TWI828661B - 診斷支援系統 - Google Patents

診斷支援系統 Download PDF

Info

Publication number
TWI828661B
TWI828661B TW108107931A TW108107931A TWI828661B TW I828661 B TWI828661 B TW I828661B TW 108107931 A TW108107931 A TW 108107931A TW 108107931 A TW108107931 A TW 108107931A TW I828661 B TWI828661 B TW I828661B
Authority
TW
Taiwan
Prior art keywords
frequency
image
mentioned
spectrum
support system
Prior art date
Application number
TW108107931A
Other languages
English (en)
Other versions
TW201941219A (zh
Inventor
阿部武彥
吉田典史
Original Assignee
新加坡商派拉梅維爾私人有限公司
日商美迪歐特股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新加坡商派拉梅維爾私人有限公司, 日商美迪歐特股份有限公司 filed Critical 新加坡商派拉梅維爾私人有限公司
Publication of TW201941219A publication Critical patent/TW201941219A/zh
Application granted granted Critical
Publication of TWI828661B publication Critical patent/TWI828661B/zh

Links

Landscapes

  • Image Analysis (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本發明提供一種可顯示依包含呼氣或吸氣之全部或一部分之呼吸要素而變化形狀之區域之活動的診斷支援程式。
本發明包含以下處理:自儲存圖像之資料庫取得複數張訊框圖像;基於各訊框圖像之特定區域之像素,特定出包含呼氣或吸氣之全部或一部分之呼吸要素之週期;基於特定出之呼吸要素之週期而檢測肺野;將檢測出之肺野分割成複數個塊區域,計算各訊框圖像中之塊區域之圖像變化;將各訊框圖像中之各塊區域之圖像變化進行傅立葉轉換;擷取傅立葉轉換後獲得之頻譜中包含與呼吸要素週期對應之頻譜的一定頻帶內之頻譜;對自上述固定頻帶擷取出之頻譜進行傅立葉逆轉換;及將傅立葉逆轉換後之各圖像顯示於顯示器。

