TWI824071B - Central detection method - Google Patents

Central detection method Download PDF

Info

Publication number
TWI824071B
TWI824071B TW108144330A TW108144330A TWI824071B TW I824071 B TWI824071 B TW I824071B TW 108144330 A TW108144330 A TW 108144330A TW 108144330 A TW108144330 A TW 108144330A TW I824071 B TWI824071 B TW I824071B
Authority
TW
Taiwan
Prior art keywords
outer peripheral
detection area
pixel
axis direction
light
Prior art date
Application number
TW108144330A
Other languages
Chinese (zh)
Other versions
TW202022313A (en
Inventor
大森崇史
小池彩子
Original Assignee
日商迪思科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商迪思科股份有限公司 filed Critical 日商迪思科股份有限公司
Publication of TW202022313A publication Critical patent/TW202022313A/en
Application granted granted Critical
Publication of TWI824071B publication Critical patent/TWI824071B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/24Optical enhancement of defects or not directly visible states, e.g. selective electrolytic deposition, bubbles in liquids, light emission, colour change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/682Mask-wafer alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

[課題]抑制以下情形:在檢測晶圓的中心時,錯誤辨識晶圓的外周緣。 [解決手段]在本加工方法中,是將在X軸方向上延伸之檢測用區域朝X軸方向每次錯開1像素,且每次將檢測用區域錯開,就取得檢測用區域的各像素的明暗值,進而算出明暗值的分布中相對於X軸的斜率值。然後,依據此斜率值,決定晶圓之邊緣的座標即外周座標。[Issue] Suppress the situation where the outer edge of the wafer is incorrectly recognized when detecting the center of the wafer. [Solution] In this processing method, the detection area extending in the X-axis direction is shifted by 1 pixel at a time in the X-axis direction, and each time the detection area is shifted, the pixels of each pixel in the detection area are obtained. Light and dark values, and then calculate the slope value relative to the X-axis in the distribution of light and dark values. Then, based on this slope value, the coordinates of the edge of the wafer, that is, the peripheral coordinates, are determined.

Description

中心檢測方法Central detection method

發明領域 本發明是有關於一種中心檢測方法。Field of invention The present invention relates to a center detection method.

發明背景 在邊緣修整加工中,是將晶圓的外周的倒角部沿著圓周方向來去除。在此邊緣修整加工中,所要求的是將晶圓的外周中的去除的部分之寬度(徑方向的長度)設成相等。因此,對晶圓的中心進行辨識,並補正晶圓中心與保持工作台的旋轉軸心之偏離(參照專利文獻1)。Background of the invention In edge trimming, the chamfered portion of the outer periphery of the wafer is removed along the circumferential direction. In this edge trimming process, it is required that the width (radial length) of the removed portion in the outer periphery of the wafer be equal. Therefore, the center of the wafer is identified and the deviation between the center of the wafer and the rotation axis of the holding table is corrected (see Patent Document 1).

又,為了對晶圓的中心進行辨識,而有以下之方法(參照專利文獻2及3)。亦即,拍攝晶圓的外周的至少3處,並找出各拍攝圖中的表示晶圓的外周緣之像素的外周緣像素。然後,從3個外周緣像素的座標值算出晶圓中心。 在此方法中,是在找出晶圓的外周緣時,將拍攝圖二值化,並將黑色的像素與白色的像素的分界辨識為外周緣像素。 先前技術文獻 專利文獻In addition, in order to identify the center of the wafer, there is the following method (see Patent Documents 2 and 3). That is, at least three places on the outer periphery of the wafer are photographed, and the outer peripheral edge pixels representing the pixels on the outer peripheral edge of the wafer in each photograph are found. Then, the wafer center is calculated from the coordinate values of the three outer peripheral pixels. In this method, when the outer peripheral edge of the wafer is found, the photographed image is binarized, and the boundary between the black pixels and the white pixels is identified as the outer peripheral edge pixel. Prior technical literature patent documents

專利文獻1:日本專利特開2006-93333號公報 專利文獻2:日本專利第5486405號公報 專利文獻3:日本專利特開2015-102389號公報Patent Document 1: Japanese Patent Application Publication No. 2006-93333 Patent Document 2: Japanese Patent No. 5486405 Patent Document 3: Japanese Patent Application Publication No. 2015-102389

發明概要 發明欲解決之課題 在將拍攝圖二值化時,因為是依據預先設定的閾值來將像素分為黑色或白色,所以有弄錯晶圓的外周緣的情形。又,若在接近晶圓的外周緣的部分使光反射時,會有以帶有白色的方式攝入此部分之情形,又,若在晶圓的外周緣的外側的部分出現陰影時,會有以帶有黑色的方式攝入此部分之情形。這些情形可能成為錯誤辨識晶圓的外周緣的原因。Summary of the invention The problem to be solved by the invention When the photographic image is binarized, the pixels are classified into black or white based on a preset threshold, so the outer periphery of the wafer may be mistaken. In addition, if light is reflected at a portion close to the outer periphery of the wafer, the portion may be captured in a white color. Also, if a shadow appears on the portion outside the outer periphery of the wafer, it may occur. There are cases where this part is ingested in a black color. These situations may cause incorrect identification of the outer periphery of the wafer.

本發明之目的在於抑制以下情形:在檢測晶圓之中心時,錯誤辨識晶圓的外周緣。 用以解決課題之手段The object of the present invention is to suppress the following situation: when detecting the center of the wafer, the outer peripheral edge of the wafer is erroneously identified. means to solve problems

本發明之中心檢測方法(本中心檢測方法),是檢測圓板狀工件之中心的中心檢測方法,並包含以下步驟: 保持步驟,使該圓板狀工件保持在保持工作台,該保持工作台具有以X軸上之X座標與Y軸上之Y座標規定位置之表面且具備有旋轉軸; 外周圖像取得步驟,將拍攝組件定位於該圓板狀工件的外周來實施由該拍攝組件所進行的拍攝而取得外周圖像,該拍攝組件具備有拍攝元件,且該拍攝元件具有在對X軸平行的方向上以及對Y軸平行的方向上配置排列之複數個像素部,該外周圖像包含在X軸方向上以及Y軸方向上配置排列的複數個像素; 檢測用區域設定步驟,在該外周圖像內設定直線狀的檢測用區域,該直線狀的檢測用區域具有的像素之數量小於配置排列在該外周圖像的X軸方向上的像素之數量的1/2; 閾值設定步驟,在該外周圖像中的對應於該圓板狀工件的外周之像素通過該檢測用區域之中央部的狀態下,取得該檢測用區域的各像素的明暗值,並藉由最小平方法算出在明暗值的分布中相對於X軸的斜率值,來作為基準斜率值,並將小於該基準斜率值的斜率值設定為閾值,其中該明暗值的分布是將該檢測用區域的各像素的明暗值以各像素之X軸方向的位置來表示; 斜率值算出步驟,一邊將該外周圖像內的該檢測用區域朝向該圓板狀工件且朝X軸方向每次錯開1像素,一邊取得該檢測用區域的各像素的明暗值,並藉由最小平方法算出在該明暗值的分布中相對於X軸的斜率值; 外周座標決定步驟,在該斜率值算出步驟中所算出的斜率值成為該閾值以上的情況下,算出該檢測用區域的像素的明暗值之最小值與最大值的平均值,且取得具有最接近於該平均值的明暗值的該檢測用區域的像素之座標來作為該板狀工件的外周座標;及 中心座標算出步驟,依據對該圓板狀工件的不同的位置實施3次以上的該斜率值算出步驟及該外周座標決定步驟而取得的3處以上的外周座標,算出該圓板狀工件的中心座標。The center detection method of the present invention (this center detection method) is a center detection method for detecting the center of a disc-shaped workpiece, and includes the following steps: The holding step is to hold the disc-shaped workpiece on a holding table, which has a surface with a position specified by the X coordinate on the X axis and the Y coordinate on the Y axis and has a rotation axis; The outer peripheral image acquisition step is to position the imaging unit on the outer periphery of the disc-shaped workpiece to perform imaging by the imaging unit to obtain the peripheral image. The imaging unit is equipped with an imaging element, and the imaging element has an object facing A plurality of pixels are arranged in a direction parallel to the axis and in a direction parallel to the Y-axis, and the peripheral image includes a plurality of pixels arranged in the X-axis direction and the Y-axis direction; The detection area setting step is to set a linear detection area in the outer peripheral image. The number of pixels in the linear detection area is smaller than the number of pixels arranged in the X-axis direction of the outer peripheral image. 1/2; The threshold setting step is to obtain the light and dark values of each pixel in the detection area in a state where the pixels corresponding to the outer circumference of the disc-shaped workpiece in the outer peripheral image pass through the center of the detection area, and use the final The Xiaoping method calculates the slope value relative to the X-axis in the distribution of light and dark values, which is the detection area, as the reference slope value, and sets the slope value smaller than the reference slope value as the threshold value. The light and dark value of each pixel is represented by the position of each pixel in the X-axis direction; The slope value calculation step is to obtain the light and dark values of each pixel in the detection area while shifting the detection area in the outer peripheral image toward the disc-shaped workpiece and in the X-axis direction by 1 pixel at a time. The least squares method calculates the slope value relative to the X-axis in the distribution of light and dark values; In the outer peripheral coordinate determination step, when the slope value calculated in the slope value calculation step is equal to or greater than the threshold, the average value of the minimum value and the maximum value of the light and dark values of the pixels in the detection area is calculated, and the closest value is obtained. The coordinates of the pixels in the detection area based on the average light and dark value are used as the peripheral coordinates of the plate-shaped workpiece; and The center coordinate calculation step calculates the center of the disc-shaped workpiece based on three or more outer peripheral coordinates obtained by performing the slope value calculation step and the outer peripheral coordinate determination step three or more times at different positions of the disc-shaped workpiece. coordinates.

