TWI828465B - Method of producing asymmetrical sprockets using pedal torque - Google Patents

Method of producing asymmetrical sprockets using pedal torque Download PDF

Info

Publication number
TWI828465B
TWI828465B TW111147263A TW111147263A TWI828465B TW I828465 B TWI828465 B TW I828465B TW 111147263 A TW111147263 A TW 111147263A TW 111147263 A TW111147263 A TW 111147263A TW I828465 B TWI828465 B TW I828465B
Authority
TW
Taiwan
Prior art keywords
crank
torque
sprocket
data
curve
Prior art date
Application number
TW111147263A
Other languages
Chinese (zh)
Inventor
張信良
安迪 黎
Original Assignee
國立虎尾科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立虎尾科技大學 filed Critical 國立虎尾科技大學
Priority to TW111147263A priority Critical patent/TWI828465B/en
Application granted granted Critical
Publication of TWI828465B publication Critical patent/TWI828465B/en

Links

Abstract

本發明依序透過準備步驟、曲柄扭矩量測步驟、左右曲柄數據合併成淨扭矩數據步驟、淨扭矩數據轉換極座標資訊步驟、該最佳化曲線產生步驟及該非對稱鏈輪產生步驟。而讓該使用者之左、右腳分別踩踏一左曲柄踏板組件及一右曲柄踏板組件,而傳動一前鏈輪轉動,踩踏過程透過一左、一右扭矩偵測組件分別測得左、右曲柄踏板組件之複數左、右曲柄扭矩數據,進而將左、右曲柄扭矩數據合併為複數淨扭矩數據,其呈曲線狀。再將該複數淨扭矩數據先後轉換為極座標資訊及最佳化曲線;接著於最佳化曲線上,產生複數齒部而形成非對稱鏈輪。本案兼具非對稱鏈輪具有較佳之效率,及可客製化非對稱鏈輪接受度高等優點。 The invention sequentially proceeds through preparation steps, crank torque measurement steps, merging left and right crank data into net torque data, converting net torque data into polar coordinate information, the optimization curve generation step and the asymmetric sprocket generation step. The user's left and right feet are allowed to step on a left crank pedal assembly and a right crank pedal assembly respectively, which drives a front sprocket to rotate. During the pedaling process, the left and right torques are respectively measured through a left and a right torque detection assembly. The left and right crank torque data of the crank pedal assembly are then combined into a complex net torque data, which is in the shape of a curve. The complex net torque data is then converted into polar coordinate information and an optimization curve; then, on the optimization curve, a plurality of teeth are generated to form an asymmetric sprocket. This case combines the advantages of asymmetric sprockets with better efficiency and the ability to customize asymmetric sprockets with high acceptance.

Description

以踏板扭矩產生非對稱鏈輪之方法 Method of producing asymmetrical sprockets using pedal torque

本發明係有關一種以踏板扭矩產生非對稱鏈輪之方法,尤指一種兼具非對稱鏈輪具有較佳之效率,及可客製化非對稱鏈輪接受度高之以踏板扭矩產生非對稱鏈輪之方法。 The present invention relates to a method for producing an asymmetric sprocket using pedal torque. In particular, it relates to a method for producing an asymmetric chain using pedal torque, which has better efficiency and can be customized with an asymmetric sprocket. The wheel method.

傳統之自行車鏈輪,最廣泛使用者為圓形鏈輪,其設計為:不論左腳或右腳踩踏時,所產生之曲柄(亦即踏板)扭矩一律相同。 The most widely used traditional bicycle sprocket is the round sprocket, which is designed to produce the same crank (ie, pedal) torque regardless of whether the left foot or the right foot is pedaling.

然而,很多高階使用者(例如自行車選手),追求時間快一點或效率高一點,其比賽成績就會有很大的差異。 However, for many advanced users (such as cyclists), if they pursue faster times or higher efficiency, their competition results will be very different.

在這些高階使用者中,有許多人是左腳的踩踏力與右腳的踩踏力不同。 Among these advanced users, many have different pedaling forces with their left foot and right foot.

基於前述考量,假設某使用者是左腳踩踏力較強,而傳統圓形之鏈輪並無法將較強之左腳踩踏力轉換為較大之力矩。 Based on the above considerations, it is assumed that a user has a strong left foot pedaling force, and the traditional round sprocket cannot convert the strong left foot pedaling force into a larger torque.

目前固然已有非圓形之鏈輪,然而,其設計上非常複雜,使得業者(或使用者)不願意採用,或採用之難度很高。 Although there are non-circular sprockets currently available, their designs are very complex, which makes manufacturers (or users) unwilling to adopt them, or it is very difficult to adopt them.

有鑑於此,必須研發出可解決上述習用缺點之技術。 In view of this, it is necessary to develop technology that can solve the above-mentioned conventional shortcomings.

本發明之目的,在於提供一種以踏板扭矩產生非對稱鏈輪之方法,其兼具非對稱鏈輪具有較佳之效率,及可客製化非對稱鏈輪接受度高等優點。特別是,本發明所欲解決之問題係在於傳統之圓形鏈輪並無法將使用者之較強之某一 腳的踩踏力轉換為較大之力矩,以及公知非圓形鏈輪設計上非常複雜,使得業者不願意採用,或採用之難度很高等問題。 The purpose of the present invention is to provide a method for generating an asymmetric sprocket using pedal torque, which has the advantages of better efficiency of the asymmetric sprocket and high acceptance of the customizable asymmetric sprocket. In particular, the problem to be solved by the present invention is that the traditional round sprocket cannot use a stronger one of the user. The pedaling force of the foot is converted into a larger torque, and the design of the known non-circular sprocket is very complicated, which makes the industry unwilling to adopt it, or it is very difficult to adopt it.

