TWI830824B - Method of operating wireless communication device - Google Patents

Method of operating wireless communication device Download PDF

Info

Publication number
TWI830824B
TWI830824B TW108143074A TW108143074A TWI830824B TW I830824 B TWI830824 B TW I830824B TW 108143074 A TW108143074 A TW 108143074A TW 108143074 A TW108143074 A TW 108143074A TW I830824 B TWI830824 B TW I830824B
Authority
TW
Taiwan
Prior art keywords
address
control channel
log
buffer
pdcch
Prior art date
Application number
TW108143074A
Other languages
Chinese (zh)
Other versions
TW202031068A (en
Inventor
高亨旻
任珠爀
池鎬根
Original Assignee
南韓商三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商三星電子股份有限公司 filed Critical 南韓商三星電子股份有限公司
Publication of TW202031068A publication Critical patent/TW202031068A/en
Application granted granted Critical
Publication of TWI830824B publication Critical patent/TWI830824B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Systems and methods are described for a method of operating a wireless communication device includes receiving a physical downlink control channel (PDCCH) including a plurality of control channel elements (CCE), storing a plurality of LLRs generated by demodulating the PDCCH in a data buffer, storing at least one address of the LLRs, corresponding to a plurality of PDCCH candidates in accordance with an aggregation level for the CCEs, in a plurality of address buffers, and performing blind decoding on the PDCCH candidates by using the data buffer and the address buffers.

Description

無線通訊裝置的操作方法 How to operate wireless communication device [相關申請案的交叉參考] [Cross-reference to related applications]

本申請案主張於2018年11月28日在韓國智慧財產局提出申請的韓國專利申請案第10-2018-0150088號以及於2019年4月19日在韓國智慧財產局提出申請的韓國專利申請案第10-2019-0046085號的權益,所述韓國專利申請案的揭露內容全部併入本申請案供參考。 This application claims Korean Patent Application No. 10-2018-0150088, which was filed with the Korean Intellectual Property Office on November 28, 2018, and Korean Patent Application No. 10-2018-0150088, which was filed with the Korean Intellectual Property Office on April 19, 2019. No. 10-2019-0046085, the disclosure contents of the Korean patent application are all incorporated into this application for reference.

本發明概念是有關於一種無線通訊裝置,且更具體而言,是有關於一種管理進行解碼所需的資料的方法。 The inventive concept relates to a wireless communication device, and more particularly, to a method of managing data required for decoding.

無線通訊(即兩個或更多個裝置之間的資訊或電力傳送)已經成為個人及企業使用的必不可少的工具。隨著文件大小及裝置數量的增加,無線通訊裝置對高速資料服務的需求增加。 Wireless communications (the transfer of information or power between two or more devices) have become an essential tool for individuals and businesses. As file sizes and the number of devices increase, the demand for high-speed data services in wireless communication devices increases.

第五代(Fifth Generation,5G)或新無線電(new radio,NR)通訊系統旨在使用大於100百萬赫茲(MHz)的超寬頻寬以每秒十億位元(Gbps)的速度提供超高速資料服務。相比之下,傳統的長期演進技術(long-term evolution,LTE)及進階長期演 進技術(advanced long term evolution,LTE-A)無法滿足該些需要。因此,需要具有使用寬的頻帶傳輸訊號的方法來滿足當前需求。然而,可能難以確保用於超寬頻寬通訊的頻率。在一些情形中,可使用例如28十億赫茲頻帶或60十億赫茲頻帶等毫米波頻帶來達成期望的傳輸速率。 Fifth Generation (5G) or new radio (NR) communication systems aim to provide ultra-high speeds at gigabit per second (Gbps) using ultra-wide bandwidth greater than 100 megahertz (MHz) Information Services. In contrast, traditional long-term evolution (LTE) and advanced long-term evolution Advanced long term evolution (LTE-A) technology cannot meet these needs. Therefore, a method of transmitting signals using a wide frequency band is needed to meet current needs. However, it may be difficult to secure frequencies for ultra-wideband communications. In some cases, millimeter wave frequency bands, such as the 28 gigahertz band or the 60 gigahertz band, may be used to achieve the desired transmission rate.

在5G系統中,無線通訊裝置可對自基地台接收到的物理下行鏈路控制通道(physical downlink control channel,PDCCH)實行解碼來實行通訊。然而,需要一種在用於5G通訊系統的無線通訊裝置中使用緩衝器配置來高效管理對PDCCH進行解碼所需的資料的方法。 In the 5G system, the wireless communication device can decode the physical downlink control channel (PDCCH) received from the base station to perform communication. However, there is a need for a method of efficiently managing data required for decoding the PDCCH using buffer configuration in a wireless communication device for a 5G communication system.

本發明概念提供一種能夠藉由防止對物理下行鏈路控制通道(PDCCH)進行解碼所需的資料被重複儲存來提高記憶體使用效率的無線通訊裝置及其操作方法。 The inventive concept provides a wireless communication device and an operating method thereof that can improve memory usage efficiency by preventing data required for decoding a physical downlink control channel (PDCCH) from being repeatedly stored.

根據本發明概念的態樣,提供一種操作無線通訊裝置的方法。所述方法包括:接收包括多個控制通道元素(CCE)的物理下行鏈路控制通道;將多個對數似然比(LLR)儲存於資料緩衝器中,其中所述對數似然比是藉由對所述物理下行鏈路控制通道進行解調而產生且對應於多個物理下行鏈路控制通道候選項,所述物理下行鏈路控制通道候選項中的每一者具有與控制通道元素的數目對應的聚合等級(aggregation level);將所述對數似然比的至少一個位址儲存於多個位址緩衝器中;以及使用所述資料緩衝 器及所述位址緩衝器對所述物理下行鏈路控制通道候選項實行盲解碼。 According to aspects of the inventive concept, a method of operating a wireless communication device is provided. The method includes: receiving a physical downlink control channel including a plurality of control channel elements (CCEs); and storing a plurality of log-likelihood ratios (LLRs) in a data buffer, wherein the log-likelihood ratios are calculated by Demodulating the physical downlink control channel results in and corresponds to a plurality of physical downlink control channel candidates, each of the physical downlink control channel candidates having a number equal to the number of control channel elements. corresponding aggregation level; storing at least one address of the log-likelihood ratio in a plurality of address buffers; and using the data buffer The processor and the address buffer perform blind decoding on the physical downlink control channel candidate.

根據本發明概念的態樣,提供一種操作無線通訊裝置的方法,所述無線通訊裝置用於管理實行盲解碼所需的資料。所述方法包括:自包括多個控制通道元素的物理下行鏈路控制通道產生控制通道元素索引及與所述控制通道元素索引對應的對數似然比;將所述對數似然比儲存於資料緩衝器中;以及基於所述控制通道元素索引而將所述對數似然比的至少一個位址儲存於自多個位址緩衝器選擇出的至少一個位址緩衝器中。 According to aspects of the inventive concept, a method of operating a wireless communication device for managing data required to perform blind decoding is provided. The method includes: generating a control channel element index and a log-likelihood ratio corresponding to the control channel element index from a physical downlink control channel including a plurality of control channel elements; and storing the log-likelihood ratio in a data buffer. and storing at least one address of the log-likelihood ratio in at least one address buffer selected from a plurality of address buffers based on the control channel element index.

根據本發明概念的態樣,提供一種無線通訊裝置,所述無線通訊裝置包括:射頻(RF)積體電路,被配置成自基地台接收包括多個控制通道元素的物理下行鏈路控制通道;以及控制器,被配置成根據所述控制通道元素的聚合等級對多個物理下行鏈路控制通道候選項實行盲解碼。所述控制器更包括資料管理電路,所述資料管理電路被配置成將由所述物理下行鏈路控制通道產生的對數似然比儲存於資料緩衝器中,且基於對應於所述對數似然比的控制通道元素索引將所述對數似然比的至少一個位址儲存於自多個位址緩衝器選擇出的至少一個位址緩衝器中。 According to an aspect of the inventive concept, a wireless communication device is provided, the wireless communication device includes: a radio frequency (RF) integrated circuit configured to receive a physical downlink control channel including a plurality of control channel elements from a base station; and a controller configured to blindly decode a plurality of physical downlink control channel candidates based on an aggregation level of the control channel element. The controller further includes a data management circuit configured to store a log-likelihood ratio generated by the physical downlink control channel in a data buffer, and based on the log-likelihood ratio corresponding to the The control channel element index stores at least one address of the log-likelihood ratio in at least one address buffer selected from a plurality of address buffers.

根據本發明概念的態樣,提供一種無線通訊方法,所述方法包括:接收物理下行鏈路控制通道;將物理下行鏈路控制通道資料儲存於資料緩衝器中,其中所述物理下行鏈路控制通道資料對應於多個物理下行鏈路控制通道候選項;將所述物理下行鏈 路控制通道資料的位址儲存於多個位址緩衝器中,其中所述多個位址緩衝器中的每一者對應於所述物理下行鏈路控制通道候選項中的一者;基於儲存於所述多個位址緩衝器的對應的位址緩衝器中的物理下行鏈路控制通道資料的位址對所述物理下行鏈路控制通道候選項中的每一者實行盲解碼。 According to aspects of the concept of the present invention, a wireless communication method is provided. The method includes: receiving a physical downlink control channel; and storing physical downlink control channel data in a data buffer, wherein the physical downlink control channel The channel information corresponds to a plurality of physical downlink control channel candidates; the physical downlink The address of the downlink control channel data is stored in a plurality of address buffers, wherein each of the plurality of address buffers corresponds to one of the physical downlink control channel candidates; based on storage Blind decoding is performed on each of the physical downlink control channel candidates at an address of physical downlink control channel data in a corresponding address buffer of the plurality of address buffers.

1:無線通訊系統 1: Wireless communication system

2:下行鏈路通道 2: Downlink channel

4:上行鏈路通道 4: Uplink channel

20:基地台 20:Base station

100、600:無線通訊裝置 100, 600: Wireless communication device

110_1~110_n:天線 110_1~110_n:antenna

120:射頻(RF)積體電路 120: Radio frequency (RF) integrated circuits

130:控制器 130:Controller

131、620:資料管理電路 131, 620: Data management circuit

131a:資料緩衝器/緩衝器 131a: Data buffer/buffer

131b:位址緩衝器/緩衝器 131b: Address buffer/buffer

132:解碼器 132:Decoder

202:OFDM符號 202: OFDM symbols

204:子載波 204:Subcarrier

205:子訊框 205: Subframe

206:槽 206:Slot

208:資源區塊(RB) 208: Resource Block (RB)

210:NRB子載波 210:N RB subcarrier

212:資源元素(RE) 212: Resource Element (RE)

214:無線電訊框 214:Wireless frame

302、PDCCH:物理下行鏈路控制通道 302. PDCCH: Physical downlink control channel

303:PDSCH 303:PDSCH

305、403:解調參考訊號(DMRS) 305, 403: Demodulation reference signal (DMRS)

306、501:PDCCH集 306, 501: PDCCH set

401、407:資源元素群組(REG) 401, 407: Resource element group (REG)

402、510:控制通道元素(CCE) 402, 510: Control Channel Element (CCE)