在本中心檢測方法中,亦可為:在該斜率值算出步驟中,是將包圍構成該檢測用區域的各像素的複數個像素的明暗值之平均值作為構成該檢測用區域的各像素的明暗值來使用。In this center detection method, in the slope value calculation step, the average value of the light and dark values of a plurality of pixels surrounding each pixel constituting the detection region may be used as the average value of each pixel constituting the detection region. Use light and dark values.

在本中心檢測方法中,亦可為:在該檢測用區域設定步驟中,是在該外周圖像內設定在Y軸方向上排列的複數個該檢測用區域, 在該斜率值算出步驟中,是按複數個該檢測用區域來算出斜率值, 在該外周座標決定步驟中,是按複數個該檢測用區域來取得該圓板狀工件的外周座標,並算出從各外周座標到該保持工作台的旋轉軸心的座標為止的距離來製作該距離近似之外周座標的群組,並將最多的外周座標所屬的群組的任一個外周座標決定作為該圓板狀工件的外周座標。 發明效果In this center detection method, in the detection area setting step, a plurality of detection areas arranged in the Y-axis direction may be set in the peripheral image, In this slope value calculation step, slope values are calculated for a plurality of detection areas, In the outer peripheral coordinate determination step, the outer peripheral coordinates of the disc-shaped workpiece are obtained for a plurality of detection areas, and the distance from each outer peripheral coordinate to the coordinate of the rotation axis center of the holding table is calculated to create the outer peripheral coordinates of the disk-shaped workpiece. The distance approximates the group of outer peripheral coordinates, and any outer peripheral coordinate of the group to which the largest number of outer peripheral coordinates belongs is determined as the outer peripheral coordinate of the disc-shaped workpiece. Invention effect

在本中心檢測方法中,是將在X軸方向上延伸之檢測用區域朝X軸方向每次錯開1像素,且每次將檢測用區域錯開,就取得檢測用區域的各像素的明暗值,進而依據明暗值的分布中的相對於X軸的斜率值,來決定圓板狀工件的外周座標。從而,在本中心檢測方法中,可以在未對拍攝圖像進行二值化處理的情形下,決定圓板狀工件的外周座標。因此,可以避免基於二值化處理的錯誤之圓板狀工件的外周的誤辨識。In this center detection method, the detection area extending in the X-axis direction is shifted by 1 pixel each time in the X-axis direction, and each time the detection area is shifted, the light and dark values of each pixel in the detection area are obtained. Furthermore, the outer peripheral coordinates of the disc-shaped workpiece are determined based on the slope value relative to the X-axis in the distribution of light and dark values. Therefore, in this center detection method, the outer peripheral coordinates of the disc-shaped workpiece can be determined without binarizing the captured image. Therefore, it is possible to avoid erroneous identification of the outer circumference of the disk-shaped workpiece due to errors in binarization processing.

又,在作為檢測用區域之像素的明暗值,而使用包圍此像素的複數個像素之明暗值的平均值的情況下,即使在檢測用區域的像素之明暗值因非必要光等的影響而從原本之值偏離,仍然可以抑制該影響。Furthermore, when the average value of the brightness values of a plurality of pixels surrounding the pixel is used as the brightness value of a pixel in the detection area, even if the brightness value of the pixel in the detection area is affected by unnecessary light, etc. Deviating from the original value can still suppress the effect.

又,在使用複數個檢測用區域,並藉由多數表決方式來設定外周座標的情況下,即使因非必要光等的影響,而錯誤檢測1個檢測用區域之明暗值,且作為該結果而取得錯誤的外周座標,仍然可以將該影響變小。In addition, when a plurality of detection areas are used and the outer peripheral coordinates are set by majority voting, even if the light and dark value of one detection area is erroneously detected due to the influence of unnecessary light, etc., and as a result Obtaining wrong peripheral coordinates can still reduce the impact.

用以實施發明之形態 本實施形態的加工方法(本加工方法)是對圓板狀工件之一例即晶圓進行加工的方法,並包含有檢測晶圓的中心的中心檢測方法。Form used to implement the invention The processing method of this embodiment (this processing method) is a method of processing a wafer, which is an example of a disk-shaped workpiece, and includes a center detection method for detecting the center of the wafer.

如圖1所示,在圓板狀的晶圓W的正面Wa上形成有器件D。晶圓W的背面Wb不具有器件D,且是被磨削磨石等所磨削的被磨削面。As shown in FIG. 1 , a device D is formed on the front surface Wa of a disk-shaped wafer W. The back surface Wb of the wafer W does not have the device D and is a surface to be ground by a grinding stone or the like.

如圖2所示,在晶圓W的邊緣WE,形成有從正面Wa到背面Wb截面的形狀成為圓弧狀之形式的倒角部。再者,在圖2中,是將設置於晶圓W的正面Wa的器件D省略。又,在本實施形態中,晶圓W的顏色為黑色。As shown in FIG. 2 , on the edge WE of the wafer W, a chamfer portion is formed such that the cross-sectional shape from the front surface Wa to the back surface Wb becomes an arc shape. In addition, in FIG. 2 , the device D provided on the front surface Wa of the wafer W is omitted. In addition, in this embodiment, the color of the wafer W is black.

在本加工方法中,是將這種晶圓W之邊緣WE的正面Wa側去除(邊緣修整加工)。因此,在本加工方法中是使用如圖3所示之切割裝置1。如圖3所示,切割裝置1是對保持於保持工作台30之保持面302的晶圓W使切割部6所具備之切割刀片63旋轉並切入,而施行邊緣修整加工之裝置。 切割裝置1具備有基台10、豎立設置於基台10之門型支柱14、以及控制切割裝置1的各構件的控制部7。In this processing method, the front surface Wa side of the edge WE of the wafer W is removed (edge trimming process). Therefore, in this processing method, the cutting device 1 shown in Figure 3 is used. As shown in FIG. 3 , the dicing device 1 is a device that performs edge trimming processing on the wafer W held on the holding surface 302 of the holding table 30 by rotating and cutting the dicing blade 63 provided in the dicing unit 6 . The cutting device 1 includes a base 10 , a portal support 14 erected on the base 10 , and a control unit 7 that controls each component of the cutting device 1 .

在基台10上配設有X軸方向進給組件11。X軸方向進給組件11是使保持工作台30沿著切割進給方向(X軸方向)而移動。X軸方向進給組件11包含有在X軸方向上延伸的一對導軌111、載置於導軌111的X軸工作台113、和導軌111平行地延伸的滾珠螺桿110、以及使滾珠螺桿110旋轉的馬達112。An X-axis direction feed unit 11 is provided on the base 10 . The X-axis direction feed unit 11 moves the holding table 30 along the cutting feed direction (X-axis direction). The X-axis direction feed assembly 11 includes a pair of guide rails 111 extending in the X-axis direction, an X-axis table 113 mounted on the guide rails 111, a ball screw 110 extending parallel to the guide rails 111, and the ball screw 110 is rotated. of motor 112.

一對導軌111是平行於X軸方向地配置在基台10的上表面。X軸工作台113是在一對導軌111上沿著這些導軌111可滑動地設置。於X軸工作台113上載置有保持部3。The pair of guide rails 111 are arranged on the upper surface of the base 10 parallel to the X-axis direction. The X-axis table 113 is slidably provided on a pair of guide rails 111 along these guide rails 111 . The holding part 3 is placed on the X-axis table 113 .

滾珠螺桿110是螺合於設置在X軸工作台113的下表面側的螺帽部(未圖示)。馬達112是連結於滾珠螺桿110的一端部,而將滾珠螺桿110旋轉驅動。藉由旋轉驅動滾珠螺桿110,使X軸工作台113及保持部3沿著導軌111且沿著切割進給方向即X軸方向而移動。The ball screw 110 is screwed into a nut portion (not shown) provided on the lower surface side of the X-axis table 113 . The motor 112 is connected to one end of the ball screw 110 and drives the ball screw 110 to rotate. By rotationally driving the ball screw 110, the X-axis table 113 and the holding part 3 move along the guide rail 111 and along the cutting feed direction, that is, the X-axis direction.

保持部3具有保持晶圓W的保持工作台30。保持工作台30具有支撐保持工作台30而旋轉之旋轉軸即θ工作台31。The holding unit 3 has a holding table 30 for holding the wafer W. The holding table 30 has a θ table 31 which is a rotation axis that supports and rotates the holding table 30 .

保持工作台30是用於吸附保持圖1所示之晶圓W的構件,且是形成為圓板狀。保持工作台30具備包含多孔材的吸附部300、及支撐吸附部300的白色的框體301。The holding table 30 is a member for adsorbing and holding the wafer W shown in FIG. 1 , and is formed in a disc shape. The holding table 30 includes an adsorption part 300 made of a porous material, and a white frame 301 that supports the adsorption part 300.

吸附部300是連通於未圖示的吸引源,且具有露出面即保持面302。保持面302是比晶圓W稍小之圓形,並與框體301的上表面形成為齊平面。吸附部300是藉由此保持面302來吸引保持晶圓W。在本實施形態中,是將構成保持工作台30的表面之框體301的上表面及保持面302上的位置,以X軸上的X座標與Y軸上的Y座標來規定。The suction part 300 is connected to a suction source (not shown) and has a holding surface 302 that is an exposed surface. The holding surface 302 is circular slightly smaller than the wafer W, and is flush with the upper surface of the frame 301 . The suction part 300 attracts and holds the wafer W through the holding surface 302 . In this embodiment, the positions on the upper surface of the frame 301 and the holding surface 302 that form the surface of the holding table 30 are defined by the X coordinate on the X axis and the Y coordinate on the Y axis.

保持工作台30是受到配置於保持工作台30的底面側的θ工作台31所支撐。θ工作台31是以可在XY平面內旋轉的方式設置於X軸工作台113的上表面。從而,θ工作台31可以支撐保持工作台30,並且在XY平面內旋轉驅動保持工作台30。The holding table 30 is supported by a θ table 31 arranged on the bottom side of the holding table 30 . The θ table 31 is provided on the upper surface of the X-axis table 113 so as to be rotatable in the XY plane. Thereby, the θ table 31 can support the holding table 30 and rotationally drive the holding table 30 in the XY plane.

