TWI826090B - Power converter and control method thereof - Google Patents

Power converter and control method thereof Download PDF

Info

Publication number
TWI826090B
TWI826090B TW111141597A TW111141597A TWI826090B TW I826090 B TWI826090 B TW I826090B TW 111141597 A TW111141597 A TW 111141597A TW 111141597 A TW111141597 A TW 111141597A TW I826090 B TWI826090 B TW I826090B
Authority
TW
Taiwan
Prior art keywords
terminal
switch
signal
coupled
output
Prior art date
Application number
TW111141597A
Other languages
Chinese (zh)
Other versions
TW202343951A (en
Inventor
劉國基
楊大勇
張煒旭
Original Assignee
立錡科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立錡科技股份有限公司 filed Critical 立錡科技股份有限公司
Priority to US18/131,361 priority Critical patent/US20230336075A1/en
Publication of TW202343951A publication Critical patent/TW202343951A/en
Application granted granted Critical
Publication of TWI826090B publication Critical patent/TWI826090B/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • H02M3/015Resonant DC/DC converters with means for adaptation of resonance frequency, e.g. by modification of capacitance or inductance of resonance circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

A power converter includes first to fourth switches, a flying capacitor, an inductor, an output capacitor and a control circuit. The first to fourth switches are coupled in cascode and in sequence. The first switch is further used to receive an input voltage, and the fourth switch is further coupled to a ground terminal. The flying capacitor is coupled across the second switch and the third switch, the inductor is coupled to the second switch, the third switch and the output capacitor. The output capacitor is used to output an output voltage. In a non-regulated mode, the control circuit is used to switch the first to fourth switches according to a resonant frequency. In a regulated mode, the control circuit is used to switch the first to fourth switches according to a regulated frequency exceeding the resonant frequency. When the flying capacitor is coupled to the inductor, the flying capacitor and the inductor can form a resonant circuit having the resonant frequency.

Description

功率轉換器及其控制方法 Power converter and control method thereof

本發明關於電能轉換,特別是一種功率轉換器及其控制方法。 The present invention relates to electric energy conversion, in particular to a power converter and its control method.

諧振切換式電容轉換器(resonant switched-capacitor converter,RSCC)係為一種功率轉換器,當傳送功率時不會產生功率消耗或僅產生少量功率消耗,常用在行動電話及筆記型電腦等行動電子裝置用來提供電源。 The resonant switched-capacitor converter (RSCC) is a power converter that produces no or only a small amount of power consumption when transmitting power. It is commonly used in mobile electronic devices such as mobile phones and notebook computers. Used to provide power.

諧振切換式電容轉換器會以固定轉換比將輸入電壓轉換為輸出電壓。當輸入電壓過大時,諧振切換式電容轉換器依然以固定轉換比產生過大的輸出電壓,造成電子裝置的損壞。而當輸入電壓不足時,諧振切換式電容轉換器以固定轉換比產生的輸出電壓會不足,造成電路效率低落。 Resonant switched capacitor converters convert input voltage to output voltage with a fixed conversion ratio. When the input voltage is too large, the resonant switched capacitor converter still produces an excessive output voltage with a fixed conversion ratio, causing damage to the electronic device. When the input voltage is insufficient, the output voltage generated by the resonant switched capacitor converter with a fixed conversion ratio will be insufficient, resulting in low circuit efficiency.

本發明實施例提供一種功率轉換器,包含第一開關、第二開關、第三開關、第四開關、飛馳電容、電感、輸出電容及控制電路。第一開關包含控制端、第一端,用以接收輸入電壓、及第二端。第二開關包含控制端、第一端,耦接於第一開關之第二端、及第二端。第三開關包含控制端、第一端,耦接於第二開關之第二端、及第二端。第四開關包含控制端、第一端,耦接於第三開關之第二端、及第二端,耦接於接地端。飛馳電容包含第一端,耦接於第一開關之第二端、及第二端,耦接於第三開關之第二端。電感包含第一端,耦接於第二開關之第二端、及第二端。輸出電容包含第一端,耦接於電感之第二端, 用以將輸出電壓進行輸出、及第二端,耦接於接地端。控制電路耦接於第一開關之第一端、第一開關之控制端、第二開關之控制端、第三開關之控制端及第四開關之控制端。於非調節模式時,控制電路用以依據諧振頻率切換第一開關、第二開關、第三開關及第四開關,及於調節模式時,控制電路用以依據超出諧振頻率的調節頻率切換第一開關、第二開關、第三開關及第四開關。當飛馳電容耦接於電感時,飛馳電容及電感會形成具有諧振頻率的諧振電路。 An embodiment of the present invention provides a power converter, which includes a first switch, a second switch, a third switch, a fourth switch, a flying capacitor, an inductor, an output capacitor and a control circuit. The first switch includes a control terminal, a first terminal for receiving the input voltage, and a second terminal. The second switch includes a control terminal and a first terminal coupled to the second terminal and the second terminal of the first switch. The third switch includes a control terminal and a first terminal coupled to the second terminal and the second terminal of the second switch. The fourth switch includes a control terminal, a first terminal coupled to the second terminal of the third switch, and a second terminal coupled to the ground terminal. The flying capacitor includes a first terminal coupled to the second terminal of the first switch, and a second terminal coupled to the second terminal of the third switch. The inductor includes a first terminal coupled to the second terminal of the second switch and the second terminal. The output capacitor includes a first terminal coupled to the second terminal of the inductor, used to output the output voltage, and the second terminal is coupled to the ground terminal. The control circuit is coupled to the first end of the first switch, the control end of the first switch, the control end of the second switch, the control end of the third switch and the control end of the fourth switch. In the non-adjustment mode, the control circuit is used to switch the first switch, the second switch, the third switch and the fourth switch according to the resonant frequency, and in the adjustment mode, the control circuit is used to switch the first switch according to the adjustment frequency exceeding the resonant frequency. switch, second switch, third switch and fourth switch. When the flying capacitor is coupled to the inductor, the flying capacitor and the inductor form a resonant circuit with a resonant frequency.

本發明實施例另提供一種功率轉換器的控制方法。功率轉換器包含第一開關、第二開關、第三開關、第四開關、飛馳電容、電感、輸出電容及控制電路。第一開關包含控制端、第一端,用以接收輸入電壓、及第二端。第二開關包含控制端、第一端,耦接於第一開關之第二端、及第二端。第三開關包含控制端、第一端,耦接於第二開關之第二端、及第二端。第四開關包含控制端、第一端,耦接於第三開關之第二端、及第二端,耦接於接地端。飛馳電容包含第一端,耦接於第一開關之第二端、及第二端,耦接於第三開關之第二端。電感包含第一端,耦接於第二開關之第二端、及第二端。輸出電容包含第一端,耦接於電感之第二端,用以將輸出電壓進行輸出、及第二端,耦接於接地端。控制電路耦接於第一開關之第一端、第一開關之控制端、第二開關之控制端、第三開關之控制端及第四開關之控制端。控制方法包含於非調節模式時,控制電路依據諧振頻率切換第一開關、第二開關、第三開關及第四開關,及於調節模式時,控制電路依據超出諧振頻率的調節頻率切換第一開關、第二開關、第三開關及第四開關。當飛馳電容耦接於電感時,飛馳電容及電感會形成具有諧振頻率的諧振電路。當飛馳電容耦接於電感時,則飛馳電容及電感會形成具有諧振頻率的諧振電路。 An embodiment of the present invention further provides a control method for a power converter. The power converter includes a first switch, a second switch, a third switch, a fourth switch, a flying capacitor, an inductor, an output capacitor and a control circuit. The first switch includes a control terminal, a first terminal for receiving the input voltage, and a second terminal. The second switch includes a control terminal and a first terminal coupled to the second terminal and the second terminal of the first switch. The third switch includes a control terminal and a first terminal coupled to the second terminal and the second terminal of the second switch. The fourth switch includes a control terminal, a first terminal coupled to the second terminal of the third switch, and a second terminal coupled to the ground terminal. The flying capacitor includes a first terminal coupled to the second terminal of the first switch, and a second terminal coupled to the second terminal of the third switch. The inductor includes a first terminal coupled to the second terminal of the second switch and the second terminal. The output capacitor includes a first terminal coupled to the second terminal of the inductor for outputting the output voltage, and a second terminal coupled to the ground terminal. The control circuit is coupled to the first end of the first switch, the control end of the first switch, the control end of the second switch, the control end of the third switch and the control end of the fourth switch. The control method includes: in the non-regulation mode, the control circuit switches the first switch, the second switch, the third switch and the fourth switch according to the resonant frequency; and in the regulation mode, the control circuit switches the first switch according to the regulation frequency exceeding the resonant frequency. , the second switch, the third switch and the fourth switch. When the flying capacitor is coupled to the inductor, the flying capacitor and the inductor form a resonant circuit with a resonant frequency. When the flying capacitor is coupled to the inductor, the flying capacitor and the inductor form a resonant circuit with a resonant frequency.

1:功率轉換器 1: Power converter

10,20,30,40,120:開關 10,20,30,40,120: switch

50:飛馳電容 50:Flying Capacitor

60:電感 60:Inductor

70:輸出電容 70: Output capacitor

800:控制電路 800:Control circuit

801:訊號產生電路 801: Signal generation circuit

803:狀態偵測電路 803: Status detection circuit

804:閉迴路電路 804: Closed loop circuit

805,806,807,808:相位電路 805,806,807,808: Phase circuit

80至83:緩衝器 80 to 83: Buffer

84,85,86,88,89,263,315,318,415:或閘 84,85,86,88,89,263,315,318,415:OR gate

111:電晶體 111:Transistor

112:電流源 112:Current source

113及152:電容 113 and 152: Capacitor

150:誤差放大器 150: Error amplifier

155,210,220:比較器 155,210,220: Comparator

250:零交叉偵測器 250:Zero Cross Detector

260,320,343,420,443:正反器 260,320,343,420,443: flip-flop

96至98,261,267,311,313,411:反向器 96 to 98,261,267,311,313,411: reverser

223,265,330,345,430,445:脈波產生器 223,265,330,345,430,445: Pulse generator

300:起始電路 300:Start circuit

90至95,225,310,312,316,317,321,322,341,410,412,421,422,441:及閘 90 to 95,225,310,312,316,317,321,322,341,410,412,421,422,441: and gate

110,325,425:非或閘 110,325,425: NOR gate

342,442:非及閘 342,442:Non-and gate

200:控制方法 200:Control method

S202及S204:步驟 S202 and S204: steps

CLP:閉迴路訊號 CLP: closed loop signal

COMP:誤差放大訊號 COMP: error amplification signal

IL:電感電流 IL: inductor current

Imax:最大值 Imax: maximum value

Imin:最小值 Imin: minimum value

MODE:模式訊號 MODE: mode signal

P1,P2,PA,PB:相位訊號 P1,P2,PA,PB: phase signal

Ph1,Ph2:階段 Ph1, Ph2: stage

Pz1至Pz3,Pfb1,Pfb2:脈波 Pz1 to Pz3, Pfb1, Pfb2: pulse wave

RAMP:斜坡訊號 RAMP: ramp signal

S1至S4:開關訊號 S1 to S4: switch signal

SDM:消磁訊號 SDM: degaussing signal

Son:起始訊號 Son: starting signal

SP:截止訊號 SP: cutoff signal

SZ:零交叉訊號 SZ: zero cross signal

t1至r9:時間 t1 to r9: time

T1至T4:時段 T1 to T4: time period

TG1,TG2,TGA,TGB:觸發訊號 TG1, TG2, TGA, TGB: trigger signal

V-:負電壓 V-: negative voltage

Vcc:供電電壓 Vcc: supply voltage

Vin:輸入電壓 Vin: input voltage

VH:高電壓 VH: high voltage

VL:低電壓 VL: low voltage

Vo:輸出電壓 Vo: output voltage

VR:參考電壓 VR: reference voltage

VT:消磁參考電壓 VT: degaussing reference voltage

Vx:切換電壓 Vx: switching voltage

GND:接地電壓 GND: ground voltage

ZM:控制訊號 ZM: control signal

第1圖係本發明實施例中之一種功率轉換器的電路示意圖。 Figure 1 is a schematic circuit diagram of a power converter in an embodiment of the present invention.

第2圖係第1圖中之功率轉換器的控制方法之流程圖。 Figure 2 is a flow chart of the control method of the power converter in Figure 1.

第3圖係第1圖中之功率轉換器在非調節模式下的波形圖。 Figure 3 is a waveform diagram of the power converter in Figure 1 in non-regulated mode.

第4圖係第1圖中之功率轉換器在二階段操作下的波形圖。 Figure 4 is a waveform diagram of the power converter in Figure 1 under two-stage operation.

第5圖係第1圖中之功率轉換器在單一階段操作下的波形圖。 Figure 5 is a waveform diagram of the power converter in Figure 1 operating in a single stage.

第6A圖、第6B圖、第6C圖、第6D圖係第1圖中之功率轉換器在單一階段操作中4時段的電流示意圖。 Figures 6A, 6B, 6C, and 6D are current schematic diagrams of the power converter in Figure 1 during four periods of single-stage operation.

第7圖係第1圖中之控制電路的訊號產生電路之示意圖。 Figure 7 is a schematic diagram of the signal generating circuit of the control circuit in Figure 1.

第8圖係第1圖中之控制電路的回饋電路之示意圖。 Figure 8 is a schematic diagram of the feedback circuit of the control circuit in Figure 1.

第9圖係第8圖中之回饋電路的波形圖。 Figure 9 is a waveform diagram of the feedback circuit in Figure 8.

第10圖係第1圖中之控制電路的狀態偵測電路及閉迴路電路之示意圖。 Figure 10 is a schematic diagram of the state detection circuit and closed loop circuit of the control circuit in Figure 1.

第11圖係第1圖中之控制電路的起始電路及相位電路之示意圖。 Figure 11 is a schematic diagram of the initial circuit and phase circuit of the control circuit in Figure 1.

第12圖係第1圖中之控制電路的其他相位電路之示意圖。 Figure 12 is a schematic diagram of other phase circuits of the control circuit in Figure 1.

第1圖係本發明實施例中之一種功率轉換器1的電路示意圖。功率轉換器1可對輸入電壓Vin進行降壓以產生輸出電壓Vo至負載,輸入電壓Vin及輸出電壓Vo皆可為直流電壓,且輸出電壓Vo可小於或等於輸入電壓Vin。功率轉換器1可以非調節(non-regulated)模式或調節(regulated)模式運作。在非調節模式或調節模式下,功率轉換器1皆可以不連續導通模式(discontinuous conduction mode,DCM)運作而不會以連續導通模式(continuous conduction mode,CCM)運作。 Figure 1 is a schematic circuit diagram of a power converter 1 in one embodiment of the present invention. The power converter 1 can step down the input voltage Vin to generate an output voltage Vo to the load. Both the input voltage Vin and the output voltage Vo can be DC voltages, and the output voltage Vo can be less than or equal to the input voltage Vin. The power converter 1 can operate in a non-regulated mode or a regulated mode. In either the non-regulating mode or the regulating mode, the power converter 1 can operate in discontinuous conduction mode (DCM) but not in continuous conduction mode (CCM).

當輸入電壓Vin介於低電壓臨界值及高電壓臨界值之間時,則功率轉換器1可以非調節模式運作,高電壓臨界值可大於低電壓臨界值。於非調節模式運作時,功率轉換器1可視為分壓器,輸出電壓Vo可為輸入電壓Vin的分壓。在一些實施例中,於非調節模式中輸出電壓Vo可等於輸入電壓Vin之一半。當輸入電壓Vin小於低電壓臨界值或超出高電壓臨界值時,則功率轉換器1可以調節模式運作,藉以將輸出電壓Vo維持於合理範圍而不致過高或過低。調節模式可以單一階段(single-phase)操作或二階段(two-phase)操作實現。當輸入電壓Vin小於低電壓臨界值時,則功率轉換器1可執行單一階段操作,藉以將輸出電壓Vo調節至小於或等於輸入電壓Vin。於單一階段操作時,功率轉換器1可視為降壓變換器(buck converter)。當輸入電壓Vin超出高電壓臨界值時,則功率轉換器1可執行二階段操作,藉以將輸出電壓Vo調節至小於或等於輸出電壓上限值。在一些實施例中,輸出電壓上限值可等於高電壓臨界值之一半。舉例而言,若高電壓臨界值為40V,低電壓臨界值為20V,輸出電壓上限值為20V,則當輸入電壓Vin等於30V,功率轉換器1所產生的輸出電壓Vo可為15V;當輸入電壓Vin等於10V,功率轉換器1可將輸出電壓Vo調節至10V;當輸入電壓Vin等於60V,功率轉換器1可將輸出電壓Vo調節至20V,避免對負載造成損害同時增強系統效率。 When the input voltage Vin is between the low voltage threshold and the high voltage threshold, the power converter 1 can operate in the non-regulated mode, and the high voltage threshold can be greater than the low voltage threshold. When operating in the non-regulated mode, the power converter 1 can be regarded as a voltage divider, and the output voltage Vo can be a divided voltage of the input voltage Vin. In some embodiments, the output voltage Vo may be equal to half of the input voltage Vin in the non-regulated mode. When the input voltage Vin is less than the low voltage threshold or exceeds the high voltage threshold, the power converter 1 can operate in a regulation mode to maintain the output voltage Vo within a reasonable range without being too high or too low. The regulation mode can be implemented as single-phase operation or two-phase operation. When the input voltage Vin is less than the low voltage threshold, the power converter 1 can perform a single-stage operation to adjust the output voltage Vo to be less than or equal to the input voltage Vin. When operating in a single stage, the power converter 1 can be regarded as a buck converter. When the input voltage Vin exceeds the high voltage threshold, the power converter 1 can perform a two-stage operation to adjust the output voltage Vo to be less than or equal to the output voltage upper limit. In some embodiments, the output voltage upper limit value may be equal to half of the high voltage threshold value. For example, if the high voltage threshold is 40V, the low voltage threshold is 20V, and the output voltage upper limit is 20V, then when the input voltage Vin is equal to 30V, the output voltage Vo generated by the power converter 1 can be 15V; when When the input voltage Vin is equal to 10V, the power converter 1 can adjust the output voltage Vo to 10V; when the input voltage Vin is equal to 60V, the power converter 1 can adjust the output voltage Vo to 20V to avoid damage to the load and enhance system efficiency.

功率轉換器1可包含開關10、開關20、開關30、開關40、飛馳電容50、電感60、輸出電容70及控制電路800。開關10包含控制端,用以接收開關訊號S1、第一端及第二端。開關20包含控制端,用以接收開關訊號S2、第一端,耦接於開關10之第二端、及第二端。開關30包含控制端,用以接收開關訊號S3、第一端,耦接於開關20之第二端、及第二端。開關40包含控制端,用以接收開關訊號S4、第一端,耦接於開關30之第二端、及第二端,耦接於接地端。飛馳電容 50包含第一端,耦接於開關10之第二端、及第二端,耦接於開關30之第二端。電感60包含第一端,耦接於開關20之第二端、及第二端。輸出電容70包含第一端,耦接於電感60之第二端、及第二端,耦接於接地端。控制電路800可耦接於開關10之控制端、開關20之控制端、開關30之控制端及開關40之控制端。 The power converter 1 may include switches 10 , 20 , 30 , 40 , a flying capacitor 50 , an inductor 60 , an output capacitor 70 and a control circuit 800 . The switch 10 includes a control terminal for receiving the switch signal S1, a first terminal and a second terminal. The switch 20 includes a control terminal for receiving the switch signal S2 and a first terminal coupled to the second terminal and the second terminal of the switch 10 . The switch 30 includes a control terminal for receiving the switch signal S3 and a first terminal coupled to the second terminal and the second terminal of the switch 20 . The switch 40 includes a control terminal for receiving the switch signal S4, a first terminal coupled to the second terminal of the switch 30, and a second terminal coupled to the ground terminal. Flying capacitor 50 includes a first terminal coupled to the second terminal of the switch 10 and a second terminal coupled to the second terminal of the switch 30 . The inductor 60 includes a first terminal coupled to the second terminal of the switch 20 and a second terminal. The output capacitor 70 includes a first terminal coupled to a second terminal of the inductor 60 and a second terminal coupled to the ground. The control circuit 800 may be coupled to the control end of the switch 10 , the control end of the switch 20 , the control end of the switch 30 and the control end of the switch 40 .

開關10的第一端可接收輸入電壓Vin,輸出電容70的第一端可將輸出電壓Vo進行輸出。接地端可提供接地電壓GND,例如0V。開關20之第二端可提供切換電壓Vx。流經電感60的電流可稱之為電感電流IL。當電感電流IL由電感60之第一端流至電感60之第二端,電感電流IL為正電流;而當電感電流IL由電感60之第二端流至電感60之第一端,電感電流IL為負電流。 The first terminal of the switch 10 can receive the input voltage Vin, and the first terminal of the output capacitor 70 can output the output voltage Vo. The ground terminal can provide ground voltage GND, such as 0V. The second terminal of the switch 20 can provide the switching voltage Vx. The current flowing through the inductor 60 may be called the inductor current IL. When the inductor current IL flows from the first end of the inductor 60 to the second end of the inductor 60 , the inductor current IL is a positive current; and when the inductor current IL flows from the second end of the inductor 60 to the first end of the inductor 60 , the inductor current IL is negative current.