404:REG0 404:REG0

405、406:邏輯映射方法 405, 406: Logical mapping method

502:RB對 502:RB pair

503:聚合等級-1/聚合等級 503: Aggregation level-1/aggregation level

504:聚合等級-2/聚合等級 504: Aggregation level-2/aggregation level

505:聚合等級-4/聚合等級 505: Aggregation level-4/aggregation level

506、507、508:PDCCH候選項 506, 507, 508: PDCCH candidates

610:解調器 610:Demodulator

621:第二控制邏輯 621: Second control logic

622:資料緩衝器電路 622: Data buffer circuit

623:第一多工器 623:First multiplexer

624:第三控制邏輯 624: Third control logic

625:位址緩衝器 625:Address buffer

625a:位址緩衝器/第一位址緩衝器 625a: Address buffer/first address buffer

625b:位址緩衝器/第二位址緩衝器 625b: Address buffer/second address buffer

625c:位址緩衝器/第三位址緩衝器 625c: Address buffer/third address buffer

626:第一控制邏輯 626: First control logic

627:第二多工器 627: Second multiplexer

630:解碼器 630:Decoder

1000:電子裝置 1000:Electronic devices

1010:記憶體 1010:Memory

1011:程式儲存單元 1011: Program storage unit

1012:資料儲存單元 1012:Data storage unit

1020:處理器單元 1020: Processor unit

1021:記憶體介面 1021:Memory interface

1022:處理器 1022: Processor

1023:周邊裝置介面 1023: Peripheral device interface

1040:輸入及輸出控制器 1040:Input and output controller

1050:顯示單元 1050:Display unit

1060:輸入裝置 1060:Input device

1090:通訊處理單元 1090: Communication processing unit

ABUF_C1~ABUF_Cn:位址緩衝器電路 ABUF_C1~ABUF_Cn: address buffer circuit

Addr_n0:位址/起始位址 Addr_n0: address/starting address

Addr_n1、Addr_n0+k、Addr_nm-1、Addr_nm-1+k、CCE0_Addr、CCE1_Addr、CCE2_Addr、CCE3_Addr、CCE4_Addr、CCE5_Addr、CCE8_Addr、CCE9_Addr、CCE10_Addr、CCE11_Addr、CCE12_Addr、CCE13_Addr:位址 Address

BUF_CS:緩衝器控制訊號 BUF_CS: buffer control signal

{CCE0、CCE1}、{CCE4、CCE5}、{CCE8、CCE9}、{CCE12、CCE13}、{CCE0、CCE1、CCE2、CCE3}、{CCE8、CCE9、CCE10、CCE11}:CCE對 {CCE0, CCE1}, {CCE4, CCE5}, {CCE8, CCE9}, {CCE12, CCE13}, {CCE0, CCE1, CCE2, CCE3}, {CCE8, CCE9, CCE10, CCE11}: CCE pair

CCE0~CCE15:CCE CCE0~CCE15:CCE

CCE0_0:LLR群組/第一LLR群組 CCE0_0:LLR group/first LLR group

CCE0_1~CCE0_m-1:LLR群組 CCE0_1~CCE0_m-1:LLR group

CCE_IDX:CCE索引 CCE_IDX:CCE index

DBUF_C:資料緩衝器電路 DBUF_C: data buffer circuit

GS:量值 GS: magnitude

LLR:對數似然比 LLR: log likelihood ratio

MUX_CS1:第一控制訊號 MUX_CS1: first control signal

MUX_CS2:第二控制訊號 MUX_CS2: second control signal

REG:資源元素群組 REG: Resource element group

REG 401:REG0~REG15 REG 401:REG0~REG15

REG_BDa:第一REG束 REG_BDa: first REG bundle

REG_BDb:第二REG束 REG_BDb: second REG bundle

REG_BDc:第三REG束 REG_BDc: The third REG bundle

REG_BDd:第四REG束 REG_BDd: The fourth REG bundle

REG_BDe:第五REG束 REG_BDe: The fifth REG bundle

REG_BDf:第六REG束 REG_BDf: The sixth REG bundle

S100、S110、S120、S130、S200、S210:操作 S100, S110, S120, S130, S200, S210: Operation

結合附圖,以下詳細說明將更清楚地闡釋本發明概念的實施例。 The following detailed description, taken in conjunction with the accompanying drawings, will more clearly explain embodiments of the inventive concept.

圖1是根據本發明概念示範性實施例的無線通訊系統的示意性方塊圖。 FIG. 1 is a schematic block diagram of a wireless communication system according to an exemplary embodiment of the inventive concept.

圖2是示出根據本發明概念示範性實施例的無線通訊系統中的時間-頻率(time-frequency)區的基本結構的視圖。 2 is a view showing a basic structure of a time-frequency zone in a wireless communication system according to an exemplary embodiment of the present invention.

圖3是示出根據本發明概念示範性實施例的無線通訊系統中的物理下行鏈路控制通道(PDCCH)的視圖。 3 is a view illustrating a physical downlink control channel (PDCCH) in a wireless communication system according to an exemplary embodiment of the inventive concept.

圖4是示出根據本發明概念示範性實施例的無線通訊系統中的PDCCH的資源映射方法的視圖。 4 is a view illustrating a resource mapping method of PDCCH in a wireless communication system according to an exemplary embodiment of the present concept.

圖5是示出根據本發明概念示範性實施例的無線通訊系統中的PDCCH的搜索空間以及用於所述搜索空間的盲解碼方法的視圖。 5 is a view illustrating a search space of a PDCCH in a wireless communication system and a blind decoding method for the search space according to an exemplary embodiment of the present inventive concept.

圖6是示出根據本發明概念示範性實施例的對無線通訊裝置進行解碼所需的資料進行緩衝的方法的流程圖。 FIG. 6 is a flowchart illustrating a method of buffering data required for decoding by a wireless communication device according to an exemplary embodiment of the present invention.

圖7是詳細示出根據本發明概念示範性實施例的無線通訊裝 置的控制器的方塊圖。 FIG. 7 is a detailed illustration of a wireless communication device according to an exemplary embodiment of the present invention. Block diagram of the configured controller.

圖8是示出根據本發明概念示範性實施例的儲存於資料緩衝器及第一位址緩衝器至第三位址緩衝器中的資訊的視圖。 8 is a view illustrating information stored in a data buffer and first to third address buffers according to an exemplary embodiment of the present invention.

圖9A至圖9F是示出PDCCH的控制通道元素(control channel element,CCE)的資源映射模式的視圖。 9A to 9F are views showing a resource mapping pattern of a control channel element (CCE) of the PDCCH.

圖10是示出根據本發明概念示範性實施例的在第一位址緩衝器中儲存位址的方法的視圖。 FIG. 10 is a view illustrating a method of storing an address in a first address buffer according to an exemplary embodiment of the present concept.

圖11是示出根據本發明概念示範性實施例的實行無線通訊裝置的解碼的方法的流程圖。 FIG. 11 is a flowchart illustrating a method of performing decoding of a wireless communication device according to an exemplary embodiment of the present inventive concept.

圖12是詳細示出根據本發明概念示範性實施例的無線通訊裝置的控制器的方塊圖。 12 is a block diagram illustrating in detail a controller of a wireless communication device according to an exemplary embodiment of the present invention.

圖13是示出根據本發明概念示範性實施例的電子裝置的方塊圖。 FIG. 13 is a block diagram illustrating an electronic device according to an exemplary embodiment of the inventive concept.

本揭露闡述用於高效地管理在對物理下行鏈路控制通道(PDCCH)進行解碼時所使用的資料的系統及方法。示例性實施例可包括能夠藉由防止對PDCCH進行解碼所需的資料被重複儲存來提高記憶體的使用效率的無線通訊裝置及其操作方法。 The present disclosure sets forth systems and methods for efficiently managing data used in decoding the physical downlink control channel (PDCCH). Exemplary embodiments may include wireless communication devices and operating methods capable of improving memory usage efficiency by preventing data required to decode the PDCCH from being repeatedly stored.

圖1是根據本發明概念示範性實施例的無線通訊系統1的示意性方塊圖。圖2是示出無線通訊系統中的時間-頻率區的基本結構的視圖。圖3是示出無線通訊系統中的物理下行鏈路控制通道(PDCCH)的視圖。圖4是示出無線通訊系統中的PDCCH 的資源映射方法的視圖。圖5是示出無線通訊系統中的PDCCH的搜索空間及用於所述搜索空間的盲解碼方法的視圖。 FIG. 1 is a schematic block diagram of a wireless communication system 1 according to an exemplary embodiment of the inventive concept. FIG. 2 is a view showing the basic structure of a time-frequency zone in a wireless communication system. FIG. 3 is a view showing a physical downlink control channel (PDCCH) in a wireless communication system. Figure 4 shows a PDCCH in a wireless communication system A view of the resource mapping method. FIG. 5 is a view illustrating a search space of PDCCH in a wireless communication system and a blind decoding method for the search space.

無線通訊系統1可為例如長期演進(LTE)系統、5G系統、分碼多重存取(code division multiple access,CDMA)系統、全球行動通訊(global system for mobile communications,GSM)系統、無線區域網路(wireless local area network,WLAN)系統或另一任意無線通訊系統。在下文中,無線通訊系統1將參照5G系統。然而,本發明概念的示範性實施例並非僅限於此。 The wireless communication system 1 may be, for example, a long-term evolution (LTE) system, a 5G system, a code division multiple access (CDMA) system, a global system for mobile communications (GSM) system, or a wireless local area network (wireless local area network, WLAN) system or another arbitrary wireless communication system. In the following, the wireless communication system 1 will refer to the 5G system. However, exemplary embodiments of the inventive concept are not limited thereto.

參照圖1,無線通訊系統1可包括無線通訊裝置100及基地台20。無線通訊裝置100與基地台20可藉由下行鏈路通道2及上行鏈路通道4進行通訊。無線通訊裝置100可包括多個天線110_1至110_n、射頻(radio frequency,RF)積體電路120、控制器130及緩衝器140。 Referring to FIG. 1 , a wireless communication system 1 may include a wireless communication device 100 and a base station 20 . The wireless communication device 100 and the base station 20 can communicate through the downlink channel 2 and the uplink channel 4. The wireless communication device 100 may include a plurality of antennas 110_1 to 110_n, a radio frequency (RF) integrated circuit 120, a controller 130 and a buffer 140.

無線通訊裝置100可指與基地台20進行通訊的不同的裝置,且可傳輸及接收資料訊號或控制資訊。舉例而言,無線通訊裝置100可被稱為使用者設備(user equipment,UE)、行動台(mobile station,MS)、行動終端(mobile terminal,MT)、使用者終端(user terminal,UT)、用戶台(subscriber station,SS)或可攜裝置。基地台20可指與無線通訊裝置100或另一基地台進行通訊的固定台(stationary station)。基地台20可被稱為節點B、演進節點B(evolved-node B,eNB)、基地台收發機系統(base transceiver system,BTS)或存取點(access point,AP)。 The wireless communication device 100 may refer to different devices that communicate with the base station 20 and may transmit and receive data signals or control information. For example, the wireless communication device 100 may be called user equipment (UE), mobile station (MS), mobile terminal (MT), user terminal (UT), Subscriber station (SS) or portable device. The base station 20 may refer to a stationary station that communicates with the wireless communication device 100 or another base station. The base station 20 may be called a node B, an evolved-node B (eNB), a base transceiver system (BTS) or an access point (AP).

無線通訊裝置100與基地台20之間的無線通訊網路可藉由共享可用的網路資源來支援多個使用者彼此進行通訊。舉例而言,在無線通訊網路中,資訊可藉由例如以下的不同方法進行傳輸:分碼多重存取(CDMA)、分頻多重存取(frequency division multiple access,FDMA)、分時多重存取(time division multiple access,TDMA)、正交分頻多重存取(orthogonal frequency division multiple access,OFDMA)或單載波分頻多重存取(single carrier frequency division multiple access,SC-FDMA)。在下文中,5G通訊技術將被闡述為應用於例如無線通訊裝置100與基地台20之間的無線通訊。因此,本發明概念的實施例可應用於除5G通訊技術之外的下一代通訊技術。 The wireless communication network between the wireless communication device 100 and the base station 20 can support multiple users to communicate with each other by sharing available network resources. For example, in wireless communication networks, information can be transmitted through different methods such as: code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (time division multiple access, TDMA), orthogonal frequency division multiple access (orthogonal frequency division multiple access, OFDMA) or single carrier frequency division multiple access (single carrier frequency division multiple access, SC-FDMA). In the following, 5G communication technology will be explained as being applied to wireless communication between the wireless communication device 100 and the base station 20 , for example. Therefore, embodiments of the inventive concept may be applied to next-generation communication technologies in addition to 5G communication technology.

RF積體電路120可藉由所述多個天線110_1至110_n自基地台20接收包含控制資訊或資料訊號的下行鏈路訊號。RF積體電路120可包括用於放大下行鏈路訊號的低雜訊放大器及用於對下行鏈路訊號的頻率進行降頻轉換的混頻器(mixer)。RF積體電路120將RF頻帶的下行鏈路訊號降頻轉換成基頻,且可將基頻提供至控制器130。 The RF integrated circuit 120 can receive downlink signals including control information or data signals from the base station 20 through the plurality of antennas 110_1 to 110_n. The RF integrated circuit 120 may include a low-noise amplifier for amplifying the downlink signal and a mixer for down-converting the frequency of the downlink signal. The RF integrated circuit 120 down-converts the downlink signal of the RF band into a base frequency, and can provide the base frequency to the controller 130 .

