TWI826980B - Method for fabricating an liquid-crystal-aligning electrode and method for fabricating a liquid crystal cell using the same - Google Patents

Method for fabricating an liquid-crystal-aligning electrode and method for fabricating a liquid crystal cell using the same Download PDF

Info

Publication number
TWI826980B
TWI826980B TW111111452A TW111111452A TWI826980B TW I826980 B TWI826980 B TW I826980B TW 111111452 A TW111111452 A TW 111111452A TW 111111452 A TW111111452 A TW 111111452A TW I826980 B TWI826980 B TW I826980B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
conductive film
transparent conductive
manufacturing
laser pulse
Prior art date
Application number
TW111111452A
Other languages
Chinese (zh)
Other versions
TW202338462A (en
Inventor
羅志偉
鍾介文
林烜輝
薇娜
張景貴
陳奎佑
Original Assignee
國立陽明交通大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立陽明交通大學 filed Critical 國立陽明交通大學
Priority to TW111111452A priority Critical patent/TWI826980B/en
Publication of TW202338462A publication Critical patent/TW202338462A/en
Application granted granted Critical
Publication of TWI826980B publication Critical patent/TWI826980B/en

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

The present invention provides a method for fabricating a liquid-crystal-aligning electrode and a method for fabricating a liquid crystal cell using the same. Firstly, a femtosecond laser pulse is generated by a laser pulse generator, wherein the femtosecond laser pulse has a constant pulse width and constant pulse energy. Then, the femtosecond laser pulse is facilitated to hit a focusing lens. The focusing lens focuses the femtosecond laser pulse on the surface of a transparent conductive film to form periodically-distributed nano-strips on the surface of the transparent conductive film. Liquid crystal molecules align in parallel to the nano-strips, therefore the alignment layer is no longer required. The pulse energy on the strips is adequate to break a plurality of metal-oxygen bonds in the transparent conductive film, and then to form a plurality of metal-metal bonds and reduce the resistance of the electrode. The femtosecond laser pulse can reduce the cost and time for fabricating an alignment film without producing toxic wastewater, thereby complying with environmental regulations.

Description

液晶配向電極製作方法及其液晶盒製作方法Liquid crystal alignment electrode manufacturing method and liquid crystal cell manufacturing method

本發明係關於一種液晶元件製作方法,且特別關於一種液晶配向電極製作方法及其液晶盒製作方法。 The present invention relates to a method of manufacturing a liquid crystal element, and in particular to a method of manufacturing a liquid crystal alignment electrode and a method of manufacturing a liquid crystal cell thereof.

目前量產液晶元件都是用黃光蝕刻製程製作圖案化透明電極,接著塗布或壓印配向膜,最後進行絨布滾刷(rubbing)或光配向(photoalignment)製程,以形成配向膜。 Currently, mass-produced liquid crystal elements use a yellow light etching process to produce patterned transparent electrodes, then apply or emboss an alignment film, and finally perform a rubbing or photoalignment process to form an alignment film.

目前液晶元件之電極與配向膜的製程非常複雜且耗時,並需要製作光罩,在無塵室中進行微影蝕刻製程,其包含基板清洗、光阻塗布、曝光、顯影、蝕刻、去光阻與基板清洗製程。接著,塗布或壓印配向膜,先烘烤配向膜,再以絨布滾刷配向膜或對配向膜執行光配向製程,最後進行組裝與灌液晶製程。在滾刷製程中,是在透明導電薄膜上塗布一聚醯亞胺(polyimide,PI)膜,再以絨布滾刷聚醯亞胺膜之表面,以形成微小溝槽,使液晶分子沿著溝槽之排列方向配向。配向製程則需使用有極性之配向分子,配向分子之極化方向可以用極性紫外光調整,且紫外光可固化配向分子。因為液晶分子有極性,所以液晶分子會沿著配向分子之極化方向排列。傳統的黃光蝕刻與配向製程步驟繁 瑣,會產生有毒廢水,需要高單價之機台。 At present, the manufacturing process of electrodes and alignment films of liquid crystal elements is very complex and time-consuming, and requires the production of photomasks and the photolithography and etching process in a clean room, which includes substrate cleaning, photoresist coating, exposure, development, etching, and stripping. Resistor and substrate cleaning process. Then, the alignment film is coated or embossed, the alignment film is baked first, and then the alignment film is brushed with a flannel roller or a photo-alignment process is performed on the alignment film, and finally the assembly and liquid crystal filling processes are performed. In the rolling brushing process, a polyimide (PI) film is coated on a transparent conductive film, and then a flannel is used to roll and brush the surface of the polyimide film to form tiny grooves so that the liquid crystal molecules can move along the grooves. The arrangement direction of the slots. The alignment process requires the use of polar alignment molecules. The polarization direction of the alignment molecules can be adjusted with polar ultraviolet light, and the alignment molecules can be cured by ultraviolet light. Because liquid crystal molecules are polar, the liquid crystal molecules will be aligned along the polarization direction of the alignment molecules. The traditional yellow photo etching and alignment process has complicated steps. It is cumbersome, will produce toxic wastewater, and requires a high unit price machine.

因此,本發明係在針對上述的困擾,提出一種液晶配向電極製作方法及其液晶盒製作方法,以解決習知所產生的問題。 Therefore, the present invention aims to solve the above-mentioned problems by proposing a method for manufacturing a liquid crystal alignment electrode and a method for manufacturing a liquid crystal cell, so as to solve the problems caused by the conventional art.

本發明提供一種液晶配向電極製作方法及其液晶盒製作方法,其大幅降低液晶元件,例如液晶顯示器、光調變器或可變焦透鏡的建廠成本、製作成本與製作時間,且不會產生有毒廢水,符合環保規範。此外,配向層可以省略,使透明導電膜直接接觸液晶,以施加電場於液晶,進而降低液晶元件之厚度和阻抗,並製作出具超高解析度之低功耗顯示器。 The present invention provides a method for manufacturing a liquid crystal alignment electrode and a method for manufacturing a liquid crystal cell, which greatly reduces the construction cost, manufacturing cost and manufacturing time of liquid crystal elements, such as liquid crystal displays, light modulators or variable focus lenses, and does not produce toxic substances. Wastewater, in line with environmental protection regulations. In addition, the alignment layer can be omitted, allowing the transparent conductive film to directly contact the liquid crystal to apply an electric field to the liquid crystal, thereby reducing the thickness and impedance of the liquid crystal element, and producing a low-power display with ultra-high resolution.

為達上述目的,本發明提供一種液晶配向電極製作方法,其包含下列步驟:使用一雷射脈衝產生器產生一飛秒雷射脈衝,其中飛秒雷射脈衝具有一固定脈衝寬度與一固定脈衝能量;以及使飛秒雷射脈衝入射一聚焦透鏡,聚焦透鏡將飛秒雷射脈衝聚焦於一透明導電薄膜之表面,脈衝能量足以打斷複數個金屬原子-氧原子鍵結,並形成金屬原子-金屬原子鍵結,使導電薄膜的電阻值變小,且透明導電薄膜之表面形成週期性分佈之長條狀奈米結構,此長條狀奈米結構用以液晶配向。 To achieve the above object, the present invention provides a method for manufacturing a liquid crystal alignment electrode, which includes the following steps: using a laser pulse generator to generate a femtosecond laser pulse, wherein the femtosecond laser pulse has a fixed pulse width and a fixed pulse energy; and making the femtosecond laser pulse incident on a focusing lens, the focusing lens focuses the femtosecond laser pulse on the surface of a transparent conductive film, the pulse energy is enough to break the bonds between multiple metal atoms and oxygen atoms, and form metal atoms -The bonding of metal atoms reduces the resistance of the conductive film, and the surface of the transparent conductive film forms a periodically distributed strip-shaped nanostructure. This strip-shaped nanostructure is used for liquid crystal alignment.