解決上述問題之技術手段係提供一種以踏板扭矩產生非對稱鏈輪之方法,其包括下列步驟:一、準備步驟;二、曲柄扭矩量測步驟;三、左右曲柄數據合併成淨扭矩數據步驟;四、淨扭矩數據轉換極座標資訊步驟;五、最佳化曲線產生步驟;及六、非對稱鏈輪產生步驟。 The technical means to solve the above problem is to provide a method of producing an asymmetric sprocket using pedal torque, which includes the following steps: 1. Preparation step; 2. Crank torque measurement step; 3. Merge left and right crank data into net torque data; 4. The step of converting the net torque data into polar coordinate information; 5. The step of generating the optimization curve; and 6. The step of generating the asymmetric sprocket.

本發明之上述目的與優點,不難從下述所選用實施例之詳細說明與附圖中,獲得深入瞭解。 The above objects and advantages of the present invention can be easily understood from the following detailed description of selected embodiments and the accompanying drawings.

茲以下列實施例並配合圖式詳細說明本發明於後: The present invention is described in detail below with the following examples and drawings:

10:健身機構 10:Fitness institution

11:車體 11:Car body

12:把手 12: handle

13:座椅 13: Seat

14:前鏈輪 14:Front sprocket

141:轉速偵測組件 141: Speed detection component

15:後鏈輪 15:Rear sprocket

16:鏈條 16:Chain

17A:左曲柄踏板組件 17A:Left crank pedal assembly

17B:右曲柄踏板組件 17B: Right crank pedal assembly

18A:左扭矩偵測組件 18A: Left torque detection component

18B:右扭矩偵測組件 18B: Right torque detection component

20:資料處理組件 20:Data processing components

90:使用者 90:User

91:左腳 91:Left foot

92:右腳 92:right foot

S1:準備步驟 S1: Preparatory steps

S2:曲柄扭矩量測步驟 S2: Crank torque measurement steps

S3:左右曲柄數據合併成淨扭矩數據步驟 S3: Step of merging left and right crank data into net torque data

S4:淨扭矩數據轉換極座標資訊步驟 S4: Steps for converting net torque data to polar coordinate information

S5:最佳化曲線產生步驟 S5: Optimization curve generation step

S6:非對稱鏈輪產生步驟 S6: Asymmetric sprocket generation steps

M:淨扭矩數據 M: Net torque data

M1:左曲柄扭矩數據 M1: Left crank torque data

M2:右曲柄扭矩數據 M2: Right crank torque data

P1:左曲柄高峰段 P1: Left crank peak section

P2:右曲柄高峰段 P2: Right crank peak section

P3:忽略段 P3: Ignore segment

P4:上連接曲線 P4: Upper connecting curve

P5:下連接曲線 P5: Lower connection curve

L:最佳化曲線 L: Optimization curve

Q:非對稱鏈輪 Q:Asymmetric sprocket

L11:第一例第一曲線 L11: The first example and the first curve

L12:第一例第二曲線 L12: The first example and the second curve

L21:第二例第一曲線 L21: The first curve of the second example

L22:第二例第二曲線 L22: Second example, second curve

L31:第三例第一曲線 L31: The first curve of the third example

L32:第三例第二曲線 L32: Third example second curve

A、B、C、D、E、F:點 A, B, C, D, E, F: points

f1(x)、f2(x)、f3(x)、f4(x)、f5(x)、f6(x)、f7(x)、f8(x)、f9(x)、f10(x):曲線 f 1 (x), f 2 (x), f 3 (x), f 4 (x), f 5 (x), f 6 (x), f 7 (x), f 8 (x), f 9 (x), f 10 (x): Curve

第1圖係本發明之流程圖。 Figure 1 is a flow chart of the present invention.

第2圖係本發明之健身機構與資料處理組件之對應關係之示意圖。 Figure 2 is a schematic diagram of the corresponding relationship between the fitness mechanism and the data processing component of the present invention.

第3圖係本發明之複數左、右曲柄扭矩數據之對應關係之曲線化之示意圖。 Figure 3 is a schematic diagram of a curved representation of the corresponding relationship between the plural left and right crank torque data of the present invention.

第4圖係第3圖之曲柄角與扭矩之對應關係之曲線化之示意圖。 Figure 4 is a schematic diagram of the corresponding relationship between crank angle and torque in Figure 3.

第5圖係第4圖之淨扭矩數據轉換成極座標資訊之示意圖。 Figure 5 is a schematic diagram of converting the net torque data in Figure 4 into polar coordinate information.

第6圖係第5圖之最佳曲線化之示意圖。 Figure 6 is a schematic diagram of the optimal curve of Figure 5.

第7圖係本發明之非對稱鏈輪之示意圖。 Figure 7 is a schematic diagram of the asymmetric sprocket of the present invention.

第8A係公知圓形鏈輪與本發明之非對稱鏈輪之下踏動力(W)之第一種比較應用例之曲線圖。 Figure 8A is a graph of the first comparative application example of the depressing force (W) of the known circular sprocket and the asymmetric sprocket of the present invention.

第8B係公知圓形鏈輪與本發明之非對稱鏈輪之下踏動力(W)之第二種比較應用例之曲線圖。 8B is a graph of the second comparative application example of the depressing force (W) of the known circular sprocket and the asymmetric sprocket of the present invention.

第8C係公知圓形鏈輪與本發明之非對稱鏈輪之下踏動力(W)之第三種比較應用例之曲線圖。 8C is a graph of the third comparative application example of the depressing force (W) of the known circular sprocket and the asymmetric sprocket of the present invention.

第9圖係本發明之曲線連接方式之示意圖。 Figure 9 is a schematic diagram of the curve connection method of the present invention.