控制電路800可接收輸入電壓Vin及/或輸出電壓Vo以產生開關訊號S1至S4,進而切換開關10、20、30及40而將功率轉換器1設置於非調節模式或調節模式。第2圖係功率轉換器1的控制方法200之流程圖,適用於控制電路800。控制方法200包含步驟S202及S204,用以讓控制電路800控制功率轉換器1在非調節模式或調節模式下運作。任何合理的技術變更或是步驟調整都屬於本發明所揭露的範疇。步驟S202及S204解釋如下:步驟S202:於非調節模式時,控制電路800依據諧振頻率切換開關10、20、30及40;步驟S204:於調節模式時,控制電路800依據超出諧振頻率的調節頻率切換開關10、20、30及40。 The control circuit 800 can receive the input voltage Vin and/or the output voltage Vo to generate switching signals S1 to S4, and then switch the switches 10, 20, 30 and 40 to set the power converter 1 in the non-regulating mode or the regulating mode. Figure 2 is a flow chart of the control method 200 of the power converter 1, which is applicable to the control circuit 800. The control method 200 includes steps S202 and S204, for allowing the control circuit 800 to control the power converter 1 to operate in a non-regulated mode or a regulated mode. Any reasonable technical changes or step adjustments fall within the scope disclosed by the present invention. Steps S202 and S204 are explained as follows: Step S202: In the non-adjustment mode, the control circuit 800 switches the switches 10, 20, 30 and 40 according to the resonant frequency; Step S204: In the adjustment mode, the control circuit 800 switches the switches 10, 20, 30 and 40 according to the resonant frequency. Switches 10, 20, 30 and 40.

在步驟S202,功率轉換器1在非調節模式下運作,控制電路800可切 換開關10、20、30及40而將飛馳電容50經由電感60耦接於輸出電容70,使飛馳電容50及輸出電容70形成分壓器,依據輸入電壓Vin產生輸出電壓Vo,同時使飛馳電容50及電感60形成諧振電路。諧振電路可產生諧振頻率,控制電路800依據諧振頻率在電感電流為0時切換開關10、20、30及40以產生輸入電壓Vin的分壓作為輸出電壓Vo,藉以達成零電流切換(zero-current switching,ZCS)。開關訊號S1及S3可相同,使開關10及30可依據諧振頻率同步切換,且開關訊號S2及S4可相同,使開關20及40可依據諧振頻率同步切換。大致而言,功率轉換器1可輪流在第一階段Ph1及第二階段Ph2運作,如第3圖所示。在第一階段Ph1,開關10及30導通且開關20及40截止。在第二階段Ph2,開關20及40導通且開關10及30截止。 In step S202, the power converter 1 operates in the non-regulating mode, and the control circuit 800 can switch Switches 10, 20, 30 and 40 are changed to couple the flying capacitor 50 to the output capacitor 70 through the inductor 60, so that the flying capacitor 50 and the output capacitor 70 form a voltage divider, and the output voltage Vo is generated according to the input voltage Vin, and at the same time the flying capacitor 50 and inductor 60 form a resonant circuit. The resonant circuit can generate a resonant frequency. The control circuit 800 switches the switches 10, 20, 30 and 40 according to the resonant frequency when the inductor current is 0 to generate a divided voltage of the input voltage Vin as the output voltage Vo, thereby achieving zero-current switching. switching, ZCS). The switching signals S1 and S3 can be the same, so that the switches 10 and 30 can be switched synchronously according to the resonant frequency, and the switching signals S2 and S4 can be the same, so that the switches 20 and 40 can be switched synchronously according to the resonant frequency. Roughly speaking, the power converter 1 can operate in the first stage Ph1 and the second stage Ph2 in turn, as shown in Figure 3. In the first phase Ph1, switches 10 and 30 are on and switches 20 and 40 are off. In the second phase Ph2, switches 20 and 40 are on and switches 10 and 30 are off.

第3圖係功率轉換器1在非調節模式下的波形圖,其中橫軸為時間,縱軸為電壓或電流。以下同時參考第1圖及第3圖來說明功率轉換器1在非調節模式下的運作。在非調節模式下,控制電路800可採用相位訊號P1產生開關訊號S1及S3,採用相位訊號P2產生開關訊號S2及S4,依據電感電流IL產生零交叉訊號SZ,及依據零交叉訊號SZ切換相位訊號P1及P2。零交叉訊號SZ可於偵測到電感電流IL為0A時產生。相位訊號P1及開關訊號S1及S3可相同,相位訊號P2及開關訊號S2及S4可相同,零交叉訊號SZ、相位訊號P1及P2的產生方式會於後續段落說明。 Figure 3 is a waveform diagram of the power converter 1 in the non-regulated mode, in which the horizontal axis is time and the vertical axis is voltage or current. The following describes the operation of the power converter 1 in the non-regulated mode with reference to Figure 1 and Figure 3 at the same time. In the non-regulating mode, the control circuit 800 can use the phase signal P1 to generate the switching signals S1 and S3, use the phase signal P2 to generate the switching signals S2 and S4, generate the zero-crossing signal SZ according to the inductor current IL, and switch the phase according to the zero-crossing signal SZ. Signals P1 and P2. The zero-crossing signal SZ can be generated when the inductor current IL is detected to be 0A. The phase signal P1 and the switching signals S1 and S3 can be the same, and the phase signal P2 and the switching signals S2 and S4 can be the same. The generation method of the zero-crossing signal SZ and the phase signals P1 and P2 will be explained in subsequent paragraphs.

在時間t1,電感電流IL到達0A,觸發產生零交叉訊號SZ上的脈波Pz1,同時脈波Pz1觸發相位訊號P2從高電壓VH切換至低電壓VL,相位訊號P1維持於低電壓VL。低電壓VL可為接地電壓GND。在時間t2,脈波Pz1觸發相位訊號P1從低電壓VL切換至高電壓VH,相位訊號P2維持於低電壓VL,且零交叉訊號SZ上的脈波Pz1結束。脈波Pz1可具有預定寬度,例如預定寬度等於(t2-t1)。 At time t1, the inductor current IL reaches 0A, triggering the pulse wave Pz1 on the zero-crossing signal SZ. At the same time, the pulse wave Pz1 triggers the phase signal P2 to switch from the high voltage VH to the low voltage VL, and the phase signal P1 is maintained at the low voltage VL. The low voltage VL may be the ground voltage GND. At time t2, the pulse wave Pz1 triggers the phase signal P1 to switch from the low voltage VL to the high voltage VH, the phase signal P2 is maintained at the low voltage VL, and the pulse wave Pz1 on the zero-crossing signal SZ ends. The pulse wave Pz1 may have a predetermined width, for example, the predetermined width is equal to (t2-t1).

在時間t2至時間t3之間,相位訊號P1維持於高電壓VH,相位訊號P2維持於低電壓VL,電感電流IL以諧振頻率震盪,且零交叉訊號SZ維持於低電壓VL。開關訊號S1及S3(=相位訊號P1)可為高電壓VH,開關10及30導通,且開關訊號S2及S4(=相位訊號P2)可為低電壓VL,開關20及40截止,使飛馳電容50的第一端經由開關10接收輸入電壓Vin,及飛馳電容50的第二端經由開關30耦接於電感60的第一端。因此輸入電壓Vin經由電感60對飛馳電容50及輸出電容70進行充電及對電感60進行激磁(magnetizing)及消磁(demagnetizing),此時飛馳電容50及輸出電容70可形成分壓器以產生輸出電壓Vo,且飛馳電容50及電感60可形成諧振電路以使電感電流IL以諧振頻率震盪。在一些實施例中,飛馳電容50及輸出電容70的電容值可相等,因此飛馳電容50及輸出電容70的跨壓相等,且切換電壓Vx及輸出電壓Vo皆等於輸入電壓Vin之一半。 Between time t2 and time t3, the phase signal P1 is maintained at the high voltage VH, the phase signal P2 is maintained at the low voltage VL, the inductor current IL oscillates at the resonant frequency, and the zero-crossing signal SZ is maintained at the low voltage VL. The switching signals S1 and S3 (=phase signal P1) can be high voltage VH, switches 10 and 30 are turned on, and the switching signals S2 and S4 (=phase signal P2) can be low voltage VL, switches 20 and 40 are turned off, so that the flying capacitor The first terminal of the capacitor 50 receives the input voltage Vin via the switch 10 , and the second terminal of the flying capacitor 50 is coupled to the first terminal of the inductor 60 via the switch 30 . Therefore, the input voltage Vin charges the flying capacitor 50 and the output capacitor 70 through the inductor 60 and performs magnetizing and demagnetizing on the inductor 60. At this time, the flying capacitor 50 and the output capacitor 70 can form a voltage divider to generate an output voltage. Vo, and the flying capacitor 50 and the inductor 60 can form a resonant circuit so that the inductor current IL oscillates at the resonant frequency. In some embodiments, the capacitance values of the flying capacitor 50 and the output capacitor 70 can be equal, so the cross voltages of the flying capacitor 50 and the output capacitor 70 are equal, and the switching voltage Vx and the output voltage Vo are both equal to half of the input voltage Vin.

在時間t3,電感電流IL到達0A,觸發產生零交叉訊號SZ上的脈波Pz2,同時脈波Pz2觸發相位訊號P1從高電壓VH切換至低電壓VL,相位訊號P2維持於低電壓VL。在時間t4,脈波Pz2觸發相位訊號P2從低電壓VL切換至高電壓VH,相位訊號P1維持於低電壓VL,且零交叉訊號SZ上的脈波Pz2結束。脈波Pz2可具有和脈波Pz1相同的預定寬度,例如脈波Pz2的預定寬度(t4-t3)等於脈波Pz1的預定寬度(t2-t1)。時間t1至t3之間的時段稱之為第一階段Ph1。 At time t3, the inductor current IL reaches 0A, triggering the pulse wave Pz2 on the zero-crossing signal SZ. At the same time, the pulse wave Pz2 triggers the phase signal P1 to switch from the high voltage VH to the low voltage VL, and the phase signal P2 is maintained at the low voltage VL. At time t4, the pulse wave Pz2 triggers the phase signal P2 to switch from the low voltage VL to the high voltage VH, the phase signal P1 remains at the low voltage VL, and the pulse wave Pz2 on the zero-crossing signal SZ ends. The pulse wave Pz2 may have the same predetermined width as the pulse wave Pz1, for example, the predetermined width (t4-t3) of the pulse wave Pz2 is equal to the predetermined width (t2-t1) of the pulse wave Pz1. The period between time t1 and t3 is called the first phase Ph1.

在時間t4至時間t5之間,相位訊號P1維持於低電壓VL,相位訊號P2維持於高電壓VH,電感電流IL以諧振頻率震盪,且零交叉訊號SZ維持於低電壓VL。開關訊號S1及S3(=相位訊號P1)可為低電壓VL,開關10及30截止,且開關訊號S2及S4可為高電壓VH,開關20及40導通,使飛馳電容50的第一端經由開關 20耦接於電感60的第一端,及飛馳電容50的第二端經由開關40耦接於接地端。飛馳電容50可作為電壓源對輸出電容70進行充電及對電感60進行激磁,因此飛馳電容50的跨壓可等於輸出電壓Vo,若飛馳電容50的跨壓等於輸入電壓Vin之一半,則輸出電壓Vo亦等於輸入電壓Vin之一半。同時,飛馳電容50及電感60可形成諧振電路以使電感電流IL以諧振頻率震盪。 Between time t4 and time t5, the phase signal P1 is maintained at the low voltage VL, the phase signal P2 is maintained at the high voltage VH, the inductor current IL oscillates at the resonant frequency, and the zero-crossing signal SZ is maintained at the low voltage VL. The switching signals S1 and S3 (= phase signal P1) can be low voltage VL, and the switches 10 and 30 are turned off, and the switching signals S2 and S4 can be high voltage VH, and the switches 20 and 40 are turned on, so that the first terminal of the flying capacitor 50 passes through switch 20 is coupled to the first terminal of the inductor 60 , and the second terminal of the flying capacitor 50 is coupled to the ground via the switch 40 . The flying capacitor 50 can be used as a voltage source to charge the output capacitor 70 and excite the inductor 60. Therefore, the cross voltage of the flying capacitor 50 can be equal to the output voltage Vo. If the cross voltage of the flying capacitor 50 is equal to half of the input voltage Vin, the output voltage Vo is also equal to half of the input voltage Vin. At the same time, the flying capacitor 50 and the inductor 60 can form a resonant circuit so that the inductor current IL oscillates at the resonant frequency.

在時間t5,電感電流IL到達0A,觸發產生零交叉訊號SZ上的脈波Pz3,同時脈波Pz3觸發相位訊號P2從高電壓VH切換至低電壓VL,相位訊號P1維持於低電壓VL。在時間t6,脈波Pz3觸發相位訊號P1從低電壓VL切換至高電壓VH,相位訊號P2維持於低電壓VL,且零交叉訊號SZ上的脈波Pz3結束。脈波Pz3可具有和脈波Pz1相同的預定寬度,例如脈波Pz1的預定寬度(t6-t5)等於脈波Pz1的預定寬度(t2-t1)。時間t3至t5之間的時段稱之為第二階段Ph2。 At time t5, the inductor current IL reaches 0A, triggering the pulse wave Pz3 on the zero-crossing signal SZ. At the same time, the pulse wave Pz3 triggers the phase signal P2 to switch from the high voltage VH to the low voltage VL, and the phase signal P1 is maintained at the low voltage VL. At time t6, the pulse wave Pz3 triggers the phase signal P1 to switch from the low voltage VL to the high voltage VH, the phase signal P2 remains at the low voltage VL, and the pulse wave Pz3 on the zero-crossing signal SZ ends. The pulse wave Pz3 may have the same predetermined width as the pulse wave Pz1, for example, the predetermined width (t6-t5) of the pulse wave Pz1 is equal to the predetermined width (t2-t1) of the pulse wave Pz1. The period between time t3 and t5 is called the second phase Ph2.

之後,若控制電路800持續判定功率轉換器1可在非調節模式運作,則功率轉換器1會繼續依據諧振頻率切換開關10、20、30及40以重複時間t2至t6的波形,藉以將輸出電壓Vo輸出至負載。 Afterwards, if the control circuit 800 continues to determine that the power converter 1 can operate in the non-regulated mode, the power converter 1 will continue to switch the switches 10, 20, 30 and 40 according to the resonant frequency to repeat the waveforms from time t2 to t6, thereby changing the output Voltage Vo is output to the load.

在步驟S204,功率轉換器1在調節模式下運作。於二階段操作時,開關訊號S1至S4可各不相同,功率轉換器1可輪流在第一階段Ph1及第二階段Ph2運作,如第4圖所示,第4圖的細節會於後續段落說明。於單一階段操作時,開關訊號S1及S2可相同,使開關10及20可同步切換,且開關訊號S3及S4可相同,使開關30及40可同步切換,功率轉換器1可重複在第一階段Ph1運作,如第5圖所示,第5圖的細節會於後續段落說明。 In step S204, the power converter 1 operates in the regulation mode. During the two-stage operation, the switching signals S1 to S4 can be different, and the power converter 1 can operate in the first stage Ph1 and the second stage Ph2 in turn, as shown in Figure 4. The details of Figure 4 will be discussed in subsequent paragraphs. instruction. When operating in a single stage, the switching signals S1 and S2 can be the same, so that the switches 10 and 20 can be switched synchronously, and the switching signals S3 and S4 can be the same, so that the switches 30 and 40 can be switched synchronously, and the power converter 1 can repeat the first operation. Phase Ph1 operation is shown in Figure 5. The details of Figure 5 will be explained in subsequent paragraphs.

第4圖係功率轉換器1在二階段操作下的波形圖,其中橫軸為時間,縱軸為電壓或電流。以下同時參考第1圖及第4圖來說明功率轉換器1在二階段操作的運作方式。控制電路800可依據相位訊號P1產生開關訊號S1,依據相位訊號P2產生開關訊號S2,依據相位訊號P1、PA及PB產生開關訊號S3,及依據相位訊號P1、PA及PB產生開關訊號S4,藉以將輸出電壓Vo調節為小於或等於輸出電壓上限值。於第一階段Ph1,相位訊號P2維持於低電壓VL;且於第二階段Ph2,相位訊號P1維持於低電壓VL。開關訊號S1可等於相位訊號P1,開關訊號S2可等於相位訊號P2,開關訊號S3可等於相位訊號P1、PA及PB的或運算(OR operation)結果,開關訊號S4可等於相位訊號P2、PA及PB的或運算結果,相位訊號P1、P2、PA及PB的產生方式會於後續段落說明。 Figure 4 is a waveform diagram of the power converter 1 under two-stage operation, in which the horizontal axis is time and the vertical axis is voltage or current. The operation mode of the power converter 1 in the two-stage operation is explained below with reference to both Figure 1 and Figure 4 . The control circuit 800 can generate the switching signal S1 according to the phase signal P1, generate the switching signal S2 according to the phase signal P2, generate the switching signal S3 according to the phase signals P1, PA and PB, and generate the switching signal S4 according to the phase signals P1, PA and PB, thereby Adjust the output voltage Vo to be less than or equal to the upper limit of the output voltage. In the first phase Ph1, the phase signal P2 is maintained at the low voltage VL; and in the second phase Ph2, the phase signal P1 is maintained at the low voltage VL. The switching signal S1 can be equal to the phase signal P1, the switching signal S2 can be equal to the phase signal P2, the switching signal S3 can be equal to the OR operation result of the phase signals P1, PA and PB, and the switching signal S4 can be equal to the phase signals P2, PA and The OR operation result of PB and the generation method of the phase signals P1, P2, PA and PB will be explained in the subsequent paragraphs.

在時間t1,電感電流IL到達0A,觸發相位訊號PB從高電壓VH切換至低電壓VL及觸發相位訊號P1從低電壓VL切換至高電壓VH,相位訊號PA及P2維持於低電壓VL,造成開關訊號S1從低電壓VL切換至高電壓VH,開關訊號S2維持於低電壓VL,開關訊號S3維持於高電壓VH,及開關訊號S4從高電壓VH切換至低電壓VL,因此在電感電流IL到達0A時開關40會截止,達成ZCS並降低切換損耗。 At time t1, the inductor current IL reaches 0A, the trigger phase signal PB switches from the high voltage VH to the low voltage VL and the trigger phase signal P1 switches from the low voltage VL to the high voltage VH. The phase signals PA and P2 remain at the low voltage VL, causing the switch Signal S1 switches from low voltage VL to high voltage VH, switching signal S2 remains at low voltage VL, switching signal S3 remains at high voltage VH, and switching signal S4 switches from high voltage VH to low voltage VL. Therefore, when inductor current IL reaches 0A When the switch 40 is turned off, ZCS is achieved and switching loss is reduced.

在時間t1至時間t2之間,開關訊號S1及S3維持於高電壓VH,開關訊號S2及S4維持於低電壓VL,使開關10及30導通,開關20及40截止,飛馳電容50的第一端經由開關10接收輸入電壓Vin,及飛馳電容50的第二端經由開關30耦接於電感60的第一端。因此輸入電壓Vin對飛馳電容50及輸出電容70進行充電及對電感60進行激磁,此時飛馳電容50及電感60可形成諧振電路以使電感電流IL開始上升。 Between time t1 and time t2, the switching signals S1 and S3 are maintained at the high voltage VH, and the switching signals S2 and S4 are maintained at the low voltage VL, causing the switches 10 and 30 to be turned on, and the switches 20 and 40 to be turned off. The terminal receives the input voltage Vin through the switch 10 , and the second terminal of the flying capacitor 50 is coupled to the first terminal of the inductor 60 through the switch 30 . Therefore, the input voltage Vin charges the flying capacitor 50 and the output capacitor 70 and excites the inductor 60. At this time, the flying capacitor 50 and the inductor 60 can form a resonant circuit so that the inductor current IL starts to rise.

在時間t2,輸入電壓Vin超出輸入電壓臨界值,觸發相位訊號P1從高電壓VH切換至低電壓VL及觸發相位訊號PA從低電壓VL切換至高電壓VH,相位訊號P2及PB維持於低電壓VL,造成開關訊號S1從高電壓VH切換至低電壓VL,開關訊號S2維持於低電壓VL,開關訊號S3維持於高電壓VH,及開關訊號S4從低電壓VL切換至高電壓VH,因此控制電路800可於對電感60進行激磁時,在電感60之電感電流IL到達0之前截止開關10,藉以可減少開關10的導通時間。 At time t2, the input voltage Vin exceeds the input voltage threshold, the trigger phase signal P1 switches from the high voltage VH to the low voltage VL and the trigger phase signal PA switches from the low voltage VL to the high voltage VH. The phase signals P2 and PB remain at the low voltage VL. , causing the switching signal S1 to switch from the high voltage VH to the low voltage VL, the switching signal S2 to maintain the low voltage VL, the switching signal S3 to maintain the high voltage VH, and the switching signal S4 to switch from the low voltage VL to the high voltage VH, so the control circuit 800 When the inductor 60 is excited, the switch 10 can be turned off before the inductor current IL of the inductor 60 reaches 0, thereby reducing the conduction time of the switch 10 .

