TWI824713B - Wavelength conversion element and backlight module - Google Patents

Wavelength conversion element and backlight module Download PDF

Info

Publication number
TWI824713B
TWI824713B TW111134477A TW111134477A TWI824713B TW I824713 B TWI824713 B TW I824713B TW 111134477 A TW111134477 A TW 111134477A TW 111134477 A TW111134477 A TW 111134477A TW I824713 B TWI824713 B TW I824713B
Authority
TW
Taiwan
Prior art keywords
wavelength conversion
layer
substrate
conversion element
width
Prior art date
Application number
TW111134477A
Other languages
Chinese (zh)
Other versions
TW202411744A (en
Inventor
莊清男
林宏澤
劉明達
林彥妮
Original Assignee
台灣揚昕股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣揚昕股份有限公司 filed Critical 台灣揚昕股份有限公司
Priority to TW111134477A priority Critical patent/TWI824713B/en
Application granted granted Critical
Publication of TWI824713B publication Critical patent/TWI824713B/en
Publication of TW202411744A publication Critical patent/TW202411744A/en

Links

Images

Abstract

A wavelength conversion element including a substrate, a blocking wall structure layer and a wavelength conversion layer is provided. The blocking wall structure layer is disposed on a surface of the substrate, and defines a plurality of microgrooves. The reflectivity of the blocking wall structure layer is in a range of 1% to 99%. The wavelength conversion layer is disposed in the microgrooves, and includes a plurality of wavelength conversion particles. A height of the blocking wall structure layer along a normal direction of the surface of the substrate is greater than a height of the wavelength conversion layer along the normal direction of the surface of the substrate. A backlight module adopting the wavelength conversion element is also provided.

Description

波長轉換元件及背光模組Wavelength conversion components and backlight modules

本發明是有關於一種光源技術,且特別是有關於一種波長轉換元件及背光模組。The present invention relates to a light source technology, and in particular, to a wavelength conversion element and a backlight module.

由於液晶本身不具發光的能力,所以顯示面板必須依賴背光模組提供背光源進而顯示影像。也因此,提升背光源的色彩品質是強化液晶顯像技術的目標之一,而量子點技術剛好符合此需求的基本概念。詳細而言,量子點技術利用藍光發光二極體光源照射直徑不同的綠色量子點和紅色量子點的方式分別激發出紅光和綠光,達到全彩顯示所需要的紅光,綠光和藍光三原色。並且,以高度效率來分解光線,進而達到高色度再現性,大幅提升其色域,讓液晶顯示的色彩更加鮮明。Since liquid crystal itself does not have the ability to emit light, the display panel must rely on a backlight module to provide backlight to display images. Therefore, improving the color quality of backlight is one of the goals of strengthening liquid crystal display technology, and quantum dot technology just meets the basic concept of this requirement. In detail, quantum dot technology uses a blue light-emitting diode light source to illuminate green quantum dots and red quantum dots with different diameters to excite red light and green light respectively to achieve the red light, green light and blue light required for full-color display. Three primary colors. Moreover, it decomposes light with a high degree of efficiency, thereby achieving high chromaticity reproducibility, greatly increasing its color gamut, and making the colors of the liquid crystal display more vivid.

在現有技術架構中,因量子點於結構上能階配位設計關係,皆須使用三明治架構將量子點材料封裝於水氧阻隔膜中,藉以穩定經由量子點材料轉換的光線輝度和色度。由於經由量子點材料轉換後的光線並沒有特定的方向性,而是以四面八方散射的方式出光,造成後續的出光光型較難藉由光學膜片進行調整而容易有漏光的現象。In the existing technical architecture, due to the energy level coordination design relationship of quantum dots in the structure, a sandwich structure must be used to encapsulate the quantum dot material in a water and oxygen barrier film to stabilize the brightness and chromaticity of the light converted by the quantum dot material. Since the light converted by the quantum dot material does not have a specific direction, but is scattered in all directions, the subsequent light pattern is difficult to adjust through the optical film and is prone to light leakage.

“先前技術”段落只是用來幫助了解本發明內容,因此在“先前技術”段落所揭露的內容可能包含一些沒有構成所屬技術領域中具有通常知識者所知道的習知技術。在“先前技術”段落所揭露的內容,不代表該內容或者本發明一個或多個實施例所要解決的問題,在本發明申請前已被所屬技術領域中具有通常知識者所知曉或認知。The "prior art" paragraph is only used to help understand the content of the present invention. Therefore, the content disclosed in the "prior art" paragraph may contain some conventional technologies that do not constitute common knowledge to those with ordinary knowledge in the technical field. The content disclosed in the "Prior Art" paragraph does not mean that the content or the problems to be solved by one or more embodiments of the present invention have been known or recognized by those with ordinary knowledge in the technical field before the application of the present invention.

本發明提供一種波長轉換元件,其轉換效率較佳,且轉換光束的正向出光量較高。The present invention provides a wavelength conversion element with better conversion efficiency and higher forward light output of the converted light beam.

本發明提供一種背光模組,其組裝良率高,且整體厚度較薄。The invention provides a backlight module with high assembly yield and thin overall thickness.

本發明的其他目的和優點可以從本發明所揭露的技術特徵中得到進一步的了解。Other objects and advantages of the present invention can be further understood from the technical features disclosed in the present invention.

為達上述之一或部份或全部目的或是其他目的,本發明的一實施例提出一種波長轉換元件。波長轉換元件包括基板、擋牆結構層以及波長轉換層。擋牆結構層設置在基板的表面上,且定義出多個微凹槽。擋牆結構層的反射率介於1%至90%之間的範圍。波長轉換層設置在這些微凹槽內。波長轉換層包括多個波長轉換粒子。擋牆結構層沿著基板的表面的法線方向上的高度大於波長轉換層沿著基板的表面的法線方向上的高度。In order to achieve one, part or all of the above objects or other objects, an embodiment of the present invention provides a wavelength conversion element. The wavelength conversion element includes a substrate, a barrier structure layer and a wavelength conversion layer. The retaining wall structural layer is disposed on the surface of the substrate and defines a plurality of micro-grooves. The reflectivity of the retaining wall structural layer ranges from 1% to 90%. Wavelength converting layers are disposed within these microgrooves. The wavelength conversion layer includes a plurality of wavelength conversion particles. The height of the barrier structure layer along the normal direction of the surface of the substrate is greater than the height of the wavelength conversion layer along the normal direction of the surface of the substrate.

在本發明的一實施例中,上述的波長轉換元件的擋牆結構層沿著基板的表面的法線方向上具有彼此相背離的第一表面與第二表面。第一表面與第二表面沿著一方向分別具有第一寬度和第二寬度。第二寬度小於或等於第一寬度,且第一寬度和第二寬度都小於0.4毫米。In an embodiment of the present invention, the barrier structure layer of the wavelength conversion element has a first surface and a second surface that are away from each other along the normal direction of the surface of the substrate. The first surface and the second surface respectively have a first width and a second width along a direction. The second width is less than or equal to the first width, and both the first width and the second width are less than 0.4 mm.

在本發明的一實施例中,上述的波長轉換元件的擋牆結構層的材料包括二氧化鈦、聚甲基丙烯酸甲酯、聚碳酸酯或聚苯乙烯。In an embodiment of the present invention, the material of the barrier structure layer of the wavelength conversion element includes titanium dioxide, polymethylmethacrylate, polycarbonate or polystyrene.

在本發明的一實施例中,上述的波長轉換元件還包括硬塗層,覆蓋波長轉換層背離基板的表面。In an embodiment of the present invention, the above-mentioned wavelength conversion element further includes a hard coating layer covering the surface of the wavelength conversion layer facing away from the substrate.

在本發明的一實施例中,上述的波長轉換元件的波長轉換層具有背離基板的表面,且波長轉換層的表面暴露在空氣中。In an embodiment of the present invention, the wavelength conversion layer of the wavelength conversion element has a surface facing away from the substrate, and the surface of the wavelength conversion layer is exposed to the air.

在本發明的一實施例中,上述的波長轉換元件的擋牆結構層具有定義每一個微凹槽的第一部分與第二部分。第一部分與第二部分沿著基板的表面的法線方向分別具有第一高度與第二高度,且第一高度不同於第二高度。In an embodiment of the present invention, the barrier structure layer of the wavelength conversion element has a first part and a second part defining each micro-groove. The first part and the second part respectively have a first height and a second height along the normal direction of the surface of the substrate, and the first height is different from the second height.

在本發明的一實施例中,上述的波長轉換元件的波長轉換層為多個波長轉換圖案。這些波長轉換圖案分別填充在擋牆結構層的多個微凹槽內。這些波長轉換圖案的任兩者沿著基板的表面的法線方向的厚度差小於或等於0.5微米。In an embodiment of the present invention, the wavelength conversion layer of the above-mentioned wavelength conversion element is a plurality of wavelength conversion patterns. These wavelength conversion patterns are respectively filled in multiple micro-grooves of the retaining wall structural layer. The difference in thickness of any two of these wavelength conversion patterns along the normal direction of the surface of the substrate is less than or equal to 0.5 microns.

