CN115085550A - A step-down DC converter - Google Patents
A step-down DC converter Download PDFInfo
- Publication number
- CN115085550A CN115085550A CN202210880236.3A CN202210880236A CN115085550A CN 115085550 A CN115085550 A CN 115085550A CN 202210880236 A CN202210880236 A CN 202210880236A CN 115085550 A CN115085550 A CN 115085550A
- Authority
- CN
- China
- Prior art keywords
- output
- current
- control signal
- voltage
- terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 claims description 26
- 230000000694 effects Effects 0.000 abstract description 8
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 230000001960 triggered effect Effects 0.000 abstract description 2
- 230000005611 electricity Effects 0.000 abstract 1
- 101100464779 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CNA1 gene Proteins 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 101100464782 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CMP2 gene Proteins 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
- H02M1/088—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
技术领域technical field
本发明涉及集成电路技术领域,具体涉及一种降压式直流变换器。The invention relates to the technical field of integrated circuits, in particular to a step-down DC converter.
背景技术Background technique
降压式直流变换器,是一种直流-直流转换器,该电路的特点是通过震荡电路将一直流电压转变为一高频电源,然后通过脉冲变压器、整流滤波回路等输出需要的直流电压,从而使得输出电压相对于输入电压幅值降低,纹波减小,从而输出较为平稳的直流电压,在多种电子电路中均得到广泛应用。The step-down DC converter is a DC-DC converter. The characteristic of this circuit is to convert the DC voltage into a high-frequency power supply through an oscillating circuit, and then output the required DC voltage through a pulse transformer, a rectifier filter circuit, etc. As a result, the amplitude of the output voltage is reduced relative to the input voltage, and the ripple is reduced, thereby outputting a relatively stable DC voltage, which is widely used in various electronic circuits.
现有技术中,已存在有较多的降压式直流变换器的技术方案。比如,中国专利201210027568.3公开了一种降压转换器。该方案提供了一种基于PFM控制的降压转换电路,包括用于检测电感电流过零点时的过零比较器、用于检测电感电流峰值的电流比较器和用于检测输出电压的电压比较器,PFM控制模块根据检测结果控制开关管的导通与关闭,进而实现降压直流输出。In the prior art, there are many technical solutions of step-down DC converters. For example, Chinese Patent 201210027568.3 discloses a buck converter. The scheme provides a step-down conversion circuit based on PFM control, including a zero-crossing comparator for detecting the zero-crossing point of the inductor current, a current comparator for detecting the peak value of the inductor current, and a voltage comparator for detecting the output voltage , the PFM control module controls the on and off of the switch tube according to the detection result, thereby realizing the step-down DC output.
但是,在实施过程中,发明人发现,上述技术方案在实施过程中,由于过零比较器是通过正向输入端连接电感前级,反向输入端接地来实现对电感电流的过零时间判断。但是,由于集成电路的接地设计等原因,接地端有时会发生抖动,进而引起比较器的误触发,从而影响整体变换电路的转换效率。However, during the implementation process, the inventor found that, in the implementation process of the above technical solution, since the zero-crossing comparator is connected to the front stage of the inductor through the forward input terminal, and the reverse input terminal is grounded to realize the zero-crossing time judgment of the inductor current . However, due to the grounding design of the integrated circuit and other reasons, the grounding terminal may sometimes vibrate, thereby causing false triggering of the comparator, thereby affecting the conversion efficiency of the overall conversion circuit.
发明内容SUMMARY OF THE INVENTION
针对现有技术中存在的上述问题,现提供一种降压式直流变换器。Aiming at the above problems existing in the prior art, a step-down DC converter is now provided.
