TWI823250B - Bidirectional dc-dc energy converter with isolation - Google Patents

Bidirectional dc-dc energy converter with isolation Download PDF

Info

Publication number
TWI823250B
TWI823250B TW111104703A TW111104703A TWI823250B TW I823250 B TWI823250 B TW I823250B TW 111104703 A TW111104703 A TW 111104703A TW 111104703 A TW111104703 A TW 111104703A TW I823250 B TWI823250 B TW I823250B
Authority
TW
Taiwan
Prior art keywords
voltage
switching
bidirectional
resonant
inductor
Prior art date
Application number
TW111104703A
Other languages
Chinese (zh)
Other versions
TW202333441A (en
Inventor
戴佑坤
戴嘉鋒
Original Assignee
戴佑坤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 戴佑坤 filed Critical 戴佑坤
Priority to TW111104703A priority Critical patent/TWI823250B/en
Publication of TW202333441A publication Critical patent/TW202333441A/en
Application granted granted Critical
Publication of TWI823250B publication Critical patent/TWI823250B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

The invention provides a high voltage gain, which contains zero voltage switching (ZVS), zero current switching (ZCS), and resonant bidirectional converter with isolated. It is suitable to be used in occasion such as battery charging and discharging systems, distributed power supply systems, and battery energy storage systems. The converter includes a high-voltage side and a low-voltage side. A high-voltage side power switching/rectifier module. A low-voltage side power switching/rectifier module. An isolation transformer, A resonance tank circuit is arranged between the isolation transformer and the high-voltage power switching/rectifier module. The power switching/rectifier module of high-voltage side adopts a structure of full bridge or half bridge, both of which is suitable for high-voltage coupling. The power switching/rectifier module of low-voltage side adopts a structure of push-pull, which is suitable for low-voltage battery system of the high-current charging and discharging applications. The resonant tank circuit contains an inductor-inductor-capacitor (LLC) structure. The inductor-inductor-capacitor (LLC) operates on during the forward step-down energy transmission. The inductor-capacitor (LC) operates on the reverse step-up energy transmission. A novel control method of pulse frequency modulation (PFM) and pulse width modulation (PWM) is proposed to improve the resonant tank circuit, which achieves soft switching without adding auxiliary inductor when the power flows in both directions. It increases the conversion efficiency and improves the electromagnetic compatibility of the high-gain bidirectional DC to DC energy converter.

Description

具有隔離之雙向直流/直流能量轉換裝置 Bidirectional DC/DC energy conversion device with isolation

本發明涉及電力電子應用領域及一種具有軟切換、無損耗的雙向直流/直流電源轉換裝置,藉由控制開關操作可以控制能量傳輸方向。 The invention relates to the field of power electronics applications and a bidirectional DC/DC power conversion device with soft switching and no loss. The direction of energy transmission can be controlled by controlling the switch operation.

傳統能源的日益匱乏,新能源技術正成為能源技術發展的主力,而其中電力電子技術也隨之快速發展而日趨重要。綠能產業蓬勃發展,而本發明之雙向直流/直流電源轉換裝置,將適合應於能源的雙向轉換系統。例如,電池儲能系統(Battery Energy Storage System,BESS)、電動汽車到電網(Vehicle to Grid,V2G)。如何消除切換損耗,降低電磁干擾,提高能量轉換效率一直是電力電子技術所關注的問題,而作為能量轉換關鍵裝置的雙向直流/直流轉換裝置自然也成為這些問題的重要突破點,故研究高效的雙向直流/直流轉換裝置將變得具有重要意義。在傳統脈衝寬度調變(Pulse Width Modulation,PWM)模式控制方式,雙向直流/直流轉換裝置的開關元件工作在硬切換狀態,既是開關元件切換時,同時電流和電壓會有一個重疊區而產生切換損耗,因此,切換的損耗存在著限制轉換裝置的功率密度的提升,同時也限制了小型化與輕量化。 With the increasing scarcity of traditional energy, new energy technology is becoming the main force in the development of energy technology, among which power electronics technology has also developed rapidly and become increasingly important. The green energy industry is booming, and the bidirectional DC/DC power conversion device of the present invention will be suitable for bidirectional energy conversion systems. For example, Battery Energy Storage System (BESS) and Vehicle to Grid (V2G). How to eliminate switching losses, reduce electromagnetic interference, and improve energy conversion efficiency has always been a concern of power electronics technology. As a key device for energy conversion, bidirectional DC/DC conversion devices have naturally become an important breakthrough point in these issues. Therefore, research on efficient Bidirectional DC/DC conversion devices will become important. In the traditional Pulse Width Modulation (PWM) mode control method, the switching elements of the bidirectional DC/DC conversion device work in a hard switching state. When the switching elements switch, there will be an overlap area between the current and voltage to cause switching. Loss, therefore, the switching loss limits the improvement of the power density of the conversion device, and also limits the miniaturization and weight reduction.