在基台10上的後方側(-X方向側)是將門型支柱14豎立設置成橫跨X軸方向進給組件11。在門型支柱14的前表面(+X軸方向側之面)設置有使切割部6移動的切割部移動機構13。切割部移動機構13是讓切割部6朝Y軸方向分度進給,並且朝Z軸方向切入進給。切割部移動機構13具備有使切割部6在分度進給方向(Y軸方向)上移動的Y軸方向移動組件12、以及在切入進給方向(Z軸方向)上移動切割部6的Z軸方向移動組件16。On the rear side (-X direction side) of the base 10, the gate-shaped support 14 is erected and installed across the X-axis direction feed assembly 11. A cutting part moving mechanism 13 for moving the cutting part 6 is provided on the front surface (the surface on the +X-axis direction side) of the portal support 14 . The cutting part moving mechanism 13 allows the cutting part 6 to index and feed in the Y-axis direction and to cut and feed in the Z-axis direction. The cutting unit moving mechanism 13 includes a Y-axis direction moving unit 12 that moves the cutting unit 6 in the indexing feed direction (Y-axis direction), and a Z unit that moves the cutting unit 6 in the cutting feed direction (Z-axis direction). Axis direction moving component 16.

Y軸方向移動組件12是配置於門型支柱14的前表面。Y軸方向移動組件12是使Z軸方向移動組件16及切割部6在Y軸方向上往返移動。Y軸方向是相對於保持面方向(水平方向)平行,且相對於X軸方向正交的方向。The Y-axis direction moving component 12 is arranged on the front surface of the portal support 14 . The Y-axis direction moving unit 12 moves the Z-axis direction moving unit 16 and the cutting part 6 back and forth in the Y-axis direction. The Y-axis direction is parallel to the holding surface direction (horizontal direction) and orthogonal to the X-axis direction.

Y軸方向移動組件12包含有在Y軸方向上延伸的一對導軌121、載置於導軌121的Y軸工作台123、和導軌121平行地延伸的滾珠螺桿120、以及使滾珠螺桿120旋轉的馬達122。The Y-axis direction moving assembly 12 includes a pair of guide rails 121 extending in the Y-axis direction, a Y-axis table 123 mounted on the guide rails 121, a ball screw 120 extending parallel to the guide rails 121, and a device for rotating the ball screw 120. Motor 122.

一對導軌121是平行於Y軸方向地配置在門型支柱14的前表面。Y軸工作台123是在一對導軌121上沿著這些導軌121可滑動地設置。在Y軸工作台123上載置有Z軸方向移動組件16及切割部6。The pair of guide rails 121 are arranged on the front surface of the portal support 14 parallel to the Y-axis direction. The Y-axis table 123 is slidably provided on a pair of guide rails 121 along these guide rails 121 . The Z-axis direction moving unit 16 and the cutting unit 6 are mounted on the Y-axis table 123 .

滾珠螺桿120是螺合於設置在Y軸工作台123的背面側之螺帽部(未圖示)。馬達122是連結於滾珠螺桿120的一端部,並旋轉驅動滾珠螺桿120。藉由旋轉驅動滾珠螺桿120,使Y軸工作台123、Z軸方向移動組件16及切割部6沿著導軌121在分度進給方向即Y軸方向上移動。The ball screw 120 is screwed to a nut portion (not shown) provided on the back side of the Y-axis table 123 . The motor 122 is connected to one end of the ball screw 120 and drives the ball screw 120 to rotate. By rotationally driving the ball screw 120, the Y-axis table 123, the Z-axis direction moving assembly 16, and the cutting part 6 move along the guide rail 121 in the indexing feed direction, that is, in the Y-axis direction.

Z軸方向移動組件16是使切割部6在Z軸方向(鉛直方向)上往返移動。Z軸方向正交於X軸方向及Y軸方向。亦即,Z軸方向是對保持工作台30的保持面302正交的方向。The Z-axis direction moving unit 16 reciprocates the cutting part 6 in the Z-axis direction (vertical direction). The Z-axis direction is orthogonal to the X-axis direction and the Y-axis direction. That is, the Z-axis direction is a direction orthogonal to the holding surface 302 of the holding table 30 .

Z軸方向移動組件16包含有在Z軸方向上延伸的一對導軌161、載置於導軌161的支撐構件163、和導軌161平行地延伸的滾珠螺桿160、以及使滾珠螺桿160旋轉的馬達162。The Z-axis direction moving assembly 16 includes a pair of guide rails 161 extending in the Z-axis direction, a support member 163 placed on the guide rails 161, a ball screw 160 extending parallel to the guide rails 161, and a motor 162 that rotates the ball screw 160. .

一對導軌161是平行於Z軸方向地配置在Y軸工作台123。支撐構件163是在一對導軌161上以可沿著這些導軌161滑動的方式設置。在支撐構件163的下端部安裝有切割部6。The pair of guide rails 161 are arranged on the Y-axis table 123 parallel to the Z-axis direction. The support member 163 is provided on a pair of guide rails 161 so as to be slidable along these guide rails 161 . The cutting part 6 is attached to the lower end of the support member 163 .

滾珠螺桿160是螺合於設置在支撐構件163的背面側的螺帽部(未圖示)。馬達162是連結於滾珠螺桿160的一端部,並旋轉驅動滾珠螺桿160。藉由旋轉驅動滾珠螺桿160,使支撐構件163及切割部6沿著導軌161在切入進給方向即Z軸方向上移動。The ball screw 160 is screwed into a nut portion (not shown) provided on the back side of the support member 163 . The motor 162 is connected to one end of the ball screw 160 and drives the ball screw 160 to rotate. By rotationally driving the ball screw 160, the support member 163 and the cutting part 6 move along the guide rail 161 in the cutting feed direction, that is, the Z-axis direction.

如圖3將一部分放大而顯示地,切割部6具備有設置於支撐構件163的下端的殼體61、在Y軸方向上延伸的旋轉軸60、裝設在旋轉軸60的切割刀片63、以及驅動旋轉軸60的馬達(未圖示)。 旋轉軸60是藉由殼體61而可旋轉地被支撐。藉由馬達旋轉驅動旋轉軸60,切割刀片63也高速旋轉。As shown in an enlarged version of FIG. 3 , the cutting unit 6 includes a housing 61 provided at the lower end of the support member 163 , a rotation shaft 60 extending in the Y-axis direction, a cutting blade 63 installed on the rotation shaft 60 , and A motor (not shown) that drives the rotating shaft 60 . The rotating shaft 60 is rotatably supported by the housing 61 . As the motor rotates and drives the rotating shaft 60, the cutting blade 63 also rotates at high speed.

此外,切割部6在殼體61的前表面,具備有拍攝組件65。拍攝組件65是安裝在殼體61的前部。拍攝組件65具備有拍攝元件,拍攝元件具有在對X軸平行的方向上及對Y軸平行的方向上配置排列的複數個像素部(受光部)。亦即,拍攝元件的複數個像素部(受光部)是沿X軸方向及Y軸方向以二維的形式配置排列。拍攝組件65是構成為將拍攝組件65中的沿著-Z軸方向的下方設為拍攝區域並拍攝此區域。拍攝組件65的拍攝區域,可以藉由X軸方向進給組件11、切割部移動機構13以及θ工作台31而設定。拍攝組件65可拍攝例如已載置在保持面302之晶圓W及其附近。在本實施形態中,藉由拍攝組件65所拍攝的圖像是例如256階度之灰階標度圖像。In addition, the cutting unit 6 is provided with a photographing unit 65 on the front surface of the housing 61 . The photographing assembly 65 is installed at the front of the housing 61 . The imaging unit 65 includes an imaging element having a plurality of pixel portions (light receiving portions) arranged in a direction parallel to the X-axis and a direction parallel to the Y-axis. That is, the plurality of pixel portions (light-receiving portions) of the imaging element are arranged two-dimensionally along the X-axis direction and the Y-axis direction. The imaging unit 65 is configured to set the lower part of the imaging unit 65 along the −Z-axis direction as an imaging area and photograph this area. The imaging area of the imaging unit 65 can be set by the X-axis direction feed unit 11, the cutting unit moving mechanism 13, and the θ stage 31. The imaging component 65 can photograph, for example, the wafer W placed on the holding surface 302 and its vicinity. In the present embodiment, the image captured by the capturing unit 65 is, for example, a 256-gradation gray scale image.

控制部7具備有儲存各種資料及程式之記憶體71。控制部7會執行各種處理,並且統合控制切割裝置1的各構成要件。 例如,可將來自各種檢測器(未圖示)的檢測結果輸入到控制部7。此外,控制部7是控制X軸方向進給組件11(馬達112)、切割部移動機構13(馬達122及馬達162)以及θ工作台31,來決定藉由切割部6的切割刀片63所切割之晶圓W的位置、及拍攝組件65的拍攝區域。又,控制部7是控制切割部6的馬達而實施對晶圓W的切割加工,並且控制拍攝組件65而實施對拍攝區域的拍攝。The control unit 7 is provided with a memory 71 that stores various data and programs. The control unit 7 executes various processes and integrally controls each component of the cutting device 1 . For example, detection results from various detectors (not shown) can be input to the control unit 7 . In addition, the control part 7 controls the X-axis direction feed assembly 11 (motor 112), the cutting part moving mechanism 13 (motor 122 and motor 162) and the θ table 31 to determine the cutting blade 63 of the cutting part 6. The position of the wafer W and the imaging area of the imaging component 65. In addition, the control unit 7 controls the motor of the cutting unit 6 to perform cutting processing on the wafer W, and controls the imaging unit 65 to perform imaging of the imaging area.