在時間t2至時間t3之間,開關訊號S1及S2維持於低電壓VL,開關訊號S3及S4維持於高電壓VH,使開關10及20截止,開關30及40導通,電感60的第一端經由開關30及40耦接於接地端,因此電感60會消磁,在電感電流IL尚未到達峰值前便被拉低至0A。由於電感60耦接於接地端,因此電感電流IL的下降速度會大幅超過第3圖中因為諧振所產生的電感電流IL的下降速度,且第4圖中對電感60進行一次激磁及消磁的時間(=t3-t1)會小於第3圖中對電感60進行一次激磁及消磁的時間(=t3-t1),因此控制電路800會依據超出諧振頻率的調節頻率切換開關10、20、30及40。時間t1至t3之間的時段稱之為第一階段Ph1。 Between time t2 and time t3, the switching signals S1 and S2 are maintained at the low voltage VL, and the switching signals S3 and S4 are maintained at the high voltage VH, causing the switches 10 and 20 to be turned off, the switches 30 and 40 to be turned on, and the first end of the inductor 60 It is coupled to the ground via switches 30 and 40, so the inductor 60 will be demagnetized, and the inductor current IL will be pulled down to 0A before it reaches the peak value. Since the inductor 60 is coupled to the ground, the decreasing speed of the inductor current IL will be much faster than the decreasing speed of the inductor current IL due to resonance in Figure 3, and the time required for the inductor 60 to be magnetized and demagnetized is shown in Figure 4. (=t3-t1) will be less than the time for one excitation and demagnetization of the inductor 60 in Figure 3 (=t3-t1), so the control circuit 800 will switch switches 10, 20, 30 and 40 according to the adjustment frequency that exceeds the resonant frequency. . The period between time t1 and t3 is called the first phase Ph1.

在時間t3,電感電流IL到達0A,觸發相位訊號PA從高電壓VH切換至低電壓VL及觸發相位訊號P2從低電壓VL切換至高電壓VH,相位訊號PB及P1維持於低電壓VL,造成開關訊號S1維持於低電壓VL,開關訊號S2從低電壓VL切換至高電壓VH,開關訊號S3從高電壓VH切換至低電壓VL,及開關訊號S4維持於高電壓VH,因此在電感電流IL到達0A時開關30會截止,達成ZCS並降低切換損耗。 At time t3, the inductor current IL reaches 0A, the trigger phase signal PA switches from the high voltage VH to the low voltage VL and the trigger phase signal P2 switches from the low voltage VL to the high voltage VH. The phase signals PB and P1 remain at the low voltage VL, causing the switch The signal S1 is maintained at the low voltage VL, the switching signal S2 switches from the low voltage VL to the high voltage VH, the switching signal S3 switches from the high voltage VH to the low voltage VL, and the switching signal S4 is maintained at the high voltage VH. Therefore, when the inductor current IL reaches 0A When the switch 30 is turned off, ZCS is achieved and switching loss is reduced.

在時間t3至時間t4之間,開關訊號S2及S4維持於高電壓VH,開關訊號S1及S3維持於低電壓VL,使開關20及40導通,開關10及30截止,飛馳電容50的第一端經由開關20耦接於電感60的第一端,及飛馳電容50的第二端經由開關40耦接於接地端。飛馳電容50可作為電壓源對輸出電容70進行充電及對電感60進行激磁,飛馳電容50及電感60可形成諧振電路以使電感電流IL開始上升。 Between time t3 and time t4, the switching signals S2 and S4 are maintained at the high voltage VH, and the switching signals S1 and S3 are maintained at the low voltage VL, causing the switches 20 and 40 to be turned on, and the switches 10 and 30 to be turned off. The terminal is coupled to the first terminal of the inductor 60 via the switch 20 , and the second terminal of the flying capacitor 50 is coupled to the ground terminal via the switch 40 . The flying capacitor 50 can be used as a voltage source to charge the output capacitor 70 and excite the inductor 60. The flying capacitor 50 and the inductor 60 can form a resonant circuit to cause the inductor current IL to start to rise.

在時間t4,輸入電壓Vin超出輸入電壓臨界值,觸發相位訊號P2從高電壓VH切換至低電壓VL及觸發相位訊號PB從低電壓VL切換至高電壓VH,相位訊號P1及PA維持於低電壓VL,造成開關訊號S1維持於低電壓VL,開關訊號S2從高電壓VH切換至低電壓VL,開關訊號S3從低電壓VL切換至高電壓VH,及開關訊號S4維持於高電壓VH,因此控制電路800可於對電感60進行激磁時,在電感60之電感電流IL到達0之前截止開關20,藉以可減少開關20的導通時間及以超出諧振頻率的調節頻率切換開關20。 At time t4, the input voltage Vin exceeds the input voltage threshold, the trigger phase signal P2 switches from the high voltage VH to the low voltage VL and the trigger phase signal PB switches from the low voltage VL to the high voltage VH. The phase signals P1 and PA remain at the low voltage VL. , causing the switching signal S1 to maintain at the low voltage VL, the switching signal S2 to switch from the high voltage VH to the low voltage VL, the switching signal S3 to switch from the low voltage VL to the high voltage VH, and the switching signal S4 to maintain the high voltage VH, so the control circuit 800 When the inductor 60 is excited, the switch 20 can be turned off before the inductor current IL of the inductor 60 reaches 0, thereby reducing the conduction time of the switch 20 and switching the switch 20 at an adjustment frequency exceeding the resonant frequency.

在時間t4至時間t5之間,開關訊號S1及S2維持於低電壓VL,開關訊號S3及S4維持於高電壓VH,使開關10及20截止,開關30及40導通,電感60的第一端經由開關30及40耦接於接地端,因此電感60會消磁,在電感電流IL尚未到達峰值前便被拉低至0A。時間t3至t5之間的時段稱之為第二階段Ph2。由於電感60耦接於接地端,因此電感電流IL的下降速度會大幅超過第3圖中因為諧振所產生的電感電流IL的下降速度,且第4圖中對電感60進行一次激磁及消磁的時間(=t5-t3)會小於第3圖中對電感60進行一次激磁及消磁的時間(=t5-t3),因此控制電路800會依據超出諧振頻率的調節頻率切換開關10、20、30及40。 Between time t4 and time t5, the switching signals S1 and S2 are maintained at the low voltage VL, and the switching signals S3 and S4 are maintained at the high voltage VH, causing the switches 10 and 20 to be turned off, the switches 30 and 40 to be turned on, and the first end of the inductor 60 It is coupled to the ground via switches 30 and 40, so the inductor 60 will be demagnetized, and the inductor current IL will be pulled down to 0A before it reaches the peak value. The period between time t3 and t5 is called the second phase Ph2. Since the inductor 60 is coupled to the ground, the decreasing speed of the inductor current IL will be much faster than the decreasing speed of the inductor current IL due to resonance in Figure 3, and the time required for the inductor 60 to be magnetized and demagnetized is shown in Figure 4. (=t5-t3) will be less than the time for one excitation and demagnetization of the inductor 60 in Figure 3 (=t5-t3), so the control circuit 800 will switch switches 10, 20, 30 and 40 according to the adjustment frequency that exceeds the resonant frequency. .

之後,若控制電路800持續判定功率轉換器1可以二階段操作進行運 作,則功率轉換器1會繼續輪流在第一階段Ph1及第二階段Ph2運作。功率轉換器1在時間t5至時間t9的運作方式相似於時間t1至時間t5,其解釋可於前述段落找到,在此不再贅述。 After that, if the control circuit 800 continues to determine that the power converter 1 can operate in the two-stage operation, operation, the power converter 1 will continue to operate in the first stage Ph1 and the second stage Ph2 in turn. The operation mode of the power converter 1 from time t5 to time t9 is similar to that from time t1 to time t5. The explanation can be found in the previous paragraphs and will not be repeated here.

和第2圖的實施例相比,第3圖的實施例中控制電路80可減少開關10或開關20的導通時間(ON time),及增加開關30及開關40的同時導通時間,藉以依據超出諧振頻率的調節頻率切換開關10、20、30及40,進而將輸出電壓Vo調節至等於或小於輸出電壓臨界值。在一些實施例中,當輸出電壓Vo超出輸出電壓臨界值時,控制電路800可於對電感60進行激磁時,在電感60之電感電流IL到達0之前截止開關10或開關20。接著在截止開關10或開關20之後,控制電路800可導通開關30及開關40以對電感60進行消磁,及於對電感60進行消磁時,控制電路800可在電感60之電感電流IL到達0時截止開關30或開關40。在一些實施例中,當功率轉換器1在輕載狀態時,控制電路800可另增加開關10及開關20、開關30及開關40的截止時間(OFF time)。 Compared with the embodiment in Figure 2, the control circuit 80 in the embodiment in Figure 3 can reduce the ON time of the switch 10 or the switch 20, and increase the simultaneous ON time of the switch 30 and the switch 40, so as to exceed The resonant frequency is adjusted by switching the frequency switches 10, 20, 30 and 40, thereby adjusting the output voltage Vo to be equal to or less than the output voltage critical value. In some embodiments, when the output voltage Vo exceeds the output voltage threshold, the control circuit 800 can turn off the switch 10 or the switch 20 before the inductor current IL of the inductor 60 reaches 0 when energizing the inductor 60 . Then, after turning off the switch 10 or the switch 20, the control circuit 800 can turn on the switch 30 and the switch 40 to demagnetize the inductor 60. When demagnetizing the inductor 60, the control circuit 800 can detect when the inductor current IL of the inductor 60 reaches 0. Turn off switch 30 or switch 40. In some embodiments, when the power converter 1 is in a light load state, the control circuit 800 may additionally increase the OFF time of the switches 10 and 20, as well as the switches 30 and 40.

在一些實施例中,當功率轉換器1在輕載狀態時,控制電路800可增加相位訊號P1及PA、PA及P2、P2及PB、PB及P1之間的空時延遲(dead-time delay),藉以增加開關10及開關20、開關30及開關40的截止時間(OFF time),進而達成省電的目的。當相位訊號P1及PA、PA及P2、P2及PB、PB及P1之間具有空時延遲時,第4圖中開關訊號S3及S4的每個脈衝波可由3個子脈衝波代替。例如,開關訊號S3的第1個子脈衝波的開始時間可晚於第4圖中開關訊號S3的原始脈衝波的開始時間,開關訊號S3的第3個子脈衝波的結束時間可晚於第4圖中開關訊號S3的原始脈衝波的結束時間,每個子脈衝波的脈寬皆小於第4圖中開關訊號S3的原始脈衝波的脈寬,且相鄰2個子脈衝波之間可具有時間間距。相似地, 開關訊號S4的第1個子脈衝波的開始時間可晚於第4圖中開關訊號S4的原始脈衝波的開始時間,開關訊號S4的第3個子脈衝波的結束時間可晚於第4圖中開關訊號S4的原始脈衝波的結束時間,每個子脈衝波的脈寬皆小於第4圖中開關訊號S4的原始脈衝波的脈寬,且相鄰2個子脈衝波之間可具有時間間距。 In some embodiments, when the power converter 1 is in a light load state, the control circuit 800 can increase the dead-time delay between the phase signals P1 and PA, PA and P2, P2 and PB, PB and P1. ), thereby increasing the off time (OFF time) of switches 10 and 20, switches 30 and 40, thereby achieving the purpose of power saving. When there is a space-time delay between the phase signals P1 and PA, PA and P2, P2 and PB, PB and P1, each pulse wave of the switching signals S3 and S4 in Figure 4 can be replaced by 3 sub-pulse waves. For example, the starting time of the first sub-pulse wave of the switching signal S3 can be later than the starting time of the original pulse wave of the switching signal S3 in Figure 4, and the end time of the third sub-pulse wave of the switching signal S3 can be later than that in Figure 4 At the end time of the original pulse wave of the switching signal S3, the pulse width of each sub-pulse wave is smaller than the pulse width of the original pulse wave of the switching signal S3 in Figure 4, and there may be a time interval between two adjacent sub-pulse waves. Similarly, The starting time of the first sub-pulse wave of the switching signal S4 can be later than the starting time of the original pulse wave of the switching signal S4 in Figure 4, and the end time of the third sub-pulse wave of the switching signal S4 can be later than that of the switch in Figure 4. The end time of the original pulse wave of the signal S4 and the pulse width of each sub-pulse wave are smaller than the pulse width of the original pulse wave of the switching signal S4 in Figure 4, and there may be a time interval between two adjacent sub-pulse waves.

第5圖係功率轉換器1在單一階段操作下的波形圖,其中橫軸為時間,縱軸為電壓或電流。第6A圖、第6B圖、第6C圖、第6D圖係功率轉換器1在單一階段操作中時段T1至T4的電流示意圖。以下同時參考第5圖、第6A圖、第6B圖、第6C圖、第6D圖來說明功率轉換器1在單一階段操作的運作方式,控制電路800可依據相位訊號P1產生開關訊號S1及S2,及依據相位訊號PA產生開關訊號S3及S4,藉以將輸出電壓Vo調節為小於或等於輸入電壓Vin。控制電路800可於電感電流IL從電感60之第二端流到電感60之第一端時切換開關10、20、30及/或40。開關訊號S1及S2可等於相位訊號P1,且開關訊號S3及S4可等於相位訊號PA,相位訊號P1及PA的產生方式會於後續段落說明。 Figure 5 is a waveform diagram of the power converter 1 operating in a single stage, in which the horizontal axis is time and the vertical axis is voltage or current. Figures 6A, 6B, 6C, and 6D are current schematic diagrams of the power converter 1 during the single-stage operation from T1 to T4. The following describes the operation mode of the power converter 1 in a single stage with reference to Figure 5, Figure 6A, Figure 6B, Figure 6C, and Figure 6D. The control circuit 800 can generate the switching signals S1 and S2 according to the phase signal P1. , and generate switching signals S3 and S4 according to the phase signal PA, thereby adjusting the output voltage Vo to be less than or equal to the input voltage Vin. The control circuit 800 can switch the switches 10 , 20 , 30 and/or 40 when the inductor current IL flows from the second terminal of the inductor 60 to the first terminal of the inductor 60 . The switching signals S1 and S2 may be equal to the phase signal P1, and the switching signals S3 and S4 may be equal to the phase signal PA. The generation methods of the phase signals P1 and PA will be described in subsequent paragraphs.

在時間t1,電感電流IL介於最小值Imin及0A之間,且切換電壓Vx係等於輸入電壓Vin,相位訊號P1從低電壓VL切換至高電壓VH,且相位訊號PA維持於低電壓VL。最小值Imin係為趨近於0A的負電流,例如Imin=-0.1A。因此開關訊號S1及S2從低電壓VL切換至高電壓VH,且開關訊號S3及S4維持於低電壓VL,造成開關10及20導通,及開關30及40截止。由於電感電流IL介於最小值Imin及0A之間且切換電壓Vx相等於輸入電壓Vin,因此開關10及20會達成ZCS及零電壓切換(zero-voltage switching,ZVS),降低切換損耗。在時間t1及t2之間,開關訊號S1及S2維持於高電壓VH,開關訊號S3及S4維持於低電壓VL,切換電壓Vx維持於輸入電壓Vin,且電感電流IL持續上升,如第6A圖所示。時間t1至t2可 稱為時段T1。參考第6A圖,在時段T1,切換電壓Vx等於輸入電壓Vin,電感電流IL由開關10的第一端依序流經開關10、開關20及電感60以對輸出電容70充電。 At time t1, the inductor current IL is between the minimum value Imin and 0A, and the switching voltage Vx is equal to the input voltage Vin. The phase signal P1 switches from the low voltage VL to the high voltage VH, and the phase signal PA is maintained at the low voltage VL. The minimum value Imin is a negative current approaching 0A, for example, Imin=-0.1A. Therefore, the switching signals S1 and S2 are switched from the low voltage VL to the high voltage VH, and the switching signals S3 and S4 are maintained at the low voltage VL, causing the switches 10 and 20 to be turned on, and the switches 30 and 40 to be turned off. Since the inductor current IL is between the minimum value Imin and 0A and the switching voltage Vx is equal to the input voltage Vin, the switches 10 and 20 can achieve ZCS and zero-voltage switching (ZVS), reducing switching losses. Between time t1 and t2, the switching signals S1 and S2 are maintained at the high voltage VH, the switching signals S3 and S4 are maintained at the low voltage VL, the switching voltage Vx is maintained at the input voltage Vin, and the inductor current IL continues to rise, as shown in Figure 6A shown. Time t1 to t2 can Called period T1. Referring to FIG. 6A , during the period T1 , the switching voltage Vx is equal to the input voltage Vin, and the inductor current IL flows from the first end of the switch 10 through the switch 10 , the switch 20 and the inductor 60 in order to charge the output capacitor 70 .

在時間t2,輸出電壓Vo到達輸出電壓預設值,相位訊號P1從高電壓VH切換至低電壓VL,且相位訊號PA從低電壓VL切換至高電壓VH,電感電流IL到達最大值Imax,且切換電壓Vx切換至負電壓V-。最大值Imax係為遠超出0A的正電流,例如Imax=3A。負電壓V-係為趨近於0V的負電壓,例如V-=-10mV。因此開關訊號S1及S2從高電壓VH切換至低電壓VL,且開關訊號S3及S4從低電壓VL切換至高電壓VH,造成開關10及20截止,及開關30及40導通。在時間t2及t3之間,開關訊號S1及S2維持於低電壓VL,開關訊號S3及S4維持於高電壓VH,切換電壓Vx維持於負電壓V-,且電感電流IL從最大值Imax下降,時間t2至t3可稱為時段T2。參考第6B圖,在時段T2,切換電壓Vx為負電壓V-,電感電流IL由接地端依序流經開關40、開關30及電感60以對電感60進行消磁,切換電壓Vx維持於負電壓V-。 At time t2, the output voltage Vo reaches the preset value of the output voltage, the phase signal P1 switches from the high voltage VH to the low voltage VL, and the phase signal PA switches from the low voltage VL to the high voltage VH, the inductor current IL reaches the maximum value Imax, and switches Voltage Vx switches to negative voltage V-. The maximum value Imax is a positive current well beyond 0A, for example Imax=3A. The negative voltage V- is a negative voltage close to 0V, for example, V-=-10mV. Therefore, the switching signals S1 and S2 are switched from the high voltage VH to the low voltage VL, and the switching signals S3 and S4 are switched from the low voltage VL to the high voltage VH, causing the switches 10 and 20 to be turned off, and the switches 30 and 40 to be turned on. Between time t2 and t3, the switching signals S1 and S2 are maintained at the low voltage VL, the switching signals S3 and S4 are maintained at the high voltage VH, the switching voltage Vx is maintained at the negative voltage V-, and the inductor current IL decreases from the maximum value Imax, The time t2 to t3 may be called period T2. Referring to Figure 6B, during period T2, the switching voltage Vx is a negative voltage V-, and the inductor current IL flows from the ground terminal through the switch 40, the switch 30 and the inductor 60 in order to degauss the inductor 60, and the switching voltage Vx is maintained at a negative voltage. V-.

在時間t3,電感電流IL到達0A,切換電壓Vx切換至0V,相位訊號P1維持於低電壓VL,且相位訊號PA維持於高電壓VH。因此開關訊號S1及S2維持於低電壓VL,且開關訊號S3及S4維持於高電壓VH。在時間t3及t4之間,開關訊號S1及S2維持於低電壓VL,開關訊號S3及S4維持於高電壓VH,使開關10及20維持截止,開關30及40維持導通,電感電流IL從0A下降,且切換電壓Vx維持於0V,如第6C圖所示。時間t3至t4可稱為時段T3。參考第6C圖,在時段T3,切換電壓Vx為0V,電感60已完全消磁,電感電流IL依序流經電感60、開關30及開關40以使電感電流IL降低至負值。時段T3的長度可與電感電流IL的大小成正相關。若時段T3的長度越長,則電感電流IL的大小越大。 At time t3, the inductor current IL reaches 0A, the switching voltage Vx switches to 0V, the phase signal P1 is maintained at the low voltage VL, and the phase signal PA is maintained at the high voltage VH. Therefore, the switching signals S1 and S2 are maintained at the low voltage VL, and the switching signals S3 and S4 are maintained at the high voltage VH. Between time t3 and t4, the switching signals S1 and S2 are maintained at the low voltage VL, and the switching signals S3 and S4 are maintained at the high voltage VH, so that the switches 10 and 20 remain off, the switches 30 and 40 remain on, and the inductor current IL changes from 0A decreases, and the switching voltage Vx is maintained at 0V, as shown in Figure 6C. Time t3 to t4 may be called period T3. Referring to Figure 6C, during period T3, the switching voltage Vx is 0V, the inductor 60 has been completely demagnetized, and the inductor current IL flows through the inductor 60, switch 30 and switch 40 in order to reduce the inductor current IL to a negative value. The length of the period T3 may be positively related to the magnitude of the inductor current IL. If the length of the period T3 is longer, the magnitude of the inductor current IL will be larger.