根據實施例,控制器130可包括資料管理電路131及解碼器132。資料管理電路131可管理對自基地台20接收到的PDCCH進行解碼所需的資料且可包括用於管理所述資料的多個緩衝器131a及131b。在下文中,資料管理電路131可實行一系列以下操作:將對PDCCH進行解碼所需的資料操作儲存(或緩衝) 於緩衝器中;以及根據解碼器132的解碼操作向解碼器132提供恰當的資料。 According to embodiments, the controller 130 may include a data management circuit 131 and a decoder 132. The data management circuit 131 may manage data required for decoding the PDCCH received from the base station 20 and may include a plurality of buffers 131a and 131b for managing the data. In the following, the data management circuit 131 may perform a series of the following operations: store (or buffer) the data operations required to decode the PDCCH in the buffer; and providing appropriate data to the decoder 132 according to the decoding operation of the decoder 132 .

在下文中,為了幫助理解資料管理電路131的操作,將首先闡述圖2至圖5。應充分理解,圖2至圖5是無線通訊系統1的實例,且本發明概念並非僅限於此。 In the following, in order to help understand the operation of the data management circuit 131, FIGS. 2 to 5 will be explained first. It should be fully understood that FIG. 2 to FIG. 5 are examples of the wireless communication system 1, and the concept of the present invention is not limited thereto.

參照圖2,橫軸代表時間區,豎軸可代表頻率區。時間區中最小傳輸單位是正交分頻多工(orthogonal frequency division multiplexing,OFDM)符號。Nsymb個OFDM符號202可構成一個槽(slot)206,且兩個槽可構成一個子訊框205。舉例而言,槽206的長度是0.5毫秒,且子訊框的長度可為1.0毫秒。另外,無線電訊框214可為由十個子訊框205構成的時間區單元。 Referring to Figure 2, the horizontal axis represents the time zone, and the vertical axis may represent the frequency zone. The smallest transmission unit in the time zone is an orthogonal frequency division multiplexing (OFDM) symbol. N symb OFDM symbols 202 may form a slot 206, and two slots may form a subframe 205. For example, the length of slot 206 is 0.5 milliseconds, and the length of the subframe can be 1.0 milliseconds. In addition, the wireless frame 214 may be a time zone unit composed of ten sub-frames 205 .

頻率區中的最小傳輸單位是子載波。整個系統傳輸頻帶的頻寬可由NBW個子載波204構成。時間-頻率區中的作為資源元素(resource element,RE)212的資源的基本單位可由OFDM符號索引及子載波索引來表示。資源區塊(resource block,RB)208可由時間區中的Nsymb個OFDM符號及頻率區中的NRB個子載波210來定義。因此,所述一個RB 208可由Nsymb * NRB個RE 212構成。RB對(其是其中兩個RB可在時間軸上進行連接的單元)可由Nsymb * 2NRB個RE 212構成。另一方面,PDCCH可在無線通訊系統中的基地台中藉由圖2的時間-頻率區的資源而傳輸至無線通訊裝置。下行鏈路控制資訊(downlink control information,DCI)可藉由PDCCH傳輸。DCI可包括下行鏈路排程指派相關資訊以及 空間多工相關控制資訊,所述下行鏈路排程指派相關資訊包括物理下行鏈路共享通道(physical downlink shared channel,PDSCH)資源名稱、傳輸格式及混合自動重複請求(Hybrid Automatic Repeat request,HARQ)資訊項。 The smallest transmission unit in a frequency area is a subcarrier. The bandwidth of the entire system transmission band may be composed of N BW subcarriers 204. The basic unit of resources as the resource element (RE) 212 in the time-frequency region can be represented by an OFDM symbol index and a subcarrier index. A resource block (RB) 208 may be defined by N symb OFDM symbols in the time zone and N RB subcarriers 210 in the frequency zone. Therefore, the one RB 208 may be composed of N symb * N RB REs 212. An RB pair, which is a unit in which two RBs can be connected on the time axis, may be composed of N symb * 2N RB REs 212 . On the other hand, the PDCCH can be transmitted to the wireless communication device in the base station in the wireless communication system through the resources in the time-frequency zone of Figure 2. Downlink control information (DCI) can be transmitted via PDCCH. DCI may include downlink scheduling assignment related information and spatial multiplexing related control information. The downlink scheduling assignment related information includes physical downlink shared channel (PDSCH) resource name, transmission format and Hybrid Automatic Repeat request (HARQ) information item.

參照圖3,可對PDCCH 302與PDSCH 303進行頻率多工,且可加以傳輸。在基地台中,可藉由排程來恰當地指派PDCCH 302及PDSCH 303的資源。因此,可有效地支援與無線通訊裝置的資料傳輸的共存。多個PDCCH 302可構成一個PDCCH集306,且可以RB對為單位來指派PDCCH集306。PDCCH集306的位置資訊是終端具體設定的且可藉由遠程無線電控制(remote radio control,RRC)以訊號告知。每一無線通訊裝置中最多可設定兩個PDCCH集306。可將一個PDCCH集306同時多工並設定於不同的終端中。另一方面,在PDCCH 302中,可將解調參考訊號(demodulation reference signal,DMRS)305用作參考訊號。 Referring to Figure 3, PDCCH 302 and PDSCH 303 can be frequency multiplexed and transmitted. In the base station, the resources of PDCCH 302 and PDSCH 303 can be allocated appropriately through scheduling. Therefore, coexistence of data transmission with the wireless communication device can be effectively supported. Multiple PDCCHs 302 may constitute one PDCCH set 306, and the PDCCH set 306 may be assigned in units of RB pairs. The location information of the PDCCH set 306 is terminal-specific and can be signaled through remote radio control (RRC). Up to two PDCCH sets 306 can be set in each wireless communication device. One PDCCH set 306 can be multiplexed and configured in different terminals at the same time. On the other hand, in the PDCCH 302, a demodulation reference signal (DMRS) 305 can be used as a reference signal.

參照圖4,作為實例示出一個RB對,且一個RB可包括16個資源元素群組(Resource Element Group,REG)401。可將RB對中包括的REG映射至與{0、1、2、...、及15}對應的REG 401索引。此時,將其中被映射DMRS 403的REG排除在編號之外。 Referring to FIG. 4 , one RB pair is shown as an example, and one RB may include 16 resource element groups (Resource Element Group, REG) 401. REGs included in the RB pair may be mapped to REG 401 indexes corresponding to {0, 1, 2, ..., and 15}. At this time, the REG in which DMRS 403 is mapped is excluded from the numbering.

與相應的索引對應的一組REG可構成一個REG 401。舉例而言,將九個REG 407映射至圖4所示RB對中的索引0,且所述九個REG 407可構成REG0 404。由相應的索引x(x={0、1、2、...、及15})編號的REG可構成REGx。在闡述實施例時,根 據本發明概念,為方便起見,對於RB對中存在的REG 401,假定採用如圖4的405一樣的邏輯映射方法。 A set of REGs corresponding to corresponding indexes may constitute one REG 401. For example, nine REGs 407 are mapped to index 0 in the RB pair shown in FIG. 4 and may constitute REGO 404. REGx can be composed of REGs numbered by the corresponding index x (x={0, 1, 2, ..., and 15}). When describing the embodiments, it is basically According to the concept of the present invention, for convenience, for the REG 401 existing in the RB pair, it is assumed that the same logical mapping method as 405 in Figure 4 is used.

PDCCH的資源指派是基於控制通道元素(CCE)402。一個CCE 402可由四個或八個REG 401構成。CCE 402的REG 401的數目可根據循環前綴(cyclic prefix,CP)長度及子訊框設定資訊而變化。在圖4中,示出其中所述四個REG 401構成一個CCE 402的實例。更詳細而言,藉由如圖4的405一樣的邏輯映射方法,可將REG0、REG4、REG8及REG12映射至CCE0,可將REG1、REG5、REG9及REG13映射至CCE1,可將REG2、REG6、REG10及REG14映射至CCE2,且可將REG3、REG7、REG11及REG15映射至CCE3。 Resource assignment for PDCCH is based on Control Channel Element (CCE) 402. A CCE 402 may be composed of four or eight REGs 401. The number of REG 401 of CCE 402 may vary according to the cyclic prefix (CP) length and sub-frame setting information. In Figure 4, an example is shown in which the four REGs 401 constitute one CCE 402. In more detail, through the same logical mapping method as 405 in Figure 4, REG0, REG4, REG8 and REG12 can be mapped to CCE0, REG1, REG5, REG9 and REG13 can be mapped to CCE1, REG2, REG6, REG10 and REG14 are mapped to CCE2, and REG3, REG7, REG11 and REG15 can be mapped to CCE3.

因此,當所述四個REG 401構成一個CCE 402時,RB對可包括四個CCE 402。在闡述實施例時,根據本發明概念,為方便起見,對於RB對中存在的CCE 402,假定採取如圖4的406一樣的邏輯映射方法。根據CCE 402與REG 401之間的映射方法,可將PDCCH傳輸方法分類成局部傳輸(localized transmission)及分佈式傳輸(distributed transmission)。 Therefore, when the four REGs 401 constitute one CCE 402, the RB pair may include four CCEs 402. When describing the embodiment, according to the concept of the present invention, for the sake of convenience, it is assumed that the CCE 402 existing in the RB pair adopts the same logical mapping method as 406 in Figure 4 . According to the mapping method between CCE 402 and REG 401, the PDCCH transmission method can be classified into localized transmission and distributed transmission.

闡述PDCCH中的搜索空間,PDCCH可支援終端具體搜索空間(terminal-particular search space)。搜索空間是由無線通訊裝置試圖以給定的聚合等級(aggregation level)(在下文中稱為CCE聚合等級)進行解碼的CCE構成的一組PDCCH候選項。PDCCH可具有可根據系統參數(例如,CP長度、子訊框設定、 PDCCH格式、局部傳輸或分佈式傳輸方法、或者CCE的總數目)加以確定的為1、2、4、8、16或32的聚合等級。由於存在對所述多個CCE進行成束的各種聚合等級,因此根據聚合等級,無線通訊裝置可具有多個搜索空間。PDCCH中的可由無線通訊裝置根據聚合等級進行解碼的PDCCH候選項的數量可有所變化。 Describes the search space in PDCCH. PDCCH can support terminal-particular search space. The search space is a set of PDCCH candidates consisting of CCEs that the wireless communication device attempts to decode at a given aggregation level (hereinafter referred to as CCE aggregation level). The PDCCH can have features that can be configured based on system parameters (e.g., CP length, subframe settings, The aggregation level is 1, 2, 4, 8, 16 or 32 determined by the PDCCH format, local transmission or distributed transmission method, or the total number of CCEs). Since there are various aggregation levels for bundling the plurality of CCEs, the wireless communication device may have multiple search spaces according to the aggregation level. The number of PDCCH candidates in the PDCCH that can be decoded by the wireless communication device according to the aggregation level may vary.

在圖5中,示出其中由四個RB對構成一個PDCCH集501的實例。參照圖5,RB對502包括四個CCE 510。在闡述實施例時,根據本發明概念,假定採用圖4的CCE的邏輯映射方法406。 In FIG. 5 , an example is shown in which one PDCCH set 501 is composed of four RB pairs. Referring to Figure 5, RB pair 502 includes four CCEs 510. When explaining the embodiment, according to the inventive concept, it is assumed that the logical mapping method 406 of the CCE of Figure 4 is adopted.