本發明提供一種液晶盒製作方法,其包含下列步驟:形成一第一透明導電薄膜與一第二透明導電薄膜分別於一第一透明基板上與一第二透明基板上:用一雷射脈衝產生器產生一飛秒雷射脈衝,其中飛秒雷射脈衝具有一固定脈衝寬度與一固定脈衝能量;使飛秒雷射脈衝入射一聚焦透鏡,聚焦透鏡將飛秒雷射脈衝聚焦於第一透明導電薄膜與第二透明導電薄膜之表面,脈衝能量足以打斷複數個金屬原子-氧原子鍵結,並形成金屬原子-金屬原子鍵結,使第一透明導電薄膜與第二透明導電薄膜的電阻值變小,且於第一透明導電薄膜與第二透明導電薄膜之表面形成週期性分佈之長條狀奈米結構,此 長條狀奈米結構用以液晶配向;夾置複數個間隔物於第一透明基板與第二透明基板之間,其中第一透明導電薄膜與第二透明導電薄膜上的長條狀奈米結構彼此相對;形成液晶於第一導電薄膜與第二透明導電薄膜之間;以及形成一框膠於第一透明基板與第二透明基板之間,以環繞所有間隔物、第一透明導電薄膜、第二透明導電薄膜與液晶,進而形成一液晶盒。 The invention provides a method for manufacturing a liquid crystal cell, which includes the following steps: forming a first transparent conductive film and a second transparent conductive film on a first transparent substrate and a second transparent substrate respectively: using a laser pulse to generate The device generates a femtosecond laser pulse, wherein the femtosecond laser pulse has a fixed pulse width and a fixed pulse energy; the femtosecond laser pulse is incident on a focusing lens, and the focusing lens focuses the femtosecond laser pulse on the first transparent On the surfaces of the conductive film and the second transparent conductive film, the pulse energy is enough to break multiple metal atom-oxygen atom bonds and form metal atom-metal atom bonds, thereby increasing the resistance of the first transparent conductive film and the second transparent conductive film. The value becomes smaller, and periodically distributed strip-like nanostructures are formed on the surfaces of the first transparent conductive film and the second transparent conductive film. The strip-shaped nanostructure is used for liquid crystal alignment; a plurality of spacers are sandwiched between the first transparent substrate and the second transparent substrate, wherein the strip-shaped nanostructure on the first transparent conductive film and the second transparent conductive film Opposing each other; forming liquid crystal between the first conductive film and the second transparent conductive film; and forming a frame glue between the first transparent substrate and the second transparent substrate to surround all spacers, the first transparent conductive film, and the second transparent conductive film. Two transparent conductive films and liquid crystal form a liquid crystal cell.

在本發明之一實施例中,雷射脈衝產生器包含一雷射發射晶體與一放大器。 In one embodiment of the present invention, the laser pulse generator includes a laser emitting crystal and an amplifier.

在本發明之一實施例中,雷射發射晶體為摻鈦藍寶石(Ti:sapphire)。 In one embodiment of the present invention, the laser emitting crystal is titanium-doped sapphire (Ti: sapphire).

在本發明之一實施例中,固定脈衝寬度為200-1000飛秒。 In one embodiment of the invention, the fixed pulse width is 200-1000 femtoseconds.

在本發明之一實施例中,固定脈衝能量之密度為大於100毫焦/平方公分(mJ/cm2)。 In one embodiment of the present invention, the density of the fixed pulse energy is greater than 100 millijoules per square centimeter (mJ/cm 2 ).

在本發明之一實施例中,透明導電薄膜之表面每隔一固定距離具有一個長條狀奈米結構,長條狀奈米結構之相鄰兩者之間距為大於0,且小於固定距離的1/2。 In one embodiment of the present invention, the surface of the transparent conductive film has a strip-shaped nanostructure at a fixed distance, and the distance between two adjacent strip-shaped nanostructures is greater than 0 and less than the fixed distance. 1/2.

在本發明之一實施例中,第一透明導電薄膜或第二透明導電薄膜之表面每隔一固定距離具有一個長條狀奈米結構,長條狀奈米結構之相鄰兩者之間距為大於0,且小於固定距離的1/2。 In one embodiment of the present invention, the surface of the first transparent conductive film or the second transparent conductive film has a strip-shaped nanostructure at a fixed distance, and the distance between two adjacent strip-shaped nanostructures is Greater than 0 and less than 1/2 of the fixed distance.

在本發明之一實施例中,聚焦透鏡為半圓柱透鏡。 In one embodiment of the invention, the focusing lens is a semi-cylindrical lens.

在本發明之一實施例中,透明導電薄膜為氧化銦錫薄膜。 In one embodiment of the present invention, the transparent conductive film is an indium tin oxide film.

在本發明之一實施例中,金屬原子-氧原子鍵結包括銦-氧(In-O)鍵結與錫-氧(Sn-O)鍵結。 In one embodiment of the present invention, the metal atom-oxygen atom bonding includes indium-oxygen (In-O) bonding and tin-oxygen (Sn-O) bonding.

在本發明之一實施例中,金屬原子-金屬原子鍵結為銦-銦(In-In)鍵結。 In one embodiment of the present invention, the metal atom-metal atom bond is an indium-indium (In-In) bond.

基於上述,液晶配向電極製作方法及其液晶盒製作方法係利用聚焦透鏡將飛秒雷射脈衝聚焦於一透明導電薄膜之表面,以於透明導電薄膜之表面形成週期性分佈之長條狀奈米結構,此長條狀奈米結構用以液晶配向。此液晶配向電極製作方法及其液晶盒製作方法能大幅降低液晶元件,例如液晶顯示器、光調變器或可變焦透鏡的建廠成本、製作成本與製作時間,且不會產生有毒廢水,符合環保規範。此外,配向層可以省略,使透明導電膜直接接觸液晶,以施加電場於液晶,進而降低液晶元件之厚度與阻抗,並製作出具有低功耗與超高解析度之次微米畫素顯示器。 Based on the above, the liquid crystal alignment electrode manufacturing method and the liquid crystal cell manufacturing method use a focusing lens to focus femtosecond laser pulses on the surface of a transparent conductive film to form periodically distributed long strips of nanometers on the surface of the transparent conductive film. structure, this long strip nanostructure is used for liquid crystal alignment. This liquid crystal alignment electrode manufacturing method and its liquid crystal cell manufacturing method can significantly reduce the construction cost, production cost and production time of liquid crystal components, such as liquid crystal displays, light modulators or variable focus lenses, and will not produce toxic wastewater, which is environmentally friendly norm. In addition, the alignment layer can be omitted, allowing the transparent conductive film to directly contact the liquid crystal to apply an electric field to the liquid crystal, thereby reducing the thickness and impedance of the liquid crystal element, and creating a sub-micron pixel display with low power consumption and ultra-high resolution.

茲為使 貴審查委員對本發明的結構特徵及所達成的功效更有進一步的瞭解與認識,謹佐以較佳的實施例圖及配合詳細的說明,說明如後: In order to enable you, the review committee, to have a better understanding of the structural features and effects achieved by the present invention, we would like to provide you with a diagram of the preferred embodiment and a detailed description, as follows:

100:光學系統 100:Optical system

101:雷射脈衝產生器 101:Laser pulse generator

102:二分之一波片 102:Half wave plate

103:偏振分光鏡 103:Polarizing beam splitter

104:翻轉鏡座 104: Flip mirror base

105:分光鏡 105: Beam splitter

106:反射鏡 106:Reflector

107:反射鏡 107:Reflector

108:聚焦透鏡 108:Focusing lens

109:二倍頻晶體 109: Double frequency crystal

110:濾波片 110:Filter

111:功率計 111:Power meter

112:反射鏡 112:Reflector

113:反射鏡 113:Reflector

114:分色鏡 114:Dichroic mirror

115:偏振分光鏡 115:Polarizing beam splitter

116:發光二極體 116:Light emitting diode

117:電荷耦合元件 117: Charge coupled element

118:聚焦透鏡 118:Focusing lens

119:三維電動平台 119:Three-dimensional electric platform

120:功率計 120:Power meter

121:截光器 121:Light cutter

200:第一透明導電薄膜 200: The first transparent conductive film

300:第一透明基板 300: First transparent substrate

400:第二透明導電薄膜 400: Second transparent conductive film

500:第二透明基板 500: Second transparent substrate

600:間隔物 600: spacer

700:液晶 700:LCD

800:框膠 800: frame glue

S:長條狀奈米結構 S: Long strip nanostructure

第1圖為本發明之飛秒雷射脈衝之光學系統之一實施例之結構示意圖。 Figure 1 is a schematic structural diagram of an embodiment of an optical system for femtosecond laser pulses of the present invention.

第2圖為本發明之飛秒雷射脈衝之光學系統之另一實施例之結構示意圖。 Figure 2 is a schematic structural diagram of another embodiment of the optical system for femtosecond laser pulses of the present invention.

第3圖為本發明之第一透明基板及其上之第一透明導電薄膜之一實施例之結構俯視圖。 Figure 3 is a structural top view of an embodiment of the first transparent substrate and the first transparent conductive film on it according to the present invention.