在時間t4,相位訊號P1維持於低電壓VL,且相位訊號PA從高電壓VH切換至低電壓VL,電感電流IL到達最小值Imin,且切換電壓Vx切換至輸入電壓Vin。因此開關訊號S1及S2維持於低電壓VL,且開關訊號S3及S4從高電壓VH切換至低電壓VL,造成開關10及20截止,及開關30及40截止。在時間t4及t5之間,開關訊號S1及S2維持於低電壓VL,開關訊號S3及S4維持於低電壓VL,電感電流IL從最小值Imin上升,且切換電壓Vx維持於輸入電壓Vin,時間t4至t5可稱為時段T4。參考第6D圖,在時段T4,切換電壓Vx等於輸入電壓Vin,由於開關30及40已截止,因此電感電流IL依序流經電感60、開關20的體二極體(body diode)及開關10的體二極體至開關10的第一端。時間t1至t4之間的時段稱之為第一階段Ph1。 At time t4, the phase signal P1 remains at the low voltage VL, and the phase signal PA switches from the high voltage VH to the low voltage VL, the inductor current IL reaches the minimum value Imin, and the switching voltage Vx switches to the input voltage Vin. Therefore, the switching signals S1 and S2 are maintained at the low voltage VL, and the switching signals S3 and S4 are switched from the high voltage VH to the low voltage VL, causing the switches 10 and 20 to be turned off, and the switches 30 and 40 to be turned off. Between time t4 and t5, the switching signals S1 and S2 are maintained at the low voltage VL, the switching signals S3 and S4 are maintained at the low voltage VL, the inductor current IL rises from the minimum value Imin, and the switching voltage Vx is maintained at the input voltage Vin, time The period t4 to t5 may be called period T4. Referring to Figure 6D, during period T4, the switching voltage Vx is equal to the input voltage Vin. Since the switches 30 and 40 are turned off, the inductor current IL flows through the inductor 60, the body diode of the switch 20 and the switch 10 in sequence. body diode to the first terminal of switch 10. The period between time t1 and t4 is called the first phase Ph1.

之後,若控制電路800持續判定功率轉換器1可以單一階段操作進行運作,則功率轉換器1會繼續重複執行第一階段Ph1。 Afterwards, if the control circuit 800 continues to determine that the power converter 1 can operate in a single stage, the power converter 1 will continue to repeatedly execute the first stage Ph1.

在第4圖的實施例中,電感電流IL到達0A之後控制電路800才會截止開關30及40,藉以同時達成ZCS及ZVS。在其他實施例中,控制電路800亦可於單一階段操作時,在電感電流IL到達0時截止開關30及40,藉以達成ZCS。在另一些實施例中,控制電路800亦可於單一階段操作時,在電感電流IL到達0之前截止開關10、20、30及40,藉以增加平均電感電流IL,縮短第一階段Ph1的週期,增加調節頻率,及增加電路效率。 In the embodiment of FIG. 4 , the control circuit 800 turns off the switches 30 and 40 only after the inductor current IL reaches 0A, thereby achieving ZCS and ZVS at the same time. In other embodiments, the control circuit 800 can also turn off the switches 30 and 40 when the inductor current IL reaches 0 during single-stage operation, thereby achieving ZCS. In other embodiments, the control circuit 800 can also turn off the switches 10, 20, 30 and 40 before the inductor current IL reaches 0 during single-stage operation, thereby increasing the average inductor current IL and shortening the period of the first stage Ph1. Increase the regulation frequency and increase circuit efficiency.

雖然第2圖及第3圖的實施例僅分別說明於非調節模式及二階段操作在電感電流IL到達0時截止開關10、20、30及/或40的實施方式,熟習此技藝者亦 可依據第4圖的實施例中產生負電感電流IL的原則,在電感電流IL到達0A之後控制電路800才截止開關10、20、30及/或40,藉以在非調節模式及二階段操作同時達成ZCS及ZVS,降低切換損耗。此外,在一些實施例中,控制電路800亦可於非調節模式及/或二階段操作時,在電感電流IL到達0之前截止開關10、20、30及/或40,藉以增加平均電感電流IL,縮短第一階段Ph1的週期,增加調節頻率,及增加電路效率。 Although the embodiments in Figures 2 and 3 only illustrate the implementation of turning off the switches 10, 20, 30 and/or 40 when the inductor current IL reaches 0 in the non-regulating mode and the two-stage operation respectively, those skilled in the art may also According to the principle of generating negative inductor current IL in the embodiment of FIG. 4, the control circuit 800 turns off the switches 10, 20, 30 and/or 40 after the inductor current IL reaches 0A, so that the non-regulating mode and the two-stage operation can be performed at the same time. Achieve ZCS and ZVS and reduce switching losses. In addition, in some embodiments, the control circuit 800 can also turn off the switches 10, 20, 30 and/or 40 before the inductor current IL reaches 0 during the non-regulating mode and/or two-stage operation, thereby increasing the average inductor current IL. , shorten the period of Ph1 in the first stage, increase the adjustment frequency, and increase circuit efficiency.

此外,控制電路80可減少開關10或開關20的導通時間(ON time),及增加開關30及開關40的同時導通時間,藉以依據超出諧振頻率的調節頻率切換開關10、20、30及40,進而將輸出電壓Vo調節至等於或小於輸出電壓臨界值。在一些實施例中,當輸出電壓Vo超出輸出電壓臨界值時,控制電路800可於對電感60進行激磁時,在電感60之電感電流IL到達0之前截止開關10或開關20。接著在截止開關10或開關20之後,控制電路800可導通開關30及開關40以對電感60進行消磁,及於對電感60進行消磁時,控制電路800可在電感60之電感電流IL到達0時截止開關30或開關40。在一些實施例中,當功率轉換器1在輕載狀態時,控制電路800可另增加開關10及開關20、開關30及開關40的截止時間(OFF time)。 In addition, the control circuit 80 can reduce the ON time of the switch 10 or the switch 20, and increase the simultaneous ON time of the switch 30 and the switch 40, thereby switching the switches 10, 20, 30 and 40 according to the adjustment frequency exceeding the resonant frequency. The output voltage Vo is then adjusted to be equal to or less than the output voltage critical value. In some embodiments, when the output voltage Vo exceeds the output voltage threshold, the control circuit 800 can turn off the switch 10 or the switch 20 before the inductor current IL of the inductor 60 reaches 0 when energizing the inductor 60 . Then, after turning off the switch 10 or the switch 20, the control circuit 800 can turn on the switch 30 and the switch 40 to demagnetize the inductor 60. When demagnetizing the inductor 60, the control circuit 800 can detect when the inductor current IL of the inductor 60 reaches 0. Turn off switch 30 or switch 40. In some embodiments, when the power converter 1 is in a light load state, the control circuit 800 may additionally increase the OFF time of the switches 10 and 20, as well as the switches 30 and 40.

第7圖係控制電路800的部分電路之示意圖。控制電路800可包含訊號產生電路801。訊號產生電路801可依據相位訊號P1、P2、PA及PB及模式訊號MODE產生開關訊號S1至S4。訊號產生電路801可包含緩衝器80至83,或閘(OR gate)84、85、86、88及89,及閘(AND gate)90至95,及反向器96至98。於單一階段操作時模式訊號MODE可被致能,於非調節模式及二階段操作時模式訊號MODE可被失能。模式訊號MODE可用以失能開關訊號S2及S4。 Figure 7 is a schematic diagram of a portion of the control circuit 800. The control circuit 800 may include a signal generating circuit 801. The signal generating circuit 801 can generate switching signals S1 to S4 according to the phase signals P1, P2, PA and PB and the mode signal MODE. The signal generating circuit 801 may include buffers 80 to 83, OR gates 84, 85, 86, 88 and 89, AND gates 90 to 95, and inverters 96 to 98. The mode signal MODE can be enabled during single-stage operation, and can be disabled during non-adjusting mode and two-stage operation. The mode signal MODE can be used to disable switch signals S2 and S4.

緩衝器80包含輸入端,用以接收相位訊號P1、及輸出端,用以輸出開關訊號S1。相位訊號P1經過緩衝器80可產生開關訊號S1,因此開關訊號S1可為相位訊號P1經過一段閘延遲後的訊號。 The buffer 80 includes an input terminal for receiving the phase signal P1 and an output terminal for outputting the switching signal S1. The phase signal P1 can generate the switching signal S1 after passing through the buffer 80. Therefore, the switching signal S1 can be a signal after a gate delay of the phase signal P1.

反向器96包含輸入端,用以接收模式訊號MODE、及輸出端。及閘90包含第一輸入端,用以接收相位訊號P2、第二輸入端,耦接於反向器96的輸出端、及輸出端。及閘91包含第一輸入端,用以接收模式訊號MODE、第二輸入端,用以接收相位訊號P1、及輸出端。或閘84包含第一輸入端,耦接於及閘90的輸出端、第二輸入端,耦接於及閘91的輸出端、及輸出端。緩衝器81包含輸入端,耦接於或閘84的輸出端、及輸出端,用以輸出開關訊號S2。於模式訊號MODE致能時,開關訊號S2可為相位訊號P1經過一段延遲後的訊號。於模式訊號MODE失能時,開關訊號S2可為相位訊號P2經過一段閘延遲後的訊號。 The inverter 96 includes an input terminal for receiving the mode signal MODE and an output terminal. The AND gate 90 includes a first input terminal for receiving the phase signal P2, a second input terminal coupled to the output terminal of the inverter 96, and an output terminal. The AND gate 91 includes a first input terminal for receiving the mode signal MODE, a second input terminal for receiving the phase signal P1, and an output terminal. The OR gate 84 includes a first input terminal coupled to the output terminal of the AND gate 90 and a second input terminal coupled to the output terminal of the AND gate 91 and the output terminal. The buffer 81 includes an input terminal coupled to the output terminal of the OR gate 84 and an output terminal for outputting the switching signal S2. When the mode signal MODE is enabled, the switch signal S2 may be a delayed signal of the phase signal P1. When the mode signal MODE is disabled, the switching signal S2 may be a signal obtained by the phase signal P2 after a gate delay.

或閘88包含第一輸入端,用以接收相位訊號P1、第二輸入端,用以接收相位訊號PA、第三輸入端,用以接收相位訊號PB、及輸出端。反向器97包含輸入端,用以接收模式訊號MODE、及輸出端。及閘92包含第一輸入端,耦接於或閘88的輸出端、第二輸入端,耦接於反向器97的輸出端、及輸出端。及閘93包含第一輸入端,用以接收模式訊號MODE、第二輸入端,用以接收相位訊號PA、及輸出端。或閘85包含第一輸入端,耦接於及閘92的輸出端、第二輸入端,耦接於及閘93的輸出端、及輸出端。緩衝器82包含輸入端,耦接於或閘85的輸出端、及輸出端,用以輸出開關訊號S3。於模式訊號MODE致能時,開關訊號S3可為相位訊號PA經過一段延遲後的訊號。於模式訊號MODE失能時,開關訊號S3可為相位訊號P1、PA及PB的或運算結果經過一段閘延遲後的訊號。 The OR gate 88 includes a first input terminal for receiving the phase signal P1, a second input terminal for receiving the phase signal PA, a third input terminal for receiving the phase signal PB, and an output terminal. The inverter 97 includes an input terminal for receiving the mode signal MODE and an output terminal. The AND gate 92 includes a first input terminal coupled to the output terminal of the OR gate 88 , a second input terminal coupled to the output terminal of the inverter 97 , and an output terminal. The AND gate 93 includes a first input terminal for receiving the mode signal MODE, a second input terminal for receiving the phase signal PA, and an output terminal. The OR gate 85 includes a first input terminal coupled to the output terminal of the AND gate 92 and a second input terminal coupled to the output terminal of the AND gate 93 and the output terminal. The buffer 82 includes an input terminal coupled to the output terminal of the OR gate 85 and an output terminal for outputting the switching signal S3. When the mode signal MODE is enabled, the switch signal S3 may be a delayed signal of the phase signal PA. When the mode signal MODE is disabled, the switching signal S3 may be a signal obtained by ORing the phase signals P1, PA and PB after a gate delay.

或閘89包含第一輸入端,用以接收相位訊號P2、第二輸入端,用以接收相位訊號PA、第三輸入端,用以接收相位訊號PB、及輸出端。反向器98包含輸入端,用以接收模式訊號MODE、及輸出端。及閘94包含第一輸入端,耦接於或閘89的輸出端、第二輸入端,耦接於反向器98的輸出端、及輸出端。及閘95包含第一輸入端,用以接收模式訊號MODE、第二輸入端,用以接收相位訊號PA、及輸出端。或閘86包含第一輸入端,耦接於及閘94的輸出端、第二輸入端,耦接於及閘95的輸出端、及輸出端。緩衝器83包含輸入端,耦接於或閘86的輸出端、及輸出端,用以輸出開關訊號S4。開關訊號S4可為相位訊號PA經過一段延遲後的訊號。於模式訊號MODE失能時,開關訊號S4可為相位訊號P2、PA及PB的或運算結果經過一段閘延遲後的訊號。 The OR gate 89 includes a first input terminal for receiving the phase signal P2, a second input terminal for receiving the phase signal PA, a third input terminal for receiving the phase signal PB, and an output terminal. The inverter 98 includes an input terminal for receiving the mode signal MODE and an output terminal. The AND gate 94 includes a first input terminal coupled to the output terminal of the OR gate 89 , a second input terminal coupled to the output terminal of the inverter 98 , and an output terminal. The AND gate 95 includes a first input terminal for receiving the mode signal MODE, a second input terminal for receiving the phase signal PA, and an output terminal. The OR gate 86 includes a first input terminal coupled to the output terminal of the AND gate 94 and a second input terminal coupled to the output terminal of the AND gate 95 and the output terminal. The buffer 83 includes an input terminal coupled to the output terminal of the OR gate 86 and an output terminal for outputting the switching signal S4. The switching signal S4 may be a delayed signal of the phase signal PA. When the mode signal MODE is disabled, the switch signal S4 may be a signal obtained by ORing the phase signals P2, PA and PB after a gate delay.

第8圖係控制電路800的其他部分電路之示意圖。控制電路800可另包含回饋電路802。回饋電路802可產生回饋訊號SFB以調節輸出電壓Vo。回饋訊號SFB可表示輸入電壓Vin超出輸入電壓臨界值或輸出電壓Vo超出輸出電壓上限值,及可用以將相位訊號P1及/或P2提早重置為低電壓VL,藉以減少開關10及/或20的導通時間及增加調節頻率。回饋電路802可包含非或閘110、電流源112、電晶體111、電容113及152、電阻114、115、116、117及151、開關120、誤差放大器150及比較器155。 Figure 8 is a schematic diagram of other parts of the control circuit 800. The control circuit 800 may further include a feedback circuit 802 . The feedback circuit 802 can generate the feedback signal SFB to adjust the output voltage Vo. The feedback signal SFB can indicate that the input voltage Vin exceeds the input voltage threshold or the output voltage Vo exceeds the output voltage upper limit, and can be used to reset the phase signals P1 and/or P2 to the low voltage VL early, thereby reducing the number of switches 10 and/or 20 on time and increase the adjustment frequency. The feedback circuit 802 may include a NOR gate 110, a current source 112, a transistor 111, capacitors 113 and 152, resistors 114, 115, 116, 117 and 151, a switch 120, an error amplifier 150 and a comparator 155.

非或閘110包含第一輸入端,用以接收相位訊號P1、第二輸入端,用以接收相位訊號P2、及輸出端,用以輸出相位訊號P1及P2的或運算之運算結果。電流源112包含第一端,耦接於供電端,用以接收供電電壓Vcc、及第二端。電晶體111包含控制端,耦接於非或閘110的輸出端,用以接收非或閘110的運算結果、第一端,耦接於電流源112的第二端、及第二端,耦接於接地端。電容113 包含第一端,耦接於電晶體111的第一端、及第二端,耦接於接地端。非或閘110、電流源112、電晶體111及電容113可形成斜坡電路。當相位訊號P1或相位訊號P2為高電壓VH時,斜坡電路可產生逐漸上升的斜坡訊號RAMP。當相位訊號P1及/或相位訊號P2皆為低電壓VL時,斜坡電路可將斜坡訊號RAMP重置為接地電壓GND。 The NOR gate 110 includes a first input terminal for receiving the phase signal P1, a second input terminal for receiving the phase signal P2, and an output terminal for outputting the result of the OR operation of the phase signals P1 and P2. The current source 112 includes a first terminal coupled to the power supply terminal for receiving the power supply voltage Vcc, and a second terminal. The transistor 111 includes a control terminal coupled to the output terminal of the NOR gate 110 for receiving the operation result of the NOR gate 110, a first terminal coupled to the second terminal of the current source 112, and a second terminal coupled to the output terminal of the NOR gate 110. Connected to ground. Capacitor 113 It includes a first terminal coupled to the first terminal of the transistor 111 and a second terminal coupled to the ground terminal. The NOR gate 110, the current source 112, the transistor 111 and the capacitor 113 can form a ramp circuit. When the phase signal P1 or the phase signal P2 is the high voltage VH, the ramp circuit can generate a gradually rising ramp signal RAMP. When the phase signal P1 and/or the phase signal P2 are both low voltage VL, the ramp circuit can reset the ramp signal RAMP to the ground voltage GND.

電阻114包含第一端,用以接收輸出電壓Vo、及第二端。電阻115包含第一端,耦接於電阻114的第二端、及第二端,耦接於接地端。電阻116包含第一端,用以接收參考電壓VR、及第二端。參考電壓VR可設為2V或其他合適值。在一些實施例中,功率轉換器1可針對單一階段操作及二階段操作採用相同的參考電壓VR,例如2V。在一些實施例中,功率轉換器1可針對單一階段操作及二階段操作採用相異的參考電壓VR,例如單一階段操作的參考電壓VR可為1.6V,二階段操作的參考電壓VR可為2V。電阻117包含第一端,耦接於電阻116的第二端、及第二端。開關120包含控制端,用以接收閉迴路訊號CLP、第一端,耦接於電阻117的第二端、及第二端,耦接於接地端。電阻114及115可形成分壓器用以依據輸出電壓Vo產生分壓。例如,電阻114的電阻值可為9k歐姆,電阻115的電阻值可為1k歐姆,用以使分壓器產生10:1的分壓比例,若輸出電壓Vo為20V,則電阻115的第一端可產生2V作為輸出電壓Vo的分壓。誤差放大器150包含反向輸入端,耦接於電阻114的第二端、正向輸入端,耦接於電阻116的第二端、及輸出端。電阻151包含第一端,耦接於誤差放大器150的輸出端、及第二端。電容152包含第一端,耦接於電阻114的第二端、及第二端,耦接於接地端。當閉迴路訊號CLP為低電壓VL時,開關120可被截止,誤差放大器150可比較輸出電壓Vo的分壓及參考電壓VR以產生誤差放大訊號COMP。誤差放大訊號COMP可為穩定的電壓準位,且和輸出電壓Vo相關。若輸出電壓Vo的分壓超出 參考電壓VR,則誤差放大訊號COMP會降低;若輸出電壓Vo的分壓小於參考電壓VR,則誤差放大訊號COMP會增高。例如,若參考電壓VR為2V,輸出電壓Vo的分壓為2V,則誤差放大器150可將誤差放大訊號COMP設為3V;若參考電壓VR為2V,輸出電壓Vo的分壓為2.2V,則誤差放大器150可將誤差放大訊號COMP設為2.8V;若參考電壓VR為2V,輸出電壓Vo的分壓為1.8V,則誤差放大器150可將誤差放大訊號COMP設為3.2V。 The resistor 114 includes a first terminal for receiving the output voltage Vo and a second terminal. The resistor 115 includes a first terminal coupled to a second terminal of the resistor 114 and a second terminal coupled to the ground. The resistor 116 includes a first terminal for receiving the reference voltage VR and a second terminal. The reference voltage VR can be set to 2V or other suitable values. In some embodiments, the power converter 1 may use the same reference voltage VR, such as 2V, for single-stage operation and two-stage operation. In some embodiments, the power converter 1 can use different reference voltages VR for single-stage operation and two-stage operation. For example, the reference voltage VR for single-stage operation can be 1.6V, and the reference voltage VR for two-stage operation can be 2V. . The resistor 117 includes a first terminal coupled to the second terminal of the resistor 116 and a second terminal. The switch 120 includes a control terminal for receiving the closed-loop signal CLP, a first terminal coupled to the second terminal of the resistor 117, and a second terminal coupled to the ground terminal. The resistors 114 and 115 can form a voltage divider to generate a divided voltage according to the output voltage Vo. For example, the resistance value of the resistor 114 can be 9k ohms, and the resistance value of the resistor 115 can be 1k ohms, so that the voltage divider produces a voltage dividing ratio of 10:1. If the output voltage Vo is 20V, then the first voltage of the resistor 115 The terminal can generate 2V as a divided voltage of the output voltage Vo. The error amplifier 150 includes an inverting input terminal coupled to the second terminal of the resistor 114, a forward input terminal coupled to the second terminal of the resistor 116, and an output terminal. The resistor 151 includes a first terminal coupled to the output terminal of the error amplifier 150 and a second terminal. The capacitor 152 includes a first terminal coupled to a second terminal of the resistor 114 and a second terminal coupled to the ground. When the closed loop signal CLP is the low voltage VL, the switch 120 can be turned off, and the error amplifier 150 can compare the divided voltage of the output voltage Vo with the reference voltage VR to generate the error amplification signal COMP. The error amplification signal COMP can be a stable voltage level and is related to the output voltage Vo. If the divided voltage of the output voltage Vo exceeds The reference voltage VR, the error amplification signal COMP will decrease; if the divided voltage of the output voltage Vo is less than the reference voltage VR, the error amplification signal COMP will increase. For example, if the reference voltage VR is 2V and the divided voltage of the output voltage Vo is 2V, the error amplifier 150 can set the error amplification signal COMP to 3V; if the reference voltage VR is 2V and the divided voltage of the output voltage Vo is 2.2V, then The error amplifier 150 can set the error amplification signal COMP to 2.8V; if the reference voltage VR is 2V and the divided voltage of the output voltage Vo is 1.8V, the error amplifier 150 can set the error amplification signal COMP to 3.2V.