Description

診斷支援系統
本發明係關於一種解析人體圖像,並顯示解析結果之技術。
於醫師根據胸部之動態圖像進行肺診斷時,重要的是觀察被攝體自然呼吸狀態下拍攝到之時間順序之胸部動態圖像。容易取得生理學資料之肺活量計、RI(Radio Isotope:放射性同位素)檢查、可獲得形態性資料之單純X線照片、CT(Computed Tomography:電腦斷層攝影術)等作為用以評估肺功能之方法為人所知。然而,效率良好地取得生理學資料與形態性資料之兩者並非易事。
近年來,嘗試利用FPD(Flat panel detector:平板探測器)等半導體影像感測器,拍攝人體胸部之動態圖像並用於診斷之方法。例如,於非專利文獻1,揭示有一種產生表示構成動態圖像之複數張訊框圖像之間之信號值之差異的差分圖像,且自該差分圖像求出各信號值之最大值並顯示的技術。
又,於專利文獻1,揭示有以下技術:自表示人體胸部之動態之複數張訊框圖像之各訊框圖像擷取肺野區域,將該肺野區域分割成複數個小區域,並於複數張訊框圖像間,將分割之小區域相互建立對應並解析。根據該技術,顯示表示分割之小區域之活動之特徵量。
[先前技術文獻] [專利文獻]
[專利文獻1]日本專利第5874636號說明書
[非專利文獻]
[非專利文獻1]“Basic Imaging Properties of a Large Image Intensifier-TV Digital Chest Radiographic System” Investigative Radiology:1987年4月; 22: 328-335.
然而,如非專利文獻1記載之技術,僅顯示動態圖像之每像素之訊框間差分值之最大值,醫師難以掌握病態。又,如專利文獻1記載之技術,僅顯示特徵量來掌握病態並不夠充分。因此,期望顯示反應出呼吸或肺血管之狀態之圖像。即,期望掌握被攝體即人體之呼吸狀態及血管動態全體,並基於呼吸、心臟、肺門部之血管或血流之波形或頻率、或圖像之變化傾向,顯示表示實際活動的圖像。
本發明係鑒於此種事態而完成者,目的在於提供一種可顯示形狀依包含呼氣或吸氣之全部或一部分之呼吸要素變化之區域之活動的診斷支援程式。更具體而言,目的在於:對欲計測之新對象之資料,將相對於已取得之波形及Hz之一致率或其他不一致率數值化,並計算輔助診斷之數值,再者,藉由將該等數值圖像化,而產生輔助診斷之圖像。
(1)為達成上述目的,本案採用如下之方法。即,本發明一態樣之診斷支援程式之特徵在於,其係解析人體之圖像且顯示解析結果者,且使電腦執行以下處理:自儲存上述圖像之資料庫取得複數張訊框圖像;基於上述各訊框圖像之特定區域之像素,特定出包含呼氣或吸氣之全部或一部分之呼吸要素之至少一個頻率;基於上述特定出之呼吸要素之至少一個頻率而檢測肺野;將上述檢測出之肺野分割成複數個塊區域,計算上述各訊框圖像中之塊區域之圖像變化;將上述各訊框圖像中之各塊區域之圖像變化進行傅立葉轉換;擷取上述傅立葉轉換後獲得之頻譜中包含與上述呼吸要素之至少一個頻率對應之頻譜的一定頻帶內之頻譜;對自上述一定頻帶擷取出之頻譜進行傅立葉逆轉換;及將上述傅立葉逆轉換後之各圖像顯示於顯示器。
(2)又,本發明之一態樣之診斷支援程式特徵在於進而包含以下處理:使用濾波器擷取上述傅立葉轉換後獲得之頻譜中包含雜訊之頻率、且包含與自上述訊框圖像獲得之呼吸要素之頻率以外之頻率、或輸入之頻率或頻帶對應之頻譜的一定頻帶內之頻譜。
(3)又,本發明之一態樣之診斷支援程式特徵在於進而包含以下處理:基於上述呼吸要素之頻率及上述各訊框圖像,產生上述訊框間之圖像。
(4)又,本發明之一態樣之診斷支援程式特徵在於,其係解析人體之圖像且顯示解析結果者,且使電腦執行以下處理:自儲存上述圖像之資料庫取得複數張訊框圖像;特定出自被攝體之心跳或血管搏動擷取之心血管搏動要素之至少一個頻率;基於上述各訊框圖像之特定區域之像素,特定出包含呼氣或吸氣之全部或一部分之呼吸要素之至少一個頻率;基於上述特定出之呼吸要素之至少一個頻率而檢測肺野;將上述檢測出之肺野分割成複數個塊區域,計算上述各訊框圖像中之塊區域之圖像變化;將上述各訊框圖像中之各塊區域之圖像變化進行傅立葉轉換;擷取上述傅立葉轉換後獲得之頻譜中包含與上述心血管搏動要素之至少一個頻率對應之頻譜的一定頻帶內之頻譜;對自上述一定頻帶擷取出之頻譜進行傅立葉逆轉換;及將上述傅立葉逆轉換後之各圖像顯示於顯示器。
(5)又,本發明之一態樣之診斷支援程式特徵在於,其係解析人體之圖像且顯示解析結果者,且使電腦執行以下處理:自儲存上述圖像之資料庫取得複數張訊框圖像;特定出自被攝體之心跳或血管搏動擷取之心血管搏動要素之至少一個頻率;檢測肺野;將上述檢測出之肺野分割成複數個塊區域,計算上述各訊框圖像中之塊區域之圖像變化;將上述各訊框圖像中之各塊區域之圖像變化進行傅立葉轉換;擷取上述傅立葉轉換後獲得之 頻譜中包含與上述心血管搏動要素之至少一個頻率對應之頻譜的一定頻帶內之頻譜;對自上述固定頻帶擷取出之頻譜進行傅立葉逆轉換;及將上述傅立葉逆轉換後之各圖像顯示於顯示器。
(6)又,本發明之一態樣之診斷支援程式特徵在於進而包含以下處理:使用濾波器擷取上述傅立葉轉換後獲得之頻譜中包含雜訊之頻率、且包含與自上述訊框圖像獲得之心血管搏動要素之頻率以外之頻率、或輸入之頻率或頻帶對應之頻譜的一定頻帶內之頻譜。
(7)又,本發明之一態樣之診斷支援程式特徵在於進而包含以下處理:基於上述特定出之心血管搏動要素之頻率及上述各訊框圖像而產生上述訊框間之圖像。
(8)又,本發明之一態樣之診斷支援程式特徵在於,其係解析人體之圖像且顯示解析結果者,且使電腦執行以下處理:自儲存上述圖像之資料庫取得複數張訊框圖像;特定出自被攝體之血管搏動擷取之血管搏動要素之至少一個頻率;將針對上述各訊框圖像設定之解析範圍分割成複數個塊區域,計算上述各訊框圖像中之塊區域之圖像變化;將上述各訊框圖像中之各塊區域之圖像變化進行傅立葉轉換;擷取上述傅立葉轉換後獲得之頻譜中包含與上述心血管搏動要素之至少一個頻率對應之頻譜的一定頻帶內之頻譜;對自上述一定頻帶擷取出之頻譜進行傅立葉逆轉換;及將上述傅立葉逆轉換後之各圖像顯示於顯示器。
(9)又,本發明之一態樣之診斷支援程式特徵在於進而包含以下處理:使用濾波器擷取上述傅立葉轉換後獲得之頻譜中包含雜訊之頻率、且包含與自上述訊框圖像獲得之血管搏動要素之頻率以外之頻率、或輸入之頻率或頻帶對應之頻譜的一定頻帶內之頻譜。
(10)又,本發明之一態樣之診斷支援程式特徵在於進而包含以下處理:基於上述特定出之血管搏動要素之頻率及上述各訊框圖像而產生上述訊框間之圖像。
(11)又,本發明之一態樣之診斷支援程式特徵在於,其係解析人體之圖像且顯示解析結果者,且使電腦執行以下處理:自儲存上述圖像之資料庫取得複數張訊框圖像;基於上述各訊框圖像之特定區域之像素,特定出包含呼氣或吸氣之全部或一部分之呼吸要素之至少一個頻率;基於上述特定出之呼吸要素之至少一個頻率而檢測肺野及橫膈膜;將上述檢測出之肺野分割成複數個塊區域,計算上述各訊框圖像中之塊區域之像素之變化率;使用上述塊區域之像素之變化率、及與呼吸連動之動態部位之變化率之比值即調諧率,僅擷取上述調諧率落在預先決定之一定範圍內之塊區域;將僅包含上述擷取出之塊區域之各圖像顯示於顯示器。
(12)又,本發明之一態樣之診斷支援程式特徵在於進而包含以下處理:特定出自被攝體之心跳或血管搏動擷取出之心血管搏動要素之至少一個頻率、或自血管搏動擷取出之血管搏動要素之至少一個頻率。
(13)又,本發明之一態樣之診斷支援程式特徵在於上述調諧率之對數值定為包含0之一定範圍。
(14)又,本發明之一態樣之診斷支援程式特徵在於進而包含以下處理:使用特定訊框中檢測出之肺野上之至少一條以上之貝齊爾曲線(Bezier curve),檢測其他訊框中之肺野。
(15)又,本發明之一態樣之診斷支援程式特徵在於在上述檢測出之肺野內選定內部控制點,由通過上述肺野內之內部控制點之曲線或直線而分割上述肺野。
(16)又,本發明之一態樣之診斷支援程式特徵在於相對擴大上述檢測出之肺野之外延及其附近處之控制點之間隔,根據上述檢測出之肺野內之每個部位之膨脹率而相對減小上述內部控制點之間隔。
(17)又,本發明之一態樣之診斷支援程式特徵在於,於上述檢測出之肺野中,根據相對於人體朝頭尾方向進入而相對地擴大控制點之間隔,或,根據特定之向量方向而相對地擴大控制點之間隔。
(18)又,本發明之一態樣之診斷支援程式特徵在於進而包含以下處理:使用特定訊框中檢測出之肺野上之至少一條以上之貝齊爾曲面(Bezier surface),檢測其他訊框中之肺野。
(19)又,本發明之一態樣之診斷支援程式特徵在於進而包含以下處理:於特定訊框中預先決定之解析範圍上,使用至少一條以上之貝齊爾曲線(Bezier curve),檢測其他訊框中與上述解析範圍對應之範圍。
(20)又,本發明之一態樣之診斷支援程式特徵在於進而包含以下處理:使用至少一條以上之貝齊爾曲線(Bezier curve),至少描繪肺野、血管或心臟。
(21)又,本發明之一態樣之診斷支援程式特徵在於,其係解析人體之圖像且顯示解析結果者,且使電腦執行以下處理:自儲存上述圖像之資料庫取得複數張訊框圖像;對上述取得之所有訊框圖像使用貝齊爾曲線特定出解析範圍;及基於上述解析範圍內之強度(intensity)變化而檢測解析對象。
(22)又,本發明之一態樣之診斷支援程式特徵在於進而包含計算上述檢測出之解析對象之邊緣特徵的處理。
(23)又,本發明之一態樣之診斷支援程式特徵在於藉由對連續之各圖像計算強度(intensity)之差分而檢測橫膈膜,且顯示表示上述檢測出之橫膈膜或與呼吸連動之動態部位之位置或形狀的指標。
(24)又,本發明之一態樣之診斷支援程式特徵在於藉由使強度(intensity)之閾值變化,顯示被橫膈膜以外之部位遮擋之橫膈膜,而內插 運算橫膈膜之全體形狀。
(25)又,本發明之一態樣之診斷支援程式特徵在於進而包含以下處理:自上述檢測出之橫膈膜之位置或形狀、或與呼吸連動之動態部位之位置或形狀,計算上述呼吸要素之至少一個頻率。
(26)又,本發明之一態樣之診斷支援程式特徵在於進而包含將上述檢測出之肺野在空間性正規化或利用重組(reconstruction)而進行時間性正規化之處理。
(27)又,本發明之一態樣之診斷支援程式特徵在於藉由使上述呼吸要素之至少一個頻率之相位變化,或使呼吸要素之波形平滑化,而修正呼吸要素。
(28)又,本發明之一態樣之診斷支援程式特徵在於特定出解析範圍內之任意部位之波形,擷取上述特定出之波形之頻率之構成要素,輸出與上述波形之頻率之構成要素對應的圖像。
(29)又,本發明之一態樣之診斷支援程式特徵在於檢測解析範圍之密度(density),去除密度相對大幅變化之部位。
(30)又,本發明之一態樣之診斷支援程式特徵在於進而包含以下處理:自上述傅立葉轉換後獲得之頻譜,基於臟器特有之週期變化之頻譜構 成比,選擇進行傅立葉逆轉換時之至少一個頻率。
(31)又,本發明之一態樣之診斷支援程式特徵在於根據上述呼吸要素之至少一個頻率調整X線之照射間隔,而控制X線攝影裝置。
(32)又,本發明之一態樣之診斷支援程式特徵在於上述傅立葉逆轉換後,僅擷取並顯示振幅值相對較大之區塊。
(33)又,本發明之一態樣之診斷支援程式特徵在於進而包含以下處理:鑑定上述肺野後,特定出橫膈膜或胸廓,計算橫膈膜或胸廓之變化量,自上述變化量計算變化率。
(34)又,本發明之一態樣之診斷支援程式特徵在於進而包含對特定之頻譜乘以係數之處理,且基於乘以上述係數後之特定頻譜進行強調顯示。
(35)又,本發明之一態樣之診斷支援程式特徵在於自儲存圖像之資料庫取得複數張訊框圖像後,為了特定出呼吸要素之頻率或波形,對成為解析對象之部位施以數位濾波器。
(36)又,本發明之一態樣之診斷支援程式特徵在於基於上述各訊框圖像之特定區域之像素,特定出包含呼氣或吸氣之全部或一部分之呼吸要素的複數個頻率,將與上述呼吸要素之複數個頻率各者對應之各圖像顯示於顯示器。
(37)又,本發明之一態樣之診斷支援程式特徵在於,針對某一張以上之訊框圖像之特定範圍,選擇集簇於某一定值之圖像,且顯示於顯示器。
根據本發明之一態樣,可顯示形狀依包含呼氣或吸氣之全部或一部分之呼吸要素變化之區域的活動。
1:基本模組
3:呼吸功能解析部
5:肺血流解析部
7:其他之血流解析部
9:傅立葉解析部
10:波形解析部
11:視覺化、數值化部
13:輸入介面
15:資料庫
17:輸出介面
19:顯示器
(1):控制點之間隔
(2):控制點之間隔
A:肺野
cp1~cp4:控制點
p1~p5:點
R1~R8:步驟
S1~S9:步驟
S:線段
S1:區域
S2:區域
S3:區域
T1~T10:步驟
t1~t4:時刻
圖1A係顯示本實施形態之診斷支援系統之概略構成之圖。
圖1B係顯示肺區域之分割方法之一例之圖。
圖1C係顯示肺之形態因時間經過而變化之狀況之圖。
圖1D係顯示肺之形態因時間經過而變化之狀況之圖。
圖2A係顯示特定區塊之「強度(intensity)」變化,並對其進行傅立葉解析之結果的圖。
圖2B係顯示抽出接近心跳之頻率成分之傅立葉轉換結果、與將其進行傅立葉逆轉換而接近心跳之頻率成分之「強度」變化的圖。
圖2C係顯示擷取傅立葉轉換後獲得之頻譜中某一定頻帶之例的圖。
圖2D係模式性顯示肺之變化率之圖。
圖2E係顯示肺野區域之圖案圖像之例之圖。
圖2F係顯示肺野區域之圖案圖像之例之圖。
圖2G係顯示肺野區域之圖案圖像之例之圖。
圖2H係顯示肺野區域之圖案圖像之例之圖。
圖3A係顯示使用貝齊爾曲線及直線兩者描繪肺野之輪廓之例之圖,且顯示肺野最大之狀態。
圖3B係顯示使用貝齊爾曲線及直線兩者描繪肺野之輪廓之例之圖,且顯示肺野最小之狀態。
圖4A係將前一個與下一個訊框間之肺野圖像之前後重疊之圖。
圖4B係顯示取得圖4A之2張原圖像之差分之結果,而產生「間隙較強之線(line)」之狀態的圖。
圖4C係顯示圖4B中圖像上下方向各位置處之「強度」值之合計「密度(density)」之差分值的圖。
圖5係顯示進行曲線回歸,使橫膈膜之相對位置近似之結果之圖。
圖6A係顯示本實施形態之呼吸功能解析之概要之流程圖。
圖6B係顯示於顯示器顯示之圖像之一例的圖。
圖6C係顯示於顯示器顯示之圖像之一例的圖。
圖7係顯示本實施形態之肺血流解析之概要之流程圖。
圖8係顯示本實施形態之其他血流解析之概要之流程圖。
圖9係顯示對傅立葉轉換後獲得之頻譜中某固定頻譜乘以係數之例的圖。
圖10係使用貝齊爾曲線描繪肺野之例之圖。
圖11係使用貝齊爾曲線分割肺野之例之圖。
圖12係使用貝齊爾曲線分割肺野之例之圖。
圖13係顯示對比大動脈血流量之波形與心室容積之波形之一例的圖。
圖14係顯示肺與肺附近之像素值之一例之圖。
圖15係將人體血管之概略構成模式化之圖。
首先,對本發明之基本概念進行說明。於本發明中,人體之呼吸或血管、肺野之面積及體積、其他生物體運動中,對於為了以一定週期反復而捕捉之活動,於其整體或某部分之範圍,在時間軸上一定之反復或一定運動(常規)捕捉為波並計測。關於波之計測結果,使用(A)波之形態本身、或(B)波之間隔(頻率:Hz)。將該2個概念總稱為「基礎資料」。