第4(a)圖至第4(e)圖為本發明之液晶盒之製作方法之一實施例之各步驟結構剖視圖。 Figures 4(a) to 4(e) are structural cross-sectional views of each step of an embodiment of the manufacturing method of a liquid crystal cell of the present invention.

第5圖為本發明之未被極化之液晶盒之一實施例之示意圖。 Figure 5 is a schematic diagram of an embodiment of an unpolarized liquid crystal cell of the present invention.

第6圖為本發明之被極化之液晶盒之一實施例之示意圖。 Figure 6 is a schematic diagram of an embodiment of a polarized liquid crystal cell of the present invention.

第7圖為本發明之液晶盒在偏光顯微鏡下在不同偏振角度時的亮度變化圖。 Figure 7 is a graph showing changes in brightness of the liquid crystal cell of the present invention at different polarization angles under a polarizing microscope.

第8圖為本發明之液晶盒在不同偏振角度之亮度曲線圖。 Figure 8 is a graph showing the brightness curve of the liquid crystal cell of the present invention at different polarization angles.

第9圖為本發明之液晶配向電極在偏光顯微鏡下的照片圖。 Figure 9 is a photograph of the liquid crystal alignment electrode of the present invention under a polarizing microscope.

第10圖為本發明之液晶盒之穿透率相對電壓曲線圖。 Figure 10 is a graph of transmittance versus voltage of the liquid crystal cell of the present invention.

本發明之實施例將藉由下文配合相關圖式進一步加以解說。盡可能的,於圖式與說明書中,相同標號係代表相同或相似構件。於圖式中,基於簡化與方便標示,形狀與厚度可能經過誇大表示。可以理解的是,未特別顯示於圖式中或描述於說明書中之元件,為所屬技術領域中具有通常技術者所知之形態。本領域之通常技術者可依據本發明之內容而進行多種之改變與修改。 The embodiments of the present invention will be further explained below with reference to relevant drawings. Wherever possible, the same reference numbers are used in the drawings and description to refer to the same or similar components. In the drawings, shapes and thicknesses may be exaggerated for simplicity and ease of notation. It should be understood that components not specifically shown in the drawings or described in the specification are in forms known to those of ordinary skill in the art. Those skilled in the art can make various changes and modifications based on the contents of the present invention.

當一個元件被稱為『在...上』時,它可泛指該元件直接在其他元件上,也可以是有其他元件存在於兩者之中。相反地,當一個元件被稱為『直接在』另一元件,它是不能有其他元件存在於兩者之中間。如本文所用,詞彙『及/或』包含了列出的關聯項目中的一個或多個的任何組合。 When an element is referred to as being "on", it can generally mean that the element is directly on the other element, or that the other element exists between them. Conversely, when an element is said to be "directly on" another element, it cannot have other elements between them. As used herein, the term "and/or" includes any combination of one or more of the associated listed items.

於下文中關於“一個實施例”或“一實施例”之描述係指關於至少一實施例內所相關連之一特定元件、結構或特徵。因此,於下文中多處所出現之“一個實施例”或“一實施例”之多個描述並非針對同一實施例。再者,於一或多個實施例中之特定構件、結構與特徵可依照一適當方式而結合。 References below to "one embodiment" or "an embodiment" refer to a particular element, structure, or feature associated with at least one embodiment. Therefore, “one embodiment” or multiple descriptions of “an embodiment” appearing in multiple places below are not directed to the same embodiment. Furthermore, specific components, structures and features in one or more embodiments may be combined in an appropriate manner.

揭露特別以下述例子加以描述,這些例子僅係用以舉例說明而已,因為對於熟習此技藝者而言,在不脫離本揭示內容之精神和範圍內,當可作各種之更動與潤飾,因此本揭示內容之保護範圍當視後附之申請專利範圍所界定者為準。在通篇說明書與申請專利範圍中,除非內容清楚指定,否則「一」以及「該」的意義包含這一類敘述包括「一或至少一」該元件或成分。此外,如本揭露所用,除非從特定上下文明顯可見將複數個排除在外,否則單數冠詞亦包括複數個元件或成分的敘述。而且,應用在此描述中與下述之全部申請專利範圍中時,除非內容清楚指定,否則「在其中」的意思可包含「在其中」與 「在其上」。在通篇說明書與申請專利範圍所使用之用詞(terms),除有特別註明,通常具有每個用詞使用在此領域中、在此揭露之內容中與特殊內容中的平常意義。某些用以描述本揭露之用詞將於下或在此說明書的別處討論,以提供從業人員(practitioner)在有關本揭露之描述上額外的引導。在通篇說明書之任何地方之例子,包含在此所討論之任何用詞之例子的使用,僅係用以舉例說明,當然不限制本揭露或任何例示用詞之範圍與意義。同樣地,本揭露並不限於此說明書中所提出之各種實施例。 The disclosure is specifically described with the following examples. These examples are only for illustration, because for those who are familiar with this art, various modifications and modifications can be made without departing from the spirit and scope of the disclosure. Therefore, this disclosure The scope of protection of the disclosed content shall be determined by the scope of the patent application attached. Throughout the specification and claims, unless the content clearly dictates otherwise, the meaning of "a" and "the" includes such statements including "one or at least one" of the element or component. Furthermore, as used in this disclosure, the singular article also includes recitations of plural elements or ingredients unless it is obvious from the particular context that the plural is excluded. Furthermore, as applied to the entire scope of the claims in this description and below, unless the content clearly dictates otherwise, the meaning of "in" may include "in" and "in" "On it." Unless otherwise noted, the terms used throughout the specification and patent claims generally have their ordinary meanings as used in the field, in the disclosure and in the particular context. Certain terms used to describe the disclosure are discussed below or elsewhere in this specification to provide practitioners with additional guidance in describing the disclosure. The use of examples anywhere throughout this specification, including the use of examples of any terminology discussed herein, is for illustrative purposes only and does not, of course, limit the scope and meaning of the disclosure or any exemplified terminology. Likewise, the present disclosure is not limited to the various embodiments set forth in this specification.

可了解如在此所使用的用詞「包含(comprising)」、「包含(including)」、「具有(having)」、「含有(containing)」、「包含(involving)」等等,為開放性的(open-ended),即意指包含但不限於。另外,本發明的任一實施例或申請專利範圍不須達成本發明所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制發明作之申請專利範圍。 It should be understood that the terms "comprising", "including", "having", "containing", "involving", etc., as used herein, are open-ended (open-ended), meaning including but not limited to. In addition, any embodiment or patentable scope of the present invention does not necessarily achieve all the purposes, advantages or features disclosed in the present invention. In addition, the abstract part and title are only used to assist in searching for patent documents and are not used to limit the scope of the patent application for the invention.

除非特別說明,一些條件句或字詞,例如「可以(can)」、「可能(could)」、「也許(might)」,或「可(may)」,通常是試圖表達本案實施例具有,但是也可以解釋成可能不需要的特徵、元件,或步驟。在其他實施例中,這些特徵、元件,或步驟可能是不需要的。 Unless otherwise specified, some conditional sentences or words, such as "can", "could", "might", or "may", usually try to express that the embodiment of this case has, But it can also be interpreted as features, components, or steps that may not be needed. In other embodiments, these features, elements, or steps may not be required.

以下將描述一種液晶配向電極製作方法及其液晶盒製作方法,其利用聚焦透鏡將飛秒雷射脈衝聚焦於一透明導電薄膜之表面,以於透明導電薄膜之表面形成週期性分佈之長條狀奈米結構,此長條狀奈米結構用以液晶配向。此液晶配向電極製作方法及其液晶盒製作方法能大幅降低液晶元件,例如液晶顯示器、光調變器或可變焦透鏡的建廠成本、製作成本與製作時間,且不會產生有毒廢水,符合環保規範。此外,配向層可以省略,使透明導電膜直接接觸液晶,以施加電場於液晶,進而降低液晶元件之厚度與阻抗,並製作出具 有低功耗與超高解析度之次微米畫素顯示器。 The following will describe a method of manufacturing a liquid crystal alignment electrode and a method of manufacturing a liquid crystal cell, which uses a focusing lens to focus femtosecond laser pulses on the surface of a transparent conductive film to form periodically distributed strips on the surface of the transparent conductive film. Nanostructure, this long strip of nanostructure is used for liquid crystal alignment. This liquid crystal alignment electrode manufacturing method and its liquid crystal cell manufacturing method can significantly reduce the construction cost, production cost and production time of liquid crystal components, such as liquid crystal displays, light modulators or variable focus lenses, and will not produce toxic wastewater, which is environmentally friendly norm. In addition, the alignment layer can be omitted, allowing the transparent conductive film to directly contact the liquid crystal to apply an electric field to the liquid crystal, thereby reducing the thickness and impedance of the liquid crystal element, and producing a There are sub-micron pixel displays with low power consumption and ultra-high resolution.