具体技术方案如下:The specific technical solutions are as follows:
一种降压式直流变换器,包括:A step-down DC converter, comprising:
输出模块,所述输出模块的输入端连接供电电路,所述输出模块的输出端连接负载电路;an output module, the input end of the output module is connected to the power supply circuit, and the output end of the output module is connected to the load circuit;
电流感测模块,所述电流感测模块的输入端连接所述输出模块的电流反馈端和第一电压反馈端,所述电流感测模块的输出端连接所述输出模块的控制端,所述电流感测模块自所述输出模块中获取峰值电流和第一反馈电压,根据所述峰值电流和第一反馈电压生成电流控制信号;a current sensing module, the input terminal of the current sensing module is connected to the current feedback terminal and the first voltage feedback terminal of the output module, the output terminal of the current sensing module is connected to the control terminal of the output module, the The current sensing module obtains the peak current and the first feedback voltage from the output module, and generates a current control signal according to the peak current and the first feedback voltage;
所述电流感测模块还设置有延时单元,所述延时单元根据所述峰值电流生成延时控制信号;The current sensing module is further provided with a delay unit, and the delay unit generates a delay control signal according to the peak current;
电压感测模块,所述电压感测模块的输入端连接所述输出模块的第二电压反馈端,所述电压感测模块的输出端连接所述输出模块的控制端,所述电压感测模块自所述输出模块获取第二反馈电压,并根据所述第二反馈电压生成电压控制信号;a voltage sensing module, the input end of the voltage sensing module is connected to the second voltage feedback end of the output module, the output end of the voltage sensing module is connected to the control end of the output module, the voltage sensing module Obtain a second feedback voltage from the output module, and generate a voltage control signal according to the second feedback voltage;
所述输出模块根据所述电流控制信号、所述延时控制信号和所述电压控制信号的控制自所述供电电路取电,并向所述负载电路输出输出电流。The output module takes power from the power supply circuit according to the control of the current control signal, the delay control signal and the voltage control signal, and outputs an output current to the load circuit.
优选地,所述输出模块包括:Preferably, the output module includes:
控制单元,所述控制单元的电源输入端为所述输出模块的输入端,所述控制单元的信号输入端为所述输出模块的控制端,所述控制单元分别接收所述电流控制信号、所述电压控制信号和所述延时控制信号;a control unit, the power input end of the control unit is the input end of the output module, the signal input end of the control unit is the control end of the output module, the control unit receives the current control signal, the the voltage control signal and the delay control signal;
电感,所述电感的第一端连接所述控制单元的输出端,所述电感的第二端为所述输出模块的输出端;an inductor, the first end of the inductor is connected to the output end of the control unit, and the second end of the inductor is the output end of the output module;
输出电容,所述输出电容的第一端连接所述电感的第二端,所述输出电容的第二端接地;an output capacitor, the first end of the output capacitor is connected to the second end of the inductor, and the second end of the output capacitor is grounded;
所述电感的第一端为所述输出模块的第一电压反馈端,所述电感的第二端为所述输出模块的第二电压反馈端。The first end of the inductance is the first voltage feedback end of the output module, and the second end of the inductance is the second voltage feedback end of the output module.
优选地,所述控制单元包括:Preferably, the control unit includes:
逻辑控制器,所述逻辑控制器分别接收所述电流控制信号、所述电压控制信号和所述延时控制信号;a logic controller, which respectively receives the current control signal, the voltage control signal and the delay control signal;
第一开关管,所述第一开关管的输入端连接所述供电电路,所述第一开关管的输出端为所述输出模块的输出端;a first switch tube, the input end of the first switch tube is connected to the power supply circuit, and the output end of the first switch tube is the output end of the output module;
第二开关管,所述第二开关管的输入端连接所述第一开关管的输出端,所述第二开关管的输出端接地;a second switch tube, the input end of the second switch tube is connected to the output end of the first switch tube, and the output end of the second switch tube is grounded;
所述逻辑控制器的第一控制端连接所述第一开关管的栅极,所述控制单元的第二控制端连接所述第二开关管的栅极;The first control terminal of the logic controller is connected to the gate of the first switch tube, and the second control terminal of the control unit is connected to the gate of the second switch tube;
所述逻辑控制器根据所述电流控制信号、所述电压控制信号和所述延时控制信号分别控制所述第一开关管和所述第二开关管。The logic controller controls the first switch tube and the second switch tube respectively according to the current control signal, the voltage control signal and the delay control signal.
