TWI830176B - Data clock tracking system and phase error generation improving method - Google Patents

Data clock tracking system and phase error generation improving method Download PDF

Info

Publication number
TWI830176B
TWI830176B TW111110203A TW111110203A TWI830176B TW I830176 B TWI830176 B TW I830176B TW 111110203 A TW111110203 A TW 111110203A TW 111110203 A TW111110203 A TW 111110203A TW I830176 B TWI830176 B TW I830176B
Authority
TW
Taiwan
Prior art keywords
phase detection
data
detection circuit
tracking system
phase
Prior art date
Application number
TW111110203A
Other languages
Chinese (zh)
Other versions
TW202339435A (en
Inventor
謝柏宇
張家華
Original Assignee
瑞鼎科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞鼎科技股份有限公司 filed Critical 瑞鼎科技股份有限公司
Priority to TW111110203A priority Critical patent/TWI830176B/en
Priority to CN202210500652.6A priority patent/CN116800260A/en
Publication of TW202339435A publication Critical patent/TW202339435A/en
Application granted granted Critical
Publication of TWI830176B publication Critical patent/TWI830176B/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/081Details of the phase-locked loop provided with an additional controlled phase shifter

Abstract

A data clock tracking system including a linear phase detection circuit and a bang-bang phase detection (BBPD) circuit. Based on the linear phase detection circuit as the base, the BBPD circuit is turned on at different data edges through a design of allocating detection circuits at specific edges to provide additional loop gain. The data clock tracking system appropriately allocates the number of linear phase detection circuits and binary phase detection circuits used on the plurality of transition edges of a plurality of data.

Description

資料時脈追蹤系統及相位誤差產生改善方法Data clock tracking system and phase error generation improvement method

本發明與資料時脈追蹤有關,特別是關於一種資料時脈追蹤系統及相位誤差產生改善方法。The present invention relates to data clock tracking, and in particular to a data clock tracking system and a phase error generation improvement method.

一般而言,現行的相位偵測電路主要有下列兩種設計架構:一種是二元式相位偵測(Bang-Bang Phase Detection,BBPD)架構,另一種則是線性相位偵測(Linear Phase Detection,Linear PD)架構。請參照圖1及圖2,圖1及圖2分別繪示傳統的二元式相位偵測(BBPD)架構及線性相位偵測(Linear PD)架構的相位誤差與相位偵測增益的比較圖。Generally speaking, the current phase detection circuit mainly has the following two design architectures: one is the binary phase detection (Bang-Bang Phase Detection, BBPD) architecture, and the other is the linear phase detection (Linear Phase Detection). Linear PD) architecture. Please refer to FIGS. 1 and 2 , which respectively illustrate comparison diagrams of the phase error and phase detection gain of the traditional binary phase detection (BBPD) architecture and the linear phase detection (Linear PD) architecture.

傳統的二元式相位偵測架構會在每次比較系統時脈與輸入資料的相位超前/落後關係之後產生固定的積分增益(Integral Gain)及比例增益(Proportional Gain),無論相位超前/落後的幅度大小為何均輸出相同的增益調整系統時脈訊號。因此,傳統的二元式相位偵測架構在相位超前/落後的判斷上不會有因為電路延遲導致的相位偏移,而固定的相位超前/落後增益比例對製程變異亦有較佳的抵抗性。The traditional binary phase detection architecture will generate fixed integral gain (Integral Gain) and proportional gain (Proportional Gain) after each comparison of the phase lead/lag relationship between the system clock and the input data, regardless of the phase lead/lag. Why do all the amplitudes and sizes output the same gain adjustment system clock signal? Therefore, the traditional binary phase detection architecture will not have phase offset caused by circuit delay in the judgment of phase lead/lag, and the fixed phase lead/lag gain ratio is also better resistant to process variations. .

然而,傳統的二元式相位偵測架構之缺點在於其本身會不斷維持在相位超前/落後的動態平衡,即使達到電路穩定時其本身產生的時脈抖動仍很大,導致傳統的二元式相位偵測架構對資料樣式(Pattern)有很強的相依性,因而在時脈抖動與訊號追隨能力上難以達到較佳的平衡點。請參照圖3,圖3繪示資料追鎖狀況與不同資料型態差異的示意圖。However, the disadvantage of the traditional binary phase detection architecture is that it will constantly maintain a dynamic balance of phase lead/lag. Even when the circuit is stable, the clock jitter generated by it is still very large, resulting in the traditional binary phase detection architecture. The phase detection architecture has a strong dependence on the data pattern (Pattern), so it is difficult to achieve a better balance between clock jitter and signal tracking capabilities. Please refer to Figure 3, which is a schematic diagram illustrating the data lock status and the differences between different data types.

至於傳統的線性相位偵測架構通常擁有較小的時脈抖動及較佳的訊號追隨能力,其原因在於:傳統的線性相位偵測架構本身在偵測相位誤差(Phase Error)接近為零時,會產生較小的積分增益(Integral Gain)—亦即頻率變化的追隨變動量,而遇到較大的相位超前/落後時則會提供較大的積分增益去追隨訊號,因此在電路穩定時其本身僅產生較小的時脈抖動。As for the traditional linear phase detection architecture, it usually has smaller clock jitter and better signal tracking capability. The reason is that when the detection phase error (Phase Error) of the traditional linear phase detection architecture itself is close to zero, It will produce a small integral gain (Integral Gain) - that is, the amount of tracking variation of frequency changes. When encountering a large phase lead/lag, a large integral gain will be provided to follow the signal. Therefore, when the circuit is stable, it will It only produces small clock jitter by itself.

然而,傳統的線性相位偵測架構亦可能因其本身電路的延遲導致額外的相位偏移(Phase Offset),也因此容易受到非理想因素等製程變異(Process Voltage Temperature, PVT)的影響,而此相位偏移在傳統的線性相位偵測架構中無法被反應在超前/落後的校準上,並且此現象會隨著頻寬設計增加、資料時脈愈高而變得更顯著。如圖4所示,傳統的線性相位偵測架構產生的相位誤差為常態穩定,導致取樣資料的建立時間(Setup time)T setup與保留時間(Hold time)T hold被壓縮。 However, the traditional linear phase detection architecture may also cause additional phase offset (Phase Offset) due to the delay of its own circuit, and is therefore susceptible to process variation (Process Voltage Temperature, PVT) such as non-ideal factors, and this Phase offset cannot be reflected in the lead/lag calibration in the traditional linear phase detection architecture, and this phenomenon will become more significant as the bandwidth design increases and the data clock becomes higher. As shown in Figure 4, the phase error generated by the traditional linear phase detection architecture is normally stable, causing the setup time (Setup time) T setup and retention time (Hold time) T hold of the sampling data to be compressed.

由上述可知:先前技術所遭遇到之上述問題仍亟待進一步解決。From the above, it can be seen that the above-mentioned problems encountered by the previous technology still need to be further solved.