第1圖為本發明之飛秒雷射脈衝之光學系統之一實施例之結構示意圖。請參閱第1圖,以下介紹液晶配向電極之製作方法。光學系統100包含一雷射脈衝產生器101、一二分之一波片102、一偏振分光鏡(polarizing beamsplitter)103、一翻轉鏡座(flip mount)104、一自相關儀(autocorrelator)與一加工系統,其中自相關儀包含一分光鏡105、一反射鏡106、一反射鏡107、一聚焦透鏡108、一二倍頻晶體109、一濾波片110、一功率計111。加工系統包含一反射鏡112、一反射鏡113、一分色鏡(dichroic mirror)114、一偏振分光鏡115、一發光二極體116、一電荷耦合元件(CCD)117、一聚焦透鏡118、一三維電動平台119與一功率計120。聚焦透鏡108與118可為,但不限於半圓柱透鏡。三維電動平台119上設有一第一透明導電薄膜200,其以氧化銦錫薄膜為例,但本發明不限於此。首先,使用雷射脈衝產生器101產生一飛秒(femtosecond)雷射脈衝,其中飛秒雷射脈衝具有一固定脈衝寬度與一固定脈衝能量。舉例來說,固定脈衝寬度可為200-1000飛秒,固定脈衝能量之密度可為大於100毫焦/平方公分(mJ/cm2),但本發明並不以此為限。在本發明之某些實施例中,雷射脈衝產生器101可包含一雷射發射晶體與一放大器,其中雷射發射晶體可為,但不限於摻鈦藍寶石(Ti:sapphire)。 Figure 1 is a schematic structural diagram of an embodiment of an optical system for femtosecond laser pulses of the present invention. Please refer to Figure 1 for the following introduction to the manufacturing method of liquid crystal alignment electrodes. The optical system 100 includes a laser pulse generator 101, a half wave plate 102, a polarizing beamsplitter 103, a flip mount 104, an autocorrelator and an Processing system, in which the autocorrelator includes a beam splitter 105, a reflecting mirror 106, a reflecting mirror 107, a focusing lens 108, a frequency doubling crystal 109, a filter 110, and a power meter 111. The processing system includes a reflecting mirror 112, a reflecting mirror 113, a dichroic mirror 114, a polarizing beam splitter 115, a light emitting diode 116, a charge coupled device (CCD) 117, a focusing lens 118, A three-dimensional electric platform 119 and a power meter 120. Focusing lenses 108 and 118 may be, but are not limited to, semi-cylindrical lenses. A first transparent conductive film 200 is provided on the three-dimensional electric platform 119. An indium tin oxide film is used as an example, but the invention is not limited thereto. First, the laser pulse generator 101 is used to generate a femtosecond laser pulse, where the femtosecond laser pulse has a fixed pulse width and a fixed pulse energy. For example, the fixed pulse width can be 200-1000 femtoseconds, and the fixed pulse energy density can be greater than 100 millijoules/square centimeter (mJ/cm 2 ), but the invention is not limited thereto. In some embodiments of the present invention, the laser pulse generator 101 may include a laser emitting crystal and an amplifier, wherein the laser emitting crystal may be, but is not limited to, titanium-doped sapphire (Ti: sapphire).

飛秒雷射脈衝依序經過二分之一波片102與偏振分光鏡103,二分之一波片102改變飛秒雷射脈衝之偏振狀態,偏振分光鏡103對飛秒雷射脈衝進行分光,以調節其功率。接著,翻轉鏡座104將飛秒雷射脈衝反射至分光鏡105,分光鏡105將飛秒雷射脈衝分為二道光束,並將其分別射向反射鏡106與107,反射鏡106與107再將光束反射至分光鏡105並結合形成一待測光束後,射向聚焦透鏡108。聚焦透鏡108將待測光束聚焦於二倍頻晶體109,以提升待測光束之頻率。接著,濾波片110通過具有特定波長之待測光束,並阻擋具有非特定波長之 待測光束後,藉由改變反射鏡106之位置來改變飛秒雷射脈衝之光程,使功率計111測得飛秒雷射脈衝之固定脈衝寬度,例如為577飛秒。 The femtosecond laser pulse passes through the half-wave plate 102 and the polarizing beam splitter 103 in sequence. The half-wave plate 102 changes the polarization state of the femtosecond laser pulse. The polarizing beam splitter 103 splits the femtosecond laser pulse. , to adjust its power. Then, the mirror holder 104 is flipped to reflect the femtosecond laser pulse to the beam splitter 105. The beam splitter 105 divides the femtosecond laser pulse into two beams and directs them to the reflecting mirrors 106 and 107 respectively. The reflecting mirrors 106 and 107 The light beams are then reflected to the beam splitter 105 and combined to form a light beam to be measured, and then directed to the focusing lens 108 . The focusing lens 108 focuses the light beam to be measured on the frequency doubling crystal 109 to increase the frequency of the light beam to be measured. Next, the filter 110 passes the light beam to be measured with a specific wavelength and blocks the light beam with a non-specific wavelength. After the beam is measured, the optical path of the femtosecond laser pulse is changed by changing the position of the reflector 106, so that the power meter 111 measures a fixed pulse width of the femtosecond laser pulse, for example, 577 femtoseconds.

在測得固定脈衝寬度後,再測飛秒雷射脈衝之固定脈衝能量之密度。第2圖為本發明之飛秒雷射脈衝之光學系統之另一實施例之結構示意圖。第3圖為本發明之第一透明基板及其上之第一透明導電薄膜之一實施例之結構俯視圖。請參閱第2圖與第3圖,並以截光器(chopper)121取代第1圖之翻轉鏡座104。當飛秒雷射脈衝穿透偏振分光鏡103後,會再穿透截光器121,並依序由反射鏡112、113反射至分色鏡114。因為飛秒雷射脈衝具有特定波長,例如800奈米,所以分色鏡114將具有特定波長之飛秒雷射脈衝入射至聚焦透鏡118。當第一透明導電薄膜200移離三維電動平台119時,飛秒雷射脈衝通過聚焦透鏡118,並射至功率計120,由功率計120測飛秒雷射脈衝之固定脈衝能量之密度,例如為316毫焦/平方公分。當第一透明基板300及其上之第一透明導電薄膜200移至三維電動平台119上時,聚焦透鏡118將飛秒雷射脈衝聚焦至第一透明導電薄膜200。當三維電動平台119移動第一透明導電薄膜200時,飛秒雷射脈衝移除部分之第一透明導電薄膜200,以形成具有任何形狀之電極,在此以梳狀電極為例。接著,三維電動平台119移動第一透明導電薄膜200至特定位置,聚焦透鏡118將飛秒雷射脈衝聚焦至第一透明導電薄膜200之表面,以於第一透明導電薄膜200之表面形成週期性分佈之長條狀奈米結構S,此長條狀奈米結構S用以液晶配向,第一透明導電薄膜200之表面每隔一固定距離具有一個長條狀奈米結構S。舉例來說,此固定距離即二個相鄰之長條狀奈米結構S之相同位置,例如中心點之間的距離。長條狀奈米結構S之相鄰兩者的長邊彼此平行,以達到配向之目的,且長條狀奈米結構S之相鄰兩者的長邊之間設有溝槽。舉例來說,長條狀奈米結構S之固定距離小於1微米,長條狀奈米結構S之相鄰兩者的長邊之間距小於固定距離的1/2,且大於0,溝槽之深度大於10 奈米,溝槽的長度與固定距離的比值不小於100。飛秒雷射脈衝之脈衝能量足以打斷複數個金屬原子-氧原子鍵結,並形成金屬原子-金屬原子鍵結,使第一透明導電薄膜200的電阻值變小。在一實施例中,金屬原子-氧原子鍵結可包括銦-氧(In-O)鍵結與錫-氧(Sn-O)鍵結,金屬原子-金屬原子鍵結可為銦-銦(In-In)鍵結。此液晶配向電極可以應用在液晶元件上,例如液晶顯示器、光調變器或可變焦透鏡。 After measuring the fixed pulse width, measure the fixed pulse energy density of the femtosecond laser pulse. Figure 2 is a schematic structural diagram of another embodiment of the optical system for femtosecond laser pulses of the present invention. Figure 3 is a structural top view of an embodiment of the first transparent substrate and the first transparent conductive film on it according to the present invention. Please refer to Figures 2 and 3, and replace the flip lens base 104 in Figure 1 with a chopper 121. After the femtosecond laser pulse penetrates the polarizing beam splitter 103, it will then pass through the beam cutter 121, and will be reflected to the dichroic mirror 114 by the reflecting mirrors 112 and 113 in sequence. Because the femtosecond laser pulse has a specific wavelength, such as 800 nanometers, the dichroic mirror 114 injects the femtosecond laser pulse with the specific wavelength into the focusing lens 118 . When the first transparent conductive film 200 moves away from the three-dimensional electric platform 119, the femtosecond laser pulse passes through the focusing lens 118 and is emitted to the power meter 120. The power meter 120 measures the fixed pulse energy density of the femtosecond laser pulse, for example is 316 mJ/cm2. When the first transparent substrate 300 and the first transparent conductive film 200 thereon are moved to the three-dimensional motorized platform 119, the focusing lens 118 focuses the femtosecond laser pulse onto the first transparent conductive film 200. When the three-dimensional motorized platform 119 moves the first transparent conductive film 200, the femtosecond laser pulse removes part of the first transparent conductive film 200 to form an electrode with any shape. Here, a comb-shaped electrode is taken as an example. Then, the three-dimensional electric platform 119 moves the first transparent conductive film 200 to a specific position, and the focusing lens 118 focuses the femtosecond laser pulse onto the surface of the first transparent conductive film 200 to form periodicity on the surface of the first transparent conductive film 200 Distributed strip-shaped nanostructures S are used for liquid crystal alignment. The surface of the first transparent conductive film 200 has a strip-shaped nanostructure S at regular intervals. For example, the fixed distance is the distance between two adjacent long strip nanostructures S at the same position, such as the center point. The long sides of two adjacent long strip-shaped nanostructures S are parallel to each other to achieve the purpose of alignment, and a groove is provided between the two adjacent long sides of the long strip-shaped nanostructure S. For example, the fixed distance of the strip-shaped nanostructure S is less than 1 micron, and the distance between the long sides of two adjacent strip-shaped nanostructures S is less than 1/2 of the fixed distance and greater than 0. The distance between the grooves Depth greater than 10 nanometers, the ratio of the trench length to the fixed distance is not less than 100. The pulse energy of the femtosecond laser pulse is enough to break multiple metal atom-oxygen atom bonds and form metal atom-metal atom bonds, so that the resistance value of the first transparent conductive film 200 becomes smaller. In one embodiment, the metal atom-oxygen atom bonding may include indium-oxygen (In-O) bonding and tin-oxygen (Sn-O) bonding, and the metal atom-metal atom bonding may be indium-indium ( In-In) bonding. The liquid crystal alignment electrode can be applied to liquid crystal components, such as liquid crystal displays, light modulators or variable focus lenses.