閉迴路訊號CLP可表示功率轉換器1的運作模式。若閉迴路訊號CLP為低電壓VL,則功率轉換器1會以非調節模式運作;若閉迴路訊號CLP為高電壓VH,則功率轉換器1會以調節模式運作。當閉迴路訊號CLP為高電壓VH時,開關120可被導通,電阻116及117可形成分壓器用以依據參考電壓VR產生分壓。誤差放大器150可比較輸出電壓Vo的分壓及參考電壓VR的分壓以產生放大誤差放大訊號COMP。例如,電阻116的電阻值可為1k歐姆,電阻117的電阻值可為9k歐姆,用以使分壓器產生10:9的分壓比例,若參考電壓VR為2V,則於電阻117的第一端可產生1.8V作為參考電壓VR的分壓,且誤差放大器150可於輸出電壓Vo的分壓超出1.8V時降低誤差放大訊號COMP的準位,及於輸出電壓Vo的分壓小於1.8V時提高誤差放大訊號COMP的準位。閉迴路訊號CLP可對參考電壓VR提供遲滯(hysteresis)控制。電阻151及電容152可形成低通濾波器,用以對誤差放大訊號COMP進行濾波。在一些實施例中,亦可省略電阻151及電容152而直接將誤差放大訊號COMP輸入至比較器155。 The closed loop signal CLP can represent the operating mode of the power converter 1 . If the closed-loop signal CLP is the low voltage VL, the power converter 1 will operate in the non-regulating mode; if the closed-loop signal CLP is the high voltage VH, the power converter 1 will operate in the regulating mode. When the closed loop signal CLP is the high voltage VH, the switch 120 can be turned on, and the resistors 116 and 117 can form a voltage divider to generate a divided voltage according to the reference voltage VR. The error amplifier 150 can compare the divided voltage of the output voltage Vo and the divided voltage of the reference voltage VR to generate an amplified error amplification signal COMP. For example, the resistance value of the resistor 116 can be 1k ohm, and the resistance value of the resistor 117 can be 9k ohm, so that the voltage divider can produce a voltage dividing ratio of 10:9. If the reference voltage VR is 2V, then the resistance of the resistor 117 is One end can generate 1.8V as a divided voltage of the reference voltage VR, and the error amplifier 150 can reduce the level of the error amplification signal COMP when the divided voltage of the output voltage Vo exceeds 1.8V, and when the divided voltage of the output voltage Vo is less than 1.8V When raising the level of the error amplification signal COMP. The closed loop signal CLP can provide hysteresis control on the reference voltage VR. The resistor 151 and the capacitor 152 can form a low-pass filter for filtering the error amplification signal COMP. In some embodiments, the resistor 151 and the capacitor 152 can also be omitted and the error amplification signal COMP is directly input to the comparator 155 .

比較器155包含正向輸入端,耦接於電容113的第一端、反向輸入端,耦接於電阻151的第一端、及輸出端,用以輸出回饋訊號SFB。比較器155可比較斜坡訊號RAMP及誤差放大訊號COMP。當斜坡訊號RAMP小於誤差放大訊號 COMP時,比較器155可將回饋訊號SFB設置為低電壓VL,而一旦斜坡訊號RAMP到達誤差放大訊號COMP之後,比較器155可在回饋訊號SFB插入具有預設寬度的正脈波。 The comparator 155 includes a positive input terminal coupled to the first terminal of the capacitor 113, a reverse input terminal, a first terminal of the resistor 151, and an output terminal for outputting the feedback signal SFB. The comparator 155 can compare the ramp signal RAMP and the error amplification signal COMP. When the ramp signal RAMP is less than the error amplification signal When COMP occurs, the comparator 155 can set the feedback signal SFB to the low voltage VL. Once the ramp signal RAMP reaches the error amplification signal COMP, the comparator 155 can insert a positive pulse wave with a predetermined width in the feedback signal SFB.

根據前面段落所述,若輸出電壓Vo的分壓超出參考電壓VR,則誤差放大訊號COMP會降低,使斜坡訊號RAMP更快到達誤差放大訊號COMP,進而更快產生回饋訊號SFB。此外,當閉迴路訊號CLP為高電壓VH時,誤差放大訊號COMP會進一步降低,使斜坡訊號RAMP更快到達誤差放大訊號COMP,進而更快及更穩定地產生回饋訊號SFB,藉以增加回饋訊號SFB的可靠性。 According to the previous paragraph, if the divided voltage of the output voltage Vo exceeds the reference voltage VR, the error amplification signal COMP will decrease, allowing the ramp signal RAMP to reach the error amplification signal COMP faster, thereby generating the feedback signal SFB faster. In addition, when the closed-loop signal CLP is a high voltage VH, the error amplification signal COMP will further decrease, allowing the ramp signal RAMP to reach the error amplification signal COMP faster, thereby generating the feedback signal SFB faster and more stably, thereby increasing the feedback signal SFB reliability.

第9圖係回饋電路802的波形圖,其中橫軸為時間,縱軸為電壓。以下搭配第8圖說明回饋電路802的運作方式。 Figure 9 is a waveform diagram of the feedback circuit 802, in which the horizontal axis is time and the vertical axis is voltage. The operation of the feedback circuit 802 is explained below with reference to Figure 8.

在時間t1及t2之間,相位訊號P1為高電壓VH,觸發斜坡訊號RAMP開始上升,同時間相位訊號P2及回饋訊號SFB維持於低電壓VL。在時間t2,斜坡訊號RAMP和誤差放大訊號COMP相等,觸發產生回饋訊號SFB上的脈波Pfb1,脈波Pfb1觸發相位訊號P1被切換至低電壓VL,且由於相位訊號P1及P2皆為低電壓VL,因此斜坡訊號RAMP被重置為低電壓VL。在時間t3,脈波Pfb1結束,相位訊號P1及P2及斜坡訊號RAMP皆維持於低電壓VL。在時間t3及t4之間,相位訊號P1及P2、斜坡訊號RAMP及回饋訊號SFB皆維持於低電壓VL。於單一階段操作時,若輸入電壓Vin過低,例如參考電壓VR為2V,輸入電壓Vin等於10V,則斜坡訊號RAMP會持續小於誤差放大訊號COMP,因此比較器155不會產生回饋訊號SFB中的脈波。 Between time t1 and t2, the phase signal P1 is a high voltage VH, and the trigger ramp signal RAMP begins to rise. At the same time, the phase signal P2 and the feedback signal SFB are maintained at a low voltage VL. At time t2, the ramp signal RAMP and the error amplification signal COMP are equal, triggering the pulse wave Pfb1 on the feedback signal SFB. The pulse wave Pfb1 triggers the phase signal P1 to be switched to the low voltage VL, and because the phase signals P1 and P2 are both low voltages VL, so the ramp signal RAMP is reset to the low voltage VL. At time t3, the pulse wave Pfb1 ends, and the phase signals P1 and P2 and the ramp signal RAMP are maintained at the low voltage VL. Between time t3 and t4, the phase signals P1 and P2, the ramp signal RAMP and the feedback signal SFB are all maintained at the low voltage VL. During single-stage operation, if the input voltage Vin is too low, for example, the reference voltage VR is 2V and the input voltage Vin is equal to 10V, the ramp signal RAMP will continue to be smaller than the error amplification signal COMP, so the comparator 155 will not generate the feedback signal SFB. pulse wave.

在時間t4及t5之間,相位訊號P2為高電壓VH,觸發斜坡訊號RAMP開始上升,同時間相位訊號P1及回饋訊號SFB維持於低電壓VL。在時間t5,斜坡訊號RAMP和誤差放大訊號COMP相等,觸發產生回饋訊號SFB上的脈波Pfb2,脈波Pfb2觸發相位訊號P2被切換至低電壓VL,且由於相位訊號P1及P2皆為低電壓VL,因此斜坡訊號RAMP被重置為低電壓VL。在時間t6,脈波Pfb2結束,相位訊號P1及P2及斜坡訊號RAMP皆維持於低電壓VL。 Between time t4 and t5, the phase signal P2 is at the high voltage VH, and the trigger ramp signal RAMP begins to rise. At the same time, the phase signal P1 and the feedback signal SFB are maintained at the low voltage VL. At time t5, the ramp signal RAMP and the error amplification signal COMP are equal, triggering the pulse wave Pfb2 on the feedback signal SFB. The pulse wave Pfb2 triggers the phase signal P2 to be switched to the low voltage VL, and because the phase signals P1 and P2 are both low voltages VL, so the ramp signal RAMP is reset to the low voltage VL. At time t6, the pulse wave Pfb2 ends, and the phase signals P1 and P2 and the ramp signal RAMP are maintained at the low voltage VL.

回饋電路802可重複時間t1至t2的波形以產生回饋訊號SFB。 The feedback circuit 802 may repeat the waveform from time t1 to t2 to generate the feedback signal SFB.

第10圖係控制電路800的其他部分電路之示意圖。控制電路800可另包含狀態偵測電路803及閉迴路電路804。狀態偵測電路803可產生零交叉(zero-crossing)訊號SZ及截止訊號SP。零交叉訊號SZ可表示電感60的跨壓通過0V,截止訊號SP可用於截止開關30及40。閉迴路電路804可產生閉迴路訊號CLP,閉迴路訊號CLP可表示功率轉換器1的運作模式。當閉迴路訊號CLP為高電壓VH時,表示功率轉換器1在調節模式運作,而當閉迴路訊號CLP為低電壓VL時,表示功率轉換器1在非調節模式運作。 Figure 10 is a schematic diagram of other parts of the control circuit 800. The control circuit 800 may further include a status detection circuit 803 and a closed loop circuit 804. The state detection circuit 803 can generate a zero-crossing signal SZ and a cut-off signal SP. The zero-crossing signal SZ can indicate that the voltage across the inductor 60 passes 0V, and the cut-off signal SP can be used to cut off the switches 30 and 40 . The closed-loop circuit 804 can generate a closed-loop signal CLP, and the closed-loop signal CLP can represent the operating mode of the power converter 1 . When the closed-loop signal CLP is a high voltage VH, it indicates that the power converter 1 is operating in the regulating mode, and when the closed-loop signal CLP is a low voltage VL, it indicates that the power converter 1 is operating in a non-regulating mode.

狀態偵測電路803可包含比較器210及220、交叉偵測器(zero-crossing detector,ZCD)250、脈波產生器223、及及閘225。比較器210包含正向輸入端,用以接收切換電壓Vx、反向輸入端,用以接收輸出電壓Vo、及輸出端,用以輸出切換電壓Vx及輸出電壓Vo的比較結果。切換電壓Vx為在電感60的第一端之電壓,輸出電壓Vo為在電感60的第二端之電壓。當偵測到切換電壓Vx超出輸出電壓Vo,則比較器210可輸出高電壓VH作為比較結果;當偵測到切換電壓Vx小於輸出電壓Vo,則比較器210可輸出低電壓VL作為比較結果。零交叉偵測器250包 含輸入端,耦接於比較器210的輸出端,用以接收切換電壓Vx及輸出電壓Vo的比較結果、及輸出端,用以輸出零交叉訊號SZ。當偵測到比較器210的連續2比較結果由高電壓VH切換至低電壓VL或由低電壓VL切換至高電壓VH,零交叉偵測器250可在零交叉訊號SZ上產生具有預定寬度的脈波;當偵測到比較器210的連續2比較結果皆為高電壓VH或皆為低電壓VL時,零交叉偵測器250可將零交叉訊號SZ設置為低電壓VL。 The state detection circuit 803 may include comparators 210 and 220, a zero-crossing detector (ZCD) 250, a pulse generator 223, and an AND gate 225. The comparator 210 includes a forward input terminal for receiving the switching voltage Vx, a reverse input terminal for receiving the output voltage Vo, and an output terminal for outputting a comparison result of the switching voltage Vx and the output voltage Vo. The switching voltage Vx is the voltage at the first terminal of the inductor 60 , and the output voltage Vo is the voltage at the second terminal of the inductor 60 . When it is detected that the switching voltage Vx exceeds the output voltage Vo, the comparator 210 can output the high voltage VH as the comparison result; when it is detected that the switching voltage Vx is less than the output voltage Vo, the comparator 210 can output the low voltage VL as the comparison result. Zero Cross Detector 250 Pack It includes an input terminal coupled to the output terminal of the comparator 210 for receiving the comparison result of the switching voltage Vx and the output voltage Vo, and an output terminal for outputting the zero-crossing signal SZ. When detecting that the two consecutive comparison results of the comparator 210 switch from the high voltage VH to the low voltage VL or from the low voltage VL to the high voltage VH, the zero-crossing detector 250 can generate a pulse with a predetermined width on the zero-crossing signal SZ. wave; when detecting that the two consecutive comparison results of the comparator 210 are both high voltage VH or both low voltage VL, the zero-crossing detector 250 can set the zero-crossing signal SZ to the low voltage VL.

比較器220包含正向輸入端,用以接收切換電壓Vx、反向輸入端,用以接收消磁參考電壓VT、及輸出端,用以輸出切換電壓Vx及消磁參考電壓VT的比較結果作為消磁訊號SDM。消磁參考電壓VT可設為0V。切換電壓Vx可等於開關30及40的跨壓。若電感60完全消磁時,則切換電壓Vx會達到峰值。當切換電壓Vx超出消磁參考電壓VT時,比較器220可將消磁訊號SDM設置為高電壓VH;當切換電壓Vx小於消磁參考電壓VT時,比較器220可將消磁訊號SDM設置為低電壓VL。脈波產生器223包含致能端,用以接收控制訊號ZM、輸入端,用以接收消磁訊號SDM、及輸出端。及閘225包含第一輸入端,用以接收消磁訊號SDM、第二輸入端,耦接於脈波產生器223的輸出端、及輸出端,用以輸出截止訊號SP。控制訊號ZM可用以控制功率轉換器1的ZVS操作。於單一階段操作時控制訊號ZM可被致能,於非調節模式及二階段操作時控制訊號ZM可被失能。 The comparator 220 includes a forward input terminal for receiving the switching voltage Vx, a reverse input terminal for receiving the degaussing reference voltage VT, and an output terminal for outputting a comparison result of the switching voltage Vx and the degaussing reference voltage VT as a degaussing signal. SDM. The degaussing reference voltage VT can be set to 0V. The switching voltage Vx may be equal to the voltage across switches 30 and 40 . If the inductor 60 is completely demagnetized, the switching voltage Vx will reach a peak value. When the switching voltage Vx exceeds the degaussing reference voltage VT, the comparator 220 can set the degaussing signal SDM to a high voltage VH; when the switching voltage Vx is less than the degaussing reference voltage VT, the comparator 220 can set the degaussing signal SDM to a low voltage VL. The pulse generator 223 includes an enable terminal for receiving the control signal ZM, an input terminal for receiving the degaussing signal SDM, and an output terminal. The AND gate 225 includes a first input terminal for receiving the degaussing signal SDM, a second input terminal coupled to the output terminal of the pulse generator 223, and an output terminal for outputting the cut-off signal SP. The control signal ZM can be used to control the ZVS operation of the power converter 1 . The control signal ZM can be enabled during single-stage operation and disabled during non-regulated mode and two-stage operation.

於控制訊號ZM失能時,截止訊號SP可為消磁訊號SDM經過一段閘延遲後的訊號。於控制訊號ZM致能時,脈波產生器223可於收到消磁訊號SDM並經過第一預定延遲之後於截止訊號SP產生負脈波,截止訊號SP可為經過第第一預定延遲之後的訊號。第一預定延遲的長度等於第5圖中時段T3的長度。 When the control signal ZM is disabled, the cut-off signal SP can be the signal of the degaussing signal SDM after a gate delay. When the control signal ZM is enabled, the pulse wave generator 223 can generate a negative pulse wave in the cut-off signal SP after receiving the degaussing signal SDM and passing through the first predetermined delay. The cut-off signal SP can be the signal after the first predetermined delay. . The length of the first predetermined delay is equal to the length of period T3 in Figure 5.

閉迴路電路804可包含反向器261及267、正反器260、脈波產生器265及或閘263。反向器261包含輸入端,用以接收零交叉訊號SZ、及輸出端,用以輸出零交叉訊號SZ之反向訊號。或閘263包含第一輸入端,用以接收相位訊號P1、第二輸入端,用以接收相位訊號P2、及輸出端,用以輸出相位訊號P1及P2的或運算之運算結果。脈波產生器265包含輸入端,用以接收輸出相位訊號P1及P2的或運算之運算結果、及輸出端,用以輸出第一脈衝訊號。反向器267包含輸入端,用以接收第一脈衝訊號、及輸出端,用以輸出第一重置訊號。正反器260包含資料輸入端,用以接收零交叉訊號SZ之反向訊號、時脈端,用以接收回饋訊號SFB、重置端,用以接收第一重置訊號、及輸出端,用以輸出閉迴路訊號CLP。閉迴路訊號CLP可由回饋訊號SFB觸發產生,及由相位訊號P1或P2的上升緣重置。 The closed loop circuit 804 may include inverters 261 and 267, a flip-flop 260, a pulse generator 265 and an OR gate 263. The inverter 261 includes an input terminal for receiving the zero-cross signal SZ and an output terminal for outputting an inverse signal of the zero-cross signal SZ. The OR gate 263 includes a first input terminal for receiving the phase signal P1, a second input terminal for receiving the phase signal P2, and an output terminal for outputting an OR operation result of the phase signals P1 and P2. The pulse generator 265 includes an input terminal for receiving the result of the OR operation of the output phase signals P1 and P2, and an output terminal for outputting the first pulse signal. The inverter 267 includes an input terminal for receiving the first pulse signal and an output terminal for outputting the first reset signal. The flip-flop 260 includes a data input terminal for receiving the reverse signal of the zero-crossing signal SZ, a clock terminal for receiving the feedback signal SFB, a reset terminal for receiving the first reset signal, and an output terminal for To output the closed loop signal CLP. The closed-loop signal CLP can be triggered by the feedback signal SFB and reset by the rising edge of the phase signal P1 or P2.

第11圖及第12圖係控制電路800的其他部分電路之示意圖。第11圖顯示控制電路800可另包含起始電路300、相位電路805及806,第12圖顯示控制電路800可另包含相位電路807及808。起始電路300可產生起始訊號Son,相位電路805可產生相位訊號P1及觸發訊號TG1,相位電路806可產生相位訊號PA及觸發訊號TGA,相位電路807可產生相位訊號P2及觸發訊號TG2,且相位電路808可產生相位訊號PB及觸發訊號TGB。當閉迴路訊號CLP為低電壓VL(非調節模式)時,相位電路805及807會被致能及相位電路806及808會被失能。當閉迴路訊號CLP為高電壓VH(調節模式)時,相位電路805至808皆會被致能。 Figures 11 and 12 are schematic diagrams of other parts of the control circuit 800. FIG. 11 shows that the control circuit 800 may further include a start circuit 300 and phase circuits 805 and 806. FIG. 12 shows that the control circuit 800 may further include phase circuits 807 and 808. The starting circuit 300 can generate the starting signal Son, the phase circuit 805 can generate the phase signal P1 and the trigger signal TG1, the phase circuit 806 can generate the phase signal PA and the trigger signal TGA, and the phase circuit 807 can generate the phase signal P2 and the trigger signal TG2. And the phase circuit 808 can generate the phase signal PB and the trigger signal TGB. When the closed loop signal CLP is low voltage VL (non-regulated mode), the phase circuits 805 and 807 will be enabled and the phase circuits 806 and 808 will be disabled. When the closed loop signal CLP is high voltage VH (regulation mode), the phase circuits 805 to 808 are all enabled.

