、補正用LED42の出力レベルの変化に伴って、照度レベルは変化するが、相対的な照度分布は変化しない。そこで、演算制御回路36は、製造工場での該分光輝度計31の校正時に、シャッタを閉じて補正用LED42を発光させ、受光センサアレイSAの各受光手段の出力信号s01〜s0nを、初期値として記憶している。   On the other hand, as the output level of the correction LED 42 changes, the illuminance level changes, but the relative illuminance distribution does not change. Therefore, when the spectral luminance meter 31 is calibrated at the manufacturing factory, the arithmetic control circuit 36 closes the shutter and causes the correction LED 42 to emit light, and outputs the output signals s01 to s0n of the respective light receiving means of the light receiving sensor array SA to the initial values. Remember as.

そして、補正用LED42の照度レベルが変化しなければ、任意の画素センサSi(iは1〜nの自然数)のゲイン補正係数Ciは、Ci=s0i/s1iで求められるが、上述のように補正用LED42の発光強度の変化などで照度レベルが変化する可能性があり、このためi=1の画素センサS1を基準画素(モニター用受光手段)とし、その補正係数C1=s01/s11との相対比で補正する。すなわち、補正された任意の画素のゲイン補正係数をCi’とすると、
Ci’=Ci/C1=(s0i/s1i)*(s01/s11)
となる。これによって、被測定光に対する出力信号s2iは、前記ゲイン補正係数Ci’によって、次式で補正される。
If the illuminance level of the correction LED 42 does not change, the gain correction coefficient Ci of an arbitrary pixel sensor Si (i is a natural number from 1 to n) can be obtained by Ci = s0i / s1i, but is corrected as described above. The illuminance level may change due to a change in the emission intensity of the LED 42 for this purpose. For this reason, the pixel sensor S1 with i = 1 is used as the reference pixel (monitoring light receiving means), and its relative correction coefficient C1 = s01 / s11. Correct by ratio. That is, if the corrected gain correction coefficient of an arbitrary pixel is Ci ′,
Ci ′ = Ci / C1 = (s0i / s1i) * (s01 / s11)
It becomes. As a result, the output signal s2i for the light to be measured is corrected by the following equation using the gain correction coefficient Ci ′.

s2i’=s2i*Ci’=s2i*(s0i/s1i)*(s01/s11)
ところで、上述の説明では、基準画素としてi=1の画素を選んでいるが、この画素のゲインの湿度による変化は充分小さくなければならない。そのため、前記図7で示す処理回路11を参照して、前記基準画素に対応する電流電圧変換回路A1の帰還抵抗Rf1は、図8で示すリーク抵抗Rf’の影響を受けない程度に充分小さく形成されている。たとえば、フォトダイオードの感度(電流電圧変換特性)の低い短波長側を受光する画素センサS2,S3,・・・に対応した帰還抵抗Rf2,Rf3,・・・が、数百MΩ程度であるのに対して、1MΩ以下、たとえば本実施形態では数百kΩ程度に形成されている。
s2i ′ = s2i * Ci ′ = s2i * (s0i / s1i) * (s01 / s11)
By the way, in the above description, the pixel of i = 1 is selected as the reference pixel, but the change of the gain of this pixel due to the humidity must be sufficiently small. Therefore, referring to the processing circuit 11 shown in FIG. 7, the feedback resistor Rf1 of the current-voltage conversion circuit A1 corresponding to the reference pixel is formed to be small enough not to be affected by the leakage resistor Rf ′ shown in FIG. Has been. For example, the feedback resistors Rf2, Rf3,... Corresponding to the pixel sensors S2, S3,... That receive the short wavelength side where the sensitivity (current-voltage conversion characteristic) of the photodiode is low is about several hundred MΩ. On the other hand, it is 1 MΩ or less, for example, about several hundreds kΩ in this embodiment.

一方、このように帰還抵抗Rf1の抵抗値を小さくすると、その電流電圧変換回路A1のゲインは、他のチャネルの電流電圧変換回路A2〜Anのゲインより大幅に低下することになるが、これは後段のゲイン可変アンプ13のゲインを他のチャネルより大きくすることで補うことができる。トータルで同じゲインでも、電流電圧変換回路A1のゲインが低いので、この基準画素のS/Nは他の画素より大幅に落ちるので、この画素の出力信号s1はゲイン補正にのみ用いられ、測定には使用されない。   On the other hand, when the resistance value of the feedback resistor Rf1 is reduced in this way, the gain of the current-voltage conversion circuit A1 is significantly lower than the gains of the current-voltage conversion circuits A2 to An of other channels. This can be compensated by making the gain of the variable gain amplifier 13 at the subsequent stage larger than that of the other channels. Even with the same gain in total, the gain of the current-voltage conversion circuit A1 is low, so the S / N of this reference pixel is significantly lower than other pixels, so the output signal s1 of this pixel is used only for gain correction and is used for measurement. Is not used.

前記基準画素のゲインの湿度による変化を、問題にならない充分小さなレベルに抑制する手法には、上記の帰還抵抗Rfを小さくする手法以外に、以下の手法があり、それらが単独で、または上記の手法を含めて、任意に組合わせて用いられてもよい。
1.基準画素のオペアンプの入力端子を基板上のパターンと接続せずに空中に浮かせ、画素センサS1からの信号線や帰還抵抗Rf1とは、いわゆる空中配線する。この場合、入力端子は空気によって絶縁されるので、湿度の影響は無視できる。
2.基準画素のオペアンプの入力端子と帰還抵抗Rf1とを、エポキシなど水分が透過しにくい樹脂でポッティングする。ただし、この樹脂コートは、前述の従来技術で述べた蒸着による耐湿コートとは異なり、容易かつ低コストである。
3.受光センサアレイSAとは別に、その受光センサアレイSAの各画素センサS2〜Snに比べて、受光面積が大きい基準センサを近傍に配置する。この基準センサは、受光センサアレイSAに比べて充分大きな出力電流を持つもので、帰還抵抗Rfを、リーク抵抗Rf’の影響を受けない程度に小さくすることができる。
In addition to the method for reducing the feedback resistance Rf, there are the following methods as a method for suppressing the change in the gain of the reference pixel due to humidity to a sufficiently small level that does not cause a problem. Any combination of the methods may be used.
1. The input terminal of the operational amplifier of the reference pixel is floated in the air without being connected to the pattern on the substrate, and the signal line from the pixel sensor S1 and the feedback resistor Rf1 are so-called air-wired. In this case, since the input terminal is insulated by air, the influence of humidity can be ignored.
2. The input terminal of the operational amplifier of the reference pixel and the feedback resistor Rf1 are potted with a resin such as epoxy that hardly transmits moisture. However, this resin coat is easy and low-cost, unlike the moisture-proof coat by vapor deposition described in the above-mentioned prior art.
3. In addition to the light receiving sensor array SA, a reference sensor having a larger light receiving area than the pixel sensors S2 to Sn of the light receiving sensor array SA is disposed in the vicinity. The reference sensor has a sufficiently large output current as compared with the light receiving sensor array SA, and the feedback resistance Rf can be made small enough not to be affected by the leakage resistance Rf ′.