在本發明的一實施例中,上述的波長轉換元件的波長轉換層為多個波長轉換圖案。這些波長轉換圖案分別填充在擋牆結構層的多個微凹槽內。各個波長轉換圖案適於吸收激發光束並發出轉換光束。這些波長轉換圖案發出的多個轉換光束在CIE1931色彩空間中的色度座標x的色度差值小於0.01,且這些轉換光束在CIE1931色彩空間中的色度座標y的色度差值小於0.01。In an embodiment of the present invention, the wavelength conversion layer of the above-mentioned wavelength conversion element is a plurality of wavelength conversion patterns. These wavelength conversion patterns are respectively filled in multiple micro-grooves of the retaining wall structural layer. Each wavelength conversion pattern is adapted to absorb the excitation beam and emit a converted beam. The chromaticity difference of the chromaticity coordinate x of the multiple converted light beams emitted by these wavelength conversion patterns in the CIE1931 color space is less than 0.01, and the chromaticity difference of the chromaticity coordinate y of these converted light beams in the CIE1931 color space is less than 0.01.

在本發明的一實施例中,上述的波長轉換元件的擋牆結構層包括第一結構層與第二結構層。第二結構層於基板的表面的法線方向上堆疊於第一結構層上。第一結構層沿著基板的表面的法線方向上具有彼此相背離的第一表面與第二表面。第二表面連接第二結構層。第二結構層具有背離第二表面的第三表面。第三表面沿著一方向分別具有第一寬度、第二寬度和第三寬度。第二寬度小於或等於第一寬度,第三寬度小於第二寬度,且第一寬度、第二寬度和第三寬度都小於0.4毫米。In an embodiment of the present invention, the barrier structural layer of the wavelength conversion element includes a first structural layer and a second structural layer. The second structural layer is stacked on the first structural layer in a normal direction of the surface of the substrate. The first structural layer has a first surface and a second surface that are away from each other along the normal direction of the surface of the substrate. The second surface connects the second structural layer. The second structural layer has a third surface facing away from the second surface. The third surface has a first width, a second width and a third width respectively along one direction. The second width is less than or equal to the first width, the third width is less than the second width, and the first width, the second width and the third width are all less than 0.4 mm.

在本發明的一實施例中,上述的波長轉換元件的擋牆結構層沿著基板的表面的法線方向的高度小於1毫米。In an embodiment of the present invention, the height of the barrier structure layer of the wavelength conversion element along the normal direction of the surface of the substrate is less than 1 mm.

在本發明的一實施例中,上述的波長轉換元件的擋牆結構層具有定義多個微凹槽的其中相鄰兩者的第一側面與第二側面,且第一側面和第二側面為平面、折面、曲面、或上述的組合。In an embodiment of the present invention, the barrier structure layer of the wavelength conversion element has a first side and a second side defining adjacent two of the plurality of micro-grooves, and the first side and the second side are Flat, folded, curved, or a combination of the above.

在本發明的一實施例中,上述的波長轉換元件的各個波長轉換粒子包括核層、殼層以及多個疏水官能基。殼層包覆核層。這些疏水官能基設置在殼層背離核層的表面上。In an embodiment of the present invention, each wavelength conversion particle of the above-mentioned wavelength conversion element includes a core layer, a shell layer and a plurality of hydrophobic functional groups. The shell covers the core. These hydrophobic functional groups are provided on the surface of the shell layer facing away from the core layer.

在本發明的一實施例中,上述的波長轉換元件的各個疏水官能基為聚矽烷聚合物。In an embodiment of the present invention, each hydrophobic functional group of the above-mentioned wavelength conversion element is a polysilane polymer.

在本發明的一實施例中,上述的波長轉換元件的波長轉換層還包括疏水性基材,且多個波長轉換粒子分散地設置在疏水性基材內。In one embodiment of the present invention, the wavelength conversion layer of the above-mentioned wavelength conversion element further includes a hydrophobic base material, and a plurality of wavelength conversion particles are dispersedly provided in the hydrophobic base material.

在本發明的一實施例中,上述的波長轉換元件的擋牆結構層包括多個稜鏡結構。這些稜鏡結構彼此相鄰排列並定義出多個微凹槽。波長轉換層填入這些微凹槽內並形成多個波長轉換圖案,且這些波長轉換圖案的橫截面輪廓為三角狀。In an embodiment of the present invention, the barrier structure layer of the above-mentioned wavelength conversion element includes a plurality of barrier structures. These structures are arranged adjacent to each other and define multiple micro-grooves. The wavelength conversion layer is filled into the micro grooves and forms a plurality of wavelength conversion patterns, and the cross-sectional profiles of these wavelength conversion patterns are triangular.

為達上述之一或部份或全部目的或是其他目的,本發明的一實施例提出一種背光模組。背光模組包括光源及波長轉換元件。光源適於提供激發光束。波長轉換元件設置在激發光束的傳遞路徑上,且包括基板、擋牆結構層以及波長轉換層。擋牆結構層設置在基板的表面上,且定義出多個微凹槽。擋牆結構層的反射率介於1%至90%之間的範圍。波長轉換層設置在這些微凹槽內,且包括多個波長轉換粒子。擋牆結構層沿著基板的表面的法線方向上的高度大於波長轉換層沿著基板的表面的法線方向上的高度。In order to achieve one, part or all of the above objects or other objects, an embodiment of the present invention provides a backlight module. The backlight module includes a light source and a wavelength conversion component. The light source is adapted to provide an excitation beam. The wavelength conversion element is arranged on the transmission path of the excitation beam, and includes a substrate, a barrier structure layer and a wavelength conversion layer. The retaining wall structural layer is disposed on the surface of the substrate and defines a plurality of micro-grooves. The reflectivity of the retaining wall structural layer ranges from 1% to 90%. The wavelength conversion layer is disposed within the micro-grooves and includes a plurality of wavelength conversion particles. The height of the barrier structure layer along the normal direction of the surface of the substrate is greater than the height of the wavelength conversion layer along the normal direction of the surface of the substrate.

在本發明的一實施例中,上述的背光模組的各個波長轉換粒子包括核層、殼層及多個疏水官能基。殼層包覆核層。這些疏水官能基設置在殼層背離核層的表面上。In an embodiment of the present invention, each wavelength conversion particle of the above-mentioned backlight module includes a core layer, a shell layer and a plurality of hydrophobic functional groups. The shell covers the core. These hydrophobic functional groups are provided on the surface of the shell layer facing away from the core layer.

在本發明的一實施例中,上述的背光模組還包括導光板。導光板具有入光面以及連接入光面的出光面。光源設置在導光板的入光面的一側。波長轉換元件設置在導光板的出光面的一側。In an embodiment of the present invention, the above-mentioned backlight module further includes a light guide plate. The light guide plate has a light incident surface and a light exit surface connected to the light incident surface. The light source is arranged on one side of the light incident surface of the light guide plate. The wavelength conversion element is arranged on one side of the light exit surface of the light guide plate.

基於上述,在本發明的一實施例的波長轉換元件及背光模組中,擋牆結構層的多個微凹槽內設有波長轉換層,且波長轉換層的填充高度低於擋牆結構層的高度。由於擋牆結構層的反射率介於1%至90%之間的範圍,除了可增加激發光束的轉換效率外,還能限制轉換光束的散射角度,使其正向出光量增加。另一方面,擋牆結構層的設置還可以提升波長轉換元件的挺性,除了能滿足整體厚度薄化的需求外,還能避免薄化後造成背光模組的組裝良率下降的問題。Based on the above, in the wavelength conversion element and the backlight module according to an embodiment of the present invention, the wavelength conversion layer is provided in the plurality of micro-grooves of the barrier structure layer, and the filling height of the wavelength conversion layer is lower than that of the barrier structure layer. the height of. Since the reflectivity of the retaining wall structural layer ranges from 1% to 90%, in addition to increasing the conversion efficiency of the excitation beam, it can also limit the scattering angle of the converted beam, increasing the amount of forward light. On the other hand, the setting of the retaining wall structural layer can also improve the stiffness of the wavelength conversion element. In addition to meeting the need for overall thickness thinning, it can also avoid the problem of reduced assembly yield of the backlight module caused by thinning.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, embodiments are given below and described in detail with reference to the accompanying drawings.

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一較佳實施例的詳細說明中,將可清楚的呈現。以下實施例中所提到的方向用語,例如:上、下、左、右、前或後等,僅是參考附加圖式的方向。因此,使用的方向用語是用來說明並非用來限制本發明。The aforementioned and other technical contents, features and effects of the present invention will be clearly presented in the following detailed description of a preferred embodiment with reference to the drawings. Directional terms mentioned in the following embodiments, such as up, down, left, right, front or back, etc., are only for reference to the directions in the attached drawings. Accordingly, the directional terms used are illustrative and not limiting of the invention.