可能存在如同時期相同般鏈結之波。例如,若為呼吸,則可為近似以下之概念。
(某粗略範圍之「密度」變化之平均)≒(胸廓之變化)≒(橫膈膜之活動)≒(肺功能檢測)≒(胸腹呼吸感測器)
關於上述「(A)波之形態本身」,使用「波形調諧性」之概念,並基於此顯示圖像(Wave form tunable imaging:波形調諧成像)。又,關於上述「(B)波之間隔(頻率:Hz)」,使用「頻率調諧性」之概念,並基於此顯示圖像(Frequency tunable imaging:頻率調諧成像)。
例如,於心臟之情形時,如圖13所示之「對比大動脈血流量之波形與心室容積之波形之一例」,大動脈血流量之峰值與心室容積之峰值或波形不一致。然而,於圖13中,若如時刻t1至t2、時刻t2至t3、時刻t3至t4……般將等間隔之時間寬度定為1個循環,則大動脈血流量之1個循環及 心室容積之1個循環重複多次,可以說各波形係頻率調諧。若著眼於該波形,則自如圖13所示之實測值特定出1個循環,並利用模型波形,藉此可預測波形(Wave form)。即,作為「作為基礎資料之波形」之產生方法,可實測,亦可由頻率(循環)產生,又可利用模型波形,還可將個人間之波形平均化並利用。若瞭解心臟等具有頻率之臟器之循環(週期),則可預測波形(Wave form),因此可掌握大動脈血流量或心室容積等之波形,並基於該波形顯示臟器之動態圖像。
另,為了於取得呼吸、心臟、肺門等之「密度」變化時不混入其他要素,可預先附加數位濾波器。
又,於本發明中,使用「呼吸要素」之概念。所謂「呼吸要素」包含呼氣或吸氣之全部或一部分。例如,可將「1次呼吸」分成「1次呼氣」與「1次吸氣」來考慮,亦可限定為「1次呼氣或1次吸氣」之「0%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%」之任一者來考慮。再者,又可僅擷取各呼氣之一定比例,例如僅擷取呼氣之10%進行評估。可使用該等任一個資料、或該等組合而成之資料,擷取更高精度之圖像。此時,有時亦相互多次計算。
此種考慮方法不僅限「呼吸要素」,亦可同樣應用於「心血管要素」。
此處,於製作基礎資料時,藉由自單一或複數個治療程式獲得之特 徵量(例如,由某一定範圍之「密度」、「容積分析(volumetry)」構成之變化量、胸廓之活動、橫膈膜之活動、「肺功能檢查(spirometry)」、胸腹呼吸感測器之2個以上)、或相同之呼吸循環等之複數次波形測定,相互補充彼此之成分擷取,而提高精度。藉此,可基於減少偽像、線條(line)等某一定預測而提高精度。此處,所謂「density」譯成「密度」,但意指圖像中特定區域中之像素之「吸收值」。例如,CT中,空氣用作「-1000」,骨骼用作「1000」、水用作「0」。
又,利用彼此成分擷取推定波形之軸、寬度、範圍及Hz之活動、寬度。即,藉由複數次重疊,將Hz之軸設定平均化,並藉由方差來計算軸、寬度、範圍、Hz之最佳範圍(range)。此時,若擷取到其他行動之Hz(雜訊),且存在波,則有以不混入該波之程度地進行相對計測之情形。即,有僅擷取波形要素全體中之一部分波形之情形。
於本說明書中,區分使用「密度」與「強度」。「密度」如上所述意指吸收值,於XP或XP動畫之原圖中,將空氣之透過性較高,且透過性較高部分為白色之情況數值化,而將空氣顯示為「-1000」,將水顯示為「0」、將骨骼顯示為「1000」。另一方面,「強度」係根據「密度」相對變化者,例如,進行正規化(normalized)“轉換”為濃度之寬度、信號之程度而顯示者。即,「強度」為圖像中明暗或強調度等相對性值。直接處理XP圖像之吸收值之期間顯示為「密度」或「密度之變化(△density)」。且,為了圖像表現之方便起見,將此進行如上之轉換,並顯示為「強度」。例如,於0至255之256灰階地顯示彩色之情形時成為「強度」。此種 用語適於XP或CT之情形。
另一方面,於MRI(Magnetic Resonance Imaging:磁共振成像)之情形時,即便將空氣定為「-1000」,將水定為「0」,將骨骼定為「1000」,亦有因MRI之像素值、測定機械之種類、測定時人之身體狀況、體形、測定時間,而引起值大幅變化之事態,又,即便採用T1強調圖像等MRI信號,亦因其設施、測定機械之種類呈現出多樣化,而非一定。因此,於MRI之情形時,無法定義如XP或CT時之「密度」。因此,於MRI中,自最初描繪之階段處理相對值,並自最初開始便顯示為「強度」。且,該處理之信號亦為「強度」。
根據以上,可獲得基礎資料。相對於上述基礎資料,針對欲計測之新對象,擷取上述基礎資料之波形、波之Hz之某一定寬度、範圍。例如,擷取僅呼吸擷取、或血管擷取程度之寬度、範圍、波形要素。另,關於該波形、Hz之寬度,使用其他功能中之波形要素、雜訊等「偽像(artifact)」、其他認為有調諧性之其他「治療程式(modality)」之波形、進行複數次之再現性等,相對地或基於統計綜合地進行判斷。對此需要調整、經驗(亦可適用機械學習)。其理由在於:若寬度、範圍擴大,則會引起其他功能之要素加入,若過窄,則會遺漏功能自身之要素,故關於該範圍需要調整。例如,若存在複數次之資料,則容易限定範圍、Hz與測定一致之寬度等。
[關於調諧一致率]
於本說明書中,將圖像變化之傾向作為調諧一致率進行說明。例如,檢測肺野,並分割成複數個塊區域,計算各訊框圖像中之塊區域之「平均密度(像素值x)」。接著,計算各訊框圖像中之塊區域之平均像素相對於「平均密度(像素值x)」之最小值至最大值之變化寬度(0%~100%)之比例(x’)。另一方面,使用與各訊框圖中之橫膈膜之變化(y)相對於橫膈膜之最小位置至最大位置之變化寬度(0%~100%)之比例(y’)的比值(x’/y’),僅擷取比值(x’/y’)落在預先決定之一定範圍內之塊區域。
此處,於y’=x’或y=ax(a為橫膈膜之振幅數值或「密度」數值之係數)之情形時完全一致。然而,並非僅完全一致時為有意義之值,而應擷取具有某一定寬度之值。因此,於本發明之一態樣中,使用對數(log),如下決定一定之寬度。即,若以y=x之比例(%)計算,則調諧完全一致為「log y’/x’=0」。再者,於擷取調諧一致率之範圍為較窄(數式上較窄)範圍之情形時,例如,於接近0之範圍內定為「log y’/x’=-0.05~+0.05」,若調諧一致率之範圍為較寬(數式上較寬)範圍,則例如於接近0之範圍內定為「log y’/x’=-0.5~+0.5」。即,調諧性之對數值定為包含0之一定範圍。可以說該範圍越窄且該範圍內一致之數值越高,一致率越高。
若依像素之每個像素(pixel)求出該比值並計數個數,則於健康之人之情形時,可獲得以完全一致時為峰值之正規分佈。相對於此,於具有疾病之人之情形時,該比值之分佈崩塌。另,如上所述,使用對數決定寬度之方法僅為一例,本發明不限定於此。即,本發明係進行“圖像擷取”作為(某粗略範圍之「密度」變化)≒(胸廓之變化)≒(橫膈膜之活動)≒(肺功 能檢測)≒(胸腹呼吸感測器之活動)≒(肺野之面積及體積)者,亦可應用使用對數之方法以外之方法。可藉由此種方法顯示調諧性圖像。
於血管之情形時,呼應於一連串之心臟收縮(y)產生之一連串之「密度」變化(x)(肺門部中之一波形)中,於該原本波形中存在輕微之時間延遲(相位變化),故表示為y=a’(x-t)(即,y≒x)。於完全一致之情形時,由於t=0,故y=x或y=a’x。於橫膈膜之情形同樣,於擷取調諧一致率之範圍為較窄(數式上較窄)範圍之情形時,例如,於接近0之範圍內定為「log y’/x’=-0.05~+0.05」,若調諧一致率之範圍為較寬(數式上較寬)範圍,則例如於接近0之範圍內定為「log y’/x’=-0.5~+0.5」。可以說該範圍越窄且該範圍內一致之數值越高,一致率越高。
於其他血管之情形時,除上述「呼應於心臟之部分」之外,使用自肺門描繪之中樞側「密度」。末梢血管之情形亦可同樣地處理。
再者,亦可對循環器官應用本發明,例如,將心臟之「密度」變化與流向肺門部~末梢肺野之血流之「密度」變化直接關聯,且一連串之心臟之「密度」變化或肺門部之「密度」變化經一種轉換後直接傳播。其係認為自心臟之「密度」變化與肺門部之「密度」變化之關係發生了若干相位差異。又,由於肺門部等之「密度」變化與直接流向肺野之血流之「密度」變化關聯,故亦可以原始之比例所反映者(y≒x之一致率之關係)來表現調諧性。又,頸部血管系統、或胸部、腹部、骨盤、四肢等之大血管系統亦同樣,認為與附近之中樞心臟血管中描繪之「密度」變化直接關聯、 或伴隨些微相位差而關聯。且,該「密度」根據背景而變動、傳播時傳遞的是「密度」之變化,故可作為調諧一致率來考察。
此處,於1張圖像之變化量與1張圖像之變化率各者中,可設為「吸氣量合計≒呼氣量合計」。因此,根據與周圍空氣之透過性之差異得出相對數值之情形時,若欲顯示為於將自肺野「密度」之變化量設為1時之相對值(Standard Differential Signal Density/Intensity:標準差分信號密度/強度),則可對以下各者分別進行變化量、變化率之描繪:(1)每張圖像之差異圖像,且每張設為1時之圖像(通常假設)、(2)將每張差異圖像加上「密度(變化量或變化率)」之吸氣全體或呼氣全體、或吸氣呼氣之絕對值設為1時的比例、進而(3)將複數次拍攝中各呼吸時(數次選擇(select)10%時)之「密度」總量設為1時之比例。
又,於MRI等之3D之情形時,吸氣全體之「強度(MRI之情形)」或「密度」(CT之情形)之合計值(此時為將其設為1時)、該「強度」或「密度」之差可轉換成吸氣(安靜時或努力呼吸時)之「峰值流量容積資料(peak flow volume deta)」,並對該值得出其「強度」或「密度」之比例,藉此至少於MRI或CT等之「3D×時間(time)」之計算時,換算各肺野部分中之實測呼吸量、呼吸率。同樣地,亦可藉由輸入1次心搏出量,提示將肺野「流量(flow)」中之「毛細血管相位(capillary phase)」之分佈容積換算成肺血流末梢量之分佈的推定值。
即,(每張圖像之吸氣變化量)×(所有吸氣之張數)≒(每張圖像之呼氣 變化量)×(所有呼氣之張數)≒(此時之吸氣呼吸:自然呼吸或努力呼吸之容積)≒(此時之呼氣呼吸:自然呼吸或努力呼吸之容積)≒(此時之自然呼吸或努力呼吸之「容積」中吸氣或呼氣之變化量)成立。於僅取出1張10%或20%之變化量之情形時,可藉由計算(所有之張數)×(其時間之變化量)而計算推定值。
將該擷取變化量進行可視化處理,描繪成圖像。此為以下說明之呼吸功能解析、血管解析。且,將胸廓或橫膈膜之變化率進行可視化處理。此時,亦有再次對結果除去偽像,自新的資料擷取波形或成為最初基準之資料波形、其他治療程式等之波形、周圍、複數次之波形進行擷取,而進行功能擷取之情形。除去偽像之方法稍後敘述。
又,亦有自上述擷取者以外除去擷取出之變化成分者來掌握特徵量之情況。例如,於掌握腹部腸管之活動時,謀求自腹部除去呼吸之影響與血管之影響,而擷取腹部腸管之活動。
以下,參照圖式對本發明之實施形態進行說明。圖1A係顯示本實施形態之診斷支援系統之概略構成之圖。該診斷支援系統藉由使電腦執行診斷支援程式而發揮特定之功能。基本模組1由呼吸功能解析部3、肺血流解析部5、其他血流解析部7、傅立葉解析部9、波形解析部10及視覺化/數值化部11構成。基本模組1經由輸入介面13自資料庫15取得圖像資料。於資料庫15中儲存有例如DICOM(Digital Imaging and COmmunication in Medicine:醫學數位影像與通信)之圖像。自基本模組1輸出之圖像信號經 由輸出介面17而顯示於顯示器19。接著,對本實施形態之基本模組之功能進行說明。
[呼吸要素之週期解析]
於本實施形態中,基於以下指標解析呼吸要素之週期。「呼吸要素」如上所述為包含呼氣或吸氣之全部或一部分之概念。即,使用肺野內某一定區域中之「密度」/「強度」、橫膈膜之活動、胸廓之活動之至少一者解析呼吸要素之至少一個頻率。該「呼吸要素之至少一個頻率」為包含呼吸要素所示之頻率頻譜為一個以上,且具有一定頻帶寬之情形的概念。由於將肺野考慮成區塊之集合體,並自各區塊擷取複數個頻率,故於本實施形態中,將該等作為頻率群處理。另,如上所述,由於基礎資料具有「波之形態自身」及「波之間隔(頻率:Hz)」兩者之概念,故亦可作為波之形態處理。又,亦可使用以X線(其他之CT、MRI等複數種治療程式)之透過性較高之部位測定之某一定容積「密度」/「強度」構成之範圍、自肺量圖等其他之測定方法獲得之資料或外部輸入資訊。
另,比較每一呼吸之解析結果,並自複數個資料解析傾向,亦可提高資料之準確度。
又,亦可藉由使呼吸要素之至少一個頻率之相位變化,或使呼吸要素之波形平滑化,而修正呼吸要素。於該情形時,使用(胸廓、其他橫膈膜之活動)≒(胸廓之活動)≒(密度)≒(精密肺功能)≒(胸廓感測器)等之活動使該波統一相位。又,追蹤肺野之平均「密度」,最後之變化作為波之 形態進行波之平方等之近似,進行波之鑑定。此處,於胸部之「密度」等情形時,由於變化最大之值為肺之「密度」,故亦有藉由評估畫面整體之「密度」來評估肺之「密度」變化之情形。於描繪波之情形時,有實際活動之情情與於計測值發生相位偏移之情形。於該情形時,有以相位差之最大值、最小值之位置、波之形態整體等修正相位之情形。
[波形解析]
可自呼吸要素之波形計算波形之頻率之構成要素。藉此,取得上述之「波形調諧性圖像」。具體而言,特定出解析範圍內之任意部位之波形,擷取上述特定出之波形之頻率之構成要素,並輸出與上述波形之頻率之構成要素對應之圖像。
[心血管搏動解析及血管搏動解析]
於本實施形態中,基於以下指標進行心血管搏動及血管搏動解析。即,自心電圖或脈搏計等其他治療程式之計測結果、或肺輪廓特定出心臟/肺門位置/主要血管,並使用各部位之「密度」/「強度」變化解析血管搏動。又,亦可手動描繪於圖像上,解析對象部位之「密度」/「強度」之變化。且,特定出自心跳或血管搏動獲得之心血管搏動要素之至少一個頻率(波形)。另,期望比較每一博動之解析結果,並自複數個資料解析傾向,而提高資料之準確度。又,各部位之「密度」/「強度」之擷取可藉由實施複數次或對於一定範圍進行而提高精度。又,亦有輸入心血管搏動頻率或頻帶之方法。
[肺野鑑定]
自資料庫(DICOM)擷取圖像,使用上述呼吸要素之週期解析結果,自動檢測肺輪廓。關於該肺輪廓之自動檢測可使用先前以來已知之技術。例如,可使用日本專利特開昭63-240832號公報、或日本專利特開平2-250180號公報所揭示之技術。接著,將肺野分成複數塊區域,並計算各塊區域之變化。此處,可根據拍攝速度決定塊區域之大小。於拍攝速度較慢之情形時,由於難以特定出某訊框圖像之下一個訊框圖像中對應之部位,故加大塊區域。另一方面,於拍攝速度較快之情形時,由於每單位時間之訊框圖像數較多,故即便塊區域較小亦可追蹤。又,亦可根據選擇呼吸要素週期中之哪個時序來計算塊區域之大小。此處,有須修正肺野區域之偏移之情形。此時,鑑定胸廓之活動、橫膈膜之活動、肺野全體血管之位置關係,又,掌握肺輪廓之相對位置並基於其活動相對地進行評估。另,當塊區域過小時,有發生圖像閃爍之情形。為了防止該閃爍,塊區域有必要具有一定大小。