在圖5中,示出聚合等級-1 503、聚合等級-2 504及聚合等級-4 505的搜索空間的實例。在聚合等級-1 503處,可將PDCCH候選項506映射至CCE 510。在聚合等級-2 504處,可將PDCCH候選項507映射至兩個CCE 510。在聚合等級-4 505處,可將PDCCH候選項508映射至四個CCE 510。因此,在聚合等級-1 503處,在PDCCH候選項506中存在四個CCE(CCE 0、CCE4、CCE8及CCE12),在聚合等級-2 504處,在PDCCH候選項507中存在四個CCE對({CCE0、CCE1}、{CCE4、CCE5}、{CCE8、CCE9}及{CCE12、CCE13}),且在聚合等級-4 505處,可存在兩個CCE對({CCE0、CCE1、CCE2、CCE3}及{CCE8、CCE9、CCE10、CCE11})。 In Figure 5, examples of search spaces for aggregation level-1 503, aggregation level-2 504, and aggregation level-4 505 are shown. At aggregation level-1 503, PDCCH candidate 506 may be mapped to CCE 510. At aggregation level-2 504, PDCCH candidate 507 may be mapped to two CCEs 510. At aggregation level-4 505, PDCCH candidates 508 may be mapped to four CCEs 510. Therefore, at aggregation level-1 503, there are four CCEs (CCE 0, CCE4, CCE8, and CCE12) in PDCCH candidates 506, and at aggregation level-2 504, there are four CCE pairs in PDCCH candidates 507 ({CCE0, CCE1}, {CCE4, CCE5}, {CCE8, CCE9} and {CCE12, CCE13}), and at aggregation level -4 505, there can be two CCE pairs ({CCE0, CCE1, CCE2, CCE3 } and {CCE8, CCE9, CCE10, CCE11}).

返回圖1,在獲得PDCCH中包括的DCI之後,解碼器132可對根據聚合等級確定的PDCCH候選項實行盲解碼。舉例而 言,如圖5中所示,當存在PDCCH候選項506、507及508時,解碼器132對聚合等級-1 503處的四個PDCCH候選項506實行解碼操作。解碼器132亦可對聚合等級-2 504處的四個PDCCH候選項507實行解碼操作且可對聚合等級-4 505處的兩個PDCCH候選項508實行解碼操作。對於解碼器132的上述盲解碼操作,PDCCH候選項506、507及508須儲存於無線通訊裝置100中的緩衝器(或記憶體)中。在傳統技術中,當實行解碼器132的盲解碼操作時,儘管部分資料(CCE0、CCE1、CCE4、CCE8、CCE9及CCE12)被重複使用至少兩次,然而會對所述部分資料的重複使用不加考慮地儲存PDCCH候選項506、507及508。在傳統技術中,將CCE0、CCE4、CCE8及CCE12儲存於緩衝器的第一區中作為聚合等級-1 503的PDCCH候選項506,將{CCE0、CCE1}、{CCE4、CCE5}、{CCE8、CCE9}及{CCE12、CCE13}儲存於緩衝器的第二區中作為聚合等級-2 504的PDCCH候選項507,且將{CCE0、CCE1、CCE2、CCE3}及{CCE8、CCE9、CCE 10、CCE 11}儲存於緩衝器的第三區中作為聚合等級-4 505的PDCCH候選項508。因此,CCE0、CCE1、CCE4、CCE8、CCE9及CCE12被重複儲存於緩衝器中,且緩衝器的使用效率低下。 Returning to FIG. 1 , after obtaining the DCI included in the PDCCH, the decoder 132 may perform blind decoding on the PDCCH candidates determined according to the aggregation level. For example In other words, as shown in Figure 5, when there are PDCCH candidates 506, 507 and 508, the decoder 132 performs decoding operations on the four PDCCH candidates 506 at aggregation level -1 503. Decoder 132 may also perform decoding operations on four PDCCH candidates 507 at aggregation level-2 504 and may perform decoding operations on two PDCCH candidates 508 at aggregation level-4 505. For the above blind decoding operation of the decoder 132, the PDCCH candidates 506, 507 and 508 must be stored in the buffer (or memory) in the wireless communication device 100. In the conventional technology, when the blind decoding operation of the decoder 132 is performed, although some of the data (CCE0, CCE1, CCE4, CCE8, CCE9 and CCE12) are reused at least twice, the reuse of the part of the data is not allowed. PDCCH candidates 506, 507 and 508 are stored with consideration. In the traditional technology, CCE0, CCE4, CCE8 and CCE12 are stored in the first area of the buffer as PDCCH candidates 506 of aggregation level-1 503, and {CCE0, CCE1}, {CCE4, CCE5}, {CCE8, CCE9} and {CCE12, CCE13} are stored in the second area of the buffer as PDCCH candidates 507 of aggregation level-2 504, and {CCE0, CCE1, CCE2, CCE3} and {CCE8, CCE9, CCE 10, CCE 11} is stored in the third area of the buffer as a PDCCH candidate 508 for aggregation level-4 505. Therefore, CCE0, CCE1, CCE4, CCE8, CCE9 and CCE12 are repeatedly stored in the buffer, and the buffer usage efficiency is low.

作為解決方案,根據本發明概念實施例的資料管理電路131可包括資料緩衝器131a及多個位址緩衝器131b。另外,為防止資料被重複儲存,將進行解碼所需的資料儲存於資料緩衝器131a中。然後,可將資料緩衝器131a的位址(即,儲存於資料緩 衝器中的LLR的位址)儲存於位址緩衝器131b中。為自資料緩衝器131a實行盲解碼,參照儲存於位址緩衝器131b中的位址,資料管理電路131讀取解碼器132所需的資料且可將所讀取的資料提供至解碼器132。 As a solution, the data management circuit 131 according to the embodiment of the present invention may include a data buffer 131a and a plurality of address buffers 131b. In addition, in order to prevent data from being repeatedly stored, the data required for decoding is stored in the data buffer 131a. Then, the address of the data buffer 131a (i.e., stored in the data buffer 131a (the address of the LLR in the buffer) is stored in the address buffer 131b. To perform blind decoding from the data buffer 131a, with reference to the address stored in the address buffer 131b, the data management circuit 131 reads the data required by the decoder 132 and may provide the read data to the decoder 132.

詳細而言,資料管理電路131可儲存多個對數似然比(LLR)。LLR是由控制器130藉由對資料緩衝器131a中的PDCCH及資料緩衝器131a的位址進行解調而產生。根據PDCCH中包括的CCE的聚合等級被儲存,可將分別與所述多個PDCCH候選項對應的LLR儲存於位址緩衝器131b中。 Specifically, the data management circuit 131 can store multiple log-likelihood ratios (LLRs). The LLR is generated by the controller 130 by demodulating the PDCCH in the data buffer 131a and the address of the data buffer 131a. According to the aggregation levels of CCEs included in the PDCCH being stored, LLRs respectively corresponding to the plurality of PDCCH candidates may be stored in the address buffer 131b.

在圖5中,資料管理電路131可將藉由對PDCCH中包括的CCE0至CCE15進行解調而產生的多個LLR以產生次序(或以規定次序)儲存於資料緩衝器131a中。另外,資料管理電路131可將資料緩衝器131a的其中儲存與作為聚合等級-1 503的PDCCH候選項506的CCE0、CCE4、CCE8及CCE12對應的LLR的位址儲存於位址緩衝器131b中的第一位址緩衝器中,可將資料緩衝器131a的其中儲存與作為聚合等級-2 504的PDCCH候選項507的{CCE0、CCE1}、{CCE4、CCE5}、{CCE8、CCE9}及{CCE12、CCE13}對應的LLR的位址儲存於位址緩衝器131b中的第二位址緩衝器中,且可將資料緩衝器131a的其中儲存與作為聚合等級-4 505的PDCCH候選項508的{CCE0、CCE1、CCE2、CCE3}及{CCE8、CCE9、CCE10、CCE11}對應的LLR的位址儲存於位址緩衝器131b中的第三位址緩衝器中。根據實施例,將LLR儲存於資料緩衝器 中的操作與將LLR的位址儲存於位址緩衝器中的操作可並列實行。根據實施例,在一個緩衝器配置中,資料緩衝器131a與位址緩衝器131b在實體上彼此分離或者可以虛擬方式彼此分開。另外,位址緩衝器131b的數目可被配置成適合於可支援的CCE聚合等級的數目。舉例而言,如圖5中所示,當可支援所述三個聚合等級503、504及505時,資料管理電路131可被配置成包括三個位址緩衝器(第一位址緩衝器至第三位址緩衝器)。第一位址緩衝器被指派用於儲存資料緩衝器131a的其中儲存聚合等級-1 503的PDCCH候選項506的LLR的位址。第二位址緩衝器被指派用於儲存資料緩衝器131a的其中儲存聚合等級-2 504的PDCCH候選項507的LLR的位址。作為示範性實施例,第三位址緩衝器可被指派用於儲存資料緩衝器131a的其中儲存聚合等級-4 505的PDCCH候選項508的LLR的位址。當可支援更多聚合等級時,資料管理電路131可被配置成包括更多位址緩衝器。 In FIG. 5 , the data management circuit 131 may store a plurality of LLRs generated by demodulating CCE0 to CCE15 included in the PDCCH in the data buffer 131a in a generation order (or in a prescribed order). In addition, the data management circuit 131 may store the address of the LLR corresponding to CCE0, CCE4, CCE8 and CCE12 as the PDCCH candidate 506 of the aggregation level-1 503 in the data buffer 131a in the address buffer 131b. In the first address buffer, the data buffer 131a may store {CCE0, CCE1}, {CCE4, CCE5}, {CCE8, CCE9} and {CCE12 as the PDCCH candidates 507 of the aggregation level-2 504. The address of the LLR corresponding to CCE13} is stored in the second address buffer in the address buffer 131b, and the data buffer 131a may be stored with the {{ The addresses of the LLRs corresponding to CCE0, CCE1, CCE2, CCE3} and {CCE8, CCE9, CCE10, CCE11} are stored in the third address buffer in the address buffer 131b. According to an embodiment, the LLR is stored in the data buffer The operations in can be performed in parallel with the operation of storing the address of the LLR in the address buffer. According to embodiments, in a buffer configuration, the data buffer 131a and the address buffer 131b are physically separated from each other or may be virtually separated from each other. In addition, the number of address buffers 131b may be configured to be suitable for the number of CCE aggregation levels that can be supported. For example, as shown in FIG. 5, when the three aggregation levels 503, 504 and 505 can be supported, the data management circuit 131 may be configured to include three address buffers (a first address buffer to third address buffer). The first address buffer is assigned to store the address of the LLR of the data buffer 131a where the PDCCH candidate 506 of aggregation level-1 503 is stored. The second address buffer is assigned to store the address of the LLR of the data buffer 131a where the PDCCH candidate 507 of aggregation level-2 504 is stored. As an exemplary embodiment, the third address buffer may be assigned to store the address of the LLR of the data buffer 131a in which the PDCCH candidate 508 of the aggregation level-4 505 is stored. When more aggregation levels can be supported, the data management circuit 131 can be configured to include more address buffers.

根據實施例的資料管理電路131可基於與儲存於資料緩衝器131a中的目標LLR對應的CCE索引將所述目標LLR的位址儲存於至少一個位址緩衝器中的位址緩衝器131b中。舉例而言,資料管理電路131可參照CCE0的索引將資料緩衝器131a的其中儲存與圖5所示CCE0對應的LLR的位址儲存於第一位址緩衝器、第二位址緩衝器及第三位址緩衝器中。根據實施例,當對PDCCH實行解調操作時,可利用與CCE索引對應的LLR來產生CCE索引。當對圖5的CCE0實行解調操作時,可利用與CCE0 對應的LLR來產生代表CCE0的CCE索引。 The data management circuit 131 according to an embodiment may store the address of the target LLR in the address buffer 131b in the at least one address buffer based on the CCE index corresponding to the target LLR stored in the data buffer 131a. For example, the data management circuit 131 may refer to the index of CCE0 to store the address of the LLR corresponding to CCE0 shown in FIG. 5 in the data buffer 131a in the first address buffer, the second address buffer and the third address buffer. in the three address buffer. According to an embodiment, when performing a demodulation operation on the PDCCH, the LLR corresponding to the CCE index may be used to generate the CCE index. When performing demodulation operation on CCE0 in Figure 5, CCE0 can be used The corresponding LLR is used to generate the CCE index representing CCE0.