优选地,所述电流感测模块包括:Preferably, the current sensing module includes:
电流感测器,所述电流感测器获取所述电感上的峰值电流,并根据所述峰值电流生成峰值电压输出;a current sensor, the current sensor obtains a peak current on the inductor, and generates a peak voltage output according to the peak current;
第一比较器,所述第一比较器的同向输入端连接所述电流感测模块的输入端,所述第一比较器的反向输入端连接所述电流感测器的第一输出端,所述第一比较器的输出端连接所述输出模块以发送所述电流控制信号;a first comparator, the non-inverting input terminal of the first comparator is connected to the input terminal of the current sensing module, and the inverting input terminal of the first comparator is connected to the first output terminal of the current sensor , the output end of the first comparator is connected to the output module to send the current control signal;
所述延时单元的第一输入端连接所述第一比较器的输出端,所述延时单元的第二输入端连接所述电流感测器的第二输出端,所述延时单元的输出端连接所述输出模块以发送所述延时控制信号。The first input end of the delay unit is connected to the output end of the first comparator, the second input end of the delay unit is connected to the second output end of the current sensor, and the second input end of the delay unit is connected to the second output end of the current sensor. The output terminal is connected to the output module to send the delay control signal.
优选地,所述延时单元包括:Preferably, the delay unit includes:
恒流源,所述恒流源的输出端连接延时电容的第一端,所述延时电容的第二端接地;a constant current source, the output end of the constant current source is connected to the first end of the delay capacitor, and the second end of the delay capacitor is grounded;
第二比较器,所述第二比较器的同向输入端连接所述延时电容的第一端,所述第二比较器的反向输入端连接所述电流感测器的输出端;a second comparator, the non-inverting input terminal of the second comparator is connected to the first terminal of the delay capacitor, and the inverting input terminal of the second comparator is connected to the output terminal of the current sensor;
D类触发器,所述D类触发器的时钟输入端连接所述第一比较器的输出端,所述D类触发器的数据输入端为高电平,所述D类触发器的输出端连接所述输出模块以发送所述延时控制信号;D-type flip-flop, the clock input terminal of the D-type flip-flop is connected to the output terminal of the first comparator, the data input terminal of the D-type flip-flop is at a high level, and the output terminal of the D-type flip-flop is at a high level. connecting the output module to send the delay control signal;
反馈开关管,所述反馈开关管的输入端连接所述第二比较器的同向输入端,所述反馈开关管的输出端接地,所述反馈开关管的栅极连接所述D类触发器的输出端。a feedback switch tube, the input end of the feedback switch tube is connected to the non-inverting input end of the second comparator, the output end of the feedback switch tube is grounded, and the gate of the feedback switch tube is connected to the D-type flip-flop 's output.
优选地,所述电流感测器的第二输出端通过下拉电阻接地。Preferably, the second output terminal of the current sensor is grounded through a pull-down resistor.
优选地,所述电压感测模块包括:Preferably, the voltage sensing module includes:
参考电压源;reference voltage source;
第三比较器,所述第三比较器的同向输入端连接所述参考电压源的输出端,所述第三比较器的反向输入端连接所述电压感测模块的输入端。The third comparator, the non-inverting input terminal of the third comparator is connected to the output terminal of the reference voltage source, and the inverting input terminal of the third comparator is connected to the input terminal of the voltage sensing module.
优选地,所述逻辑控制器工作在PFM模式下。Preferably, the logic controller operates in a PFM mode.
上述技术方案具有如下优点或有益效果:通过在电流感测模块中设置延时单元取代现有技术中的过零点比较器,在相对稳定的输出条件下可通过控制延时控制信号的生成来实现对输出模块的放电,避免了现有技术中通过接地和感测电感峰值电流会由于接地端抖动导致误触发的问题,实现了较为稳定的输出效果。The above technical solution has the following advantages or beneficial effects: by setting a delay unit in the current sensing module to replace the zero-crossing point comparator in the prior art, it can be realized by controlling the generation of a delay control signal under relatively stable output conditions The discharge of the output module avoids the problem of false triggering caused by the jittering of the ground terminal through grounding and sensing the peak current of the inductor in the prior art, and achieves a relatively stable output effect.
附图说明Description of drawings
参考所附附图,以更加充分的描述本发明的实施例。然而,所附附图仅用于说明和阐述,并不构成对本发明范围的限制。Embodiments of the present invention are described more fully with reference to the accompanying drawings. However, the accompanying drawings are for illustration and illustration only, and are not intended to limit the scope of the present invention.
图1为本发明实施例的示意图;1 is a schematic diagram of an embodiment of the present invention;
图2为本发明实施例中的延时单元示意图;2 is a schematic diagram of a delay unit in an embodiment of the present invention;
图3为本发明实施例的工作时序图。FIG. 3 is a working sequence diagram of an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present invention.