このようにして、被測定光を複数の波長成分に分離し、各波長成分の分光強度を求めるようにした分光輝度計31の校正を行うにあたって、補正用LED42を設けるとともに、測定シーケンスを一部変更するだけで、簡単かつ低コストに湿度ドリフト補正を実現することができる。こうして、広い環境条件で精度を維持することができる。このことは、室外での使用が求められるポータブル機器で効果が大きい。   In this way, when correcting the spectral luminance meter 31 that separates the light to be measured into a plurality of wavelength components and obtains the spectral intensity of each wavelength component, a correction LED 42 is provided, and a part of the measurement sequence is provided. Humidity drift correction can be realized simply and at low cost simply by changing. Thus, accuracy can be maintained over a wide range of environmental conditions. This is particularly effective for portable devices that are required to be used outdoors.

また、この分光輝度計31では、処理系の最前部である受光センサアレイSAへの入射光を入力信号とし、処理回路35で信号処理され、アナログ/デジタル変換されたデジタル信号出力を基に、演算制御回路36でゲインを補正することになるので、入出力信号間の処理系のすべての要素に起因するゲイン変動を一括して補正することができ、変動要素が電流電圧変換回路A1〜Anに続くゲイン可変アンプ13などの増幅系であっても、アナログ/デジタル変換器14の基準電圧であっても、変動要因が湿度でなく、温度や経時的なものであっても、後述のモニター用受光手段およびその後段の処理系のゲインに変化がない限り、合わせて有効に補正することもできる。   Further, in the spectral luminance meter 31, the incident light to the light receiving sensor array SA which is the forefront part of the processing system is used as an input signal, based on the digital signal output subjected to signal processing and analog / digital conversion by the processing circuit 35. Since the calculation control circuit 36 corrects the gain, it is possible to collectively correct the gain fluctuation caused by all the elements of the processing system between the input and output signals, and the fluctuation elements are the current-voltage conversion circuits A1 to An. Even if it is an amplification system such as a gain variable amplifier 13 that follows the reference voltage of the analog / digital converter 14, the monitor described later is used regardless of whether the variation factor is not humidity but temperature or time-lapse. As long as there is no change in the gains of the light receiving means for use and the processing system at the subsequent stage, the correction can be made effectively together.

また、前記受光センサアレイSAにおいて、測定用の画素センサS2〜Snに隣接して、前記補正用LED42からの照明光のモニター用に画素センサS1を設けることで、経年などによる前記補正用LED42からの補正用の照明光強度の変化を検知し、さらにそれに対応した電流電圧変換回路A1を、他の電流電圧変換回路A2〜Anに比べてゲイン変動が充分小さく形成し、補正用LED42を点灯して得た補正用出力s12〜s1nを前記モニター用の電流電圧変換回路A1の出力s11で相対化することで、その変化を相殺するので、前記湿度ドリフトの補正に用いる補正係数C2’〜Cn’の校正を、一層正確に行うことができる。また、変動要因が修理や生産工程での処理系の部品交換であっても、前記相対化していることで、モニター用受光手段である画素センサS1および電流電圧変換回路A1およびその後段の処理系のゲインに変化がない限り、自動的に補正することができる。   Further, in the light receiving sensor array SA, the pixel sensor S1 is provided for monitoring the illumination light from the correction LED 42 adjacent to the measurement pixel sensors S2 to Sn. Change of the illumination light intensity for correction, and the corresponding current-voltage conversion circuit A1 is formed with a sufficiently small gain fluctuation compared to the other current-voltage conversion circuits A2 to An, and the correction LED 42 is turned on. The correction outputs s12 to s1n obtained in this way are relativized by the output s11 of the current / voltage conversion circuit A1 for monitoring, so that the change is canceled out. Therefore, the correction coefficients C2 ′ to Cn ′ used for correcting the humidity drift Can be more accurately calibrated. Further, even if the fluctuation factor is the replacement of parts of the processing system in the repair or production process, the pixel sensor S1 and the current-voltage conversion circuit A1, which are the light receiving means for monitoring, and the processing system in the subsequent stage are obtained because of the relativeization. As long as there is no change in the gain, it can be automatically corrected.

さらにまた、モニター用の電流電圧変換回路A1の帰還抵抗Rf1の抵抗値を、残余のハイゲインの電流電圧変換回路A2,A3,・・・の帰還抵抗Rf2,Rf3,・・・の抵抗値に比べて充分小さくすることで、数百GΩ程度の前記リーク抵抗Rf’に対して、該モニター用受光手段のゲイン変動は殆どなく(充分小さく)、各受光手段のゲイン変動の略0.1%以下とすることができる。したがって、前記経年などによる前記補正用LED42からの補正用の照射光強度の変化を、前記リーク抵抗の影響を受けることなく、より正確に検知することができる。   Furthermore, the resistance value of the feedback resistor Rf1 of the monitoring current / voltage conversion circuit A1 is compared with the resistance value of the feedback resistors Rf2, Rf3,... Of the remaining high gain current / voltage conversion circuits A2, A3,. By making it sufficiently small, there is almost no gain variation of the light receiving means for monitoring with respect to the leakage resistance Rf ′ of about several hundred GΩ (sufficiently small), and it is about 0.1% or less of the gain variation of each light receiving means. It can be. Therefore, a change in the intensity of irradiation light for correction from the correction LED 42 due to the aging or the like can be detected more accurately without being affected by the leak resistance.