根據實施例,資料管理電路131可使用資料緩衝器131a及位址緩衝器131b來提供解碼器132對PDCCH候選項實行盲解碼所需的資料。舉例而言,當解碼器132對PDCCH候選項506實行聚合等級-1 503的解碼時,資料管理電路131自第一位址緩衝器獲得(或讀取)其中儲存與PDCCH候選項506CCE0、CCE4、CCE8及CCE12對應的LLR的位址。另外,資料管理電路131使用所獲得的位址自資料緩衝器131a獲得(或讀取)與CCE0、CCE4、CCE8及CCE12對應的LLR,且可將所獲得的LLR提供至解碼器132。 According to an embodiment, the data management circuit 131 may use the data buffer 131a and the address buffer 131b to provide the decoder 132 with the data required to perform blind decoding on the PDCCH candidates. For example, when the decoder 132 performs decoding of aggregation level-1 503 on the PDCCH candidate 506, the data management circuit 131 obtains (or reads) the PDCCH candidates 506 CCE0, CCE4, The addresses of the LLRs corresponding to CCE8 and CCE12. In addition, the data management circuit 131 uses the obtained address to obtain (or read) the LLRs corresponding to CCE0, CCE4, CCE8, and CCE12 from the data buffer 131a, and may provide the obtained LLRs to the decoder 132.

根據實施例,資料管理電路131可儲存LLR群組的代表性位址。根據PDCCH的CCE的資源映射模式,在位址緩衝器131b中保證LLR群組具有連續性(考慮到在資料緩衝器131a中連續儲存的LLR)。將參照圖10對此予以詳細說明。 According to an embodiment, the data management circuit 131 may store representative addresses of LLR groups. According to the resource mapping mode of the CCE of the PDCCH, continuity of the LLR group is ensured in the address buffer 131b (taking into account the LLRs continuously stored in the data buffer 131a). This will be explained in detail with reference to FIG. 10 .

資料管理電路131可由例如以下組件的組合等硬體來實施:具體應用積體電路、現場可程式化閘陣列、邏輯閘、系統晶片(system on a chip)或不同類型的處理電路(或控制電路)。此外,資料管理電路131可由軟體來實施,例如由可由處理器(例如控制器130)執行的指令或代碼來實施。另外,作為示範性實施例,資料管理電路131中的資料緩衝器131a及位址緩衝器131b可由例如動態隨機存取記憶體(dynamic random access memory,DRAM)或靜態隨機存取記憶體(static random access memory, SRAM)等揮發性記憶體來實施。另外,資料緩衝器131a及位址緩衝器131b亦可由例如相變隨機存取記憶體(phase-change random access memory,PRAM)、磁阻式隨機存取記憶體(magnetoresistive random access memory,MRAM)、電阻式隨機存取記憶體(resistive random access memory,ReRAM)或鐵電隨機存取記憶體(ferroelectric random access memory,FeRAM)等非揮發性記憶體來實施。 The data management circuit 131 may be implemented in hardware such as a combination of application specific integrated circuits, field programmable gate arrays, logic gates, system on a chip, or different types of processing circuits (or control circuits). ). In addition, the data management circuit 131 may be implemented by software, such as instructions or code executable by a processor (eg, the controller 130). In addition, as an exemplary embodiment, the data buffer 131a and the address buffer 131b in the data management circuit 131 may be composed of, for example, a dynamic random access memory (DRAM) or a static random access memory (static random access memory). access memory, SRAM) and other volatile memories. In addition, the data buffer 131a and the address buffer 131b may also be composed of, for example, phase-change random access memory (PRAM), magnetoresistive random access memory (MRAM), Implemented using non-volatile memory such as resistive random access memory (ReRAM) or ferroelectric random access memory (FeRAM).

圖6是示出根據本發明概念示範性實施例的對無線通訊裝置進行解碼所需的資料進行緩衝的方法的流程圖。 FIG. 6 is a flowchart illustrating a method of buffering data required for decoding by a wireless communication device according to an exemplary embodiment of the present invention.

參照圖6,無線通訊裝置在操作S100中接收包括CCE的PDCCH,且在操作S110中可自接收到的PDCCH產生CCE索引及與CCE索引對應的LLR。然後,資料管理電路在操作S120中將LLR儲存於資料緩衝器中,且在操作S130中可基於CCE索引將LLR的位址儲存於自位址緩衝器選擇出的至少一個位址緩衝器中。根據實施例,可並列實行操作S120與操作S130。 Referring to FIG. 6 , the wireless communication device receives a PDCCH including a CCE in operation S100, and may generate a CCE index and an LLR corresponding to the CCE index from the received PDCCH in operation S110. Then, the data management circuit stores the LLR in the data buffer in operation S120, and may store the address of the LLR in at least one address buffer selected from the address buffer based on the CCE index in operation S130. According to embodiments, operations S120 and S130 may be performed in parallel.

圖7是詳細示出根據本發明概念示範性實施例的無線通訊裝置600的控制器的方塊圖。 FIG. 7 is a block diagram illustrating in detail the controller of the wireless communication device 600 according to an exemplary embodiment of the present invention.

無線通訊裝置600可包括解調器610及資料管理電路620。解調器610可藉由接收自RF頻帶轉換成基頻的PDCCH且實行解調操作來產生LLR及與LLR對應的CCE索引CCE_IDX。CCE索引CCE_IDX可為代表與輸出LLR對應的CCE的資訊。資料管理電路620可包括資料緩衝器電路DBUF_C、第一多工器 623、多個位址緩衝器電路ABUF_C1至ABUF_Cn以及第一控制邏輯626。資料緩衝器電路DBUF_C可包括第二控制邏輯621及資料緩衝器電路622。位址緩衝器電路ABUF_C1可包括第三控制邏輯624及位址緩衝器625。位址緩衝器電路ABUF_C1的配置亦可應用於其他位址緩衝器電路ABUF_C2至ABUF_Cn。位址緩衝器電路ABUF_C1至ABUF_Cn的數目可根據PDCCH中包括的CCE的可支援聚合等級的數目來確定。舉例而言,在其中可支援最多32個CCE聚合等級的無線通訊系統中,可將資料管理電路620實施成包括32個位址緩衝器電路ABUF_C1至ABUF_Cn。 The wireless communication device 600 may include a demodulator 610 and a data management circuit 620. The demodulator 610 may generate the LLR and the CCE index CCE_IDX corresponding to the LLR by receiving the PDCCH converted from the RF band into the baseband and performing a demodulation operation. The CCE index CCE_IDX may be information representing the CCE corresponding to the output LLR. The data management circuit 620 may include a data buffer circuit DBUF_C, a first multiplexer 623. Multiple address buffer circuits ABUF_C1 to ABUF_Cn and the first control logic 626. The data buffer circuit DBUF_C may include a second control logic 621 and a data buffer circuit 622. The address buffer circuit ABUF_C1 may include a third control logic 624 and an address buffer 625. The configuration of address buffer circuit ABUF_C1 can also be applied to other address buffer circuits ABUF_C2 to ABUF_Cn. The number of address buffer circuits ABUF_C1 to ABUF_Cn may be determined according to the number of supportable aggregation levels of CCEs included in the PDCCH. For example, in a wireless communication system that can support up to 32 CCE aggregation levels, the data management circuit 620 can be implemented to include 32 address buffer circuits ABUF_C1 to ABUF_Cn.

在首先闡述資料緩衝器電路DBUF_C的操作時,第二控制邏輯621可將自解調器610接收到的LLR依序地儲存於資料緩衝器電路622中。根據實施例,第二控制邏輯621參照CCE索引CCE_IDX藉由CCE對LLR進行分類且可將經分類的LLR儲存於資料緩衝器電路622中。當將LLR儲存於資料緩衝器電路DBUF_C中時,第一控制邏輯626可藉由參照CCE索引CCE_IDX向第一多工器623提供第一控制訊號MUX_CS1而將位址緩衝器電路ABUF_C1至ABUF_Cn中的至少一者連接至資料緩衝器電路DBUF_C。 When first describing the operation of the data buffer circuit DBUF_C, the second control logic 621 can sequentially store the LLRs received from the demodulator 610 in the data buffer circuit 622 . According to an embodiment, the second control logic 621 classifies the LLRs by CCE with reference to the CCE index CCE_IDX and may store the classified LLRs in the data buffer circuit 622 . When the LLR is stored in the data buffer circuit DBUF_C, the first control logic 626 may provide the first control signal MUX_CS1 to the first multiplexer 623 by referring to the CCE index CCE_IDX to change the address buffer circuits ABUF_C1 to ABUF_Cn. At least one is connected to data buffer circuit DBUF_C.

舉例而言,當位址緩衝器電路ABUF_C1與資料緩衝器電路DBUF_C藉由第一多工器623連接時,第三控制邏輯624可請求位址。將與被指派給位址緩衝器電路ABUF_C1的CCE聚合等級的PDCCH候選項的CCE對應的LLR儲存至第二控制邏輯 621。第二控制邏輯621可因應於請求而向第三控制邏輯624提供儲存LLR的位址。第三控制邏輯624可將接收到的位址儲存於位址緩衝器625中。 For example, when the address buffer circuit ABUF_C1 and the data buffer circuit DBUF_C are connected through the first multiplexer 623, the third control logic 624 may request an address. Store the LLR corresponding to the CCE of the PDCCH candidate assigned to the CCE aggregation level of the address buffer circuit ABUF_C1 to the second control logic 621. The second control logic 621 may provide the address where the LLR is stored to the third control logic 624 in response to the request. The third control logic 624 may store the received address in the address buffer 625 .

作為實施例,資料緩衝器電路DBUF_C的第二控制邏輯621將由解調器610產生的LLR儲存於資料緩衝器電路622中且可基於與LLR對應的CCE索引CCE_IDX將儲存LLR的位址提供至位址緩衝器電路ABUF_C1至ABUF_Cn中的至少一者。因此,位址緩衝器電路ABUF_C1至ABUF_Cn可分別儲存其中儲存與所指派的CCE聚合等級的PDCCH候選項的CCE對應的LLR的位址。 As an example, the second control logic 621 of the data buffer circuit DBUF_C stores the LLR generated by the demodulator 610 in the data buffer circuit 622 and can provide the address of the stored LLR to the bit based on the CCE index CCE_IDX corresponding to the LLR. at least one of the address buffer circuits ABUF_C1 to ABUF_Cn. Therefore, the address buffer circuits ABUF_C1 to ABUF_Cn may respectively store addresses of LLRs corresponding to CCEs in which PDCCH candidates of the assigned CCE aggregation level are stored.

圖8是示出根據本發明概念示範性實施例的儲存於資料緩衝器電路622以及第一位址緩衝器625a至第三位址緩衝器625c中的資訊的視圖。為清楚起見,將參照圖5及圖7來闡述圖8。 FIG. 8 is a diagram illustrating information stored in the data buffer circuit 622 and the first to third address buffers 625a to 625c according to an exemplary embodiment of the present invention. For clarity, Figure 8 will be explained with reference to Figures 5 and 7 .

在圖5中,將所述三個CCE聚合等級503、504及505應用至PDCCH。當接收到PDCCH時,可使用圖7所示位址緩衝器電路ABUF_C1至ABUF_Cn中的所述三個位址緩衝器電路ABUF_C1至ABUF_C3。參照圖8,LLR代表其中儲存與CCE0至CCE15對應的LLR的配置,所述LLR是藉由對儲存於資料緩衝器電路622中的PDCCH及CCE0至CCE15進行解調而產生並在圖8的資料緩衝器電路622中表示。根據實施例,LLR可藉由CCE進行分類且儲存於資料緩衝器電路622中或者可在不進行附加分類的情況下進行儲存。第二控制邏輯621可管理資料緩衝器電路622 的其中儲存與CCE對應的LLR的位址上的資料且可因應於來自位址緩衝器電路ABUF_C1至ABUF_Cn的請求來提供所述資料。在另一實施例中,第二控制邏輯621可主動地將所述資料提供至藉由第一多工器623進行連接的至少一個位址緩衝器電路。 In Figure 5, the three CCE aggregation levels 503, 504 and 505 are applied to the PDCCH. When a PDCCH is received, the three address buffer circuits ABUF_C1 to ABUF_C3 among the address buffer circuits ABUF_C1 to ABUF_Cn shown in FIG. 7 may be used. Referring to FIG. 8 , LLR represents a configuration in which LLRs corresponding to CCE0 to CCE15 are stored, the LLRs being generated by demodulating the PDCCH and CCE0 to CCE15 stored in the data buffer circuit 622 and in the data of FIG. 8 shown in buffer circuit 622. Depending on the embodiment, the LLR may be sorted by CCE and stored in the data buffer circuit 622 or may be stored without additional sorting. The second control logic 621 can manage the data buffer circuit 622 The data at the address of the LLR corresponding to the CCE is stored therein and the data can be provided in response to a request from the address buffer circuits ABUF_C1 to ABUF_Cn. In another embodiment, the second control logic 621 may actively provide the data to at least one address buffer circuit connected through the first multiplexer 623 .