發光二極體116產生具有非特定波長之光束,此光束射向偏振分光鏡115。偏振分光鏡115將此光束之部分光束反射至分色鏡114。因為此光束具有非特定波長,所以此部分光束通過分色鏡114,並到達第一透明導電薄膜200上週期性分佈之長條狀奈米結構。週期性分佈之長條狀奈米結構反射此部分光束,使此部分光束依序通過分色鏡114與偏振分光鏡115,並到達電荷耦合元件117。因此,電荷耦合元件117能取得週期性分佈之長條狀奈米結構之影像,以供使用者觀察週期性分佈之長條狀奈米結構之形貌。 The light-emitting diode 116 generates a light beam with a non-specific wavelength, and the light beam is directed to the polarizing beam splitter 115 . The polarizing beam splitter 115 reflects part of this light beam to the dichroic mirror 114 . Because this light beam has a non-specific wavelength, this part of the light beam passes through the dichroic mirror 114 and reaches the periodically distributed strip-shaped nanostructures on the first transparent conductive film 200 . The periodically distributed elongated nanostructures reflect this part of the light beam, so that the part of the light beam passes through the dichroic mirror 114 and the polarizing beam splitter 115 in sequence, and reaches the charge coupling element 117 . Therefore, the charge-coupled element 117 can obtain images of the periodically distributed elongated nanostructures, allowing the user to observe the morphology of the periodically distributed elongated nanostructures.

此液晶配向電極製作方法僅需要一台雷射脈衝產生器101,並以此同時完成微影蝕刻製程與配向製程,故能大幅降低液晶元件之建廠成本、製作成本與製作時間,且不會產生有毒廢水,符合環保規範。雷射脈衝產生器101所產生的飛秒雷射脈衝具有高尖峰功率特性,故以此切割第一透明導電薄膜200,以重塑第一透明導電薄膜200之形狀。此外,飛秒雷射脈衝誘發的非線性效應可改變第一透明導電薄膜200的材料性質,使其表面具有週期性分佈之長條狀奈米結構,此週期性分佈之長條狀奈米結構可配向液晶,使第一透明導電薄膜200同時作為電極與配向層。換句話說,因為不需要額外形成聚醯亞胺(polyimide,PI)膜或具有極性之配向分子,所以長條狀奈米結構與第一透明導電薄膜200之間呈無結構設置,以降低液晶元件之厚度與阻抗,使第一透明導電薄膜200直接接觸液晶分子,並施加電場給液晶分子進行驅動。飛秒雷射脈衝配合 截光器121能形成長條狀奈米結構,且其相鄰兩者之間距為大於0,且小於固定距離的1/2,溝槽之深度大於100奈米。而目前之微影蝕刻製程只能製作超過1微米之線距。此液晶配向電極製作方法能製作小於1微米之線距,且不需要額外形成聚醯亞胺膜或具有極性之配向分子,故能製作出具有低功耗與超高解析度之次微米畫素顯示器。 This liquid crystal alignment electrode production method only requires one laser pulse generator 101, and uses it to complete the photolithography process and alignment process at the same time. Therefore, it can significantly reduce the construction cost, production cost and production time of the liquid crystal element, and will not Produces toxic wastewater and complies with environmental protection regulations. The femtosecond laser pulse generated by the laser pulse generator 101 has high peak power characteristics, so the first transparent conductive film 200 is cut with the femtosecond laser pulse to reshape the first transparent conductive film 200 . In addition, the nonlinear effect induced by the femtosecond laser pulse can change the material properties of the first transparent conductive film 200, so that the surface of the first transparent conductive film 200 has periodically distributed strip-like nanostructures. This periodically distributed strip-like nanostructure The liquid crystal can be aligned so that the first transparent conductive film 200 serves as both an electrode and an alignment layer. In other words, since there is no need to form an additional polyimide (PI) film or polar alignment molecules, there is no structure between the strip-shaped nanostructure and the first transparent conductive film 200 to reduce the liquid crystal The thickness and impedance of the element allow the first transparent conductive film 200 to directly contact the liquid crystal molecules and apply an electric field to drive the liquid crystal molecules. Femtosecond laser pulse coordination The light cutter 121 can form a long strip of nanostructure, and the distance between two adjacent ones is greater than 0 and less than 1/2 of the fixed distance, and the depth of the groove is greater than 100 nanometers. The current photolithography etching process can only produce line pitch exceeding 1 micron. This liquid crystal alignment electrode production method can produce line pitch less than 1 micron, and does not require the formation of additional polyimide films or polar alignment molecules, so it can produce sub-micron pixels with low power consumption and ultra-high resolution. monitor.