また、測定用の受光手段である各画素センサS2〜Snおよびそれに対応する電流電圧変換回路A2〜Anごとに、前記補正係数C2’〜Cn’を導出し、前記リーク抵抗Rf’によるゲイン変動の補正を行うので、湿度によるゲイン変動の影響を正確に補正して前記分光強度を求めることができる。   Further, the correction coefficients C2 ′ to Cn ′ are derived for each of the pixel sensors S2 to Sn, which are light receiving means for measurement, and the corresponding current-voltage conversion circuits A2 to An, and gain fluctuations due to the leak resistance Rf ′ are derived. Since the correction is performed, the spectral intensity can be obtained by accurately correcting the influence of the gain fluctuation due to the humidity.

さらにまた、各受光手段の出力信号s21〜s2nを求めた直後(直前でもよい)に、前記補正用LED42を点灯して補正係数C2’〜Cn’を求め、補正した出力信号s22’〜s2n’を得るので、湿度によるゲイン変動が急速であっても、その影響を除去することができる。   Furthermore, immediately after obtaining the output signals s21 to s2n of each light receiving means (or immediately before), the correction LED 42 is turned on to obtain correction coefficients C2 ′ to Cn ′, and the corrected output signals s22 ′ to s2n ′. Therefore, even if the gain fluctuation due to humidity is rapid, the influence can be eliminated.

上述の説明では、補正用光源としてLED42で説明したけれども、他の光源が用いられてもよく、細長い受光センサアレイSAの全体を均一に光照射することができるとともに、発熱が少なく、経時変化の少ないものが好ましい。たとえば、有機EL等を用いることができる。前記LED42では、寿命による補正用光源の交換も殆ど必要ない。   In the above description, although the LED 42 has been described as the light source for correction, other light sources may be used, and the entire elongated light receiving sensor array SA can be uniformly irradiated with light, and the heat generation is small and the change with time is not caused. Less is preferred. For example, organic EL etc. can be used. The LED 42 requires almost no replacement of the correction light source due to its life.

また、前記補正用LED42は、画素センサS1〜Snが充分な感度を持つ波長、たとえば赤から近赤外の長波長領域が望ましい。さらにまた、図1において、参照符43で示すように、回折格子40による二次光の影響を除去するために、受光センサアレイSAの一部に短波長カットフィルタを近接して配置する場合は、前記補正用LED42の波長は、該短波長カットフィルタを透過する波長が望ましく、その点でも前記赤から近赤外が望ましい。多くのLEDはレンズ付きのパッケージを持つが、これの熱的な変形は、配光の変化をもたらし得るので、補正用LED42の駆動電流や駆動時間はできるだけ抑えることが望まれる。補正用LED42の配光変化が直接受光センサアレイSA上の照度分布をもたらさないように、該補正用LED42に近接して拡散板を配置してもよい。また、補正用LED42は直接センサアレイSAを照明しているが、分光手段のハウジングに向けて照射し、内部で散乱反射して受光センサアレイSAを照明してもよい。さらにまた、補正用LED42は、複数設けられてもよい。   The correction LED 42 preferably has a wavelength with which the pixel sensors S1 to Sn have sufficient sensitivity, for example, a long wavelength region from red to near infrared. Furthermore, in FIG. 1, as indicated by reference numeral 43, in order to remove the influence of the secondary light by the diffraction grating 40, a short wavelength cut filter is disposed close to a part of the light receiving sensor array SA. The wavelength of the correction LED 42 is preferably a wavelength that passes through the short wavelength cut filter, and from this point, the red to the near infrared are desirable. Although many LEDs have a package with a lens, thermal deformation of the LED can cause a change in light distribution. Therefore, it is desirable to suppress the drive current and drive time of the correction LED 42 as much as possible. A diffusion plate may be disposed in the vicinity of the correction LED 42 so that the light distribution change of the correction LED 42 does not directly cause the illuminance distribution on the light receiving sensor array SA. The correction LED 42 directly illuminates the sensor array SA. However, the correction LED 42 may illuminate the housing of the spectroscopic means and scatter and reflect the light inside the light receiving sensor array SA. Furthermore, a plurality of correction LEDs 42 may be provided.

[実施の形態2]
図3は本発明の実施の他の形態の分光反射特性測定装置である分光測色計51の構成を模式的に示す断面図であり、図4はその分光測色計51におけるポリクロメータ32a付近の透視斜視図である。この分光測色計51は、前述の分光輝度計31に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。この分光測色計51は、大略的に、ポリクロメータ32aと、前記の受光光学系33と、処理回路35aと、演算制御回路36aとを備えるとともに、クセノンフラッシュ光源52、積分球53ならびに前記クセノンフラッシュ光源52および積分球53による照明光を直接前記ポリクロメータ32aに導く光ファイバ54を備えて構成される。
[Embodiment 2]
FIG. 3 is a cross-sectional view schematically showing a configuration of a spectrocolorimeter 51 which is a spectral reflection characteristic measuring apparatus according to another embodiment of the present invention, and FIG. 4 shows the vicinity of the polychromator 32a in the spectrocolorimeter 51. FIG. The spectrocolorimeter 51 is similar to the spectral luminance meter 31 described above, and corresponding portions are denoted by the same reference numerals, and description thereof is omitted. The spectrocolorimeter 51 generally includes a polychromator 32a, the light receiving optical system 33, a processing circuit 35a, and an arithmetic control circuit 36a, a xenon flash light source 52, an integrating sphere 53, and the xenon. An optical fiber 54 that guides illumination light from the flash light source 52 and the integrating sphere 53 directly to the polychromator 32a is provided.

分光測色計51は、載置台53aに載置された被測定試料55の分光特性を測定するので、前記クセノンフラッシュ光源52からの照射光が積分球53で多重反射して作られる拡散照明光で照明された前記被測定試料55からの反射光と、前記照射光そのものである参照光とのそれぞれの受光レベルの測定結果の比から、前記分光特性を測定する。このポリクロメータ32aは、図4で示すように、それら2つの入射光を独立に分光するデュアルビームシステムである。このため、前述のポリクロメータ32と基本的に同じ構成を持つが、回折格子40の方から入射開口側を見ると、図5で示すように、試料光用と参照光用との入射開口SL1,SL2とを持ち、それらに対応する試料光用と参照光用との受光センサアレイSA1,SA2を持つ点が異なる。   Since the spectrocolorimeter 51 measures the spectral characteristics of the sample 55 to be measured placed on the placing table 53 a, the diffuse illumination light produced by the multiple reflection of the irradiation light from the xenon flash light source 52 by the integrating sphere 53. The spectral characteristic is measured from the ratio of the measurement results of the respective received light levels of the reflected light from the sample 55 illuminated in step 1 and the reference light that is the irradiation light itself. As shown in FIG. 4, the polychromator 32a is a dual beam system that separates these two incident lights independently. Therefore, although it has basically the same configuration as the polychromator 32 described above, when the incident aperture side is viewed from the diffraction grating 40, as shown in FIG. 5, the incident aperture SL1 for the sample light and the reference light is used. , SL2 and the light receiving sensor arrays SA1 and SA2 for sample light and reference light corresponding to them are different.