第一位址緩衝器625a被指派用於儲存聚合等級-1 503的PDCCH候選項506的位址。第二位址緩衝器625b被指派用於儲存聚合等級-2 504的PDCCH候選項507的位址。第三位址緩衝器625c可被指派用於儲存聚合等級-4 505的PDCCH候選項508的位址。因此,作為聚合等級-1 503的PDCCH候選項506的CCE0、CCE4、CCE8及CCE12的位址CCE0_Addr、CCE4_Addr、CCE8_Addr及CCE12_Addr可儲存於第一位址緩衝器625a中,作為聚合等級-2 504的PDCCH候選項507的{CCE0、CCE1}、{CCE4、CCE5}、{CCE8、CCE9}及{CCE12、CCE13}的位址CCE0_Addr、CCE1_Addr、CCE4_Addr、CCE5_Addr、CCE8_Addr、CCE9_Addr、CCE12_Addr及CCE13_Addr可儲存於第二位址緩衝器625b中,且作為聚合等級-4 505的PDCCH候選項508的{CCE0、CCE1、CCE2、CCE3}及{CCE8、CCE9、CCE10、CCE11}的位址CCE0_Addr、CCE1_Addr、CCE2_Addr、CCE3_Addr、CCE8_Addr、CCE9_Addr、CCE10_Addr及CCE11_Addr可儲存於第三位址緩衝器625c中。 The first address buffer 625a is assigned to store the address of the PDCCH candidate 506 of aggregation level-1 503. The second address buffer 625b is assigned to store the address of the PDCCH candidate 507 of aggregation level-2 504. The third address buffer 625c may be assigned to store the address of the PDCCH candidate 508 of aggregation level-4 505. Therefore, the addresses CCE0_Addr, CCE4_Addr, CCE8_Addr and CCE12_Addr of CCE0, CCE4, CCE8 and CCE12 as PDCCH candidates 506 of aggregation level-1 503 may be stored in the first address buffer 625a as the addresses of CCE0, CCE4, CCE8 and CCE12 of aggregation level-2 504. The addresses CCE0_Addr, CCE1_Addr, CCE4_Addr, CCE5_Addr, CCE8_Addr, CCE9_Addr, CCE12_Addr and CCE13_Addr of the PDCCH candidate 507 of {CCE0, CCE1}, {CCE4, CCE5}, {CCE8, CCE9} and {CCE12, CCE13} may be stored in the first In the two address buffer 625b, the addresses CCE0_Addr, CCE1_Addr, CCE2_Addr, CCE3_Addr of {CCE0, CCE1, CCE2, CCE3} and {CCE8, CCE9, CCE10, CCE11} which are the PDCCH candidates 508 of aggregation level-4 505 , CCE8_Addr, CCE9_Addr, CCE10_Addr and CCE11_Addr may be stored in the third address buffer 625c.

因此,根據本發明概念的態樣,UE可接收PDCCH,將PDCCH資料儲存於資料緩衝器622中(其中PDCCH資料對應於 PDCCH候選項506、507及508),且將PDCCH資料的位址儲存於位址緩衝器625a、625b及625c中。位址緩衝器中的每一者可對應於PDCCH候選項中的一者。另外或作為另一種選擇,位址緩衝器中的每一者可對應於聚合等級。然後,UE可基於儲存於對應的位址緩衝器中的PDCCH資料的位址對PDCCH候選項實行盲解碼。 Therefore, according to aspects of the inventive concept, the UE may receive the PDCCH and store the PDCCH data in the data buffer 622 (where the PDCCH data corresponds to PDCCH candidates 506, 507 and 508), and stores the address of the PDCCH data in the address buffers 625a, 625b and 625c. Each of the address buffers may correspond to one of the PDCCH candidates. Additionally or alternatively, each of the address buffers may correspond to an aggregation level. Then, the UE may perform blind decoding on the PDCCH candidate based on the address of the PDCCH data stored in the corresponding address buffer.

在一些情形中,UE可辨識用於盲解碼的PDCCH候選項,基於所辨識的PDCCH候選項自所述多個位址緩衝器選擇位址緩衝器,辨識儲存於所選擇出的位址緩衝器中的PDCCH資料的位址中的一個或多個位址,且基於所辨識的所述一個或多個位址自資料緩衝器擷取PDCCH資料的一部分。 In some cases, the UE may identify PDCCH candidates for blind decoding, select an address buffer from the plurality of address buffers based on the identified PDCCH candidates, and store the identification in the selected address buffer. One or more of the addresses of the PDCCH data in , and retrieving a portion of the PDCCH data from the data buffer based on the identified one or more addresses.

藉由使用第一位址緩衝器625a至第三位址緩衝器625c以及資料緩衝器電路622的上述配置,可防止LLR被重複儲存且可更高效地使用記憶體。舉例而言,CCE(例如CCE0)的位址可多次儲存於不同的位址緩衝器中。舉例而言,單個CCE可與多個PDCCH候選項相關聯(例如,與具有不同聚合等級的不同PDCCH候選項相關聯)。然而,與CCE相關聯的資料可僅在資料緩衝器中儲存一次。若位址的大小小於資料本身的大小,則將位址儲存多次可能較將資料儲存多次更高效。 By using the above configuration of the first address buffer 625a to the third address buffer 625c and the data buffer circuit 622, the LLR can be prevented from being repeatedly stored and the memory can be used more efficiently. For example, the address of a CCE (such as CCE0) can be stored in different address buffers multiple times. For example, a single CCE may be associated with multiple PDCCH candidates (eg, associated with different PDCCH candidates with different aggregation levels). However, data associated with a CCE may be stored in the data buffer only once. If the size of the address is smaller than the size of the data itself, it may be more efficient to store the address multiple times than to store the data multiple times.

圖9A至圖9F是示出PDCCH的控制CCE的資源映射模式的視圖。圖10是示出根據本發明概念示範性實施例的在第一位址緩衝器625a中儲存位址的方法的視圖。下文中所闡述的REG 束可被定義成包括被實行相同的預編碼的多個交織的REG的最小單位。 9A to 9F are views showing resource mapping patterns of control CCEs of PDCCH. FIG. 10 is a view illustrating a method of storing an address in the first address buffer 625a according to an exemplary embodiment of the present concept. REG as explained below A bundle may be defined as the smallest unit including a plurality of interleaved REGs on which the same precoding is performed.

參照圖9A,可應用第一REG束REG_BDa作為PDCCH的CCE的資源映射模式,且第一REG束REG_BDa可包括在頻率軸上連接的兩個REG。 Referring to FIG. 9A , the first REG bundle REG_BDa may be applied as the resource mapping pattern of the CCE of the PDCCH, and the first REG bundle REG_BDa may include two REGs connected on the frequency axis.

參照圖9B,可應用第二REG束REG_BDb作為PDCCH的CCE的資源映射模式,且第二REG束REG_BDb可包括在頻率軸上連接的六個REG。 Referring to FIG. 9B , the second REG bundle REG_BDb may be applied as the resource mapping pattern of the CCE of the PDCCH, and the second REG bundle REG_BDb may include six REGs connected on the frequency axis.

參照圖9C,可應用第三REG束REG_BDc作為PDCCH的CCE的資源映射模式,且第三REG束REG_BDc可包括在時間軸上連接的兩個REG。 Referring to FIG. 9C , the third REG bundle REG_BDc may be applied as the resource mapping pattern of the CCE of the PDCCH, and the third REG bundle REG_BDc may include two REGs connected on the time axis.

參照圖9D,可應用第四REG束REG_BDd作為PDCCH的CCE的資源映射模式,且第四REG束REG_BDd可包括在頻率軸及時間軸上連接的六個REG。 Referring to FIG. 9D , the fourth REG bundle REG_BDd may be applied as the resource mapping pattern of the CCE of the PDCCH, and the fourth REG bundle REG_BDd may include six REGs connected on the frequency axis and the time axis.

參照圖9E,可應用第五REG束REG_BDe作為PDCCH的CCE的資源映射模式,且第五REG束REG_BDe可包括在時間軸上連接的三個REG。 Referring to FIG. 9E , the fifth REG bundle REG_BDe may be applied as the resource mapping pattern of the CCE of the PDCCH, and the fifth REG bundle REG_BDe may include three REGs connected on the time axis.

參照圖9F,可應用第六REG束REG_BDf作為PDCCH的CCE的資源映射模式,且第六REG束REG_BDf可包括在頻率軸及時間軸上連接的六個REG。 Referring to FIG. 9F , the sixth REG bundle REG_BDf may be applied as the resource mapping pattern of the CCE of the PDCCH, and the sixth REG bundle REG_BDf may include six REGs connected on the frequency axis and the time axis.

如圖9A至圖9F所示,可藉由確定第一REG束REG_BDa至第六REG束REG_BDf來配置PDCCH的資源映射模式。儘管慮 及第一REG束REG_BDa至第六REG束REG_BDf的各種形狀,但是是在時間軸上對資源進行映射以及在頻率軸上對資源進行解映射的同時對PDCCH實行解碼。由於對PDCCH實行解調操作,因此可以REG為單元保證LLR的連續輸出。舉例而言,當一個REG包括12個資源元時,在對PDCCH實行解調操作的同時,可保證與某個CCE對應的24位元LLR的連續性。可將保證具有連續性的LLR依序地輸入至解碼器132(圖1),且可由解碼器132對所述LLR進行解碼。在圖10中,將闡述基於LLR的上述連續性將位址儲存於位址緩衝器中的方法。 As shown in FIGS. 9A to 9F , the resource mapping mode of the PDCCH may be configured by determining the first to sixth REG bundles REG_BDa to REG_BDf. Although consider and various shapes of the first REG bundle REG_BDa to the sixth REG bundle REG_BDf, but the PDCCH is decoded while mapping the resources on the time axis and demapping the resources on the frequency axis. Since the PDCCH is demodulated, the REG unit can be used to ensure continuous output of the LLR. For example, when a REG includes 12 resource elements, the continuity of the 24-bit LLR corresponding to a certain CCE can be guaranteed while performing the demodulation operation on the PDCCH. LLRs guaranteed to have continuity may be sequentially input to decoder 132 (FIG. 1), and may be decoded by decoder 132. In Figure 10, a method of storing addresses in an address buffer based on the above-mentioned continuity of LLR will be explained.

參照圖10,將與CCE0對應的LLR劃分成保證具有連續性的m個LLR群組CCE0_0至CCE0_m-1,且可將所述LLR儲存於資料緩衝器電路622中。舉例而言,第一LLR群組CCE0_0可包括藉由解調器610(圖7)解調而產生的保證具有連續性的LLR,且所述LLR可連續儲存於資料緩衝器電路622的位址Addr_n0與位址Addr_n0+k之間。另外,第(m-1)個LLR群組CCE0_m-1可包括藉由解調器610(圖7)解調而產生的保證具有連續性的LLR,且所述LLR可連續儲存於資料緩衝器電路622的位址Addr_nm-1與位址Addr_nm-1+k之間。 Referring to FIG. 10 , the LLR corresponding to CCE0 is divided into m LLR groups CCE0_0 to CCE0_m-1 that ensure continuity, and the LLRs may be stored in the data buffer circuit 622 . For example, the first LLR group CCE0_0 may include LLRs generated by demodulation by the demodulator 610 (FIG. 7) to ensure continuity, and the LLRs may be continuously stored at addresses of the data buffer circuit 622 Between Addr_n0 and address Addr_n0+k. In addition, the (m-1)th LLR group CCE0_m-1 may include LLRs generated by demodulation by the demodulator 610 (FIG. 7) to ensure continuity, and the LLRs may be continuously stored in the data buffer Between the address Addr_nm-1 and the address Addr_nm-1+k of the circuit 622.