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。It should be noted that the embodiments of the present invention and the features of the embodiments may be combined with each other under the condition of no conflict.
下面结合附图和具体实施例对本发明作进一步说明,但不作为本发明的限定。The present invention will be further described below with reference to the accompanying drawings and specific embodiments, but it is not intended to limit the present invention.
本发明包括:The present invention includes:
一种降压式直流变换器,如图1所示,包括:A step-down DC converter, as shown in Figure 1, includes:
输出模块1,输出模块1的输入端连接供电电路VIN,输出模块1的输出端连接负载电路OUT;The
电流感测模块2,电流感测模块2的输入端连接输出模块的电流反馈端和第一电压反馈端,电流感测模块2的输出端连接输出模块1的控制端,电流感测模块2自输出模块1中获取峰值电流和第一反馈电压,根据峰值电流和第一反馈电压生成电流控制信号;The
电流感测模块2还设置有延时单元21,延时单元21根据峰值电流生成延时控制信号;The
电压感测模块3,电压感测模块3的输入端连接输出模块1的第二电压反馈端,电压感测模块3的输出端连接输出模块1的控制端,电压感测模块3自输出模块1获取第二反馈电压,并根据第二反馈电压生成电压控制信号;The
输出模块1根据电流控制信号、延时控制信号和电压控制信号的控制自供电电路取电,并向负载电路OUT输出输出电流。The
具体地,针对现有技术中的直流变换器,需要根据接地端检测电感L1过零点时间,导致比较器会由于接地端抖动进而发生误触发的问题,本实施例中,通过对输出模块1进行调整,使得输出模块1可根据电流控制信号、延时控制信号和电压控制信号进行输出,并采用周期相对稳定的延时控制信号取代了现有技术中的电感L1过零信号,提高了电路控制的稳定性,避免了因接地端抖动导致误触发的问题。Specifically, for the DC converter in the prior art, it is necessary to detect the zero-crossing time of the inductance L1 according to the ground terminal, which leads to the problem of false triggering of the comparator due to the jitter of the ground terminal. Adjustment, so that the
在一种较优的实施例中,输出模块1包括:In a preferred embodiment, the
控制单元11,控制单元11的电源输入端为输出模块1的输入端,控制单元11的信号输入端为输出模块1的控制端,控制单元11分别接收电流控制信号、电压控制信号和延时控制信号;The control unit 11, the power input end of the control unit 11 is the input end of the
电感L1,电感L1的第一端连接控制单元11的输出端,电感L1的第二端为输出模块1的输出端;Inductor L1, the first end of the inductance L1 is connected to the output end of the control unit 11, and the second end of the inductance L1 is the output end of the
输出电容C1,输出电容C1的第一端连接电感L1的第二端,输出电容C1的第二端接地;output capacitor C1, the first end of the output capacitor C1 is connected to the second end of the inductor L1, and the second end of the output capacitor C1 is grounded;
电感L1的第一端为输出模块1的电流反馈端,电感L1的第二端为输出模块1的电压反馈端。The first end of the inductor L1 is the current feedback end of the
具体地,为实现较好的控制效果,本实施例中,通过设置控制单元11,使得控制单元11能够根据接收到的电流控制信号、电压控制信号和延时控制信号控制电流输出,以使得电感L1和输出电容C1组成的谐振电路进行周期性震荡,向负载电路OUT输出特定的直流信号。Specifically, in order to achieve a better control effect, in this embodiment, by setting the control unit 11, the control unit 11 can control the current output according to the received current control signal, voltage control signal and delay control signal, so that the inductance The resonant circuit composed of L1 and the output capacitor C1 oscillates periodically, and outputs a specific DC signal to the load circuit OUT.