因此,本發明提出一種能夠兼具二元式相位偵測(BBPD)架構與線性相位偵測(Linear PD)架構之優點的資料時脈追蹤系統及相位誤差產生改善方法,藉以有效解決先前技術所遭遇到之上述問題。Therefore, the present invention proposes a data clock tracking system and a phase error generation improvement method that can combine the advantages of the binary phase detection (BBPD) architecture and the linear phase detection (Linear PD) architecture, so as to effectively solve the problems of the prior art. Encountered the above problems.

根據本發明之一較佳具體實施例為一種資料時脈追蹤系統。於此實施例中,資料時脈追蹤系統包括線性相位偵測電路及二元式相位偵測電路。基於線性相位偵測電路為基底,藉由特定邊緣的分配偵測電路設計,在不同的資料邊緣啟動二元式相位偵測電路,以提供額外的迴路增益。資料時脈追蹤系統於複數筆資料的複數個資料邊緣上適當地分配採用線性相位偵測電路及二元式相位偵測電路的數量。A preferred embodiment according to the present invention is a data clock tracking system. In this embodiment, the data clock tracking system includes a linear phase detection circuit and a binary phase detection circuit. Based on the linear phase detection circuit, through the design of the specific edge distribution detection circuit, the binary phase detection circuit is activated at different data edges to provide additional loop gain. The data clock tracking system appropriately allocates the number of linear phase detection circuits and binary phase detection circuits to the plurality of data edges of the plurality of pieces of data.

於一實施例中,於該複數個資料邊緣上係採用不同的鎖定架構。In one embodiment, different locking schemes are used on the plurality of data edges.

於一實施例中,於該複數個資料邊緣上係採用相同的鎖定架構。In one embodiment, the same locking scheme is used on the plurality of data edges.

於一實施例中,該複數筆資料係具有不同的資料轉換密度。In one embodiment, the plurality of pieces of data have different data conversion densities.

於一實施例中,該複數筆資料係具有相同的資料轉換密度。In one embodiment, the plurality of pieces of data have the same data conversion density.

於一實施例中,二元式相位偵測電路產生二元式相位偵測信號,同時提供迴路的積分增益與迴路的比例增益。In one embodiment, a binary phase detection circuit generates a binary phase detection signal and simultaneously provides an integral gain of the loop and a proportional gain of the loop.

於一實施例中,線性相位偵測電路亦同步產生線性相位偵測信號,同時提供迴路的積分增益與迴路的比例增益。In one embodiment, the linear phase detection circuit also generates a linear phase detection signal synchronously, and simultaneously provides the integral gain of the loop and the proportional gain of the loop.

於一實施例中,資料時脈追蹤系統為資料時脈回復電路(Clock Data Recovery,CDR)、相位頻率追鎖迴路(Phase-Lock Loop,PLL)及/或其他具有相位追蹤功能的電路。In one embodiment, the data clock tracking system is a clock data recovery circuit (Clock Data Recovery, CDR), a phase-frequency lock loop (Phase-Lock Loop, PLL), and/or other circuits with phase tracking functions.

於一實施例中,資料時脈追蹤系統可包括相位誤差判斷電路,分別耦接線性相位偵測電路及二元式相位偵測電路,用以判斷相位誤差是否大於預設值,若其判斷結果為是,則同時啟動二元式相位偵測電路進行相位偵測,以提供額外的迴路增益。In one embodiment, the data clock tracking system may include a phase error judgment circuit, respectively coupled to a linear phase detection circuit and a binary phase detection circuit, for judging whether the phase error is greater than a preset value. If the judgment result If yes, the binary phase detection circuit is activated for phase detection at the same time to provide additional loop gain.

於一實施例中,二元式相位偵測電路可於不同的資料邊緣上同步且常態被啟動。In one embodiment, the binary phase detection circuit can be synchronized and normally enabled on different data edges.

根據本發明之另一較佳具體實施例為一種相位誤差產生改善方法。於此實施例中,相位誤差產生改善方法應用於資料時脈追蹤系統。資料時脈追蹤系統包括線性相位偵測電路及二元式相位偵測電路。相位誤差產生改善方法包括下列步驟:(a)啟動線性相位偵測電路進行相位偵測;(b)於不同的資料邊緣上啟動二元式相位偵測電路;以及(c)二元式相位偵測電路在不同的資料邊緣上協助線性相位偵測電路進行鎖定。相位誤差產生改善方法於複數個資料邊緣上適當地分配採用線性相位偵測電路及二元式相位偵測電路的數量。Another preferred embodiment according to the present invention is a method for improving phase error generation. In this embodiment, the phase error generation improvement method is applied to the data clock tracking system. The data clock tracking system includes a linear phase detection circuit and a binary phase detection circuit. The phase error generation improvement method includes the following steps: (a) activating the linear phase detection circuit for phase detection; (b) activating the binary phase detection circuit on different data edges; and (c) binary phase detection The detection circuit assists the linear phase detection circuit in locking on different data edges. The phase error generation improvement method appropriately allocates the number of linear phase detection circuits and binary phase detection circuits on multiple data edges.

於一實施例中,於該複數個資料邊緣上係採用不同的鎖定架構。In one embodiment, different locking schemes are used on the plurality of data edges.

於一實施例中,於該複數個資料邊緣上係採用相同的鎖定架構。In one embodiment, the same locking scheme is used on the plurality of data edges.

於一實施例中,該複數筆資料係具有不同的資料轉換密度。In one embodiment, the plurality of pieces of data have different data conversion densities.

於一實施例中,該複數筆資料係具有相同的資料轉換密度。In one embodiment, the plurality of pieces of data have the same data conversion density.

於一實施例中,二元式相位偵測電路產生二元式相位偵測信號,同時提供迴路的積分增益與迴路的比例增益。In one embodiment, a binary phase detection circuit generates a binary phase detection signal and simultaneously provides an integral gain of the loop and a proportional gain of the loop.

於一實施例中,線性相位偵測電路亦同步產生線性相位偵測信號,同時提供迴路的積分增益與迴路的比例增益。In one embodiment, the linear phase detection circuit also generates a linear phase detection signal synchronously, and simultaneously provides the integral gain of the loop and the proportional gain of the loop.

於一實施例中,資料時脈追蹤系統為資料時脈回復電路、相位頻率追鎖迴路及/或其他具有相位追蹤功能的電路。In one embodiment, the data clock tracking system is a data clock recovery circuit, a phase frequency tracking loop and/or other circuits with phase tracking functions.

於一實施例中,步驟(b)可先判斷資料邊緣的相位誤差是否大於預設值,若其判斷結果為是,則同時啟動二元式相位偵測電路進行相位偵測,以提供額外的迴路增益。In one embodiment, step (b) may first determine whether the phase error at the edge of the data is greater than a preset value. If the determination result is yes, the binary phase detection circuit is activated to perform phase detection at the same time to provide additional loop gain.

於一實施例中,步驟(b)可於不同的資料邊緣上同步且常態啟動二元式相位偵測電路。In one embodiment, step (b) can enable the binary phase detection circuit synchronously and normally on different data edges.