在第一位址緩衝器625a中,與CCE0對應的LLR的位址CCE0_Addr可包括其中分別儲存LLR群組CCE0_0至CCE0_m-1的位址的代表性位址。根據實施例,代表性位址可為LLR群組CCE0_0至CCE0_m-1的起始位址或最終位址。舉例而 言,LLR群組CCE0_0至CCE0_m-1的起始位址Addr_n0至Addr_nm-1可儲存於第一位址緩衝器625a中。藉由此種方法,在第一位址緩衝器625a中,可將與CCE4、CCE8及CCE12對應的LLR的位址CCE4_Addr、CCE8_Addr及CCE12_Addr實施成包括LLR群組的代表性位址。在實施例中,LLR群組CCE0_0的量值GS可根據PDCCH CCE的資源映射模式而變化。 In the first address buffer 625a, the address CCE0_Addr of the LLR corresponding to CCE0 may include representative addresses in which the addresses of the LLR groups CCE0_0 to CCE0_m-1 are respectively stored. According to an embodiment, the representative addresses may be starting addresses or final addresses of the LLR groups CCE0_0 to CCE0_m-1. For example In other words, the starting addresses Addr_n0 to Addr_nm-1 of the LLR groups CCE0_0 to CCE0_m-1 may be stored in the first address buffer 625a. In this way, in the first address buffer 625a, the addresses CCE4_Addr, CCE8_Addr and CCE12_Addr of the LLRs corresponding to CCE4, CCE8 and CCE12 can be implemented to include representative addresses of the LLR group. In an embodiment, the magnitude GS of the LLR group CCE0_0 may vary according to the resource mapping mode of the PDCCH CCE.

藉由並非儲存保證具有連續性的LLR群組的LLR位址中的所有位址,可高效地提高第一位址緩衝器625a的記憶體的利用率。確切地說,慮及PDCCH的CCE的資源映射模式而儲存LLR群組的代表性位址。此種方法可應用於其他位址緩衝器。 By not storing all the addresses in the LLR addresses of the LLR group with guaranteed continuity, the memory utilization of the first address buffer 625a can be effectively improved. Specifically, the representative address of the LLR group is stored taking into account the resource mapping mode of the CCE of the PDCCH. This method can be applied to other address buffers.

圖11是示出根據本發明概念示範性實施例的實行無線通訊裝置的解碼的方法的流程圖。在下文中,將闡述對一個目標PDCCH候選項實行解碼的操作。 FIG. 11 is a flowchart illustrating a method of performing decoding of a wireless communication device according to an exemplary embodiment of the present inventive concept. In the following, the operation of decoding a target PDCCH candidate will be explained.

參照圖11,在S200處,資料管理電路可使用位址緩衝器中的與目標PDCCH候選項的CCE聚合等級對應的位址緩衝器而自資料緩衝器獲得目標PDCCH候選項的LLR。在S210處,資料管理電路可將所獲得的LLR提供至解碼器,且解碼器可使用所獲得的LLR對目標PDCCH候選項實行解碼。可重複上述操作,直至對PDCCH候選項實行解碼。 Referring to FIG. 11, at S200, the data management circuit may obtain the LLR of the target PDCCH candidate from the data buffer using the address buffer in the address buffer corresponding to the CCE aggregation level of the target PDCCH candidate. At S210, the data management circuit may provide the obtained LLR to the decoder, and the decoder may use the obtained LLR to decode the target PDCCH candidate. The above operations can be repeated until the PDCCH candidate is decoded.

圖12是詳細示出根據本發明概念示範性實施例的無線通訊裝置600的控制器的方塊圖。在下文中,省略參照圖7給出的說明。 FIG. 12 is a block diagram illustrating in detail the controller of the wireless communication device 600 according to an exemplary embodiment of the present invention. Hereinafter, the description given with reference to FIG. 7 is omitted.

參照圖12,無線通訊裝置600可包括資料管理電路620及解碼器630。解碼器630自資料管理電路620接收解碼所需的關於PDCCH候選項的資料(例如LLR)且可對接收到的資料實行盲解碼。另外,與圖7相比,資料管理電路620可更包括第二多工器627,且第一控制邏輯626可實行控制以使得解碼器630所需的關於目標PDCCH候選項的資料可被提供至解碼器630。詳細而言,第一控制邏輯626可控制第一多工器623、第二多工器627、位址緩衝器電路ABUF_C1及ABUF_C2。第一控制邏輯626控制該些組件,使得可以恰當的時序提供在解碼器630實行盲解碼時欲解碼的關於目標聚合等級的至少一個PDCCH候選項的資料。 Referring to FIG. 12 , the wireless communication device 600 may include a data management circuit 620 and a decoder 630 . The decoder 630 receives data (eg, LLR) on the PDCCH candidates required for decoding from the data management circuit 620 and can perform blind decoding on the received data. In addition, compared with FIG. 7 , the data management circuit 620 may further include a second multiplexer 627 , and the first control logic 626 may perform control so that the data on the target PDCCH candidate required by the decoder 630 may be provided to Decoder 630. In detail, the first control logic 626 can control the first multiplexer 623, the second multiplexer 627, and the address buffer circuits ABUF_C1 and ABUF_C2. The first control logic 626 controls these components so that the information on at least one PDCCH candidate of the target aggregation level to be decoded when the decoder 630 performs blind decoding can be provided in appropriate timing.

舉例而言,為提供關於規定聚合等級的PDCCH候選項的資料,第一控制邏輯626藉由向位址緩衝器電路ABUF_C1提供緩衝器控制訊號BUF_CS來對位址緩衝器電路ABUF_C1賦能,且可藉由向第一多工器623提供第一控制訊號MUX_CS1來將位址緩衝器電路ABUF_C1連接至資料緩衝器電路DBUF_C。規定聚合等級儲存於位址緩衝器電路ABUF_C1中。另外,第一控制邏輯626可藉由向第二多工器627提供第二控制訊號MUX_CS2來將位址緩衝器電路ABUF_C1連接至解碼器630。此時,第三控制邏輯624可使用儲存於位址緩衝器625中的關於PDCCH候選項的資料的位址而向資料緩衝器電路622請求LLR,且第二控制邏輯621可參照資料位址而向位址緩衝器電路ABUF_C1提供自資料緩衝器電路622讀取的LLR。另外,如圖10中一樣,當LLR群組的 代表性位址儲存於位址緩衝器625中時,第二控制邏輯621可慮及LLR群組的量值GS而自資料緩衝器電路622讀取LLR。位址緩衝器電路ABUF_C1可將自資料緩衝器電路DBUF_C接收到的LLR作為關於PDCCH候選項的資料提供至解碼器630。圖12的配置是示範性實施例。本發明概念並非僅限於此。資料緩衝器電路DBUF_C可直接向解碼器630提供關於目標PDCCH候選項的資料。 For example, to provide information regarding PDCCH candidates specifying an aggregation level, first control logic 626 enables address buffer circuit ABUF_C1 by providing buffer control signal BUF_CS to address buffer circuit ABUF_C1 and may The address buffer circuit ABUF_C1 is connected to the data buffer circuit DBUF_C by providing the first control signal MUX_CS1 to the first multiplexer 623 . The specified aggregation level is stored in the address buffer circuit ABUF_C1. Additionally, the first control logic 626 may connect the address buffer circuit ABUF_C1 to the decoder 630 by providing the second control signal MUX_CS2 to the second multiplexer 627 . At this time, the third control logic 624 may use the address of the data on the PDCCH candidate stored in the address buffer 625 to request the LLR from the data buffer circuit 622, and the second control logic 621 may refer to the data address. Address buffer circuit ABUF_C1 is provided with the LLR read from data buffer circuit 622 . In addition, as in Figure 10, when the LLR group When the representative address is stored in the address buffer 625, the second control logic 621 may read the LLR from the data buffer circuit 622 taking into account the magnitude GS of the LLR group. The address buffer circuit ABUF_C1 may provide the LLR received from the data buffer circuit DBUF_C as data on the PDCCH candidate to the decoder 630. The configuration of Figure 12 is an exemplary embodiment. The inventive concept is not limited to this. The data buffer circuit DBUF_C may directly provide the decoder 630 with data on the target PDCCH candidate.

資料管理電路620可使用資料緩衝器電路DBUF_C及所述多個位址緩衝器電路ABUF_C1至ABUF_Cn以恰當的時序向解碼器630提供關於用於盲解碼的PDCCH候選項的資料。 The data management circuit 620 may use the data buffer circuit DBUF_C and the plurality of address buffer circuits ABUF_C1 to ABUF_Cn to provide the decoder 630 with data regarding the PDCCH candidates for blind decoding in appropriate timing.

圖13是示出根據本發明概念示範性實施例的電子裝置1000的方塊圖。 FIG. 13 is a block diagram illustrating an electronic device 1000 according to an exemplary embodiment of the inventive concept.

參照圖13,電子裝置1000可包括記憶體1010、處理器單元1020、輸入及輸出控制器1040、顯示單元1050、輸入裝置1060及通訊處理單元1090。此處,記憶體1010可構成多個記憶體單元。各個組件將闡述如下。 Referring to FIG. 13 , the electronic device 1000 may include a memory 1010 , a processor unit 1020 , an input and output controller 1040 , a display unit 1050 , an input device 1060 and a communication processing unit 1090 . Here, the memory 1010 may constitute multiple memory units. The individual components are explained below.

記憶體1010可包括用於儲存用於控制電子裝置1000的操作的程式的程式儲存單元1011以及用於儲存在執行程式期間產生的資料的資料儲存單元1012。資料儲存單元1012可儲存應用程式1013及資料管理程式1014的操作所需的資料。程式儲存單元1011可包括應用程式1013及資料管理程式1014。此處,作為指令的集合包括在程式儲存單元1011中的程式可被表達為指令集。 The memory 1010 may include a program storage unit 1011 for storing programs for controlling operations of the electronic device 1000 and a data storage unit 1012 for storing data generated during execution of the programs. The data storage unit 1012 can store data required for the operation of the application program 1013 and the data management program 1014. The program storage unit 1011 may include an application program 1013 and a data management program 1014. Here, the program included in the program storage unit 1011 as a set of instructions may be expressed as an instruction set.

應用程式1013包括在電子裝置1000中進行操作的應用程式。應用程式1013包括由處理器1022驅動的應用的指令。根據本發明概念的實施例,資料管理程式1014可控制對實行解碼所需的資料進行儲存及管理的操作。處理器1022藉由資料管理程式1014將解碼所需的資料(例如,藉由對PDCCH進行解調而產生的LLR)儲存於資料緩衝器(未示出)中,可根據CCE聚合等級將資料的位址各別地儲存於多個位址緩衝器(未示出)中,且可使用資料緩衝器(未示出)及位址緩衝器(未示出)對PDCCH候選項實行盲解碼操作。記憶體介面1021可控制對例如處理器1022或記憶體1010的周邊裝置介面1023等組件的存取。 The application program 1013 includes an application program operating in the electronic device 1000 . Application 1013 includes instructions for the application driven by processor 1022 . According to an embodiment of the inventive concept, the data management program 1014 may control the storage and management of data required to perform decoding. The processor 1022 stores the data required for decoding (for example, the LLR generated by demodulating the PDCCH) in a data buffer (not shown) through the data management program 1014, and the data can be allocated according to the CCE aggregation level. The addresses are respectively stored in a plurality of address buffers (not shown), and a data buffer (not shown) and an address buffer (not shown) can be used to perform a blind decoding operation on the PDCCH candidate. Memory interface 1021 may control access to components such as processor 1022 or peripheral device interface 1023 of memory 1010 .

周邊裝置介面1023可控制基地台的輸入及輸出周邊裝置與處理器1022及記憶體介面1021之間的連接。處理器1022使用至少一個軟體程式來控制基地台提供對應的服務。此時,處理器1022執行儲存於記憶體1010中的至少一個程式且可提供對應於所述程式的服務。 The peripheral device interface 1023 can control the connection between the base station's input and output peripheral devices, the processor 1022 and the memory interface 1021 . The processor 1022 uses at least one software program to control the base station to provide corresponding services. At this time, the processor 1022 executes at least one program stored in the memory 1010 and can provide services corresponding to the program.