參閱第1、第2、第3及第4圖,本發明係為一種以踏板扭矩產生非對稱鏈輪之方法,其包括下列步驟: Referring to Figures 1, 2, 3 and 4, the present invention is a method of generating an asymmetric sprocket using pedal torque, which includes the following steps:

一、準備步驟S1:預設一健身機構(例如:室內自行車健身機構)10及一資料處理組件20。該健身機構10係包括一車體11,及設於該車體11上之一把手12、一座椅13、一前鏈輪14、一後鏈輪15、一鏈條16、一左曲柄踏板組件17A、一右曲柄踏板組件17B、一左扭矩偵測組件18A及一右扭矩偵測組件18B。該把手12及該座椅13係用以騎乘該健身機構10者;該鏈條16係繞設於該前鏈輪14及該後鏈輪15,該左曲柄踏板組件17A及該右曲柄踏板組件17B係分別同軸且固定於該前鏈輪14之左右兩側,並互呈180度,而分別供一使用者90之一左腳91及一右腳92踩踏,以傳動該前鏈輪14轉動。 1. Preparation step S1: Preset a fitness mechanism (for example, indoor cycling fitness mechanism) 10 and a data processing component 20. The fitness mechanism 10 includes a car body 11, a handle 12 provided on the car body 11, a seat 13, a front sprocket 14, a rear sprocket 15, a chain 16, and a left crank pedal assembly 17A. , a right crank pedal assembly 17B, a left torque detection assembly 18A and a right torque detection assembly 18B. The handle 12 and the seat 13 are used for riding the fitness mechanism 10; the chain 16 is wound around the front sprocket 14 and the rear sprocket 15, the left crank pedal assembly 17A and the right crank pedal assembly 17B are coaxial and fixed to the left and right sides of the front sprocket 14 respectively, and are 180 degrees to each other, and are respectively used for stepping on the left foot 91 and the right foot 92 of a user 90 to drive the front sprocket 14 to rotate. .

二、曲柄扭矩量測步驟S2:該左扭矩偵測組件18A係固定於該左曲柄踏板組件17A,用以量測該左曲柄踏板組件17A被該左腳91踩踏後產生之複數左曲柄(也算是左踏板)扭矩數據M1,並傳送至該資料處理組件20,該複數左曲柄扭矩數據係包括該左曲柄踏板組件17A由0度至360度、每隔N度之數據(如第3 圖所示),其中,N係為正整數,且N以不大於10為宜。該右扭矩偵測組件18B係固定於該右曲柄踏板組件17B,用以量測該右曲柄踏板組件17B被該右腳92踩踏後產生之複數右曲柄(也算是右踏板)扭矩數據M2,並傳送至該資料處理組件20,該複數右曲柄扭矩數據係包括該右曲柄踏板組件17B由0度至360度、每隔N度之數據。其中,N係為正整數,且N以不大於10為宜。 2. Crank torque measurement step S2: The left torque detection component 18A is fixed to the left crank pedal component 17A for measuring the plurality of left crank (also (Calculated as the left pedal) torque data M1, and is transmitted to the data processing component 20. The plurality of left crank torque data includes the data of the left crank pedal component 17A from 0 degrees to 360 degrees, every N degrees (such as the third As shown in the figure), where N is a positive integer, and N is preferably not greater than 10. The right torque detection component 18B is fixed to the right crank pedal component 17B, and is used to measure the plurality of right crank (also regarded as right pedal) torque data M2 generated after the right crank pedal component 17B is stepped on by the right foot 92, and Sent to the data processing component 20, the plurality of right crank torque data includes data of the right crank pedal assembly 17B from 0 degrees to 360 degrees, every N degrees. Among them, N is a positive integer, and N is preferably not greater than 10.

三、左右曲柄數據合併成淨扭矩數據步驟S3:參閱第3及第4圖,該資料處理組件20將該複數左曲柄扭矩數據M1及該複數右曲柄扭矩數據M2合併為複數淨扭矩數據M,其呈曲線狀(如第4圖所示)。且,該複數左曲柄扭矩數據M1中之最大值所對應之角度,係被定義為左曲柄扭矩峰值角度。又,該複數右曲柄扭矩數據M2中之最大值所對應之角度,係被定義為右曲柄扭矩峰值角度。 3. Merging left and right crank data into net torque data Step S3: Referring to Figures 3 and 4, the data processing component 20 merges the plural left crank torque data M1 and the plural right crank torque data M2 into plural net torque data M, It is curved (as shown in Figure 4). Furthermore, the angle corresponding to the maximum value in the plural left crank torque data M1 is defined as the left crank torque peak angle. In addition, the angle corresponding to the maximum value in the plural right crank torque data M2 is defined as the right crank torque peak angle.

四、淨扭矩數據轉換極座標資訊步驟S4:參閱第5及第6圖,該資料處理組件20將前述步驟中之該複數淨扭矩數據M轉換為極座標資訊;該極座標資訊包括: 4. Step S4 of converting net torque data into polar coordinate information: Referring to Figures 5 and 6, the data processing component 20 converts the complex net torque data M in the aforementioned steps into polar coordinate information; the polar coordinate information includes:

一左曲柄高峰段P1,係包括該左曲柄扭矩峰值角度前後各一角度範圍內之部份。 A left crank peak section P1 includes the portion within an angular range before and after the left crank torque peak angle.

一右曲柄高峰段P2,係包括該右曲柄扭矩峰值角度前後各一角度範圍內之部份。 A right crank peak section P2 includes the portion within an angular range before and after the right crank torque peak angle.

二忽略段P3,係分別介於該左曲柄高峰段P1及該右曲柄高峰段P2之間。 The two neglected sections P3 are respectively between the left crank peak section P1 and the right crank peak section P2.

五、最佳化曲線產生步驟S5:參閱第6圖,將該二忽略段P3利用已知的曲線連接方式,分別於該左曲柄高峰段P1與該右曲柄高峰段P2之間,各產生一上連接曲線P4及一下連接曲線P5;進而以該左曲柄高峰段P1、該右曲柄高峰段P2、該上連接曲線P4及該下連接曲線P5連結成一最佳化曲線L。 5. Optimization curve generation step S5: Refer to Figure 6, use the known curve connection method to connect the two ignored segments P3, respectively, between the left crank peak segment P1 and the right crank peak segment P2. The upper connecting curve P4 and the lower connecting curve P5 are connected to form an optimization curve L by the left crank peak section P1, the right crank peak section P2, the upper connecting curve P4 and the lower connecting curve P5.