可於上述自動檢測出之肺野區域使用至少一條貝齊爾曲線,將肺野顯示為點及控制點之座標。且,可藉由使用複數條之利用至少一條貝齊爾曲線包圍之封閉曲線,即所謂之「純閉合曲線」來顯示肺野。同樣地,亦可使用一條或複數條純閉合曲線來顯示解析對象。
各訊框之肺野亦可使用特定訊框中檢測出之肺野上之至少一條以上之貝齊爾曲線(Bezier curve)檢測其他訊框中之肺野。例如,列舉檢測最大與最小之2個肺野,並使用該2個肺野計算其他訊框之肺野之方法。此 處,於其他訊框定義「變化率」之變數。「變化率」為表現肺野之大小,即呼吸狀態之值,且可自橫膈膜之位置或圖像全體之「強度」平均值等計算出。亦可使用呼吸描記器等之外部裝置之計測資料計算或使用經模型化之變化率。如此,由於可任意決定「變化率」之變數,故例如假定肺野以一定比例(10%、20%、30%……)變化,亦可計算。由於如此定義之變化率有包含誤差之情形,故亦有使用進行誤差之自動/手動去除後之結果、或最小平方法等進行近似後之結果等進行後續處理之情形。假定線形變形達最大肺野與最小肺野,使用各者之訊框之變化率,使用線形轉換等方法計算各訊框中之肺野。
又,於連續之訊框之任意範圍內,皆可應用上述處理。例如,於呼吸中,肺野重複向極大與極小變化,但於實際測定中,極大時之形狀並非始終固定。例如,藉由於極大至極小、極小至極大之各範圍內,應用上述處理,較定義最大與最小之2個肺野並計算,更期待可精度較高地計算肺野。另,此處,作為具體例,雖使用極大與極小進行了說明,但本發明並非限定於此者,由於為「任意之範圍」,故亦可於呼吸之中途、0%與30%、30%與100%之位置進行。
又,雖精度降低,但亦可自1個肺野計算各訊框之肺野。例如,可藉由自胸廓之形狀等類推而規定肺野之變化向量。具體而言,採用對貝齊爾曲線之各控制點規定變化向量之方法,但本發明並非限定於此者。且,使用檢測出之1個肺野與變化向量、各個訊框中之變化率,計算各訊框中之肺野。藉由對該計算結果自動或手動地進行修正可進一步提高精度。又, 即使是3D上述方法亦有效。即,於3D之情形時,亦可使用特定訊框中檢測出之肺野上之至少一個以上之貝齊爾曲面(Bezier surface),執行檢測其他訊框中之肺野之處理。藉此,可獲得訊框間之肺野之圖像。
圖6C係顯示呼吸要素之週期之圖表。圖6C之圖像中顯示白色垂直線,此係表示呼吸要素週期中當前時點之位置的直線(指標),且以根據圖6B所示之肺之動畫活動,顯示呼吸要素週期中之當前位置之方式活動。藉由表示呼吸要素週期之當前位置可明確掌握肺活動週期中之當前位置。另,於本發明中,不僅以圖表顯示呼吸要素之週期,關於血流之「密度」、胸廓、橫膈膜等之與肺之活動連動者,亦可全部圖表化。
又,於被攝體「停止呼吸之情形」時,有無法特定出呼吸要素之頻率之情形。於該情形時,使用自被攝體之心跳或血管搏動擷取之心血管搏動要素之至少一個頻率,進行後述之傅立葉解析。於該情形時,亦可對應於心臟、橫膈膜或與呼吸連動之活動部位之活動改變後述之塊區域之分割方法。
[邊緣之檢測與其評估]
本發明可檢測肺之邊緣並評估該邊緣。例如,於以上述之方法計算出肺野後,可重新高精度地檢測邊緣之位置及形狀。於計算出之肺野內之任意位置描繪點,自此朝四面八方延伸線條,於各線條中評估像素值之變化。例如,如圖14所示,若沿著切斷肺之線段S計算像素值,則可知於邊緣像素大幅活動,但其活動之絕對值不同。例如,藉由調整檢測左側邊緣 與右側邊緣時之閾值而提高邊緣檢測之精度。又,亦可利用每個區域之像素值活動之特性。如圖14所示,即便S2區域與S3區域之邊緣之差分較小,亦可自像素值活動之方差特定出S2區域與S3區域之邊緣。此處雖著眼於方差,但本發明並不限定於此。
再者,亦可藉由同樣之思考方法檢測肺以外之臟器、血管、腫瘤等之解析範圍之邊緣。例如,於血管中存在造影劑之情形時,可將血管內部明確地可視化,但明確地計算出血管之外側或厚度並非易事。於本實施形態中,由於可正確地檢測邊緣,故可計算落在解析範圍內之血管之形狀、特徵。藉此,可定量地掌握先前來不容易掌握之血管之厚度或外周,並用於診斷。
[塊區域之作成]
對將肺野分成複數個塊區域之方法進行說明。圖1B係顯示將肺野自肺門起放射狀分割之方法的圖。由於肺之橫膈膜側較肺尖側更大幅活動,故亦可越接近橫膈膜側,越粗略地描繪分割之點。另,於圖1B中,可追加描繪縱向之線(虛線),並分成複數個矩形(正方形)之塊區域。藉此,可更正確地顯示肺之動作。另,亦可利用以下之方法分割肺野:「於肺之縱向描繪點而橫向地分割肺之方法」、「於肺之橫向描繪點而縱向分割肺之方法」、「畫出肺尖部處之切線與橫膈膜處之切線,並將該等切線相交之點定為中心點,自包含該點之直線(例如垂直線)以某一定角度畫線段,並以該線段分割肺的方法」、「以與自肺尖(或肺門)連結橫膈膜端部之直線正交之複數個平面切斷肺的方法」等。另該等方法亦可應用於三維立體圖像。於 3D之情形時,以由複數個曲面或平面包圍之空間捕捉各臟器。亦可將臟器作進一步細分。例如,於考慮右肺之3D模型之情形時,可分成上葉、中葉、下葉來處理。
肺野區域為應鑑定胸廓之活動、橫膈膜之活動、肺野之全體血管之位置關係,掌握肺輪廓之相對位置,並基於該等活動相對評估者。因此,於本案發明中,於自動檢測出肺輪廓後,將由肺輪廓特定出之區域分割成複數個塊區域,並將各塊區域所含之圖像之變化值(像素值)平均化。例如,如圖10所示,可於貝齊爾曲線上,於對向之肺之邊緣上描繪點,並連接該等點,隨後使用通過該中間點之曲線。其結果,如圖1C所示,即便肺之形態因時間經過而變化,但亦可追蹤所關注區域之經時變化。另一方面,圖1D係顯示不考慮成為解析對象之臟器(此時為肺)之形態,而分割為塊區域時之經時變化的圖。如上所述,所謂肺野區域係應鑑定胸廓之活動、橫膈膜之活動、肺野之全體血管之位置關係,掌握肺輪廓之相對位置,並基於該等活動相對評估者,但如圖1D所示,若不特定出肺野區域而分割為塊區域,則因肺之經時變化,所關注區域偏離肺野區域,而成為無意義之圖像。尤其,由於橫膈膜之活動係收縮肺野之動作較強,故較佳納入胸廓成分或其他複數個要素來修正肺野區域而非僅修正橫膈膜或全體之數值。又,亦有輸入呼吸要素頻率或頻帶之方法。3D亦可同樣地進行區域分割計算。
再者,如圖11所示,亦可於肺野A中,使用貝齊爾曲線,於檢測出之肺野內選定內部控制點,並由通過肺野內之內部控制點之曲線或直線分割 肺野。即,不僅於肺野之邊框,於肺野區域之內部亦設置控制點,並使用該等控制點分割肺野區域(A)。於該情形時,如圖12所示,可相對擴大檢測出之肺野之外延及其附近之控制點之間隔(1),根據檢測出之肺野內之每個部位之膨脹比例,相對減小內部控制點之間隔(2)。又,亦可於肺野A內,隨著相對於人體朝頭尾方向進入而相對地擴大控制點間之間隔、或根據特定之向量方向相對地擴大。該向量之決定方法為任意,但例如可決定為自肺尖朝肺野之相反側之方向,亦可如圖1B所示,決定為自肺門朝肺野之相反側之方向。又,亦可於與肺之構造對應之方向決定向量。如此,將肺野之分割方法設為「不等分割」,藉此可顯示考慮每個區域之特徵之圖像。例如,由於肺野之外周活動較大,偏移增大,故擴大區塊,另一方面,由於肺野之內部活動較小,偏移較小,故減小細化區塊。且,例如肺野之橫膈膜側活動較大,偏移較大,故擴大區塊,另一方面,由於肺野之頭部側活動較小,偏移較小,故減小細化區塊。藉此,可提高顯示之精度。該方法不限定於肺野,亦可應用於與呼吸連動之活動部位等。此種方法亦可應用於依肺葉將肺3維分割之情形。又,亦可用於以貝齊爾曲線包圍顯示橫膈膜之下側部位,例如心臟或其他臟器之情形。於該情形時,亦可於與心臟或其他臟器之構造對應之方向決定向量,而不等分割區域。
接著,排除偽像並內插運算圖像資料。即,若解析範圍內包含骨骼等則顯示為雜訊,因而期望使用雜訊截止濾波器去除雜訊。於X線圖像中,通例中,將空氣設為-1000,將骨骼設為1000,故透過性較高之部分像素值較低,且顯示為黑色,透過性較低之部分像素值較高,且顯示為白色。例如,於以256灰階顯示像素值之情形時,黑色為0白色為255。於肺 野區域內,由於不存在血管或骨骼之位置之周邊容易透過X線,故X線圖像之像素值變低,X線圖像變黑。另一方面,由於存在血管或骨骼之位置難以透過X線,故X線圖像之像素值變高,X線圖像變白。可以說其他之CT、MRI中亦同樣。此處,可自上述呼吸要素之週期解析結果,基於每一次呼吸之波形,使用同一相位值內插運算資料,而排除偽像。又,於檢測出「座標不同」、「像素值極端活動」、「頻率或密度異常變高」之情形時,對該等進行截除,並對剩餘獲得之圖像使用例如最小平方法鑑定連續且平滑之波形,藉此可用於橫膈膜之Hz計算、肺野之調節。又,於重疊圖像之情形時,有以下方法:(1)將前後取得單張圖像之取得比較圖像使其座標直接重疊,(2)以基準(base)取得前後單張圖像後,將圖像相對擴展並將其相對位置資訊與基準重疊。藉由如上之方法,可修正肺野之形態,或修正塊區域之圖像變化。此時,再次對結果除去偽像(artifact),自新資料擷取波形或成為最初之基礎資料之波形、其他治療程式等之波形、周圍、複數次波形進行擷取,並進行功能擷取。此時,次數可為一次亦可為複數次。
此處,針對時間軸之「重組(reconstruction)」進行說明。例如,於15f/s之吸氣時間為2秒之情形時,可獲得30+1張圖像。於該情形時,只要僅每次重疊3張便能實施每10%之「重組」。此時,例如,於0.1秒以10%,僅取得其圖像為0.07秒與0.12秒之照片之情形時,需要0.1秒之「重組」。於該情形時,賦予10%前後之圖像之中間值(兩者之平均值)進行「重組」。又,可於時間軸上捕捉,並以該時間比例變更係數。例如,存在時間軸之差,且無0.1秒之拍攝值,而有0.07秒與0.12秒之拍攝時間 時,可重新計算為「(其0.07秒之值)×2/5+(0.12秒之值)×3/5」來進行「重組」。再者,於自呼吸之平均或橫膈膜之係數之變化量辨識該秒之變化位置關係,並將該值設為係數求出數字比例。另,期望包含「最大微分強度投影(Maximum Differential Intensity Projection)」之0~100%,如10%至20%之「重組」、或10%至40%之「重組」等具有厚度地進行計算。如此,對於未拍攝之部分,亦可進行1次呼吸比例之「重組」。另,本發明不僅對於呼吸,對於血流、胸廓之活動、橫膈膜、其他與該等連動之一連串活動亦可同樣進行「重組」。又,亦可依區塊或依像素進行「重組」。另,期望包含「最大微分強度投影」之0~100%,如10%至20%之「重組」、或10%至40%之「重組」等具有厚度地進行計算。
又,可以上述方法檢測肺野,並將檢測出之肺野正規化。即,將檢測出之肺野在空間上正規化,或利用重組(reconstruction)在時間上正規化。雖肺野之大小或形狀因不同人體而異,但可藉由將其正規化而顯示於一定區域內。
[橫膈膜及胸廓]
若如上所述般鑑定肺野,則亦可掌握橫膈膜之活動或胸廓。即,將辨識到之橫膈膜之Xp上(2D圖像)之橫膈膜曲線或胸廓曲線計算為精細座標之集合,將其平均或曲線局部之向下方之變化率或變化量、及橫膈膜設為曲線進行「曲線擬合(curve fitting)」而將其變形率數值化,藉此,可自圖像進行功能評估之位置賦予。又,關於橫膈膜面以外之以胸部描繪之邊緣曲線,亦可同樣地計算為精細座標之集合,將其平均或曲線之變化率 數值化,藉此自圖像進行功能評估。將上述2個變化率、變化評估為相對/相互連動,並將不同變化率(不以相同方式連動而活動之部位等)數值化、圖像化而進行活動(movement)之功能評估。
此處,對「橫膈膜及胸廓評估方法」進行說明。首先,對橫膈膜,以與身體之軸(所謂之正中線)正交之左右水平線為軸顯示其活動。接著,將橫膈膜之線平坦化為基線。即,將橫膈膜之線對準水平之直線。接著,評估橫膈膜之活動。再者,將橫膈膜之線伸展並平坦化,而評估曲線正交之活動。接著,於胸廓外側,以自肺尖連結橫膈膜胸廓角之線為基線(為軸)評估活動。將胸廓線平坦化為基線,即,將胸廓線對準與「肺尖-肋橫膈膜角」之直線而評估活動。將胸廓線沿基線伸展並平坦化來評估曲線正交之活動。且,評估上述胸廓、橫膈膜線之曲率或曲率半徑。且,將上述變化作為「變化量」計算,對該變化量進行微分而評估為“變化率”。
圖6B及圖6C係顯示於顯示器顯示之圖像之一例的圖。於圖6B,將左肺之活動顯示為動畫。於圖6B之圖像中,顯示白色水平線,其係表示橫膈膜位置之直線(指標),若播放動畫,則追隨橫膈膜之活動而上下活動。如此,可藉由檢測橫膈膜,並顯示表示檢測出之橫膈膜之位置之指標,即,表示橫膈膜之位置之白色水平線,而由醫師進行圖像診斷。又,不僅使用橫膈膜之一部分,還使用肺野-橫膈膜線之辨識,並辨識所有點,而可進行左右、內外側等橫膈膜之一區域、及橫膈膜整體之診斷。同樣地,不僅橫膈膜,與呼吸連動之動態部例如胸廓等之活動亦同樣,可藉由切線位置等之直線或肺野辨識之胸廓直線判定胸廓之活動。如此,假定邊緣活 動,亦可藉由於連續圖像中取得差分而檢測邊緣。例如,多數情況下腫瘤較扎實,其周圍較柔軟。因此,由於腫瘤不太活動,且其周圍活躍地活動,故可藉由取得差分而檢測腫瘤之邊緣。
又,於MRI或CT等3D圖像中,亦可將橫膈膜之面捕捉為一個座標或立體之曲面,並將該座標或曲面計算為精細之座標集合(橫膈膜之邊緣輪廓、平面及座標之集合群),將其平均或曲面局部向下方之變化率或變化量、及橫膈膜設為曲面進行「曲面擬合」而將該變形率數值化,藉此可進行自圖像之功能評估位置賦予。又,關於橫膈膜面以外之以胸部描繪之邊緣曲面,亦可同樣地計算為精細之座標集合,將其平均或曲面之變化率數值化,藉此可自圖像進行功能評估。將上述2個變化率、變化評估為相對、相互連動,並將不同之變化率(不以相同之方式連動活動之部位等)數值化、圖像化而進行活動之功能評估。
[傅立葉解析]
基於如上所述解析之呼吸要素之週期及血管搏動週期,對各塊區域之「密度」/「強度」值、或其變化量,實施傅立葉解析。圖2A係顯示特定區塊之「強度」變化,及對其進行傅立葉解析之結果的圖。圖2B係顯示除去接近心跳之頻率成分之傅立葉轉換結果、及將其進行傅立葉逆轉換而接近心跳之頻率成分之「強度」變化的圖。例如,若將特定區塊之「強度」變化進行傅立葉轉換(傅立葉解析),則獲得如圖2A所示之結果。接著,若自圖2A所示之頻率成分,抽出接近心跳之頻率成分,則獲得如對於圖2B之紙面右側所示的結果。可藉由將其進行傅立葉逆轉換而如對圖 2B之紙面左側所示,獲得將心跳變化調諧後之「強度」變化。
如圖9所示,亦可對特定之頻譜乘以係數而加權。例如,為了實現波形調諧性,可使用該方法。即,作為進行傅立葉逆轉換時之頻率之選擇方法,選擇複數個頻率,且乘以該比例,隨後進行傅立葉逆轉換。例如,於欲強調顯示擷取之頻帶中頻率最高之頻譜之情形時,可將該頻譜強度設為2倍。於該情形時,頻率可無連續性。可選擇不按次序存在之頻譜。
又,可自左肺(於內臟逆位時亦有為右側核心之情況)之形態(基於肺野擷取形態至左肺之凹陷部位之區域)及椎體、橫膈膜之位置類推心臟之「密度」位置。於該情形時,取得心臟之ROI進行「密度」之擷取。於進行該擷取時,使用呼吸、血流之相對頻譜值大致之區域進行類推。又,有預先使用心血管搏動產生之Hz頻帶(心跳40~150Hz、≒0.67Hz~2.5Hz)等進行「過濾(filtering)」,藉此去除呼吸或其他「偽像」之頻率之情形。又,由於心臟之位置亦根據呼吸狀況而變化,故有時隨著胸廓之位置變化,基於胸廓之形態值相對地變更心臟之位置,而進行更正確之心血管搏動之擷取或肺門、大血管等之擷取。再者,與橫膈膜之活動同樣,有基於規則活動之心臟之輪廓,計算頻率之方法。