被測定試料55明する照明手段は、前記積分球53と、その内部にあって演算制御回路36aによって駆動されるクセノンフラッシュ光源52とから構成される。前記積分球53内は、白色塗料が塗布されており、演算制御回路36aがクセノンフラッシュ光源52を発光させると、その光束は積分球53内で多重反射して試料を拡散照明する。試料からの反射光の特定方向(図では試料面の法線方向)の成分(以下、試料光)が、前記受光光学系33によってポリクロメータ32aの試料光用入射開口SL1に入射する。同時に照明光の一部が積分球53内に入射端を持つ参照用光ファイバ54に入射し、前記ポリクロメータ32aの参照光用入射開口SL2に導かれる。   The illuminating means for illuminating the sample 55 to be measured includes the integrating sphere 53 and a xenon flash light source 52 which is inside and driven by the arithmetic control circuit 36a. The integrating sphere 53 is coated with white paint, and when the arithmetic and control circuit 36a causes the xenon flash light source 52 to emit light, the light beam is reflected in the integrating sphere 53 to diffusely illuminate the sample. A component (hereinafter, sample light) in a specific direction of reflected light from the sample (in the figure, the normal direction of the sample surface) is incident on the sample light incident aperture SL1 of the polychromator 32a by the light receiving optical system 33. At the same time, part of the illumination light enters the reference optical fiber 54 having an incident end in the integrating sphere 53 and is guided to the reference light entrance aperture SL2 of the polychromator 32a.

入射した試料光および参照光は前述のポリクロメータ32と同様に、結像光学系39と回折格子40とによって、それぞれ試料光用および参照光用受光センサアレイSA1,SA2上に、前記入射開口SL1,SL2の分散像を作る。受光センサアレイSA1,SA2各々の画素センサS1〜Sn,R1〜Rnの出力信号s1〜sn,r1〜rnは、前記図7の処理回路11の構成を2系統有する処理回路35aを経て、演算制御回路36aに送られる。演算制御回路36は、試料光用および参照光用受光センサアレイSA1,SA2の各画素センサS1〜Sn,R1〜Rnからの出力信号s1〜sn,r1〜rnを処理し、被測定試料の分光反射特性を求めて出力する。前記受光センサアレイSA1,SA2には、演算制御回路36aによって制御されるゲイン補正用LED42が、全画素をほぼ一様に照明する。   Similar to the polychromator 32, the incident sample light and the reference light are incident on the light incident sensor arrays SA1 and SA2 for the sample light and the reference light by the imaging optical system 39 and the diffraction grating 40, respectively. , SL2 is created. Output signals s1 to sn and r1 to rn of the pixel sensors S1 to Sn and R1 to Rn of the light receiving sensor arrays SA1 and SA2 are arithmetically controlled through a processing circuit 35a having two systems of the processing circuit 11 of FIG. It is sent to the circuit 36a. The arithmetic and control circuit 36 processes the output signals s1 to sn and r1 to rn from the pixel sensors S1 to Sn and R1 to Rn of the light receiving sensor arrays SA1 and SA2 for the sample light and the reference light, and spectroscopically measures the sample to be measured. Obtain the reflection characteristics and output. In the light receiving sensor arrays SA1 and SA2, a gain correction LED 42 controlled by the arithmetic control circuit 36a illuminates all pixels substantially uniformly.

上述のように構成される分光測色計51において、以下に一般的な分光反射特性の算出動作を説明する。先ず、被測定試料55の測定に先立って、分光反射率係数W(λ)が既知の校正用白色試料が、前記載置台53aに載置され、クセノンフラッシュ光源52を発光させて、その分光反射特性が測定される。演算制御回路36aは、これに対する試料光用受光センサアレイSA1各々の画素センサSi(i=1〜n)の出力信号s0iと、参照光用受光センサアレイSA2各々の画素センサRiの出力信号r0iとの比D0i=s0i/r0iを求めて、前記分光反射率係数W(λ)とともに記憶する。   In the spectrocolorimeter 51 configured as described above, a general spectral reflection characteristic calculation operation will be described below. First, prior to the measurement of the sample 55 to be measured, a white sample for calibration whose spectral reflectance coefficient W (λ) is known is placed on the mounting table 53a, the xenon flash light source 52 is caused to emit light, and its spectral reflection is measured. Characteristics are measured. The arithmetic control circuit 36a outputs the output signal s0i of each pixel sensor Si (i = 1 to n) of the sample light receiving sensor array SA1 and the output signal r0i of each pixel sensor Ri of the reference light receiving sensor array SA2. Ratio D0i = s0i / r0i is obtained and stored together with the spectral reflectance coefficient W (λ).

次に、前記載置台53aに被測定試料55が載置されて同様の測定が行われ、これに対する試料光用受光センサアレイSA1各々の画素センサSiの出力信号s2iと、参照光用受光センサアレイSA2各々の画素センサRiの出力信号r2iとの比D2i=s2i/r2iを求めて記憶する。さらにEi=D2i/D0iを求め、別途求められている画素番号iと波長λiの対応表を基にこれを補間して、波長にλ対応するE(λ)を求める。これによって、試料の反射特性F(λ)は、次式で求めることができる。   Next, the sample 55 to be measured is placed on the mounting table 53a, and the same measurement is performed. The output signal s2i of the pixel sensor Si of each sample light receiving sensor array SA1 and the reference light receiving sensor array. A ratio D2i = s2i / r2i with the output signal r2i of each pixel sensor Ri of SA2 is obtained and stored. Further, Ei = D2i / D0i is obtained, and this is interpolated based on the separately obtained correspondence table of the pixel number i and the wavelength λi, and E (λ) corresponding to the wavelength λ is obtained. Thereby, the reflection characteristic F (λ) of the sample can be obtained by the following equation.