習知對雙向直流/直流轉換裝置的研究多集中在傳統LLC和相移全橋(Phase Shifted Full Bridge,PSFB)控制拓撲上,藉由改變脈衝頻 率調變(Pulse Frequency Modulation,PFM)的切換技術,使諧振槽電路的阻抗也隨之改變,從而改變開關元件上的電壓及電流狀態,因而使開關元件操作在零電壓切換(Zero Voltage Switching,ZVS)和零電流切換(Zero Current switching,ZCS),在於軟性切換狀態下以降低開關的切換損耗,從而允許更高的切換頻率、減小磁性元件的尺寸、改善電磁兼容、增加功率密度和降低成本。繼承傳統LLC一次側開關元件零電壓切換(ZVS),二次側之二極體零電流切換(ZCS),具有無反向恢復問題,切換損耗小,適用於高頻化、高功率密度的設計要求。為了實現簡易的控制,在變壓器的兩側各設計一個特性相似的對稱諧振槽電路,而通常兩側的電路結構對稱比較適用於兩側的電壓電流等級相近的情況。例如,中國發明專利公告第CN 102201739 B號”一種對稱半橋LLC諧振式雙向直流-直流變換器”和美國專利公告第US 10,581,334 B2號之”直流/直流轉換器與控制方法”之CLLC拓撲。 It is known that research on bidirectional DC/DC conversion devices focuses on traditional LLC and Phase Shifted Full Bridge (PSFB) control topologies. By changing the pulse frequency The switching technology of Pulse Frequency Modulation (PFM) changes the impedance of the resonant tank circuit, thereby changing the voltage and current state of the switching element, thus making the switching element operate at zero voltage switching (Zero Voltage Switching, ZVS) and Zero Current switching (ZCS), which are in the soft switching state to reduce the switching loss of the switch, thereby allowing higher switching frequency, reducing the size of magnetic components, improving electromagnetic compatibility, increasing power density and reducing cost. Inheriting the traditional LLC primary side switching element zero voltage switching (ZVS) and the secondary side diode zero current switching (ZCS), it has no reverse recovery problem and small switching loss, and is suitable for high frequency and high power density designs. Require. In order to achieve simple control, a symmetrical resonant tank circuit with similar characteristics is designed on both sides of the transformer. Generally, the symmetrical circuit structure on both sides is more suitable for situations where the voltage and current levels on both sides are similar. For example, Chinese Invention Patent Announcement No. CN 102201739 B "A Symmetrical Half-Bridge LLC Resonant Bidirectional DC-DC Converter" and U.S. Patent Announcement No. US 10,581,334 B2 "DC/DC Converter and Control Method" CLLC topology.

除了上述提出具有對稱諧振槽電路拓撲之雙向直流-直流轉換器外,美國德州儀器提出的雙向直流/直流轉換器(Bidirectional DC-DC Converter)。在降壓正向功率傳輸模式下,具有同步整流控制的相移全橋(PSFB)控制,在升壓的反向功率傳輸模式下,具有電流饋送推挽控制。而這種控制模式只能在部分負載下實現切換具有開關零電壓切換(ZVS),因此,使得效率與功率密度下降。 In addition to the above-mentioned bidirectional DC-DC converter with symmetrical resonant tank circuit topology, the Bidirectional DC-DC Converter proposed by Texas Instruments in the United States. Phase-shifted full-bridge (PSFB) control with synchronous rectification control in buck forward power transfer mode and current-fed push-pull control in boost reverse power transfer mode. This control mode can only achieve switching with zero-voltage switching (ZVS) under partial load, thus reducing efficiency and power density.