相位電路805可包含及閘321及322、非或(NOR)閘325、正反器320及脈波產生器330。及閘321包含第一輸入端,用以接收相位訊號P1、第二輸入端,用以接收零交叉訊號SZ、及輸出端,用以輸出相位訊號P1及零交叉訊號SZ的及 運算之運算結果。及閘322包含第一輸入端,用以接收相位訊號P1、第二輸入端,用以接收回饋訊號SFB、及輸出端,用以輸出相位訊號P1及回饋訊號SFB的及運算之運算結果。非或閘325包含第一輸入端,耦接於及閘321的輸出端,用以接收及閘321之運算結果、第二輸入端,耦接於及閘322的輸出端,用以接收及閘322之運算結果、及輸出端,用以輸出非或運算之運算結果。正反器320包含資料輸入端,用以接收供電電壓Vcc、時脈端,用以接收起始訊號Son、重置端,耦接於非或閘325閘的輸出端,用以接收非或閘325之運算結果、輸出端,用以輸出相位訊號P1、及反向輸出端,用以輸出相位訊號P1的反向訊號。脈波產生器330包含輸入端,用以接收相位訊號P1的反向訊號、及輸出端,用以輸出觸發訊號TG1。 The phase circuit 805 may include AND gates 321 and 322, a NOR gate 325, a flip-flop 320 and a pulse generator 330. The AND gate 321 includes a first input terminal for receiving the phase signal P1, a second input terminal for receiving the zero-crossing signal SZ, and an output terminal for outputting the sum of the phase signal P1 and the zero-crossing signal SZ. The result of the operation. The AND gate 322 includes a first input terminal for receiving the phase signal P1, a second input terminal for receiving the feedback signal SFB, and an output terminal for outputting the result of the AND operation of the phase signal P1 and the feedback signal SFB. The NOR gate 325 includes a first input terminal coupled to the output terminal of the AND gate 321 for receiving the operation result of the AND gate 321, and a second input terminal coupled to the output terminal of the AND gate 322 for receiving the AND gate. The operation result and output terminal of 322 are used to output the operation result of the NOR operation. The flip-flop 320 includes a data input terminal for receiving the supply voltage Vcc, a clock terminal for receiving the start signal Son, and a reset terminal coupled to the output terminal of the NOR gate 325 for receiving the NOR gate. The operation result and output terminal of 325 are used to output the phase signal P1, and the reverse output terminal is used to output the reverse signal of the phase signal P1. The pulse generator 330 includes an input terminal for receiving the reverse signal of the phase signal P1 and an output terminal for outputting the trigger signal TG1.

相位電路806可包含及閘341非及(NAND)閘342、正反器343及脈波產生器345。及閘341包含第一輸入端,用以接收閉迴路訊號CLP、第二輸入端,用以接收觸發訊號TG1、及輸出端,用以輸出閉迴路訊號CLP及觸發訊號TG1的及運算之運算結果。非及閘342包含第一輸入端,用以接收截止訊號SP、第二輸入端,用以接收相位訊號PA、及輸出端,用以輸出截止訊號SP及相位訊號PA的非及運算之運算結果。正反器343包含資料輸入端,用以接收供電電壓Vcc、時脈端,耦接於及閘341的輸出端,用以接收及閘341之運算結果、重置端,耦接於非及閘342的輸出端,用以接收非及閘342之運算結果、輸出端,用以輸出相位訊號PA、及反向輸出端,用以輸出相位訊號PA的反向訊號。脈波產生器345包含輸入端,用以接收相位訊號PA的反向訊號、及輸出端,用以輸出觸發訊號TGA。 The phase circuit 806 may include an AND gate 341 and a NAND gate 342, a flip-flop 343 and a pulse generator 345. The AND gate 341 includes a first input terminal for receiving the closed-loop signal CLP, a second input terminal for receiving the trigger signal TG1, and an output terminal for outputting the result of the AND operation of the closed-loop signal CLP and the trigger signal TG1. . The NAND gate 342 includes a first input terminal for receiving the cut-off signal SP, a second input terminal for receiving the phase signal PA, and an output terminal for outputting the result of the NAND operation of the cut-off signal SP and the phase signal PA. . The flip-flop 343 includes a data input terminal for receiving the supply voltage Vcc, a clock terminal, coupled to the output terminal of the AND gate 341, for receiving the operation result of the AND gate 341, and a reset terminal coupled to the NAND gate. The output terminal of 342 is used to receive the operation result of the NAND gate 342, the output terminal is used to output the phase signal PA, and the reverse output terminal is used to output the reverse signal of the phase signal PA. The pulse generator 345 includes an input terminal for receiving the reverse signal of the phase signal PA, and an output terminal for outputting the trigger signal TGA.

正反器320可由起始訊號Son觸發而將相位訊號P1設置為高電壓VH,及可由零交叉訊號SZ及/或回饋訊號SFB重置相位訊號P1。脈波產生器330 可產生觸發訊號TG1的空時延遲。觸發訊號TG1的空時延遲越長,則相位訊號P2/PA的開始時間便越被延後,增加相位訊號P1結束及相位訊號P2/PA開始之間的空時延遲。 The flip-flop 320 can be triggered by the start signal Son to set the phase signal P1 to the high voltage VH, and can reset the phase signal P1 by the zero-crossing signal SZ and/or the feedback signal SFB. Pulse Generator 330 A space-time delay can be generated for the trigger signal TG1. The longer the space-time delay of the trigger signal TG1 is, the longer the start time of the phase signal P2/PA is delayed, increasing the space-time delay between the end of the phase signal P1 and the start of the phase signal P2/PA.

當閉迴路訊號CLP為低電壓VL時,相位電路806會被失能。當閉迴路訊號CLP為高電壓VH時,相位電路806會被致能,正反器343可由觸發訊號TG1觸發產生相位訊號PA,及可由截止訊號SP重置相位訊號PA。脈波產生器345可用以產生觸發訊號TGA的空時延遲(第二預定延遲)。觸發訊號TGA的空時延遲越長,則相位訊號P2的開始時間便越被延後,增加相位訊號PA結束及相位訊號P2開始之間的空時延遲。第二預定延遲的長度等於第5圖中時段T4的長度。 When the closed loop signal CLP is the low voltage VL, the phase circuit 806 will be disabled. When the closed-loop signal CLP is the high voltage VH, the phase circuit 806 is enabled, the flip-flop 343 can be triggered by the trigger signal TG1 to generate the phase signal PA, and can be reset by the cut-off signal SP. The pulse generator 345 may be used to generate a space-time delay (second predetermined delay) of the trigger signal TGA. The longer the space-time delay of the trigger signal TGA is, the more the start time of the phase signal P2 is delayed, increasing the space-time delay between the end of the phase signal PA and the start of the phase signal P2. The length of the second predetermined delay is equal to the length of period T4 in FIG. 5 .

起始電路300可包含反向器311及313、及閘310、312、316及317、或閘315及318。反向器311包含輸入端,用以接收閉迴路訊號CLP、及輸出端,用以輸出閉迴路訊號CLP之反向訊號。及閘310包含第一輸入端,用以接收觸發訊號TGB、第二輸入端,用以接收閉迴路訊號CLP、及輸出端。及閘312包含第一輸入端,用以接收閉迴路訊號CLP之反向訊號、第二輸入端,用以接收觸發訊號TG2、及輸出端。或閘315包含第一輸入端,耦接於及閘310的輸出端、第二輸入端,耦接於及閘312的輸出端、及輸出端。反向器313包含輸入端,用以接收模式訊號MODE、及輸出端,用以輸出模式訊號MODE之反向訊號。及閘316包含第一輸入端,耦接於或閘315的輸出端、第二輸入端,用以接收模式訊號MODE之反向訊號、及輸出端。及閘317包含第一輸入端,用以接收模式訊號MODE、第二輸入端,用以接收觸發訊號TGA、及輸出端。或閘318包含第一輸入端,耦接於及閘316的輸出端、第二輸入端,耦接於及閘317的輸出端、及輸出端,用以輸出起始訊號Son。 The starting circuit 300 may include inverters 311 and 313, AND gates 310, 312, 316 and 317, or OR gates 315 and 318. The inverter 311 includes an input terminal for receiving the closed-loop signal CLP and an output terminal for outputting an inverse signal of the closed-loop signal CLP. The AND gate 310 includes a first input terminal for receiving the trigger signal TGB, a second input terminal for receiving the closed loop signal CLP, and an output terminal. The AND gate 312 includes a first input terminal for receiving the reverse signal of the closed loop signal CLP, a second input terminal for receiving the trigger signal TG2, and an output terminal. The OR gate 315 includes a first input terminal coupled to the output terminal of the AND gate 310 and a second input terminal coupled to the output terminal of the AND gate 312 and the output terminal. The inverter 313 includes an input terminal for receiving the mode signal MODE and an output terminal for outputting an inverse signal of the mode signal MODE. The AND gate 316 includes a first input terminal coupled to the output terminal of the OR gate 315, a second input terminal for receiving the reverse signal of the mode signal MODE, and an output terminal. The AND gate 317 includes a first input terminal for receiving the mode signal MODE, a second input terminal for receiving the trigger signal TGA, and an output terminal. The OR gate 318 includes a first input terminal coupled to the output terminal of the AND gate 316, a second input terminal coupled to the output terminal of the AND gate 317, and an output terminal for outputting the start signal Son.

於模式訊號MODE致能時,功率轉換器1可執行單一階段操作,起始訊號Son可為觸發訊號TGA經過一段閘延遲後的訊號。於模式訊號MODE失能且閉迴路訊號CLP致能時,功率轉換器1可執行二階段操作,起始訊號Son可為觸發訊號TGB經過一段閘延遲後的訊號。於模式訊號MODE失能且閉迴路訊號CLP失能時,功率轉換器1可運作於非調節模式,起始訊號Son可為觸發訊號TG2經過一段閘延遲後的訊號。 When the mode signal MODE is enabled, the power converter 1 can perform a single-stage operation, and the starting signal Son can be a signal after a gate delay of the trigger signal TGA. When the mode signal MODE is disabled and the closed loop signal CLP is enabled, the power converter 1 can perform a two-stage operation, and the starting signal Son can be a signal after a gate delay of the trigger signal TGB. When the mode signal MODE is disabled and the closed loop signal CLP is disabled, the power converter 1 can operate in the non-regulated mode, and the starting signal Son can be the signal of the trigger signal TG2 after a gate delay.

相位電路807可包含及(AND)閘410、412、421及422、或閘415、非或閘425、正反器420、脈波產生器430及反向器411。及閘410包含第一輸入端,用以接收觸發訊號TGA、第二輸入端,用以接收閉迴路訊號CLP、及輸出端,用以輸出觸發訊號TGA及閉迴路訊號CLP的及運算之運算結果。反向器411包含輸入端,用以接收閉迴路訊號CLP、及輸出端,用以輸出閉迴路訊號CLP之反向訊號。及閘412包含第一輸入端,耦接於反向器411的輸出端,用以接收閉迴路訊號CLP之反向訊號、第二輸入端,用以接收觸發訊號TG1、及輸出端,用以輸出閉迴路訊號CLP之反向訊號及觸發訊號TG1的及運算之運算結果。 The phase circuit 807 may include AND gates 410, 412, 421 and 422, an OR gate 415, a NOR gate 425, a flip-flop 420, a pulse generator 430 and an inverter 411. The AND gate 410 includes a first input terminal for receiving the trigger signal TGA, a second input terminal for receiving the closed loop signal CLP, and an output terminal for outputting the result of the AND operation of the trigger signal TGA and the closed loop signal CLP. . The inverter 411 includes an input terminal for receiving the closed-loop signal CLP and an output terminal for outputting an inverse signal of the closed-loop signal CLP. The AND gate 412 includes a first input terminal coupled to the output terminal of the inverter 411 for receiving the reverse signal of the closed loop signal CLP, a second input terminal for receiving the trigger signal TG1, and an output terminal for receiving the reverse signal of the closed loop signal CLP. Outputs the result of the AND operation of the reverse signal of the closed-loop signal CLP and the trigger signal TG1.

或閘415包含第一輸入端,耦接於及閘410的輸出端,用以接收及閘410之運算結果、第二輸入端,耦接於及閘412的輸出端,用以接收及閘412之運算結果、及輸出端,用以輸出或運算之運算結果。及閘421包含第一輸入端,用以接收相位訊號P2、第二輸入端,用以接收零交叉訊號SZ、及輸出端,用以輸出相位訊號P2及零交叉訊號SZ的及運算之運算結果。及閘422包含第一輸入端,用以接收相位訊號P2、第二輸入端,用以接收回饋訊號SFB、及輸出端,用以輸出相位訊號P2及回饋訊號SFB的及運算之運算結果。非或閘425包含第一輸入 端,用以接收及閘421之運算結果、第二輸入端,用以接收及閘422之運算結果、及輸出端,用以輸出非或運算之運算結果。 The OR gate 415 includes a first input terminal coupled to the output terminal of the AND gate 410 for receiving the operation result of the AND gate 410 and a second input terminal coupled to the output terminal of the AND gate 412 for receiving the AND gate 412 The operation result, and the output terminal are used to output the operation result of the OR operation. The AND gate 421 includes a first input terminal for receiving the phase signal P2, a second input terminal for receiving the zero-crossing signal SZ, and an output terminal for outputting the operation result of the AND operation of the phase signal P2 and the zero-crossing signal SZ. . The AND gate 422 includes a first input terminal for receiving the phase signal P2, a second input terminal for receiving the feedback signal SFB, and an output terminal for outputting the result of the AND operation of the phase signal P2 and the feedback signal SFB. NOR gate 425 contains the first input The second input terminal is used to receive the operation result of the AND gate 421, the second input terminal is used to receive the operation result of the AND gate 422, and the output terminal is used to output the operation result of the NOR operation.

正反器420包含資料輸入端,用以接收供電電壓Vcc、時脈端,耦接於或閘415的輸出端,用以接收或閘415之運算結果、重置端,用以接收非或閘425之運算結果、輸出端,用以輸出相位訊號P2、及反向輸出端,用以輸出相位訊號P2的反向訊號。脈波產生器430包含輸入端,用以接收相位訊號P2的反向訊號、及輸出端,用以輸出觸發訊號TG2。 The flip-flop 420 includes a data input terminal for receiving the supply voltage Vcc, a clock terminal coupled to the output terminal of the OR gate 415 for receiving the operation result of the OR gate 415, and a reset terminal for receiving the NOR gate. The operation result and output terminal of 425 are used to output the phase signal P2, and the reverse output terminal is used to output the reverse signal of the phase signal P2. The pulse generator 430 includes an input terminal for receiving the reverse signal of the phase signal P2 and an output terminal for outputting the trigger signal TG2.

相位電路808可包含及閘441非及閘442、正反器443及脈波產生器445。及閘441包含第一輸入端,用以接收閉迴路訊號CLP、第二輸入端,用以接收觸發訊號TG2、及輸出端,用以輸出閉迴路訊號CLP及觸發訊號TG2的及運算之運算結果。非及閘442包含第一輸入端,用以接收截止訊號SP、第二輸入端,用以接收相位訊號PB、及輸出端,用以輸出截止訊號SP及相位訊號PB的非及運算之運算結果。正反器443包含資料輸入端,用以接收供電電壓Vcc、時脈端,用以接收及閘441之運算結果、重置端,用以接收非及閘442之運算結果、輸出端,用以輸出相位訊號PB、及反向輸出端,用以輸出相位訊號PB的反向訊號。脈波產生器445包含輸入端,用以接收相位訊號PB的反向訊號、及輸出端,用以輸出觸發訊號TGB。 The phase circuit 808 may include an AND gate 441, a NAND gate 442, a flip-flop 443 and a pulse generator 445. The AND gate 441 includes a first input terminal for receiving the closed-loop signal CLP, a second input terminal for receiving the trigger signal TG2, and an output terminal for outputting the result of the AND operation of the closed-loop signal CLP and the trigger signal TG2. . The NAND gate 442 includes a first input terminal for receiving the cut-off signal SP, a second input terminal for receiving the phase signal PB, and an output terminal for outputting the result of the NAND operation of the cut-off signal SP and the phase signal PB. . The flip-flop 443 includes a data input terminal for receiving the supply voltage Vcc, a clock terminal for receiving the operation result of the AND gate 441, a reset terminal for receiving the operation result of the NAND gate 442, and an output terminal for receiving the operation result of the AND gate 441. The phase signal PB is output, and the reverse output terminal is used to output the reverse signal of the phase signal PB. The pulse generator 445 includes an input terminal for receiving the reverse signal of the phase signal PB, and an output terminal for outputting the trigger signal TGB.

當閉迴路訊號CLP為低電壓VL時,及閘410會被失能,正反器420可由觸發訊號TG1觸發產生相位訊號P2,及可由零交叉訊號SZ重置相位訊號P2。當閉迴路訊號CLP為高電壓VH時,及閘412會被失能,正反器420可由觸發訊號TGA觸發產生相位訊號P2,及可由零交叉訊號SZ及/或回饋訊號SFB重置相位訊 號P2。脈波產生器430可用以產生觸發訊號TG2的空時延遲。觸發訊號TG2的空時延遲越長,則相位訊號P1/PB的開始時間便越被延後,增加相位訊號P2結束及相位訊號P1/PB開始之間的空時。 When the closed loop signal CLP is the low voltage VL, the AND gate 410 will be disabled, the flip-flop 420 can be triggered by the trigger signal TG1 to generate the phase signal P2, and can reset the phase signal P2 by the zero-crossing signal SZ. When the closed loop signal CLP is the high voltage VH, the AND gate 412 will be disabled, the flip-flop 420 can be triggered by the trigger signal TGA to generate the phase signal P2, and the phase signal can be reset by the zero-crossing signal SZ and/or the feedback signal SFB. No. P2. The pulse generator 430 can be used to generate a space-time delay of the trigger signal TG2. The longer the space-time delay of the trigger signal TG2 is, the more the start time of the phase signal P1/PB is delayed, increasing the space time between the end of the phase signal P2 and the start of the phase signal P1/PB.

當閉迴路訊號CLP為低電壓VL時,相位電路808會被失能。當閉迴路訊號CLP為高電壓VH時,相位電路808會被致能,正反器443可由觸發訊號TG2觸發產生相位訊號PB,及可由截止訊號SP重置相位訊號PB。脈波產生器445可用以產生觸發訊號TGB的空時延遲。觸發訊號TGB的空時延遲越長,則相位訊號PB的開始時間便越被延後,增加相位訊號PB結束及相位訊號P1開始之間的空時。 When the closed loop signal CLP is the low voltage VL, the phase circuit 808 will be disabled. When the closed loop signal CLP is the high voltage VH, the phase circuit 808 will be enabled, the flip-flop 443 can be triggered by the trigger signal TG2 to generate the phase signal PB, and the phase signal PB can be reset by the cut-off signal SP. The pulse generator 445 can be used to generate a space-time delay of the trigger signal TGB. The longer the space-time delay of the trigger signal TGB is, the more the start time of the phase signal PB is delayed, increasing the space time between the end of the phase signal PB and the start of the phase signal P1.

當功率轉換器1在輕載狀態時,控制電路800可另設置脈波產生器330、345、430及445以增加觸發訊號TG1、TGA、TG2及TGB的空時延遲,藉以增加開關10及開關20、開關30及開關40的截止時間(OFF time),進而達成省電的目的。 When the power converter 1 is in a light load state, the control circuit 800 can additionally set the pulse generators 330, 345, 430, and 445 to increase the space-time delays of the trigger signals TG1, TGA, TG2, and TGB, thereby increasing the number of switches 10 and 445. 20. The cut-off time (OFF time) of switch 30 and switch 40 to achieve the purpose of power saving.

本發明實施例用以控制功率轉換器1在非調節模式或調節模式下運作以達成ZVS及ZCS,避免對負載造成損害,同時降低切換損耗及增強系統效率。 Embodiments of the present invention are used to control the power converter 1 to operate in the non-regulated mode or the regulated mode to achieve ZVS and ZCS to avoid damage to the load, while reducing switching losses and enhancing system efficiency.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only preferred embodiments of the present invention, and all equivalent changes and modifications made in accordance with the patentable scope of the present invention shall fall within the scope of the present invention.