相較於先前技術,本發明的資料時脈追蹤系統及相位誤差產生改善方法藉由混和線性相位偵測電路與二元式相位偵測電路架構兩者之優點,使其在有較佳的追鎖能力之餘還能產生較小的時脈抖動以維持電路穩定性,並且對於資料轉換密度的變化亦有較低的相依性,藉以增強量產時電路對於製程變異的抵抗力。Compared with the prior art, the data clock tracking system and the phase error generation improvement method of the present invention hybridize the advantages of the linear phase detection circuit and the binary phase detection circuit architecture, allowing for better tracking. In addition to the locking capability, it can also produce smaller clock jitter to maintain circuit stability, and it also has lower dependence on changes in data conversion density, thereby enhancing the circuit's resistance to process variations during mass production.

本發明提供一種新穎的迴路追鎖電路架構設計,其混合線性相位偵測電路(Linear Phase Detector,LINPD or PFD)與二元式相位偵測電路(Bang-Bang Phase Detector,BBPD)的優點,並且藉由電路架構的設計來減少相位誤差的產生並降低其對資料密度的相依性,故能達到追鎖能力改善與電路穩定性提升的效果。The present invention provides a novel loop locking circuit architecture design, which mixes the advantages of a linear phase detection circuit (Linear Phase Detector, LINPD or PFD) and a binary phase detection circuit (Bang-Bang Phase Detector, BBPD), and Through the design of the circuit architecture to reduce the generation of phase errors and reduce their dependence on data density, the lock-tracing capability and circuit stability can be improved.

根據本發明之一較佳具體實施例為一種資料時脈追蹤系統。於此實施例中,本發明的資料時脈追蹤系統至少包括線性相位偵測電路及二元式相位偵測電路。實際上,資料時脈追蹤系統可以是資料時脈回復電路(Clock Data Recovery,CDR)、相位頻率追鎖迴路(Phase-Lock Loop,PLL)及/或其他具有相位追蹤功能的電路,並無特定之限制。A preferred embodiment according to the present invention is a data clock tracking system. In this embodiment, the data clock tracking system of the present invention at least includes a linear phase detection circuit and a binary phase detection circuit. In fact, the data clock tracking system can be a data clock recovery circuit (Clock Data Recovery, CDR), a phase-frequency lock loop (Phase-Lock Loop, PLL) and/or other circuits with phase tracking functions, and there is no specific restrictions.

需說明的是,本發明的資料時脈追蹤系統主要以線性相位偵測電路進行相位鎖定,並搭配二元式相位偵測電路同步偵測資料相位的超前/落後,一旦其偵測到的相位誤差過大,即會開啟二元式相位偵測電路來輔助迴路鎖定。因此,當電路穩定後不僅可具有線性相位偵測電路抖動較小的優點,還同時具有二元式相位偵測電路本身相位誤差較小的優點。It should be noted that the data clock tracking system of the present invention mainly uses a linear phase detection circuit for phase locking and a binary phase detection circuit to synchronously detect the lead/lag of the data phase. Once the detected phase If the error is too large, the binary phase detection circuit will be turned on to assist in loop locking. Therefore, when the circuit is stable, it not only has the advantage of smaller jitter of the linear phase detection circuit, but also has the advantage of smaller phase error of the binary phase detection circuit itself.

詳細而言,本發明的資料時脈追蹤系統係以線性相位偵測電路為基底,藉由特定資料邊緣的分配偵測電路設計於複數筆資料的複數個資料邊緣上適當地分配採用線性相位偵測電路及二元式相位偵測電路的數量,藉以在不同的資料邊緣啟動二元式相位偵測電路來提供額外的迴路增益。Specifically, the data clock tracking system of the present invention is based on a linear phase detection circuit, and is designed to appropriately allocate linear phase detection on multiple data edges of multiple pieces of data through the allocation detection circuit of specific data edges. The number of detection circuits and binary phase detection circuits is increased to provide additional loop gain by activating the binary phase detection circuits at different data edges.

舉例而言,如圖5所示,假設資料信號DAT依序包括複數筆資料D0~D9且該複數筆資料D0~D9具有複數個資料邊緣E0~E10,資料時脈追蹤系統5可選擇性地分配在資料邊緣E1、E3、E5、E7、E9上採用二元式相位偵測並在資料邊緣E2、E4、E6、E8、E10上採用混合模式相位偵測,但不以此為限。For example, as shown in Figure 5, assuming that the data signal DAT sequentially includes a plurality of pieces of data D0~D9 and the plurality of pieces of data D0~D9 have a plurality of data edges E0~E10, the data clock tracking system 5 can selectively It is allocated that binary phase detection is used on the data edges E1, E3, E5, E7, and E9 and mixed mode phase detection is used on the data edges E2, E4, E6, E8, and E10, but is not limited to this.

當資料時脈追蹤系統5在資料邊緣E1、E3、E5、E7、E9上採用二元式相位偵測時,資料時脈追蹤系統5係由二元式相位偵測單元52進行相位鎖定而繞過(Bypass)線性相位偵測單元50。當資料時脈追蹤系統5在資料邊緣E2、E4、E6、E8、E10上採用混合模式相位偵測時,資料時脈追蹤系統5主要以線性相位偵測電路50進行相位鎖定。如圖6所示,一旦同步偵測到的相位誤差過大(例如大於KΦ)時,即會啟動(輔助)二元式相位偵測電路52來輔助迴路鎖定,以提供額外的相位偵測增益。When the data clock tracking system 5 uses binary phase detection on the data edges E1, E3, E5, E7, and E9, the data clock tracking system 5 performs phase locking by the binary phase detection unit 52. Bypass the linear phase detection unit 50 . When the data clock tracking system 5 uses mixed mode phase detection on the data edges E2, E4, E6, E8, and E10, the data clock tracking system 5 mainly uses the linear phase detection circuit 50 for phase locking. As shown in FIG. 6 , once the synchronized detected phase error is too large (for example, greater than KΦ), the (auxiliary) binary phase detection circuit 52 will be activated to assist loop locking to provide additional phase detection gain.

因此,相較於傳統的資料時脈追鎖電路於每筆資料的資料邊緣均會配置相位偵測電路以確保追鎖每個資料邊緣的變化,本發明可依使用者調配不同資料邊緣的偵測架構並可依需求應用於不同型態的資料,藉由設計每筆資料邊緣的追鎖型態來有效降低其對於資料的相依性。Therefore, compared with the traditional data clock tracking circuit that configures a phase detection circuit at the data edge of each data to ensure that the change of each data edge is tracked, the present invention can configure the detection circuit of different data edges according to the user. The test architecture can be applied to different types of data according to needs. By designing the locking pattern at the edge of each data, it can effectively reduce its dependence on the data.