圖1是依照本發明的一實施例的背光模組的剖視示意圖。圖2是圖1的波長轉換元件的放大示意圖。圖3是圖2的波長轉換元件的俯視示意圖。圖4是圖3的另一種變形實施例的波長轉換元件的俯視示意圖。圖5是圖2的波長轉換粒子的放大示意圖。圖6是圖2的另一實施例的擋牆結構層的放大示意圖。圖7A至圖7G是圖6的另一些變形實施例的擋牆結構層的剖視示意圖。FIG. 1 is a schematic cross-sectional view of a backlight module according to an embodiment of the present invention. FIG. 2 is an enlarged schematic diagram of the wavelength conversion element of FIG. 1 . FIG. 3 is a schematic top view of the wavelength conversion element of FIG. 2 . FIG. 4 is a schematic top view of the wavelength conversion element of another modified embodiment of FIG. 3 . FIG. 5 is an enlarged schematic diagram of the wavelength conversion particles of FIG. 2 . FIG. 6 is an enlarged schematic view of the retaining wall structural layer of another embodiment of FIG. 2 . 7A to 7G are schematic cross-sectional views of retaining wall structural layers in other modified embodiments of FIG. 6 .

請參照圖1,背光模組10包括導光板100、光源110和波長轉換元件120。導光板100具有入光面100is以及連接入光面100is的出光面100es。光源110設置在導光板100的入光面100is的一側。波長轉換元件120設置在導光板100的出光面100es的一側。更具體地說,本實施例的背光模組10為側入式背光模組,但不以此為限。Referring to FIG. 1 , the backlight module 10 includes a light guide plate 100 , a light source 110 and a wavelength conversion element 120 . The light guide plate 100 has a light incident surface 100is and a light exit surface 100es connected to the light incident surface 100is. The light source 110 is disposed on one side of the light incident surface 100is of the light guide plate 100 . The wavelength conversion element 120 is disposed on one side of the light exit surface 100es of the light guide plate 100 . More specifically, the backlight module 10 of this embodiment is an edge-type backlight module, but it is not limited to this.

在本實施例中,光源110適於朝向導光板100的入光面100is提供激發光束EB,而激發光束EB經由導光板100的橫向傳遞後自導光板100的出光面100es離開導光板100並入射波長轉換元件120。波長轉換元件120設置在激發光束EB的傳遞路徑上,適於接收來自導光板100的激發光束EB,並發出轉換光束CB。In this embodiment, the light source 110 is adapted to provide the excitation beam EB toward the light incident surface 100is of the light guide plate 100 , and the excitation beam EB passes through the transverse direction of the light guide plate 100 and then leaves the light guide plate 100 and is incident on the light exit surface 100es of the light guide plate 100 Wavelength conversion element 120. The wavelength conversion element 120 is disposed on the transmission path of the excitation beam EB, and is adapted to receive the excitation beam EB from the light guide plate 100 and emit the conversion beam CB.

請參照圖2及圖3,波長轉換元件120包括基板SUB、擋牆結構層123和波長轉換層125。擋牆結構層123設置在基板SUB的表面SUBs上,且定義出多個微凹槽MG。波長轉換層125設置在這些微凹槽MG內。在本實施例中,擋牆結構層123可以是由多個第一擋牆123BW1與多個第二擋牆123BW2交叉排列而成。Referring to FIGS. 2 and 3 , the wavelength conversion element 120 includes a substrate SUB, a barrier structure layer 123 and a wavelength conversion layer 125 . The retaining wall structure layer 123 is disposed on the surface SUBs of the substrate SUB, and defines a plurality of micro-grooves MG. The wavelength conversion layer 125 is disposed within these micro-grooves MG. In this embodiment, the retaining wall structural layer 123 may be formed by a plurality of first retaining walls 123BW1 and a plurality of second retaining walls 123BW2 arranged in a crosswise manner.

舉例來說,多個第一擋牆123BW1的排列方向可垂直於多個第二擋牆123BW2的排列方向,且第一擋牆123BW1的延伸方向可垂直於第二擋牆123BW2的延伸方向。亦即,本實施例的擋牆結構層123在基板SUB的表面SUBs的法線方向上呈現出網狀(mesh)排列的結構。在本實施例中,擋牆結構層123所定義的多個微凹槽MG可沿著多個第一擋牆123BW1或多個第二擋牆123BW2的排列方向排列。即,這些微凹槽MG是以二維陣列的方式間隔排列於基板SUB上,且設置在這些微凹槽MG內的波長轉換層125被擋牆結構層123切分為彼此間隔排列且呈方形狀的多個波長轉換圖案125P。For example, the arrangement direction of the plurality of first blocking walls 123BW1 may be perpendicular to the arrangement direction of the plurality of second blocking walls 123BW2, and the extending direction of the first blocking walls 123BW1 may be perpendicular to the extending direction of the second blocking walls 123BW2. That is, the retaining wall structure layer 123 of this embodiment exhibits a mesh-arranged structure in the normal direction of the surface SUBs of the substrate SUB. In this embodiment, the plurality of micro-grooves MG defined by the retaining wall structural layer 123 may be arranged along the arrangement direction of the plurality of first retaining walls 123BW1 or the plurality of second retaining walls 123BW2. That is, these micro-grooves MG are arranged at intervals on the substrate SUB in a two-dimensional array, and the wavelength conversion layer 125 provided in these micro-grooves MG is divided by the barrier structure layer 123 into spaced apart and square shapes. A plurality of wavelength conversion patterns in the shape of 125P.

然而,本發明不限於此。請參照圖4,在另一實施例中,波長轉換元件120A的擋牆結構層123”也可以是由具單一延伸方向的多個擋牆123BW沿著單一方向(例如圖4的水平方向)間隔排列而成。因此,擋牆結構層123”定義出的多個微凹槽MG-A也是沿著所述單一方向間隔排列,且設置在這些微凹槽MG-A內的波長轉換層125A可被切分為沿著所述單一方向間隔排列且呈長條狀的多個波長轉換圖案。在另一未繪示的實施例中,擋牆結構層定義出的多個微凹槽還可以蜂巢狀(honeycomb)的方式進行排列。However, the present invention is not limited to this. Please refer to FIG. 4 . In another embodiment, the barrier wall structure layer 123 ″ of the wavelength conversion element 120A may also be composed of multiple barrier walls 123BW with a single extension direction, spaced along a single direction (for example, the horizontal direction of FIG. 4 ). are arranged. Therefore, the plurality of micro-grooves MG-A defined by the barrier structure layer 123″ are also arranged at intervals along the single direction, and the wavelength conversion layer 125A provided in these micro-grooves MG-A can It is divided into a plurality of wavelength conversion patterns arranged at intervals along the single direction and in the shape of strips. In another embodiment not shown, the plurality of micro-grooves defined by the retaining wall structural layer can also be arranged in a honeycomb manner.

請參照圖2,特別注意的是,擋牆結構層123沿著基板SUB的表面SUBs的法線方向上的高度H大於波長轉換層125沿著基板SUB的表面SUBs的法線方向上的高度(即波長轉換圖案125P1的厚度t1或波長轉換圖案125P2的厚度t2),且擋牆結構層123的反射率介於1%至90%之間的範圍。據此,可透過擋牆結構層123將激發光束EB反射回微凹槽MG內的波長轉換層125,除了能增加激發光束EB的轉換效率外,還能限制轉換光束CB的散射角度,使其正向出光量增加。在本實施例中,擋牆結構層123的材料包括基材(例如壓克力樹脂)和高反射率材料(例如二氧化鈦、聚甲基丙烯酸甲酯、聚碳酸酯或聚苯乙烯),其中高反射率材料均勻地混合於基材中。較佳地,擋牆結構層123沿著基板SUB的表面SUBs的法線方向的高度H可小於1毫米,以提高製程良率並確保背光模組10的出光品質。Please refer to FIG. 2 . Please note that the height H of the barrier structure layer 123 along the normal direction of the surface SUBs of the substrate SUB is greater than the height H of the wavelength conversion layer 125 along the normal direction of the surface SUBs of the substrate SUB ( That is, the thickness t1 of the wavelength conversion pattern 125P1 or the thickness t2 of the wavelength conversion pattern 125P2), and the reflectivity of the barrier structure layer 123 is in a range between 1% and 90%. Accordingly, the excitation beam EB can be reflected back to the wavelength conversion layer 125 in the micro-groove MG through the barrier structure layer 123. In addition to increasing the conversion efficiency of the excitation beam EB, it can also limit the scattering angle of the conversion beam CB, making it The amount of light emitted in the forward direction increases. In this embodiment, the material of the retaining wall structural layer 123 includes a base material (such as acrylic resin) and a high reflectivity material (such as titanium dioxide, polymethylmethacrylate, polycarbonate or polystyrene), wherein high The reflectivity material is evenly mixed into the substrate. Preferably, the height H of the barrier structure layer 123 along the normal direction of the surface SUBs of the substrate SUB can be less than 1 mm to improve the process yield and ensure the light extraction quality of the backlight module 10 .

