TWI824333B - Method of control system controlling nitrogen oxides and ammonia water in selective non-catalytic reduction system - Google Patents
Method of control system controlling nitrogen oxides and ammonia water in selective non-catalytic reduction system Download PDFInfo
- Publication number
- TWI824333B TWI824333B TW110141689A TW110141689A TWI824333B TW I824333 B TWI824333 B TW I824333B TW 110141689 A TW110141689 A TW 110141689A TW 110141689 A TW110141689 A TW 110141689A TW I824333 B TWI824333 B TW I824333B
- Authority
- TW
- Taiwan
- Prior art keywords
- processor
- sets
- values
- corresponding strain
- value
- Prior art date
Links
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 title claims abstract description 195
- 238000000034 method Methods 0.000 title claims abstract description 25
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 title abstract description 19
- 235000011114 ammonium hydroxide Nutrition 0.000 title abstract description 19
- 238000010531 catalytic reduction reaction Methods 0.000 title description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 96
- 229910021529 ammonia Inorganic materials 0.000 claims description 46
- 239000007921 spray Substances 0.000 claims description 37
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 25
- 239000001301 oxygen Substances 0.000 claims description 25
- 229910052760 oxygen Inorganic materials 0.000 claims description 25
- 239000003245 coal Substances 0.000 claims description 12
- 239000000779 smoke Substances 0.000 claims description 7
- 238000001354 calcination Methods 0.000 claims description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims 1
- 229910002090 carbon oxide Inorganic materials 0.000 claims 1
- 239000000463 material Substances 0.000 claims 1
- 239000004568 cement Substances 0.000 description 20
- 238000007781 pre-processing Methods 0.000 description 10
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 5
- 229910002091 carbon monoxide Inorganic materials 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000009499 grossing Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 4
- 238000000611 regression analysis Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/36—Manufacture of hydraulic cements in general
- C04B7/43—Heat treatment, e.g. precalcining, burning, melting; Cooling
- C04B7/44—Burning; Melting
- C04B7/4407—Treatment or selection of the fuel therefor, e.g. use of hazardous waste as secondary fuel ; Use of particular energy sources, e.g. waste hot gases from other processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/36—Manufacture of hydraulic cements in general
- C04B7/43—Heat treatment, e.g. precalcining, burning, melting; Cooling
- C04B7/44—Burning; Melting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/80—Management or planning
- Y02P90/84—Greenhouse gas [GHG] management systems
- Y02P90/845—Inventory and reporting systems for greenhouse gases [GHG]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Feedback Control In General (AREA)
- Treating Waste Gases (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Abstract
Description
本發明係關於水泥生產,特別是一種基於選擇性非觸媒脫硝還原系統的最適化氨水暨氮氧化物控制方法。The invention relates to cement production, particularly an optimal ammonia water and nitrogen oxide control method based on a selective non-catalytic denitrification reduction system.
水泥生產的高溫環境會產生氮氧化物的排放,為避免氮氧化物對環境的衝擊以及符合政府法規,目前使用選擇性非觸媒還原(selective non-catalytic reduction,SNCR)系統,利用噴灑氨水來抑制氮氧化物。然而,過多的氨水會讓沒有反應完全的氨水排出變成氨逃逸,造成二次汙染,同時亦會加快機器設備腐蝕速度。The high-temperature environment of cement production will produce nitrogen oxide emissions. In order to avoid the impact of nitrogen oxides on the environment and comply with government regulations, a selective non-catalytic reduction (SNCR) system is currently used, which sprays ammonia water. Suppresses nitrogen oxides. However, too much ammonia will cause the unreacted ammonia to be discharged and become ammonia escape, causing secondary pollution and accelerating the corrosion of machinery and equipment.
本發明實施例提供一種控制系統,透過計算最適氨水噴量來控制氮氧化物排放的方法,控制系統包含處理器,處理器處理複數組資料集以產生複數組更新資料集,每一組更新資料集包含一氨水噴量及複數個更新變數值,再將複數個平均氮氧化物濃度及複數組資料集產生一組迴歸係數,及處理器根據目標平均氮氧化物濃度、該組迴歸係數及複數個更新變數值,產生目標氨水噴量,即為當下最適氨水噴量。Embodiments of the present invention provide a control system that controls nitrogen oxide emissions by calculating the optimal ammonia spray volume. The control system includes a processor. The processor processes a plurality of sets of data sets to generate a plurality of sets of update data sets. Each set of update data The set contains an ammonia spray volume and a plurality of update variable values, and then a plurality of average nitrogen oxide concentrations and a plurality of data sets are used to generate a set of regression coefficients, and the processor generates a set of regression coefficients based on the target average nitrogen oxide concentration, the set of regression coefficients and the complex number Each updated variable value generates the target ammonia spray volume, which is the current optimal ammonia spray volume.
第1圖係為本發明實施例中之一種控制系統1之方塊圖。控制系統1可用於水泥廠,在給定的氮氧化物之排放標準下,精準產生最低氨水噴量,藉以控制氮氧化物的排放同時減低水泥廠的氨逃逸及減低水泥產線設備的腐蝕。Figure 1 is a block diagram of a control system 1 in an embodiment of the present invention. Control system 1 can be used in cement plants to accurately produce the minimum ammonia spray volume under given nitrogen oxide emission standards, thereby controlling nitrogen oxide emissions while reducing ammonia escape in cement plants and reducing corrosion of cement production line equipment.
控制系統1包含感測器101至10N及處理器12,N為大於1之正整數。感測器101至10N可設置於水泥廠中之複數個產線設備上,及透過有線或無線連接耦接於處理器12。每個產線設備上可設置至少一感測器。處理器12可設置於中控系統中,中控系統可設置於水泥廠或遠端電腦機房。複數個產線設備可包含生料秤、預熱塔、鍛燒爐、煙室、煙囪、分解爐、迴轉窯、篦冷機、高溫風機、冷卻風機、窯頭罩、窯頭排風機及其他產線設備。感測器101至10N可為溫度感測器、壓力感測器、濃度感測器、流量計或其他種類的感測器。在一些實施例中,感測器101至10N的設置位置及種類可由專家意見獲得。感測器101至10N可以定時或不定時方式獲取氨水噴量及複數個變數的變數值,並將氨水噴量及複數個變數的變數值傳送至處理器12以於資料庫中依據時間順序儲存為複數組資料集,每一組資料集對應一時間點,且包含氨水噴量及複數個變數值。表格1顯示由感測器101至10N可獲取之變數,及每個變數的單位、最大值及最小值。The control system 1 includes
表格 1
氨水噴量可為表格1中的氨水噴量,複數個變數可包含表格1中的鍛燒爐溫度、煙室氧氣濃度、煙囪氧氣濃度、頭煤流量、窯頭壓力、窯頭溫度、生料餵料量、尾煤流量、窯尾氮氧化物濃度、熟料溫度、煙室溫度、三次風溫、煙囪氮氧化物濃度及預熱塔出口一氧化碳濃度,但不限於此。The ammonia water injection amount can be the ammonia water injection amount in Table 1, and the plural variables can include the calcining furnace temperature, smoke chamber oxygen concentration, chimney oxygen concentration, coal flow rate, kiln head pressure, kiln head temperature, and raw meal in Table 1 Feeding volume, tail coal flow, kiln tail nitrogen oxide concentration, clinker temperature, smoke chamber temperature, tertiary air temperature, chimney nitrogen oxide concentration and preheating tower outlet carbon monoxide concentration, but are not limited to these.
由於氮氧化物濃度可受到水泥窯工況以及氨水噴量影響,處理器12可將平均氮氧化物濃度作為依變數,及將氨水噴量與該組對應變數作為對應變數來進行迴歸分析而建立迴歸模型,接著依據迴歸模型計算建議的氨水噴量,以達成目標平均氮氧化物濃度,例如未來5分鐘的目標平均氮氧化物濃度可為280mg/m
3。
Since the concentration of nitrogen oxides can be affected by the working conditions of the cement kiln and the amount of ammonia sprayed, the
第2圖係為一種控制系統1控制氮氧化物排放方法200之流程圖。方法200包含步驟S202至S206,用以進行迴歸分析來預測平均氮氧化物濃度。任何合理的技術變更或是步驟調整都屬於本發明所揭露的範疇。步驟S202至S206的詳細內容如下所述:Figure 2 is a flow chart of a
步驟S202: 感測器101至10N獲取氨水噴量及複數個變數值;Step S202:
步驟S203: 處理器12處理複數組資料集以產生複數組更新資料集,每一組更新資料集包含氨水噴量及複數個更新變數值;Step S203: The
步驟S204: 處理器12根據複數個平均氮氧化物濃度及該些組更新資料集產生一組迴歸係數;Step S204: The
步驟S206: 處理器12根據目標平均氮氧化物濃度、該組迴歸係數及一組更新資料集,產生目標氨水噴量。Step S206: The
在步驟S202,每個水泥廠的感測器101至10N定時獲取氨水噴量及複數個變數的複數個變數值。處理器12將氨水噴量及該些變數值轉換為相同的時間單位(例如時間單位為每分鐘),及/或進行資料處理(例如計算煙囪氮氧化物濃度的平均氮氧化物濃度),接著將轉換後之氨水噴量、複數個轉換後之變數值及資料處理後之變數值傳送至資料庫以儲存複數個平均氮氧化物濃度及複數組資料集。平均氮氧化物濃度可為預定時間內的平均氮氧化物濃度,例如5分鐘的平均氮氧化物濃度。每一組資料集包含特定時間的氨水噴量及該些變數值。In step S202, the
在步驟S203,處理器12取得預定時段內的該些組資料集,對該些組資料集之複數個對應變數值進行極端值前處理及/或資料平滑化前處理,及依據處理後的該些組資料集篩選變數以產生複數組更新資料集。預定時段可依據需求設定,例如預定時段可為10分鐘,每一組資料集可包含10變數值。極端值前處理可偵測該些組資料集中之該些對應變數值的異常值,及將異常值更新為複數個對應變數的預設範圍內之數值,例如該些對應變數的預設範圍之極端值。資料平滑化前處理可將突然升高或降低的該些對應變數值以該些對應變數值的平均值取代。在一些實施例中,處理器12可先進行極端值前處理,接著再進行資料平滑化前處理以產生更新變數值。每一組更新資料集包含氨水噴量及複數個更新變數值。In step S203, the
在一些實施例中,當進行極端值前處理時,針對該些組資料集中的每個變數,處理器12會將該些組資料集之該些對應變數值中超出預設範圍之對應變數值取代為預設範圍之極端值。處理器12會依據該些對應變數值之最新值產生更新變數值。例如,煙囪氮氧化物濃度之預設範圍為0mg/m
3至397mg/m
3。若煙囪氮氧化物濃度的的變數值小於0,處理器12會將煙囪氮氧化物濃度的變數值更新為0;若煙囪氮氧化物濃度的變數值大於397,處理器12會將煙囪氮氧化物濃度的變數值更新為397。表格2顯示實施例中之煙囪氮氧化物濃度的複數個對應變數值,每個對應變數值間隔1秒鐘。
In some embodiments, when performing extreme value pre-processing, for each variable in the data sets, the
表格 2
如表格2所示,在時間2020-04-14 00:50及時間2020-04-14 00:51,由於煙囪氮氧化物濃度的對應變數值分別為-20及-10,因此處理器12將煙囪氮氧化物濃度的對應變數值更新為0。在時間2020-04-14 00:51至時間2020-04-14 00:59之間,由於煙囪氮氧化物濃度的變數值在預設範圍之內,因此處理器12不需更新煙囪氮氧化物濃度的變數值。As shown in Table 2, at time 2020-04-14 00:50 and time 2020-04-14 00:51, since the corresponding strain values of the nitrogen oxide concentration in the chimney are -20 and -10 respectively, the
在另一些實施例中,當進行極端值前處理時,針對該些組資料集中的每個變數,若該些組資料集之該些對應變數值中兩連續對應變數值之間的差值大於預定值,處理器12會將兩連續對應變數值之後值以兩連續對應變數值之前值取代;若該些組資料集中兩連續對應變數值之間的差值小於預定值,處理器12不會更新後值。處理器12會依據該些對應變數值之最新值產生更新變數值。若兩連續對應變數值之間的差值過大,則感測器量測到的對應變數值可能異常,因此將較新的後值以較舊的前值取代,以確保迴歸係數的正確性。表格3顯示實施例中之煙囪氧氣濃度的複數個對應變數值,每個變數值間隔1秒鐘。預定值可為2%。當煙囪氧氣濃度的兩連續對應變數值之間的差值大於或等於2%,煙囪氧氣濃度大於17%,或煙囪氧氣濃度小於4%時,煙囪氧氣濃度可視為異常,處理器12會將兩連續對應變數值之後值以兩連續變對應數值之前值取代,否則,煙囪氧氣濃度可視為正常,處理器12不會更新後值。In other embodiments, when performing extreme value preprocessing, for each variable in the data sets, if the difference between two consecutive corresponding strain values in the corresponding strain values in the data sets is greater than The
表格 3
如表格3所示,在時間2020-05-20 23:40及時間2020-05-20 23:47之間,由於煙囪氧氣濃度的兩連續變數值(5%,5%)之間的差值(0%)小於2%且煙囪氧氣濃度的變數值(5%)介於2%及17%之間,因此處理器12不會更新後值;在時間2020-05-20 23:48,由於煙囪氧氣濃度的兩連續變數值(5%,13%)之間的差值(8%)大於2%,因此處理器12將煙囪氧氣濃度的兩連續變數值之後值更新為前值(5%);在時間2020-05-20 23:49,由於煙囪氧氣濃度的變數值(19%)大於17%,因此處理器12將煙囪氧氣濃度的兩連續變數值之後值更新為前值(5%);在時間2020-05-20 23:50,由於煙囪氧氣濃度的變數值(17%)等於17%,因此處理器12將煙囪氧氣濃度的兩連續變數值之後值更新為前值(5%);在時間2020-05-20 23:51及時間2020-05-20 23:59之間,由於煙囪氧氣濃度的兩連續變數值之間的差值大於或等於2%,因此處理器12將煙囪氧氣濃度的兩連續變數值之後值更新為前值(5%)。As shown in Table 3, between the time 2020-05-20 23:40 and the time 2020-05-20 23:47, due to the difference between the two continuous variable values (5%, 5%) of the chimney oxygen concentration (0%) is less than 2% and the variable value (5%) of the stack oxygen concentration is between 2% and 17%, so the processor 12 will not update the value; at time 2020-05-20 23:48, due to The difference (8%) between the two continuous variable values of the chimney oxygen concentration (5%, 13%) is greater than 2%, so the processor 12 updates the later value of the two continuous variable values of the chimney oxygen concentration to the previous value (5% ); At time 2020-05-20 23:49, since the variable value of the chimney oxygen concentration (19%) is greater than 17%, the processor 12 updates the subsequent value of the two consecutive variable values of the chimney oxygen concentration to the previous value (5% ); At time 2020-05-20 23:50, since the variable value (17%) of the chimney oxygen concentration is equal to 17%, the processor 12 updates the subsequent value of the two consecutive variable values of the chimney oxygen concentration to the previous value (5% ); between time 2020-05-20 23:51 and time 2020-05-20 23:59, since the difference between the two continuous variable values of the chimney oxygen concentration is greater than or equal to 2%, the processor 12 will The subsequent value of the two continuous variables of the chimney oxygen concentration is updated to the previous value (5%).
在一些實施例中,當進行資料平滑化前處理時,針對該些組資料集中的每個變數,若該些組資料集之該些對應變數值中的最新值實質上等於預定值,則處理器12將最新值以該些對應變數值之其餘值的平均值取代;若該些組資料集中的最新值大於預定值,則處理器12不改變最新值。處理器12會依據該些組資料集之最新值產生更新變數值。舉例而言,該些組資料集之該些對應變數值可包含依時間順序排列的6變數值(V(t-5), V(t-4), V(t-3), V(t-2), V(t-1), V(t),),每個變數值間隔1分鐘,預定值可為0。在時間t,若最新值為0,則處理器12將最新值V(t)以該些對應變數值之其餘值(V(t-1)至V(t-5))的平均值取代,如公式(2)所示:In some embodiments, when performing data smoothing pre-processing, for each variable in the data sets, if the latest value among the corresponding variable values in the data sets is substantially equal to the predetermined value, then processing The
V(t)=(V(t-1)+ V(t-2)+…+V(t-5))/5 公式(2)V(t)=(V(t-1)+ V(t-2)+…+V(t-5))/5 Formula (2)
在另一些實施例中,當進行資料平滑化前處理時,針對該些組資料集中的每個變數,處理器12將該些組資料集之該些對應變數值中的最新值以該些對應變數值之平均值取代,平均值可為5分移動平均值,如公式(3)所示:In other embodiments, when performing data smoothing pre-processing, for each variable in the sets of data sets, the
V(t)=(V(t)+ V(t-2)+…+V(t-4))/5 公式(3)V(t)=(V(t)+ V(t-2)+…+V(t-4))/5 Formula (3)
其中V(t)為最新值,V(t-4))為4分前的變數值。處理器12會依據該些對應變數值之最新值產生更新變數值。表格4顯示實施例中之氨水噴量的複數個對應變數值,每個對應變數值間隔1分鐘。Among them, V(t) is the latest value, and V(t-4)) is the variable value 4 minutes ago. The
表格 4
如表格4所示,在時間2020-16-18 23:54,處理器12計算時間2020-16-18 23:50至時間2020-16-18 23:54之5分移動平均值NH3_M5為1033.328ton/h(=(988.203+994.297+1021.953+1061.953+1100.234)/5),且在時間2020-16-18 23:55至時間2020-16-18 23:59,處理器12分別計算其5分移動平均值NH3_M5。在時間2020-16-18 23:50至時間2020-16-18 23:53,由於沒有5分移動平均值NH3_M5,處理器12將氨水噴量作為更新後的氨水噴量;在時間2020-16-18 23:54至時間2020-16-18 23:59,處理器12將移動平均值NH3_M5作為更新後的氨水噴量。As shown in Table 4, at time 2020-16-18 23:54,
處理器12可依據該些處理後的該些組資料集使用向前選取(forward selection)、向後選取(backward selection)或向前向後逐步選取(stepwise selection)方式從複數個變數中選定專屬於特定水泥廠的一組對應變數以產生該些組更新資料集。例如,處理器12可使用向後選取方式從複數個變數中逐一剔除統+計上不顯著的對應變數直到剩下的是統計上顯著的一組對應變數為止。使用該組對應變數建立的迴歸模型會提升正確性。與使用所有對應變數的迴歸模型相比,使用該組對應變數的迴歸模型可使R平方(R-square)由0.94增加至0.95,平均絕對百分比誤差(mean absolute percentage error, MAPE)由3.46%降低至3.22%,及平均絕對誤差(mean absolute error, MAE)由62降低至61.8,三項指標皆顯示迴歸模型的正確性增加。The
在步驟S204,處理器12從資料庫中獲取特定水泥廠的該些平均氮氧化物濃度及該些組更新資料集,以針對特定水泥廠進行迴歸分析而產生一組迴歸係數。該組迴歸係數用以建立平均氮氧化物濃度的迴歸模型。例如,公式(1)顯示一種平均氮氧化物濃度的迴歸模型:In step S204, the
平均NOx=β0+β1*X1+β2*X2+β3*X3+β4*X4+β5*X5+β6*X6+β7*X7+β8*X8+β9*X9+β10*X10 公式(1)Average NOx=β0+β1*X1+β2*X2+β3*X3+β4*X4+β5*X5+β6*X6+β7*X7+β8*X8+β9*X9+β10*X10 Formula (1)
其中: 平均NOx係為平均氮氧化物濃度;Among them: average NOx is the average nitrogen oxide concentration;
β0係為偏移值;β0 is the offset value;
X1係為頭煤流量;X1 series is the head coal flow rate;
β1係為頭煤流量之係數;β1 is the coefficient of head coal flow rate;
X2係為生料餵料量;X2 is the raw material feeding amount;
β2係為生料餵料量之係數;β2 is the coefficient of raw material feeding amount;
X3係為尾煤流量;X3 series is tail coal flow;
β3係為尾煤流量之係數;β3 is the coefficient of tailing coal flow;
X4係為煙囪氧氣濃度;X4 is the chimney oxygen concentration;
β4係為煙囪氧氣濃度之係數;β4 is the coefficient of oxygen concentration in the chimney;
X5係為預熱塔出口一氧化碳濃度;X5 is the carbon monoxide concentration at the outlet of the preheating tower;
β5係為預熱塔出口一氧化碳濃度之係數;β5 is the coefficient of carbon monoxide concentration at the outlet of the preheating tower;
X6係為窯頭溫度;X6 series is the kiln head temperature;
β6係為窯頭溫度之係數;β6 is the coefficient of kiln head temperature;
X7係為三次風溫;The X7 series has three air temperatures;
β7係為三次風溫之係數;β7 is the coefficient of the third wind temperature;
X8係為一分鐘前氨水噴量;X8 is the amount of ammonia sprayed one minute ago;
β8係為一分鐘前氨水噴量之係數;β8 is the coefficient of ammonia spray volume one minute ago;
X9係為煙囪氮氧化物濃度;X9 is the concentration of nitrogen oxides in the chimney;
β9係為煙囪氮氧化物濃度之係數;β9 is the coefficient of nitrogen oxide concentration in the chimney;
X10係為氨水噴量;及X10 is the amount of ammonia sprayed; and
β10係為氨水噴量之係數。β10 is the coefficient of ammonia spray volume.
建立迴歸模型之後,在步驟S206,處理器12將目標平均氮氧化物濃度及迴歸模型之一組更新資料集的複數個對應變數(X1至X9)的更新變數值帶入公式(1),即可估計目標氨水噴量X10的目標氨水噴量。在一些實施例中,該組更新資料集可為最新組更新資料集。在另一些實施例中,該組更新資料集可為每隔一段固定時間,例如每分鐘的一組更新資料集。表格5顯示實施例中之該些對應變數(X1至X9)的更新變數值。After establishing the regression model, in step S206, the
表格 5
在一個例子中,未來5分鐘的目標平均氮氧化物濃度為280,目標氨水噴量之係數β10為1,偏移值β0為308.4710,處理器12會依據公式(1)及表格5內的數值計算目標氨水噴量的預測值為980.9118 (280 = -308.4710+β1*X1+β2*X2+β3*X3+β4*X4+β5*X5+β6*X6+β7*X7+β8*X8+β9*X9+β10*980.9118)。在步驟S206,氨水噴灑裝置會依據目標氨水噴量的預測值(980.9118 ton/h)噴灑氨水,藉以控制氮氧化物的排放。每個水泥廠可監控氮氧化物濃度,且中控系統可呈現各水泥廠即時的氮氧化物濃度,並標示出政府標準及內控標準以便管理。相似地,每個水泥廠可監控氨逃逸濃度,且中控系統可呈現各水泥廠即時的氨逃逸濃度。同時每個水泥廠可針對窯尾煙囪、窯頭煙囪以及電袋複合收塵設備風管出入口等位置量測設備厚度以進行設備腐蝕監控,若腐蝕程度超過系統設定標準,中控系統便會進行警示。In one example, the target average nitrogen oxide concentration in the next 5 minutes is 280, the coefficient β10 of the target ammonia spray volume is 1, and the offset value β0 is 308.4710. The
第3圖顯示控制系統1用於控制氮氧化物排放的效果,其中橫軸表示時間,縱軸表示氮氧化物濃度及氨水噴量。模擬曲線40表示目標氨水噴量的預測值,模擬曲線42表示氨水噴量的實際值,模擬曲線44表示氮氧化物濃度的實際值。第3圖顯示氨水噴量的實際值實質上等於目標氨水噴量的預測值,及氮氧化物濃度控制於280mg/m
3之內。
Figure 3 shows the effect of control system 1 in controlling nitrogen oxide emissions, in which the horizontal axis represents time and the vertical axis represents nitrogen oxide concentration and ammonia injection volume. The
控制系統1及方法200適用於水泥廠,在給定的氮氧化物之排放標準下,精準產生最低氨水噴量,藉以控制氮氧化物的排放同時減低水泥廠的氨逃逸及減低水泥產線設備的腐蝕。
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
The control system 1 and
1:控制系統
101至10N:感測器
12:處理器
200:方法
S202至S206:步驟
40:目標氨水噴量的預測值
42:氨水噴量的實際值
44:氮氧化物濃度的實際值
1:
第1圖係為本發明實施例中之一種控制系統之方塊圖。 第2圖係為第1圖中之一種控制系統的控制氮氧化物排放方法之流程圖。 第3圖顯示第1圖中之控制系統用於控制氮氧化物排放的效果。 Figure 1 is a block diagram of a control system in an embodiment of the present invention. Figure 2 is a flow chart of a method for controlling nitrogen oxide emissions of one of the control systems in Figure 1. Figure 3 shows the effectiveness of the control system in Figure 1 for controlling nitrogen oxide emissions.
200:方法 200:Method
S202至S206:步驟 S202 to S206: steps
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063112167P | 2020-11-11 | 2020-11-11 | |
US63/112,167 | 2020-11-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202219680A TW202219680A (en) | 2022-05-16 |
TWI824333B true TWI824333B (en) | 2023-12-01 |
Family
ID=81668521
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110141689A TWI824333B (en) | 2020-11-11 | 2021-11-09 | Method of control system controlling nitrogen oxides and ammonia water in selective non-catalytic reduction system |
TW110141752A TW202219853A (en) | 2020-11-11 | 2021-11-10 | Carbon reduction method for use in cement plant |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110141752A TW202219853A (en) | 2020-11-11 | 2021-11-10 | Carbon reduction method for use in cement plant |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN114538810A (en) |
TW (2) | TWI824333B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6790264B2 (en) * | 2000-03-08 | 2004-09-14 | Isg Resources, Inc. | Control of ammonia emission from ammonia laden fly ash in concrete |
US20050282285A1 (en) * | 2004-06-21 | 2005-12-22 | Eaton Corporation | Strategy for controlling NOx emissions and ammonia slip in an SCR system using a nonselective NOx/NH3 |
CN101048709A (en) * | 2004-08-27 | 2007-10-03 | 阿尔斯托姆科技有限公司 | Optimized air pollution control |
CN103977705A (en) * | 2014-04-23 | 2014-08-13 | 浙江省环境保护科学设计研究院 | Reducing agent metering for cement clinker production line SNCR flue gas denitration and control system and method thereof |
CN106991507A (en) * | 2017-05-19 | 2017-07-28 | 杭州意能电力技术有限公司 | A kind of SCR inlet NOx concentration on-line prediction method and device |
CN110975597A (en) * | 2019-10-15 | 2020-04-10 | 杭州电子科技大学 | Neural network hybrid optimization method for cement denitration |
CN111665711A (en) * | 2020-06-28 | 2020-09-15 | 金隅冀东水泥(唐山)有限责任公司唐山分公司 | Intelligent control system and method for SNCR (selective non-catalytic reduction) denitration ammonia injection amount |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0771619B2 (en) * | 1990-11-30 | 1995-08-02 | 日本鋼管株式会社 | Exhaust gas denitration control device |
CN1162365C (en) * | 2001-04-27 | 2004-08-18 | 刘本恩 | Method and apparatus for producing high-pressure steam and calcined cement clinker simultaneously with substituted fuel |
CN1318529A (en) * | 2001-06-06 | 2001-10-24 | 烟台锦河水泥有限公司 | Cement producing process |
CN101560070A (en) * | 2009-05-25 | 2009-10-21 | 四川利森建材集团有限公司 | Process for producing cement by using organic garbage to substitute partial fuel coal |
JP2012128800A (en) * | 2010-12-17 | 2012-07-05 | Nippon Steel Engineering Co Ltd | State prediction method for process and process control unit using the same |
DE102015118391A1 (en) * | 2015-10-28 | 2017-05-04 | Thyssenkrupp Ag | Process for the preparation of a cement clinker substitute consisting primarily of calcined clay |
CN106155026B (en) * | 2016-08-19 | 2019-03-08 | 广东亚仿科技股份有限公司 | A kind of cement plant coal consumption and carbon emission monitoring method |
CN106746786B (en) * | 2016-11-22 | 2019-02-19 | 沈阳建筑大学 | A kind of clinker and its method for calcinating calcined using rice husk as crude fuel |
CN109426144B (en) * | 2017-08-22 | 2021-07-16 | 邢台国泰发电有限责任公司 | Power station boiler flue gas denitration method based on random forest model |
CN107526292B (en) * | 2017-09-18 | 2019-09-13 | 华中科技大学 | A method of the regulation ammonia spraying amount based on inlet NOx concentration prediction |
CN107544288B (en) * | 2017-09-26 | 2021-06-04 | 天津拓科思科技有限公司 | Denitration optimization control method and system |
CN109723556B (en) * | 2018-12-29 | 2021-02-09 | 国电环境保护研究院有限公司 | SCR and spraying-based gas turbine set efficiency improvement control system and control method |
CN109766666A (en) * | 2019-02-14 | 2019-05-17 | 长沙理工大学 | Boiler smoke based on low nitrogen burning and SNCR-SCR Collaborative Control discharges NOxConcentration prediction method |
CN110263395A (en) * | 2019-06-06 | 2019-09-20 | 东南大学 | The power plant's denitration running optimizatin method and system analyzed based on numerical simulation and data |
CN110252132A (en) * | 2019-06-14 | 2019-09-20 | 许昌龙岗发电有限责任公司 | The exploitation of SCR denitration Optimal Control System and application method based on multi-parameter prediction |
CN110618706B (en) * | 2019-09-27 | 2023-05-12 | 中国大唐集团科学技术研究院有限公司华中电力试验研究院 | Multistage intelligent denitration on-line optimization control system based on data driving |
-
2021
- 2021-11-09 TW TW110141689A patent/TWI824333B/en active
- 2021-11-10 TW TW110141752A patent/TW202219853A/en unknown
- 2021-11-11 CN CN202111333472.5A patent/CN114538810A/en active Pending
- 2021-11-11 CN CN202111331998.XA patent/CN114534466B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6790264B2 (en) * | 2000-03-08 | 2004-09-14 | Isg Resources, Inc. | Control of ammonia emission from ammonia laden fly ash in concrete |
US20050282285A1 (en) * | 2004-06-21 | 2005-12-22 | Eaton Corporation | Strategy for controlling NOx emissions and ammonia slip in an SCR system using a nonselective NOx/NH3 |
CN101048709A (en) * | 2004-08-27 | 2007-10-03 | 阿尔斯托姆科技有限公司 | Optimized air pollution control |
CN103977705A (en) * | 2014-04-23 | 2014-08-13 | 浙江省环境保护科学设计研究院 | Reducing agent metering for cement clinker production line SNCR flue gas denitration and control system and method thereof |
CN106991507A (en) * | 2017-05-19 | 2017-07-28 | 杭州意能电力技术有限公司 | A kind of SCR inlet NOx concentration on-line prediction method and device |
CN110975597A (en) * | 2019-10-15 | 2020-04-10 | 杭州电子科技大学 | Neural network hybrid optimization method for cement denitration |
CN111665711A (en) * | 2020-06-28 | 2020-09-15 | 金隅冀东水泥(唐山)有限责任公司唐山分公司 | Intelligent control system and method for SNCR (selective non-catalytic reduction) denitration ammonia injection amount |
Also Published As
Publication number | Publication date |
---|---|
TW202219853A (en) | 2022-05-16 |
CN114534466B (en) | 2024-03-22 |
CN114534466A (en) | 2022-05-27 |
CN114538810A (en) | 2022-05-27 |
TW202219680A (en) | 2022-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105597537B (en) | Denitration control method based on Prediction and Control Technology | |
CN107561941A (en) | A kind of full working scope qualified discharge control method of fired power generating unit denitrating system | |
CN110263452B (en) | Flue gas time distribution characteristic analysis method and system in flue and denitration system | |
CN102732659B (en) | Burden surface profile control method of blast furnace burden distribution and control system | |
CN109603525B (en) | Denitration partition ammonia spraying control method based on non-uniformity judgment | |
CN106362561B (en) | A kind of cluster SNCR control method based on fluid field in furnace | |
CN116611017B (en) | Nitrogen oxide emission detection method of low-nitrogen combustion heating furnace | |
CN103977705B (en) | A kind of reductant metering of cement clinker production line SNCR denitrating flue gas and control system and method | |
TWI824333B (en) | Method of control system controlling nitrogen oxides and ammonia water in selective non-catalytic reduction system | |
CN115685743A (en) | Intelligent control coal-fired boiler and intelligent prediction regulation and control flue gas emission method thereof | |
CN106705657A (en) | Remote real-time acquiring system of rotary kiln operation state data and control method thereof | |
US11853023B2 (en) | Method of controlling coal management system for reducing coal usage | |
CN109046021B (en) | SCR system accurate ammonia injection control method with strong self-adaptive capacity | |
CN113515043B (en) | BP neural network-based real-time calculation method for dry quenching Jiao Shaosun rate | |
CN112219065A (en) | Method for estimating state quantity of combustion equipment, combustion control method, and combustion control device | |
CN108051117A (en) | A kind of SCR denitration continuously sprays ammonia on-line temperature monitoring and control system and method | |
CN115113519A (en) | Coal-gas co-combustion boiler denitration system outlet NO x Concentration early warning method | |
JP5900026B2 (en) | Method and apparatus for estimating furnace temperature distribution | |
CN116672870A (en) | Regional selectivity prediction control device and method for intelligent ammonia injection | |
CN207946179U (en) | A kind of SCR denitration continuously sprays ammonia on-line temperature monitoring and control system | |
CN113578008A (en) | Denitration control method and system for waste incineration boiler | |
CN110647560B (en) | Mechanism and brain-like intelligence combined online soft measurement method for coal quality of fired coal of power plant | |
CN105042582B (en) | A kind of boiler hearth of circulating fluidized bed release heat monitoring system and method | |
CN113654200A (en) | Temperature control system for steel pipe production workshop | |
CN108730943B (en) | Flue gas dynamic temperature evaluation method |