以下,針對使用圖3所示之切割裝置1的本加工方法進行說明。 (1)保持步驟 在此步驟中,是使用者將晶圓W載置於保持工作台30的保持面302上。並且,藉由控制部7控制未圖示之吸引源,而將吸引力傳達到保持面302,以讓保持面302吸引保持晶圓W。再者,如上述,在保持工作台30之構成表面的框體301的上表面及保持面302上的位置是以X座標與Y座標來規定。Hereinafter, the present processing method using the cutting device 1 shown in FIG. 3 will be described. (1) Maintain steps In this step, the user places the wafer W on the holding surface 302 of the holding table 30 . Furthermore, the control unit 7 controls a suction source (not shown) to transmit the suction force to the holding surface 302 so that the holding surface 302 suctions and holds the wafer W. Furthermore, as mentioned above, the positions on the upper surface of the frame 301 and the holding surface 302 that constitute the surface of the holding table 30 are defined by the X coordinate and the Y coordinate.

(2)外周圖像取得步驟 在此步驟中,首先是控制部7控制X軸方向進給組件11、切割部移動機構13及θ工作台31,並如圖4所示,將拍攝組件65的拍攝區域設定成在此區域中包含晶圓W的邊緣WE及保持工作台30的框體301。之後,控制部7控制拍攝組件65來拍攝此拍攝區域。藉此,可形成如圖5所示之包含在X軸方向及Y軸方向上配置排列的複數個像素的初始圖像。(2) Peripheral image acquisition steps In this step, the control unit 7 first controls the X-axis direction feeding assembly 11, the cutting unit moving mechanism 13 and the θ table 31, and as shown in Figure 4, sets the imaging area of the imaging assembly 65 to be in this area. The frame 301 includes the edge WE of the wafer W and the holding table 30 . After that, the control part 7 controls the imaging component 65 to photograph the imaging area. Thereby, an initial image including a plurality of pixels arranged in the X-axis direction and the Y-axis direction as shown in FIG. 5 can be formed.

在此初始圖像中,是將對應於背景構件即框體301的左上的像素FP以對應於框體301的顏色之白色來表示。另一方面,將對應於晶圓W之從右上到左下之像素WP以對應於晶圓W的顏色之黑色來表示。此外,在黑色的像素WP與白色的像素FP之交界所形成的灰色的像素SP是晶圓W形成於框體301的陰影。又,形成於黑色的像素WP內的白線是設定在拍攝組件65的交界線B。In this initial image, the pixel FP corresponding to the upper left side of the frame 301 which is a background member is represented by white corresponding to the color of the frame 301 . On the other hand, the pixels WP from the upper right to the lower left corresponding to the wafer W are represented by black corresponding to the color of the wafer W. In addition, the gray pixel SP formed at the boundary between the black pixel WP and the white pixel FP is a shadow formed by the wafer W on the frame 301 . In addition, the white line formed in the black pixel WP is the boundary line B set in the imaging unit 65 .

接著,控制部7控制X軸方向進給組件11、切割部移動機構13及θ工作台31,而將拍攝組件65的拍攝區域設定成使交界線B重疊於灰色的像素SP,並控制拍攝組件65來拍攝此拍攝區域。藉此,形成如圖6所示之包含在X軸方向及Y軸方向上配置排列的複數個像素,且已攝入晶圓W的邊緣WE及保持工作台30的框體301之外周圖像。Next, the control unit 7 controls the X-axis direction feed unit 11, the cutting unit moving mechanism 13, and the θ stage 31, sets the imaging area of the imaging unit 65 so that the boundary line B overlaps the gray pixel SP, and controls the imaging unit 65 to capture this shooting area. Thereby, an image including a plurality of pixels arranged in the X-axis direction and the Y-axis direction and capturing the edge WE of the wafer W and the outer peripheral image of the frame 301 of the holding table 30 is formed as shown in FIG. 6 .

(3)檢測用區域設定步驟 在此步驟中,如圖6所示,控制部7是在外周圖像上設定直線狀的檢測用區域(線型感測區域)LS。此檢測用區域LS是由例如沿著X軸方向排列的1列複數個像素所構成。形成檢測用區域LS的像素的數量是小於在外周圖像中在X軸方向上配置排列的像素的數量的1/2(亦即,小於拍攝組件65的拍攝元件(拍攝區域)中的X軸方向的像素部之數量的1/2),且為例如20像素。(3) Detection area setting procedure In this step, as shown in FIG. 6 , the control unit 7 sets a linear detection area (linear sensing area) LS on the peripheral image. This detection area LS is composed of a plurality of pixels arranged in one column along the X-axis direction, for example. The number of pixels forming the detection area LS is less than 1/2 of the number of pixels arranged in the X-axis direction in the peripheral image (that is, smaller than the X-axis in the imaging element (imaging area) of the imaging unit 65 1/2 of the number of pixel portions in the direction), and is, for example, 20 pixels.

(4)閾值設定步驟 在此步驟中,控制部7是將外周圖像上的檢測用區域LS的位置設定在如對應於晶圓W的外周之像素會通過檢測用區域LS的中央部之位置(亦即,如同將檢測用區域LS2等分的位置)(基準位置)。控制部7是在此狀態下取得檢測用區域LS的各像素的明暗值。 再者,亦可每將檢測用區域LS朝X軸方向錯開1像素,就求出在明暗值的分布中相對於X軸的斜率值,且將該斜率值成為最大時的檢測用區域LS的位置設為基準位置,其中該明暗值的分布是將檢測用區域LS的各像素的明暗值以各像素之X軸方向的位置來表示。(4) Threshold setting steps In this step, the control unit 7 sets the position of the detection area LS on the outer peripheral image to a position where the pixels corresponding to the outer periphery of the wafer W pass through the center of the detection area LS (that is, as if The position where the detection area LS2 is equally divided) (reference position). In this state, the control unit 7 obtains the brightness value of each pixel in the detection area LS. Furthermore, each time the detection area LS is shifted by 1 pixel in the X-axis direction, the slope value with respect to the X-axis in the distribution of light and dark values can be calculated, and the slope value of the detection area LS can be maximized. The position is set as the reference position, and the distribution of the light and dark values is represented by the light and dark value of each pixel in the detection area LS as the position of each pixel in the X-axis direction.

檢測用區域LS位於基準位置的情況下,檢測用區域LS的左側是對應於框體301的像素FP,右側是對應於晶圓W的像素WP,中央為灰色的像素SP。從而,檢測用區域LS的各像素的位置與從各像素輸出的明暗值之關係(明暗值的分布)是形成為如圖7所示。然後,控制部7是藉由最小平方法來製作迴歸直線RL,並且算出位於基準位置之檢測用區域LS的明暗值的分布中的相對於X軸的斜率值,並將此斜率值設為基準斜率值θ0。When the detection area LS is located at the reference position, the left side of the detection area LS is the pixel FP corresponding to the frame 301, the right side is the pixel WP corresponding to the wafer W, and the center is the gray pixel SP. Therefore, the relationship between the position of each pixel in the detection area LS and the light and dark values output from each pixel (distribution of light and dark values) is formed as shown in FIG. 7 . Then, the control unit 7 creates the regression line RL by the least squares method, calculates the slope value relative to the X-axis in the distribution of light and dark values in the detection area LS located at the reference position, and sets this slope value as the reference Slope value θ0.

此外,控制部7是將小於基準斜率值θ0,且接近於基準斜率值θ0的斜率值設定作為閾值。閾值是藉由例如對基準斜率值θ0乘以0.8而得到之值。 再者,可在外周圖像上的1個檢測用區域求出閾值。 又,亦可在拍攝後述之至少3處而得到的至少3個外周圖像中使用1個閾值,亦可使用按每個外周圖像而不同的閾值。In addition, the control unit 7 sets a slope value smaller than the reference slope value θ0 and close to the reference slope value θ0 as the threshold value. The threshold value is a value obtained by multiplying the reference slope value θ0 by 0.8, for example. Furthermore, the threshold value can be obtained for one detection area on the peripheral image. Furthermore, one threshold value may be used for at least three peripheral images obtained by photographing at least three locations described below, or a different threshold value may be used for each peripheral image.

(5)斜率值算出步驟及外周座標決定步驟 在斜率值算出步驟中,控制部7首先是將外周圖像上的檢測用區域LS的位置如圖8所示地設定在檢測用區域LS的全部的像素成為對應於框體301的像素FP的位置。之後,控制部7是如圖8中藉由箭頭A所示地,在外周圖像上,使檢測用區域LS朝向對應於晶圓W的像素WP且朝X軸方向每次移動(錯開)1像素量。(5) Steps to calculate the slope value and determine the peripheral coordinates In the slope value calculation step, the control unit 7 first sets the position of the detection area LS on the outer peripheral image as shown in FIG. 8 so that all the pixels in the detection area LS correspond to the pixels FP of the frame 301 Location. Thereafter, as shown by arrow A in FIG. 8 , the control unit 7 moves (shifts) the detection area LS toward the pixel WP corresponding to the wafer W and in the X-axis direction by 1 at a time on the peripheral image. Amount of pixels.

然後,如圖9所示,控制部7每次讓線型感測區域LS移動(錯開)(S1),就取得檢測用區域LS的各像素的明暗值。此外,控制部7是藉由最小平方法算出明暗值的分布中的相對於X軸的斜率值(S2)。Then, as shown in FIG. 9 , the control unit 7 acquires the light and dark values of each pixel in the detection area LS each time the linear sensing area LS is moved (shifted) ( S1 ). In addition, the control unit 7 calculates the slope value relative to the X-axis in the distribution of light and dark values by the least squares method (S2).