另一方面,在本實施例中,擋牆結構層123沿著基板SUB的表面SUBs的法線方向上具有彼此相背離的第一表面SF1和第二表面SF2。第一表面SF1和第二表面SF2沿著一方向(例如平行於基板SUB的表面SUBs的方向,或圖2中的水平方向或垂直於擋牆結構層123的延伸方向)分別具有第一寬度W1和第二寬度W2。特別說明的是,擋牆結構層123的第二寬度W2小於或等於第一寬度W1,且這些寬度都要小於0.4毫米。如此,可大幅降低擋牆結構層123在基板SUB的表面SUBs的法線方向上的可視性,以確保採用背光模組10的顯示器的顯示品質。On the other hand, in this embodiment, the retaining wall structure layer 123 has a first surface SF1 and a second surface SF2 that are away from each other along the normal direction of the surface SUBs of the substrate SUB. The first surface SF1 and the second surface SF2 respectively have a first width W1 along a direction (for example, a direction parallel to the surface SUBs of the substrate SUB, or the horizontal direction in FIG. 2 or perpendicular to the extension direction of the retaining wall structure layer 123 ). and a second width W2. Specifically, the second width W2 of the retaining wall structural layer 123 is less than or equal to the first width W1, and these widths are all less than 0.4 mm. In this way, the visibility of the barrier structure layer 123 in the normal direction of the surface SUBs of the substrate SUB can be greatly reduced to ensure the display quality of the display using the backlight module 10 .

進一步而言,波長轉換層125可包括多個波長轉換粒子WCP。在本實施例中,波長轉換粒子WCP的種類是以兩種為例進行示範性地說明,例如波長轉換粒子WCP1和波長轉換粒子WCP2,但不以此為限。在其他實施例中,波長轉換層所包含的波長轉換粒子WCP種類當可視實際應用需求而調整。Furthermore, the wavelength conversion layer 125 may include a plurality of wavelength conversion particles WCP. In this embodiment, two types of wavelength conversion particles WCP are exemplarily explained, such as wavelength conversion particles WCP1 and wavelength conversion particles WCP2, but are not limited thereto. In other embodiments, the type of wavelength conversion particles WCP included in the wavelength conversion layer can be adjusted according to actual application requirements.

舉例來說,在本實施例中,波長轉換粒子WCP1適於吸收入射的激發光束EB(如圖1所示)後發出紅光,而波長轉換粒子WCP2適於吸收入射的激發光束EB後發出綠光,其中激發光束EB例如是藍光,但不以此為限。例如:激發光束EB也可以是波長介於200奈米至450奈米之間的紫外光(ultraviolet)。For example, in this embodiment, the wavelength conversion particle WCP1 is suitable for absorbing the incident excitation beam EB (as shown in Figure 1) and then emits red light, while the wavelength conversion particle WCP2 is suitable for absorbing the incident excitation beam EB and then emitting green light. Light, where the excitation beam EB is, for example, blue light, but is not limited thereto. For example, the excitation beam EB can also be ultraviolet light with a wavelength between 200 nanometers and 450 nanometers.

請參照圖2及圖5,波長轉換粒子WCP包括核層CL、殼層SL和多個疏水官能基HFG,如圖5所示。殼層SL包覆核層CL。這些疏水官能基HFG設置在殼層SL背離核層CL的表面SLs上。詳細而言,波長轉換粒子WCP的核層CL為發光核心,且其材料例如包括硒化鎘(Cadmium selenide,CdSe)、硫化鎘(Cadmium Sulfide,CdS)或硒化鋅(Zinc Selenide,ZnSe),但不以此為限。為了避免核層CL受水氣及氧氣的侵入而失效,包覆核層CL的殼層SL可作為保護層,且其材料例如包括二氧化矽(Silicon dioxide,SiO2)、硫化鎘或硒化鋅等,但不以此為限。在本實施例中,波長轉換粒子WCP的核層CL和殼層SL的總粒徑Da可介於22奈米至25奈米之間。Please refer to Figures 2 and 5. The wavelength conversion particle WCP includes a core layer CL, a shell layer SL and multiple hydrophobic functional groups HFG, as shown in Figure 5. The shell layer SL covers the core layer CL. These hydrophobic functional groups HFG are provided on the surfaces SLs of the shell layer SL facing away from the core layer CL. In detail, the core layer CL of the wavelength conversion particle WCP is a luminescent core, and its material includes, for example, cadmium selenide (CdSe), cadmium sulfide (Cdmium Sulfide, CdS) or zinc selenide (Zinc Selenide, ZnSe), But it is not limited to this. In order to prevent the core layer CL from failing due to the intrusion of water vapor and oxygen, the shell layer SL covering the core layer CL can be used as a protective layer, and its material includes, for example, silicon dioxide (SiO2), cadmium sulfide or zinc selenide. etc., but not limited to this. In this embodiment, the total particle diameter Da of the core layer CL and the shell layer SL of the wavelength conversion particle WCP may be between 22 nanometers and 25 nanometers.

殼層SL的表面SLs可具有多個配體(ligand)LG。前述多個疏水官能基HFG可經由這些配體LG而配位於殼層SL的表面SLs上,並形成一疏水膜層。在本實施例中,疏水官能基HFG例如是聚矽烷聚合物。藉由此疏水膜層的包覆,可進一步提升波長轉換粒子WCP的阻水氧能力。也因此,在本實施例中,波長轉換層125在背離基板SUB的一側表面125s上無須設置額外的保護層、阻隔層或另一基板來阻水氧,有助於波長轉換元件120的薄化。更具體地說,波長轉換層125的表面125s可暴露在空氣AIR中。The surface SLs of the shell SL can have multiple ligands LG. The aforementioned plurality of hydrophobic functional groups HFG can be coordinated on the surface SLs of the shell layer SL through these ligands LG, and form a hydrophobic film layer. In this embodiment, the hydrophobic functional group HFG is, for example, polysilane polymer. By coating with this hydrophobic film layer, the water and oxygen blocking ability of the wavelength conversion particles WCP can be further improved. Therefore, in this embodiment, there is no need to provide an additional protective layer, barrier layer or another substrate on the side surface 125s of the wavelength conversion layer 125 away from the substrate SUB to block water and oxygen, which contributes to the thinness of the wavelength conversion element 120. change. More specifically, the surface 125s of the wavelength conversion layer 125 may be exposed to air AIR.

在本實施例中,波長轉換層125還可包括疏水性基材HPM,且這些波長轉換粒子WCP分散地設置在疏水性基材HPM內。疏水性基材HPM的材料例如包括環氧矽、矽膠或壓克力。據此,可進一步提升波長轉換層125的阻水氧能力。然而,本發明不限於此。在其他實施例中,波長轉換層的基材材料也可包括非疏水性基材。In this embodiment, the wavelength conversion layer 125 may further include a hydrophobic base material HPM, and these wavelength conversion particles WCP are dispersedly provided in the hydrophobic base material HPM. The material of the hydrophobic substrate HPM includes, for example, epoxy silicon, silicone rubber or acrylic. Accordingly, the water and oxygen blocking ability of the wavelength conversion layer 125 can be further improved. However, the present invention is not limited to this. In other embodiments, the base material of the wavelength conversion layer may also include a non-hydrophobic base material.

特別說明的是,透過擋牆結構層123的設置,可進一步增加薄化後的波長轉換元件120的挺性(stiffness),使基板SUB的選用厚度可降至12微米至50微米之間,進而讓波長轉換元件120的整體厚度可小於100微米。也就是說,薄化後的波長轉換元件120可藉由擋牆結構層123的支撐而具有足夠的挺性來避免背光模組10的組裝良率下降。In particular, through the arrangement of the retaining wall structure layer 123, the stiffness of the thinned wavelength conversion element 120 can be further increased, so that the selected thickness of the substrate SUB can be reduced to between 12 microns and 50 microns. The overall thickness of the wavelength conversion element 120 can be less than 100 microns. That is to say, the thinned wavelength conversion element 120 can have sufficient stiffness through the support of the barrier structure layer 123 to avoid a decrease in the assembly yield of the backlight module 10 .

另一方面,擋牆結構層123的設置還能增加波長轉換層125的膜厚均勻性。舉例來說,分別填充在多個微凹槽MG內的多個波長轉換圖案125P的任兩者沿著基板SUB的表面SUBs的法線方向的厚度差(例如圖2的波長轉換圖案125P1與波長轉換圖案125P2的厚度差t2-t1的絕緣值)可小於或等於0.5微米。On the other hand, the provision of the barrier structure layer 123 can also increase the film thickness uniformity of the wavelength conversion layer 125 . For example, the thickness difference between any two of the plurality of wavelength conversion patterns 125P respectively filled in the plurality of micro-grooves MG along the normal direction of the surface SUBs of the substrate SUB (for example, the wavelength conversion pattern 125P1 and the wavelength conversion pattern 125P1 in FIG. 2 The thickness difference t2-t1 of the conversion pattern 125P2 may be less than or equal to 0.5 microns.