在一种较优的实施例中,控制单元11包括:In a preferred embodiment, the control unit 11 includes:
逻辑控制器U1,逻辑控制器U1分别接收电流控制信号、电压控制信号和延时控制信号;The logic controller U1, the logic controller U1 respectively receives the current control signal, the voltage control signal and the delay control signal;
第一开关管Q1,第一开关管Q1的输入端连接供电电路Vin,第一开关管Q1的输出端为输出模块1的输出端;The first switch tube Q1, the input end of the first switch tube Q1 is connected to the power supply circuit Vin, and the output end of the first switch tube Q1 is the output end of the
第二开关管Q2,第二开关管Q2的输入端连接第一开关管Q1的输出端,第二开关管Q2的输出端接地;The second switch tube Q2, the input end of the second switch tube Q2 is connected to the output end of the first switch tube Q1, and the output end of the second switch tube Q2 is grounded;
逻辑控制器U1的第一控制端连接第一开关管Q1的栅极,控制单元11的第二控制端连接第二开关管Q2的栅极;The first control terminal of the logic controller U1 is connected to the gate of the first switch tube Q1, and the second control terminal of the control unit 11 is connected to the gate of the second switch tube Q2;
逻辑控制器U1根据电流控制信号、电压控制信号和延时控制信号分别控制第一开关管Q1和第二开关管Q2。The logic controller U1 controls the first switch transistor Q1 and the second switch transistor Q2 respectively according to the current control signal, the voltage control signal and the delay control signal.
具体地,为实现较好的控制效果,本实施例中通过设置逻辑控制器U1,根据电流控制信号、电压控制信号和延时控制信号基于PFM模式驱动第一开关管Q1和第二开关管Q2组成的半桥输出电路向后方的电感L1输出电压,进而通过控制谐振回路的充放电实现了较好的降压输出效果。Specifically, in order to achieve a better control effect, in this embodiment, the logic controller U1 is set to drive the first switch transistor Q1 and the second switch transistor Q2 based on the PFM mode according to the current control signal, the voltage control signal and the delay control signal. The formed half-bridge output circuit outputs the voltage to the rear inductor L1, and then achieves a better step-down output effect by controlling the charge and discharge of the resonant circuit.
在实施过程中,第一开关管Q1和第二开关管Q2可采用MOS管或其他形式的功率器件,比如IGBT器件实现。在本实施例中,将第一开关管Q1设置为PMOS管,其源极作为输出端连接供电电路Vin,漏极作为输出端;第二开关管Q2为NMOS管,其漏极作为输入端,源极作为输出端。但是,在其他实施例中,可根据实际需要将第一开关管Q1设置为NMOS管或其他器件,并将第二开关管Q2设置为PMOS管或其他器件,并对其输入端和输出端进行适应性调整,在此并不加以限制。In the implementation process, the first switch transistor Q1 and the second switch transistor Q2 may be implemented by using MOS transistors or other forms of power devices, such as IGBT devices. In this embodiment, the first switch tube Q1 is set as a PMOS tube, its source is used as an output terminal to connect to the power supply circuit Vin, and its drain is used as an output terminal; the second switch tube Q2 is an NMOS tube, and its drain is used as an input terminal, source as the output. However, in other embodiments, the first switch transistor Q1 can be set as an NMOS transistor or other device according to actual needs, and the second switch transistor Q2 can be set as a PMOS transistor or other device, and the input end and output end of the switch tube Q2 can be set as a PMOS transistor or other device. Adaptive adjustment is not limited here.
在一种较优的实施例中,电流感测模块2包括:In a preferred embodiment, the
电流感测器Isense,所述电流感测器Isense获取所述电感L1上的峰值电流,并根据所述峰值电流生成峰值电压输出;a current sensor Isense, the current sensor Isense obtains the peak current on the inductor L1, and generates a peak voltage output according to the peak current;
第一比较器CMP1,第一比较器CMP1的同向输入端连接电流感测模块2的输入端,第一比较器CMP1的反向输入端连接电流感测器Isense的第一输出端,第一比较器CMP1的输出端连接输出模块1以发送电流控制信号;The first comparator CMP1, the non-inverting input end of the first comparator CMP1 is connected to the input end of the
延时单元21,延时单元21的第一输入端连接第一比较器CMP1的输出端,延时单元21的第二输入端连接电流感测器Isense的第二输出端,延时单元21的输出端连接输出模块1以发送延时控制信号。The
具体地,针对现有技术中的降压直流变换器,其依赖电感L1过零信号进行控制,可能会因为接地端抖动导致比较器误触发,进而影响变换器的输出效率的问题,本实施例中,通过设置延时单元21根据电流感测器Isense输出的峰值电压,生成延时控制信号,该延时控制信号仅与电感L1的峰值电流有关,因此避免了接地端抖动导致的比较器误触发的问题,从而实现了输出模块1较为稳定的控制效果。Specifically, for the step-down DC converter in the prior art, which relies on the zero-crossing signal of the inductance L1 for control, the comparator may be mis-triggered due to the jitter of the ground terminal, thereby affecting the output efficiency of the converter. This embodiment , by setting the
在实施过程中,第一比较器CMP1的同向输入端连接至电感L1的第一端,以此来接收控制单元11通过半桥输出的电流,即,电感L1的充电电流;第一比较器CMP1的反向输入端连接电流感测器Isense的输出电流,该电流感测器Isense通过感测线圈实现对电感L1上的峰值电流的检测,并通过电阻转化为峰值电压输入第一比较器CMP1的反向输入端中。In the implementation process, the non-inverting input terminal of the first comparator CMP1 is connected to the first terminal of the inductor L1, so as to receive the current output by the control unit 11 through the half-bridge, that is, the charging current of the inductor L1; the first comparator The reverse input terminal of CMP1 is connected to the output current of the current sensor Isense, the current sensor Isense realizes the detection of the peak current on the inductor L1 through the sensing coil, and converts it into a peak voltage through the resistance and inputs it to the first comparator CMP1 in the reverse input of .