第4(a)圖至第4(e)圖為本發明之液晶盒之製作方法之一實施例之各步驟結構剖視圖。請參閱第4(a)圖至第4(e)圖,以下介紹液晶盒之製作方法。首先如第4(a)圖所示,形成一第一透明導電薄膜200與一第二透明導電薄膜400分別於一第一透明基板300上與一第二透明基板500上。如第4(b)圖與第2圖所示,使用雷射脈衝產生器101產生飛秒雷射脈衝,其中飛秒雷射脈衝具有一固定脈衝寬度與一固定脈衝能量。飛秒雷射脈衝入射聚焦透鏡118,聚焦透鏡118聚焦飛秒雷射於第一透明導電薄膜200。當三維電動平台119移動第一透明導電薄膜200時,飛秒雷射脈衝移除部分之第一透明導電薄膜200,以形成梳狀電極。接著,三維電動平台119移動第一透明導電薄膜200與第二透明導電薄膜400至特定位置,聚焦透鏡118將飛秒雷射脈衝聚焦至第一透明導電薄膜200與第二透明導電薄膜400之表面,以於第一透明導電薄膜200與第二透明導電薄膜400之表面形成週期性分佈之長條狀奈米結構,此長條狀奈米結構用以液晶配向。雷射脈衝的能量足以打斷複數個金屬原子-氧原子鍵結,並形成金屬原子-金屬原子鍵結,使第一透明導電薄膜200與第二透明導電薄膜400的電阻值變小。如第4(c)圖所示,夾置複數個間隔物600於第一透明基板300與第二透明基板500之間,其中第一透明導電薄膜200與第二透明導電薄膜400上的長條狀奈米結構彼此相對。如第4(d)圖所示,形成液晶700於第一透明導電薄膜200與第二透明導電薄膜400之間。如第4(e)圖所示,形成一框膠800於第一透明基板300與第二透明基板500之間,以環繞所有間隔物 600、第一透明導電薄膜200、第二透明導電薄膜400與液晶700,進而形成一液晶盒。然而,倘若可達到相同的結果,並不需要一定照第4(a)圖至第4(e)圖所示之流程中的步驟順序來進行,且第4(a)圖至第4(e)圖所示之步驟不一定要連續進行,亦即其他步驟亦可插入其中。 Figures 4(a) to 4(e) are structural cross-sectional views of each step of an embodiment of the manufacturing method of a liquid crystal cell of the present invention. Please refer to Figure 4(a) to Figure 4(e) for the following introduction to the manufacturing method of the LCD cell. First, as shown in Figure 4(a), a first transparent conductive film 200 and a second transparent conductive film 400 are formed on a first transparent substrate 300 and a second transparent substrate 500 respectively. As shown in Figure 4(b) and Figure 2, the laser pulse generator 101 is used to generate femtosecond laser pulses, where the femtosecond laser pulses have a fixed pulse width and a fixed pulse energy. The femtosecond laser pulse is incident on the focusing lens 118 , and the focusing lens 118 focuses the femtosecond laser on the first transparent conductive film 200 . When the three-dimensional motorized platform 119 moves the first transparent conductive film 200, the femtosecond laser pulse removes part of the first transparent conductive film 200 to form a comb-shaped electrode. Then, the three-dimensional motorized platform 119 moves the first transparent conductive film 200 and the second transparent conductive film 400 to a specific position, and the focusing lens 118 focuses the femtosecond laser pulse onto the surfaces of the first transparent conductive film 200 and the second transparent conductive film 400 , to form periodically distributed elongated nanostructures on the surfaces of the first transparent conductive film 200 and the second transparent conductive film 400, and the elongated nanostructures are used for liquid crystal alignment. The energy of the laser pulse is enough to break multiple metal atom-oxygen atom bonds and form metal atom-metal atom bonds, so that the resistance values of the first transparent conductive film 200 and the second transparent conductive film 400 become smaller. As shown in Figure 4(c), a plurality of spacers 600 are sandwiched between the first transparent substrate 300 and the second transparent substrate 500, in which the strips on the first transparent conductive film 200 and the second transparent conductive film 400 are -like nanostructures facing each other. As shown in Figure 4(d), liquid crystal 700 is formed between the first transparent conductive film 200 and the second transparent conductive film 400. As shown in Figure 4(e), a frame glue 800 is formed between the first transparent substrate 300 and the second transparent substrate 500 to surround all spacers. 600. The first transparent conductive film 200, the second transparent conductive film 400 and the liquid crystal 700 form a liquid crystal cell. However, if the same result can be achieved, it is not necessary to follow the sequence of steps in the process shown in Figures 4(a) to 4(e), and Figures 4(a) to 4(e) ) The steps shown in the figure do not have to be performed consecutively, that is, other steps can also be inserted.

第5圖為本發明之未被極化之液晶盒之一實施例之示意圖。第6圖為本發明之被極化之液晶盒之一實施例之示意圖。請參閱第5圖與第6圖,當交錯排列的梳狀電極被施加交流方波電壓時,會產生水平方向的電場,使液晶700旋轉,直到液晶700之長軸與電場之方向平行為止。 Figure 5 is a schematic diagram of an embodiment of an unpolarized liquid crystal cell of the present invention. Figure 6 is a schematic diagram of an embodiment of a polarized liquid crystal cell of the present invention. Please refer to Figures 5 and 6. When an AC square wave voltage is applied to the staggered comb-shaped electrodes, a horizontal electric field will be generated, causing the liquid crystal 700 to rotate until the long axis of the liquid crystal 700 is parallel to the direction of the electric field.

第7圖為本發明之液晶盒在偏光顯微鏡下在不同偏振角度時的亮度變化圖。第8圖為本發明之液晶盒在不同偏振角度之亮度曲線圖。在第7圖中,穿透光之亮度隨入射光之偏振角度而變化,入射光之偏振角度定義為液晶長軸與入射光之偏振方向之夾角,液晶的長軸會跟配向方向平行。在第8圖中,穿透液晶盒的光之亮度隨入射光之偏振角度變化,入射光之偏振角度定義為液晶長軸與入射光之偏振方向之夾角,液晶的長軸會跟配向方向平行。請參閱第7圖與第8圖,液晶盒夾在兩片偏光片之間,其中一偏光片作為起偏器(polarizer),另一偏光片作為檢偏器(analyzer)。起偏器與檢偏器之角度分別以P與A表示,其分別為0度與90度。θ是作為長條狀奈米結構所配向液晶之方向L與A之間的夾角。當θ為0度或90度時,光無法通過液晶盒,故液晶盒呈現暗態。當θ為45度時,光通過液晶盒,故液晶盒呈現亮態。因此,長條狀奈米結構可以有效配向液晶,使液晶平行於長條狀奈米結構之結構性方向。 Figure 7 is a graph showing changes in brightness of the liquid crystal cell of the present invention at different polarization angles under a polarizing microscope. Figure 8 is a graph showing the brightness curve of the liquid crystal cell of the present invention at different polarization angles. In Figure 7, the brightness of the transmitted light changes with the polarization angle of the incident light. The polarization angle of the incident light is defined as the angle between the long axis of the liquid crystal and the polarization direction of the incident light. The long axis of the liquid crystal will be parallel to the alignment direction. In Figure 8, the brightness of the light penetrating the liquid crystal cell changes with the polarization angle of the incident light. The polarization angle of the incident light is defined as the angle between the long axis of the liquid crystal and the polarization direction of the incident light. The long axis of the liquid crystal will be parallel to the alignment direction. . Please refer to Figures 7 and 8. The liquid crystal cell is sandwiched between two polarizers, one of which acts as a polarizer and the other acts as an analyzer. The angles of the polarizer and analyzer are represented by P and A respectively, which are 0 degrees and 90 degrees respectively. θ is the angle between the directions L and A of the liquid crystals aligned as long strip nanostructures. When θ is 0 degrees or 90 degrees, light cannot pass through the liquid crystal cell, so the liquid crystal cell appears dark. When θ is 45 degrees, light passes through the liquid crystal cell, so the liquid crystal cell appears bright. Therefore, the elongated nanostructure can effectively align the liquid crystal so that the liquid crystal is parallel to the structural direction of the elongated nanostructure.

第9圖為本發明之液晶配向電極在偏光顯微鏡下的照片圖。如第9圖所示,當液晶盒在水平配向操作模式(in-plane switching mode,IPS)中被施加電壓後,液晶從90度分別往45度與135度的方向偏轉,在大約4.5伏特(V)時亮度達到最大值。超過5伏特後,液晶偏轉超過對角線之方向,以降低亮度。 照片顯示暗態很暗,亮態很亮,且亮態與暗態皆均勻呈現。雖然長條狀奈米結構之間的溝槽呈現絲狀的亮紋或暗紋,但整體液晶可以因應電場的方向轉往期望中的方向。 Figure 9 is a photograph of the liquid crystal alignment electrode of the present invention under a polarizing microscope. As shown in Figure 9, when a voltage is applied to the liquid crystal cell in the horizontal alignment operation mode (in-plane switching mode, IPS), the liquid crystal deflects from 90 degrees to 45 degrees and 135 degrees respectively, at about 4.5 volts ( The brightness reaches its maximum value when V). After exceeding 5 volts, the liquid crystal deflects beyond the diagonal direction to reduce brightness. The photo shows that the dark state is very dark, the light state is very bright, and both the light state and the dark state are evenly presented. Although the grooves between the long nanostructures appear as filamentous bright or dark lines, the overall liquid crystal can shift to the desired direction in response to the direction of the electric field.