於實際應用中,本發明的資料時脈追蹤系統於該複數個資料邊緣上可採用不同或相同的鎖定架構,且該複數筆資料可具有不同或相同的資料轉換密度,並無特定之限制。二元式相位偵測電路會產生二元式相位偵測信號並同時提供迴路的積分增益與迴路的比例增益。同樣地,線性相位偵測電路亦同步產生線性相位偵測信號並同時提供迴路的積分增益與迴路的比例增益。In practical applications, the data clock tracking system of the present invention can adopt different or the same locking structure on the plurality of data edges, and the plurality of data can have different or the same data conversion density without specific restrictions. The binary phase detection circuit generates a binary phase detection signal and simultaneously provides the integral gain of the loop and the proportional gain of the loop. Similarly, the linear phase detection circuit also synchronously generates a linear phase detection signal and simultaneously provides the loop's integral gain and the loop's proportional gain.

請參照圖7,圖7繪示本發明之一較佳具體實施例中之資料時脈追蹤系統的示意圖。如圖7所示,於此實施例中,資料時脈追蹤系統7包括線性相位偵測電路70、二元式相位偵測電路72、相位誤差判斷電路74、第一電荷泵CP1、第二電荷泵CP2及壓控振盪器VCO。線性相位偵測電路70耦接第一電荷泵CP1。二元式相位偵測電路72耦接第二電荷泵CP2。第一電荷泵CP1及第二電荷泵CP2均耦接壓控振盪器VCO。壓控振盪器VCO分別耦接線性相位偵測電路70及二元式相位偵測電路72。Please refer to FIG. 7 , which is a schematic diagram of a data clock tracking system in a preferred embodiment of the present invention. As shown in Figure 7, in this embodiment, the data clock tracking system 7 includes a linear phase detection circuit 70, a binary phase detection circuit 72, a phase error judgment circuit 74, a first charge pump CP1, a second charge pump Pump CP2 and voltage controlled oscillator VCO. The linear phase detection circuit 70 is coupled to the first charge pump CP1. The binary phase detection circuit 72 is coupled to the second charge pump CP2. The first charge pump CP1 and the second charge pump CP2 are both coupled to the voltage controlled oscillator VCO. The voltage controlled oscillator VCO is coupled to the linear phase detection circuit 70 and the binary phase detection circuit 72 respectively.

相位誤差判斷電路74分別耦接線性相位偵測電路70及二元式相位偵測電路72,用以判斷相位誤差是否大於預設值。若相位誤差判斷電路74的判斷結果為是,亦即相位誤差大於預設值,則除了原本已啟動的線性相位偵測電路70之外,資料時脈追蹤系統7還會同時啟動二元式相位偵測電路72進行相位鎖定,以提供額外的迴路增益。若相位誤差判斷電路74的判斷結果為否,亦即相位誤差未大於預設值,則維持僅啟動線性相位偵測電路70不變。第一電荷泵CP1及第二電荷泵CP2分別產生第一電流ICP1及第二電流ICP2至壓控振盪器VCO,並且第一電流ICP1>>第二電流ICP2。壓控振盪器VCO輸出m個相位時脈至二元式相位偵測電路72。The phase error determination circuit 74 is respectively coupled to the linear phase detection circuit 70 and the binary phase detection circuit 72 for determining whether the phase error is greater than a preset value. If the judgment result of the phase error judgment circuit 74 is yes, that is, the phase error is greater than the preset value, in addition to the originally activated linear phase detection circuit 70, the data clock tracking system 7 will also activate the binary phase at the same time. The detection circuit 72 is phase locked to provide additional loop gain. If the judgment result of the phase error judgment circuit 74 is no, that is, the phase error is not greater than the preset value, only the linear phase detection circuit 70 remains activated. The first charge pump CP1 and the second charge pump CP2 respectively generate a first current ICP1 and a second current ICP2 to the voltage controlled oscillator VCO, and the first current ICP1>>second current ICP2. The voltage controlled oscillator VCO outputs m phase clock pulses to the binary phase detection circuit 72 .

請參照圖8,圖8繪示本發明依使用者調配不同資料邊緣的偵測架構以依需求應用於不同型態的資料的時序圖。如圖8所示,假設資料信號DAT依序包括(n+1)筆資料D0~Dn且該(n+1)筆資料D0~Dn具有(n+1)個資料邊緣E0~En。在資料D0與D1之間的資料邊緣E1處,線性相位偵測電路會啟動且其輸出的線性相位偵測信號包括上升信號UP及下降信號DN。此時,由於上升信號UP領先下降信號DN的相位誤差Φ並未大於預設值(延遲時間)Td,故不會啟動輔助二元式相位偵測電路及二元式相位偵測電路。在資料D1與D2之間的資料邊緣E2處,線性相位偵測電路仍維持啟動且其輸出的上升信號UP領先下降信號DN的相位誤差Φ大於預設值(延遲時間)Td,因此輔助二元式相位偵測電路會同時啟動並輸出上升信號UP。依此類推,在資料Dn-1與Dn之間的資料邊緣En處,線性相位偵測電路會啟動且其輸出的下降信號DN領先上升信號UP的相位誤差Φ大於預設值Td,因此輔助二元式相位偵測電路會同時啟動並輸出下降信號DN。Please refer to FIG. 8 , which illustrates a timing diagram in which the present invention deploys the detection architecture of different data edges according to the user to apply to different types of data according to needs. As shown in Figure 8, it is assumed that the data signal DAT includes (n+1) pieces of data D0~Dn in sequence and the (n+1) pieces of data D0~Dn have (n+1) data edges E0~En. At the data edge E1 between data D0 and D1, the linear phase detection circuit is activated and the linear phase detection signal output by it includes a rising signal UP and a falling signal DN. At this time, since the phase error Φ of the rising signal UP leading the falling signal DN is not greater than the preset value (delay time) Td, the auxiliary binary phase detection circuit and the binary phase detection circuit will not be activated. At the data edge E2 between data D1 and D2, the linear phase detection circuit is still activated and the phase error Φ of the rising signal UP it outputs leads the falling signal DN is greater than the preset value (delay time) Td, so the auxiliary binary The phase detection circuit will start at the same time and output the rising signal UP. By analogy, at the data edge En between data Dn-1 and Dn, the linear phase detection circuit will start and the phase error Φ of its output falling signal DN leading the rising signal UP is greater than the preset value Td, so the auxiliary circuit 2 The elemental phase detection circuit will start at the same time and output the falling signal DN.