例如,在將檢測用區域LS設定為使全部的像素成為對應於框體301的像素FP的位置的情況下,檢測用區域LS的明暗值的分布及迴歸直線RL是如圖10所示地成為大致平行於X軸的直線狀。 另一方面,在將檢測用區域LS超過基準位置而朝右方向設定的情況下,亦即在已將檢測用區域LS設定在大量的像素成為對應於晶圓W之像素WP的位置的情況下,檢測用區域LS的明暗值的分布及迴歸直線RL是形成為如圖11所示。For example, when the detection area LS is set so that all pixels are positioned corresponding to the pixel FP of the frame 301, the distribution of light and dark values in the detection area LS and the regression line RL become as shown in FIG. 10 A straight line roughly parallel to the X-axis. On the other hand, when the detection area LS is set to the right direction beyond the reference position, that is, when the detection area LS is set at a position where a large number of pixels become the pixels WP corresponding to the wafer W. , the distribution of light and dark values in the detection area LS and the regression line RL are formed as shown in Figure 11.

並且,在每當算出斜率值時,控制部7是如圖9所示地,判斷所算出的斜率值是否成為在閾值設定步驟中所設定之閾值以上(S3)。控制部7在判斷為所算出之斜率值小於閾值的情況下(S3;否),是返回到S1,並繼續進行檢測用區域LS的移動以及斜率值的算出。Furthermore, every time the slope value is calculated, the control unit 7 determines whether the calculated slope value is equal to or greater than the threshold value set in the threshold value setting step (S3), as shown in FIG. 9 . When the control unit 7 determines that the calculated slope value is less than the threshold value (S3; No), the control unit 7 returns to S1 and continues the movement of the detection area LS and the calculation of the slope value.

另一方面,控制部7在判斷為所算出的斜率值已成為閾值以上的情況下(S3;是),是算出從檢測用區域LS的各像素中輸出的明暗值的最小值與最大值的平均值(S4)。然後,控制部7是從檢測用區域LS的像素之中特定出具有最接近於所算出的平均值之明暗值的像素,且將該像素的座標作為晶圓W的外周座標(晶圓W的邊緣WE(參照圖1)的座標)來取得(S5)。On the other hand, when the control unit 7 determines that the calculated slope value is equal to or greater than the threshold value (S3; Yes), the control unit 7 calculates the minimum value and the maximum value of the light and dark values output from each pixel of the detection area LS. Average (S4). Then, the control unit 7 identifies a pixel having a brightness value closest to the calculated average value among the pixels in the detection area LS, and uses the coordinates of this pixel as the outer peripheral coordinates of the wafer W (the coordinates of the wafer W). The coordinates of edge WE (refer to Figure 1) are obtained (S5).

例如,當判斷為斜率值成為閾值以上時,可得到如圖12所示之明暗值的分布。控制部7是藉由將明暗值之最大值Bmax與最小值Bmin最小值之和除以2,而算出明暗值的平均值。然後,控制部7會特定出具有最接近於此平均值((最大值Bmax+最小值Bmin)/2)之明暗值的檢測用區域LS的像素(圖12之Xe的像素)。然後,控制部7是依據拍攝區域中的檢測用區域LS的位置來特定已特定的像素之X座標及Y座標,並作為晶圓W的外周座標而取得。For example, when it is determined that the slope value is equal to or greater than the threshold value, a distribution of light and dark values as shown in FIG. 12 can be obtained. The control unit 7 calculates the average value of the light and dark values by dividing the sum of the maximum value Bmax and the minimum value Bmin of the light and dark values by 2. Then, the control unit 7 identifies the pixel (pixel Xe in FIG. 12 ) of the detection area LS that has a light and dark value closest to this average value ((maximum value Bmax + minimum value Bmin)/2). Then, the control unit 7 specifies the X coordinate and Y coordinate of the specified pixel based on the position of the detection area LS in the imaging area, and obtains them as the outer peripheral coordinates of the wafer W.

(6)中心座標計算步驟 接著,控制部7是控制θ工作台31,而使晶圓W與保持有晶圓W的保持工作台30一起旋轉預定的角度。然後,控制部7會實施上述之外周圖像取得步驟、檢測用區域設定步驟、閾值設定步驟、斜率值算出步驟及外周座標決定步驟。如此進行,控制部7是使晶圓W旋轉相當於預定的角度,且至少歷經3次(亦即3次以上)來實施以下步驟:外周圖像取得步驟、檢測用區域設定步驟、閾值設定步驟、斜率值算出步驟及外周座標決定步驟。亦即,控制部7是取得至少3個外周圖像(亦即3個以上的外周圖像),並設定因應於各外周圖像的閾值。然後,控制部7是在實施斜率值算出步驟後,使用所設定之閾值來實施外周座標決定步驟。藉此,控制部7是取得至少3處(亦即3處以上)的外周座標。然後,晶圓W是依據這些3個以上的外周座標來算出晶圓W的中心座標。(6) Center coordinate calculation steps Next, the control unit 7 controls the θ stage 31 to rotate the wafer W by a predetermined angle together with the holding stage 30 holding the wafer W. Then, the control unit 7 executes the above-mentioned outer peripheral image acquisition step, detection region setting step, threshold setting step, slope value calculation step, and outer peripheral coordinate determination step. In this manner, the control unit 7 rotates the wafer W by a predetermined angle and performs the following steps at least three times (that is, more than three times): the peripheral image acquisition step, the detection area setting step, and the threshold setting step. , the step of calculating the slope value and the step of determining the peripheral coordinates. That is, the control unit 7 acquires at least three peripheral images (that is, three or more peripheral images) and sets a threshold corresponding to each peripheral image. Then, after executing the slope value calculation step, the control unit 7 executes the outer peripheral coordinate determining step using the set threshold value. Thereby, the control unit 7 obtains the outer peripheral coordinates of at least three locations (that is, three or more locations). Then, the center coordinates of the wafer W are calculated based on these three or more peripheral coordinates.

作為中心座標的算出方法,亦可使用公知的任一種手法。例如控制部7是分別求出連結所選擇的3點當中的相鄰的2點的2條直線的垂直平分線。然後,控制部7可以將2條垂直平分線的交點作為晶圓W的中心來算出。 再者,控制部7亦可藉由使晶圓W旋轉相當於預定的角度後,在不實施閾值設定步驟的情形下,實施外周圖像取得步驟、檢測用區域設定步驟、斜率值算出步驟及外周座標決定步驟,而取得至少3處的外周座標。在此情況下,控制部7可以在第2次以後的外周座標決定步驟中,使用在第1次的閾值設定步驟中所設定的閾值。As a method of calculating the center coordinates, any known method may be used. For example, the control unit 7 obtains the perpendicular bisectors of two straight lines connecting two adjacent points among the selected three points. Then, the control unit 7 can calculate the intersection point of the two perpendicular bisectors as the center of the wafer W. Furthermore, the control unit 7 may perform the peripheral image acquisition step, the detection region setting step, the slope value calculation step, and the like without performing the threshold setting step by rotating the wafer W by a predetermined angle. The peripheral coordinate determination step is to obtain the peripheral coordinates of at least three locations. In this case, the control unit 7 may use the threshold set in the first threshold setting step in the second and subsequent outer peripheral coordinate determining steps.

(7)邊緣去除步驟 在此步驟中,控制部7是求出在中心座標算出步驟中所算出的晶圓W的中心與保持工作台30的中心即旋轉軸心之偏移量(以下,即中心偏移量)。並且,控制部7是一邊藉由圖3所示之θ工作台31使保持工作台30旋轉,一邊使旋轉的切割刀片63切入晶圓W的正面Wa中的邊緣WE。(7) Edge removal step In this step, the control unit 7 determines the offset amount between the center of the wafer W calculated in the center coordinate calculation step and the center of the holding table 30 , that is, the rotation axis center (hereinafter, the center offset amount). Furthermore, the control unit 7 causes the rotating dicing blade 63 to cut into the edge WE in the front surface Wa of the wafer W while rotating the holding table 30 via the θ table 31 shown in FIG. 3 .

此時,控制部7是依據中心偏移量及晶圓W的外周座標,使切割刀片63在Y軸方向上移動。藉此,控制部7可以將晶圓W的邊緣WE以距離晶圓W的中心位置大致相同的寬度沿著周方向切割。再者,關於因應於中心偏移量之切割刀片63的位置控制,可以使用如例如專利文獻1所記載的公知的方法。 如此,控制部7將晶圓W的邊緣WE的正面Wa側去除(邊緣修整)。所使用的切割刀片63具有例如平頭(flat)的刀尖。At this time, the control unit 7 moves the dicing blade 63 in the Y-axis direction based on the center deviation amount and the outer peripheral coordinates of the wafer W. Thereby, the control unit 7 can cut the edge WE of the wafer W in the circumferential direction at substantially the same width as the center position of the wafer W. In addition, regarding the position control of the cutting blade 63 in response to the center deviation amount, a known method such as that described in Patent Document 1 can be used. In this way, the control unit 7 removes the front surface Wa side of the edge WE of the wafer W (edge trimming). The cutting blade 63 used has, for example, a flat tip.

如以上,在本加工方法中,是使在X軸方向上延伸之檢測用區域LS朝X軸方向每次移動(錯開)1像素,且每次移動(錯開)檢測用區域LS,就取得檢測用區域LS的各像素的明暗值,進而算出在明暗值的分布中相對於X軸的斜率值。並且,根據此斜率值,決定晶圓W的邊緣WE的座標即外周座標。從而,在本加工方法中,可以在未對拍攝圖像進行二值化處理的情形下,決定外周座標。因此,可以避免基於二值化處理的錯誤之邊緣WE的誤辨識。As mentioned above, in this processing method, the detection area LS extending in the X-axis direction is moved (shifted) by 1 pixel each time in the X-axis direction, and each time the detection area LS is moved (shifted), the detection is obtained Using the light and dark values of each pixel in the area LS, the slope value relative to the X-axis in the light and dark value distribution is calculated. Then, based on this slope value, the coordinates of the edge WE of the wafer W, that is, the outer peripheral coordinates are determined. Therefore, in this processing method, the outer peripheral coordinates can be determined without binarizing the captured image. Therefore, misidentification of edge WE based on errors in binarization processing can be avoided.