第10圖為本發明之液晶盒之穿透率相對電壓曲線圖。如第10圖所示,隨著施加在液晶盒上的電壓提高,液晶盒之穿透率逐漸升高。在超過4.5伏特時,穿透率開始下降。因此,以上結果證明此液晶盒可以正常運作。 Figure 10 is a graph of transmittance versus voltage of the liquid crystal cell of the present invention. As shown in Figure 10, as the voltage applied to the liquid crystal cell increases, the transmittance of the liquid crystal cell gradually increases. Above 4.5 volts, penetration begins to decrease. Therefore, the above results prove that this LCD box can operate normally.

根據上述實施例,液晶配向電極製作方法及其液晶盒製作方法利用聚焦透鏡將飛秒雷射脈衝聚焦於一透明導電薄膜之表面,以於透明導電薄膜之表面形成週期性分佈之長條狀奈米結構,此長條狀奈米結構用以液晶配向。液晶配向電極製作方法及其液晶盒製作方法能大幅降低液晶元件的建廠成本、製作成本與製作時間,且不會產生有毒廢水,符合環保規範。此外,配向層可以省略,使透明導電膜直接接觸液晶,以施加電場於液晶,進而降低液晶元件之厚度與阻抗,並製作出具有低功耗與超高解析度之次微米畫素顯示器。 According to the above embodiments, the liquid crystal alignment electrode manufacturing method and the liquid crystal cell manufacturing method use a focusing lens to focus femtosecond laser pulses on the surface of a transparent conductive film, so as to form periodically distributed long strips of nanoparticles on the surface of the transparent conductive film. Nanostructure, this long strip of nanostructure is used for liquid crystal alignment. The liquid crystal alignment electrode manufacturing method and the liquid crystal box manufacturing method can significantly reduce the factory construction cost, manufacturing cost and manufacturing time of the liquid crystal element, and will not produce toxic wastewater and comply with environmental protection regulations. In addition, the alignment layer can be omitted, allowing the transparent conductive film to directly contact the liquid crystal to apply an electric field to the liquid crystal, thereby reducing the thickness and impedance of the liquid crystal element, and creating a sub-micron pixel display with low power consumption and ultra-high resolution.

以上所述者,僅為本發明一較佳實施例而已,並非用來限定本發明實施之範圍,故舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。 The above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Therefore, all equal changes and modifications can be made in accordance with the shape, structure, characteristics and spirit described in the patent scope of the present invention. , should be included in the patent scope of the present invention.

100:光學系統 100:Optical system

101:雷射脈衝產生器 101:Laser pulse generator

102:二分之一波片 102:Half wave plate

103:偏振分光鏡 103:Polarizing beam splitter

105:分光鏡 105: Beam splitter

106:反射鏡 106:Reflector

107:反射鏡 107:Reflector

108:聚焦透鏡 108:Focusing lens

109:二倍頻晶體 109: Double frequency crystal

110:濾波片 110:Filter

111:功率計 111:Power meter

112:反射鏡 112:Reflector

113:反射鏡 113:Reflector

114:分色鏡 114:Dichroic mirror

115:偏振分光鏡 115:Polarizing beam splitter

116:發光二極體 116:Light emitting diode

117:電荷耦合元件 117: Charge coupled element

118:聚焦透鏡 118:Focusing lens

119:三維電動平台 119:Three-dimensional electric platform

120:功率計 120:Power meter

121:截光器 121:Light cutter

200:第一透明導電薄膜 200: The first transparent conductive film

Claims (20)

一種液晶配向電極製作方法,包含下列步驟: 使用一雷射脈衝產生器產生一飛秒雷射脈衝,其中該飛秒雷射脈衝具有一固定脈衝寬度與一固定脈衝能量;以及 使該飛秒雷射脈衝入射一聚焦透鏡,該聚焦透鏡將該飛秒雷射脈衝聚焦於一透明導電薄膜之表面,該固定脈衝能量足以打斷複數個金屬原子-氧原子鍵結,並形成金屬原子-金屬原子鍵結,使該透明導電薄膜的電阻值變小,且於該透明導電薄膜之表面形成週期性分佈之長條狀奈米結構,該長條狀奈米結構用以液晶配向。 A method for manufacturing a liquid crystal alignment electrode, including the following steps: Use a laser pulse generator to generate a femtosecond laser pulse, wherein the femtosecond laser pulse has a fixed pulse width and a fixed pulse energy; and The femtosecond laser pulse is incident on a focusing lens, which focuses the femtosecond laser pulse on the surface of a transparent conductive film. The fixed pulse energy is enough to break the bonds between multiple metal atoms and oxygen atoms, and form Metal atom-metal atom bonding reduces the resistance value of the transparent conductive film, and forms a periodically distributed strip-shaped nanostructure on the surface of the transparent conductive film. The strip-shaped nanostructure is used for liquid crystal alignment. . 如請求項1所述之液晶配向電極製作方法,其中該雷射脈衝產生器包含一雷射發射晶體與一放大器。The method for manufacturing a liquid crystal alignment electrode as claimed in claim 1, wherein the laser pulse generator includes a laser emitting crystal and an amplifier. 如請求項2所述之液晶配向電極製作方法,其中該雷射發射晶體為摻鈦藍寶石(Ti:sapphire)。The method for manufacturing a liquid crystal alignment electrode as described in claim 2, wherein the laser emitting crystal is titanium-doped sapphire (Ti: sapphire). 如請求項1所述之液晶配向電極製作方法,其中該固定脈衝寬度為200-1000飛秒。The method for manufacturing a liquid crystal alignment electrode as described in claim 1, wherein the fixed pulse width is 200-1000 femtoseconds. 如請求項1所述之液晶配向電極製作方法,其中該固定脈衝能量之密度為大於100毫焦/平方公分(mJ/cm 2)。 The method for manufacturing a liquid crystal alignment electrode as described in claim 1, wherein the density of the fixed pulse energy is greater than 100 millijoules/square centimeter (mJ/cm 2 ). 如請求項1所述之液晶配向電極製作方法,其中該透明導電薄膜之表面每隔一固定距離具有一該長條狀奈米結構,該長條狀奈米結構之相鄰兩者之間距為大於0,且小於該固定距離的1/2。The method for manufacturing a liquid crystal alignment electrode as described in claim 1, wherein the surface of the transparent conductive film has a strip-shaped nanostructure at a fixed distance, and the distance between two adjacent strip-shaped nanostructures is Greater than 0 and less than 1/2 of the fixed distance. 如請求項1所述之液晶配向電極製作方法,其中該聚焦透鏡為半圓柱透鏡。The method for manufacturing a liquid crystal alignment electrode as described in claim 1, wherein the focusing lens is a semi-cylindrical lens. 如請求項1所述之液晶配向電極製作方法,其中該透明導電薄膜為氧化銦錫薄膜。The method for manufacturing a liquid crystal alignment electrode as claimed in claim 1, wherein the transparent conductive film is an indium tin oxide film. 如請求項1所述之液晶配向電極製作方法,其中該複數個金屬原子-氧原子鍵結包括銦-氧(In-O)鍵結與錫-氧(Sn-O)鍵結。The method for manufacturing a liquid crystal alignment electrode as described in claim 1, wherein the plurality of metal atom-oxygen atom bonds include indium-oxygen (In-O) bonding and tin-oxygen (Sn-O) bonding. 如請求項1所述之液晶配向電極製作方法,其中該金屬原子-金屬原子鍵結為銦-銦(In-In)鍵結。The method for manufacturing a liquid crystal alignment electrode as described in claim 1, wherein the metal atom-metal atom bond is an indium-indium (In-In) bond. 一種液晶盒製作方法,包含下列步驟: 形成一第一透明導電薄膜與一第二透明導電薄膜分別於一第一透明基板上與一第二透明基板上: 使用一雷射脈衝產生器產生一飛秒雷射脈衝,其中該飛秒雷射脈衝具有一固定脈衝寬度與一固定脈衝能量; 使該飛秒雷射脈衝入射一聚焦透鏡,該聚焦透鏡將該飛秒雷射脈衝聚焦於該第一透明導電薄膜與該第二透明導電薄膜之表面,該固定脈衝能量足以打斷複數個金屬原子-氧原子鍵結,並形成金屬原子-金屬原子鍵結,使該第一透明導電薄膜與該第二透明導電薄膜的電阻值變小,且於該第一透明導電薄膜與該第二透明導電薄膜之表面形成週期性分佈之長條狀奈米結構,該長條狀奈米結構用以液晶配向; 夾置複數個間隔物於該第一透明基板與該第二透明基板之間,其中第一透明導電薄膜上的該長條狀奈米結構與該第二透明導電薄膜上的該長條狀奈米結構彼此相對; 形成液晶於該第一透明導電薄膜和該第二透明導電薄膜之間;以及 形成一框膠於該第一透明基板與該第二透明基板之間,以環繞該些間隔物、該第一透明導電薄膜、該第二透明導電薄膜與該液晶,進而形成一液晶盒。 A method for manufacturing a liquid crystal box, including the following steps: Forming a first transparent conductive film and a second transparent conductive film on a first transparent substrate and a second transparent substrate respectively: Use a laser pulse generator to generate a femtosecond laser pulse, wherein the femtosecond laser pulse has a fixed pulse width and a fixed pulse energy; The femtosecond laser pulse is incident on a focusing lens, and the focusing lens focuses the femtosecond laser pulse on the surfaces of the first transparent conductive film and the second transparent conductive film. The fixed pulse energy is enough to break a plurality of metals. Atom-oxygen atom bonds, and forms metal atom-metal atom bond, so that the resistance value of the first transparent conductive film and the second transparent conductive film becomes smaller, and between the first transparent conductive film and the second transparent conductive film The surface of the conductive film forms a periodically distributed strip-shaped nanostructure, and the strip-shaped nanostructure is used for liquid crystal alignment; A plurality of spacers are sandwiched between the first transparent substrate and the second transparent substrate, wherein the strip-shaped nanostructure on the first transparent conductive film and the strip-shaped nanostructure on the second transparent conductive film meter structures facing each other; forming liquid crystal between the first transparent conductive film and the second transparent conductive film; and A sealant is formed between the first transparent substrate and the second transparent substrate to surround the spacers, the first transparent conductive film, the second transparent conductive film and the liquid crystal, thereby forming a liquid crystal cell. 如請求項11所述之液晶盒製作方法,其中該雷射脈衝產生器包含一雷射發射晶體與一放大器。The method for manufacturing a liquid crystal cell as claimed in claim 11, wherein the laser pulse generator includes a laser emitting crystal and an amplifier. 如請求項12所述之液晶盒製作方法,其中該雷射發射晶體為摻鈦藍寶石(Ti:sapphire)。The method for manufacturing a liquid crystal cell as claimed in claim 12, wherein the laser emitting crystal is titanium-doped sapphire (Ti: sapphire). 如請求項11所述之液晶盒製作方法,其中該固定脈衝寬度為200-1000飛秒。The liquid crystal cell manufacturing method as described in claim 11, wherein the fixed pulse width is 200-1000 femtoseconds. 如請求項11所述之液晶盒製作方法,其中該固定脈衝能量之密度為大於100毫焦/平方公分(mJ/cm 2)。 The liquid crystal cell manufacturing method as claimed in claim 11, wherein the density of the fixed pulse energy is greater than 100 millijoules/square centimeter (mJ/cm 2 ). 如請求項11所述之液晶盒製作方法,其中該第一透明導電薄膜或該第二透明導電薄膜之表面每隔一固定距離具有一該長條狀奈米結構,該長條狀奈米結構之相鄰兩者之間距為大於0,且小於該固定距離的1/2。The method for manufacturing a liquid crystal cell according to claim 11, wherein the surface of the first transparent conductive film or the second transparent conductive film has a strip-shaped nanostructure at a fixed distance, and the strip-shaped nanostructure The distance between two adjacent ones is greater than 0 and less than 1/2 of the fixed distance. 如請求項11所述之液晶盒製作方法,其中該聚焦透鏡為半圓柱透鏡。The liquid crystal cell manufacturing method as claimed in claim 11, wherein the focusing lens is a semi-cylindrical lens. 如請求項11所述之液晶盒製作方法,其中該透明導電薄膜為氧化銦錫薄膜。The method for manufacturing a liquid crystal cell according to claim 11, wherein the transparent conductive film is an indium tin oxide film. 如請求項11所述之液晶盒製作方法,其中該複數個金屬原子-氧原子鍵結包括銦-氧(In-O)鍵結與錫-氧(Sn-O)鍵結。The liquid crystal cell manufacturing method as claimed in claim 11, wherein the plurality of metal atom-oxygen atom bonds include indium-oxygen (In-O) bonding and tin-oxygen (Sn-O) bonding. 如請求項11所述之液晶盒製作方法,其中該金屬原子-金屬原子鍵結為銦-銦(In-In)鍵結。The method for manufacturing a liquid crystal cell as claimed in claim 11, wherein the metal atom-metal atom bonding is an indium-indium (In-In) bonding.
TW111111452A 2022-03-25 2022-03-25 Method for fabricating an liquid-crystal-aligning electrode and method for fabricating a liquid crystal cell using the same TWI826980B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111111452A TWI826980B (en) 2022-03-25 2022-03-25 Method for fabricating an liquid-crystal-aligning electrode and method for fabricating a liquid crystal cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111111452A TWI826980B (en) 2022-03-25 2022-03-25 Method for fabricating an liquid-crystal-aligning electrode and method for fabricating a liquid crystal cell using the same