六、非對稱鏈輪產生步驟S6:該資料處理組件20於該最佳化曲線L上產生複數齒部而形成一非對稱鏈輪Q(如第7圖所示)。 6. Asymmetric sprocket generation step S6: The data processing component 20 generates a plurality of teeth on the optimization curve L to form an asymmetric sprocket Q (as shown in Figure 7).

實務上,該左扭矩偵測組件18A可為公知曲軸計。 In practice, the left torque detection component 18A can be a known crankshaft gauge.

該右扭矩偵測組件18B可為公知曲軸計。 The right torque detection component 18B may be a known crank gauge.

該左扭矩偵測組件18A及該右扭矩偵測組件18B可組成左右無線曲柄計系統(Crank-Meter V.1.0,Chief SI,Hsinchu,Taiwan)。 The left torque detection component 18A and the right torque detection component 18B can form a left and right wireless crank meter system (Crank-Meter V.1.0, Chief SI, Hsinchu, Taiwan).

進一步,該前鏈輪14可再包括一轉速偵測組件141,係用以偵測該前鏈輪14之轉速。 Furthermore, the front sprocket 14 may further include a rotation speed detection component 141 for detecting the rotation speed of the front sprocket 14 .

關於前述之步驟「五、最佳化曲線產生步驟S5」中所提及之已知的曲線連接方式,在此詳細說明如下:參閱第9圖,其中,左方有5個點(包含點A、點B、點C及另外兩個未命名的點),右方有另外5個點(包含點D、點E及另外三個未命名的點)。其中:點A及點E之間的曲線,被定義為f1(x);點A及點B之間的曲線,被定義為f2(x);依此類推,可定義出其他各兩點(包括未命名之點)間之曲線(分別為:f3(x)、f4(x)、f5(x)、f6(x)、f7(x)、f8(x)、f9(x)及f10(x))。 Regarding the known curve connection method mentioned in the aforementioned step "5. Optimization curve generation step S5", a detailed description is as follows: Refer to Figure 9, in which there are 5 points on the left (including point A , point B, point C and two other unnamed points), there are another 5 points on the right (including point D, point E and three other unnamed points). Among them: the curve between point A and point E is defined as f 1 (x); the curve between point A and point B is defined as f 2 (x); and so on, the other two Curves between points (including unnamed points) (respectively: f 3 (x), f 4 (x), f 5 (x), f 6 (x), f 7 (x), f 8 (x) , f 9 (x) and f 10 (x)).

進一步,即可利用該商用電腦軟體(例如:Wolfram Mathematica 11.3 software,中譯為沃爾夫勒姆數學應用軟體11.3版),將已知的兩個座標值(x,y)以及這兩點之斜率(slope)值輸入,即可透過此商用電腦軟體或同級之其他軟體計算出該曲線之方程式,亦即,曲線f1(x)至曲線f10(x)均可以上述之現有商用軟體(技術)產生。 Furthermore, you can use the commercial computer software (for example: Wolfram Mathematica 11.3 software, the Chinese translation is Wolfram Mathematics Application Software version 11.3) to combine the two known coordinate values (x, y) and the two points. By inputting the slope value, the equation of the curve can be calculated using this commercial computer software or other software of the same level. That is, the curve f 1 (x) to curve f 10 (x) can be calculated using the above-mentioned existing commercial software ( technology) is produced.

又,上述的曲線f1(x)及曲線f6(x),即分別對應本案之上連接曲線P4及下連接曲線P5。 In addition, the above-mentioned curve f 1 (x) and curve f 6 (x) respectively correspond to the upper connecting curve P4 and the lower connecting curve P5 in this case.

例如,f1(x)至f10(x)之曲線分別為:

Figure 111147263-A0305-02-0007-1
For example, the curves from f 1 (x) to f 10 (x) are:
Figure 111147263-A0305-02-0007-1

為了要簡單驗證是否可行,以f1(x)為例,若將X=0帶入後,即可計算出y值,及f1(x)=16.3410,相當於座標在(0,16.3410)處,即點F之標示處,驗算結果符合f1(x)的曲線。 In order to simply verify whether it is feasible, take f 1 (x) as an example. If X=0 is brought in, the y value can be calculated, and f 1 (x)=16.3410, which is equivalent to the coordinates at (0,16.3410) , that is, the marked point F, the verification result conforms to the curve of f 1 (x).

Figure 111147263-A0305-02-0008-2
Figure 111147263-A0305-02-0008-2

換言之,利用已知的曲線連接方式,即可產生本案之上連接曲線P4及下連接曲線P5。 In other words, using the known curve connection method, the upper connection curve P4 and the lower connection curve P5 in this case can be generated.

此外,參閱第9圖,點A至點C之部分等於本案之該左曲柄高峰段P1;而點D至點E之部分等於本案之該右曲柄高峰段P2。 In addition, referring to Figure 9, the part from point A to point C is equal to the peak section P1 of the left crank in this case; and the part from point D to point E is equal to the peak section P2 of the right crank in this case.

再者,於該最佳化曲線產生步驟S5中,該最佳化曲線L係可再予等比例放大/縮小直到獲得一整數化之齒數為止,而可使該非對稱鏈輪Q之該複數齒部中之該每一齒部,均為完整之齒部,進而完成該非對稱鏈輪Q之設計者。例如原本依該最佳化曲線L是對應到35.7齒,則可以略為等比例放大至36齒、37齒或其他齒數;或等比例縮小至35齒、34齒或其他齒數。 Furthermore, in the optimization curve generation step S5, the optimization curve L can be enlarged/reduced in equal proportions until an integer number of teeth is obtained, so that the plurality of teeth of the asymmetric sprocket Q can be Each tooth part in the part is a complete tooth part, thereby completing the design of the asymmetric sprocket Q. For example, L originally corresponds to 35.7 teeth according to the optimization curve, and can be slightly enlarged to 36 teeth, 37 teeth, or other tooth numbers in equal proportions; or reduced to 35 teeth, 34 teeth, or other tooth numbers in equal proportions.