從另一觀點來說,由於填充在擋牆結構層123的多個微凹槽MG內的多個波長轉換圖案125P具有較佳的膜厚均勻性,這些波長轉換圖案125P各自吸收激發光束EB後發出的轉換光束CB在CIE1931色彩空間中的色度座標x的色度差值可小於0.01,且在CIE1931色彩空間中的色度座標y的色度差值可小於0.01。也就是說,分別設置在多個微凹槽MG內的這些波長轉換圖案125P發出的轉換光束CB可具有較佳的色度均勻性。較佳地,這些轉換光束CB在CIE1931色彩空間中的色度座標x的色度差值以及色度座標y的色度差值都小於0.005。From another point of view, since the plurality of wavelength conversion patterns 125P filled in the plurality of micro-grooves MG of the barrier structure layer 123 have better film thickness uniformity, these wavelength conversion patterns 125P each absorb the excitation beam EB. The chromaticity difference of the chromaticity coordinate x in the CIE1931 color space of the emitted converted light beam CB can be less than 0.01, and the chromaticity difference of the chromaticity coordinate y in the CIE1931 color space can be less than 0.01. That is to say, the converted light beams CB emitted by the wavelength conversion patterns 125P respectively disposed in the plurality of micro-grooves MG may have better chromaticity uniformity. Preferably, the chromaticity difference of the chromaticity coordinate x and the chromaticity coordinate y of these converted light beams CB in the CIE1931 color space are both less than 0.005.

請參照圖2及圖6,不同於圖2的擋牆結構層123,在另一實施例中,擋牆結構層123’可包括於基板SUB的表面SUBs的法線方向上堆疊的第一結構層123L1與第二結構層123L2。第一結構層123L1沿著基板SUB的表面SUBs的法線方向上具有彼此相背離的第一表面SF1和第二表面SF2。第一結構層123L1的第二表面SF2連接第二結構層123L2。第二結構層123L2具有背離第二表面SF2的第三表面SF3。第一表面SF1、第二表面SF2和第三表面SF3沿著一方向(例如平行於基板SUB的表面SUBs的方向,或圖6中的水平方向或垂直於擋牆結構層123的延伸方向)分別具有第一寬度W1、第二寬度W2和第三寬度W3。Please refer to Figures 2 and 6. Different from the barrier structure layer 123 of Figure 2, in another embodiment, the barrier structure layer 123' may include a first structure stacked in the normal direction of the surface SUBs of the substrate SUB. layer 123L1 and the second structural layer 123L2. The first structural layer 123L1 has a first surface SF1 and a second surface SF2 that are away from each other along the normal direction of the surface SUBs of the substrate SUB. The second surface SF2 of the first structural layer 123L1 is connected to the second structural layer 123L2. The second structural layer 123L2 has a third surface SF3 facing away from the second surface SF2. The first surface SF1 , the second surface SF2 and the third surface SF3 are respectively along a direction (for example, a direction parallel to the surface SUBs of the substrate SUB, or the horizontal direction in FIG. 6 or perpendicular to the extension direction of the retaining wall structure layer 123 ). It has a first width W1, a second width W2 and a third width W3.

特別注意的是,擋牆結構層123的第二寬度W2小於或等於第一寬度W1,第三寬度W3小於第二寬度W2,且這些寬度都要小於0.4毫米。如此,可大幅降低擋牆結構層123在基板SUB的表面SUBs的法線方向上的可視性,以確保採用背光模組10的顯示器的顯示品質。It is particularly noted that the second width W2 of the retaining wall structural layer 123 is less than or equal to the first width W1, the third width W3 is less than the second width W2, and these widths are all less than 0.4 mm. In this way, the visibility of the barrier structure layer 123 in the normal direction of the surface SUBs of the substrate SUB can be greatly reduced to ensure the display quality of the display using the backlight module 10 .

然而,本發明不限於此。在另一些變形實施例中,擋牆結構層的第一側面和第二側面也可以各自是折面(例如圖7A的擋牆結構層123A的第一側面123ss1-A和第二側面123ss2-A和圖7E的擋牆結構層123E的第一側面123ss1-E和第二側面123ss2-E)、曲面(例如圖7C的擋牆結構層123C的第一側面123ss1-C和第二側面123ss2-C和圖7G的擋牆結構層123G的第一側面123ss1-G和第二側面123ss2-G)或平面(例如圖6的擋牆結構層123的第一側面123ss1和第二側面123ss2以及圖7D的擋牆結構層123D的第一側面123ss1-D和第二側面123ss2-D)與曲面的組合(例如圖7B的擋牆結構層123B的第一側面123ss1-B和第二側面123ss2-B和圖7F的擋牆結構層123F的第一側面123ss1-F和第二側面123ss2-F)。However, the present invention is not limited to this. In other modified embodiments, the first side and the second side of the retaining wall structural layer may also be folded surfaces (for example, the first side 123ss1-A and the second side 123ss2-A of the retaining wall structural layer 123A in Figure 7A and the first side 123ss1-E and the second side 123ss2-E of the retaining wall structural layer 123E in Figure 7E), curved surfaces (such as the first side 123ss1-C and the second side 123ss2-C of the retaining wall structural layer 123C in Figure 7C and the first side 123ss1-G and the second side 123ss2-G of the retaining wall structural layer 123G of Figure 7G) or a plane (such as the first side 123ss1 and the second side 123ss2 of the retaining wall structural layer 123 of Figure 6 and the first side 123ss2 of Figure 7D The combination of the first side 123ss1-D and the second side 123ss2-D of the retaining wall structural layer 123D) and the curved surface (for example, the first side 123ss1-B and the second side 123ss2-B of the retaining wall structural layer 123B in Figure 7B and Figure 7B The first side 123ss1-F and the second side 123ss2-F of the retaining wall structural layer 123F of 7F).

特別注意的是,在圖7A的擋牆結構層123A中,其第一側面123ss1-A與第二側面123ss2-A可呈非對稱設置。在圖7D至圖7G的擋牆結構層123D、擋牆結構層123E、擋牆結構層123F和擋牆結構層123G中,這些擋牆結構層的第三表面SF3-D、第三表面SF3-E、第三表面SF3-F和第三表面SF3-G並非如圖6的第三表面SF3、圖7A的第三表面SF3-A、圖7B的第三表面SF3-B和圖7C的第三表面SF3-C為平面。It is particularly important to note that in the retaining wall structural layer 123A in FIG. 7A , the first side 123ss1-A and the second side 123ss2-A may be arranged asymmetrically. In the retaining wall structural layer 123D, the retaining wall structural layer 123E, the retaining wall structural layer 123F and the retaining wall structural layer 123G of Figures 7D to 7G, the third surfaces SF3-D, SF3- of these retaining wall structural layers E. The third surface SF3-F and the third surface SF3-G are not the third surface SF3 in Figure 6, the third surface SF3-A in Figure 7A, the third surface SF3-B in Figure 7B and the third surface in Figure 7C. Surface SF3-C is flat.

舉例來說,在圖7D的擋牆結構層123D中,其第一側面123ss1-D與第二側面123ss2-D相交並形成一頂角。相似地,在圖7E的擋牆結構層123E中,其第一側面123ss1-E與第二側面123ss2-E相交並形成一頂角。在圖7F的擋牆結構層123F以及圖7G的擋牆結構層123G中,其第三表面SF3-F和第三表面SF3-G都為曲面。For example, in the retaining wall structural layer 123D in Figure 7D, its first side 123ss1-D and its second side 123ss2-D intersect and form a vertex angle. Similarly, in the retaining wall structure layer 123E of Figure 7E, its first side 123ss1-E and the second side 123ss2-E intersect and form a vertex angle. In the retaining wall structural layer 123F of FIG. 7F and the retaining wall structural layer 123G of FIG. 7G, both the third surface SF3-F and the third surface SF3-G are curved surfaces.

以下將列舉另一些實施例以詳細說明本揭露,其中相同的構件將標示相同的符號,並且省略相同技術內容的說明,省略部分請參考前述實施例,以下不再贅述。Other embodiments will be enumerated below to describe the present disclosure in detail, in which the same components will be marked with the same symbols, and the description of the same technical content will be omitted. Please refer to the previous embodiments for the omitted parts, which will not be described again below.

圖8是依照本發明的另一實施例的波長轉換元件的剖視示意圖。請參照圖8,本實施例的波長轉換元件120B與圖2的波長轉換元件120的主要差異在於:擋牆結構層的厚度多樣性。具體而言,波長轉換元件120B的擋牆結構層123H具有定義任一個微凹槽的兩部分,例如:定義微凹槽MG1-B的第一部分123P1和第二部分123P2以及定義微凹槽MG2-B的第二部分123P2和第三部分123P3。FIG. 8 is a schematic cross-sectional view of a wavelength conversion element according to another embodiment of the present invention. Please refer to FIG. 8 . The main difference between the wavelength conversion element 120B of this embodiment and the wavelength conversion element 120 of FIG. 2 lies in the thickness diversity of the retaining wall structural layer. Specifically, the barrier structure layer 123H of the wavelength conversion element 120B has two parts that define any micro-groove, for example: the first part 123P1 and the second part 123P2 that define the micro-groove MG1-B and the micro-groove MG2- The second part of B 123P2 and the third part 123P3.

特別注意的是,擋牆結構層123H的多個部分各自的高度可不同。在本實施例中,擋牆結構層123H的第一部分123P1、第二部分123P2和第三部分123P3沿著基板SUB的表面SUBs的法線方向分別具有第一高度H1、第二高度H2和第三高度H3,且這三個高度都不相同。例如:第一高度H1可大於第二高度H2,且第三高度H3可大於第一高度H1,但不以此為限。透過擋牆結構層123H的上述高低差可避免波長轉換元件120B與其他光學膜片間的吸附現象發生。It is particularly noted that the heights of the portions of the retaining wall structural layer 123H may be different. In this embodiment, the first part 123P1, the second part 123P2 and the third part 123P3 of the retaining wall structural layer 123H have a first height H1, a second height H2 and a third height respectively along the normal direction of the surface SUBs of the substrate SUB. Height H3, and these three heights are all different. For example, the first height H1 may be greater than the second height H2, and the third height H3 may be greater than the first height H1, but is not limited thereto. Through the above-mentioned height difference of the barrier structure layer 123H, the adsorption phenomenon between the wavelength conversion element 120B and other optical films can be avoided.

圖9是依照本發明的又一實施例的波長轉換元件的剖視示意圖。請參照圖9,不同於圖2的波長轉換元件120,本實施例的波長轉換元件120C還可選擇性地包括硬塗層HCL。此硬塗層HCL可覆蓋在波長轉換層125背離基板SUB的表面125s。亦即,本實施例的波長轉換層125並未如圖2的波長轉換層125一樣暴露在空氣AIR中。Figure 9 is a schematic cross-sectional view of a wavelength conversion element according to yet another embodiment of the present invention. Referring to FIG. 9 , unlike the wavelength conversion element 120 of FIG. 2 , the wavelength conversion element 120C of this embodiment may also optionally include a hard coating HCL. The hard coating HCL may cover the surface 125s of the wavelength conversion layer 125 facing away from the substrate SUB. That is, the wavelength conversion layer 125 of this embodiment is not exposed to the air AIR like the wavelength conversion layer 125 of FIG. 2 .

舉例來說,在本實施例中,硬塗層HCL的水氣穿透率可大於10g/m2∙day,而硬塗層HCL的氧氣穿透率可大於10cm3/m2∙day∙atm。也就是說,在本實施例中,由於使用了具有高阻水氣/氧氣能力的硬塗層HCL,波長轉換層125的波長轉換粒子WCP也可使用不含有疏水官能基HFG(如圖5所示)的波長轉換粒子來取代。For example, in this embodiment, the water vapor transmission rate of the hard coating HCL can be greater than 10g/m2∙day, and the oxygen transmission rate of the hard coating HCL can be greater than 10cm3/m2∙day∙atm. That is to say, in this embodiment, due to the use of the hard coating HCL with high water vapor/oxygen resistance ability, the wavelength conversion particles WCP of the wavelength conversion layer 125 can also be used without hydrophobic functional groups HFG (as shown in Figure 5 shown) are replaced by wavelength converting particles.

圖10是依照本發明的再一實施例的波長轉換元件的剖視示意圖。請參照圖10,本實施例的波長轉換元件120D與圖2的波長轉換元件120的差異在於:擋牆結構層的構型不同。具體而言,在本實施例中,擋牆結構層123I例如是多個稜鏡結構所組成,這些稜鏡結構例如沿著圖10的水平方向並排設置,並且定義出多個微凹槽MG-C。FIG. 10 is a schematic cross-sectional view of a wavelength conversion element according to yet another embodiment of the present invention. Please refer to Figure 10. The difference between the wavelength conversion element 120D of this embodiment and the wavelength conversion element 120 of Figure 2 is that the configuration of the retaining wall structural layer is different. Specifically, in this embodiment, the retaining wall structural layer 123I is composed of, for example, multiple ridge structures. These ridge structures are arranged side by side along the horizontal direction of FIG. 10 , for example, and define multiple micro-grooves MG- C.

在本實施例中,波長轉換層125B填入這些稜鏡結構(即擋牆結構層123I)間的多個微凹槽MG-C,並且被切分為彼此間隔排列且橫截面(即圖10的圖面)輪廓為三角狀的多個波長轉換圖案125P”。特別說明的是,由於本實施例的多個稜鏡結構彼此緊鄰設置,擋牆結構層123I的穿透率都較前述各個實施例的擋牆結構層來得高。In this embodiment, the wavelength conversion layer 125B is filled in a plurality of micro-grooves MG-C between these structures (ie, the retaining wall structure layer 123I), and is cut into spaced apart arrangements and cross-sections (ie, FIG. 10 The figure) has a plurality of wavelength conversion patterns 125P" with a triangular outline. In particular, since the plurality of wavelength conversion patterns 125P in this embodiment are arranged close to each other, the transmittance of the retaining wall structure layer 123I is higher than that of the previous embodiments. The retaining wall structure of the example is high.

圖11是依照本發明的另一實施例的背光模組的剖視示意圖。請參照圖11,不同於圖1的背光模組10為側入式背光模組,本實施例的背光模組20為直下式背光模組。舉例來說,在本實施例中,背光模組20可包括電路板CBD和多個光源110A。這些光源110A分散地設置在電路板CBD上並且與電路板CBD電性連接。波長轉換元件120重疊這些光源110A的出光面設置,並且適於將各個光源110A發出的激發光束EB吸收後發出轉換光束CB。FIG. 11 is a schematic cross-sectional view of a backlight module according to another embodiment of the present invention. Please refer to FIG. 11 . Different from the backlight module 10 in FIG. 1 which is an edge-type backlight module, the backlight module 20 of this embodiment is a direct-type backlight module. For example, in this embodiment, the backlight module 20 may include a circuit board CBD and a plurality of light sources 110A. These light sources 110A are dispersedly arranged on the circuit board CBD and are electrically connected to the circuit board CBD. The wavelength conversion element 120 is arranged to overlap the light exit surfaces of these light sources 110A, and is suitable for absorbing the excitation beam EB emitted by each light source 110A and then emitting the converted beam CB.

由於本實施例的波長轉換元件120相似於圖1的波長轉換元件120,詳細說明請參見前述實施例的相關段落,於此便不再贅述。另一方面,前述各實施例的波長轉換元件都可用來取代本實施例的波長轉換元件120以滿足不同的應用設計或製程需求。Since the wavelength conversion element 120 of this embodiment is similar to the wavelength conversion element 120 of FIG. 1 , please refer to the relevant paragraphs of the foregoing embodiments for detailed description, and will not be described again here. On the other hand, the wavelength conversion element of each of the foregoing embodiments can be used to replace the wavelength conversion element 120 of this embodiment to meet different application designs or process requirements.

綜上所述,在本發明的一實施例的波長轉換元件及背光模組中,擋牆結構層的多個微凹槽內設有波長轉換層,且波長轉換層的填充高度低於擋牆結構層的高度。由於擋牆結構層的反射率介於1%至90%之間的範圍,除了可增加激發光束的轉換效率外,還能限制轉換光束的散射角度,使其正向出光量增加。另一方面,擋牆結構層的設置還可以提升波長轉換元件的挺性,除了能滿足整體厚度薄化的需求外,還能避免薄化後造成背光模組的組裝良率下降的問題。To sum up, in the wavelength conversion element and the backlight module according to one embodiment of the present invention, the wavelength conversion layer is provided in the plurality of micro-grooves of the barrier structure layer, and the filling height of the wavelength conversion layer is lower than the barrier wall The height of the structural layer. Since the reflectivity of the retaining wall structural layer ranges from 1% to 90%, in addition to increasing the conversion efficiency of the excitation beam, it can also limit the scattering angle of the converted beam, increasing the amount of forward light. On the other hand, the setting of the retaining wall structural layer can also improve the stiffness of the wavelength conversion element. In addition to meeting the need for overall thickness thinning, it can also avoid the problem of reduced assembly yield of the backlight module caused by thinning.

10、20:背光模組 100:導光板 100es:出光面 100is:入光面 110、110A:光源 120、120A、120B、120C、120D:波長轉換元件 123、123’、123”、123A~123H、123I:擋牆結構層 123BW:擋牆 123BW1:第一擋牆 123BW2:第二擋牆 123L1:第一結構層 123L2:第二結構層 123P1~123P3:第一部分~第三部分 123ss1、123ss1-A~123ss1-G:第一側面 123ss2、123ss2-A~123ss2-G:第二側面 125、125A、125B:波長轉換層 125P、125P1、125P2、125P”:波長轉換圖案 125s、SLs、SUBs:表面 AIR:空氣 CB:轉換光束 CBD:電路板 CL:核層 Da:粒徑 EB:激發光束 H、H1、H2、H3:高度 HCL:硬塗層 HFG:疏水官能基 HPM:疏水性基材 LG:配體 MG、MG-A、MG1-B、MG2-B、MG-C:微凹槽 SF1:第一表面 SF2:第二表面 SF3、SF3-A~SF3-G:第三表面 SL:殼層 SUB:基板 t1、t2:厚度 W1~W3:第一寬度~第三寬度 WCP、WCP1、WCP2:波長轉換粒子 10, 20: Backlight module 100:Light guide plate 100es: light-emitting surface 100is: light incident surface 110, 110A: light source 120, 120A, 120B, 120C, 120D: wavelength conversion element 123, 123’, 123”, 123A~123H, 123I: retaining wall structural layer 123BW: retaining wall 123BW1: The first retaining wall 123BW2:Second retaining wall 123L1: First structural layer 123L2: Second structural layer 123P1~123P3: Part 1~Part 3 123ss1, 123ss1-A~123ss1-G: first side 123ss2, 123ss2-A~123ss2-G: second side 125, 125A, 125B: Wavelength conversion layer 125P, 125P1, 125P2, 125P”: wavelength conversion pattern 125s, SLs, SUBs: surface AIR: air CB: Conversion beam CBD: circuit board CL: nuclear layer Da: particle size EB: excitation beam H, H1, H2, H3: height HCL: hard coating HFG: hydrophobic functional group HPM: hydrophobic substrate LG: ligand MG, MG-A, MG1-B, MG2-B, MG-C: micro grooves SF1: first surface SF2: Second surface SF3, SF3-A~SF3-G: third surface SL: Shell SUB:Substrate t1, t2: thickness W1~W3: first width~third width WCP, WCP1, WCP2: wavelength conversion particles

圖1是依照本發明的一實施例的背光模組的剖視示意圖。 圖2是圖1的波長轉換元件的放大示意圖。 圖3是圖2的波長轉換元件的俯視示意圖。 圖4是圖3的另一種變形實施例的波長轉換元件的俯視示意圖。 圖5是圖2的波長轉換粒子的放大示意圖。 圖6是圖2的另一實施例的擋牆結構層的放大示意圖。 圖7A至圖7G是圖6的另一些變形實施例的擋牆結構層的剖視示意圖。 圖8是依照本發明的另一實施例的波長轉換元件的剖視示意圖。 圖9是依照本發明的又一實施例的波長轉換元件的剖視示意圖。 圖10是依照本發明的再一實施例的波長轉換元件的剖視示意圖。 圖11是依照本發明的另一實施例的背光模組的剖視示意圖。 FIG. 1 is a schematic cross-sectional view of a backlight module according to an embodiment of the present invention. FIG. 2 is an enlarged schematic diagram of the wavelength conversion element of FIG. 1 . FIG. 3 is a schematic top view of the wavelength conversion element of FIG. 2 . FIG. 4 is a schematic top view of the wavelength conversion element of another modified embodiment of FIG. 3 . FIG. 5 is an enlarged schematic diagram of the wavelength conversion particles of FIG. 2 . FIG. 6 is an enlarged schematic view of the retaining wall structural layer of another embodiment of FIG. 2 . 7A to 7G are schematic cross-sectional views of retaining wall structural layers in other modified embodiments of FIG. 6 . FIG. 8 is a schematic cross-sectional view of a wavelength conversion element according to another embodiment of the present invention. Figure 9 is a schematic cross-sectional view of a wavelength conversion element according to yet another embodiment of the present invention. FIG. 10 is a schematic cross-sectional view of a wavelength conversion element according to yet another embodiment of the present invention. FIG. 11 is a schematic cross-sectional view of a backlight module according to another embodiment of the present invention.

120:波長轉換元件 120:Wavelength conversion element

123:擋牆結構層 123:Retaining wall structural layer

123ss1:第一側面 123ss1: first side

123ss2:第二側面 123ss2:Second side

125:波長轉換層 125: Wavelength conversion layer

125P1、125P2:波長轉換圖案 125P1, 125P2: Wavelength conversion pattern

125s、SUBs:表面 125s, SUBs: Surface

AIR:空氣 AIR: air

H:高度 H: height

HPM:疏水性基材 HPM: hydrophobic substrate

MG:微凹槽 MG: micro groove

SF1:第一表面 SF1: first surface

SF2:第二表面 SF2: Second surface

SUB:基板 SUB:Substrate

t1、t2:厚度 t1, t2: thickness

WCP、WCP1、WCP2:波長轉換粒子 WCP, WCP1, WCP2: wavelength conversion particles

W1:第一寬度 W1: first width

W2:第二寬度 W2: second width

Claims (18)

一種波長轉換元件,適於接收一激發光束,且包括:一基板;一擋牆結構層,設置在該基板的一表面上,且定義出多個微凹槽,該擋牆結構層的反射率介於1%至90%之間的範圍;以及一波長轉換層,設置在該些微凹槽內,該波長轉換層包括多個波長轉換粒子,其中該擋牆結構層沿著該基板的該表面的法線方向上的高度大於該波長轉換層沿著該基板的該表面的法線方向上的高度,該激發光束穿透該基板而傳遞至該波長轉換層,且該激發光束於該波長轉換層轉換為一轉換光束。 A wavelength conversion element, suitable for receiving an excitation beam, and includes: a substrate; a retaining wall structural layer, which is disposed on a surface of the substrate and defines a plurality of micro-grooves. The reflectivity of the retaining wall structural layer A range between 1% and 90%; and a wavelength conversion layer disposed in the micro-grooves, the wavelength conversion layer including a plurality of wavelength conversion particles, wherein the barrier structure layer is along the surface of the substrate The height in the normal direction of the wavelength conversion layer is greater than the height of the wavelength conversion layer in the normal direction along the surface of the substrate, the excitation beam penetrates the substrate and is transmitted to the wavelength conversion layer, and the excitation beam is converted in the wavelength The layer is converted into a converted beam. 如請求項1所述的波長轉換元件,其中該擋牆結構層沿著該基板的該表面的法線方向上具有彼此相背離的一第一表面與一第二表面,該第一表面與該第二表面沿著一方向分別具有一第一寬度和一第二寬度,該第二寬度小於或等於該第一寬度,且該第一寬度和該第二寬度都小於0.4毫米。 The wavelength conversion element of claim 1, wherein the barrier structure layer has a first surface and a second surface that are away from each other along the normal direction of the surface of the substrate, and the first surface and the The second surface respectively has a first width and a second width along a direction, the second width is less than or equal to the first width, and both the first width and the second width are less than 0.4 mm. 如請求項1所述的波長轉換元件,其中該擋牆結構層的材料包括二氧化鈦、聚甲基丙烯酸甲酯、聚碳酸酯或聚苯乙烯。 The wavelength conversion element according to claim 1, wherein the material of the retaining wall structural layer includes titanium dioxide, polymethylmethacrylate, polycarbonate or polystyrene. 如請求項1所述的波長轉換元件,還包括:一硬塗層,覆蓋該波長轉換層背離該基板的一表面。 The wavelength conversion element according to claim 1, further comprising: a hard coating covering a surface of the wavelength conversion layer facing away from the substrate. 如請求項1所述的波長轉換元件,其中該波長轉換層具有背離該基板的一表面,且該波長轉換層的該表面暴露在空氣中。 The wavelength conversion element of claim 1, wherein the wavelength conversion layer has a surface facing away from the substrate, and the surface of the wavelength conversion layer is exposed to the air. 如請求項1所述的波長轉換元件,其中該擋牆結構層具有定義每一該些微凹槽的一第一部分與一第二部分,該第一部分與該第二部分沿著該基板的該表面的法線方向分別具有一第一高度與一第二高度,且該第一高度不同於該第二高度。 The wavelength conversion element of claim 1, wherein the barrier structure layer has a first part and a second part defining each of the micro-grooves, the first part and the second part along the surface of the substrate The normal directions of have a first height and a second height respectively, and the first height is different from the second height. 如請求項1所述的波長轉換元件,其中該波長轉換層為多個波長轉換圖案,該些波長轉換圖案分別填充在該擋牆結構層的該些微凹槽內,該些波長轉換圖案的任兩者沿著該基板的該表面的法線方向的厚度差小於或等於0.5微米。 The wavelength conversion element according to claim 1, wherein the wavelength conversion layer is a plurality of wavelength conversion patterns, and the wavelength conversion patterns are respectively filled in the micro grooves of the barrier structure layer, and any of the wavelength conversion patterns The thickness difference between the two along the normal direction of the surface of the substrate is less than or equal to 0.5 micron. 如請求項1所述的波長轉換元件,其中該波長轉換層為多個波長轉換圖案,該些波長轉換圖案分別填充在該擋牆結構層的該些微凹槽內,各該些波長轉換圖案適於吸收該激發光束並發出該轉換光束,該些波長轉換圖案發出的多個該轉換光束在CIE1931色彩空間中的色度座標x的色度差值小於0.01,且該些轉換光束在CIE1931色彩空間中的色度座標y的色度差值小於0.01。 The wavelength conversion element according to claim 1, wherein the wavelength conversion layer is a plurality of wavelength conversion patterns, and the wavelength conversion patterns are respectively filled in the micro grooves of the barrier structure layer, and each of the wavelength conversion patterns is suitable for After absorbing the excitation beam and emitting the conversion beam, the chromaticity difference of the chromaticity coordinates The chromaticity difference of the chromaticity coordinate y in is less than 0.01. 如請求項1所述的波長轉換元件,其中該擋牆結構層包括一第一結構層與一第二結構層,該第二結構層於該基板的該表面的法線方向上堆疊於該第一結構層上,該第一結構層沿著該基板的該表面的法線方向上具有彼此相背離的一第一表面與一第二表面,該第二表面連接該第二結構層,該第二結構層具有背離該第二表面的一第三表面,該第一表面、該第二表面與該第三表面沿著一方向分別具有一第一寬度、一第二寬度和一第三寬度, 該第二寬度小於或等於該第一寬度,該第三寬度小於該第二寬度,且該第一寬度、該第二寬度和該第三寬度都小於0.4毫米。 The wavelength conversion element according to claim 1, wherein the barrier structural layer includes a first structural layer and a second structural layer, and the second structural layer is stacked on the first structural layer in the normal direction of the surface of the substrate. On a structural layer, the first structural layer has a first surface and a second surface that are away from each other along the normal direction of the surface of the substrate, and the second surface is connected to the second structural layer. The two structural layers have a third surface facing away from the second surface, and the first surface, the second surface and the third surface respectively have a first width, a second width and a third width along a direction, The second width is less than or equal to the first width, the third width is less than the second width, and the first width, the second width and the third width are all less than 0.4 mm. 如請求項1所述的波長轉換元件,其中該擋牆結構層沿著該基板的該表面的法線方向的高度小於1毫米。 The wavelength conversion element according to claim 1, wherein the height of the barrier structure layer along the normal direction of the surface of the substrate is less than 1 mm. 如請求項1所述的波長轉換元件,其中該擋牆結構層具有定義該些微凹槽的其中相鄰兩者的一第一側面與一第二側面,且該第一側面和該第二側面為平面、折面、曲面、或上述的組合。 The wavelength conversion element according to claim 1, wherein the barrier structure layer has a first side and a second side defining two adjacent ones of the micro-grooves, and the first side and the second side It can be a flat surface, a folded surface, a curved surface, or a combination of the above. 如請求項1所述的波長轉換元件,其中各該些波長轉換粒子包括:一核層;一殼層,包覆該核層;以及多個疏水官能基,設置在該殼層背離該核層的一表面上。 The wavelength conversion element according to claim 1, wherein each of the wavelength conversion particles includes: a core layer; a shell layer covering the core layer; and a plurality of hydrophobic functional groups disposed on the shell layer away from the core layer on the surface. 如請求項12所述的波長轉換元件,其中各該些疏水官能基為聚矽烷聚合物。 The wavelength conversion element according to claim 12, wherein each of the hydrophobic functional groups is a polysilane polymer. 如請求項12所述的波長轉換元件,其中該波長轉換層還包括一疏水性基材,且該些波長轉換粒子分散地設置在該疏水性基材內。 The wavelength conversion element according to claim 12, wherein the wavelength conversion layer further includes a hydrophobic substrate, and the wavelength conversion particles are dispersedly provided in the hydrophobic substrate. 如請求項1所述的波長轉換元件,其中該擋牆結構層包括多個稜鏡結構,該些稜鏡結構彼此相鄰排列並定義出該些微凹槽,該波長轉換層填入該些微凹槽內並形成多個波長轉換圖案,且該些波長轉換圖案的橫截面輪廓為三角狀。 The wavelength conversion element of claim 1, wherein the barrier structure layer includes a plurality of ridge structures, the ridge structures are arranged adjacent to each other and define the micro-grooves, and the wavelength conversion layer fills the micro-grooves. A plurality of wavelength conversion patterns are formed in the groove, and the cross-sectional profiles of these wavelength conversion patterns are triangular. 一種背光模組,包括:一光源,適於提供一激發光束;以及一波長轉換元件,設置在該激發光束的傳遞路徑上,且包括:一基板;一擋牆結構層,設置在該基板的一表面上,且定義出多個微凹槽,該擋牆結構層的反射率介於1%至90%之間的範圍;以及一波長轉換層,設置在該些微凹槽內,該波長轉換層包括多個波長轉換粒子,其中該擋牆結構層沿著該基板的該表面的法線方向上的高度大於該波長轉換層沿著該基板的該表面的法線方向上的高度,該激發光束穿透該基板而傳遞至該波長轉換層,且該激發光束於該波長轉換層轉換為一轉換光束。 A backlight module includes: a light source suitable for providing an excitation beam; and a wavelength conversion element disposed on the transmission path of the excitation beam, and includes: a substrate; and a blocking wall structure layer disposed on the substrate On a surface, and defining a plurality of micro-grooves, the reflectivity of the retaining wall structural layer ranges from 1% to 90%; and a wavelength conversion layer is provided in the micro-grooves, the wavelength conversion layer The layer includes a plurality of wavelength conversion particles, wherein the height of the barrier structure layer along the normal direction of the surface of the substrate is greater than the height of the wavelength conversion layer along the normal direction of the surface of the substrate, and the excitation The light beam penetrates the substrate and is transmitted to the wavelength conversion layer, and the excitation light beam is converted into a conversion light beam at the wavelength conversion layer. 如請求項16所述的背光模組,其中各該些波長轉換粒子包括:一核層;一殼層,包覆該核層;以及多個疏水官能基,設置在該殼層背離該核層的一表面上。 The backlight module of claim 16, wherein each of the wavelength conversion particles includes: a core layer; a shell layer covering the core layer; and a plurality of hydrophobic functional groups disposed on the shell layer away from the core layer on the surface. 如請求項16所述的背光模組,還包括:一導光板,具有一入光面以及連接該入光面的一出光面,其中該光源設置在該導光板的該入光面的一側,該波長轉換元件設置在該導光板的該出光面的一側。 The backlight module of claim 16, further comprising: a light guide plate having a light incident surface and a light exit surface connected to the light incident surface, wherein the light source is disposed on one side of the light incident surface of the light guide plate , the wavelength conversion element is disposed on one side of the light exit surface of the light guide plate.
TW111134477A 2022-09-13 2022-09-13 Wavelength conversion element and backlight module TWI824713B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111134477A TWI824713B (en) 2022-09-13 2022-09-13 Wavelength conversion element and backlight module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111134477A TWI824713B (en) 2022-09-13 2022-09-13 Wavelength conversion element and backlight module

Publications (2)

Publication Number Publication Date
TWI824713B true TWI824713B (en) 2023-12-01
TW202411744A TW202411744A (en) 2024-03-16

Family

ID=90052961

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111134477A TWI824713B (en) 2022-09-13 2022-09-13 Wavelength conversion element and backlight module

Country Status (1)

Country Link
TW (1) TWI824713B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576892A (en) * 2013-10-21 2015-04-29 隆达电子股份有限公司 Wavelength conversion film, wavelength conversion film bonding structure, light-emitting structure and manufacturing method thereof
CN110729282A (en) * 2019-10-08 2020-01-24 武汉大学 Micro-LED display chip and preparation method thereof
CN111048654A (en) * 2018-10-12 2020-04-21 财团法人工业技术研究院 Photoelectric element packaging body
US10784308B2 (en) * 2017-09-05 2020-09-22 Samsung Electronics Co., Ltd. Display device including light emitting diode and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576892A (en) * 2013-10-21 2015-04-29 隆达电子股份有限公司 Wavelength conversion film, wavelength conversion film bonding structure, light-emitting structure and manufacturing method thereof
US10784308B2 (en) * 2017-09-05 2020-09-22 Samsung Electronics Co., Ltd. Display device including light emitting diode and method of manufacturing the same
CN111048654A (en) * 2018-10-12 2020-04-21 财团法人工业技术研究院 Photoelectric element packaging body
CN110729282A (en) * 2019-10-08 2020-01-24 武汉大学 Micro-LED display chip and preparation method thereof

Similar Documents

Publication Publication Date Title
US11396996B2 (en) Light source device and display unit
CN112133734B (en) Display panel and display device
US10304813B2 (en) Display device having a plurality of bank structures
JP6912746B1 (en) Light emitting module and planar light source
KR102312522B1 (en) Display device
US20050286854A1 (en) Lighting device and display device using the same
US11112652B2 (en) Backlight unit and display device including the same technical field
US20210341653A1 (en) Color conversion component and display device
JP6912748B1 (en) Light emitting module and planar light source
JP6912747B1 (en) Light emitting module and planar light source
JP6324683B2 (en) Direct type light source device
TW202037975A (en) Display device
US20220349555A1 (en) Light emitting module, surface light source, and a method of manufacturing light emitting module
CN111308778B (en) Backlight unit and display device including the same
US20230097447A1 (en) Backlight module and display device
US11048121B2 (en) Lighting device and display device
TWI824713B (en) Wavelength conversion element and backlight module
TW202411744A (en) Wavelength conversion element and backlight module
US20240085739A1 (en) Wavelength conversion element and backlight module
TWI817323B (en) Quantum dot light diffuser plate and method for making the same
JP7299522B2 (en) Light-emitting module and planar light source
WO2023190043A1 (en) Light-emitting module
TWI805291B (en) Backlight module of display
WO2022236841A1 (en) Color filter structure and preparation method therefor, and display panel
CN113934060B (en) Backlight module and display device