200:控制方法 200:Control method

S202及S204:步驟 S202 and S204: steps

Claims (26)

一種功率轉換器,包含:一第一開關,包含一控制端、一第一端,用以接收一輸入電壓、及一第二端;一第二開關,包含一控制端、一第一端,耦接於該第一開關之該第二端、及一第二端;一第三開關,包含一控制端、一第一端,耦接於該第二開關之該第二端、及一第二端;一第四開關,包含一控制端、一第一端,耦接於該第三開關之該第二端、及一第二端,耦接於一接地端;一飛馳電容,包含一第一端,耦接於該第一開關之該第二端、及一第二端,耦接於該第三開關之該第二端;一電感,包含一第一端,耦接於該第二開關之該第二端、及一第二端;一輸出電容,包含一第一端,耦接於該電感之該第二端,用以輸出一輸出電壓、及一第二端,耦接於該接地端;及一控制電路,耦接於該第一開關之該第一端、該第一開關之該控制端、該第二開關之該控制端、該第三開關之該控制端及該第四開關之該控制端,用以於一非調節模式時,依據一諧振頻率切換該第一開關、該第二開關、該第三開關及該第四開關,及於一調節模式時,依據超出該諧振頻率的一調節頻率切換該第一開關、該第二開關、該第三開關及該第四開關;其中當該飛馳電容耦接於該電感時,該飛馳電容及該電感會形成具有該諧振頻率的一諧振電路。 A power converter includes: a first switch including a control end and a first end for receiving an input voltage and a second end; a second switch including a control end and a first end, Coupled to the second terminal of the first switch and a second terminal; a third switch including a control terminal and a first terminal coupled to the second terminal of the second switch and a first terminal Two terminals; a fourth switch, including a control terminal, a first terminal, coupled to the second terminal of the third switch, and a second terminal, coupled to a ground terminal; a flying capacitor, including a A first terminal is coupled to the second terminal of the first switch, and a second terminal is coupled to the second terminal of the third switch; an inductor includes a first terminal coupled to the third switch. the second terminal of two switches, and a second terminal; an output capacitor, including a first terminal coupled to the second terminal of the inductor, for outputting an output voltage, and a second terminal coupled to at the ground terminal; and a control circuit coupled to the first terminal of the first switch, the control terminal of the first switch, the control terminal of the second switch, the control terminal of the third switch and The control end of the fourth switch is used to switch the first switch, the second switch, the third switch and the fourth switch according to a resonant frequency in a non-regulation mode, and in a regulation mode, The first switch, the second switch, the third switch and the fourth switch are switched according to an adjustment frequency exceeding the resonant frequency; wherein when the flying capacitor is coupled to the inductor, the flying capacitor and the inductor will form A resonant circuit with this resonant frequency. 如請求項1所述之功率轉換器,其中當該輸入電壓介於一高電壓臨界值及一低電壓臨界值之間時,該控制電路用以執行該非調節模式,在該電感之一電感電流為0時切換該第一開關、該第二開關、該第三開關及該第四開關,以產生該輸入電壓的一分壓作為該輸出電壓。 The power converter of claim 1, wherein when the input voltage is between a high voltage threshold and a low voltage threshold, the control circuit is used to execute the non-regulation mode, and when an inductor current of the inductor When it is 0, the first switch, the second switch, the third switch and the fourth switch are switched to generate a divided voltage of the input voltage as the output voltage. 如請求項1所述之功率轉換器,其中該控制電路用以於該電感之一電感電流從該電感之該第二端流到該電感之該第一端時切換該第一開關、該第二開關、該第三開關及/或該第四開關。 The power converter of claim 1, wherein the control circuit is used to switch the first switch, the third switch when an inductor current of the inductor flows from the second end of the inductor to the first end of the inductor. the second switch, the third switch and/or the fourth switch. 如請求項1所述之功率轉換器,其中當該輸入電壓小於一低電壓臨界值時,該功率轉換器用以執行該調節模式之一單一階段操作,藉以將該輸出電壓調節為小於或等於該輸入電壓。 The power converter of claim 1, wherein when the input voltage is less than a low voltage threshold, the power converter is used to perform a single-stage operation of the regulation mode, thereby regulating the output voltage to be less than or equal to the input voltage. 如請求項4所述之功率轉換器,其中該控制電路用以於該單一階段操作模式時,在該電感之一電感電流到達0並經過一第一預定延遲之後截止該第三開關及該第四開關。 The power converter of claim 4, wherein the control circuit is used to turn off the third switch and the third switch after an inductor current of the inductor reaches 0 and a first predetermined delay during the single-stage operation mode. Four switches. 如請求項5所述之功率轉換器,其中該控制電路用以於該單一階段操作模式時,在截止該第三開關及該第四開關並經過一第二預定延遲之後導通該第一開關及該第二開關。 The power converter of claim 5, wherein the control circuit is used to turn on the first switch after turning off the third switch and the fourth switch and after a second predetermined delay in the single-stage operation mode. the second switch. 如請求項1所述之功率轉換器,其中當該輸入電壓超出一高電壓臨界值時,該功率轉換器用以執行該調節模式之一二階段操作,藉以將該輸出電壓調節為小於或等於該輸入電壓之一半。 The power converter of claim 1, wherein when the input voltage exceeds a high voltage threshold, the power converter is used to perform one of the two-stage operations of the regulation mode, thereby regulating the output voltage to be less than or equal to the half the input voltage. 如請求項7所述之功率轉換器,其中於該二階段操作模式時:當該第一開關及該第三開關導通時,該輸入電壓經由該電感對該飛馳電容及該輸出電容充電;及當該第二開關及該第四開關導通時,該飛馳電容經由該電感對該輸出電容充電。 The power converter of claim 7, wherein in the two-stage operation mode: when the first switch and the third switch are turned on, the input voltage charges the flying capacitor and the output capacitor through the inductor; and When the second switch and the fourth switch are turned on, the flying capacitor charges the output capacitor through the inductor. 如請求項1所述之功率轉換器,其中於該調節模式時,該控制電路用以減少該第一開關及該第二開關的導通時間(ON time)。 The power converter of claim 1, wherein in the regulation mode, the control circuit is used to reduce the ON time of the first switch and the second switch. 如請求項1所述之功率轉換器,其中該控制電路用以於該調節模式時,在該電感之一電感電流到達0之前截止該第一開關、該第二開關、該第三開關及/或該第四開關。 The power converter of claim 1, wherein the control circuit is used in the regulation mode to turn off the first switch, the second switch, the third switch and/or before an inductor current of the inductor reaches 0. Or that fourth switch. 如請求項1所述之功率轉換器,其中該控制電路用以於該調節模式時,在該電感之一電感電流到達0時截止該第一開關、該第二開關、該第三開關及/或該第四開關。 The power converter of claim 1, wherein the control circuit is used in the regulation mode to turn off the first switch, the second switch, the third switch and/or when an inductor current of the inductor reaches 0 Or that fourth switch. 如請求項1所述之功率轉換器,其中該控制電路用以於該調節模式時,在該電感之一電感電流到達0之後截止該第一開關、該第二開關、該第三開關及/或該第四開關。 The power converter of claim 1, wherein the control circuit is used in the regulation mode to turn off the first switch, the second switch, the third switch and/or after an inductor current of the inductor reaches 0. Or that fourth switch. 如請求項1所述之功率轉換器,其中該功率轉換器以不連續導通模式(discontinuous conduction mode,DCM)運作。 The power converter of claim 1, wherein the power converter operates in discontinuous conduction mode (DCM). 如請求項1所述之功率轉換器,其中該控制電路包含:一第一相位電路,用以依據一起始訊號、一零交叉訊號及一回饋訊號產生一第一相位訊號及一第一觸發訊號;一第二相位電路,耦接於該第一相位電路,用以依據該第一觸發訊號、一閉迴路訊號及一截止訊號產生一第二相位訊號及一第二觸發訊號;一第三相位電路,耦接於該第二相位電路,用以依據該第一觸發訊號、該第二觸發訊號、該閉迴路訊號、該零交叉訊號及該回饋訊號產生一第三相位訊號及一第三觸發訊號;一第四相位電路,耦接於該第三相位電路及該第一相位電路,用以依據該第三觸發訊號、該閉迴路訊號及該截止訊號產生一第四相位訊號及一第四觸發訊號;及一起始電路,耦接於該第一相位電路、該第二相位電路、該第三相位電路及該第四相位電路,用以依據一模式訊號、該閉迴路訊號、該第二觸發訊號、該第三觸發訊號及該第四觸發訊號產生該起始訊號;一訊號產生電路,耦接於該第一相位電路、該第二相位電路、該第三相位電路及該第四相位電路,用以依據該第一相位訊號、該第二相位訊號、該第三相位訊號、該第四相位訊號及該模式訊號產生一第一開關訊號、一第二開關訊號、一第三開關訊號及一第四開關訊號,該第一開關訊號、該第二開關訊號、該第三開關訊號及該第四開關訊號分別切換該第一開關、該第二開關、該第三開關及該第四開關;一回饋電路,耦接於該第一相位電路、該第三相位電路及該輸出電容之該第一端,用以依據該第一相位訊號、該第三相位訊號、該輸出電壓及一參考電壓產生該回饋訊號; 一狀態偵測電路,耦接於該輸出電容之該第一端及該電感之該第一端,用以依據該輸出電壓、一消磁參考電壓及該電感之該第一端的一切換電壓產生該零交叉訊號及該截止訊號;及一閉迴路電路,耦接於該狀態偵測電路、該回饋電路、該第一相位電路及該第三相位電路,用以依據該零交叉訊號、該回饋訊號、該第一相位訊號及該第三相位訊號產生該閉迴路訊號。 The power converter of claim 1, wherein the control circuit includes: a first phase circuit for generating a first phase signal and a first trigger signal based on a starting signal, a zero-crossing signal and a feedback signal ; A second phase circuit, coupled to the first phase circuit, for generating a second phase signal and a second trigger signal based on the first trigger signal, a closed loop signal and a cut-off signal; a third phase a circuit coupled to the second phase circuit for generating a third phase signal and a third trigger based on the first trigger signal, the second trigger signal, the closed loop signal, the zero-crossing signal and the feedback signal signal; a fourth phase circuit, coupled to the third phase circuit and the first phase circuit, for generating a fourth phase signal and a fourth phase signal based on the third trigger signal, the closed loop signal and the cut-off signal. a trigger signal; and an initial circuit, coupled to the first phase circuit, the second phase circuit, the third phase circuit and the fourth phase circuit, for based on a mode signal, the closed loop signal, the second The trigger signal, the third trigger signal and the fourth trigger signal generate the start signal; a signal generation circuit is coupled to the first phase circuit, the second phase circuit, the third phase circuit and the fourth phase A circuit for generating a first switching signal, a second switching signal, and a third switching signal based on the first phase signal, the second phase signal, the third phase signal, the fourth phase signal, and the mode signal. and a fourth switch signal. The first switch signal, the second switch signal, the third switch signal and the fourth switch signal respectively switch the first switch, the second switch, the third switch and the fourth switch. switch; a feedback circuit coupled to the first phase circuit, the third phase circuit and the first end of the output capacitor, for controlling the first phase signal, the third phase signal, the output voltage and a The reference voltage generates the feedback signal; a state detection circuit coupled to the first terminal of the output capacitor and the first terminal of the inductor for generating a switching voltage based on the output voltage, a degaussing reference voltage and the first terminal of the inductor The zero-crossing signal and the cut-off signal; and a closed-loop circuit coupled to the status detection circuit, the feedback circuit, the first phase circuit and the third phase circuit, for controlling the zero-crossing signal, the feedback circuit signal, the first phase signal and the third phase signal to generate the closed loop signal. 如請求項14所述之功率轉換器,其中:該第一相位電路包含:一第一及閘,包含:一第一輸入端,用以接收該第一相位訊號;一第二輸入端,用以接收該零交叉訊號;及一輸出端;一第二及閘,包含:一第一輸入端,用以接收該第一相位訊號;一第二輸入端,用以接收該回饋訊號;及一輸出端;一第一非或閘,包含:一第一輸入端,耦接於該第一及閘的該輸出端;一第二輸入端,耦接於該第二及閘的該輸出端;及一輸出端;一第一正反器,包含:一資料輸入端,用以接收一供電電壓;一時脈端,用以接收該起始訊號; 一重置端,耦接於該第一非或閘的該輸出端;一輸出端,用以輸出該第一相位訊號;及一反向輸出端,用以輸出該第一相位訊號的一反向訊號;及一第一脈波產生器,包含:一輸入端,用以接收該第一相位訊號的該反向訊號;及一輸出端,用以輸出該第一觸發訊號;該第二相位電路包含:一第三及閘,包含:一第一輸入端,用以接收該閉迴路訊號;一第二輸入端,用以接收該第一觸發訊號;及一輸出端;一第一非及閘,包含:一第一輸入端,用以接收該截止訊號;一第二輸入端,用以接收該第二相位訊號;及一輸出端;一第二正反器,包含:一資料輸入端,用以接收該供電電壓;一時脈端,耦接於該第三及閘的該輸出端;一重置端,耦接於該第一非及閘的該輸出端;一輸出端,用以輸出該第二相位訊號;及一反向輸出端,用以輸出該第二相位訊號的一反向訊號;及一第二脈波產生器,包含:一輸入端,用以接收該第二相位訊號的該反向訊號;及一輸出端,用以輸出該第二觸發訊號;及 該起始電路包含:一第一反向器,包含:一輸入端,用以接收該閉迴路訊號;及一輸出端;一第四及閘,包含:一第一輸入端,用以接收該第四觸發訊號;一第二輸入端,用以接收該閉迴路訊號;及一輸出端;一第五及閘,包含:一第一輸入端,用以接收該閉迴路訊號之一反向訊號;一第二輸入端,用以接收該第三觸發訊號;及一輸出端;一第一或閘,包含:一第一輸入端,耦接於第四及閘的輸出端;一第二輸入端,耦接於第五及閘的輸出端;及一輸出端;一第二反向器,包含:一輸入端,用以接收該模式訊號;及一輸出端,用以輸出該模式訊號之一反向訊號;一第六及閘,包含:一第一輸入端,耦接於第一或閘的輸出端;一第二輸入端,用以接收該模式訊號之該反向訊號;及一輸出端;一第七及閘,包含: 一第一輸入端,用以接收該模式訊號;一第二輸入端,用以接收該第二觸發訊號;及一輸出端;及一第二或閘,包含:一第一輸入端,耦接於第六及閘的輸出端;一第二輸入端,耦接於第七及閘的輸出端;及一輸出端,用以輸出該起始訊號。 The power converter of claim 14, wherein: the first phase circuit includes: a first AND gate, including: a first input terminal for receiving the first phase signal; a second input terminal for to receive the zero-crossing signal; and an output terminal; a second AND gate, including: a first input terminal to receive the first phase signal; a second input terminal to receive the feedback signal; and a Output terminal; a first NOR gate, including: a first input terminal coupled to the output terminal of the first AND gate; a second input terminal coupled to the output terminal of the second AND gate; and an output terminal; a first flip-flop, including: a data input terminal for receiving a supply voltage; a clock terminal for receiving the start signal; a reset terminal coupled to the output terminal of the first NOR gate; an output terminal for outputting the first phase signal; and an inverting output terminal for outputting an inverse of the first phase signal. direction signal; and a first pulse generator, including: an input terminal for receiving the reverse signal of the first phase signal; and an output terminal for outputting the first trigger signal; the second phase The circuit includes: a third AND gate, including: a first input end for receiving the closed loop signal; a second input end for receiving the first trigger signal; and an output end; a first NAND The gate includes: a first input terminal for receiving the cut-off signal; a second input terminal for receiving the second phase signal; and an output terminal; a second flip-flop including: a data input terminal , used to receive the supply voltage; a clock terminal coupled to the output terminal of the third AND gate; a reset terminal coupled to the output terminal of the first NAND gate; an output terminal used to Output the second phase signal; and a reverse output terminal for outputting a reverse signal of the second phase signal; and a second pulse generator including: an input terminal for receiving the second phase the reverse signal of the signal; and an output terminal for outputting the second trigger signal; and The initial circuit includes: a first inverter, including: an input end for receiving the closed loop signal; and an output end; a fourth AND gate, including: a first input end for receiving the a fourth trigger signal; a second input terminal for receiving the closed loop signal; and an output terminal; a fifth AND gate, including: a first input terminal for receiving a reverse signal of the closed loop signal ; a second input terminal for receiving the third trigger signal; and an output terminal; a first OR gate, including: a first input terminal coupled to the output terminal of the fourth AND gate; a second input terminal, coupled to the output terminal of the fifth AND gate; and an output terminal; a second inverter, including: an input terminal for receiving the mode signal; and an output terminal for outputting the mode signal. a reverse signal; a sixth AND gate, including: a first input terminal coupled to the output terminal of the first OR gate; a second input terminal for receiving the reverse signal of the mode signal; and a Output terminal; a seventh and gate, including: a first input terminal for receiving the mode signal; a second input terminal for receiving the second trigger signal; and an output terminal; and a second OR gate, including: a first input terminal coupled to At the output end of the sixth AND gate; a second input end coupled to the output end of the seventh AND gate; and an output end for outputting the start signal. 如請求項14所述之功率轉換器,其中:該第三相位電路包含:一第一及閘,包含:一第一輸入端,用以接收該第三相位訊號;一第二輸入端,用以接收該零交叉訊號;及一輸出端;一第二及閘,包含:一第一輸入端,用以接收該第三相位訊號;一第二輸入端,用以接收該回饋訊號;及一輸出端;一第一非或閘,包含:一第一輸入端,耦接於該第一及閘的該輸出端;一第二輸入端,耦接於該第二及閘的該輸出端;及一輸出端;一第一反向器,包含:一輸入端,用以接收該閉迴路訊號;及 一輸出端;一第四及閘,包含:一第一輸入端,用以接收該第二觸發訊號;一第二輸入端,用以接收該閉迴路訊號;及一輸出端;一第五及閘,包含:一第一輸入端,耦接於該第一反向器的該輸出端;一第二輸入端,用以接收該第一觸發訊號;及一輸出端;一第一或閘,包含:一第一輸入端,耦接於該第四及閘的該輸出端;一第二輸入端,耦接於該第五及閘的該輸出端;及一輸出端;一第一正反器,包含:一資料輸入端,用以接收一供電電壓;一時脈端,耦接於該第四及閘的該輸出端;一重置端,耦接於該第一非或閘的該輸出端;一輸出端,用以輸出該第三相位訊號;及一反向輸出端,用以輸出該第三相位訊號的一反向訊號;及一第一脈波產生器,包含:一輸入端,用以接收該第三相位訊號的該反向訊號;及一輸出端,用以輸出該第三觸發訊號;及該第四相位電路包含:一第三及閘,包含: 一第一輸入端,用以接收該閉迴路訊號;一第二輸入端,用以接收該第三觸發訊號;及一輸出端;一第一非及閘,包含:一第一輸入端,用以接收該截止訊號;一第二輸入端,用以接收該第四相位訊號;及一輸出端;一第二正反器,包含:一資料輸入端,用以接收該供電電壓;一時脈端,耦接於該第三及閘的該輸出端;一重置端,耦接於該第一非及閘的該輸出端;一輸出端,用以輸出該第四相位訊號;及一反向輸出端,用以輸出該第四相位訊號的一反向訊號;及一第二脈波產生器,包含:一輸入端,用以接收該第四相位訊號的該反向訊號;及一輸出端,用以輸出該第三觸發訊號。 The power converter of claim 14, wherein: the third phase circuit includes: a first AND gate, including: a first input terminal for receiving the third phase signal; a second input terminal for to receive the zero-crossing signal; and an output terminal; a second AND gate, including: a first input terminal to receive the third phase signal; a second input terminal to receive the feedback signal; and a Output terminal; a first NOR gate, including: a first input terminal coupled to the output terminal of the first AND gate; a second input terminal coupled to the output terminal of the second AND gate; and an output terminal; a first inverter, including: an input terminal for receiving the closed loop signal; and An output terminal; a fourth AND gate, including: a first input terminal for receiving the second trigger signal; a second input terminal for receiving the closed loop signal; and an output terminal; a fifth AND The gate includes: a first input terminal coupled to the output terminal of the first inverter; a second input terminal for receiving the first trigger signal; and an output terminal; a first OR gate, It includes: a first input terminal coupled to the output terminal of the fourth AND gate; a second input terminal coupled to the output terminal of the fifth AND gate; and an output terminal; a first positive and negative The device includes: a data input terminal for receiving a supply voltage; a clock terminal coupled to the output terminal of the fourth AND gate; a reset terminal coupled to the output of the first NOR gate terminal; an output terminal for outputting the third phase signal; and a reverse output terminal for outputting a reverse signal of the third phase signal; and a first pulse generator including: an input terminal , for receiving the reverse signal of the third phase signal; and an output terminal for outputting the third trigger signal; and the fourth phase circuit includes: a third AND gate, including: a first input terminal for receiving the closed loop signal; a second input terminal for receiving the third trigger signal; and an output terminal; a first NAND gate, including: a first input terminal for to receive the cut-off signal; a second input terminal to receive the fourth phase signal; and an output terminal; a second flip-flop including: a data input terminal to receive the supply voltage; a clock terminal , coupled to the output terminal of the third AND gate; a reset terminal coupled to the output terminal of the first NAND gate; an output terminal for outputting the fourth phase signal; and a reverse an output terminal for outputting a reverse signal of the fourth phase signal; and a second pulse generator including: an input terminal for receiving the reverse signal of the fourth phase signal; and an output terminal , used to output the third trigger signal. 如請求項14所述之功率轉換器,其中:該訊號產生電路,包含:一第一緩衝器,包含:一輸入端,用以接收該第一相位訊號:及一輸出端,用以輸出該第一開關訊號:一第一反向器,包含:一輸入端,用以接收該模式訊號:及 一輸出端:一第一及閘,包含:一第一輸入端,用以接收該第三相位訊號:一第二輸入端,耦接於該第一反向器的該輸出端:及一輸出端:一第二及閘,包含:一第一輸入端,用以接收該模式訊號:一第二輸入端,用以接收該第一相位訊號:及一輸出端:一第一或閘,包含:一第一輸入端,耦接於該第一及閘的該輸出端:一第二輸入端,耦接於該第二及閘的該輸出端:及一輸出端:一第二緩衝器,包含:一輸入端,耦接於該第一或閘的該輸出端:及一輸出端,用以輸出該第二開關訊號:一第二或閘,包含:一第一輸入端,用以接收該第一相位訊號:一第二輸入端,用以接收該第二相位訊號:一第三輸入端,用以接收該第四相位訊號:及一輸出端:一第二反向器,包含:一輸入端,用以接收該模式訊號:及一輸出端: 一第三及閘,包含:一第一輸入端,耦接於該第二或閘的該輸出端:一第二輸入端,耦接於該第二反向器的該輸出端:及一輸出端:一第四及閘,包含:一第一輸入端,用以接收該模式訊號:一第二輸入端,用以接收該第二相位訊號:及一輸出端:一第三或閘,包含:第一輸入端,耦接於該第三及閘的該輸出端:一第二輸入端,耦接於該第四及閘的該輸出端:及一輸出端:一第三緩衝器,包含:一輸入端,耦接於該第三或閘的該輸出端:及一輸出端,用以輸出該第三開關訊號:一第四或閘,包含:一第一輸入端,用以接收該第三相位訊號:一第二輸入端,用以接收該第二相位訊號:一第三輸入端,用以接收該第四相位訊號:及一輸出端:一第三反向器,包含:一輸入端,用以接收該模式訊號:及一輸出端:一第五及閘,包含: 一第一輸入端,耦接於該第四或閘的該輸出端:一第二輸入端,耦接於該第三反向器的該輸出端:及一輸出端:一第六及閘,包含:一第一輸入端,用以接收該模式訊號:一第二輸入端,用以接收該第二相位訊號:及一輸出端:一第五或閘,包含:一第一輸入端,耦接於該第五及閘的該輸出端:一第二輸入端,耦接於該第六及閘的該輸出端:及一輸出端:及一第四緩衝器,包含:一輸入端,耦接於該第五或閘的該輸出端:及一輸出端,用以輸出該第四開關訊號。 The power converter of claim 14, wherein: the signal generating circuit includes: a first buffer, including: an input terminal for receiving the first phase signal; and an output terminal for outputting the first phase signal. First switching signal: a first inverter, including: an input terminal for receiving the mode signal: and An output terminal: a first AND gate, including: a first input terminal for receiving the third phase signal: a second input terminal coupled to the output terminal of the first inverter: and an output terminal: a second AND gate, including: a first input terminal for receiving the mode signal: a second input terminal for receiving the first phase signal: and an output terminal: a first OR gate, including : a first input terminal coupled to the output terminal of the first AND gate: a second input terminal coupled to the output terminal of the second AND gate: and an output terminal: a second buffer, It includes: an input terminal coupled to the output terminal of the first OR gate; and an output terminal for outputting the second switch signal; a second OR gate, including: a first input terminal for receiving The first phase signal: a second input terminal for receiving the second phase signal: a third input terminal for receiving the fourth phase signal: and an output terminal: a second inverter, including: An input terminal for receiving the mode signal: and an output terminal: A third AND gate, including: a first input terminal coupled to the output terminal of the second OR gate: a second input terminal coupled to the output terminal of the second inverter: and an output Terminal: a fourth AND gate, including: a first input terminal, used to receive the mode signal: a second input terminal, used to receive the second phase signal: and an output terminal: a third OR gate, including : a first input terminal coupled to the output terminal of the third AND gate: a second input terminal coupled to the output terminal of the fourth AND gate: and an output terminal: a third buffer, including : an input terminal coupled to the output terminal of the third OR gate: and an output terminal for outputting the third switch signal: a fourth OR gate, including: a first input terminal for receiving the The third phase signal: a second input terminal for receiving the second phase signal: a third input terminal for receiving the fourth phase signal: and an output terminal: a third inverter, including: a An input terminal for receiving the mode signal: and an output terminal: a fifth AND gate, including: a first input terminal coupled to the output terminal of the fourth OR gate: a second input terminal coupled to the output terminal of the third inverter: and an output terminal: a sixth AND gate, It includes: a first input terminal for receiving the mode signal: a second input terminal for receiving the second phase signal: and an output terminal: a fifth OR gate, including: a first input terminal, coupled The output terminal connected to the fifth AND gate: a second input terminal, the output terminal coupled to the sixth AND gate: and an output terminal: and a fourth buffer, including: an input terminal, coupled to The output terminal connected to the fifth OR gate: and an output terminal for outputting the fourth switch signal. 如請求項14所述之功率轉換器,其中:該回饋電路,包含:一第一非或閘,包含:一第一輸入端,用以接收該第一相位訊號:一第二輸入端,用以接收該第三相位訊號:及一輸出端:一電流源,包含:一第一端,耦接於一供電端,用以接收一供電電壓:及一第二端: 一電晶體,包含:一控制端,耦接於該第一非或閘的該輸出端:一第一端,耦接於該電流源的該第二端:及一第二端,耦接於一接地端:一第一電容,包含:一第一端,耦接於該電晶體的該第一端:及一第二端,耦接於該接地端:一第一電阻,包含:一第一端,用以接收該輸出電壓:及一第二端:一第二電阻,包含:一第一端,耦接於該第一電阻的該第二端:及一第二端,耦接於該接地端:一第三電阻,包含:一第一端,用以接收該參考電壓:及一第二端:一第四電阻,包含:一第一端,耦接於該第三電阻的該第二端:及一第二端:一開關,包含:一控制端,用以接收該閉迴路訊號:一第一端,耦接於該第四電阻的該第二端:及一第二端,耦接於該接地端:一誤差放大器,包含: 一反向輸入端,耦接於該第一電阻的該第二端:一正向輸入端,耦接於該第三電阻的該第二端:及一輸出端:一第五電阻,包含:一第一端,耦接於該誤差放大器的該輸出端:及一第二端:一第二電容,包含:一第一端,耦接於該第一電阻的該第二端:及一第二端,耦接於該接地端:及一比較器,包含:一正向輸入端,耦接於該第一電容的該第一端:一反向輸入端,耦接於該第五電阻的該第一端:及一輸出端,用以輸出該回饋訊號。 The power converter of claim 14, wherein: the feedback circuit includes: a first NOR gate, including: a first input terminal for receiving the first phase signal: and a second input terminal for To receive the third phase signal: and an output terminal: a current source, including: a first terminal coupled to a power supply terminal for receiving a supply voltage: and a second terminal: A transistor including: a control terminal coupled to the output terminal of the first NOR gate; a first terminal coupled to the second terminal of the current source; and a second terminal coupled to A ground terminal: a first capacitor, including: a first terminal, coupled to the first terminal of the transistor: and a second terminal, coupled to the ground terminal: a first resistor, including: a first One end for receiving the output voltage: and a second end: a second resistor, including: a first end coupled to the second end of the first resistor: and a second end coupled to The ground terminal: a third resistor, including: a first terminal for receiving the reference voltage; and a second terminal: a fourth resistor, including: a first terminal coupled to the third resistor. Second terminal: and a second terminal: a switch, including: a control terminal for receiving the closed loop signal: a first terminal coupled to the second terminal of the fourth resistor: and a second terminal , coupled to the ground terminal: an error amplifier, including: An inverting input terminal coupled to the second terminal of the first resistor: a forward input terminal coupled to the second terminal of the third resistor: and an output terminal: a fifth resistor, including: A first terminal coupled to the output terminal of the error amplifier: and a second terminal: a second capacitor, including: a first terminal coupled to the second terminal of the first resistor: and a first terminal Two terminals, coupled to the ground terminal: and a comparator, including: a forward input terminal, coupled to the first terminal of the first capacitor: a reverse input terminal, coupled to the fifth resistor The first terminal: and an output terminal for outputting the feedback signal. 如請求項14所述之功率轉換器,其中:該狀態偵測電路,包含:一第一比較器,包含:一正向輸入端,用以接收該切換電壓:一反向輸入端,用以接收該輸出電壓:及一輸出端:一零交叉偵測器,包含:一輸入端,耦接於該第一比較器的該輸出端;及一輸出端,用以輸出該零交叉訊號;一第二比較器,包含: 一正向輸入端,用以接收該切換電壓:一反向輸入端,用以接收該消磁參考電壓:及一輸出端,用以輸出一消磁訊號:一第一脈波產生器,包含:一致能端,用以接收一控制訊號:一輸入端,用以接收該消磁訊號:及一輸出端:一第一及閘,包含:一第一輸入端,用以接收該消磁訊號:一第二輸入端,耦接於該第一脈波產生器的該輸出端:及一輸出端,用以輸出該截止訊號:及該閉迴路電路,包含:一第一反向器,包含:一輸入端,用以接收該零交叉訊號:及一輸出端,用以輸出該零交叉訊號之一反向訊號:一第一或閘,包含:一第一輸入端,用以接收該第一相位訊號:一第二輸入端,用以接收該第三相位訊號:及一輸出端:一第二脈波產生器,包含:一輸入端,耦接於該第一或閘的該輸出端:及一輸出端,用以輸出一第一脈衝訊號:一第二反向器,包含:一輸入端,用以接收該第一脈衝訊號:及 一輸出端,用以輸出一重置訊號:及一正反器,包含:一資料輸入端,用以接收該零交叉訊號之反向訊號:一時脈端,用以接收該回饋訊號:一重置端,用以接收該重置訊號:及一輸出端,用以輸出該閉迴路訊號。 The power converter as described in claim 14, wherein: the status detection circuit includes: a first comparator, including: a forward input terminal for receiving the switching voltage: and a reverse input terminal for Receive the output voltage: and an output terminal: a zero-crossing detector, including: an input terminal coupled to the output terminal of the first comparator; and an output terminal for outputting the zero-crossing signal; The second comparator contains: A forward input terminal is used to receive the switching voltage: a reverse input terminal is used to receive the degaussing reference voltage: and an output terminal is used to output a degaussing signal: a first pulse generator, including: consistent The energy terminal is used to receive a control signal: an input terminal is used to receive the degaussing signal: and an output terminal is: a first AND gate, including: a first input terminal is used to receive the degaussing signal: a second The input terminal is coupled to the output terminal of the first pulse generator: and an output terminal is used to output the cut-off signal: and the closed loop circuit includes: a first inverter, including: an input terminal , for receiving the zero-crossing signal: and an output terminal for outputting an inverse signal of the zero-crossing signal: a first OR gate, including: a first input terminal for receiving the first phase signal: a second input terminal for receiving the third phase signal: and an output terminal: a second pulse generator including: an input terminal coupled to the output terminal of the first OR gate: and an output terminal for outputting a first pulse signal: a second inverter including: an input terminal for receiving the first pulse signal: and an output terminal for outputting a reset signal: and a flip-flop, including: a data input terminal for receiving the reverse signal of the zero-crossing signal: a clock terminal for receiving the feedback signal: a reversal A set terminal is used to receive the reset signal: and an output terminal is used to output the closed loop signal. 一種功率轉換器的控制方法,該功率轉換器包含一第一開關、一第二開關、一第三開關、一第四開關、一飛馳電容、一電感、一輸出電容及一控制電路,該第一開關包含一控制端、一第一端,用以接收一輸入電壓、及一第二端,該第二開關包含一控制端、一第一端,耦接於該第一開關之該第二端、及一第二端,該第三開關包含一控制端、一第一端,耦接於該第二開關之該第二端、及一第二端,該第四開關包含一控制端、一第一端,耦接於該第三開關之該第二端、及一第二端,耦接於一接地端,該飛馳電容包含一第一端,耦接於該第一開關之該第二端、及一第二端,耦接於該第三開關之該第二端,該電感包含一第一端,耦接於該第二開關之該第二端、及一第二端,該輸出電容包含一第一端,耦接於該電感之該第二端,用以輸出一輸出電壓、及一第二端,耦接於該接地端,及該控制電路耦接於該第一開關之該第一端、該第一開關之該控制端、該第二開關之該控制端、該第三開關之該控制端及該第四開關之該控制端,該控制方法包含:於一非調節模式時,該控制電路依據一諧振頻率切換該第一開關、該第二開關、該第三開關及該第四開關;及於一調節模式時,該控制電路依據超出該諧振頻率的一調節頻率切換該第 一開關、該第二開關、該第三開關及該第四開關;其中當該飛馳電容耦接於該電感時,則該飛馳電容及該電感會形成具有該諧振頻率的一諧振電路。 A control method for a power converter. The power converter includes a first switch, a second switch, a third switch, a fourth switch, a flying capacitor, an inductor, an output capacitor and a control circuit. The first switch is A switch includes a control end, a first end for receiving an input voltage, and a second end. The second switch includes a control end, a first end, and is coupled to the second end of the first switch. terminal, and a second terminal, the third switch includes a control terminal, a first terminal coupled to the second terminal of the second switch, and a second terminal, the fourth switch includes a control terminal, A first terminal is coupled to the second terminal of the third switch, and a second terminal is coupled to a ground terminal. The flying capacitor includes a first terminal coupled to the third terminal of the first switch. Two terminals and a second terminal are coupled to the second terminal of the third switch. The inductor includes a first terminal coupled to the second terminal of the second switch and a second terminal. The output capacitor includes a first terminal coupled to the second terminal of the inductor for outputting an output voltage, and a second terminal coupled to the ground terminal, and the control circuit is coupled to the first switch. The first end, the control end of the first switch, the control end of the second switch, the control end of the third switch and the control end of the fourth switch, the control method includes: in a non- In the adjustment mode, the control circuit switches the first switch, the second switch, the third switch and the fourth switch according to a resonant frequency; and in an adjustment mode, the control circuit switches the first switch, the second switch, the third switch and the fourth switch according to an adjustment exceeding the resonant frequency. Frequency switching of this section A switch, the second switch, the third switch and the fourth switch; when the flying capacitor is coupled to the inductor, the flying capacitor and the inductor will form a resonant circuit with the resonant frequency. 如請求項20所述之方法,其中該控制電路用以於該電感之一電感電流從該電感之該第二端流到該電感之該第一端時切換該第一開關、該第二開關、該第三開關及/或該第四開關。 The method of claim 20, wherein the control circuit is used to switch the first switch and the second switch when an inductor current of the inductor flows from the second end of the inductor to the first end of the inductor. , the third switch and/or the fourth switch. 如請求項20所述之方法,其中當該輸入電壓小於一低電壓臨界值時,該功率轉換器用以執行該調節模式之一單一階段操作,藉以將該輸出電壓調節為小於或等於該輸入電壓;該控制電路依據超出該諧振頻率的該調節頻率切換該第一開關、該第二開關、該第三開關及該第四開關包含:在該電感之一電感電流到達0並經過一第一預定時間之後該控制電路截止該第三開關及該第四開關;及在截止該第三開關及該第四開關並經過一第二預定時間之後該控制電路導通該第一開關及該第二開關。 The method of claim 20, wherein when the input voltage is less than a low voltage threshold, the power converter is used to perform a single-stage operation of the regulation mode, thereby regulating the output voltage to be less than or equal to the input voltage ; The control circuit switches the first switch, the second switch, the third switch and the fourth switch according to the adjustment frequency exceeding the resonant frequency, including: when an inductor current of the inductor reaches 0 and passes through a first predetermined After the time, the control circuit turns off the third switch and the fourth switch; and after turning off the third switch and the fourth switch and a second predetermined time passes, the control circuit turns on the first switch and the second switch. 如請求項20所述之方法,其中當該輸入電壓超出一高電壓臨界值時,該功率轉換器用以執行該調節模式之一二階段操作,藉以將該輸出電壓調節為小於或等於該輸入電壓之一半;該控制電路依據超出該諧振頻率的該調節頻率切換該第一開關、該第二開關、該第三開關及該第四開關包含:當該第一開關及該第三開關導通時,該輸入電壓經由該電感對該飛馳電 容及該輸出電容充電;及當該第二開關及該第四開關導通時,該飛馳電容經由該電感對該輸出電容充電。 The method of claim 20, wherein when the input voltage exceeds a high voltage threshold, the power converter is used to perform a two-stage operation of the regulation mode, thereby regulating the output voltage to be less than or equal to the input voltage. One-half; the control circuit switches the first switch, the second switch, the third switch and the fourth switch according to the adjustment frequency exceeding the resonant frequency, including: when the first switch and the third switch are turned on, The input voltage passes through the inductor to the flying current The capacitor and the output capacitor are charged; and when the second switch and the fourth switch are turned on, the flying capacitor charges the output capacitor through the inductor. 如請求項20所述之方法,其中該控制電路依據超出該諧振頻率的該調節頻率切換該第一開關、該第二開關、該第三開關及該第四開關包含:該控制電路在該電感之一電感電流到達0之前截止該第一開關、該第二開關、該第三開關及/或該第四開關。 The method of claim 20, wherein the control circuit switches the first switch, the second switch, the third switch and the fourth switch according to the adjustment frequency exceeding the resonant frequency, including: the control circuit switches the inductor Before an inductor current reaches 0, the first switch, the second switch, the third switch and/or the fourth switch are turned off. 如請求項20所述之方法,其中該控制電路依據超出該諧振頻率的該調節頻率切換該第一開關、該第二開關、該第三開關及該第四開關包含:該控制電路在該電感之一電感電流到達0時截止該第一開關、該第二開關、該第三開關及/或該第四開關。 The method of claim 20, wherein the control circuit switches the first switch, the second switch, the third switch and the fourth switch according to the adjustment frequency exceeding the resonant frequency, including: the control circuit switches the inductor When an inductor current reaches 0, the first switch, the second switch, the third switch and/or the fourth switch are turned off. 如請求項20所述之方法,其中該控制電路依據超出該諧振頻率的該調節頻率切換該第一開關、該第二開關、該第三開關及該第四開關包含:該控制電路在該電感之一電感電流到達0之後截止該第一開關、該第二開關、該第三開關及/或該第四開關。 The method of claim 20, wherein the control circuit switches the first switch, the second switch, the third switch and the fourth switch according to the adjustment frequency exceeding the resonant frequency, including: the control circuit switches the inductor After an inductor current reaches 0, the first switch, the second switch, the third switch and/or the fourth switch are turned off.
TW111141597A 2022-04-19 2022-11-01 Power converter and control method thereof TWI826090B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/131,361 US20230336075A1 (en) 2022-04-19 2023-04-05 Power converter for reducing switching loss and enhancing system efficiency and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263332279P 2022-04-19 2022-04-19
US63/332,279 2022-04-19