請參照圖9,圖9繪示本發明之資料時脈追蹤系統之另一實施例的示意圖。如圖9所示,資料時脈追蹤系統9可包括複數個線性相位偵測電路90、複數個相位誤差判斷電路92及複數個二元式相位偵測電路94。線性相位偵測電路90耦接相位誤差判斷電路92。相位誤差判斷電路92耦接二元式相位偵測電路94。線性相位偵測電路90及相位誤差判斷電路92均接收延遲時脈信號CLK[d]並根據延遲時脈信號CLK[d]進行運作。線性相位偵測電路90輸出線性相位偵測信號(包括上升信號UP及下降信號DN)至相位誤差判斷電路92。相位誤差判斷電路92根據上升信號UP及下降信號DN判斷出兩者的相位誤差Φ是否大於預設值(延遲時間)Td,再根據此判斷結果輸出高位準或低位準的旗標信號FLAG至二元式相位偵測電路94,以控制二元式相位偵測電路94開啟或關閉。Please refer to FIG. 9 , which is a schematic diagram of another embodiment of the data clock tracking system of the present invention. As shown in FIG. 9 , the data clock tracking system 9 may include a plurality of linear phase detection circuits 90 , a plurality of phase error judgment circuits 92 and a plurality of binary phase detection circuits 94 . The linear phase detection circuit 90 is coupled to the phase error determination circuit 92 . The phase error judgment circuit 92 is coupled to the binary phase detection circuit 94 . The linear phase detection circuit 90 and the phase error judgment circuit 92 both receive the delayed clock signal CLK[d] and operate according to the delayed clock signal CLK[d]. The linear phase detection circuit 90 outputs the linear phase detection signal (including the rising signal UP and the falling signal DN) to the phase error judgment circuit 92 . The phase error judgment circuit 92 judges whether the phase error Φ between the rising signal UP and the falling signal DN is greater than the preset value (delay time) Td, and then outputs a high-level or low-level flag signal FLAG to 2 based on the judgment result. The binary phase detection circuit 94 is used to control the binary phase detection circuit 94 to turn on or off.

請參照圖10,圖10繪示相位誤差判斷電路之一實施例。如圖10所示,相位誤差判斷電路92包括輸入端IN1~IN3、輸出端OUT、延遲器td1~td2、D型正反器DFF1~DFF2及反及閘NAND1~NAND2。輸入端IN1分別耦接延遲器td1及D型正反器DFF2。輸入端IN2分別耦接延遲器td2及D型正反器DFF1。延遲器td1耦接D型正反器DFF1。延遲器td2耦接D型正反器DFF2。D型正反器DFF1及DFF2的輸出端分別耦接至反及閘NAND1的兩輸入端。反及閘NAND1的輸出端耦接至輸出端OUT。反及閘NAND2的兩輸入端分別耦接反及閘NAND1的輸出端及輸入端IN3。反及閘NAND2的輸出端分別耦接至D型正反器DFF1及DFF2。Please refer to FIG. 10 , which illustrates an embodiment of a phase error determination circuit. As shown in Figure 10, the phase error judgment circuit 92 includes input terminals IN1~IN3, output terminals OUT, delays td1~td2, D-type flip-flops DFF1~DFF2 and inverters NAND1~NAND2. The input terminal IN1 is coupled to the delayer td1 and the D-type flip-flop DFF2 respectively. The input terminal IN2 is coupled to the delayer td2 and the D-type flip-flop DFF1 respectively. The delayer td1 is coupled to the D-type flip-flop DFF1. The delayer td2 is coupled to the D-type flip-flop DFF2. The output terminals of the D-type flip-flops DFF1 and DFF2 are respectively coupled to the two input terminals of the inverter NAND1. The output terminal of the NAND gate NAND1 is coupled to the output terminal OUT. The two input terminals of the NAND gate NAND2 are respectively coupled to the output terminal and the input terminal IN3 of the NAND gate NAND1. The output terminals of the NAND gate NAND2 are coupled to the D-type flip-flops DFF1 and DFF2 respectively.

輸入端IN1~IN3分別接收上升信號UP、下降信號DN及延遲時脈信號CLK[d]。延遲器td1接收上升信號UP並將其延遲一預設值(延遲時間)而變成延遲的上升信號UPd後輸出至D型正反器DFF1的輸入端D。延遲器td2接收下降信號DN並將其延遲一預設值(延遲時間)而變成延遲的下降信號DNd後輸出至D型正反器DFF2的輸入端D。D型正反器DFF1的輸入端CLK接收下降信號DN。D型正反器DFF2的輸入端CLK接收上升信號UP。反及閘NAND1的輸出端輸出旗標信號FLAG以控制二元式相位偵測電路BBPD開啟或關閉。The input terminals IN1~IN3 respectively receive the rising signal UP, the falling signal DN and the delayed clock signal CLK[d]. The delayer td1 receives the rising signal UP and delays it by a preset value (delay time) to become a delayed rising signal UPd and then outputs it to the input terminal D of the D-type flip-flop DFF1. The delayer td2 receives the falling signal DN and delays it by a preset value (delay time) to become a delayed falling signal DNd and then outputs it to the input terminal D of the D-type flip-flop DFF2. The input terminal CLK of the D-type flip-flop DFF1 receives the falling signal DN. The input terminal CLK of the D-type flip-flop DFF2 receives the rising signal UP. The output terminal of the NAND gate NAND1 outputs a flag signal FLAG to control the binary phase detection circuit BBPD to turn on or off.

如圖11所示,由於線性相位偵測電路輸出的下降信號DN領先上升信號UP的相位誤差Φ小於預設值(延遲時間)Td,故旗標信號FLAG維持於低位準而不會同時開啟二元式相位偵測電路。如圖12所示,由於線性相位偵測電路輸出的下降信號DN領先上升信號UP的相位誤差Φ大於預設值(延遲時間)Td,故旗標信號FLAG會與上升信號UP同時從低位準變為高位準以同時開啟二元式相位偵測電路,直至延遲時脈信號CLK[d]從高位準變為低位準時,旗標信號FLAG才會從高位準變為低位準以關閉二元式相位偵測電路。As shown in Figure 11, since the phase error Φ of the falling signal DN output by the linear phase detection circuit leads the rising signal UP is less than the preset value (delay time) Td, the flag signal FLAG is maintained at a low level and will not turn on both at the same time. Yuan type phase detection circuit. As shown in Figure 12, since the phase error Φ of the falling signal DN output by the linear phase detection circuit leads the rising signal UP is greater than the preset value (delay time) Td, the flag signal FLAG will change from low level to high level at the same time as the rising signal UP. to a high level to simultaneously turn on the binary phase detection circuit. Until the delayed clock signal CLK[d] changes from a high level to a low level, the flag signal FLAG will change from a high level to a low level to turn off the binary phase. Detection circuit.

於實際應用中,二元式相位偵測電路可於不同的資料邊緣上同步且常態被啟動,但不以此為限。In practical applications, the binary phase detection circuit can be synchronized and normally activated on different data edges, but is not limited to this.

根據本發明之另一較佳具體實施例為一種相位誤差產生改善方法。於此實施例中,相位誤差產生改善方法係應用於資料時脈追蹤系統且資料時脈追蹤系統包括線性相位偵測電路及二元式相位偵測電路。實際上,資料時脈追蹤系統可以是資料時脈回復電路、相位頻率追鎖迴路及/或其他具有相位追蹤功能的電路,但不以此為限。Another preferred embodiment according to the present invention is a method for improving phase error generation. In this embodiment, the phase error generation improvement method is applied to a data clock tracking system and the data clock tracking system includes a linear phase detection circuit and a binary phase detection circuit. In fact, the data clock tracking system can be a data clock recovery circuit, a phase frequency tracking loop and/or other circuits with phase tracking functions, but is not limited thereto.