在一种较优的实施例中,如图2所示,延时单元21包括:In a preferred embodiment, as shown in FIG. 2 , the
恒流源I0,恒流源I0的输出端连接延时电容C1的第一端,延时电容C1的第二端接地;The constant current source I0, the output end of the constant current source I0 is connected to the first end of the delay capacitor C1, and the second end of the delay capacitor C1 is grounded;
第二比较器CMP2,第二比较器CMP2的同向输入端连接延时电容C1的第一端,第二比较器CMP2的反向输入端连接电流感测器2的输出端;The second comparator CMP2, the non-inverting input end of the second comparator CMP2 is connected to the first end of the delay capacitor C1, and the inverting input end of the second comparator CMP2 is connected to the output end of the
D类触发器DFF,D类触发器DFF的时钟输入端连接第一比较器CMP1的输出端,D类触发器DFF的数据输入端为高电平,D类触发器DFF的输出端连接输出模块1以发送延时控制信号;D-type flip-flop DFF, the clock input terminal of D-type flip-flop DFF is connected to the output terminal of the first comparator CMP1, the data input terminal of D-type flip-flop DFF is high level, and the output terminal of D-type flip-flop DFF is connected to the
反馈开关管Q3,反馈开关管Q3的输入端连接第二比较器CMP2的同向输入端,反馈开关管Q3的输出端接地,反馈开关管Q3的栅极连接D类触发器DFF的输出端。Feedback switch Q3, the input terminal of the feedback switch Q3 is connected to the non-inverting input terminal of the second comparator CMP2, the output terminal of the feedback switch Q3 is grounded, and the gate of the feedback switch Q3 is connected to the output terminal of the D-type flip-flop DFF.
具体地,为生成相对稳定的延时控制信号,本实施例中,通过设置恒流源I0对延时电容C1进行充电,延时电容C1在充电结束后,第二比较器CMP2的同向输入端转为高电平,且电平高于电流感测器Isense输入的电感峰值电流,此时,第二比较器CMP2输出高电平使得D类触发器DFF进行翻转,并使得反馈开关管Q3导通放电,完成一次延时信号的生成过程。Specifically, in order to generate a relatively stable delay control signal, in this embodiment, a constant current source I0 is set to charge the delay capacitor C1. After the delay capacitor C1 is charged, the same-direction input of the second comparator CMP2 The terminal turns to high level, and the level is higher than the peak current of the inductor input by the current sensor Isense. At this time, the second comparator CMP2 outputs a high level to make the D-type flip-flop DFF flip, and make the feedback switch Q3 Turn on and discharge to complete the generation process of a delay signal.
在一种较优的实施例中,电流感测器Isense的第二输出端通过下拉电阻R1接地。In a preferred embodiment, the second output terminal of the current sensor Isense is grounded through a pull-down resistor R1.