另外要說明的部分是,相關領域者知悉,每個人在騎乘自行車的過程中,可能都有左、右腳踩踏不對稱的現象,而對於踩踏曲柄扭矩的顯著不對稱範圍為0.5%至17%。本案針對這個部分,依該準備步驟S1、該曲柄扭矩量測步驟 S2、該左右曲柄數據合併成淨扭矩數據步驟S3、該淨扭矩數據轉換極座標資訊步驟S4、該最佳化曲線產生步驟S5及該非對稱鏈輪產生步驟S6,而讓該使用者90之該左腳91及該右腳92分別透過該左曲柄踏板組件17A與該右曲柄踏板組件17B,踩踏而傳動該前鏈輪14至少轉動一圈(0度至360度),於踩踏過程中,透過該左扭矩偵測組件18A測得該左曲柄踏板組件17A被該左腳91踩踏後產生之複數左曲柄扭矩數據M1,並透過該右扭矩偵測組件18B測得該右曲柄踏板組件17B被該右腳92踩踏後產生之複數右曲柄扭矩數據M2,進而依序將該複數左曲柄扭矩數據M1及該複數右曲柄扭矩數據M2合併為複數淨扭矩數據M,其呈曲線狀(如第4圖所示)。再將該複數淨扭矩數據M先後轉換為極座標資訊及最佳化曲線L。接著即可由該資料處理組件20於該最佳化曲線L上,產生複數齒部而形成該非對稱鏈輪Q。 Another thing to note is that those in the relevant field know that everyone may have asymmetry in pedaling between the left and right feet when riding a bicycle, and the significant asymmetry in pedaling crank torque ranges from 0.5% to 17% %. For this part, this case follows the preparation step S1 and the crank torque measurement step. S2, the left and right crank data are merged into net torque data step S3, the net torque data is converted into polar coordinate information step S4, the optimization curve generation step S5 and the asymmetric sprocket generation step S6, so that the left side of the user 90 The foot 91 and the right foot 92 respectively step on the left crank pedal assembly 17A and the right crank pedal assembly 17B to drive the front sprocket 14 to rotate for at least one turn (0 to 360 degrees). During the pedaling process, the front sprocket 14 is rotated by the The left torque detection component 18A detects the plurality of left crank torque data M1 generated after the left crank pedal component 17A is stepped on by the left foot 91, and detects the right crank pedal component 17B being stepped on by the right foot 91 through the right torque detection component 18B. The plurality of right crank torque data M2 generated after the foot 92 is stepped on is then sequentially merged into the plurality of left crank torque data M1 and the plurality of right crank torque data M2 into a plurality of net torque data M, which is in the shape of a curve (as shown in Figure 4 Show). The complex net torque data M is then converted into polar coordinate information and optimization curve L. Then, the data processing component 20 can generate a plurality of teeth on the optimization curve L to form the asymmetric sprocket Q.

接著,以該左扭矩偵測組件18A及該右扭矩偵測組件18B,分別對該左曲柄踏板組件17A與該右曲柄踏板組件17B進行曲柄功率與曲柄角度之比較(包括公知圓形鏈輪與本案之非對稱鏈輪Q):參閱第8A圖,其顯示的一第一例第一曲線L11(本案之非對稱鏈輪)與一第一例第二曲線L12(公知圓形鏈輪)分別具有下列兩數據:[a1]第一例第一曲線L11:左曲柄扭矩峰值之下衝程功率為211.2±20.6;右曲柄扭矩峰值之下衝程功率則為223.4±22.5(本案所須功率較低,踩踏較省力);[a2]第一例第二曲線L12:左曲柄扭矩峰值之下衝程功率高達262.1±21.7;右曲柄扭矩峰值之下衝程功率亦高達246.2±17.8(公知圓形鏈輪所須功率較高,踩踏較費力)。 Then, the left torque detection component 18A and the right torque detection component 18B are used to compare the crank power and crank angle of the left crank pedal component 17A and the right crank pedal component 17B (including the known circular sprocket and the right crank pedal component 17B). Asymmetric sprocket Q) of the present case: Refer to Figure 8A, which shows a first example of the first curve L11 (the asymmetric sprocket of the present case) and a first example of a second curve L12 (a known circular sprocket) respectively. It has the following two data: [a1] The first curve L11 of the first example: the stroke power below the left crank torque peak is 211.2±20.6; the stroke power below the right crank torque peak is 223.4±22.5 (the power required in this case is lower, The pedaling is less laborious); [a2] The first example and the second curve L12: the stroke power of the left crank is as high as 262.1±21.7 under the peak torque of the left crank; the stroke power of the right crank is also as high as 246.2±17.8 under the peak of the torque of the right crank (required by the well-known circular sprocket) The power is higher and pedaling is more laborious).

參閱第8B圖,其顯示的一第二例第一曲線L21(本案之非對稱鏈輪)與一第二例第二曲線L22(公知圓形鏈輪)分別具有下列兩數據:[b1]第二例第一曲線L21:左曲柄扭矩峰值之下衝程功率為185.9±14.9;右曲柄扭矩峰值之下衝程功率則為183.2±16.7(同樣的,本案所須功率較低,踩踏較省力);[b2]第二例第二曲線L22:左曲柄扭矩峰值之下衝程功率高達246.1±16.8;而右曲柄扭矩峰值之下衝程功率亦高達229.0±16.5(公知圓形鏈輪所須功率仍較高,踩踏較費力)。 Referring to Figure 8B, the first curve L21 of the second example (the asymmetric sprocket in this case) and the second curve L22 of the second example (the known circular sprocket) respectively have the following two data: [b1] The first curve L21 of the second example: the stroke power below the left crank torque peak is 185.9±14.9; the stroke power below the right crank torque peak is 183.2±16.7 (Similarly, this case requires lower power and requires less effort when pedaling); [ b2] The second curve L22 of the second example: the stroke power under the peak torque of the left crank is as high as 246.1±16.8; and the stroke power under the peak torque of the right crank is also as high as 229.0±16.5 (it is known that the power required by the circular sprocket is still higher, It is more laborious to pedal).