此處,於對包含頻率成分之頻譜進行傅立葉逆轉換時,考慮自呼吸或血流之「密度」特定出之頻率要素(呼吸頻率、心血管搏動頻率)、及頻譜之頻帶(可使用BPF:band pass filter,帶通濾波器)兩者,或基於該等之任一要素進行傅立葉逆轉換。又,可基於臟器特有之週期性之變化頻譜 構成比,自上述傅立葉轉換後獲得之頻譜,選擇進行傅立葉逆轉換時之至少一個頻率。再者,亦可根據傅立葉轉換後獲得之複數個頻率之構成比例,特定出特定之臟器或成為解析對象之區域之波形(作成波形調諧性圖像)。
另,於執行傅立葉轉換時,可使用AR(Autoregressive Moving average model:自回歸活動平均模型)法以便能短時間計算。AR方法中,有於自回歸活動平均模型中使用尤爾沃克方程式(Yule-walker equiation)或卡爾曼濾波器之方法,因此,可使用導出之尤爾沃克推定值(Yule-walker estimates)、PARCOR法、最小平方法補充計算。藉此,可更快地取得接近即時之圖像,或進行計算之輔助或偽像(artifact)之修正。藉由此種傅立葉解析,可抽出各塊區域中之圖像性質並顯示。
又,於該傅立葉解析時,亦可採用使用「數位濾波器」之方法。即,對原始波形進行傅立葉轉換,取得各頻譜之參數,並使用對原始波實施運算處理之「數位濾波器」。於該情形時,不進行傅立葉逆解析,而使用數位濾波器。
此處,可將各訊框圖像中之各塊區域之圖像變化進行傅立葉轉換,擷取傅立葉轉換後獲得之頻譜中包含與呼吸要素之週期對應之頻譜之一定頻帶內的頻譜。圖2C係顯示擷取傅立葉轉換後獲得之頻譜中某一定頻帶之例的圖。合成波之頻譜之頻率f於成為合成源之各頻率f1(呼吸成分)、f2(血流成分)之間,「1/f=1/f1+1/f2」之關係成立,故於擷取頻譜時,可採 用以下方法。
(1)擷取血流之頻譜比例較高之部分
(2)於與呼吸/血流對應之頻譜之峰值與其附近之複數個合成波之峰值之中間進行劃分來擷取頻譜。
(3)於與呼吸/血流對應之頻譜之峰值與其附近之複數個合成波之頻譜低谷部分進行劃分來擷取頻譜。
如上所述,於本發明中,擷取包含與呼吸要素之週期對應之頻譜之一定頻帶內之頻譜而非使用固定之BPF。再者,於本案發明中,亦可擷取傅立葉轉換後獲得之頻譜中包含自訊框圖像獲得之呼吸要素以外之頻率(例如,仍為各部位之「密度」/「強度」、心跳或自血管搏動獲得之心跳要素)、或由操作者自外部輸入之頻率對應之頻譜(例如頻譜模型)的一定頻帶內之頻譜。
此處,若合成波之頻譜成分僅為2個成分(呼吸、血流),則為50%+50%,3個成分之情形時各分配1/3。因此,可根據呼吸成分之頻譜為百分之幾,血流成分之頻譜為百分之幾,及頻譜之成分及其高低某程度上計算合成波之頻譜。可於其比例(%)較高處擷取頻譜。即,計算血流成分/呼吸成分與合成波成分之比例,並計算擷取血流成分/呼吸成分之高頻譜值。另,於橫膈膜之鑑定等時,有自取得有呼吸或心臟血管之頻率之資料(data),僅擷取Hz(頻率)相對一定之部位,即擷取Hz之變化較少之區域所對應之頻譜或其重疊者之情形。又,於決定頻譜之頻帶之情形時,進行 橫膈膜之鑑定等時,亦有於Hz發生變化之範圍及其周圍區域決定頻譜之頻帶之情形。有時亦考慮波形之構成要素。
另,關於進行傅立葉逆轉換時之頻譜,可選擇以下情形:「僅自模型化之頻率及頻帶使用較高之部位(一個或複數個)進行擷取(模擬主義)」、及「基於實際之頻率或頻帶對應於頻譜值擷取頻率較高之部位或頻率較低之部位(現場主義)」。又,於心臟之頻率為A,肺之頻率為B之情形時,可藉由自頻帶整體減去A而獲得B。又,關於自傅立葉轉換取得之頻譜,亦可擷取頻率軸上之複數個部位而非僅一個部位。
根據以上,不僅限呼吸要素之週期或血管博動週期完全一致之情形,亦可擷取最好一起考慮之頻譜,而可有助於圖像診斷。另,已知「呼吸」或「心跳」包含於特定之頻帶。因此,呼吸之情形時,使用例如「0~0.5Hz(呼吸數0~30次/分)」之濾波器,循環器之情形時,使用例如「0.6~2.5Hz(心跳/脈搏數36~150次/分)」之濾波器,亦可預先於該濾波器特定出呼吸頻率或循環器之頻率。藉此,可顯示頻率調諧性圖像。其原因在於存在以下情形之故:取得心臟之「密度」變化時,拾取到呼吸(肺)之「密度」變化,或取得肺之「密度」變化時,拾取到心臟之「密度」變化。
[視覺化、數值化]
將如上所述解析之結果視覺化及數值化。於視覺化及數值化時,於本說明書中,定義「模型化之肺」。於以動態圖像顯示肺時,由於位置關 係活動,故不易進行相對判斷。因此,將位置關係之偏移在空間上統一化/平均化。例如,於應用扇形等圖形時,以使形狀完備之狀態顯示肺之形狀。且,使用重組之概念在時間上進行統一化。例如,可擷取「複數次呼吸中之20%之肺之狀況」,並將其定為「一次呼吸之20%之肺之狀況」。如此,將空間上、時間上統一化後之肺稱為「模型化之肺」。藉此,於比較不同之患者彼此,或比較一位患者之當前與過去時,容易進行相對判斷。
例如,作為標準吸收(standard uptake),有時根據計測到之肺野全域之「密度」/「強度」,將平均值設為1,而表示相對/對數值。又,由於僅採用血流之方向,故有向特定方向切出變化之情況。藉此,可僅取出有意義之方法之資料。使用肺野鑑定結果,追蹤解析範圍之變化進行偽著色化。即,沿著與相位匹配之特定形狀(最小、最大、平均、中央值),將個人(被攝體)之解析結果應用於相對區域。
又,使多個解析結果變形為可比較之特定形狀、相位。再者,於作成模型化之肺時,使用上述呼吸要素之週期解析結果,計算肺野內之相對位置關係。另,模型化之肺使用將複數個患者之胸廓線、「密度」、橫膈膜等綜合平均化後之線而作成。於作成模型化之肺時,於肺血流之情形時,可自肺門到肺端部放射狀地測量距離。又,於呼吸之情形時,必須根據胸廓或橫膈膜之活動予以修正。再者,可考慮與肺尖之距離而複合計算。
又,可於傅立葉逆轉換後,僅擷取並顯示振幅值相對較大之區塊。即,於對每個區塊進行傅立葉解析之情形時,於傅立葉逆轉換後,存在波 之振幅較大之區塊及波之振幅較小之區塊。因此,僅擷取振幅相對較大之區塊並視覺化亦有效。又,於傅立葉逆轉換後,可分別分開使用各數值之實部與虛部。例如,可僅由實部再構成圖像,或僅由虛部再構成圖像,或由實部與虛部之絕對值再構成圖像。
亦可對模型化之肺進行傅立葉解析。即,於對照數次呼吸之圖像、或傅立葉解析或掌握相對位置時,亦可使用模型化之肺。可藉由使用模型化之肺,將取得之複數個訊框應用於模型化之肺,於血管之情形時,可藉由應用於對應於心跳(例如,自肺門部獲得之心跳等)計算出之模型化之肺,而將進行傅立葉解析時之相對位置設為一定。於取得成為基準之呼吸狀態時,可藉由使用模型化之肺,而獲得穩定之計算結果。又,可藉由將肺模型化,而將空間之差異固定化,而易於觀察到肺之活動。
於圖像化中,相對評估之標識方法如下。即,相對地以黑白、彩色映射標記圖像。有時截除藉由差分獲得之「密度」/「強度」之數%左右之值,相對地顯示其上下餘量。或,由於存在所獲得之差分之前後數%左右之值為懸殊值之情形,故有時將其作為「偽像」去除,相對地顯示其餘之部分。除0~255灰階等方法外,亦有顯示為0~100%之值之情況。
另,亦可某種程度模糊地顯示像素,以模糊之狀態顯示整體。尤其,於肺血管之情形時,於高信號值之間混存有低信號值,但只要可僅粗略地掌握高信號值,即便整體較模糊亦無妨。例如,於血流之情形時,可抽出閾值以上之信號,於呼吸之情形時,則不抽出閾值以上之信號。具體 而言,於將下表中數字作為1像素而取得正中間數值之情形時,若取得正中間數值所佔之比例,並於1像素內平均化,則可於與相鄰之像素間平滑地顯示。於計算每個區塊之平均強度時亦可使用該方法。
Figure 108107931-A0305-02-0040-1
該方法不僅可用於肺野,亦可應用於檢測任意解析範圍之密度(density),並去除密度相對大幅變化之部位時。又,截除大幅超過預先設定之閾值之點。又,肋骨形態辨識,例如辨識突然出現之高/低信號線並去除。又,同樣地,有去除自相位突然出現之信號,例如將於重組之相位於15%~20%左右被認為是偽像之患者特徵等之與通常之波之變化不同的突然信號去除之情形。另,於最初取得基礎資料時,有(橫膈膜)≒(胸廓)≒(胸廓之活動)≒(肺活量計)≒(肺野)、場之(密度)≒(容積)等之計算時相位不同之情形,有將該相位應用於可實際辨識之形態(XP之輪廓)之情形。
若可作成模型化之肺,則如上所述,可將調諧性、一致率、不一致率數值化而提示(顯示頻率調諧性圖像或波長調諧性圖像)。藉此,可自正常狀態偏離顯示。根據本實施形態,可藉由執行傅立葉解析而可能發現新病灶、可實現與正常狀態之自我比較、手與腳之比較、或相反側之手及腳 之比較。再者,可根據調諧性之數值化掌握腳之活動方式、吞咽等可疑之處。又,可判斷生病狀態之人經過一定時間後是否有變化,或於有變化之情形時,比較變化之前後狀況。又,可藉由將肺野設為與末梢之距離一定而容易放射狀觀察之形態(圓形~類圓形),而易於評估內層~中層、外層等,又,亦可對應於「血管之末梢佔優勢」還是「中層佔優勢」而表現。
另,於視覺化時,可將傅立葉轉換後之圖像與傅立葉轉換前之圖像切換顯示,或將兩者並列顯示於一個畫面。
如圖2D所示,於將模型化之肺設為100時,可掌握該人體中存在多少百分比差異,並顯示變化率。另,不僅限肺全體,即便為肺之一部分亦可掌握差異。尤其,如上所示,可僅特定出橫膈膜之活動,同時固定橫膈膜以外之肺野之形狀,顯示橫膈膜之活動且顯示調諧一致率或變化率。再者,亦可固定肺野之全部而顯示調諧一致率或變化率。另,亦可藉由進行「變動(Variation)分類」而特定標準血流。即,可特定出呼吸要素之週期,計算血管之相對位置關係,並將被攝體之血流動態特定為標準血流。
又,可使用圖案匹配方法檢測肺。圖2E~圖2H係顯示肺野區域之圖案圖像之例之圖。如圖2E~圖2H所示,可將肺之形狀進行圖案分類,並擷取該等中最接近者。根據該方法,可特定出對象之圖像表示單肺還是雙肺。又,亦可特定出是右肺還是左肺。圖案數無限定,但設想為具有4~5個圖案。另,如此,亦有僅根據肺野之形態(形狀)識別右肺、左肺、雙肺之方法。再者,亦可採用辨識椎體/縱膈之粗帶狀之“透過性降低部 位”,並基於與該帶狀之透過性降低部位之位置關係、及與肺野之“透過性亢進部位”之位置關係,而辨識左右或雙肺的方法。又,如圖2H所示,亦可對橫膈膜之下側區域應用該方法。藉此,亦可辨識橫膈膜之下側部位、或心臟。
再者,由於空氣為透過性最高,且透過性高於肺野之部位,故期望亦考慮空氣而計算。即,可根據畫面上之空氣位置進行如下判斷。
於(畫面右上方之空氣區域)>(畫面左上方之空氣區域)之情形時,辨識為左肺。其係由於肩周處人體外之空氣區域在拍攝時變寬之故。
於(畫面左上方之空氣區域)>(畫面右上方之空氣區域)之情形時,辨識為右肺。其與上述同樣,係因肩周處人體外之空氣區域在拍攝時變寬之故。
接著,於(畫面右上方之空氣區域)≒(畫面左上方之空氣區域)之情形時,辨識為兩肺。此係由於空氣區域於左右為相同程度之故。
另,有腸管之空氣進入橫膈膜下之情況,此時有無法辨識之情形。因此,亦可自肺野之中心部至如縱膈側、心臟側、橫膈膜側等之最初辨識粗略肺野及其周圍之透過性降低部位,並於該線辨識肺野之深處。該方法亦可使用例如以下所揭示之技術。
「https://jp.mathworks.com/help/images/examples/block-processing-large-images_ja_JP.html」
藉此,可實現某患者與其他患者之比較或數值化。又,可實現正常 肺或正常血管與典型之異常肺功能或異常血管之比較或數值化。再者,作為某患者在不同時間之肺功能或肺血流之相對評估,可使用模型化之肺及標準血流。此種模型化之肺及標準血流可使用作為使各類型之典型患者、健康人之典型例集中並設為模型化之肺及標準血流,且形態上應用於某患者而評估時的指標。
[肺野之描繪]
一般而言,由於肺野包含透過性較低之肋骨,故僅以「密度」作為指標難以機械鑑定肺之輪廓。因此,於本說明書中,採用使用貝齊爾曲線及直線之組合暫時描繪肺野之輪廓,並以提高一致性之方式調整肺輪廓的方法。
例如,若以4條貝齊爾曲線與1條直線表現左肺之輪廓,則可藉由求出肺輪廓上之5個點與4個控制點而描繪肺輪廓。使點之位置偏移,描繪複數個肺輪廓,使用“輪廓內之「密度」之合計值最大”、“輪廓線內側與外側之數個像素之「密度」合計之差分最大”等條件評估一致性,藉此可精度較高地檢測肺輪廓。實際上,亦可根據相對容易檢測邊緣之肺之上部輪廓、或以後述方法檢測出之橫膈膜之位置鑑定數點之位置,而可抑制試行上述模擬之次數。亦可藉由傳統二值化之輪廓擷取來擷取外緣附近之點,並利用最小平方法等,調整貝齊爾曲線之控制點位置。
圖3A及圖3B係顯示使用貝齊爾曲線及直線之兩者描繪肺野輪廓之例的圖。圖3A係顯示肺之面積最大之情形(極大輪廓),圖3B係顯示肺之面 積最小之(極小輪廓)。於各圖中,「cp1~cp5」表示控制點,「p1~p5」表示貝齊爾曲線上或直線上之點。如此,若可掌握極大輪廓與極小輪廓,則可藉由計算而求出中途輪廓。例如,可顯示呼氣之10%、20%……之狀態。如此,根據本實施形態,可使用至少一條以上之貝齊爾曲線(Bezier curve),至少描繪肺野、血管或心臟。另,以上之方法不僅限定於肺,亦可作為「臟器之檢測」而應用於其他臟器。又,例如,可於特定之訊框中預先決定之解析範圍(腫瘤、腦之下丘腦、基底神經節、內涵體之邊界等)上,使用至少一條以上之貝齊爾曲線(Bezier curve),執行檢測其他訊框中與解析範圍對應之範圍的處理。
又,不僅限平面之圖像,亦可應用於立體之圖像(3D圖像)。可藉由定義曲線方程式,設定其控制點,而將由複數個曲面包圍之範圍設為解析對象。
[橫膈膜或與呼吸連動之動態部位之活動之檢測]
於連續拍攝到之圖像中,可檢測橫膈膜或與呼吸連動之動態部位之活動。於連續拍攝到之圖像中,若以任意之間隔選擇圖像,並計算圖像間之差分,則特別是對比度較大之區域差分擴大。可藉由將該差分適當地可視化而檢測有活動之區域。於可視化時,亦可以去除閾值之雜訊、或活用最小平方法之曲線擬合等強調差分之絕對值較大之區域之連續性。
肺野中,與橫膈膜或心臟相接之線之對比度較明顯,如圖4A所示,若於2張肺圖像中取差分,設定一定之閾值並將差分可視化,則如圖4B所 示,可將與橫膈膜或心臟相接之線可視化。
[橫膈膜之活動之推定]
於本方法中,於對象圖像間,於橫膈膜活動之情形時雖可檢測出橫膈膜位置,但難以檢測橫膈膜之活動較平緩之部位。即,於切換呼氣吸氣之時序、或停止呼吸之期間、開始拍攝後或結束拍攝前不易檢測到。於本方法中,使用任意之插補方法,推定橫膈膜之活動。