F(λ)=W(λ)*E(λ)
次に、本発明による前記湿度ドリフトを校正した分光反射特性の算出動作を説明する。反射特性を測定する分光測色計51は、前述のように白色校正試料および被測定試料に対する試料光用と参照光用との2つの受光センサアレイSA1およびSA2の出力比D0iおよびD2iから反射特性を求めるので、試料光用および参照光用受光センサアレイSA1,SA2の対応する2つの画素センサSi,Riからの出力信号si,riに対するゲイン比G2iが変化しなければ、反射特性測定値は影響を受けない。また、ユーザが行う白色校正が基準になるので、前記ゲイン比G2iは白色校正時の比G0iに等しくなるように補正される。
F (λ) = W (λ) * E (λ)
Next, the calculation operation of the spectral reflection characteristic with the humidity drift calibrated according to the present invention will be described. As described above, the spectrocolorimeter 51 that measures the reflection characteristics reflects the reflection characteristics from the output ratios D0i and D2i of the two light receiving sensor arrays SA1 and SA2 for the sample light and the reference light for the white calibration sample and the sample to be measured. Therefore, if the gain ratio G2i with respect to the output signals si and ri from the corresponding two pixel sensors Si and Ri of the sample light and reference light receiving sensor arrays SA1 and SA2 does not change, the reflection characteristic measurement value has an effect. Not receive. Further, since white calibration performed by the user is a reference, the gain ratio G2i is corrected to be equal to the ratio G0i at the time of white calibration.

ところが、前記湿度ドリフトによって測定時のゲイン比G2iが白色校正時のゲイン比G0iからずれると、反射特性測定値は影響を受ける。特に、前記試料光用と参照光用との2つのビームを用いる構成では、それぞれの受光センサアレイSA1,SA2で生じた誤差が相乗して作用することになり、大きな誤差を生じる。ここで、白色校正を頻繁に行うと、前記湿度ドリフトの反射特性測定値への影響を軽減することができる。しかしながら、通常、白色校正は、1日の測定作業の前に1回行われる程度であり、そのような頻繁な校正は現実的ではない。   However, if the gain ratio G2i at the time of measurement deviates from the gain ratio G0i at the time of white calibration due to the humidity drift, the reflection characteristic measurement value is affected. In particular, in the configuration using the two beams for the sample light and the reference light, errors generated in the respective light receiving sensor arrays SA1 and SA2 act synergistically to generate a large error. Here, if white calibration is frequently performed, the influence of the humidity drift on the reflection characteristic measurement value can be reduced. However, normally, white calibration is performed only once before the measurement work for one day, and such frequent calibration is not practical.

そこで、本発明では、前記ゲイン比G0i,G2iは、一定の照度比で照明された、対応する2つの画素センサSi,Riからの出力信号si,riの出力比D10i,D12iでモニターできることに着目し、以下のように湿度ドリフトの補正も含めた分光反射特性の算出動作を行う。すなわち、前記補正用LED42による照明光は、照度レベルは変化しても、画素間の相対照度は変化しないので、そのときの出力比D10i,D12iで対応する2画素のゲイン比をモニターできる。   Therefore, in the present invention, it is noted that the gain ratios G0i and G2i can be monitored by the output ratios D10i and D12i of the output signals si and ri from the corresponding two pixel sensors Si and Ri illuminated at a constant illuminance ratio. Then, the spectral reflection characteristic calculation operation including correction of humidity drift is performed as follows. That is, the illumination light from the correction LED 42 does not change the relative illuminance between the pixels even if the illuminance level changes, so that the gain ratio of the corresponding two pixels can be monitored by the output ratios D10i and D12i at that time.

先ず、前記白色校正時には、校正用白色試料が前記載置台53aに載置され、クセノンフラッシュ光源52を発光させて、上述のようにして、試料光用受光センサアレイSA1各々の画素センサSiの出力信号s0iと、参照光用受光センサアレイSA2各々の画素センサRiの出力信号r0iとの比D0i=s0i/r0iが求められ、既知の前記分光反射率係数W(λ)とともに記憶される。本発明では、この直後に、前記クセノンフラッシュ光源52を消灯させ、前記補正用LED42を点灯して、同様の測定が行われ、前記出力比D10i=s10i/r10iが求められ、記憶される。   First, at the time of the white calibration, the calibration white sample is placed on the mounting table 53a, the xenon flash light source 52 is caused to emit light, and the output of the pixel sensor Si of each sample light receiving sensor array SA1 as described above. A ratio D0i = s0i / r0i between the signal s0i and the output signal r0i of each pixel sensor Ri of the reference light receiving sensor array SA2 is obtained and stored together with the known spectral reflectance coefficient W (λ). In the present invention, immediately after this, the xenon flash light source 52 is turned off, the correction LED 42 is turned on, the same measurement is performed, and the output ratio D10i = s10i / r10i is obtained and stored.

次に、被測定試料55に対して、クセノンフラッシュ光源52を発光させて、前述と同様にして、出力比D2iが求められる。本実施の形態では、この直後に、前記補正用LED42を点灯して、同様の測定が行われ、前記出力比D12i=s12i/r12iが求められ、記憶される。   Next, the xenon flash light source 52 is caused to emit light to the sample 55 to be measured, and the output ratio D2i is obtained in the same manner as described above. In the present embodiment, immediately after this, the correction LED 42 is turned on, the same measurement is performed, and the output ratio D12i = s12i / r12i is obtained and stored.

こうして求められた出力比D10i,D12iから、演算制御回路36aは、前記被測定試料に対して求められたゲイン比D2iを、以下のようにして校正する。   From the output ratios D10i and D12i thus determined, the arithmetic control circuit 36a calibrates the gain ratio D2i determined for the sample to be measured as follows.

D2i’=D2i(D10i/D12i)
そして、このゲイン比D2i’から、分光反射特性が前述の手順で求められる。
D2i ′ = D2i (D10i / D12i)
Then, from the gain ratio D2i ′, the spectral reflection characteristic is obtained by the above-described procedure.