再者,在本實施形態中,是在斜率值算出步驟中,取得構成檢測用區域LS的各像素的明暗值。此時,控制部7亦可如圖13所示,針對構成檢測用區域LS的各像素設定有像素群PG,該像素群PG是由包圍各像素的複數個像素(例如沿X軸方向20像素、沿Y軸方向20像素)所構成。並且,控制部7亦可使用包含於像素群PG之複數個像素的明暗值的平均值來作為從各像素中輸出的明暗值。Furthermore, in this embodiment, in the slope value calculation step, the light and dark values of each pixel constituting the detection area LS are obtained. At this time, as shown in FIG. 13 , the control unit 7 may set a pixel group PG for each pixel constituting the detection area LS. The pixel group PG is composed of a plurality of pixels (for example, 20 pixels in the X-axis direction) surrounding each pixel. , 20 pixels along the Y-axis direction). Furthermore, the control unit 7 may use an average value of the brightness values of a plurality of pixels included in the pixel group PG as the brightness value output from each pixel.

關於此,檢測用區域LS的像素的明暗值是因從外部照射到框體301及晶圓W的不必要的光(非必要光)等的影響,而有從原本之值偏離之情形。在上述的構成中,因為是使用包圍像素的像素群的明暗值的平均值,所以可以抑制如上述之非必要光等的影響。In this regard, the brightness value of the pixel in the detection area LS may deviate from the original value due to the influence of unnecessary light (unnecessary light) irradiated to the frame 301 and the wafer W from the outside. In the above-described configuration, since the average value of the light and dark values of the pixel group surrounding the pixel is used, the above-mentioned influence of unnecessary light, etc. can be suppressed.

又,在本實施形態中,控制部7是在斜率值算出步驟中,利用1個檢測用區域LS來算出斜率值。亦可取代於此,而使用如圖14所示地在Y軸方向上偏離而配置的複數個(n個)檢測用區域LS(LS1~LSn)。In addition, in this embodiment, the control unit 7 calculates the slope value using one detection region LS in the slope value calculation step. Instead of this, a plurality (n) of detection areas LS (LS1 to LSn) arranged offset in the Y-axis direction as shown in FIG. 14 may be used.

在此情況下,在斜率值算出步驟中,控制部7是按複數個檢測用區域LS來算出斜率值。並且,在外周座標決定步驟中,控制部7是按複數個檢測用區域LS來取得晶圓W的外周座標。In this case, in the slope value calculation step, the control unit 7 calculates slope values for each of the plurality of detection areas LS. Furthermore, in the outer peripheral coordinate determination step, the control unit 7 acquires the outer peripheral coordinates of the wafer W for each of the plurality of detection areas LS.

此外,控制部7是按外周座標,算出從外周座標到保持工作台30的中心之旋轉軸心的座標為止之距離(第1距離)。藉此,算出因應於各外周座標之到旋轉軸心的座標為止之距離。然後,控制部7會製作所算出的距離近似之形式的外周座標的群組。也就是說,控制部7是因應於所算出的距離,而將外周座標區分成群組。然後,控制部7是將最多的外周座標所屬的群組中的任一個外周座標決定作為晶圓W的外周座標。Furthermore, the control unit 7 calculates the distance (first distance) from the outer peripheral coordinates to the coordinates of the rotation axis center holding the center of the table 30 based on the outer peripheral coordinates. Thereby, the distance to the coordinate of the rotation axis center corresponding to each outer peripheral coordinate is calculated. Then, the control unit 7 creates a group of peripheral coordinates in the form of the calculated distance approximation. That is, the control unit 7 divides the outer peripheral coordinates into groups according to the calculated distance. Then, the control unit 7 determines any one of the outer peripheral coordinates in the group to which the largest number of outer peripheral coordinates belongs as the outer peripheral coordinates of the wafer W.

例如,在圖15所示的例子中,是將外周座標區分為因應某個距離D1之群組G1、及因應於比距離D1更短的距離D2之群組G2。在此例中,控制部7是將屬於群組G1之外周座標的任一個(可為1個亦可為複數個)決定作為晶圓W的外周座標。 再者,在圖15中,是利用因應於各外周座標的檢測用區域LS(LS1~LSn)的Y軸方向的位置來表示各外周座標的距離。For example, in the example shown in FIG. 15 , the outer peripheral coordinates are divided into a group G1 corresponding to a certain distance D1 and a group G2 corresponding to a distance D2 shorter than the distance D1 . In this example, the control unit 7 determines any one (it may be one or a plurality) of the outer peripheral coordinates belonging to the group G1 as the outer peripheral coordinate of the wafer W. Furthermore, in FIG. 15 , the distance between each outer peripheral coordinate is represented by the position in the Y-axis direction of the detection area LS (LS1 to LSn) corresponding to each outer peripheral coordinate.

有關於此,如上述,因照射於框體301及晶圓W的非必要光等的影響,而有以下之可能性:將檢測用區域LS的像素的明暗值錯誤檢測,而決定錯誤的外周座標來作為其結果。在圖14所示之方法中,因為是使用複數個檢測用區域LS,而以多數表決的方式來決定外周座標,所以可以將在1個檢測用區域LS中產生的明暗值的誤檢測之影響變小,因此可以抑制如上述之非必要光等的影響。In this regard, as mentioned above, due to the influence of unnecessary light irradiated on the frame 301 and the wafer W, there is a possibility that the light and dark values of the pixels in the detection area LS are erroneously detected, and an incorrect outer periphery is determined. coordinates as the result. In the method shown in FIG. 14 , a plurality of detection areas LS are used to determine the outer peripheral coordinates by majority voting. Therefore, the influence of erroneous detection of light and dark values that occurs in one detection area LS can be suppressed. becomes smaller, it is possible to suppress the influence of unnecessary light as mentioned above.

又,在本實施形態中,作為圓板狀工件而使用的是圖1及圖2所示之晶圓W。亦可取代於此,而使用貼合基板作為圓板狀工件。貼合基板包含圓板狀的支撐基板、及貼合在此支撐基板上之直徑比支撐基板更小的晶圓。此時,在本加工方法中,可以求出貼合基板的晶圓的外周座標,並算出其中心座標。In addition, in this embodiment, the wafer W shown in FIGS. 1 and 2 is used as the disk-shaped workpiece. Instead of this, a bonded substrate may be used as a disk-shaped workpiece. The bonded substrate includes a disc-shaped support substrate and a wafer bonded to the support substrate with a smaller diameter than the support substrate. At this time, in this processing method, the outer peripheral coordinates of the wafer to which the substrate is bonded can be obtained and the center coordinates thereof can be calculated.

此時,在本加工方法中,因為是使用檢測用區域LS的明暗值的分布中的斜率值,所以可以將和晶圓為顏色不同的支撐基板的外周緣,和晶圓的外周緣區別來辨識。因此,與本實施形態所示的例子同樣地,可以將貼合基板中的晶圓的外周緣,以距離晶圓的中心位置大致相同的寬度來沿著周方向切割。At this time, in this processing method, since the slope value in the distribution of light and dark values in the detection area LS is used, the outer peripheral edge of the support substrate, which is a different color from the wafer, can be distinguished from the outer peripheral edge of the wafer. identify. Therefore, like the example shown in this embodiment, the outer peripheral edge of the wafer in the bonded substrate can be cut in the circumferential direction at a substantially same width from the center position of the wafer.

又,在本實施形態中,是控制部7從圖5所示之初始圖像中控制X軸方向進給組件11、切割部移動機構13及θ工作台31,而將拍攝組件65的拍攝區域設定成使交界線B重疊於灰色的像素SP。此時,亦可依據例如目視交界線B及像素SP的位置之使用者的指示,讓控制部7將交界線B重疊於灰色的像素SP。或者,亦可讓使用者直接控制X軸方向進給組件11、切割部移動機構13及θ工作台31的驅動裝置,而將交界線B重疊於灰色的像素SP。In addition, in this embodiment, the control unit 7 controls the X-axis direction feeding unit 11, the cutting unit moving mechanism 13 and the θ stage 31 from the initial image shown in FIG. 5 to change the imaging area of the imaging unit 65. It is set so that the boundary line B overlaps the gray pixel SP. At this time, for example, the control unit 7 can also cause the control unit 7 to overlap the boundary line B with the gray pixel SP according to the user's instruction of visually observing the position of the boundary line B and the pixel SP. Alternatively, the user can also directly control the X-axis direction feeding component 11, the cutting part moving mechanism 13, and the driving device of the θ table 31 to overlap the boundary line B with the gray pixel SP.

又,亦可實施在已將交界線B重疊於灰色的像素SP後,調整拍攝組件65的光量的光量調整步驟。此步驟亦可依據使用者所目視的結果來實施,亦可藉由控制部7來實施。Alternatively, the light amount adjustment step of adjusting the light amount of the imaging unit 65 may be performed after the boundary line B is superimposed on the gray pixel SP. This step can also be implemented based on the visual results of the user, or can be implemented by the control unit 7 .

例如,控制部7是將複數個種類(例如100個種類)的光量圖案預先儲存到記憶體71。光量圖案是藉由例如落射照明與斜光照明之比例、以及各自之照明強度來區別。For example, the control unit 7 stores a plurality of types (for example, 100 types) of light intensity patterns in the memory 71 in advance. The light intensity patterns are distinguished by, for example, the ratio of epi-illumination and oblique illumination, and their respective illumination intensities.