基于上述过程生成延时控制信号对变换器电路进行控制,则电感L1放电到零的时间仅与其峰值电流大小有关: Based on the above process to generate a delay control signal to control the converter circuit, the time for the inductor L1 to discharge to zero is only related to its peak current:
其中,U为延时电容C1充电结束时的电压,L为电感L1的电感值,t为电感L1放电到零的时间,相当于现有技术中采集到的电感电流过零时间,Imax为电感L1的峰值电流。Among them, U is the voltage at the end of the charging of the delay capacitor C1, L is the inductance value of the inductor L1, t is the time for the inductor L1 to discharge to zero, which is equivalent to the zero-crossing time of the inductor current collected in the prior art, and Imax is Peak current of inductor L1.
同时,在上述过程中,反馈开关管的放电时间取决于延时电容C1的充电时长,则有: At the same time, in the above process, the discharge time of the feedback switch tube depends on the charging time of the delay capacitor C1, as follows:
其中,tdly为反馈开关管Q3的放电时间,C为延时电容C1的电容值,R为下拉电阻R1的阻值,I0为恒流源I0的输出电流,Imax为电感L1的峰值电流。Among them, t dly is the discharge time of the feedback switch Q3, C is the capacitance value of the delay capacitor C1, R is the resistance value of the pull-down resistor R1, I 0 is the output current of the constant current source I0, and I max is the peak value of the inductor L1 current.
为实现上述放电过程与电感L1放电到零的时间保持一致,可通过调整延时电容C2的电容大小来实现,包括:In order to keep the above discharge process consistent with the time when the inductor L1 discharges to zero, it can be achieved by adjusting the capacitance of the delay capacitor C2, including:
其中,C为延时电容C2的电容值,R为下拉电阻R1的阻值,I0为恒流源的输出电流,Imax为电感L1的峰值电流。Among them, C is the capacitance value of the delay capacitor C2, R is the resistance value of the pull-down resistor R1, I 0 is the output current of the constant current source, and I max is the peak current of the inductor L1.
在一种较优的实施例中,电压感测模块3包括:In a preferred embodiment, the
参考电压源Vref;reference voltage source Vref;
第三比较器CMP3,第三比较器CMP3的同向输入端连接参考电压源Vref的输出端,第三比较器CMP3的反向输入端连接电压感测模块3的输入端。The third comparator CMP3 has a non-inverting input terminal connected to the output terminal of the reference voltage source Vref, and an inverting input terminal of the third comparator CMP3 is connected to the input terminal of the
在一种较优的实施例中,逻辑控制器工作在PFM模式下。In a preferred embodiment, the logic controller operates in PFM mode.
图3为本发明的电压时序图,根据该图可看出,通过依次发送的电流控制信号、延时控制信号和电压控制信号,能够实现较好的输出效果。3 is a voltage timing diagram of the present invention, according to which it can be seen that a better output effect can be achieved by sequentially sending the current control signal, the delay control signal and the voltage control signal.
本发明的有益效果在于:通过在电流感测模块中设置延时单元取代现有技术中的过零点比较器,在相对稳定的输出条件下可通过控制延时控制信号的生成来实现对输出模块的放电,避免了现有技术中通过接地和感测电感峰值电流会由于接地端抖动导致误触发的问题,实现了较为稳定的输出效果。The beneficial effect of the present invention is that: by setting the delay unit in the current sensing module to replace the zero-crossing point comparator in the prior art, under relatively stable output conditions, the output module can be controlled by controlling the generation of the delay control signal. It avoids the problem of false triggering due to the jitter of the ground terminal caused by grounding and sensing the peak current of the inductor in the prior art, and achieves a relatively stable output effect.