請參照圖13,圖13繪示此實施例中之相位誤差產生改善方法的流程圖。如圖13所示,相位誤差產生改善方法可包括下列步驟:Please refer to FIG. 13 , which illustrates a flow chart of a phase error generation improvement method in this embodiment. As shown in Figure 13, the phase error generation improvement method may include the following steps:

步驟S10:啟動線性相位偵測電路進行相位偵測;Step S10: Start the linear phase detection circuit for phase detection;

步驟S12:判斷電路頻率是否鎖定;Step S12: Determine whether the circuit frequency is locked;

步驟S14:若步驟S12的判斷結果為是,於不同的資料邊緣上啟動二元式相位偵測電路;以及Step S14: If the determination result of step S12 is yes, activate the binary phase detection circuit on different data edges; and

步驟S16:二元式相位偵測電路在不同的資料邊緣上協助線性相位偵測電路進行鎖定;Step S16: The binary phase detection circuit assists the linear phase detection circuit in locking on different data edges;

若步驟S12的判斷結果為否,則回到步驟S10。If the judgment result in step S12 is no, return to step S10.

其中,相位誤差產生改善方法係於複數個資料邊緣上適當地分配採用線性相位偵測電路及二元式相位偵測電路的數量。Among them, the phase error generation improvement method is to appropriately allocate the number of linear phase detection circuits and binary phase detection circuits on the plurality of data edges.

於實際應用中,二元式相位偵測電路於該複數個資料邊緣上可採用不同或相同的鎖定架構來協助線性相位偵測電路進行鎖定,並無特定之限制。此外,該複數筆資料可具有不同或相同的資料轉換密度,亦無特定之限制。In practical applications, the binary phase detection circuit can use different or the same locking structure on the plurality of data edges to assist the linear phase detection circuit in locking, without specific restrictions. In addition, the plurality of pieces of data can have different or the same data conversion density, and there is no specific limit.

於此實施例中,二元式相位偵測電路會產生二元式相位偵測信號(例如上升信號UP及下降信號DN)並同時提供迴路的積分增益與迴路的比例增益。同樣地,線性相位偵測電路亦會同步產生線性相位偵測信號(例如上升信號UP及下降信號DN)並同時提供迴路的積分增益與迴路的比例增益。In this embodiment, the binary phase detection circuit generates binary phase detection signals (such as rising signal UP and falling signal DN) and simultaneously provides the integral gain of the loop and the proportional gain of the loop. Similarly, the linear phase detection circuit will also synchronously generate linear phase detection signals (such as rising signal UP and falling signal DN) and simultaneously provide the loop's integral gain and the loop's proportional gain.

需說明的是,步驟S14可先判斷資料邊緣的相位誤差(例如上升信號UP及下降信號DN之間的相位差)是否大於預設值(例如延遲時間),若其判斷結果為是,則同時啟動二元式相位偵測電路進行相位偵測,以提供額外的迴路增益。此外,步驟S14亦可於不同的資料邊緣上同步且常態啟動二元式相位偵測電路,但不以此為限。It should be noted that step S14 may first determine whether the phase error at the edge of the data (for example, the phase difference between the rising signal UP and the falling signal DN) is greater than a preset value (for example, the delay time). If the determination result is yes, at the same time Activate the binary phase detection circuit for phase detection to provide additional loop gain. In addition, step S14 may also activate the binary phase detection circuit synchronously and normally on different data edges, but is not limited to this.

相較於先前技術,本發明的資料時脈追蹤系統及相位誤差產生改善方法藉由混和線性相位偵測電路與二元式相位偵測電路架構兩者之優點,使其在有較佳的追鎖能力之餘還能產生較小的時脈抖動以維持電路穩定性,並且對於資料轉換密度的變化亦有較低的相依性,藉以增強量產時電路對於製程變異的抵抗力。Compared with the prior art, the data clock tracking system and the phase error generation improvement method of the present invention hybridize the advantages of the linear phase detection circuit and the binary phase detection circuit architecture, allowing for better tracking. In addition to the locking capability, it can also produce smaller clock jitter to maintain circuit stability, and it also has lower dependence on changes in data conversion density, thereby enhancing the circuit's resistance to process variations during mass production.

UP:上升信號 DN:下降信號 DAT:資料信號 D0~Dn:資料 CLK:時脈信號 Thold:保留時間 Tsetup:建立時間 E0~En:資料邊緣 5:資料時脈追蹤系統 50:線性相位偵測電路 52:(輔助)二元式相位偵測電路 7:資料時脈追蹤系統 70:線性相位偵測電路 72:二元式相位偵測電路 74:相位誤差判斷電路 CP1:第一電荷泵 CP2:第二電荷泵 VCO:壓控振盪器 R:電阻 C:電容 I CP1:第一電流 I CP2:第二電流 Φ:相位誤差 Td:預設值(延遲時間) FLAG:旗標信號 SDATA[n:0]:資料信號 9:資料時脈追蹤系統 90:線性相位偵測電路 92:相位誤差判斷電路 94:二元式相位偵測電路 CLK[d]:延遲時脈信號 IN1~IN3:輸入端 OUT:輸出端 td1~td2:延遲器 DFF1~DFF2:D型正反器 NAND1~NAND2:反及閘 UPd:延遲的上升信號 DNd:延遲的下降信號 S10~S16:步驟 UP: rising signal DN: falling signal DAT: data signal D0~Dn: data CLK: clock signal Thold: retention time Tsetup: setup time E0~En: data edge 5: data clock tracking system 50: linear phase detection circuit 52: (auxiliary) binary phase detection circuit 7: data clock tracking system 70: linear phase detection circuit 72: binary phase detection circuit 74: phase error judgment circuit CP1: first charge pump CP2: third Two charge pumps VCO: voltage controlled oscillator R: resistor C: capacitor I CP1 : first current I CP2 : second current Φ: phase error Td: preset value (delay time) FLAG: flag signal SDATA[n:0 ]: Data signal 9: Data clock tracking system 90: Linear phase detection circuit 92: Phase error judgment circuit 94: Binary phase detection circuit CLK[d]: Delayed clock signal IN1~IN3: Input terminal OUT: Output terminals td1~td2: delayer DFF1~DFF2: D-type flip-flop NAND1~NAND2: inverter UPd: delayed rising signal DNd: delayed falling signal S10~S16: steps

圖1繪示傳統的二元式相位偵測(BBPD)架構的相位誤差與相位偵測增益的比較圖。Figure 1 shows a comparison diagram of phase error and phase detection gain of a conventional binary phase detection (BBPD) architecture.

圖2繪示傳統的線性相位偵測架構的相位誤差與相位偵測增益的比較圖。Figure 2 shows a comparison diagram of phase error and phase detection gain of a conventional linear phase detection architecture.

圖3繪示資料追鎖狀況與不同資料型態差異的示意圖。Figure 3 is a schematic diagram illustrating the data lock status and the differences between different data types.

圖4繪示傳統的線性相位偵測架構的穩定特性的示意圖。Figure 4 is a schematic diagram illustrating the stability characteristics of a conventional linear phase detection architecture.