並且,如圖16所示,控制部7是在因應於晶圓W的黑色的像素WP內設定第1光量檢查區域RA,並且在對應於框體301的白色的像素FP內設定第2光量檢查區域RB。此外,控制部7是設定與交界線B相接且包含第1光量檢查區域RA的第1檢查區域RC1。同樣地,控制部7是設定與交界線B相接且包含第2光量檢查區域RB的第2檢查區域RC2。第1檢查區域RC1及第2檢查區域RC2的尺寸為譬如為10×10像素。Furthermore, as shown in FIG. 16 , the control unit 7 sets the first light amount inspection area RA in the black pixel WP corresponding to the wafer W, and sets the second light amount inspection area RA in the white pixel FP corresponding to the frame 301 Area RB. Furthermore, the control unit 7 sets the first inspection region RC1 which is adjacent to the boundary line B and includes the first light amount inspection region RA. Similarly, the control unit 7 sets the second inspection area RC2 which is adjacent to the boundary line B and includes the second light amount inspection area RB. The size of the first inspection area RC1 and the second inspection area RC2 is, for example, 10×10 pixels.

控制部7是針對1個拍攝組件65之光量圖案,一邊沿著交界線B變更第1檢查區域RC1及第2檢查區域RC2,一邊取得複數個第1檢查區域RC1及第2檢查區域RC2內之明暗值。控制部7是針對複數個光量圖案來實施這種明暗值的取得。然後,控制部7是特定第1檢查區域RC1內的明暗值與第2檢查區域RC2內的明暗值之差變得最大的形式的光量圖案,並使用此光量圖案來實施由拍攝組件65所進行的拍攝,並實施本加工方法的各步驟。The control unit 7 changes the first inspection area RC1 and the second inspection area RC2 along the boundary line B with respect to the light amount pattern of one imaging unit 65, and acquires the plurality of first inspection areas RC1 and the second inspection area RC2. Light and dark values. The control unit 7 performs such acquisition of light and dark values for a plurality of light intensity patterns. Then, the control unit 7 specifies a light amount pattern in a form in which the difference between the light and dark values in the first inspection area RC1 and the second inspection area RC2 becomes the largest, and uses this light amount pattern to perform the operation performed by the imaging unit 65 Photograph and implement each step of this processing method.

藉此,由於可以在交界線B的兩側讓明暗值之差變大,因此可以在閾值設定步驟、斜率值算出步驟及外周座標決定步驟中,讓檢測用區域LS的各像素中的明暗值之差變大。其結果,可以讓如圖7等所示之明暗值的分布中的因應於檢測用區域LS的位置之斜率值(迴歸直線RL與X軸之間的角度)的變化變大。藉此,可以提高斜率值與閾值的比較之精度。This makes it possible to increase the difference in light and dark values on both sides of the boundary line B. Therefore, in the threshold value setting step, the slope value calculation step, and the peripheral coordinate determination step, the light and dark values in each pixel of the detection area LS can be made smaller. The difference becomes larger. As a result, the change in the slope value (the angle between the regression line RL and the X-axis) according to the position of the detection area LS in the distribution of light and dark values as shown in FIG. 7 and others can be increased. Thereby, the accuracy of the comparison between the slope value and the threshold value can be improved.

1:切割裝置 3:保持部 6:切割部 7:控制部 71:記憶體 10:基台 11:X軸方向進給組件 110、120、160:滾珠螺桿 111、121、161:導軌 112、122、162:馬達 113:X軸工作台 12:Y軸方向移動組件 123:Y軸工作台 13:切割部移動機構 14:門型支柱 16:Z軸方向移動組件 163:支撐構件 30:保持工作台 31:θ工作台 300:吸附部 301:框體 302:保持面 60:旋轉軸 61:殼體 63:切割刀片 65:拍攝組件 A:箭頭 B:交界線 D:器件 D1、D2:距離 G1、G2:群組 FP:白色的像素(像素) LS、LS1~LSn:檢測用區域(線型感測區域) WP:黑色的像素(像素) RA:第1光量檢查區域 RB:第2光量檢查區域 RC1:第1檢查區域 RC2:第2檢查區域 RL:迴歸直線 S1~S5:步驟 SP:灰色的像素(像素) PG:像素群 W:晶圓 Wa:正面 Wb:背面 WE:邊緣 X、Y、±X、±Y、±Z:方向1: Cutting device 3:Maintenance Department 6: Cutting Department 7:Control Department 71:Memory 10:Abutment 11: X-axis direction feed component 110, 120, 160: Ball screw 111, 121, 161: Guide rail 112, 122, 162: Motor 113:X-axis workbench 12: Y-axis direction moving component 123:Y-axis workbench 13: Cutting part moving mechanism 14: Door type pillar 16:Z-axis direction moving component 163:Supporting member 30: Keep the workbench 31:θ workbench 300: Adsorption part 301:frame 302:Keep the surface 60:Rotation axis 61: Shell 63:Cutting blade 65: Shooting components A:arrow B:junction line D: device D1, D2: distance G1, G2: Group FP: white pixels (pixels) LS, LS1~LSn: detection area (linear sensing area) WP: black pixels (pixels) RA: 1st light intensity inspection area RB: 2nd light intensity inspection area RC1: 1st inspection area RC2: 2nd inspection area RL: regression line S1~S5: steps SP: gray pixels (pixels) PG: pixel group W:wafer Wa:front Wb: back WE: edge X, Y, ±X, ±Y, ±Z: direction

圖1是顯示本實施形態的晶圓的立體圖。 圖2是圖1所示之晶圓的截面圖。 圖3是顯示用於加工晶圓之切割裝置的立體圖。 圖4是顯示定位步驟的實施態樣的說明圖。 圖5是顯示在定位步驟中所得到的初始圖像之例的說明圖。 圖6是顯示在定位步驟中所得到的外周圖像之例的說明圖。 圖7是顯示檢測用區域(線性感測區域)之各像素的位置、與從各像素輸出之明暗值的關係之例的圖表。 圖8是顯示斜率值算出步驟中的檢測用區域的移動之例的說明圖。 圖9是顯示斜率值算出步驟及外周座標決定步驟的動作的流程圖。 圖10是顯示已將檢測用區域設定在使檢測用區域之全部的像素成為對應於框體的像素之形式的位置時,檢測用區域的明暗值的分布及迴歸直線的例子的圖表。 圖11是顯示已將檢測用區域設定在使檢測用區域的大量的像素成為對應於晶圓的像素之形式的位置時,檢測用區域的明暗值的分布及迴歸直線的例子的圖表。 圖12是顯示判斷為斜率值已成為閾值以上時的明暗值的分布的例子的圖表。 圖13是顯示有關於檢測用區域之明暗值的算出的變形例的說明圖。 圖14是顯示使用複數個檢測用區域的變形例的說明圖。 圖15是顯示在有關於圖14之變形例中所獲得的複數個外周座標的分布的圖表。 圖16是顯示光量調整步驟的說明圖。FIG. 1 is a perspective view showing a wafer according to this embodiment. FIG. 2 is a cross-sectional view of the wafer shown in FIG. 1 . FIG. 3 is a perspective view showing a cutting device for processing wafers. FIG. 4 is an explanatory diagram showing an implementation aspect of the positioning step. FIG. 5 is an explanatory diagram showing an example of an initial image obtained in the positioning step. FIG. 6 is an explanatory diagram showing an example of a peripheral image obtained in the positioning step. FIG. 7 is a graph showing an example of the relationship between the position of each pixel in the detection area (linear detection area) and the brightness value output from each pixel. FIG. 8 is an explanatory diagram showing an example of movement of the detection area in the slope value calculation step. FIG. 9 is a flowchart showing the operations of the slope value calculation step and the outer peripheral coordinate determination step. FIG. 10 is a graph showing an example of the distribution of light and dark values and the regression line of the detection area when the detection area is set at a position such that all pixels in the detection area correspond to the pixels of the frame. 11 is a graph showing an example of the distribution of light and dark values and the regression line of the detection area when the detection area is set at a position such that a large number of pixels in the detection area correspond to pixels on the wafer. FIG. 12 is a graph showing an example of the distribution of light and dark values when it is determined that the slope value is equal to or greater than the threshold value. FIG. 13 is an explanatory diagram showing a modified example of calculation of the brightness value of the detection area. FIG. 14 is an explanatory diagram showing a modification using a plurality of detection areas. FIG. 15 is a graph showing the distribution of a plurality of peripheral coordinates obtained in the modification of FIG. 14 . FIG. 16 is an explanatory diagram showing the light amount adjustment procedure.

A:箭頭 A:arrow

B:交界線 B:junction line

FP:白色的像素 FP: white pixels

LS:檢測用區域(線型感測區域) LS: Detection area (linear sensing area)

WP:黑色的像素 WP: black pixels

SP:灰色的像素 SP: gray pixels

X、Y:方向 X, Y: direction

Claims (3)