この校正方法では、補正用LED42による照明光のセンサアレイSA1,SA2上での照度分布の変化が補正誤差となるが、その照度分布に影響するLED42の配向やハウジング内部の反射特性は、少なくとも1日1回は行われる白色校正の間に変化することはないので、校正の誤差は前記分光輝度計31よりも小さい。光量、波長は温度依存性が大きく、短期間に変化するが、照度分布には影響しない。   In this calibration method, the change in the illuminance distribution of the illumination light on the sensor arrays SA1 and SA2 by the correction LED 42 becomes a correction error. However, the orientation of the LED 42 that affects the illuminance distribution and the reflection characteristics inside the housing are at least 1. Since there is no change during the white calibration performed once a day, the calibration error is smaller than that of the spectral luminance meter 31. The amount of light and wavelength are highly temperature dependent and change in a short time, but do not affect the illuminance distribution.

このようにして、照明光によって照明された被測定試料の反射光および前記照明光そのものである参照光から前記被測定試料の分光反射特性を求めるようにした分光測色計51の校正を行うにあたって、補正用LED42を設けるとともに、測定シーケンスを一部変更するだけで、簡単かつ低コストに湿度ドリフト補正を実現することができる。   In this way, the calibration of the spectrocolorimeter 51 that determines the spectral reflection characteristics of the sample to be measured from the reflected light of the sample to be measured illuminated by the illumination light and the reference light that is the illumination light itself is performed. The humidity drift correction can be realized easily and at low cost by providing the correction LED 42 and changing only part of the measurement sequence.

また、この分光測色計51では、処理系の最前部である受光センサアレイSA1,SA2への入射光を入力信号とし、処理回路35aで信号処理され、アナログ/デジタル変換されたデジタル信号出力を基に、演算制御回路36aでゲインを補正することになるので、入出力信号間の処理系のすべての要素に起因するゲイン変動を一括して補正することができ、変動要素が電流電圧変換回路A1〜Anに続くゲイン可変アンプ13などの増幅系であっても、アナログ/デジタル変換器14の基準電圧であっても、変動要因が湿度でなく、温度や経時的なものであっても、合わせて有効に補正することもできる。   Further, in the spectrocolorimeter 51, incident light to the light receiving sensor arrays SA1 and SA2, which are the forefront of the processing system, is used as an input signal, and a digital signal output subjected to signal processing and analog / digital conversion by the processing circuit 35a. Since the gain is corrected by the arithmetic control circuit 36a based on this, it is possible to collectively correct the gain fluctuation caused by all the elements of the processing system between the input and output signals, and the fluctuation element is the current-voltage conversion circuit. Even if it is an amplification system such as a gain variable amplifier 13 following A1 to An, or the reference voltage of the analog / digital converter 14, even if the fluctuation factor is not humidity but temperature or time-dependent, It can also be corrected effectively.

さらにまた、センサアレイSA1,SA2の画素センサSi,Riの出力信号si,riの相対比から測定を行う分光測色計51では、前述の分光輝度計31のような基準画素は不要であり、したがって処理系のいかなる部品交換によるゲイン変化も補正されるので、生産や修理での部品交換に伴う再校正を減らし、一層のコスト削減を図ることができる。すなわち、部品交換しても再校正の必要がないので、ゲイン校正のための設備のない各地の修理拠点で殆どの修理が可能になり、また修理に要する期間が短縮されるというユーザーメリットも生まれる。   Furthermore, in the spectrocolorimeter 51 that performs measurement from the relative ratio of the output signals si and ri of the pixel sensors Si and Ri of the sensor arrays SA1 and SA2, a reference pixel such as the above-described spectral luminance meter 31 is unnecessary. Therefore, since a gain change due to any part replacement of the processing system is corrected, recalibration accompanying part replacement in production or repair can be reduced, and further cost reduction can be achieved. In other words, there is no need for recalibration even if parts are replaced, so that most repairs can be made at various repair bases that do not have equipment for gain calibration, and the time required for repair can be shortened. .

本発明の実施の一形態の分光強度測定装置である分光輝度計の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the spectral luminance meter which is the spectral intensity measuring apparatus of one Embodiment of this invention. 図1で示す分光輝度計における受光センサアレイを説明する正面図である。It is a front view explaining the light reception sensor array in the spectral luminance meter shown in FIG. 本発明の実施の他の形態の分光反射特性測定装置である分光測色計の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the spectral colorimeter which is the spectral reflection characteristic measuring apparatus of the other form of implementation of this invention. 図3で示す分光測色計におけるポリクロメータ付近の透視斜視図である。FIG. 4 is a perspective view of the vicinity of a polychromator in the spectrocolorimeter shown in FIG. 3. 図3で示す分光測色計における受光センサアレイを説明する正面図である。FIG. 4 is a front view for explaining a light receiving sensor array in the spectrocolorimeter shown in FIG. 3. 一般的なポリクロメータの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of a general polychromator. 前記ポリクロメータにおけるシリコンフォトダイオードアレイに対応した処理回路の一構成例を示すブロック図である。It is a block diagram which shows one structural example of the processing circuit corresponding to the silicon photodiode array in the said polychromator. 一般的な電流電圧変換回路の例を示すブロック図である。It is a block diagram which shows the example of a general current-voltage conversion circuit.

符号の説明Explanation of symbols

11 処理回路
12 マルチプレクサ
13 ゲイン可変アンプ
14 アナログ/デジタル変換器
21 電流電圧変換回路
31 分光輝度計
32,32a ポリクロメータ
33 受光光学系
34 シャッタ装置
35,35a 処理回路
36,36a 演算制御回路
39 結像光学系
40 回折格子
42 ゲイン補正用LED
51 分光測色計
52 クセノンフラッシュ光源
53 積分球
54 光ファイバ
A オペアンプ
A1〜An 電流電圧変換回路
Ri リーク抵抗
RF1〜RFn 帰還抵抗
Rf 帰還抵抗
Rf’ リーク抵抗
R1〜Rn 画素センサ
S1〜Sn 画素センサ
SA;SA1,SA2 受光センサアレイ
SL;SL1,SL2 入射開口

DESCRIPTION OF SYMBOLS 11 Processing circuit 12 Multiplexer 13 Variable gain amplifier 14 Analog / digital converter 21 Current-voltage conversion circuit 31 Spectral luminance meter 32, 32a Polychromator 33 Light-receiving optical system 34 Shutter device 35, 35a Processing circuit 36, 36a Operation control circuit 39 Imaging Optical system 40 Diffraction grating 42 Gain correction LED
51 Spectral Colorimeter 52 Xenon Flash Light Source 53 Integrating Sphere 54 Optical Fiber A Operational Amplifiers A1 to An Current Voltage Conversion Circuit Ri Leakage Resistance RF1 to RFn Feedback Resistance Rf Feedback Resistance Rf ′ Leakage Resistance R1 to Rn Pixel Sensors S1 to Sn Pixel Sensor SA ; SA1, SA2 light receiving sensor array SL; SL1, SL2 entrance aperture