Publications (2)

Publication Number Publication Date
TW202343951A TW202343951A (en) 2023-11-01
TWI826090B true TWI826090B (en) 2023-12-11

Family

ID=88360810

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111141597A TWI826090B (en) 2022-04-19 2022-11-01 Power converter and control method thereof

Country Status (2)

Country Link
CN (1) CN116915050A (en)
TW (1) TWI826090B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020112207A2 (en) * 2019-09-11 2020-06-04 Futurewei Technologies, Inc. Switched-capacitor power conversion system and control method
TWI698078B (en) * 2016-06-07 2020-07-01 美商線性科技股份有限公司 Transformer-based hybrid power converters
US20210203222A1 (en) * 2019-12-31 2021-07-01 Solaredge Technologies Ltd. DC Balancer Circuit With ZVS
TW202201887A (en) * 2020-06-15 2022-01-01 法商3D波拉斯公司 Resonant power converter
TWI752891B (en) * 2021-06-25 2022-01-11 台達電子工業股份有限公司 Llc resonance converter, control unit, and method of controlling the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI698078B (en) * 2016-06-07 2020-07-01 美商線性科技股份有限公司 Transformer-based hybrid power converters
WO2020112207A2 (en) * 2019-09-11 2020-06-04 Futurewei Technologies, Inc. Switched-capacitor power conversion system and control method
US20210203222A1 (en) * 2019-12-31 2021-07-01 Solaredge Technologies Ltd. DC Balancer Circuit With ZVS
EP3846329A1 (en) * 2019-12-31 2021-07-07 Solaredge Technologies Ltd. Dc balancer circuit with zvs
TW202201887A (en) * 2020-06-15 2022-01-01 法商3D波拉斯公司 Resonant power converter
TWI752891B (en) * 2021-06-25 2022-01-11 台達電子工業股份有限公司 Llc resonance converter, control unit, and method of controlling the same

Also Published As

Publication number Publication date
TW202343951A (en) 2023-11-01
CN116915050A (en) 2023-10-20

Similar Documents

Publication Publication Date Title
JP4710749B2 (en) DC-DC converter control circuit and method
US7209373B2 (en) High voltage pulse generator
US8804382B2 (en) Resonant controller circuit and system with reduced peak currents during soft-start
TWI448063B (en) Controllers and switching methods for power converters and controlling methods for quasi-resonant power converters
WO2009012620A1 (en) Method and apparatus to provide synchronous rectifying circuit for flyback power converters
JP5456495B2 (en) Buck-boost switching power supply control circuit, buck-boost switching power supply, and buck-boost switching power supply control method
KR20080024984A (en) Switching regulator and semiconductor device using the same
KR20090011715A (en) Converter and the driving method thereof
US20190044437A1 (en) Charge pump circuit and operating method thereof
CN104617771A (en) Switching power converter system and control method thereof
JP2017055627A (en) Semiconductor device and DC-DC converter
CN113872421A (en) Control circuit of voltage conversion circuit and control method thereof
US7049800B2 (en) Switching mode voltage regulator and method thereof
TWI596881B (en) Oscillator applied to a control circuit of a power converter and control method thereof
US8148853B2 (en) Switching method and apparatus
TWI826090B (en) Power converter and control method thereof
JP6614818B2 (en) Buck-boost DC / DC converter
TWI822432B (en) Power converter and control method thereof
CN112152432A (en) Method for driving electronic switch in power converter and control circuit
TWI755144B (en) Resonant switching power converter
KR101822039B1 (en) Power Converter For Improving Speed of Blocking Inductor Current
US20230336074A1 (en) Power converter preventing overvoltage damage and control method thereof
CN115085550A (en) Step-down DC converter
US20230336075A1 (en) Power converter for reducing switching loss and enhancing system efficiency and control method thereof
JP4325413B2 (en) Synchronous rectification type DC / DC converter