一種中心檢測方法,是檢測圓板狀工件之中心,該中心檢測方法包含以下步驟: 保持步驟,使該圓板狀工件保持在保持工作台,該保持工作台具有以X軸上之X座標及Y軸上之Y座標規定位置之表面且具備有旋轉軸; 外周圖像取得步驟,將拍攝組件定位於該圓板狀工件的外周來實施由該拍攝組件所進行的拍攝而取得外周圖像,該拍攝組件具備有拍攝元件,且該拍攝元件具有在對X軸平行的方向上以及對Y軸平行的方向上配置排列的複數個像素部,該外周圖像包含在X軸方向上以及Y軸方向上配置排列的複數個像素; 檢測用區域設定步驟,在該外周圖像內設定直線狀的檢測用區域,該直線狀的檢測用區域具有的像素之數量小於配置排列在該外周圖像的X軸方向上的像素之數量的1/2; 閾值設定步驟,在該外周圖像中的對應於該圓板狀工件的外周之像素通過該檢測用區域之中央部的狀態下,取得該檢測用區域的各像素的明暗值,並藉由最小平方法算出在明暗值的分布中相對於X軸的斜率值,來作為基準斜率值,並將小於該基準斜率值的斜率值設定為閾值,其中該明暗值的分布是將該檢測用區域的各像素的明暗值以各像素之X軸方向的位置來表示; 斜率值算出步驟,一邊將該外周圖像內的該檢測用區域朝向該圓板狀工件且朝X軸方向每次錯開1像素,一邊取得該檢測用區域的各像素的明暗值,並藉由最小平方法算出在該明暗值的分布中相對於X軸的斜率值; 外周座標決定步驟,在該斜率值算出步驟中所算出的斜率值成為該閾值以上的情況下,算出該檢測用區域的像素的明暗值之最小值與最大值的平均值,且取得具有最接近於該平均值的明暗值的該檢測用區域的像素之座標來作為該圓板狀工件的外周座標;及 中心座標算出步驟,依據對該圓板狀工件的不同的位置實施3次以上的該斜率值算出步驟及該外周座標決定步驟而取得的的3處以上的外周座標,算出該圓板狀工件的中心座標。A center detection method is to detect the center of a disc-shaped workpiece. The center detection method includes the following steps: The holding step is to hold the disc-shaped workpiece on a holding table, which has a surface with a position specified by the X coordinate on the X axis and the Y coordinate on the Y axis and has a rotation axis; The outer peripheral image acquisition step is to position the imaging unit on the outer periphery of the disc-shaped workpiece to perform imaging by the imaging unit to obtain the peripheral image. The imaging unit is equipped with an imaging element, and the imaging element has an object facing A plurality of pixel portions are arranged in a direction parallel to the axis and in a direction parallel to the Y-axis, and the peripheral image includes a plurality of pixels arranged in the X-axis direction and the Y-axis direction; The detection area setting step is to set a linear detection area in the outer peripheral image. The number of pixels in the linear detection area is smaller than the number of pixels arranged in the X-axis direction of the outer peripheral image. 1/2; The threshold setting step is to obtain the light and dark values of each pixel in the detection area in a state where the pixels corresponding to the outer circumference of the disc-shaped workpiece in the outer peripheral image pass through the center of the detection area, and use the final The Xiaoping method calculates the slope value relative to the X-axis in the distribution of light and dark values, which is the detection area, as the reference slope value, and sets the slope value smaller than the reference slope value as the threshold value. The light and dark value of each pixel is represented by the position of each pixel in the X-axis direction; The slope value calculation step is to obtain the light and dark values of each pixel in the detection area while shifting the detection area in the outer peripheral image toward the disc-shaped workpiece and in the X-axis direction by 1 pixel at a time. The least squares method calculates the slope value relative to the X-axis in the distribution of light and dark values; In the outer peripheral coordinate determination step, when the slope value calculated in the slope value calculation step is equal to or greater than the threshold, the average value of the minimum value and the maximum value of the light and dark values of the pixels in the detection area is calculated, and the closest value is obtained. The coordinates of the pixels in the detection area based on the average light and dark values are used as the peripheral coordinates of the disc-shaped workpiece; and The center coordinate calculation step calculates the circumferential coordinates of the disc-shaped workpiece based on three or more outer peripheral coordinates obtained by performing the slope value calculation step and the outer peripheral coordinate determining step three or more times at different positions of the disc-shaped workpiece. Center coordinates. 如請求項1之中心檢測方法,其中在該斜率值算出步驟中,是將包圍構成該檢測用區域的各像素的複數個像素的明暗值之平均值作為構成該檢測用區域的各像素的明暗值來使用。The center detection method of Claim 1, wherein in the step of calculating the slope value, an average value of the brightness and darkness values of a plurality of pixels surrounding each pixel constituting the detection region is used as the brightness and darkness of each pixel constituting the detection region. value to use. 如請求項1或2之中心檢測方法,其中在該檢測用區域設定步驟中,是在該外周圖像內設定在Y軸方向上排列的複數個該檢測用區域, 在該斜率值算出步驟中,是按複數個該檢測用區域來算出斜率值, 在該外周座標決定步驟中,是按複數個該檢測用區域來取得該圓板狀工件的外周座標,並算出從各外周座標到該保持工作台的旋轉軸軸心的座標為止的距離來製作該距離近似之外周座標的群組,並將最多的外周座標所屬的群組的任一個外周座標決定作為該圓板狀工件的外周座標。The center detection method of claim 1 or 2, wherein in the detection area setting step, a plurality of the detection areas arranged in the Y-axis direction are set in the peripheral image, In this slope value calculation step, slope values are calculated for a plurality of detection areas, In the outer peripheral coordinate determination step, the outer peripheral coordinates of the disk-shaped workpiece are obtained for a plurality of detection areas, and the distance from each outer peripheral coordinate to the coordinate of the rotation axis center of the holding table is calculated. This distance approximates the group of outer peripheral coordinates, and any outer peripheral coordinate of the group to which the largest number of outer peripheral coordinates belongs is determined as the outer peripheral coordinate of the disc-shaped workpiece.
TW108144330A 2018-12-05 2019-12-04 Central detection method TWI824071B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018228008A JP7185510B2 (en) 2018-12-05 2018-12-05 Center detection method
JP2018-228008 2018-12-05

Publications (2)

Publication Number Publication Date
TW202022313A TW202022313A (en) 2020-06-16
TWI824071B true TWI824071B (en) 2023-12-01

Family

ID=70776525

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108144330A TWI824071B (en) 2018-12-05 2019-12-04 Central detection method

Country Status (5)

Country Link
JP (1) JP7185510B2 (en)
KR (1) KR20200068584A (en)
CN (1) CN111276412B (en)
DE (1) DE102019218969A1 (en)
TW (1) TWI824071B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112539714B (en) * 2020-06-30 2022-07-26 深圳中科飞测科技股份有限公司 Eccentricity detection method, processing method and detection equipment
CN112767363B (en) * 2021-01-22 2023-03-14 电子科技大学 Method for detecting target of line graph
CN114628299B (en) * 2022-03-16 2023-03-24 江苏京创先进电子科技有限公司 Wafer alignment confirmation method and Taizhou ring cutting method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090116727A1 (en) * 2006-05-02 2009-05-07 Accretech Usa, Inc. Apparatus and Method for Wafer Edge Defects Detection
US20090304258A1 (en) * 2005-12-06 2009-12-10 Yoshinori Hayashi Visual Inspection System
JP5318784B2 (en) * 2007-02-23 2013-10-16 ルドルフテクノロジーズ インコーポレイテッド Wafer manufacturing monitoring system and method including an edge bead removal process
JP2015133371A (en) * 2014-01-10 2015-07-23 株式会社ディスコ Mark detection method
US9734568B2 (en) * 2014-02-25 2017-08-15 Kla-Tencor Corporation Automated inline inspection and metrology using shadow-gram images

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08149522A (en) * 1994-09-20 1996-06-07 Matsushita Electric Ind Co Ltd Position detector and image correction device
JP3963300B2 (en) * 2000-11-07 2007-08-22 株式会社安川電機 A wafer outer peripheral position detecting method, a computer-readable recording medium storing a program for executing the method, and a wafer outer peripheral position detecting device.
JP2005268530A (en) * 2004-03-18 2005-09-29 Olympus Corp Alignment device for semiconductor wafer
JP2006093333A (en) 2004-09-22 2006-04-06 Disco Abrasive Syst Ltd Cutting method
JP5360403B2 (en) * 2009-09-29 2013-12-04 サクサ株式会社 Mobile imaging device
JP5486405B2 (en) 2010-05-27 2014-05-07 株式会社ディスコ Wafer center position detection method
JP6174980B2 (en) 2013-11-22 2017-08-02 株式会社ディスコ Wafer detection method
JP6555211B2 (en) * 2016-08-15 2019-08-07 Jfeスチール株式会社 Edge extraction method for 2D images

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090304258A1 (en) * 2005-12-06 2009-12-10 Yoshinori Hayashi Visual Inspection System
US20090116727A1 (en) * 2006-05-02 2009-05-07 Accretech Usa, Inc. Apparatus and Method for Wafer Edge Defects Detection
JP5318784B2 (en) * 2007-02-23 2013-10-16 ルドルフテクノロジーズ インコーポレイテッド Wafer manufacturing monitoring system and method including an edge bead removal process
JP2015133371A (en) * 2014-01-10 2015-07-23 株式会社ディスコ Mark detection method
US9734568B2 (en) * 2014-02-25 2017-08-15 Kla-Tencor Corporation Automated inline inspection and metrology using shadow-gram images

Also Published As

Publication number Publication date
CN111276412A (en) 2020-06-12
JP7185510B2 (en) 2022-12-07
JP2020091177A (en) 2020-06-11
TW202022313A (en) 2020-06-16
CN111276412B (en) 2024-06-07
DE102019218969A1 (en) 2020-06-10
KR20200068584A (en) 2020-06-15

Similar Documents

Publication Publication Date Title
TWI824071B (en) Central detection method
EP2631868B1 (en) Image processing device and method for image processing
JP5057489B2 (en) Alignment apparatus and alignment method
KR102531216B1 (en) Scribing apparatus
JP6602705B2 (en) Wafer edge inspection equipment
JP7427333B2 (en) Edge alignment method
JP2013534312A (en) Apparatus and method for three-dimensional inspection of wafer saw marks
JP2016145887A (en) Inspection device and method
TW202129729A (en) Processing apparatus
JP2008014700A (en) Workpiece inspection method and workpiece inspection device
JP2005268530A (en) Alignment device for semiconductor wafer
KR20210007852A (en) Wafer inspection apparatus
JP2013191775A (en) Component mounting device and component shape measuring method
TWI504859B (en) Method for photographing and piecing together the images of an object
JP7300938B2 (en) Kerf recognition method
JP5978002B2 (en) Inspection method and appearance inspection device
KR20220133780A (en) Processing apparatus
JP4634250B2 (en) Image recognition method and apparatus for rectangular parts
JP5782348B2 (en) Position detection apparatus, drawing apparatus, and position detection method
JP2009250777A (en) Surface inspection device and surface inspection method
WO2024195819A1 (en) Workpiece visual inspection device and method
JP6014386B2 (en) Glass plate lighting device and processing device
JP2008191017A (en) Method for detecting defect of plate
TW202333217A (en) Alignment method
JP2007142009A (en) Bonding apparatus