Claims (9)

被測定光を波長分離手段で複数の波長成分に分離して、複数の受光手段でそれぞれ受光し、各波長成分の分光強度を求めるようにした分光強度測定装置において、
校正時に前記各受光手段を照明する補正用照明手段と、
前記校正時には、前記補正用照明手段を点灯し、照明された各受光手段からの出力レベルを各受光手段に設定される補正係数と演算した結果が、予め記憶されている基準値と一致するように前記補正係数を校正し、測定時には、各受光手段からの出力レベルを校正された補正係数と演算し、前記各波長成分の分光強度を求める演算制御手段とを含むことを特徴とする分光強度測定装置。
In the spectral intensity measuring device in which the light to be measured is separated into a plurality of wavelength components by the wavelength separating means, and received by each of the plurality of light receiving means, and the spectral intensity of each wavelength component is obtained.
Correction illumination means for illuminating each light receiving means during calibration;
At the time of the calibration, the correction illumination means is turned on, and the result obtained by calculating the output level from each illuminated light receiving means and the correction coefficient set in each light receiving means matches the reference value stored in advance. And a calculation control means for calculating the output level from each light receiving means and the corrected correction coefficient to obtain the spectral intensity of each wavelength component at the time of measurement. measuring device.
前記受光手段に隣接して、前記補正用照明手段からの照明光のモニター用に、前記受光手段よりもゲイン変動が小さいモニター用受光手段をさらに備え、
前記演算制御手段は、前記複数の受光手段から得た補正用出力を前記モニター用受光手段の出力で相対化することを特徴とする請求項1記載の分光強度測定装置。
Adjacent to the light receiving means, for monitoring the illumination light from the correction lighting means, further comprising a monitoring light receiving means having a smaller gain variation than the light receiving means,
2. The spectral intensity measuring apparatus according to claim 1, wherein the arithmetic control means relativizes correction outputs obtained from the plurality of light receiving means by outputs of the monitor light receiving means.
前記モニター用受光手段の後段のアンプのゲインを高くするとともに、該モニター用受光手段における電流電圧変換回路の帰還抵抗の抵抗値を、1MΩ以下とすることを特徴とする請求項2記載の分光強度測定装置。   3. The spectral intensity according to claim 2, wherein the gain of the amplifier at the subsequent stage of the light receiving means for monitoring is increased and the resistance value of the feedback resistor of the current-voltage conversion circuit in the light receiving means for monitoring is 1 MΩ or less. measuring device. 前記補正用照明手段の点灯中は、前記被測定光を遮断する遮断手段を備えることを特徴とする請求項1〜3のいずれか1項に記載の分光強度測定装置。   The spectral intensity measuring device according to any one of claims 1 to 3, further comprising a blocking unit that blocks the light to be measured while the correction illumination unit is turned on. 前記補正用照明手段による照明光は、該補正用照明手段からの直達光であることを特徴とする請求項1〜4のいずれか1項に記載の分光強度測定装置。   The spectral intensity measurement apparatus according to any one of claims 1 to 4, wherein the illumination light from the correction illumination unit is direct light from the correction illumination unit. 被測定光を複数の波長成分に分離して、各波長成分の分光強度を求めるようにした分光強度測定装置であって、前記各波長成分に分離された被測定光をそれぞれ受光する複数の受光手段、校正時に照明する補正用照明手段を備えた分光強度測定装置を校正するための方法において、
前記補正用照明手段を点灯し、照明された各受光手段からの出力レベルを各受光手段に設定される補正係数と演算した結果が、予め記憶されている基準値と一致するように前記補正係数を校正し、
測定時には、各受光手段からの出力レベルを校正された補正係数と演算し、前記各波長成分の分光強度を求めることを特徴とする分光強度測定装置の校正方法。
A spectral intensity measuring device that separates measured light into a plurality of wavelength components and obtains the spectral intensity of each wavelength component, and receives a plurality of measured lights separated into the respective wavelength components. In a method for calibrating a spectral intensity measuring device comprising a correction illumination means for illuminating at the time of calibration ,
The correction coefficient is turned on so that the result of calculating the output level from each illuminated light-receiving means and the correction coefficient set in each light-receiving means matches the reference value stored in advance. Calibrate the
At the time of measurement, a calibration method for a spectral intensity measuring device, wherein the output level from each light receiving means is calculated as a calibrated correction coefficient to obtain the spectral intensity of each wavelength component.
照明手段からの照明光によって照明された被測定試料の反射光および前記照明光そのものである参照光を、波長分離手段でそれぞれ複数の波長成分に分離して、前記反射光および参照光毎に設けられた複数の受光手段でそれぞれ受光し、演算制御手段で相互に対応する各波長成分の受光レベルの相対比を求めることで、前記被測定試料の分光反射特性を求めるようにした分光反射特性測定装置において、
校正時に前記反射光用および参照光用の各受光手段を照明する補正用照明手段を備え、
前記演算制御手段は、前記校正時には、補正用照明手段を点灯し、照明された各受光手段からの出力レベルの相対比を各受光手段に設定される補正係数と演算した結果が、予め記憶されている基準値と一致するように前記補正係数を校正し、測定時には、各受光手段からの出力レベルの相対比を校正された補正係数と演算し、前記各波長成分の相対比を求めることを特徴とする分光反射特性測定装置。
The reflected light of the sample to be measured illuminated by the illumination light from the illumination means and the reference light that is the illumination light itself are separated into a plurality of wavelength components by the wavelength separation means, and provided for each of the reflected light and the reference light. Spectral reflection characteristic measurement for obtaining the spectral reflection characteristic of the sample to be measured by receiving the light by each of the plurality of light receiving means and obtaining the relative ratio of the received light levels of the corresponding wavelength components by the arithmetic control means. In the device
A correction illumination means for illuminating the light receiving means for reflected light and reference light at the time of calibration,
At the time of the calibration, the calculation control means turns on the correction illumination means, and the calculation result of the relative ratio of the output level from each illuminated light receiving means and the correction coefficient set in each light receiving means is stored in advance. The correction coefficient is calibrated so as to match the reference value, and at the time of measurement, the relative ratio of the output levels from each light receiving means is calculated with the calibrated correction coefficient to obtain the relative ratio of each wavelength component. Spectral reflection characteristic measuring device.
前記補正用照明手段による照明光は、該補正用照明手段からの直達光であることを特徴とする請求項7記載の分光反射特性測定装置。   8. The spectral reflection characteristic measuring apparatus according to claim 7, wherein the illumination light from the correction illumination unit is direct light from the correction illumination unit. 照明手段からの照明光によって照明された被測定試料の反射光および前記照明光そのものである参照光を、それぞれ複数の波長成分に分離して受光し、相互に対応する各波長成分の受光レベルの相対比を求めることで、前記被測定試料の分光反射特性を求めるようにした分光反射特性測定装置であって、前記反射光および参照光の各波長成分に分離された被測定光をそれぞれ受光する複数の受光手段を、校正時に照明する補正用照明手段を備えた分光反射特性測定装置を校正するための方法において、
前記補正用照明手段を点灯し、照明された反射光および参照光用の各受光手段からの相互に対応する各波長成分の受光レベルの相対比を、前記各波長成分に設定される補正係数と演算した結果が、予め記憶されている基準値と一致するように前記補正係数を校正し、
測定時には、前記各波長成分の出力の相対比を校正された補正係数と演算し、前記被測定試料の分光反射特性を求めることを特徴とする分光反射特性測定装置の校正方法。
The reflected light of the sample to be measured illuminated by the illumination light from the illumination means and the reference light, which is the illumination light itself, are separated into a plurality of wavelength components and received, and the light reception levels of the respective wavelength components corresponding to each other are received. A spectral reflection characteristic measuring apparatus for obtaining a spectral reflection characteristic of the sample to be measured by obtaining a relative ratio, and receiving the light to be measured separated into wavelength components of the reflected light and the reference light, respectively. In a method for calibrating a spectral reflection characteristic measuring apparatus including a correction illumination unit that illuminates a plurality of light receiving units during calibration,
The correction illumination unit is turned on, and the relative ratio of the received light levels of the corresponding wavelength components from the illuminated reflected light and reference light receiving units is set to the correction coefficient set for each wavelength component. The correction coefficient is calibrated so that the calculated result matches the reference value stored in advance,
At the time of measurement, a calibration method for a spectral reflection characteristic measuring apparatus, wherein the relative ratio of the output of each wavelength component is calculated as a calibrated correction coefficient to obtain a spectral reflection characteristic of the sample to be measured.
JP2003392457A 2003-11-21 2003-11-21 Spectral intensity measuring device and calibration method thereof, spectral reflection characteristic measuring device and calibration method thereof Expired - Lifetime JP4127195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003392457A JP4127195B2 (en) 2003-11-21 2003-11-21 Spectral intensity measuring device and calibration method thereof, spectral reflection characteristic measuring device and calibration method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003392457A JP4127195B2 (en) 2003-11-21 2003-11-21 Spectral intensity measuring device and calibration method thereof, spectral reflection characteristic measuring device and calibration method thereof