以上仅为本发明较佳的实施例,并非因此限制本发明的实施方式及保护范围,对于本领域技术人员而言,应当能够意识到凡运用本发明说明书及图示内容所作出的等同替换和显而易见的变化所得到的方案,均应当包含在本发明的保护范围内。The above are only preferred embodiments of the present invention, and are not intended to limit the embodiments and protection scope of the present invention. For those skilled in the art, they should be aware of the equivalent replacement and Solutions obtained by obvious changes shall all be included in the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210880236.3A CN115085550B (en) | 2022-07-25 | 2022-07-25 | A step-down DC converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210880236.3A CN115085550B (en) | 2022-07-25 | 2022-07-25 | A step-down DC converter |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115085550A true CN115085550A (en) | 2022-09-20 |
CN115085550B CN115085550B (en) | 2025-04-04 |
Family
ID=83243777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210880236.3A Active CN115085550B (en) | 2022-07-25 | 2022-07-25 | A step-down DC converter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115085550B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116995936A (en) * | 2023-09-22 | 2023-11-03 | 茂睿芯(深圳)科技有限公司 | Power supply adjusting circuit, buck converter and direct current power supply |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101562392A (en) * | 2008-04-15 | 2009-10-21 | 绿达光电股份有限公司 | Current level control device for power supply and related power supply |
CN103138573A (en) * | 2013-02-28 | 2013-06-05 | 上海新进半导体制造有限公司 | Voltage-reduction-type switch power supply and control circuit thereof |
CN106685230A (en) * | 2016-08-03 | 2017-05-17 | 浙江大学 | A peak current control unit based on peak current mode control |
JP2020004536A (en) * | 2018-06-26 | 2020-01-09 | 新電元工業株式会社 | Power supply device, control method thereof, and lighting device |
CN110707925A (en) * | 2019-09-20 | 2020-01-17 | 杭州士兰微电子股份有限公司 | Zero-crossing detection circuit, zero-crossing detection method and switching power supply circuit |
-
2022
- 2022-07-25 CN CN202210880236.3A patent/CN115085550B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101562392A (en) * | 2008-04-15 | 2009-10-21 | 绿达光电股份有限公司 | Current level control device for power supply and related power supply |
CN103138573A (en) * | 2013-02-28 | 2013-06-05 | 上海新进半导体制造有限公司 | Voltage-reduction-type switch power supply and control circuit thereof |
CN106685230A (en) * | 2016-08-03 | 2017-05-17 | 浙江大学 | A peak current control unit based on peak current mode control |
JP2020004536A (en) * | 2018-06-26 | 2020-01-09 | 新電元工業株式会社 | Power supply device, control method thereof, and lighting device |
CN110707925A (en) * | 2019-09-20 | 2020-01-17 | 杭州士兰微电子股份有限公司 | Zero-crossing detection circuit, zero-crossing detection method and switching power supply circuit |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116995936A (en) * | 2023-09-22 | 2023-11-03 | 茂睿芯(深圳)科技有限公司 | Power supply adjusting circuit, buck converter and direct current power supply |
CN116995936B (en) * | 2023-09-22 | 2024-03-01 | 茂睿芯(深圳)科技有限公司 | Power supply adjusting circuit, buck converter and direct current power supply |
Also Published As
Publication number | Publication date |
---|---|
CN115085550B (en) | 2025-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI540809B (en) | Overvoltage protection method and circuit for switching power supply output and switching power supply provided with the circuit | |
JP5404991B2 (en) | DC-DC converter control circuit, DC-DC converter, and DC-DC converter control method | |
KR101411000B1 (en) | Converter and the driving method thereof | |
CN102656787A (en) | Switching power supply circuit and power factor controller | |
JP4734382B2 (en) | Integrated circuit for DC-DC converter | |
CN113659815B (en) | Control circuit for switching converter | |
CN102957309A (en) | Frequency jitter control circuit and method of PFM power supply | |
JP2007215268A5 (en) | ||
TWI578679B (en) | A control circuit for switching converter | |
CN105991034A (en) | Power conversion device with power-saving and high conversion efficiency mechanism | |
WO2009128023A1 (en) | Self-oscillating switched mode converter with valley detection | |
JP3706852B2 (en) | Switching power supply | |
CN103929048B (en) | A kind of zero cross detection circuit of Switching Power Supply | |
CN109546875B (en) | Switching power supply, switching power supply control circuit and control method | |
CN110504829B (en) | DC-DC conversion circuit and control method thereof | |
CN114696579A (en) | Power converter and control circuit thereof | |
CN115085550B (en) | A step-down DC converter | |
CN209930161U (en) | Switching power supply and control circuit of switching power supply | |
JP2006254590A (en) | Artificial resonance system switching power supply and artificial resonance system switching power circuit using the same | |
CN114726209A (en) | Feedback circuit with adjustable loop gain for boost converter | |
CN114696615A (en) | Power converter and control circuit thereof | |
TWI559665B (en) | Switch mode power supply with slope compensation | |
TW201611495A (en) | Control circuit of power converter and related method | |
TW201019583A (en) | Negative lock loop and control method for flyback voltage converter | |
CN114614675B (en) | Control circuit with power saving mode for power supply circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |