TWI824333B - Method of control system controlling nitrogen oxides and ammonia water in selective non-catalytic reduction system - Google Patents

Method of control system controlling nitrogen oxides and ammonia water in selective non-catalytic reduction system Download PDF

Info

Publication number
TWI824333B
TWI824333B TW110141689A TW110141689A TWI824333B TW I824333 B TWI824333 B TW I824333B TW 110141689 A TW110141689 A TW 110141689A TW 110141689 A TW110141689 A TW 110141689A TW I824333 B TWI824333 B TW I824333B
Authority
TW
Taiwan
Prior art keywords
processor
sets
values
corresponding strain
value
Prior art date
Application number
TW110141689A
Other languages
Chinese (zh)
Other versions
TW202219680A (en
Inventor
李鐘培
游濬遠
廖信堯
Original Assignee
臺泥資訊股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 臺泥資訊股份有限公司 filed Critical 臺泥資訊股份有限公司
Publication of TW202219680A publication Critical patent/TW202219680A/en
Application granted granted Critical
Publication of TWI824333B publication Critical patent/TWI824333B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • C04B7/44Burning; Melting
    • C04B7/4407Treatment or selection of the fuel therefor, e.g. use of hazardous waste as secondary fuel ; Use of particular energy sources, e.g. waste hot gases from other processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • C04B7/44Burning; Melting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/80Management or planning
    • Y02P90/84Greenhouse gas [GHG] management systems
    • Y02P90/845Inventory and reporting systems for greenhouse gases [GHG]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Feedback Control In General (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

A method of a control system controlling emission of nitrogen oxides by computing a proper rate of spaying ammonia water includes a controller of the control system processing a plurality of datasets to generate a plurality of updated datasets, each updated dataset including a rate of spaying ammonia water and a plurality of updated variable values, generating a set of regression coefficients according to a plurality of average nitrogen oxide concentrations and the plurality of updated datasets, and the processor generating a target rate of spaying ammonia water according to a target average nitrogen oxide concentration, the set of regression coefficients and an updated dataset. The target rate of spaying ammonia water is the proper rate of spaying ammonia water.

Description

基於選擇性非觸媒脫硝還原系統的最適化氨水暨氮氧化物控制方法Optimal ammonia and nitrogen oxide control method based on selective non-catalytic denitrification reduction system

本發明係關於水泥生產,特別是一種基於選擇性非觸媒脫硝還原系統的最適化氨水暨氮氧化物控制方法。The invention relates to cement production, particularly an optimal ammonia water and nitrogen oxide control method based on a selective non-catalytic denitrification reduction system.

水泥生產的高溫環境會產生氮氧化物的排放,為避免氮氧化物對環境的衝擊以及符合政府法規,目前使用選擇性非觸媒還原(selective non-catalytic reduction,SNCR)系統,利用噴灑氨水來抑制氮氧化物。然而,過多的氨水會讓沒有反應完全的氨水排出變成氨逃逸,造成二次汙染,同時亦會加快機器設備腐蝕速度。The high-temperature environment of cement production will produce nitrogen oxide emissions. In order to avoid the impact of nitrogen oxides on the environment and comply with government regulations, a selective non-catalytic reduction (SNCR) system is currently used, which sprays ammonia water. Suppresses nitrogen oxides. However, too much ammonia will cause the unreacted ammonia to be discharged and become ammonia escape, causing secondary pollution and accelerating the corrosion of machinery and equipment.

本發明實施例提供一種控制系統,透過計算最適氨水噴量來控制氮氧化物排放的方法,控制系統包含處理器,處理器處理複數組資料集以產生複數組更新資料集,每一組更新資料集包含一氨水噴量及複數個更新變數值,再將複數個平均氮氧化物濃度及複數組資料集產生一組迴歸係數,及處理器根據目標平均氮氧化物濃度、該組迴歸係數及複數個更新變數值,產生目標氨水噴量,即為當下最適氨水噴量。Embodiments of the present invention provide a control system that controls nitrogen oxide emissions by calculating the optimal ammonia spray volume. The control system includes a processor. The processor processes a plurality of sets of data sets to generate a plurality of sets of update data sets. Each set of update data The set contains an ammonia spray volume and a plurality of update variable values, and then a plurality of average nitrogen oxide concentrations and a plurality of data sets are used to generate a set of regression coefficients, and the processor generates a set of regression coefficients based on the target average nitrogen oxide concentration, the set of regression coefficients and the complex number Each updated variable value generates the target ammonia spray volume, which is the current optimal ammonia spray volume.

第1圖係為本發明實施例中之一種控制系統1之方塊圖。控制系統1可用於水泥廠,在給定的氮氧化物之排放標準下,精準產生最低氨水噴量,藉以控制氮氧化物的排放同時減低水泥廠的氨逃逸及減低水泥產線設備的腐蝕。Figure 1 is a block diagram of a control system 1 in an embodiment of the present invention. Control system 1 can be used in cement plants to accurately produce the minimum ammonia spray volume under given nitrogen oxide emission standards, thereby controlling nitrogen oxide emissions while reducing ammonia escape in cement plants and reducing corrosion of cement production line equipment.

控制系統1包含感測器101至10N及處理器12,N為大於1之正整數。感測器101至10N可設置於水泥廠中之複數個產線設備上,及透過有線或無線連接耦接於處理器12。每個產線設備上可設置至少一感測器。處理器12可設置於中控系統中,中控系統可設置於水泥廠或遠端電腦機房。複數個產線設備可包含生料秤、預熱塔、鍛燒爐、煙室、煙囪、分解爐、迴轉窯、篦冷機、高溫風機、冷卻風機、窯頭罩、窯頭排風機及其他產線設備。感測器101至10N可為溫度感測器、壓力感測器、濃度感測器、流量計或其他種類的感測器。在一些實施例中,感測器101至10N的設置位置及種類可由專家意見獲得。感測器101至10N可以定時或不定時方式獲取氨水噴量及複數個變數的變數值,並將氨水噴量及複數個變數的變數值傳送至處理器12以於資料庫中依據時間順序儲存為複數組資料集,每一組資料集對應一時間點,且包含氨水噴量及複數個變數值。表格1顯示由感測器101至10N可獲取之變數,及每個變數的單位、最大值及最小值。The control system 1 includes sensors 101 to 10N and a processor 12, where N is a positive integer greater than 1. The sensors 101 to 10N can be disposed on a plurality of production line equipment in the cement plant, and are coupled to the processor 12 through wired or wireless connections. At least one sensor can be installed on each production line equipment. The processor 12 can be installed in a central control system, and the central control system can be installed in a cement plant or a remote computer room. Multiple production line equipment may include raw material scales, preheating towers, calcining furnaces, smoke chambers, chimneys, decomposition furnaces, rotary kilns, grate coolers, high temperature fans, cooling fans, kiln head hoods, kiln head exhaust fans and other products. line equipment. The sensors 101 to 10N may be temperature sensors, pressure sensors, concentration sensors, flow meters or other types of sensors. In some embodiments, the placement locations and types of sensors 101 to 10N can be obtained from expert opinions. The sensors 101 to 10N can obtain the ammonia water spray volume and the variable values of the plurality of variables in a timed or irregular manner, and transmit the ammonia water spray volume and the variable values of the plurality of variables to the processor 12 for storage in the database in chronological order. It is a plurality of data sets. Each data set corresponds to a time point and contains ammonia spray volume and a plurality of variable values. Table 1 shows the variables that can be obtained by sensors 101 to 10N, as well as the unit, maximum value, and minimum value of each variable.

表格 1 變數 單位 最大值 最小值 鍛燒爐溫度 1538 488 煙室氧氣濃度 % 25 0 煙囪氧氣濃度 % 14 0 頭煤流量 ton/h 18 0 窯頭壓力 pa 0 -200 窯頭溫度 1204 0 生料餵料量 ton/h 510 0 尾煤流量 ton/h 23 0 窯尾氮氧化物濃度 mg/m 3 962 0 熟料溫度 1132 0 煙室溫度 1347 0 三次風溫 1037 0 氨水噴量 ton/h 1999 117 煙囪氮氧化物濃度 mg/m 3 397 0 預熱塔出口一氧化碳濃度 ppm 20000 0 Table 1 variables unit maximum value minimum value Calcining furnace temperature 1538 488 smoke chamber oxygen concentration % 25 0 Chimney oxygen concentration % 14 0 Head coal flow ton/h 18 0 kiln head pressure pa 0 -200 Kiln head temperature 1204 0 Raw feed amount ton/h 510 0 tailing coal flow ton/h twenty three 0 Nitrogen oxide concentration at kiln tail mg/m 3 962 0 clinker temperature 1132 0 Smoke chamber temperature 1347 0 Three air temperatures 1037 0 Ammonia spray volume ton/h 1999 117 Chimney NOx concentration mg/m 3 397 0 Carbon monoxide concentration at the outlet of the preheating tower ppm 20000 0

氨水噴量可為表格1中的氨水噴量,複數個變數可包含表格1中的鍛燒爐溫度、煙室氧氣濃度、煙囪氧氣濃度、頭煤流量、窯頭壓力、窯頭溫度、生料餵料量、尾煤流量、窯尾氮氧化物濃度、熟料溫度、煙室溫度、三次風溫、煙囪氮氧化物濃度及預熱塔出口一氧化碳濃度,但不限於此。The ammonia water injection amount can be the ammonia water injection amount in Table 1, and the plural variables can include the calcining furnace temperature, smoke chamber oxygen concentration, chimney oxygen concentration, coal flow rate, kiln head pressure, kiln head temperature, and raw meal in Table 1 Feeding volume, tail coal flow, kiln tail nitrogen oxide concentration, clinker temperature, smoke chamber temperature, tertiary air temperature, chimney nitrogen oxide concentration and preheating tower outlet carbon monoxide concentration, but are not limited to these.

由於氮氧化物濃度可受到水泥窯工況以及氨水噴量影響,處理器12可將平均氮氧化物濃度作為依變數,及將氨水噴量與該組對應變數作為對應變數來進行迴歸分析而建立迴歸模型,接著依據迴歸模型計算建議的氨水噴量,以達成目標平均氮氧化物濃度,例如未來5分鐘的目標平均氮氧化物濃度可為280mg/m 3Since the concentration of nitrogen oxides can be affected by the working conditions of the cement kiln and the amount of ammonia sprayed, the processor 12 can use the average nitrogen oxide concentration as a dependent variable, and use the ammonia sprayed amount and the set of corresponding variables as corresponding variables to perform regression analysis and establish regression model, and then calculate the recommended ammonia spray volume based on the regression model to achieve the target average nitrogen oxide concentration. For example, the target average nitrogen oxide concentration in the next 5 minutes can be 280 mg/m 3 .

第2圖係為一種控制系統1控制氮氧化物排放方法200之流程圖。方法200包含步驟S202至S206,用以進行迴歸分析來預測平均氮氧化物濃度。任何合理的技術變更或是步驟調整都屬於本發明所揭露的範疇。步驟S202至S206的詳細內容如下所述:Figure 2 is a flow chart of a method 200 for controlling nitrogen oxide emissions by the control system 1 . The method 200 includes steps S202 to S206 for performing regression analysis to predict the average nitrogen oxide concentration. Any reasonable technical changes or step adjustments fall within the scope disclosed by the present invention. The details of steps S202 to S206 are as follows:

步驟S202:  感測器101至10N獲取氨水噴量及複數個變數值;Step S202: Sensors 101 to 10N obtain the ammonia spray volume and multiple variable values;

步驟S203:  處理器12處理複數組資料集以產生複數組更新資料集,每一組更新資料集包含氨水噴量及複數個更新變數值;Step S203: The processor 12 processes a plurality of sets of data sets to generate a plurality of sets of update data sets, each set of update data sets includes ammonia spray volume and a plurality of update variable values;

步驟S204:  處理器12根據複數個平均氮氧化物濃度及該些組更新資料集產生一組迴歸係數;Step S204: The processor 12 generates a set of regression coefficients based on the plurality of average nitrogen oxide concentrations and the sets of updated data sets;

步驟S206:  處理器12根據目標平均氮氧化物濃度、該組迴歸係數及一組更新資料集,產生目標氨水噴量。Step S206: The processor 12 generates the target ammonia spray volume based on the target average nitrogen oxide concentration, the set of regression coefficients and a set of updated data sets.

在步驟S202,每個水泥廠的感測器101至10N定時獲取氨水噴量及複數個變數的複數個變數值。處理器12將氨水噴量及該些變數值轉換為相同的時間單位(例如時間單位為每分鐘),及/或進行資料處理(例如計算煙囪氮氧化物濃度的平均氮氧化物濃度),接著將轉換後之氨水噴量、複數個轉換後之變數值及資料處理後之變數值傳送至資料庫以儲存複數個平均氮氧化物濃度及複數組資料集。平均氮氧化物濃度可為預定時間內的平均氮氧化物濃度,例如5分鐘的平均氮氧化物濃度。每一組資料集包含特定時間的氨水噴量及該些變數值。In step S202, the sensors 101 to 10N of each cement plant regularly acquire the ammonia spray volume and a plurality of variable values of a plurality of variables. The processor 12 converts the ammonia spray volume and the variable values into the same time unit (for example, the time unit is per minute), and/or performs data processing (for example, calculating the average nitrogen oxide concentration of the chimney nitrogen oxide concentration), and then The converted ammonia spray volume, a plurality of converted variable values and a plurality of data processed variable values are sent to the database to store a plurality of average nitrogen oxide concentrations and a plurality of data sets. The average nitrogen oxide concentration may be the average nitrogen oxide concentration within a predetermined time, such as the average nitrogen oxide concentration for 5 minutes. Each data set contains the ammonia spray volume at a specific time and the values of these variables.

在步驟S203,處理器12取得預定時段內的該些組資料集,對該些組資料集之複數個對應變數值進行極端值前處理及/或資料平滑化前處理,及依據處理後的該些組資料集篩選變數以產生複數組更新資料集。預定時段可依據需求設定,例如預定時段可為10分鐘,每一組資料集可包含10變數值。極端值前處理可偵測該些組資料集中之該些對應變數值的異常值,及將異常值更新為複數個對應變數的預設範圍內之數值,例如該些對應變數的預設範圍之極端值。資料平滑化前處理可將突然升高或降低的該些對應變數值以該些對應變數值的平均值取代。在一些實施例中,處理器12可先進行極端值前處理,接著再進行資料平滑化前處理以產生更新變數值。每一組更新資料集包含氨水噴量及複數個更新變數值。In step S203, the processor 12 obtains the sets of data sets within the predetermined period, performs extreme value pre-processing and/or data smoothing pre-processing on the plurality of corresponding strain values of the sets of data sets, and based on the processed These set data sets filter variables to produce complex set update data sets. The predetermined time period can be set according to requirements. For example, the predetermined time period can be 10 minutes, and each data set can contain 10 variable values. The extreme value pre-processing can detect outliers corresponding to the variable values in the data sets, and update the outliers to values within a plurality of preset ranges of the corresponding variables, such as within the preset ranges of the corresponding variables. Extreme values. The data smoothing pre-processing can replace the corresponding strain values that suddenly increase or decrease with the average value of the corresponding strain values. In some embodiments, the processor 12 may first perform extreme value pre-processing, and then perform data smoothing pre-processing to generate updated variable values. Each update data set contains ammonia spray volume and multiple update variable values.

在一些實施例中,當進行極端值前處理時,針對該些組資料集中的每個變數,處理器12會將該些組資料集之該些對應變數值中超出預設範圍之對應變數值取代為預設範圍之極端值。處理器12會依據該些對應變數值之最新值產生更新變數值。例如,煙囪氮氧化物濃度之預設範圍為0mg/m 3至397mg/m 3。若煙囪氮氧化物濃度的的變數值小於0,處理器12會將煙囪氮氧化物濃度的變數值更新為0;若煙囪氮氧化物濃度的變數值大於397,處理器12會將煙囪氮氧化物濃度的變數值更新為397。表格2顯示實施例中之煙囪氮氧化物濃度的複數個對應變數值,每個對應變數值間隔1秒鐘。 In some embodiments, when performing extreme value pre-processing, for each variable in the data sets, the processor 12 will determine the corresponding variable values in the data sets that exceed the preset range. Replaced by the extreme value of the default range. The processor 12 generates updated variable values based on the latest values of the corresponding variable values. For example, the preset range of the chimney nitrogen oxide concentration is 0 mg/m 3 to 397 mg/m 3 . If the variable value of the chimney nitrogen oxide concentration is less than 0, the processor 12 will update the variable value of the chimney nitrogen oxide concentration to 0; if the variable value of the chimney nitrogen oxide concentration is greater than 397, the processor 12 will update the chimney nitrogen oxide concentration. The variable value for substance concentration is updated to 397. Table 2 shows a plurality of corresponding strain values for the nitrogen oxide concentration in the chimney in the embodiment, and each corresponding strain value is separated by 1 second.

表格 2 時間 NOx 更新後的NOx 2020-4-14 00:50 -20 0 2020-4-14 00:51 -10 0 2020-4-14 00:52 0 0 2020-4-14 00:53 5 5 2020-4-14 00:54 10 10 2020-4-14 00:55 18 18 2020-4-14 00:56 58 58 2020-4-14 00:57 143 143 2020-4-14 00:58 181 181 2020-4-14 00:59 82 82 Table 2 time NOx Updated NOx 2020-4-14 00:50 -20 0 2020-4-14 00:51 -10 0 2020-4-14 00:52 0 0 2020-4-14 00:53 5 5 2020-4-14 00:54 10 10 2020-4-14 00:55 18 18 2020-4-14 00:56 58 58 2020-4-14 00:57 143 143 2020-4-14 00:58 181 181 2020-4-14 00:59 82 82

如表格2所示,在時間2020-04-14 00:50及時間2020-04-14 00:51,由於煙囪氮氧化物濃度的對應變數值分別為-20及-10,因此處理器12將煙囪氮氧化物濃度的對應變數值更新為0。在時間2020-04-14 00:51至時間2020-04-14 00:59之間,由於煙囪氮氧化物濃度的變數值在預設範圍之內,因此處理器12不需更新煙囪氮氧化物濃度的變數值。As shown in Table 2, at time 2020-04-14 00:50 and time 2020-04-14 00:51, since the corresponding strain values of the nitrogen oxide concentration in the chimney are -20 and -10 respectively, the processor 12 will The corresponding strain value of the chimney nitrogen oxide concentration is updated to 0. Between time 2020-04-14 00:51 and time 2020-04-14 00:59, since the variable value of the chimney nitrogen oxide concentration is within the preset range, the processor 12 does not need to update the chimney nitrogen oxide Concentration variable value.

在另一些實施例中,當進行極端值前處理時,針對該些組資料集中的每個變數,若該些組資料集之該些對應變數值中兩連續對應變數值之間的差值大於預定值,處理器12會將兩連續對應變數值之後值以兩連續對應變數值之前值取代;若該些組資料集中兩連續對應變數值之間的差值小於預定值,處理器12不會更新後值。處理器12會依據該些對應變數值之最新值產生更新變數值。若兩連續對應變數值之間的差值過大,則感測器量測到的對應變數值可能異常,因此將較新的後值以較舊的前值取代,以確保迴歸係數的正確性。表格3顯示實施例中之煙囪氧氣濃度的複數個對應變數值,每個變數值間隔1秒鐘。預定值可為2%。當煙囪氧氣濃度的兩連續對應變數值之間的差值大於或等於2%,煙囪氧氣濃度大於17%,或煙囪氧氣濃度小於4%時,煙囪氧氣濃度可視為異常,處理器12會將兩連續對應變數值之後值以兩連續變對應數值之前值取代,否則,煙囪氧氣濃度可視為正常,處理器12不會更新後值。In other embodiments, when performing extreme value preprocessing, for each variable in the data sets, if the difference between two consecutive corresponding strain values in the corresponding strain values in the data sets is greater than The processor 12 will replace the value after the two consecutive corresponding strain values with the value before the two consecutive corresponding strain values; if the difference between the two consecutive corresponding strain values in the data set is less than the predetermined value, the processor 12 will not Updated value. The processor 12 generates updated variable values based on the latest values of the corresponding variable values. If the difference between two consecutive corresponding strain values is too large, the corresponding strain value measured by the sensor may be abnormal, so the newer later value is replaced by the older previous value to ensure the accuracy of the regression coefficient. Table 3 shows a plurality of corresponding variable values of the chimney oxygen concentration in the embodiment, and each variable value is separated by 1 second. The predetermined value can be 2%. When the difference between two consecutive corresponding strain values of the chimney oxygen concentration is greater than or equal to 2%, the chimney oxygen concentration is greater than 17%, or the chimney oxygen concentration is less than 4%, the chimney oxygen concentration may be regarded as abnormal, and the processor 12 will The value after the two consecutive corresponding values is replaced by the value before the two consecutive corresponding values. Otherwise, the chimney oxygen concentration can be regarded as normal, and the processor 12 will not update the subsequent value.

表格 3 時間 O2 更新後的O2 2020-05-20 23:40 5.0 5.0 2020-05-20 23:41 5.0 5.0 2020-05-20 23:42 5.0 5.0 2020-05-20 23:43 5.0 5.0 2020-05-20 23:44 5.0 5.0 2020-05-20 23:45 5.0 5.0 2020-05-20 23:46 5.0 5.0 2020-05-20 23:47 5.0 5.0 2020-05-20 23:48 13.0 5.0 2020-05-20 23:49 19.0 5.0 2020-05-20 23:50 17.0 5.0 2020-05-20 23:51 15.0 5.0 2020-05-20 23:52 13.0 5.0 2020-05-20 23:53 11.0 5.0 2020-05-20 23:54 10.0 5.0 2020-05-20 23:55 9.0 5.0 2020-05-20 23:56 8.0 5.0 2020-05-20 23:57 8.0 5.0 2020-05-20 23:58 7.0 5.0 2020-05-20 23:59 7.0 5.0 Form 3 time O2 The updated O2 2020-05-20 23:40 5.0 5.0 2020-05-20 23:41 5.0 5.0 2020-05-20 23:42 5.0 5.0 2020-05-20 23:43 5.0 5.0 2020-05-20 23:44 5.0 5.0 2020-05-20 23:45 5.0 5.0 2020-05-20 23:46 5.0 5.0 2020-05-20 23:47 5.0 5.0 2020-05-20 23:48 13.0 5.0 2020-05-20 23:49 19.0 5.0 2020-05-20 23:50 17.0 5.0 2020-05-20 23:51 15.0 5.0 2020-05-20 23:52 13.0 5.0 2020-05-20 23:53 11.0 5.0 2020-05-20 23:54 10.0 5.0 2020-05-20 23:55 9.0 5.0 2020-05-20 23:56 8.0 5.0 2020-05-20 23:57 8.0 5.0 2020-05-20 23:58 7.0 5.0 2020-05-20 23:59 7.0 5.0

如表格3所示,在時間2020-05-20 23:40及時間2020-05-20 23:47之間,由於煙囪氧氣濃度的兩連續變數值(5%,5%)之間的差值(0%)小於2%且煙囪氧氣濃度的變數值(5%)介於2%及17%之間,因此處理器12不會更新後值;在時間2020-05-20 23:48,由於煙囪氧氣濃度的兩連續變數值(5%,13%)之間的差值(8%)大於2%,因此處理器12將煙囪氧氣濃度的兩連續變數值之後值更新為前值(5%);在時間2020-05-20 23:49,由於煙囪氧氣濃度的變數值(19%)大於17%,因此處理器12將煙囪氧氣濃度的兩連續變數值之後值更新為前值(5%);在時間2020-05-20 23:50,由於煙囪氧氣濃度的變數值(17%)等於17%,因此處理器12將煙囪氧氣濃度的兩連續變數值之後值更新為前值(5%);在時間2020-05-20 23:51及時間2020-05-20 23:59之間,由於煙囪氧氣濃度的兩連續變數值之間的差值大於或等於2%,因此處理器12將煙囪氧氣濃度的兩連續變數值之後值更新為前值(5%)。As shown in Table 3, between the time 2020-05-20 23:40 and the time 2020-05-20 23:47, due to the difference between the two continuous variable values (5%, 5%) of the chimney oxygen concentration (0%) is less than 2% and the variable value (5%) of the stack oxygen concentration is between 2% and 17%, so the processor 12 will not update the value; at time 2020-05-20 23:48, due to The difference (8%) between the two continuous variable values of the chimney oxygen concentration (5%, 13%) is greater than 2%, so the processor 12 updates the later value of the two continuous variable values of the chimney oxygen concentration to the previous value (5% ); At time 2020-05-20 23:49, since the variable value of the chimney oxygen concentration (19%) is greater than 17%, the processor 12 updates the subsequent value of the two consecutive variable values of the chimney oxygen concentration to the previous value (5% ); At time 2020-05-20 23:50, since the variable value (17%) of the chimney oxygen concentration is equal to 17%, the processor 12 updates the subsequent value of the two consecutive variable values of the chimney oxygen concentration to the previous value (5% ); between time 2020-05-20 23:51 and time 2020-05-20 23:59, since the difference between the two continuous variable values of the chimney oxygen concentration is greater than or equal to 2%, the processor 12 will The subsequent value of the two continuous variables of the chimney oxygen concentration is updated to the previous value (5%).

在一些實施例中,當進行資料平滑化前處理時,針對該些組資料集中的每個變數,若該些組資料集之該些對應變數值中的最新值實質上等於預定值,則處理器12將最新值以該些對應變數值之其餘值的平均值取代;若該些組資料集中的最新值大於預定值,則處理器12不改變最新值。處理器12會依據該些組資料集之最新值產生更新變數值。舉例而言,該些組資料集之該些對應變數值可包含依時間順序排列的6變數值(V(t-5), V(t-4), V(t-3), V(t-2), V(t-1), V(t),),每個變數值間隔1分鐘,預定值可為0。在時間t,若最新值為0,則處理器12將最新值V(t)以該些對應變數值之其餘值(V(t-1)至V(t-5))的平均值取代,如公式(2)所示:In some embodiments, when performing data smoothing pre-processing, for each variable in the data sets, if the latest value among the corresponding variable values in the data sets is substantially equal to the predetermined value, then processing The processor 12 replaces the latest value with the average of the remaining values of the corresponding variable values; if the latest value in the set of data sets is greater than the predetermined value, the processor 12 does not change the latest value. The processor 12 generates updated variable values based on the latest values of the data sets. For example, the corresponding variable values of the data sets may include 6 variable values (V(t-5), V(t-4), V(t-3), V(t -2), V(t-1), V(t),), each variable value is separated by 1 minute, and the predetermined value can be 0. At time t, if the latest value is 0, the processor 12 replaces the latest value V(t) with the average of the remaining values (V(t-1) to V(t-5)) of the corresponding variable values, As shown in formula (2):

V(t)=(V(t-1)+ V(t-2)+…+V(t-5))/5   公式(2)V(t)=(V(t-1)+ V(t-2)+…+V(t-5))/5 Formula (2)

在另一些實施例中,當進行資料平滑化前處理時,針對該些組資料集中的每個變數,處理器12將該些組資料集之該些對應變數值中的最新值以該些對應變數值之平均值取代,平均值可為5分移動平均值,如公式(3)所示:In other embodiments, when performing data smoothing pre-processing, for each variable in the sets of data sets, the processor 12 converts the latest values of the corresponding variable values in the sets of data sets to the corresponding values. The average value of the variable value is replaced, and the average value can be a 5-minute moving average, as shown in formula (3):

V(t)=(V(t)+ V(t-2)+…+V(t-4))/5       公式(3)V(t)=(V(t)+ V(t-2)+…+V(t-4))/5 Formula (3)

其中V(t)為最新值,V(t-4))為4分前的變數值。處理器12會依據該些對應變數值之最新值產生更新變數值。表格4顯示實施例中之氨水噴量的複數個對應變數值,每個對應變數值間隔1分鐘。Among them, V(t) is the latest value, and V(t-4)) is the variable value 4 minutes ago. The processor 12 generates updated variable values based on the latest values of the corresponding variable values. Table 4 shows a plurality of corresponding strain values for the ammonia water injection amount in the embodiment, and each corresponding strain value is separated by 1 minute.

表格 4 時間(t) NH3 NH3_M5 更新後的NH3 2020-16-18 23:50 988.203 - 988.203 2020-16-18 23:51 994.297 - 994.297 2020-16-18 23:52 1021.953 - 1021.953 2020-16-18 23:53 1061.953 - 1061.953 2020-16-18 23:54 1100.234 1033.3280 1033.3280 2020-16-18 23:55 1137.422 1063.1718 1063.1718 2020-16-18 23:56 1178.047 1099.9218 1099.9218 2020-16-18 23:57 1215.938 1138.7188 1138.7188 2020-16-18 23:58 1253.281 1176.9844 1176.9844 2020-16-18 23:59 1293.672 1215.6720 1215.6720 Form 4 Time(t) NH3 NH3_M5 Updated NH3 2020-16-18 23:50 988.203 - 988.203 2020-16-18 23:51 994.297 - 994.297 2020-16-18 23:52 1021.953 - 1021.953 2020-16-18 23:53 1061.953 - 1061.953 2020-16-18 23:54 1100.234 1033.3280 1033.3280 2020-16-18 23:55 1137.422 1063.1718 1063.1718 2020-16-18 23:56 1178.047 1099.9218 1099.9218 2020-16-18 23:57 1215.938 1138.7188 1138.7188 2020-16-18 23:58 1253.281 1176.9844 1176.9844 2020-16-18 23:59 1293.672 1215.6720 1215.6720

如表格4所示,在時間2020-16-18 23:54,處理器12計算時間2020-16-18 23:50至時間2020-16-18 23:54之5分移動平均值NH3_M5為1033.328ton/h(=(988.203+994.297+1021.953+1061.953+1100.234)/5),且在時間2020-16-18 23:55至時間2020-16-18 23:59,處理器12分別計算其5分移動平均值NH3_M5。在時間2020-16-18 23:50至時間2020-16-18 23:53,由於沒有5分移動平均值NH3_M5,處理器12將氨水噴量作為更新後的氨水噴量;在時間2020-16-18 23:54至時間2020-16-18 23:59,處理器12將移動平均值NH3_M5作為更新後的氨水噴量。As shown in Table 4, at time 2020-16-18 23:54, processor 12 calculates the moving average NH3_M5 from time 2020-16-18 23:50 to time 2020-16-18 23:54/5 to 1033.328ton /h(=(988.203+994.297+1021.953+1061.953+1100.234)/5), and from time 2020-16-18 23:55 to time 2020-16-18 23:59, processor 12 calculates its 5-point movement respectively Average NH3_M5. From time 2020-16-18 23:50 to time 2020-16-18 23:53, since there is no 5-minute moving average NH3_M5, the processor 12 uses the ammonia spray volume as the updated ammonia spray volume; at time 2020-16 From -18 23:54 to 2020-16-18 23:59, the processor 12 uses the moving average NH3_M5 as the updated ammonia injection volume.

處理器12可依據該些處理後的該些組資料集使用向前選取(forward selection)、向後選取(backward selection)或向前向後逐步選取(stepwise selection)方式從複數個變數中選定專屬於特定水泥廠的一組對應變數以產生該些組更新資料集。例如,處理器12可使用向後選取方式從複數個變數中逐一剔除統+計上不顯著的對應變數直到剩下的是統計上顯著的一組對應變數為止。使用該組對應變數建立的迴歸模型會提升正確性。與使用所有對應變數的迴歸模型相比,使用該組對應變數的迴歸模型可使R平方(R-square)由0.94增加至0.95,平均絕對百分比誤差(mean absolute percentage error, MAPE)由3.46%降低至3.22%,及平均絕對誤差(mean absolute error, MAE)由62降低至61.8,三項指標皆顯示迴歸模型的正確性增加。The processor 12 may use forward selection, backward selection or stepwise selection to select a specific variable from a plurality of variables based on the processed data sets. A set of corresponding variables of the cement plant to generate these sets of updated data sets. For example, the processor 12 may use backward selection to eliminate statistically insignificant corresponding variables one by one from a plurality of variables until a set of statistically significant corresponding variables remains. Regression models built using this set of corresponding variables will improve accuracy. Compared with the regression model using all corresponding variables, the regression model using this set of corresponding variables can increase the R-square from 0.94 to 0.95 and reduce the mean absolute percentage error (MAPE) from 3.46%. to 3.22%, and the mean absolute error (MAE) decreased from 62 to 61.8. All three indicators show that the accuracy of the regression model has increased.

在步驟S204,處理器12從資料庫中獲取特定水泥廠的該些平均氮氧化物濃度及該些組更新資料集,以針對特定水泥廠進行迴歸分析而產生一組迴歸係數。該組迴歸係數用以建立平均氮氧化物濃度的迴歸模型。例如,公式(1)顯示一種平均氮氧化物濃度的迴歸模型:In step S204, the processor 12 obtains the average nitrogen oxide concentrations of a specific cement plant and the updated data sets from the database to perform regression analysis on the specific cement plant to generate a set of regression coefficients. This set of regression coefficients is used to establish a regression model of average nitrogen oxide concentration. For example, equation (1) shows a regression model for average nitrogen oxide concentration:

平均NOx=β0+β1*X1+β2*X2+β3*X3+β4*X4+β5*X5+β6*X6+β7*X7+β8*X8+β9*X9+β10*X10       公式(1)Average NOx=β0+β1*X1+β2*X2+β3*X3+β4*X4+β5*X5+β6*X6+β7*X7+β8*X8+β9*X9+β10*X10 Formula (1)

其中:    平均NOx係為平均氮氧化物濃度;Among them: average NOx is the average nitrogen oxide concentration;

β0係為偏移值;β0 is the offset value;

X1係為頭煤流量;X1 series is the head coal flow rate;

β1係為頭煤流量之係數;β1 is the coefficient of head coal flow rate;

X2係為生料餵料量;X2 is the raw material feeding amount;

β2係為生料餵料量之係數;β2 is the coefficient of raw material feeding amount;

X3係為尾煤流量;X3 series is tail coal flow;

β3係為尾煤流量之係數;β3 is the coefficient of tailing coal flow;

X4係為煙囪氧氣濃度;X4 is the chimney oxygen concentration;

β4係為煙囪氧氣濃度之係數;β4 is the coefficient of oxygen concentration in the chimney;

X5係為預熱塔出口一氧化碳濃度;X5 is the carbon monoxide concentration at the outlet of the preheating tower;

β5係為預熱塔出口一氧化碳濃度之係數;β5 is the coefficient of carbon monoxide concentration at the outlet of the preheating tower;

X6係為窯頭溫度;X6 series is the kiln head temperature;

β6係為窯頭溫度之係數;β6 is the coefficient of kiln head temperature;

X7係為三次風溫;The X7 series has three air temperatures;

β7係為三次風溫之係數;β7 is the coefficient of the third wind temperature;

X8係為一分鐘前氨水噴量;X8 is the amount of ammonia sprayed one minute ago;

β8係為一分鐘前氨水噴量之係數;β8 is the coefficient of ammonia spray volume one minute ago;

X9係為煙囪氮氧化物濃度;X9 is the concentration of nitrogen oxides in the chimney;

β9係為煙囪氮氧化物濃度之係數;β9 is the coefficient of nitrogen oxide concentration in the chimney;

X10係為氨水噴量;及X10 is the amount of ammonia sprayed; and

β10係為氨水噴量之係數。β10 is the coefficient of ammonia spray volume.

建立迴歸模型之後,在步驟S206,處理器12將目標平均氮氧化物濃度及迴歸模型之一組更新資料集的複數個對應變數(X1至X9)的更新變數值帶入公式(1),即可估計目標氨水噴量X10的目標氨水噴量。在一些實施例中,該組更新資料集可為最新組更新資料集。在另一些實施例中,該組更新資料集可為每隔一段固定時間,例如每分鐘的一組更新資料集。表格5顯示實施例中之該些對應變數(X1至X9)的更新變數值。After establishing the regression model, in step S206, the processor 12 brings the target average nitrogen oxide concentration and the updated variable values of a plurality of corresponding variables (X1 to X9) of a set of updated data sets of the regression model into formula (1), that is, It is possible to estimate the target ammonia water injection volume x10. In some embodiments, the set of update data may be the latest set of update data. In other embodiments, the set of updated data sets may be a set of updated data sets every fixed time, such as every minute. Table 5 shows the updated variable values of the corresponding variables (X1 to X9) in the embodiment.

表格 5 迴歸係數 係數 更新變數值 頭煤流量(X1) -5.0427 11.862 生料餵料量(X2) -0.2199 380.464 尾煤流量(X3) -1.7488 19.714 煙囪氧氣濃度(X4) -3.0445 8.333 預熱塔出口一氧化碳濃度(X5) -4884.2369 0.003 窯頭溫度(X6) -0.1774 1177.778 三次風溫(X7) -0.0698 975.043 一分鐘前氨水噴量(X8) -0.9939 964 煙囪氮氧化物濃度(X9) -0.8403 300.498 Form 5 regression coefficient coefficient Update variable value Head coal flow (X1) -5.0427 11.862 Raw material feeding amount (X2) -0.2199 380.464 Tail coal flow (X3) -1.7488 19.714 Chimney oxygen concentration (X4) -3.0445 8.333 Carbon monoxide concentration at the outlet of the preheating tower (X5) -4884.2369 0.003 Kiln head temperature (X6) -0.1774 1177.778 Three air temperatures (X7) -0.0698 975.043 Amount of ammonia sprayed one minute ago (X8) -0.9939 964 Chimney nitrogen oxide concentration (X9) -0.8403 300.498

在一個例子中,未來5分鐘的目標平均氮氧化物濃度為280,目標氨水噴量之係數β10為1,偏移值β0為308.4710,處理器12會依據公式(1)及表格5內的數值計算目標氨水噴量的預測值為980.9118 (280 = -308.4710+β1*X1+β2*X2+β3*X3+β4*X4+β5*X5+β6*X6+β7*X7+β8*X8+β9*X9+β10*980.9118)。在步驟S206,氨水噴灑裝置會依據目標氨水噴量的預測值(980.9118 ton/h)噴灑氨水,藉以控制氮氧化物的排放。每個水泥廠可監控氮氧化物濃度,且中控系統可呈現各水泥廠即時的氮氧化物濃度,並標示出政府標準及內控標準以便管理。相似地,每個水泥廠可監控氨逃逸濃度,且中控系統可呈現各水泥廠即時的氨逃逸濃度。同時每個水泥廠可針對窯尾煙囪、窯頭煙囪以及電袋複合收塵設備風管出入口等位置量測設備厚度以進行設備腐蝕監控,若腐蝕程度超過系統設定標準,中控系統便會進行警示。In one example, the target average nitrogen oxide concentration in the next 5 minutes is 280, the coefficient β10 of the target ammonia spray volume is 1, and the offset value β0 is 308.4710. The processor 12 will use the formula (1) and the values in Table 5 The predicted value of the calculated target ammonia spray volume is 980.9118 (280 = -308.4710+β1*X1+β2*X2+β3*X3+β4*X4+β5*X5+β6*X6+β7*X7+β8*X8+β9* X9+β10*980.9118). In step S206, the ammonia water spraying device sprays ammonia water according to the predicted value of the target ammonia water spray volume (980.9118 ton/h) to control the emission of nitrogen oxides. Each cement plant can monitor the concentration of nitrogen oxides, and the central control system can display the real-time nitrogen oxide concentration of each cement plant, and indicate government standards and internal control standards for management. Similarly, each cement plant can monitor the ammonia slip concentration, and the central control system can present the real-time ammonia slip concentration of each cement plant. At the same time, each cement plant can measure the thickness of the equipment at the kiln tail chimney, kiln head chimney, and air duct entrance and exit of the electric bag composite dust collection equipment to monitor equipment corrosion. If the corrosion degree exceeds the system set standard, the central control system will warning.

第3圖顯示控制系統1用於控制氮氧化物排放的效果,其中橫軸表示時間,縱軸表示氮氧化物濃度及氨水噴量。模擬曲線40表示目標氨水噴量的預測值,模擬曲線42表示氨水噴量的實際值,模擬曲線44表示氮氧化物濃度的實際值。第3圖顯示氨水噴量的實際值實質上等於目標氨水噴量的預測值,及氮氧化物濃度控制於280mg/m 3之內。 Figure 3 shows the effect of control system 1 in controlling nitrogen oxide emissions, in which the horizontal axis represents time and the vertical axis represents nitrogen oxide concentration and ammonia injection volume. The simulation curve 40 represents the predicted value of the target ammonia water injection amount, the simulation curve 42 represents the actual value of the ammonia water injection amount, and the simulation curve 44 represents the actual value of the nitrogen oxide concentration. Figure 3 shows that the actual value of the ammonia spray volume is essentially equal to the predicted value of the target ammonia spray volume, and the nitrogen oxide concentration is controlled within 280mg/ m3 .

控制系統1及方法200適用於水泥廠,在給定的氮氧化物之排放標準下,精準產生最低氨水噴量,藉以控制氮氧化物的排放同時減低水泥廠的氨逃逸及減低水泥產線設備的腐蝕。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The control system 1 and method 200 are suitable for cement plants. Under given nitrogen oxide emission standards, they can accurately produce the minimum ammonia spray volume, thereby controlling the emission of nitrogen oxides while reducing ammonia escape in the cement plant and reducing the cost of cement production line equipment. of corrosion. The above are only preferred embodiments of the present invention, and all equivalent changes and modifications made in accordance with the patentable scope of the present invention shall fall within the scope of the present invention.

1:控制系統 101至10N:感測器 12:處理器 200:方法 S202至S206:步驟 40:目標氨水噴量的預測值 42:氨水噴量的實際值 44:氮氧化物濃度的實際值 1:Control system 101 to 10N: Sensor 12: Processor 200:Method S202 to S206: steps 40: Predicted value of target ammonia spray volume 42: Actual value of ammonia spray volume 44: Actual value of nitrogen oxide concentration

第1圖係為本發明實施例中之一種控制系統之方塊圖。 第2圖係為第1圖中之一種控制系統的控制氮氧化物排放方法之流程圖。 第3圖顯示第1圖中之控制系統用於控制氮氧化物排放的效果。 Figure 1 is a block diagram of a control system in an embodiment of the present invention. Figure 2 is a flow chart of a method for controlling nitrogen oxide emissions of one of the control systems in Figure 1. Figure 3 shows the effectiveness of the control system in Figure 1 for controlling nitrogen oxide emissions.

200:方法 200:Method

S202至S206:步驟 S202 to S206: steps

Claims (10)

一種控制系統控制氮氧化物排放的方法,該控制系統包含一處理器,該方法包含: 該處理器處理複數組資料集以產生複數組更新資料集,每一組更新資料集包含一氨水噴量及複數個更新變數值; 該處理器根據複數個平均氮氧化物濃度及該些組更新資料集產生一組迴歸係數;及 該處理器根據一目標平均氮氧化物濃度、該組迴歸係數及一組更新資料集,產生一目標氨水噴量。 A method for controlling nitrogen oxide emissions by a control system, the control system including a processor, the method including: The processor processes a plurality of sets of data sets to generate a plurality of sets of update data sets, each set of update data sets includes an ammonia spray volume and a plurality of update variable values; The processor generates a set of regression coefficients based on the plurality of average nitrogen oxide concentrations and the sets of updated data sets; and The processor generates a target ammonia spray volume based on a target average nitrogen oxide concentration, the set of regression coefficients and a set of updated data sets. 如請求項1所述之方法,其中該控制系統另包含複數個感測器,該些感測器設置於複數個產線設備上,其中該方法另包含: 該些感測器獲取該氨水噴量及該些變數值。 As claimed in claim 1, the method further includes: The sensors obtain the ammonia spray volume and the variable values. 如請求項1或2所述之方法,其中該些變數值包含一鍛燒爐溫度、一煙室氧氣濃度、一煙囪氧氣濃度、一頭煤流量、一窯頭壓力、一窯頭溫度、一生料餵料量、一尾煤流量、一窯尾氮氧化物濃度、一熟料溫度、一煙室溫度、一三次風溫及一預熱塔出口之一氧化碳濃度。The method as described in claim 1 or 2, wherein the variable values include a calcining furnace temperature, a smoke chamber oxygen concentration, a chimney oxygen concentration, a coal flow rate, a kiln head pressure, a kiln head temperature, a first feed material Feeding amount, coal flow rate at the end of the kiln, nitrogen oxide concentration at the kiln end, clinker temperature, smoke chamber temperature, air temperature and tertiary air temperature, and carbon oxide concentration at the outlet of the preheating tower. 如請求項1所述之方法,其中該處理器處理該些資料集以產生該些更新資料集包含: 該處理器取得該些組資料集;及 該處理器對該些組資料集之複數個對應變數值進行處理,以產生處理後的複數組資料集。 The method as described in claim 1, wherein the processor processes the data sets to generate the updated data sets including: the processor obtains the sets of data; and The processor processes a plurality of corresponding strain values of the sets of data to generate a processed complex set of data. 如請求項4所述之方法,其中該處理器對該些組資料集之該些對應變數值進行處理包含: 將該些對應變數值中超出一預設範圍之對應變數值取代為該預設範圍之極端值。 The method as described in claim 4, wherein the processor's processing of the corresponding strain values of the sets of data sets includes: Corresponding strain values that exceed a preset range among the corresponding strain values are replaced with extreme values of the preset range. 如請求項4所述之方法,其中該處理器對該些組資料集之該些對應變數值進行處理包含: 當該些對應變數值中兩連續對應變數值之間的差值大於一預定值時,該處理器將該兩連續對應變數值之一後值以該兩連續對應變數值之一前值取代。 The method as described in claim 4, wherein the processor's processing of the corresponding strain values of the sets of data sets includes: When the difference between two consecutive corresponding strain values among the corresponding strain values is greater than a predetermined value, the processor replaces a later value of the two consecutive corresponding strain values with a previous value of the two consecutive corresponding strain values. 如請求項4所述之方法,其中該處理器對該些組資料集之該些對應變數值進行處理包含: 若該些對應變數值中的一最新值實質上等於一預定值,則該處理器將該最新值以該些對應變數值之其餘值的平均值取代。 The method as described in claim 4, wherein the processor's processing of the corresponding strain values of the sets of data sets includes: If a latest value among the corresponding strain values is substantially equal to a predetermined value, the processor replaces the latest value with an average of the remaining values of the corresponding strain values. 如請求項4所述之方法,其中該處理器對該些組資料集之該些對應變數值進行處理包含: 該處理器將該些對應變數值中的一最新值以該些對應變數值之平均值取代。 The method as described in claim 4, wherein the processor's processing of the corresponding strain values of the sets of data sets includes: The processor replaces a latest value among the corresponding strain values with an average value of the corresponding strain values. 如請求項4所述之方法,另包含:依據該些處理後的該些組資料集選出一組對應變數以產生該些組更新資料集。The method described in claim 4 further includes: selecting a set of corresponding variables based on the processed sets of data to generate the sets of updated data. 如請求項1所述之方法,另包含該處理器根據該些組資料集之複數個氨水噴量產生一平均氨水噴量。The method of claim 1 further includes the processor generating an average ammonia spray amount based on a plurality of ammonia spray amounts of the data sets.
TW110141689A 2020-11-11 2021-11-09 Method of control system controlling nitrogen oxides and ammonia water in selective non-catalytic reduction system TWI824333B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063112167P 2020-11-11 2020-11-11
US63/112,167 2020-11-11

Publications (2)

Publication Number Publication Date
TW202219680A TW202219680A (en) 2022-05-16
TWI824333B true TWI824333B (en) 2023-12-01

Family

ID=81668521

Family Applications (2)

Application Number Title Priority Date Filing Date
TW110141689A TWI824333B (en) 2020-11-11 2021-11-09 Method of control system controlling nitrogen oxides and ammonia water in selective non-catalytic reduction system
TW110141752A TW202219853A (en) 2020-11-11 2021-11-10 Carbon reduction method for use in cement plant

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW110141752A TW202219853A (en) 2020-11-11 2021-11-10 Carbon reduction method for use in cement plant

Country Status (2)

Country Link
CN (2) CN114538810A (en)
TW (2) TWI824333B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6790264B2 (en) * 2000-03-08 2004-09-14 Isg Resources, Inc. Control of ammonia emission from ammonia laden fly ash in concrete
US20050282285A1 (en) * 2004-06-21 2005-12-22 Eaton Corporation Strategy for controlling NOx emissions and ammonia slip in an SCR system using a nonselective NOx/NH3
CN101048709A (en) * 2004-08-27 2007-10-03 阿尔斯托姆科技有限公司 Optimized air pollution control
CN103977705A (en) * 2014-04-23 2014-08-13 浙江省环境保护科学设计研究院 Reducing agent metering for cement clinker production line SNCR flue gas denitration and control system and method thereof
CN106991507A (en) * 2017-05-19 2017-07-28 杭州意能电力技术有限公司 A kind of SCR inlet NOx concentration on-line prediction method and device
CN110975597A (en) * 2019-10-15 2020-04-10 杭州电子科技大学 Neural network hybrid optimization method for cement denitration
CN111665711A (en) * 2020-06-28 2020-09-15 金隅冀东水泥(唐山)有限责任公司唐山分公司 Intelligent control system and method for SNCR (selective non-catalytic reduction) denitration ammonia injection amount

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0771619B2 (en) * 1990-11-30 1995-08-02 日本鋼管株式会社 Exhaust gas denitration control device
CN1162365C (en) * 2001-04-27 2004-08-18 刘本恩 Method and apparatus for producing high-pressure steam and calcined cement clinker simultaneously with substituted fuel
CN1318529A (en) * 2001-06-06 2001-10-24 烟台锦河水泥有限公司 Cement producing process
CN101560070A (en) * 2009-05-25 2009-10-21 四川利森建材集团有限公司 Process for producing cement by using organic garbage to substitute partial fuel coal
JP2012128800A (en) * 2010-12-17 2012-07-05 Nippon Steel Engineering Co Ltd State prediction method for process and process control unit using the same
DE102015118391A1 (en) * 2015-10-28 2017-05-04 Thyssenkrupp Ag Process for the preparation of a cement clinker substitute consisting primarily of calcined clay
CN106155026B (en) * 2016-08-19 2019-03-08 广东亚仿科技股份有限公司 A kind of cement plant coal consumption and carbon emission monitoring method
CN106746786B (en) * 2016-11-22 2019-02-19 沈阳建筑大学 A kind of clinker and its method for calcinating calcined using rice husk as crude fuel
CN109426144B (en) * 2017-08-22 2021-07-16 邢台国泰发电有限责任公司 Power station boiler flue gas denitration method based on random forest model
CN107526292B (en) * 2017-09-18 2019-09-13 华中科技大学 A method of the regulation ammonia spraying amount based on inlet NOx concentration prediction
CN107544288B (en) * 2017-09-26 2021-06-04 天津拓科思科技有限公司 Denitration optimization control method and system
CN109723556B (en) * 2018-12-29 2021-02-09 国电环境保护研究院有限公司 SCR and spraying-based gas turbine set efficiency improvement control system and control method
CN109766666A (en) * 2019-02-14 2019-05-17 长沙理工大学 Boiler smoke based on low nitrogen burning and SNCR-SCR Collaborative Control discharges NOxConcentration prediction method
CN110263395A (en) * 2019-06-06 2019-09-20 东南大学 The power plant's denitration running optimizatin method and system analyzed based on numerical simulation and data
CN110252132A (en) * 2019-06-14 2019-09-20 许昌龙岗发电有限责任公司 The exploitation of SCR denitration Optimal Control System and application method based on multi-parameter prediction
CN110618706B (en) * 2019-09-27 2023-05-12 中国大唐集团科学技术研究院有限公司华中电力试验研究院 Multistage intelligent denitration on-line optimization control system based on data driving

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6790264B2 (en) * 2000-03-08 2004-09-14 Isg Resources, Inc. Control of ammonia emission from ammonia laden fly ash in concrete
US20050282285A1 (en) * 2004-06-21 2005-12-22 Eaton Corporation Strategy for controlling NOx emissions and ammonia slip in an SCR system using a nonselective NOx/NH3
CN101048709A (en) * 2004-08-27 2007-10-03 阿尔斯托姆科技有限公司 Optimized air pollution control
CN103977705A (en) * 2014-04-23 2014-08-13 浙江省环境保护科学设计研究院 Reducing agent metering for cement clinker production line SNCR flue gas denitration and control system and method thereof
CN106991507A (en) * 2017-05-19 2017-07-28 杭州意能电力技术有限公司 A kind of SCR inlet NOx concentration on-line prediction method and device
CN110975597A (en) * 2019-10-15 2020-04-10 杭州电子科技大学 Neural network hybrid optimization method for cement denitration
CN111665711A (en) * 2020-06-28 2020-09-15 金隅冀东水泥(唐山)有限责任公司唐山分公司 Intelligent control system and method for SNCR (selective non-catalytic reduction) denitration ammonia injection amount

Also Published As

Publication number Publication date
TW202219853A (en) 2022-05-16
CN114534466B (en) 2024-03-22
CN114534466A (en) 2022-05-27
CN114538810A (en) 2022-05-27
TW202219680A (en) 2022-05-16

Similar Documents

Publication Publication Date Title
CN105597537B (en) Denitration control method based on Prediction and Control Technology
CN107561941A (en) A kind of full working scope qualified discharge control method of fired power generating unit denitrating system
CN110263452B (en) Flue gas time distribution characteristic analysis method and system in flue and denitration system
CN102732659B (en) Burden surface profile control method of blast furnace burden distribution and control system
CN109603525B (en) Denitration partition ammonia spraying control method based on non-uniformity judgment
CN106362561B (en) A kind of cluster SNCR control method based on fluid field in furnace
CN116611017B (en) Nitrogen oxide emission detection method of low-nitrogen combustion heating furnace
CN103977705B (en) A kind of reductant metering of cement clinker production line SNCR denitrating flue gas and control system and method
TWI824333B (en) Method of control system controlling nitrogen oxides and ammonia water in selective non-catalytic reduction system
CN115685743A (en) Intelligent control coal-fired boiler and intelligent prediction regulation and control flue gas emission method thereof
CN106705657A (en) Remote real-time acquiring system of rotary kiln operation state data and control method thereof
US11853023B2 (en) Method of controlling coal management system for reducing coal usage
CN109046021B (en) SCR system accurate ammonia injection control method with strong self-adaptive capacity
CN113515043B (en) BP neural network-based real-time calculation method for dry quenching Jiao Shaosun rate
CN112219065A (en) Method for estimating state quantity of combustion equipment, combustion control method, and combustion control device
CN108051117A (en) A kind of SCR denitration continuously sprays ammonia on-line temperature monitoring and control system and method
CN115113519A (en) Coal-gas co-combustion boiler denitration system outlet NO x Concentration early warning method
JP5900026B2 (en) Method and apparatus for estimating furnace temperature distribution
CN116672870A (en) Regional selectivity prediction control device and method for intelligent ammonia injection
CN207946179U (en) A kind of SCR denitration continuously sprays ammonia on-line temperature monitoring and control system
CN113578008A (en) Denitration control method and system for waste incineration boiler
CN110647560B (en) Mechanism and brain-like intelligence combined online soft measurement method for coal quality of fired coal of power plant
CN105042582B (en) A kind of boiler hearth of circulating fluidized bed release heat monitoring system and method
CN113654200A (en) Temperature control system for steel pipe production workshop
CN108730943B (en) Flue gas dynamic temperature evaluation method