參閱第8C圖,其顯示的一第三例第一曲線L31(本案之非對稱鏈輪)與一第三例第二曲線L32(公知圓形鏈輪)分別具有下列兩數據:[c1]第三例第一曲線L31:左曲柄扭矩峰值之下衝程功率僅為172.0±12.9;右曲柄扭矩峰值之下衝程功率亦僅為177.6±14.3(本案所須功率仍較低,踩踏較省力);[c2]第三例第二曲線L32:左曲柄扭矩峰值之下衝程功率仍高達207.8±11.9;右曲柄扭矩峰值之下衝程功率也高達199.0±11.9(公知圓形鏈輪所須功率仍較高,踩踏亦較費力)。 Referring to Figure 8C, the first curve L31 of the third example (the asymmetric sprocket in this case) and the second curve L32 of the third example (the known circular sprocket) respectively have the following two data: [c1] The first curve L31 of the three examples: the stroke power below the peak torque of the left crank is only 172.0±12.9; the stroke power below the peak torque of the right crank is only 177.6±14.3 (the power required in this case is still low, and pedaling is more labor-saving); [ c2] The second curve L32 of the third example: the stroke power is still as high as 207.8±11.9 below the peak torque of the left crank; the stroke power is as high as 199.0±11.9 below the peak torque of the right crank (it is known that the power required by the circular sprocket is still higher, It is also more laborious to pedal).

進一步,再以該轉速偵測組件141對該前鏈輪14(包括公知圓形鏈輪與本案之非對稱鏈輪Q)進行下踩動力(W)之比較(如下表一所示):

Figure 111147263-A0305-02-0011-4
Further, the rotation speed detection component 141 is used to compare the depressing power (W) of the front sprocket 14 (including the known circular sprocket and the asymmetric sprocket Q in this case) (as shown in Table 1 below):
Figure 111147263-A0305-02-0011-4

上(表一)顯示公知之圓形鏈輪與本案之非對稱鏈輪在不同速度下踩踏時的總平均下衝程功率比較。在相同的後輪轉速下,所有使用本案之非對稱鏈輪踩踏產生的下衝程功率都低於使用公知之圓形鏈輪(這些結果與前述第8A、第8B及第8C圖之峰值功率比較曲線結果一致)。在低速下,使用非對稱鏈輪產生的下衝程功率比使用公知之圓形鏈輪踏板低10.5%(預定速度-10%),即使在高速下,使用非對稱鏈輪產生的下衝程功率,亦比使用公知之圓形鏈輪踏板要低18.2%(預定速度+10%)。至於最小的下衝程功率結果,則是非對稱鏈輪產生的下衝程功率,比圓形鏈輪踏板要低23.3%(預定速度)。這些結果表明,使用非對稱鏈輪踩踏比公知圓形鏈輪更有效率。 The above (Table 1) shows the comparison of the total average downstroke power of the known round sprocket and the asymmetric sprocket of this case when pedaling at different speeds. At the same rear wheel speed, the downstroke power generated by pedaling using the asymmetric sprocket of this case is lower than that of the known circular sprocket (these results are compared with the peak power in Figures 8A, 8B and 8C mentioned above) The curve results are consistent). At low speeds, the downstroke power generated by using an asymmetric sprocket is 10.5% lower than that using a known circular sprocket pedal (predetermined speed - 10%). Even at high speeds, the downstroke power generated by using an asymmetric sprocket is, It is also 18.2% lower than using a well-known circular sprocket pedal (predetermined speed + 10%). As for the minimum downstroke power result, the downstroke power generated by the asymmetric sprocket is 23.3% lower (predetermined speed) than the circular sprocket pedal. These results show that pedaling with an asymmetrical sprocket is more efficient than the known round sprocket.

本案之優點及功效可以歸納為: The advantages and effects of this case can be summarized as follows:

[1]非對稱鏈輪具有較佳之效率。在高端之自行車選手中,任何比賽是差一點點就是輸贏的差別。特別是,當每踩踏一圈之效率差23.3%時,中距離比賽就可明顯感受到差異,而長距離比賽若相差23.3%之騎乘效率,則結果差異更明顯。故,非對稱鏈輪具有較佳之效率。 [1] Asymmetric sprockets have better efficiency. Among high-end cyclists, a small margin can mean the difference between winning and losing any race. In particular, when the efficiency difference per pedaling cycle is 23.3%, the difference can be clearly felt in mid-distance races, and if the riding efficiency difference is 23.3% in long-distance races, the difference in results is even more obvious. Therefore, asymmetric sprockets have better efficiency.

[2]可客製化非對稱鏈輪接受度高。由於每個人之左腳及右腳之踩踏力(下踏動力(W))可能不同,而本案確實量測每人之左、右腳之曲柄(踏板)扭矩,進而產生客製化之非對稱鏈輪,可使每個自行車使用者之騎乘效率發揮到最高。故,可客製化非對稱鏈輪接受度高。 [2] Customizable asymmetric sprockets have high acceptance. Since the pedaling force (pressing force (W)) of each person's left and right feet may be different, this case does measure the crank (pedal) torque of each person's left and right feet, thereby producing customized asymmetry. Sprockets enable every bicycle user to maximize their riding efficiency. Therefore, customizable asymmetric sprockets are highly acceptable.

以上僅是藉由較佳實施例詳細說明本發明,對於該實施例所做的任何簡單修改與變化,皆不脫離本發明之精神與範圍。 The above is only a detailed description of the present invention through preferred embodiments. Any simple modifications and changes made to the embodiments do not deviate from the spirit and scope of the present invention.

S1:準備步驟 S1: Preparatory steps

S2:曲柄扭矩量測步驟 S2: Crank torque measurement steps

S3:左右曲柄數據合併成淨扭矩數據步驟 S3: Step of merging left and right crank data into net torque data

S4:淨扭矩數據轉換極座標資訊步驟 S4: Steps for converting net torque data to polar coordinate information

S5:最佳化曲線產生步驟 S5: Optimization curve generation step

S6:非對稱鏈輪產生步驟 S6: Asymmetric sprocket generation steps

Claims (4)

一種以踏板扭矩產生非對稱鏈輪之方法,係包括下列步驟:一、準備步驟:預設一健身機構及一資料處理組件;該健身機構係包括一車體,及設於該車體上之一把手、一座椅、一前鏈輪、一後鏈輪、一鏈條、一左曲柄踏板組件、一右曲柄踏板組件、一左扭矩偵測組件及一右扭矩偵測組件,該把手及該座椅係用以騎乘該健身機構者;該鏈條係繞設於該前鏈輪及該後鏈輪,該左曲柄踏板組件及該右曲柄踏板組件係分別同軸且固定於該前鏈輪之左右兩側,並互呈180度,而分別供一使用者之一左腳及一右腳踩踏,以傳動該前鏈輪轉動;二、曲柄扭矩量測步驟:該左扭矩偵測組件係固定於該左曲柄踏板組件,用以量測該左曲柄踏板組件被該左腳踩踏後產生之複數左曲柄扭矩數據,並傳送至該資料處理組件,該複數左曲柄扭矩數據係包括該左曲柄踏板組件由0度至360度、每隔N度之數據,其中,N係為正整數;該右扭矩偵測組件係固定於該右曲柄踏板組件,用以量測該右曲柄踏板組件被該右腳踩踏後產生之複數右曲柄扭矩數據,並傳送至該資料處理組件,該複數右曲柄扭矩數據係包括該右曲柄踏板組件由0度至360度、每隔N度之數據;其中,N係為正整數;三、左右曲柄數據合併成淨扭矩數據步驟:該資料處理組件將該複數左曲柄扭矩數據及該複數右曲柄扭矩數據合併為複數淨扭矩數據,其呈曲線狀;且,該複數左曲柄扭矩數據中之最大值所對應之角度,係被定義為左曲柄扭矩峰值角度;又,該複數右曲柄扭矩數據中之最大值所對應之角度,係被定義為右曲柄扭矩峰值角度; 四、淨扭矩數據轉換極座標資訊步驟:該資料處理組件將前述步驟中之該複數淨扭矩數據轉換為極座標資訊;該極座標資訊包括:一左曲柄高峰段,係包括該左曲柄扭矩峰值角度前後各一角度範圍內之部份;一右曲柄高峰段,係包括該右曲柄扭矩峰值角度前後各一角度範圍內之部份;及二忽略段,係分別介於該左曲柄高峰段及該右曲柄高峰段之間;五、最佳化曲線產生步驟:將該二忽略段利用已知的曲線連接方式,分別於該左曲柄高峰段與該右曲柄高峰段之間,各產生一上連接曲線及一下連接曲線;進而以該左曲柄高峰段、該右曲柄高峰段、該上連接曲線及該下連接曲線連結成一最佳化曲線;及六、非對稱鏈輪產生步驟:該資料處理組件於該最佳化曲線上產生複數齒部而形成一非對稱鏈輪。 A method of using pedal torque to generate an asymmetric sprocket includes the following steps: 1. Preparation step: preset a fitness mechanism and a data processing component; the fitness mechanism includes a car body and a A handle, a seat, a front sprocket, a rear sprocket, a chain, a left crank pedal assembly, a right crank pedal assembly, a left torque detection assembly and a right torque detection assembly, the handle and the base The chair is used for riding the fitness mechanism; the chain is wound around the front sprocket and the rear sprocket, and the left crank pedal assembly and the right crank pedal assembly are coaxial and fixed to the left and right sides of the front sprocket respectively. Both sides are 180 degrees to each other, and are stepped on by one left foot and one right foot of a user respectively to drive the front sprocket to rotate; 2. Crank torque measurement steps: The left torque detection component is fixed on The left crank pedal assembly is used to measure a plurality of left crank torque data generated after the left crank pedal assembly is stepped on by the left foot and transmit it to the data processing component. The plurality of left crank torque data includes the left crank pedal assembly. Data from 0 degrees to 360 degrees, every N degrees, where N is a positive integer; the right torque detection component is fixed on the right crank pedal component to measure the force of the right crank pedal component by the right foot The plurality of right crank torque data generated after pedaling is transmitted to the data processing component. The plurality of right crank torque data includes the data of the right crank pedal assembly from 0 degrees to 360 degrees, every N degrees; where N is Positive integer; 3. Step of merging left and right crank data into net torque data: the data processing component merges the complex left crank torque data and the complex right crank torque data into complex net torque data, which is in the shape of a curve; and, the complex left crank torque data is The angle corresponding to the maximum value in the crank torque data is defined as the left crank torque peak angle; and the angle corresponding to the maximum value in the plural right crank torque data is defined as the right crank torque peak angle; 4. Step of converting net torque data into polar coordinate information: The data processing component converts the complex net torque data in the aforementioned steps into polar coordinate information; the polar coordinate information includes: a left crank peak section, which includes the left crank torque peak angle before and after. A portion within an angular range; a right crank peak section, which includes the portion within an angular range before and after the right crank torque peak angle; and two neglected sections, which are between the left crank peak section and the right crank respectively. between the peak segments; 5. Optimization curve generation step: use the known curve connection method for the two ignored segments to generate an upper connecting curve between the left crank peak segment and the right crank peak segment respectively. a lower connection curve; and then connect the left crank peak section, the right crank peak section, the upper connection curve and the lower connection curve to form an optimization curve; and 6. Asymmetric sprocket generation step: the data processing component in the A plurality of teeth are generated on the optimization curve to form an asymmetric sprocket. 如請求項1所述之以踏板扭矩產生非對稱鏈輪之方法,其中:該左扭矩偵測組件係為曲軸計;及該右扭矩偵測組件係為曲軸計。 The method of generating an asymmetric sprocket using pedal torque as described in claim 1, wherein: the left torque detection component is a crankshaft gauge; and the right torque detection component is a crankshaft gauge. 如請求項1所述之以踏板扭矩產生非對稱鏈輪之方法,其中,該前鏈輪係包括一轉速偵測組件,該轉速偵測組件係用以偵測該前鏈輪之轉速。 The method of generating an asymmetric sprocket using pedal torque as described in claim 1, wherein the front sprocket includes a rotational speed detection component, and the rotational speed detection component is used to detect the rotational speed of the front sprocket. 如請求項1所述之以踏板扭矩產生非對稱鏈輪之方法,其中,於該最佳化曲線產生步驟中,該最佳化曲線係可再予等比例放大/縮小直到獲得一整數化之齒數為止,而可使該非對稱鏈輪之該複數齒部中之該每一齒部,均為完整之齒部。 The method of generating an asymmetric sprocket using pedal torque as described in claim 1, wherein in the step of generating the optimization curve, the optimization curve can be enlarged/reduced in equal proportions until an integer value is obtained. Up to the number of teeth, each of the plurality of teeth of the asymmetric sprocket can be a complete tooth.
TW111147263A 2022-12-08 2022-12-08 Method of producing asymmetrical sprockets using pedal torque TWI828465B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111147263A TWI828465B (en) 2022-12-08 2022-12-08 Method of producing asymmetrical sprockets using pedal torque

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111147263A TWI828465B (en) 2022-12-08 2022-12-08 Method of producing asymmetrical sprockets using pedal torque

Publications (1)

Publication Number Publication Date
TWI828465B true TWI828465B (en) 2024-01-01

Family

ID=90459033

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111147263A TWI828465B (en) 2022-12-08 2022-12-08 Method of producing asymmetrical sprockets using pedal torque

Country Status (1)

Country Link
TW (1) TWI828465B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200632237A (en) * 2005-03-15 2006-09-16 Rotor Componentes Tecnologicos S L Improvement of ovoid chainrings for the optimising of conventional pedalling
TW201321732A (en) * 2011-11-18 2013-06-01 Univ Nat Formosa Torque detecting mechanism of stepping actuation apparatus
CN107082101A (en) * 2016-02-12 2017-08-22 移动自行车有限公司 Transmission mechanism of bicycle with non-circular sprocket wheel
TW202019764A (en) * 2018-11-15 2020-06-01 國立虎尾科技大學 Composite sprocket and bicycle having the same with partial ellipse and partial circle to improve the riding efficiency of the uneven force exerted on the two feet
TW202120380A (en) * 2019-11-28 2021-06-01 國立虎尾科技大學 Bicycle with composite chain wheel composed of four elliptical arcs capable of improving the riding efficiency even when two feet exert uneven forces

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200632237A (en) * 2005-03-15 2006-09-16 Rotor Componentes Tecnologicos S L Improvement of ovoid chainrings for the optimising of conventional pedalling
TW201321732A (en) * 2011-11-18 2013-06-01 Univ Nat Formosa Torque detecting mechanism of stepping actuation apparatus
CN107082101A (en) * 2016-02-12 2017-08-22 移动自行车有限公司 Transmission mechanism of bicycle with non-circular sprocket wheel
TW202019764A (en) * 2018-11-15 2020-06-01 國立虎尾科技大學 Composite sprocket and bicycle having the same with partial ellipse and partial circle to improve the riding efficiency of the uneven force exerted on the two feet
TW202120380A (en) * 2019-11-28 2021-06-01 國立虎尾科技大學 Bicycle with composite chain wheel composed of four elliptical arcs capable of improving the riding efficiency even when two feet exert uneven forces

Similar Documents

Publication Publication Date Title
TWI379959B (en) Improvement of ovoid chainrings for the optimising of conventional pedalling
Korff et al. Effect of pedaling technique on mechanical effectiveness and efficiency in cyclists
Stone et al. Rider/bicycle interaction loads during standing treadmill cycling
AU2007208055A1 (en) Real-time bicycle-mounted pedal stroke power analysis system
Bertucci et al. Gross efficiency and cycling economy are higher in the field as compared with on an Axiom stationary ergometer
Bertucci et al. Laboratory versus outdoor cycling conditions: differences in pedaling biomechanics
Bertucci et al. Differences between sprint tests under laboratory and actual cycling conditions
TWI828465B (en) Method of producing asymmetrical sprockets using pedal torque
Disley et al. Metabolic and kinematic effects of self-selected Q Factor during bike fit
Santalla et al. A new pedaling design: the rotor—effects on cycling performance
Menard et al. Influence of saddle setback on pedalling technique effectiveness in cycling
Emanuele et al. The relationship between freely chosen cadence and optimal cadence in cycling
Underwood Aerodynamics of track cycling
Mateo-March et al. Does a non-circular chainring improve performance in the bicycle motocross cycling start sprint?
TWI722688B (en) Bicycle with compound sprocket composed of four elliptical arcs
Buttelli et al. The relationship between maximal power and maximal torque-velocity using an electronic ergometer
US20180321096A1 (en) Evaluating pedaling efficiency
TWI805512B (en) Structure and design method of bicycle sprocket with four elliptical arcs
RU2372244C2 (en) Boat-racing-type bicycle
CN106956553A (en) Dynamic air pressure sensing system for bicycle
Morris et al. The effects of bicycle crank arm length on oxygen consumption
KR101246874B1 (en) Excercise apparatus and method for measuring left/right side excercise information of user body
Mornieux et al. Influence of pedalling effectiveness on the inter-individual variations of muscular efficiency in cycling
TW202026611A (en) Left and right foot pedaling analysis system reducing the risk of injury caused by excessively unbalanced and asymmetric pedaling
Lesmawanto et al. Generation method of asymmetric chainring design from pedaling torque experimental data