Publications (3)

Publication Number Publication Date
JP2005156243A JP2005156243A (en) 2005-06-16
JP2005156243A5 JP2005156243A5 (en) 2006-05-18
JP4127195B2 true JP4127195B2 (en) 2008-07-30

Family

ID=34719156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003392457A Expired - Lifetime JP4127195B2 (en) 2003-11-21 2003-11-21 Spectral intensity measuring device and calibration method thereof, spectral reflection characteristic measuring device and calibration method thereof

Country Status (1)

Country Link
JP (1) JP4127195B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660696B2 (en) * 2006-02-21 2011-03-30 コニカミノルタセンシング株式会社 Reflection characteristic measuring device
JP2013539859A (en) * 2010-09-18 2013-10-28 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Optical measurement device calibration
DE102017104872A1 (en) 2017-03-08 2018-09-13 Pyreos Ltd. ATR spectrometer and method for analyzing the chemical composition of a sample
CN107820023A (en) * 2017-11-05 2018-03-20 信利光电股份有限公司 A kind of color synchronous method of multi-cam module
CN107896329B (en) * 2017-11-15 2019-04-30 信利光电股份有限公司 A kind of luminance compensation method of multi-cam mould group
CN112680336B (en) * 2021-03-12 2021-10-29 北京林电伟业电子技术有限公司 Calibrating device of optical traceability standard device of fluorescent quantitative PCR instrument

Also Published As

Publication number Publication date
JP2005156243A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
US7710559B2 (en) Calibration reference light source and calibration system using the same
KR100805834B1 (en) Apparatus for testing a light receiving element and method of the same
JP3912366B2 (en) Photometric device and method for correcting non-linearity thereof
US6717669B2 (en) Self-calibrating spectrometers and auto-calibration methods
US8699023B2 (en) Reflectivity measuring device, reflectivity measuring method, membrane thickness measuring device, and membrane thickness measuring method
KR20170093867A (en) Method for calibrating a spectroradiometer
KR101548017B1 (en) Apparatus for measuring optical property
US7773134B2 (en) System and method for canceling dark photocurrent in a color sensor circuit
US7511255B2 (en) Spectrophotometer with optical system for spectrally dispersing measurement light and photodiode array
JP2762390B2 (en) Light sensor
JP2003214951A (en) Spectrometric measuring device and method
JP4127195B2 (en) Spectral intensity measuring device and calibration method thereof, spectral reflection characteristic measuring device and calibration method thereof
WO2006054292A2 (en) Method and system for spectral measurements
JP2011107114A (en) Photometric device
JP2010048640A (en) Absolute spectroradiometer
US20110292386A1 (en) Spectral measurement device
US8476574B1 (en) Method of deconvolution of spectral data
US20060001873A1 (en) Multi-channel colorimeter and method for measuring spectral intensity characteristics
WO2021208349A1 (en) Integrating sphere photometer spectral response measurement method and system
US20220397454A1 (en) Photoconductor Readout Circuit
CN114739905A (en) Double-light-path spectrometer, color measuring device and calibration method
Toivanen et al. Realizations of the units of luminance and spectral radiance at the HUT
Fabricius et al. Quantum efficiency characterization of back-illuminated CCDs: Part II. Reflectivity measurements
JP2005156243A5 (en)
CN116539543A (en) Discrete spectrum food baking degree detection method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080505

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4127195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term