使用上述方法,如圖4B所示,將橫膈膜線可視化後,將縱1024px之圖像依每縱8px分割成128個長方形,並合計各長方形區域所含之信號值,如圖4C所示,形成柱狀圖表。期待由複數個峰值中以虛線之矩形顯示之最下方座標處之峰值來表示橫膈膜之位置。於通常之站立位XP圖像中,將橫膈膜顯示為曲線,但將該座標近似為橫膈膜之位置。
若以本方法對所有圖像檢測橫膈膜位置,則如圖5所示,檢測出「峰值位置」。藉由對該檢測出之值進行修正,推定橫膈膜之活動。首先,於差分大於一定值之情形時將其視作偏離值並排除(圖5中之細實線)。將偏離值排除後之資料分割為任意之群集,並對各群集進行4次曲線回歸,並將結果相連(圖5中之粗實線)。於本解析中雖進行回歸分析,但本發明並非限定於此,亦可使用樣條內插(spline Interpolation)等任意之插補方法。
[動態部位檢測之精細化]
有沿線之動態部位之對比度不一樣之情形。於該情形時,可藉由變更雜訊去除所用之閾值,進行複數次檢測處理,而更正確地檢測動態部位之形狀。例如,左肺中,橫膈膜線之對比度有隨著進入人體內部而減弱之傾向。於圖4B中,僅可檢測橫膈膜之右半部分。此時,可藉由改變用於雜訊去除之閾值之設定而檢測橫膈膜左半部分之剩餘部分。可藉由重複複數次該處理,而檢測橫膈膜全體之形狀。可根據本方法,針對形狀將線或面之變化率或變化量數值化而非僅於橫膈膜之位置數值化,可對新診斷發揮作用。
如此,可將檢測出之橫膈膜之位置或形狀用於診斷。即,於本案發明中,可將橫膈膜之座標圖表化,使用如上所述計算出之曲線(形勢)、或直線計算胸廓或橫膈膜之座標,又,將心跳或血管搏動、肺野之「密度」等作為與週期對應之位置、座標而圖表化。此種方法亦可應用於與呼吸連動之動態部位。
根據此種方法,不僅限吸氣、呼氣之Hz,於橫膈膜或與呼吸連動之動態部位之頻率(Hz)產生變化之情形時,可於與該變化對應之頻帶加以計測。且,於擷取BPF(band pass filter)之頻譜時,可作成以下情況組合而成之變動性BPF:於一定範圍內,根據呼吸之各狀態設置BPF之位置軸在呼吸之各「重組相位」活動,並產生最佳狀態。藉此,即便如呼吸遲緩、或停止(Hz=0),呼吸之節奏發生變動,亦可提供與此對應之圖像。
又,可基於呼吸要素佔整個呼氣或吸氣之比例,計算整個呼氣或吸 氣之頻率。另,於橫膈膜之檢測中,可實施複數次,並選擇信號或波形穩定者。藉由以上,可根據檢測出之橫膈膜之位置或形狀、或與呼吸連動之動態部位之位置或形狀,計算呼吸要素之至少一個頻率。若可掌握橫膈膜或動態部位之位置或形狀,則可掌握呼吸要素之頻率。根據該方法,即便切出波形之一部分,亦可追蹤隨後之波形。因此,即便呼吸要素之頻率在中途改變,亦可追蹤原本之呼吸要素。又,雖有心臟之跳動等突然改變之情況,但對於心血管亦可同樣地應用。接著,對本實施形態之各模組之動作進行說明。
[呼吸功能解析]
首先,對呼吸功能解析進行說明。圖6A係顯示本實施形態之呼吸功能解析之概要的流程圖。基本模組1自資料庫15擷取DICOM之圖像(步驟S1)。此處,至少取得一個呼吸週期所含之複數張訊框圖像。接著,於取得之各訊框圖像中,至少使用肺野內某一定區域之密度(密度/強度),特定出呼吸要素之週期(步驟S2)。另,關於特定出之呼吸週期或自該呼吸週期特定出之波形,可用於以下之各步驟。
呼吸要素之週期之特定可進而使用橫膈膜之活動、胸廓之活動。又,亦可使用於X線之透過性較高之部位測定出之如某一定容積、以「密度」/「強度」構成之範圍、肺量圖等之由其他測定方法獲得之資料。另,亦可預先特定出各臟器(此處為肺)具有之頻率,並擷取與該特定出之頻率對應之「密度」/「強度」。
接著,於圖6A中,自動檢測肺野(步驟S3)。由於肺輪廓連續變化,故只要可檢測最大形狀與最小形狀,則其間之形狀可藉由計算而內插。基於步驟S2中特定出之呼吸要素之週期,內插運算各訊框圖像,藉此特定出各訊框圖像中之肺輪廓。又,可進行如圖2E~圖2H所示之圖案匹配而檢測肺野。另,可對檢測出之肺野利用截除進行雜訊去除。接著,將檢測出之肺野分割成複數個塊區域(步驟S4)。接著,計算各訊框圖像中之各塊區域之變化(步驟S5)。此處,將各塊區域內之變化值平均化,並表現為1個資料。
另,可對各塊區域內之變化值利用截除進行雜訊去除。接著,對各塊區域之「密度」/「強度」值及其變化量,基於上述呼吸要素之週期,實施傅立葉解析或調諧一致率之解析(步驟S6)。
接著,對藉由傅立葉解析或調諧一致率之解析獲得之結果,進行雜訊去除(步驟S7)。此處,可進行如上所述之截除、或偽像(artifact)之去除。進行1次以上之上述步驟S5至步驟S7之動作,並判斷是否完成(步驟S8)。此處,關於顯示器中顯示之特徵量,因混存合成波或其他波而有一次頻譜擷取無法顯示純度較高之要素,例如呼吸要素或血流要素、其他要素之頻率調諧性圖像之情形。此時,有以顯示器顯示之特徵量為像素值,再複數次重新解析示器所顯示者之全部或一部分之情形。可藉由該作業進而取得要素例如與呼吸要素或血流要素之調諧性或一致性相關之純度較高的圖像。關於該操作,可由操作者一面視認顯示器之圖像,一面手動進行,亦可自動地進行自輸出結果擷取頻譜並重新計算其分佈比例。再者, 於計算後,亦可根據情況而進行使用雜訊截除處理、最小平方法之埋孔(內插)、周圍「密度」的修正。
於步驟S8中,未完成之情形時,移至步驟S5,於完成之情形時,將藉由傅立葉解析或調諧一致率解析獲得之結果作為擬彩色圖像顯示於顯示器(步驟S9)。另,亦可顯示黑白圖像。如此,有藉由重複複數次循環而提高資料之準確度之情形。藉此,可顯示期望之動畫。又,可藉由修正顯示於顯示器之圖像而獲得期望之動畫。
於本實施形態中,藉由計算算出期望之頻率或頻帶,但若作為實際之圖像觀察,則未必可顯示較佳之圖像。因此,亦有採用以下方法之情形。
(1)多次提示若干頻帶,供人選擇之方法
(2)多次提示若干頻帶,藉由AI技術以圖案辨識擷取較佳圖像之方法
(3)基於HISTGRAM之傾向、形態而選擇。即,結果信號中之「Histgram」中心部之值有提高之傾向,又,由於「histgram」之值對應於活動而變動,故亦可基於HISTGRAM之傾向、形態而選擇。
[肺血流解析]
接著,針對肺血流解析進行說明。圖7係顯示本實施形態之肺血流解析之概要的流程圖。基本模組1自資料庫15擷取DICOM之圖像(步驟T1)。此處,至少取得一個心跳週期內所含之複數張訊框圖像。接著,基於取得之各訊框圖像,特定出血管搏動週期(步驟T2)。另,關於特定出之血管搏 動週期或自該血管搏動週期特定出之波形,可用於以下之各步驟。血管搏動週期如上所述,使用例如心電圖或脈搏計等其他治療程式之計測結果、心臟/肺門/主要血管等任意部位之「密度」/「強度」變化而解析血管搏動。另,可預先特定出各臟器(此處為肺血流)具有之頻率,並擷取與該特定出之頻率對應之「密度」/「強度」。
接著,於圖7中,以上述之方法特定出呼吸要素之週期(步驟T3),並使用該呼吸要素之週期自動檢測肺野(步驟T4)。於自動檢測肺之輪廓時,有時會於每張訊框圖像發生差異,但基於步驟T3中特定出之呼吸要素之週期,內插運算各訊框圖像,藉此特定出各訊框圖像中之肺輪廓。又,可進行如圖2E~圖2H所示之圖案匹配而檢測肺野。另,可對檢測出之肺野利用截除進行雜訊去除。其次,將檢測出之肺野分割成複數個塊區域(步驟T5)。接著,計算各訊框圖像中之各塊區域之變化(步驟T6)。此處,將各塊區域內變化之值平均化,並表現為1個資料。另,可對各塊區域內變化之值利用截除進行雜訊去除。接著,對各塊區域之「密度」/「強度」之值及其變化量,基於上述血管搏動週期,實施傅立葉解析或調諧一致率之解析(步驟T7)。
接著,對藉由傅立葉解析或調諧一致率之解析獲得之結果,進行雜訊去除(步驟T8)。此處,可進行如上所述之截除、或偽像(artifact)之去除。進行1次以上之上述步驟T6至步驟T8之動作,並判斷是否完成(步驟T9)。此處,關於顯示器中顯示之特徵量,因混存合成波或其他波而有以一次頻譜擷取無法顯示純度較高之要素,例如呼吸要素或血流要素、其他 要素之頻率調諧性圖像之情形。此時,有以顯示器中顯示之特徵量作為像素值,再複數次重新解析顯示器所顯示者之全部或一部分之情形。可藉由該作業進而取得要素例如與呼吸要素或血流要素之調諧性或一致性相關之純度較高的圖像。關於該操作,可由操作者一面視認顯示器之圖像,一面手動進行,亦可自動地進行自輸出結果擷取頻譜並重新計算其分佈比例。再者,於計算後,可根據情況而進行使用雜訊截除處理、最小平方法之埋孔(內插)、周圍之「密度」的修正。
於步驟T9中,於未完成之情形時,移至步驟T6,於完成之情形時將藉由傅立葉解析或調諧一致率解析獲得之結果作為擬彩色圖像顯示於顯示器(步驟T10)。另,亦可顯示黑白圖像。如此,可提高資料之準確度。又,可藉由修正顯示於顯示器之圖像而獲得期望之動畫。
於本實施形態中,藉由計算算出期望之頻率或頻帶,但若作為實際之圖像觀察,則未必可顯示較佳之圖像。因此,亦有採用以下方法之情形。
(1)多次提示若干頻帶,供人選擇之方法
(2)多次提示若干頻帶,藉由AI技術以圖案辨識擷取較佳圖像之方法
(3)基於HISTGRAM之傾向、形態而選擇。即,結果信號中之「Histgram」中心部之值有提高之傾向,又,由於「histgram」之值對應於活動而變動,故可基於HISTGRAM之傾向、形態而選擇。
[其他之血流解析]
接著,針對其他之血流解析進行說明。本發明之一態樣如圖15所示,亦可應用於心臟、大動脈、肺血管、上肢動脈、頸部血管等之血流解析。再者,對於未圖示之腹部血管或末梢血管等,亦可同樣地進行血流解析。圖8係顯示本實施形態之其他血流解析之概要的流程圖。基本模組1自資料庫15擷取DICOM之圖像(步驟R1)。此處,至少取得一個心跳週期內所含之複數個訊框圖像。接著,基於取得之各訊框圖像,特定出血管搏動週期(步驟R2)。另,關於特定出之血管搏動週期或自該血管搏動週期特定出之波形,可用於以下之各步驟。血管搏動週期如上所述,使用例如心電圖或脈搏計等其他治療程式之計測結果、心臟/肺門/主要血管等之任意部位之「密度」/「強度」變化而解析血管搏動。另,可預先特定出各臟器(例如主要血管)具有之頻率,並擷取與該特定出之頻率對應之「密度」/「強度」。
接著,設定解析範圍(步驟R3),並將設定之解析範圍分割為複數個塊區域(步驟R4)。接著,將各塊區域內變化之值平均化,並表現為1個資料。另,可對各塊區域內變化之值利用截除進行雜訊去除。接著,對各塊區域之「密度」/「強度」值及其變化量,基於上述血管搏動週期,實施傅立葉解析或調諧一致率之解析(步驟R5)。
接著,針對藉由傅立葉解析或調諧一致率之解析獲得之結果,進行雜訊去除(步驟R6)。此處,可進行如上所述之截除、或偽像(artifact)之去除。進行1次以上之上述步驟R5至步驟R6之動作,並判斷是否完成(步驟R7)。此處,關於顯示器中顯示之特徵量,因混存合成波或其他波而有以 一次頻譜擷取無法顯示純度較高之要素,例如呼吸要素或血流要素、其他要素之頻率調諧性圖像之情形。此時,有以顯示器中顯示之特徵量作為像素值,再複數次重新解析顯示器所顯示者之全部或一部分之情形。可藉由該作業進而取得要素例如與呼吸要素或血流要素之調諧性或一致性相關之純度較高的圖像。關於該操作,可由操作者一面視認顯示器之圖像,一面手動進行,亦可自動地進行自輸出結果擷取頻譜並重新計算其分佈比例。再者,於計算後,可對應於情況,進行使用雜訊截除處理、最小平方法之埋孔(內插)、周圍之「密度」的修正。
於步驟R7中,未完成之情形時,移至步驟R5,於完成之情形時將藉由傅立葉解析或調諧一致率解析獲得之結果作為擬彩色圖像顯示於顯示器(步驟R8)。另,亦可顯示黑白圖像。如此,可提高資料之準確度。又,可藉由修正顯示於顯示器之圖像而獲得期望之動畫。
於本實施形態中,藉由計算算出期望之頻率或頻帶,但若作為實際之圖像觀察,則未必可顯示較佳之圖像。因此,亦有採用以下方法之情形。
(1)多次提示若干頻帶,供人選擇之方法
(2)多次提示若干頻帶,藉由AI技術以圖案辨識擷取較佳圖像之方法
(3)基於HISTGRAM之傾向、形態而選擇。即,結果信號中之「Histgram」中心部之值有提高之傾向,又,由於「histgram」之值對應於活動而變動,故可基於HISTGRAM之傾向、形態而選擇。
另,於3D解析之情形時,可藉由以其他裝置測定呼吸量、心搏出量、中樞血流量,而自相對值即傅立葉解析結果計算各塊區域之呼吸量、心搏出量、中樞之血流量。即,於呼吸功能解析之情形時,可自呼吸量推定肺換氣量,於肺血流解析之情形時,可自心(肺血管)搏出量推定肺血流量,於其他血流量解析之情形時,可推定自中樞側之血流量(比例)描繪出之分支血管中之推定血流量(比例)。
又,如上所述,若能對取得之所有資料庫(database)進行計算則可進行更高精度之判斷,但有即便執行電腦解析仍需時間之情形。因此,可僅抽出任意張數(例如特定之相位)進行計算。藉此,可縮短解析時間,再者,可切出呼吸開始時觀察到之不規則之部位。又,於顯示解析結果時,可顯示任意之範圍。例如,於藉由顯示「呼氣/吸氣」之轉換點至「吸氣/呼氣」之轉換點之範圍而重複播放時,可實現所謂之「不斷播放」,而可易於醫師診斷。
如以上所說明,根據本實施形態,可以X線動畫裝置評估人體之圖像。若可取得數位資料,則可以既有設施裝置大致良好地計算,故導入費用較低。例如,於使用平板探測器之X線動畫裝置中,可簡單地進行被攝體之檢查。又,關於肺血流,亦可進行肺血栓栓塞癥之篩檢。例如,於使用平板探測器之X線動畫裝置中,於進行CT前執行本實施形態之診斷支援程式,藉此,可排除無用之檢查。又,由於檢查較為簡便,故可早期發現緊急性較高之疾病,而可優先對應。另,於當前時點之攝影方法中,於CT、MRI等其他之治療程式中,仍存在若干問題,但只要可將解決此, 便能實現各區域之詳細診斷。
又,亦可應用於各種血管例如頸部血流狹小化之篩檢,又,可應用於大血管評估或篩檢。又,關於肺呼吸資料,作為肺之部分功能檢查有效,而可用作肺功能檢查。又,還可鑑定COPD(Chronic Obstructive Pulmonary Disease:慢性阻塞性肺病)、肺氣腫等疾病。再者,亦可應用於術前、術後之形狀掌握。再者,可對呼吸要素之週期及血流週期進行傅里業解析,並於腹部之X線圖像中去除呼吸之波形及血流之波形,藉此可觀察剩餘生物體運動之變異,例如腸管梗阻等。
另,於最初取得之圖像為某程度上高精細之情形時,由於像素數較多,故有時在計算時間上耗費時間。於該情形時,可將圖像減為一定像素數後予以計算。例如,將「4096×4096」像素實際上作為「1024×1024」後予以計算藉此抑制計算時間。
[其他]
另,於拍攝X線圖像時,可使用例如AR法(Autoregressive Moving average model)等預測算法。當可特定出呼吸要素之至少一頻率時,可以對應於該頻率調整X線之照射間隔之方式,控制X線攝影裝置。例如,於呼吸要素之頻率較小之情形(週期較長之情形)時,可減少X線攝影次數。藉此,可減少人體之被暴露量。另,於頻呼吸或頻脈等之呼吸要素或心血管要素之頻率較大之情形(週期較短之情形)時,可提高照射頻度進行最佳之圖像作成。
又,雖為DICOM資料之保存形式,但由於有若壓縮則圖像畫質降低之情形,故期望不壓縮地保存。又,可根據資料之壓縮形式改變計算方法。
S1~S9:步驟