Publications (2)

Publication Number Publication Date
TW202338462A TW202338462A (en) 2023-10-01
TWI826980B true TWI826980B (en) 2023-12-21

Family

ID=89856199

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111111452A TWI826980B (en) 2022-03-25 2022-03-25 Method for fabricating an liquid-crystal-aligning electrode and method for fabricating a liquid crystal cell using the same

Country Status (1)

Country Link
TW (1) TWI826980B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102043183A (en) * 2009-10-09 2011-05-04 索尼公司 Alignment film and method of manufacturing the same, phase difference device and method of manufacturing the same, and display unit
US20160194745A1 (en) * 2011-09-16 2016-07-07 V Technology Co., Ltd. Deposition mask, producing method therefor and forming method for thin film pattern
TW201803674A (en) * 2016-07-28 2018-02-01 伊雷克托科學工業股份有限公司 Laser processing apparatus and methods of laser-processing workpieces

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102043183A (en) * 2009-10-09 2011-05-04 索尼公司 Alignment film and method of manufacturing the same, phase difference device and method of manufacturing the same, and display unit
US20160194745A1 (en) * 2011-09-16 2016-07-07 V Technology Co., Ltd. Deposition mask, producing method therefor and forming method for thin film pattern
TW201803674A (en) * 2016-07-28 2018-02-01 伊雷克托科學工業股份有限公司 Laser processing apparatus and methods of laser-processing workpieces

Also Published As

Publication number Publication date
TW202338462A (en) 2023-10-01

Similar Documents

Publication Publication Date Title
Ren et al. Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets
JP5669964B2 (en) Low twist chiral liquid crystal polarization gratings and related fabrication methods
TW594234B (en) Wide viewing angle LCD device with laterally driven electric field and its manufacturing method
KR101474567B1 (en) Liquid crystal apparatus
TWI498207B (en) Manufacturing method of mother board, manufacturing method of alignment film, manufacturing method of phase difference plate, and manufacturing method of display device
Ren et al. Tunable microlens arrays using polymer network liquid crystal
JP5451178B2 (en) Display substrate, method of manufacturing the same, and liquid crystal display device having the same
TWI826980B (en) Method for fabricating an liquid-crystal-aligning electrode and method for fabricating a liquid crystal cell using the same
Feng et al. Positive-negative tunable cylindrical liquid crystal lenses
JP2005300886A (en) Method for manufacturing liquid crystal display element, and irradiation device for polarized light for light alignment
JP2006234922A (en) Apparatus of manufacturing optical element for liquid crystal display device
TW201241523A (en) Exposure device, liquid crystal display device, and method of manufacturing same
JP2006234913A (en) Apparatus of manufacturing optical element for liquid crystal display device
KR100964963B1 (en) Polarizing Plate and Polarizing Device Comprising the Same
JP2007183621A (en) Light irradiation device and method for manufacturing liquid crystal display device
CN102183851A (en) Reflection type strength tunable electric control diffraction grating and manufacture method thereof
CN1786804A (en) Process for preparing micro area periodicity domain structure of lithium columbate crystal
US9063357B2 (en) Method for despeckling in laser display systems
KR20050067801A (en) Wire grid polarizer and the device
WO2020155220A1 (en) Optical film layer and display device
JPH0743716A (en) Production of liquid crystal display device
Rushnova et al. Electrically controlled propagation of laser radiation based on liquid-crystal elements
JPH04294322A (en) Optical device
Huang et al. 33.3: High Performance Liquid Crystal Micro‐Lens Array Applied to Light Field Display
JP2008522236A (en) Bistable liquid crystal device