輸入及輸出控制器1040可提供輸入及輸出裝置(例如顯示單元1050及輸入裝置1060)與周邊裝置介面1023之間的介面。顯示單元1050顯示狀態資訊、輸入字元、運動畫面及靜止畫面。舉例而言,顯示單元1050可顯示關於由處理器1022驅動的應用程式的資訊。 The input and output controller 1040 may provide an interface between the input and output devices (eg, the display unit 1050 and the input device 1060 ) and the peripheral device interface 1023 . The display unit 1050 displays status information, input characters, moving pictures and still pictures. For example, the display unit 1050 may display information about applications driven by the processor 1022 .

輸入裝置1060可藉由輸入及輸出控制器1040向處理器單元1020提供由電子裝置的選擇產生的輸入資料。此時,輸入裝 置1060可包括小鍵盤(keyboard),所述小鍵盤包括至少一個硬體按鈕以及用於感測觸控資訊的觸控板。舉例而言,輸入裝置1060可藉由輸入及輸出控制器1040向處理器1022提供由觸控板感測到的觸控資訊,例如觸控、觸控運動及觸控釋放。電子裝置1000可包括用於實行語音通訊及資料通訊的通訊功能的通訊處理單元1090。 The input device 1060 may provide input data generated by selection of the electronic device to the processor unit 1020 via the input and output controller 1040 . At this time, enter the The device 1060 may include a keyboard including at least one hardware button and a touchpad for sensing touch information. For example, the input device 1060 may provide the processor 1022 with touch information sensed by the touch pad, such as touch, touch motion, and touch release, through the input and output controller 1040 . The electronic device 1000 may include a communication processing unit 1090 for performing communication functions of voice communication and data communication.

儘管已參照本發明概念的實施例具體示出並闡述了本發明概念,然而應理解,在不背離以下申請專利範圍的精神及範圍的條件下可在本文中作出形式及細節上的各種改變。 While the inventive concepts have been specifically shown and described with reference to embodiments thereof, it will be understood that various changes in form and detail may be made herein without departing from the spirit and scope of the claims as claimed below.

1:無線通訊系統 1: Wireless communication system

2:下行鏈路通道 2: Downlink channel

4:上行鏈路通道 4: Uplink channel

20:基地台 20:Base station

100:無線通訊裝置 100:Wireless communication device

110_1~110_n:天線 110_1~110_n:antenna

120:射頻(RF)積體電路 120: Radio frequency (RF) integrated circuits

130:控制器 130:Controller

131:資料管理電路 131: Data management circuit

131a:資料緩衝器/緩衝器 131a: Data buffer/buffer

131b:位址緩衝器/緩衝器 131b: Address buffer/buffer

132:解碼器 132:Decoder

Claims (10)

一種操作無線通訊裝置的方法,所述方法包括:接收包括多個控制通道元素(CCE)的物理下行鏈路控制通道(PDCCH);將多個對數似然比(LLR)儲存於資料緩衝器中,其中所述多個對數似然比是藉由對所述物理下行鏈路控制通道進行解調而產生且對應於多個物理下行鏈路控制通道候選項,所述多個物理下行鏈路控制通道候選項中的每一者具有與所述多個控制通道元素的數目對應的聚合等級(aggregation level);將所述多個對數似然比的至少一個位址儲存於多個位址緩衝器中;以及使用所述資料緩衝器及所述多個位址緩衝器對所述多個物理下行鏈路控制通道候選項實行盲解碼。 A method of operating a wireless communication device, the method comprising: receiving a physical downlink control channel (PDCCH) including a plurality of control channel elements (CCE); storing a plurality of log likelihood ratios (LLR) in a data buffer , wherein the plurality of log-likelihood ratios are generated by demodulating the physical downlink control channel and correspond to a plurality of physical downlink control channel candidates, the plurality of physical downlink control channel Each of the channel candidates has an aggregation level corresponding to the number of the plurality of control channel elements; storing at least one address of the plurality of log-likelihood ratios in a plurality of address buffers in; and performing blind decoding on the plurality of physical downlink control channel candidates using the data buffer and the plurality of address buffers. 如請求項1所述的方法,其中:將所述多個對數似然比的所述至少一個位址儲存於所述多個位址緩衝器中更包括:基於與目標對數似然比對應的控制通道元素索引,將所述目標對數似然比的位址儲存於所述多個位址緩衝器中的至少一個位址緩衝器中。 The method of claim 1, wherein: storing the at least one address of the plurality of log-likelihood ratios in the plurality of address buffers further includes: based on the target log-likelihood ratio corresponding to The channel element index is controlled to store the address of the target log-likelihood ratio in at least one of the plurality of address buffers. 如請求項2所述的方法,其中:所述控制通道元素是藉由對所述物理下行鏈路控制通道進行解調而獲得。 The method of claim 2, wherein the control channel element is obtained by demodulating the physical downlink control channel. 如請求項1所述的方法,其中:將所述多個對數似然比儲存於所述資料緩衝器中與將所述多個對數似然比的所述至少一個位址儲存於所述多個位址緩衝器中是並列實行的。 The method of claim 1, wherein: storing the plurality of log-likelihood ratios in the data buffer and storing the at least one address of the plurality of log-likelihood ratios in the plurality of log-likelihood ratios Each address buffer is executed in parallel. 如請求項1所述的方法,其中:當可支援的聚合等級的數目是自然數N時,所述多個位址緩衝器的數目是N,且所述多個位址緩衝器中的每一位址緩衝器儲存具有與所述每一位址緩衝器對應的聚合等級的至少一個物理下行鏈路控制通道候選項的對數似然比的位址。 The method of claim 1, wherein: when the number of supportable aggregation levels is a natural number N, the number of the plurality of address buffers is N, and each of the plurality of address buffers An address buffer stores an address having a log-likelihood ratio of at least one physical downlink control channel candidate at an aggregation level corresponding to each address buffer. 如請求項1所述的方法,其中:所述多個位址緩衝器根據所述物理下行鏈路控制通道的所述多個控制通道元素的資源映射圖案儲存對數似然比群組的代表性位址,所述對數似然比群組包括連續儲存於所述資料緩衝器中的對數似然比。 The method of claim 1, wherein: the plurality of address buffers store representations of log-likelihood ratio groups according to resource mapping patterns of the plurality of control channel elements of the physical downlink control channel. Address, the log-likelihood ratio group includes log-likelihood ratios continuously stored in the data buffer. 如請求項1所述的方法,其中:對所述物理下行鏈路控制通道候選項實行所述盲解碼更包括:參照所述多個位址緩衝器中與目標物理下行鏈路控制通道候選項的聚合等級對應的位址緩衝器,自所述資料緩衝器獲得所述目標物理下行鏈路控制通道候選項的對數似然比;以及使用所獲得的所述對數似然比對所述目標物理下行鏈路控制通道候選項實行解碼。 The method according to claim 1, wherein: performing the blind decoding on the physical downlink control channel candidate further includes: referring to the target physical downlink control channel candidate in the plurality of address buffers. The address buffer corresponding to the aggregation level, obtaining the log-likelihood ratio of the target physical downlink control channel candidate from the data buffer; and using the obtained log-likelihood ratio to compare the target physical Downlink control channel candidates are decoded. 如請求項1所述的方法,其中:所述資料緩衝器及所述多個位址緩衝器是以物理方式或以虛擬方式進行劃分。 The method of claim 1, wherein the data buffer and the plurality of address buffers are divided physically or virtually. 一種操作無線通訊裝置的方法,所述無線通訊裝置用於管理實行盲解碼所需的資料,所述方法包括:自包括多個控制通道元素(CCE)的物理下行鏈路控制通道(PDCCH)產生控制通道元素索引及與所述控制通道元素索引對應的對數似然比;將所述對數似然比儲存於資料緩衝器中;以及基於所述控制通道元素索引而將所述對數似然比的至少一個位址儲存於自多個位址緩衝器選擇出的至少一個位址緩衝器中。 A method of operating a wireless communications device for managing data required to perform blind decoding, the method comprising: generating from a physical downlink control channel (PDCCH) including a plurality of control channel elements (CCEs) Control channel element index and log-likelihood ratio corresponding to the control channel element index; store the log-likelihood ratio in a data buffer; and convert the log-likelihood ratio based on the control channel element index. At least one address is stored in at least one address buffer selected from a plurality of address buffers. 如請求項9所述的方法,其中:所述多個位址緩衝器被分別指派成儲存與對應於不同控制通道元素聚合等級的至少一個物理下行鏈路控制通道候選項中所包括的控制通道元素對應的對數似然比的位址。 The method of claim 9, wherein: the plurality of address buffers are respectively assigned to store control channels included in at least one physical downlink control channel candidate corresponding to different control channel element aggregation levels. The address of the log-likelihood ratio corresponding to the element.
TW108143074A 2018-11-28 2019-11-27 Method of operating wireless communication device TWI830824B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0150088 2018-11-28
KR20180150088 2018-11-28
KR10-2019-0046085 2019-04-19
KR1020190046085A KR20200063954A (en) 2018-11-28 2019-04-19 Wireless communication apparatus and operation method thereof

Publications (2)

Publication Number Publication Date
TW202031068A TW202031068A (en) 2020-08-16
TWI830824B true TWI830824B (en) 2024-02-01

Family

ID=71089210

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108143074A TWI830824B (en) 2018-11-28 2019-11-27 Method of operating wireless communication device

Country Status (2)

Country Link
KR (1) KR20200063954A (en)
TW (1) TWI830824B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130205176A1 (en) * 2012-02-03 2013-08-08 Research In Motion Limited Method and apparatus for reducing false detection of control information
US20170338915A1 (en) * 2014-11-03 2017-11-23 Lg Electronics Inc. Data buffering method and apparatus for hybrid automatic repeat request in wireless access system supporting non-orthogonal multiple access scheme
US20180083733A1 (en) * 2015-07-02 2018-03-22 Huawei Technologies Co., Ltd. Receiving Device and Methods Thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130205176A1 (en) * 2012-02-03 2013-08-08 Research In Motion Limited Method and apparatus for reducing false detection of control information
US20170338915A1 (en) * 2014-11-03 2017-11-23 Lg Electronics Inc. Data buffering method and apparatus for hybrid automatic repeat request in wireless access system supporting non-orthogonal multiple access scheme
US20180083733A1 (en) * 2015-07-02 2018-03-22 Huawei Technologies Co., Ltd. Receiving Device and Methods Thereof

Also Published As

Publication number Publication date
TW202031068A (en) 2020-08-16
KR20200063954A (en) 2020-06-05

Similar Documents

Publication Publication Date Title
US20230180256A1 (en) Method for transmitting and receiving control information of a mobile communication system
US11337186B2 (en) Method and apparatus for control information searching and data information transmission in a communication system
RU2701202C1 (en) Transmission configuration of a downlink
US11658787B2 (en) Method and apparatus for downlink control physical structure in reduced latency operation
TWI657706B (en) Resource allocation techniques for device-to-device (d2d) communications
US11601958B2 (en) Data transmission method and apparatus
CN110521163B (en) Physical downlink control channel structure in low latency systems
CN111294971B (en) Method for channel transmission, terminal equipment and network equipment
WO2017099548A1 (en) Method and apparatus for indicating an offloading data size and time duration in a wireless communication system
US11184892B2 (en) Enhancement of new radio PUSCH for URLLC in mobile communications
JP6795252B2 (en) Reference signal transmission methods, terminal devices, network devices, programs, and systems
KR20200044963A (en) Method and apparatus for transmitting an uplink control channel
WO2020063838A1 (en) Method and apparatus for transmitting data
WO2021031906A1 (en) Method and apparatus for configuring time domain resources
US20220225380A1 (en) Method for transmitting and receiving uplink control information
WO2020073991A1 (en) Data transmission method and communication apparatus
CA3061079A1 (en) Wireless communication method, terminal device and transmitting and rec eiving nodes
US10778259B2 (en) Wireless communication device and method of operating the same
TWI830824B (en) Method of operating wireless communication device
CN112398623A (en) HARQ-ACK resource determination method for hybrid automatic repeat request acknowledgement
US20220303073A1 (en) Technologies for Reliable Physical Data Channel Reception in Wireless Communications
JP7315696B2 (en) Downlink data transmission method, terminal device and storage medium
CN109983818B (en) Method and apparatus for transmitting/receiving scheduling command
US10797838B2 (en) Apparatus and method for managing radio resources in mobile communication system
WO2021026788A1 (en) Communication method and related equipment