Claims (37)

  1. 一種診斷支援系統,其特徵在於:其係解析人體之圖像且顯示解析結果者,且包含以下處理:取得複數張訊框圖像;自上述取得之複數張訊框圖像特定出特定之臟器之週期動作中之波之形態及頻率;使用濾波器而自上述取得之複數張訊框圖像檢測上述特定之臟器之週期動作,上述濾波器係擷取基於上述特定出之波之形態及頻率之上述特定之臟器之週期動作。
  2. 如請求項1之診斷支援系統,其中輸出表示上述檢測出之特定之臟器之週期動作之圖像,或輸出將上述檢測出之特定之臟器之週期動作之圖像除外之圖像。
  3. 如請求項1之診斷支援系統,其中上述濾波器係擷取對應於心臟之圖像之密度變化之頻率及波之形態、對應於肺之圖像之密度變化之頻率及波之形態、或對應於循環器之圖像之密度變化之頻率及波之形態之濾波器。
  4. 一種診斷支援系統,其特徵在於:其係解析人體之圖像且顯示解析結果者,且為了於複數張訊框圖像間追蹤臟器之任意區域之目的,包含以下處理: 取得複數張訊框圖像;自上述取得之複數張訊框圖像特定出特定之臟器之動作中之波之形態及頻率;基於上述特定出之波之形態及頻率,自上述取得之複數張訊框圖像檢測上述特定之臟器;及將上述檢測出之臟器之圖像分割成複數個塊區域,以於複數張訊框圖像間保持上述各塊區域之相對性位置關係之狀態,追蹤上述各塊區域。
  5. 一種診斷支援系統,其特徵在於:其係解析人體之圖像且顯示解析結果者,且包含以下處理:取得複數張訊框圖像;自上述取得之複數張訊框圖像特定出特定之臟器之動作中之波之形態及頻率;自上述取得之複數張訊框圖像檢測上述特定之臟器之圖像;基於上述特定出之波之形態及頻率,將上述各訊框圖像之變化進行傅立葉轉換;基於上述傅立葉轉換後獲得之頻譜中臟器特有之週期變化之頻譜構成比,選擇進行傅立葉逆轉換時之至少一個頻率及波之形態,或對特定之頻譜乘以係數而加權;擷取包含與上述選擇之頻率及波之形態對應之頻譜的一定頻帶內之頻譜;對自上述一定頻帶擷取出之頻譜進行傅立葉逆轉換。
  6. 一種診斷支援系統,其特徵在於:其係解析人體之圖像且顯示解析結果者,且包含以下處理:取得複數張訊框圖像;基於上述各訊框圖像之特定區域之像素,特定出包含呼氣或吸氣之全部或一部分之呼吸要素之至少一個頻率及波之形態;自上述取得之複數張訊框圖像檢測肺野;將上述檢測出之肺野之全部或一部份分割成複數個塊區域,計算上述各訊框圖像中之塊區域之圖像變化;基於上述特定出之波之形態及頻率,將上述各訊框圖像中之各塊區域之圖像變化進行傅立葉轉換;擷取上述傅立葉轉換後獲得之頻譜中包含與上述呼吸要素之至少一個頻率及波之形態對應之頻譜的一定頻帶內之頻譜,或對特定之頻譜乘以係數而加權;對自上述一定頻帶擷取出之頻譜進行傅立葉逆轉換。
  7. 如請求項6之診斷支援系統,其進而包含以下處理:使用濾波器擷取上述傅立葉轉換後獲得之頻譜中包含雜訊之頻率、且包含與自上述訊框圖像獲得之呼吸要素之頻率以外之頻率、或輸入之頻率或頻帶對應之頻譜的一定頻帶內之頻譜。
  8. 如請求項6或7之診斷支援系統,其進而包含以下處理:基於上述呼吸要素之頻率及波之形態、及上述各訊框圖像,產生上述訊框間之圖像。
  9. 一種診斷支援系統,其特徵在於:其係解析人體之圖像且顯示解析結果者,且包含以下處理:取得複數張訊框圖像;特定出自被攝體之心跳或血管搏動擷取之心血管搏動要素之至少一個頻率及波之形態;自上述取得之複數張訊框圖像檢測肺野;基於上述特定出之波之形態及頻率,將上述檢測出之肺野之全部或一部份分割成複數個塊區域,計算上述各訊框圖像中之塊區域之圖像變化;將上述各訊框圖像中之各塊區域之圖像變化進行傅立葉轉換;擷取上述傅立葉轉換後獲得之頻譜中包含與上述心血管搏動要素之至少一個頻率對應之頻譜的一定頻帶內之頻譜,或對特定之頻譜乘以係數而加權;對自上述一定頻帶擷取出之頻譜進行傅立葉逆轉換。
  10. 如請求項9之診斷支援系統,其進而包含以下處理:基於上述各訊框圖像之特定區域之像素,特定出包含呼氣或吸氣之全部或一部分之呼吸要素之至少一個頻率。
  11. 如請求項9或10之診斷支援系統,其進而包含以下處理:使用濾波器擷取上述傅立葉轉換後獲得之頻譜中包含雜訊之頻率、且包含與自上述訊框圖像獲得之心血管搏動要素之頻率以外之頻率、或輸入之頻率或頻帶對應之頻譜的一定頻帶內之頻譜。
  12. 如請求項9或10之診斷支援系統,其進而包含以下處理:基於上述特定出之心血管搏動要素之頻率及波之形態、及上述各訊框圖像而產生上述訊框間之圖像。
  13. 一種診斷支援系統,其特徵在於:其係解析人體之圖像且顯示解析結果者,且包含以下處理:取得複數張訊框圖像;特定出自被攝體之血管搏動擷取出之血管搏動要素之至少一個頻率及波之形態;將針對上述各訊框圖像設定之解析範圍分割成複數個塊區域,計算上述各訊框圖像中之各塊區域之圖像變化;基於上述特定出之波之形態及頻率,將上述各訊框圖像中之各塊區域之圖像變化進行傅立葉轉換;擷取上述傅立葉轉換後獲得之頻譜中包含與上述心血管搏動要素之至少一個頻率對應之頻譜的一定頻帶內之頻譜,或對特定之頻譜乘以係數而加權;對自上述一定頻帶擷取出之頻譜進行傅立葉逆轉換。
  14. 如請求項13之診斷支援系統,其進而包含以下處理:使用濾波器擷取上述傅立葉轉換後獲得之頻譜中包含雜訊之頻率、且包含與自上述訊框圖像獲得之血管搏動要素之頻率以外之頻率、或輸入之頻率或頻帶對應之頻譜的一定頻帶內之頻譜。
  15. 如請求項13或14之診斷支援系統,其進而包含以下處理:基於上述特定出之血管搏動要素之頻率及上述各訊框圖像而產生上述訊框間之圖像。
  16. 一種診斷支援系統,其特徵在於:其係解析人體之圖像且顯示解析結果者,且包含以下處理:取得複數張訊框圖像;自上述取得之複數張訊框圖像特定出特定之臟器之動作中之波之形態及頻率;基於上述特定出之波之形態及頻率,自上述取得之複數張訊框圖像檢測上述特定之臟器;計算上述各訊框圖像之一定區域之像素之變化率;使用一定區域之像素之變化率、及與呼吸連動之動態部位之變化率之比值即調諧率,僅擷取上述調諧率落在預先決定之一定範圍內之區域。
  17. 如請求項16之診斷支援系統,其進而包含以下處理:特定出自被攝體之心跳或血管搏動擷取之心血管搏動要素之至少一個頻率、或自血管搏動擷取出之血管搏動要素之至少一個頻率。
  18. 如請求項16或17之診斷支援系統,其中上述調諧率之對數值定為包含0之一定範圍。
  19. 如請求項1至7、9、10、13、14、16、17中任一項之診斷支援系統,其進而包含以下處理:對上述取得之所有訊框圖像使用貝齊爾曲線特定出解析範圍;及基於上述解析範圍內之強度(intensity)變化而檢測解析對象。
  20. 如請求項19之診斷支援系統,其進而包含計算上述檢測出之解析對象之邊緣之特徵的處理。
  21. 如請求項6、7、9、10中任一項之診斷支援系統,其中於上述檢測出之肺野內選定內部控制點,由通過上述肺野內之內部控制點之曲線或直線而分割上述肺野。
  22. 如請求項21之診斷支援系統,其中相對擴大上述檢測出之肺野之外延及其附近處之控制點之間隔,根據上述檢測出之肺野內之每個部位之膨脹率而相對減小上述內部控制點之間隔。
  23. 如請求項21之診斷支援系統,其中於上述檢測出之肺野中,根據相對於人體朝頭尾方向進入而相對地擴大控制點之間隔,或根據特定之向量方向而相對地擴大控制點之間隔。
  24. 如請求項1至7、9、10、13、14、16、17中任一項之診斷支援系統,其進而包含以下處理:使用至少一個以上之貝齊爾曲面(Bezier surface),至少描繪肺野、血管或心臟。
  25. 如請求項1至7、9、10、13、14、16、17中任一項之診斷支援系統,其中藉由對連續之各圖像計算強度(intensity)之差分而檢測橫膈膜,且顯示表示上述檢測出之橫膈膜或與呼吸連動之動態部位之位置或形狀的指標。
  26. 如請求項25之診斷支援系統,其中藉由使強度(intensity)之閾值變化,顯示未被橫膈膜以外之部位遮擋之橫膈膜,而內插運算橫膈膜之全體形狀。
  27. 如請求項25之診斷支援系統,其進而包含以下處理:自上述檢測出之橫膈膜之位置或形狀、或與呼吸連動之動態部位之位置或形狀,計算上述呼吸要素之至少一個頻率。
  28. 如請求項6、7、9中任一項之診斷支援系統,其中藉由使上述呼吸要素之至少一個頻率之相位變化,或使呼吸要素之波形平滑化,而修正呼吸要素。
  29. 如請求項1~7、9、10、13、14、16、17中任一項之診斷支援系統,其中特定出解析範圍內之任意部位之波形,擷取上述特定出之波形之頻率之構成要素,輸出與上述波形之頻率之構成要素對應的圖像。
  30. 如請求項1~7、9、10、13、14、16、17中任一項之診斷支援系統,其中檢測解析範圍之密度(density),去除密度相對大幅變化之部位。
  31. 如請求項5~7、9、10、13、14中任一項之診斷支援系統,其進而包含以下處理:自上述傅立葉轉換後獲得之頻譜,基於臟器特有之週期變化之頻譜構成比,選擇進行傅立葉逆轉換時之至少一個頻率。
  32. 如請求項6、7、9中任一項之診斷支援系統,其中根據上述呼吸要素之至少一個頻率調整X線之照射間隔,而控制X線攝影裝置。
  33. 如請求項5~7、9、10、13、14中任一項之診斷支援系統,其中於上述傅立葉逆轉換後,僅擷取並顯示振幅值相對較大之區塊。
  34. 如請求項6、7、9、10中任一項之診斷支援系統,其進而包含以下處理:鑑定上述肺野後,特定出橫膈膜或胸廓,計算橫膈膜或胸廓之變化量,自上述變化量計算變化率。
  35. 如請求項5~7、9、10、13、14中任一項之診斷支援系統,其進而包含對特定之頻譜乘以係數之處理,且基於乘以上述係數後之特定頻譜進行強調顯示。
  36. 如請求項6、7、9中任一項之診斷支援系統,其中基於上述各訊框圖像之特定區域之像素,特定出包含呼氣或吸氣之全部或一部分之呼吸要素的複數個頻率, 將與上述呼吸要素之複數個頻率各者對應之各圖像顯示於顯示器。
  37. 如請求項1~7、9、10、13、14、16、17中任一項之診斷支援系統,其中針對某一張以上之訊框圖像之特定範圍,選擇集簇於某一定值之圖像,且顯示於顯示器。
TW108107931A 2018-03-09 2019-03-08 診斷支援系統 TWI828661B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-043511 2018-03-09
JP2018043511 2018-03-09