圖5繪示本發明之資料時脈追蹤系統於複數個資料邊緣上適當地分配採用線性相位偵測電路及二元式相位偵測電路的數量的示意圖。FIG. 5 is a schematic diagram illustrating the data clock tracking system of the present invention appropriately allocating the number of linear phase detection circuits and binary phase detection circuits on multiple data edges.

圖6繪示本發明之混合模式相位偵測架構的相位誤差與相位偵測增益的比較圖。FIG. 6 shows a comparison diagram of phase error and phase detection gain of the mixed-mode phase detection architecture of the present invention.

圖7繪示本發明之一較佳具體實施例中之資料時脈追蹤系統的示意圖。FIG. 7 is a schematic diagram of a data clock tracking system in a preferred embodiment of the present invention.

圖8繪示本發明依使用者調配不同資料邊緣的偵測架構以依需求應用於不同型態的資料的時序圖。FIG. 8 shows a timing diagram in which the present invention deploys the detection architecture of different data edges according to the user to apply to different types of data according to needs.

圖9繪示本發明之資料時脈追蹤系統之另一實施例的示意圖。FIG. 9 is a schematic diagram of another embodiment of the data clock tracking system of the present invention.

圖10繪示相位誤差判斷電路之一實施例。FIG. 10 illustrates an embodiment of the phase error determination circuit.

圖11繪示當相位誤差小於延遲時間時之時序圖。Figure 11 shows a timing diagram when the phase error is less than the delay time.

圖12繪示當相位誤差大於延遲時間時之時序圖。Figure 12 shows a timing diagram when the phase error is greater than the delay time.

圖13繪示本發明之另一較佳具體實施例中之相位誤差產生改善方法的流程圖。FIG. 13 is a flowchart illustrating a method for improving phase error generation in another preferred embodiment of the present invention.

5:資料時脈追蹤系統 5: Data clock tracking system

50:線性相位偵測電路 50: Linear phase detection circuit

52:(輔助)二元式相位偵測電路 52: (auxiliary) binary phase detection circuit

DAT:資料信號 DAT: data signal

D0~D9:資料 D0~D9: information

E0~E10:資料邊緣 E0~E10: data edge

Claims (20)

一種資料時脈追蹤系統,包括:線性相位偵測電路;以及二元式相位偵測電路;其中,基於該線性相位偵測電路為基底,藉由特定邊緣的分配偵測電路設計,在不同的資料邊緣啟動該二元式相位偵測電路,以提供額外的迴路增益;其中,該資料時脈追蹤系統於複數筆資料的複數個資料邊緣上適當地分配採用該線性相位偵測電路及該二元式相位偵測電路的數量。 A data clock tracking system includes: a linear phase detection circuit; and a binary phase detection circuit; wherein, based on the linear phase detection circuit as a base, through specific edge distribution detection circuit design, in different The data edge activates the binary phase detection circuit to provide additional loop gain; wherein, the data clock tracking system appropriately distributes the use of the linear phase detection circuit and the two data edges on the plurality of data edges. The number of elemental phase detection circuits. 如請求項1所述的資料時脈追蹤系統,其中於該複數個資料邊緣上係採用不同的鎖定架構。 The data clock tracking system of claim 1, wherein different locking structures are used on the plurality of data edges. 如請求項1所述的資料時脈追蹤系統,其中於該複數個資料邊緣上係採用相同的鎖定架構。 The data clock tracking system of claim 1, wherein the same locking structure is used on the plurality of data edges. 如請求項1所述的資料時脈追蹤系統,其中該複數筆資料係具有不同的資料轉換密度。 The data clock tracking system of claim 1, wherein the plurality of pieces of data have different data conversion densities. 如請求項1所述的資料時脈追蹤系統,其中該複數筆資料係具有相同的資料轉換密度。 The data clock tracking system of claim 1, wherein the plurality of pieces of data have the same data conversion density. 如請求項1所述的資料時脈追蹤系統,其中該二元式相位偵測電路產生二元式相位偵測信號,同時提供迴路的積分增益與迴路的比例增益。 The data clock tracking system of claim 1, wherein the binary phase detection circuit generates a binary phase detection signal and simultaneously provides an integral gain of the loop and a proportional gain of the loop. 如請求項1所述的資料時脈追蹤系統,其中該線性相 位偵測電路亦同步產生線性相位偵測信號,同時提供迴路的積分增益與迴路的比例增益。 The data clock tracking system as described in claim 1, wherein the linear phase The bit detection circuit also generates a linear phase detection signal synchronously, and simultaneously provides the integral gain of the loop and the proportional gain of the loop. 如請求項1所述的資料時脈追蹤系統,其中該資料時脈追蹤系統為資料時脈回復電路(Clock Data Recovery,CDR)、相位頻率追鎖迴路(Phase-Lock Loop,PLL)及/或其他具有相位追蹤功能的電路。 The data clock tracking system as described in claim 1, wherein the data clock tracking system is a data clock recovery circuit (Clock Data Recovery, CDR), a phase-frequency locking loop (Phase-Lock Loop, PLL) and/or Other circuits with phase tracking capabilities. 如請求項1所述的資料時脈追蹤系統,可包括:相位誤差判斷電路,分別耦接該線性相位偵測電路及該二元式相位偵測電路,用以判斷相位誤差是否大於預設值,若其判斷結果為是,則同時啟動該二元式相位偵測電路進行相位偵測,以提供額外的迴路增益。 The data clock tracking system of claim 1 may include: a phase error determination circuit, respectively coupled to the linear phase detection circuit and the binary phase detection circuit, for determining whether the phase error is greater than a preset value , if the judgment result is yes, the binary phase detection circuit is simultaneously activated to perform phase detection to provide additional loop gain. 如請求項1所述的資料時脈追蹤系統,其中該二元式相位偵測電路(BBPD)可於不同的資料邊緣上同步且常態被啟動。 The data clock tracking system of claim 1, wherein the binary phase detection circuit (BBPD) can be synchronized on different data edges and is normally enabled. 一種相位誤差產生改善方法,應用於資料時脈追蹤系統,該資料時脈追蹤系統包括線性相位偵測電路及二元式相位偵測電路,該相位誤差產生改善方法包括下列步驟:(a)啟動該線性相位偵測電路進行相位偵測;(b)於不同的資料邊緣上啟動該二元式相位偵測電路;以及(c)該二元式相位偵測電路在不同的資料邊緣上協助該線性相位偵測電路進行鎖定; 其中,該相位誤差產生改善方法於複數筆資料的複數個資料邊緣上適當地分配採用該線性相位偵測電路及該二元式相位偵測電路的數量。 A phase error generation improvement method is applied to a data clock tracking system. The data clock tracking system includes a linear phase detection circuit and a binary phase detection circuit. The phase error generation improvement method includes the following steps: (a) starting The linear phase detection circuit performs phase detection; (b) the binary phase detection circuit is enabled on different data edges; and (c) the binary phase detection circuit assists the binary phase detection circuit on different data edges. Linear phase detection circuit for locking; Wherein, the phase error generation improvement method appropriately allocates the number of the linear phase detection circuit and the binary phase detection circuit on a plurality of data edges of a plurality of pieces of data. 如請求項11所述的相位誤差產生改善方法,其中於該複數個資料邊緣上係採用不同的鎖定架構。 The phase error generation improvement method as claimed in claim 11, wherein different locking structures are used on the plurality of data edges. 如請求項11所述的相位誤差產生改善方法,其中於該複數個資料邊緣上係採用相同的鎖定架構。 The phase error generation improvement method as claimed in claim 11, wherein the same locking structure is used on the plurality of data edges. 如請求項11所述的相位誤差產生改善方法,其中該複數筆資料係具有不同的資料轉換密度。 The phase error generation improvement method as claimed in claim 11, wherein the plurality of pieces of data have different data conversion densities. 如請求項11所述的相位誤差產生改善方法,其中該複數筆資料係具有相同的資料轉換密度。 The phase error generation improvement method as claimed in claim 11, wherein the plurality of pieces of data have the same data conversion density. 如請求項11所述的相位誤差產生改善方法,其中該二元式相位偵測電路產生二元式相位偵測信號,同時提供迴路的積分增益與迴路的比例增益。 The phase error generation improvement method as claimed in claim 11, wherein the binary phase detection circuit generates a binary phase detection signal and simultaneously provides an integral gain of the loop and a proportional gain of the loop. 如請求項11所述的相位誤差產生改善方法,其中該線性相位偵測電路亦同步產生線性相位偵測信號,同時提供迴路的積分增益與迴路的比例增益。 The method for improving phase error generation as described in claim 11, wherein the linear phase detection circuit also generates a linear phase detection signal synchronously and simultaneously provides the integral gain of the loop and the proportional gain of the loop. 如請求項11所述的相位誤差產生改善方法,其中該資料時脈追蹤系統為資料時脈回復電路(Clock Data Recovery,CDR)、相位頻率追鎖迴路(Phase-Lock Loop,PLL)及/或其他具有相位追蹤功能的電路。 The phase error generation improvement method as described in claim 11, wherein the data clock tracking system is a data clock recovery circuit (Clock Data Recovery, CDR), a phase-frequency tracking loop (Phase-Lock Loop, PLL) and/or Other circuits with phase tracking capabilities. 如請求項11所述的相位誤差產生改善方法,其中 步驟(b)可先判斷資料邊緣的相位誤差是否大於預設值,若其判斷結果為是,則同時啟動該二元式相位偵測電路進行相位偵測,以提供額外的迴路增益。 The phase error generation improvement method according to claim 11, wherein Step (b) can first determine whether the phase error at the edge of the data is greater than a preset value. If the determination result is yes, the binary phase detection circuit is simultaneously activated for phase detection to provide additional loop gain. 如請求項11所述的相位誤差產生改善方法,其中步驟(b)可於不同的資料邊緣上同步且常態啟動該二元式相位偵測電路。The phase error generation improvement method as claimed in claim 11, wherein step (b) can synchronously and normally activate the binary phase detection circuit on different data edges.
TW111110203A 2022-03-18 2022-03-18 Data clock tracking system and phase error generation improving method TWI830176B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111110203A TWI830176B (en) 2022-03-18 2022-03-18 Data clock tracking system and phase error generation improving method
CN202210500652.6A CN116800260A (en) 2022-03-18 2022-05-09 Data clock tracking system and phase error generation improving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111110203A TWI830176B (en) 2022-03-18 2022-03-18 Data clock tracking system and phase error generation improving method