Publications (2)

Publication Number Publication Date
TW201941219A TW201941219A (zh) 2019-10-16
TWI828661B true TWI828661B (zh) 2024-01-11

Family

ID=69023424

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108107931A TWI828661B (zh) 2018-03-09 2019-03-08 診斷支援系統

Country Status (2)

Country Link
EA (1) EA202091648A1 (zh)
TW (1) TWI828661B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11869208B2 (en) * 2020-03-16 2024-01-09 Taipei Veterans General Hospital Methods, apparatuses, and computer programs for processing pulmonary vein computed tomography images
CN115299915B (zh) * 2022-08-08 2024-06-18 杭州新瀚光电科技有限公司 一种基于红外热波成像的血管健康数据获取方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102949240A (zh) * 2011-08-26 2013-03-06 高欣 一种影像导航肺部介入手术系统
TW201639527A (zh) * 2015-05-14 2016-11-16 國立中央大學 睡眠呼吸中止阻塞位置之判斷方法及系統
CN106175766A (zh) * 2015-05-27 2016-12-07 三星电子株式会社 磁共振成像设备和方法
US20170258366A1 (en) * 2009-03-30 2017-09-14 Joe P. Tupin, JR. Apparatus and method for continuous noninvasive measurement of respiratory function and events

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170258366A1 (en) * 2009-03-30 2017-09-14 Joe P. Tupin, JR. Apparatus and method for continuous noninvasive measurement of respiratory function and events
CN102949240A (zh) * 2011-08-26 2013-03-06 高欣 一种影像导航肺部介入手术系统
TW201639527A (zh) * 2015-05-14 2016-11-16 國立中央大學 睡眠呼吸中止阻塞位置之判斷方法及系統
CN106175766A (zh) * 2015-05-27 2016-12-07 三星电子株式会社 磁共振成像设备和方法

Also Published As

Publication number Publication date
TW201941219A (zh) 2019-10-16
EA202091648A1 (ru) 2020-12-09

Similar Documents

Publication Publication Date Title
JP7310048B2 (ja) 診断支援プログラム
JP7555911B2 (ja) 肺気量ゲートx線撮像システム及び方法
US20210233243A1 (en) Diagnostic support program
US11189025B2 (en) Dynamic image analysis apparatus, dynamic image analysis method, and recording medium
WO2023063318A1 (ja) 診断支援プログラム
TWI828661B (zh) 診斷支援系統
US20220398720A1 (en) Diagnostic support program
JP2020171475A (ja) 動態画像解析装置、動態画像解析方法及びプログラム
WO2024214802A1 (ja) 診断支援プログラムおよび診断支援システム
EA040692B1 (ru) Программа поддержки диагностики
OA20419A (en) Diagnostic support program
CN118401177A (zh) 一种诊断支援程序