Publications (2)

Publication Number Publication Date
TW202339435A TW202339435A (en) 2023-10-01
TWI830176B true TWI830176B (en) 2024-01-21

Family

ID=88033295

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111110203A TWI830176B (en) 2022-03-18 2022-03-18 Data clock tracking system and phase error generation improving method

Country Status (2)

Country Link
CN (1) CN116800260A (en)
TW (1) TWI830176B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120106689A1 (en) * 2009-08-31 2012-05-03 Dongguk University Industry-Academic Cooperation Foundation Clock and data recovery circuit
TWI469524B (en) * 2009-07-17 2015-01-11 Realtek Semiconductor Corp Method and apparatus for generating an output clock with low clock jitter
US9036764B1 (en) * 2012-12-07 2015-05-19 Rambus Inc. Clock recovery circuit
US10790835B2 (en) * 2017-03-01 2020-09-29 Telefonaktiebolaget Lm Ericsson (Publ) System for phase calibration of phase locked loop

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI469524B (en) * 2009-07-17 2015-01-11 Realtek Semiconductor Corp Method and apparatus for generating an output clock with low clock jitter
US20120106689A1 (en) * 2009-08-31 2012-05-03 Dongguk University Industry-Academic Cooperation Foundation Clock and data recovery circuit
US8699649B2 (en) * 2009-08-31 2014-04-15 Dongguk University Industry-Academic Cooperation Foundation Clock and data recovery circuit
US9036764B1 (en) * 2012-12-07 2015-05-19 Rambus Inc. Clock recovery circuit
US10790835B2 (en) * 2017-03-01 2020-09-29 Telefonaktiebolaget Lm Ericsson (Publ) System for phase calibration of phase locked loop

Also Published As

Publication number Publication date
TW202339435A (en) 2023-10-01
CN116800260A (en) 2023-09-22

Similar Documents

Publication Publication Date Title
US7592847B2 (en) Phase frequency detector and phase-locked loop
US6897690B2 (en) Charge pump system for fast locking phase lock loop
US20050162199A1 (en) PLL lock detection circuit using edge detection and a state machine
US20100183109A1 (en) Phase locked loop capable of fast locking
JP2003209464A (en) Phase detector and phase difference compensating method
CN101494457B (en) Delay locked loop circuit and method for eliminating jitter and offset therein
US6005425A (en) PLL using pulse width detection for frequency and phase error correction
US8575966B2 (en) Method of operating phase-lock assistant circuitry
CN102315849B (en) Method for generating reference clock signal and data receiving and transmitting system
US10860052B2 (en) Hybrid single loop feedback retiming circuit
US6897691B2 (en) Phase locked loop with low steady state phase errors and calibration circuit for the same
US6157218A (en) Phase-frequency detection with no dead zone
US8587355B2 (en) Coarse lock detector and delay-locked loop including the same
TWI338454B (en) Delay-locked loop and method thereof
TWI465045B (en) Delay lock loop and clock signal generating method
JP2816079B2 (en) NRZ data bit synchronizer
US7279992B2 (en) Circuit for detecting phase errors and generating control signals and PLL using the same
JP3327249B2 (en) PLL circuit
WO2007084876A2 (en) Systems and methods for reducing static phase error
US6853223B2 (en) Phase comparator and clock recovery circuit
TWI830176B (en) Data clock tracking system and phase error generation improving method
JP2917892B2 (en) Semiconductor integrated circuit
TW516272B (en) Phase latch loop acceleration system
TWI337808B (en) A multiphase dll using 3-edge detector for wide-range operation
US20050057314A1 (en) Device and method for detecting phase difference and PLL using the same