為了進一步改良美國德州儀器提出的雙向直流/直流轉換器,且提升轉換效率。在傳統LLC拓撲上,將控制方式藉由改變脈衝頻率調變(PFM)模式運作的切換技術,使諧振槽電路的阻抗也隨之改變。通過 增加一個輔助電感Lnew,以實現雙向能量傳輸時具有各自的LLC諧振特性。例如美國專利公告第US 8,363,427 B2號之”具有可調輸出和軟切換的雙向電源轉換器”及中國發明專利申請公開第CN 108988645 A號”一種基於LLC諧振的新穎軟切換雙向直流/直流轉換器拓撲”。 In order to further improve the bidirectional DC/DC converter proposed by Texas Instruments in the United States and improve the conversion efficiency. In the traditional LLC topology, the control method is controlled by changing the switching technology of pulse frequency modulation (PFM) mode operation, so that the impedance of the resonant tank circuit also changes. By adding an auxiliary inductor L new , the two-way energy transmission has its own LLC resonance characteristics. For example, U.S. Patent Publication No. US 8,363,427 B2 "Bidirectional power converter with adjustable output and soft switching" and Chinese Invention Patent Application Publication No. CN 108988645 A "A novel soft-switching bidirectional DC/DC converter based on LLC resonance"topology".

前述美國專利及中國專利申請案僅為本發明技術背景之參考及說明目前技術發展狀態而已,並非用以限制本發明。有鑑於此,本發明為了滿足具有軟切換、無損耗的雙向直流/直流電源轉換裝置,在傳統LLC拓撲上,提出一種不需增加一個輔助電感Lnew,實現雙向能量傳輸時具有各自的諧振特性,以達成提升電能轉換效率、改善電磁兼容及降低生產及製造零件成本。 The aforementioned US patents and Chinese patent applications are only references for the technical background of the present invention and illustrating the current state of technological development, and are not intended to limit the present invention. In view of this, in order to meet the requirements of a bidirectional DC/DC power conversion device with soft switching and lossless, the present invention proposes a method that does not need to add an auxiliary inductor L new on the traditional LLC topology and has its own resonance characteristics when realizing bidirectional energy transmission. , in order to improve power conversion efficiency, improve electromagnetic compatibility and reduce production and manufacturing parts costs.

根據本發明較佳實施例之主要目,提供一種具有隔離之雙向直流/直流能量轉換裝置之控制方法,該具有隔離之雙向直流/直流能量轉換裝置包括:一具有一次側高壓直流端電源/負載端;第一多數個具有背接二極體的高壓功率開關元件之一次側高壓切換/整流模組,其位於一次側方向的兩個端連結至一次側高壓直流端電源/負載,用來接受來自該第一直流端之輸入直流電源或第一直流端輸出負載;一具有諧振電感(Lr)、激磁電感(Lm)及諧振電容(Cr)之三個元件組成的LLC諧振槽電路,該諧振槽電路的一端連結至一次側高壓切換/整流模組;隔離變壓器,包括具有原邊繞組(Np)及具有中心抽頭之副邊第一繞組(Ns1)、副邊第二繞組(Ns2),該副邊繞組的兩端分別連結至第二個低壓功率開關元件之二次側低壓切換/整流模組,中心抽頭節點端連結至第二直流端之高電位端,用來接受來自該 第二直流端之輸入直流電源或輸出負載;第二多數個具有背接二極體的低壓功率開關元件之二次側低壓切換/整流模組,其位於二次側方向端連結至二次側低壓直流端電源/負載端之低電位,用來接受來自該第二直流端之直流電源或輸出負載。 According to the main purpose of the preferred embodiment of the present invention, a control method for a bidirectional DC/DC energy conversion device with isolation is provided. The bidirectional DC/DC energy conversion device with isolation includes: a power supply/load with a primary side high-voltage DC end. terminal; one of the first plurality of high-voltage power switching elements with back-connected diodes is a primary-side high-voltage switching/rectification module, and its two terminals located in the primary side direction are connected to the primary-side high-voltage DC terminal power supply/load for Accepts the input DC power from the first DC terminal or the output load of the first DC terminal; an LLC composed of three components including a resonant inductor (L r ), a magnetizing inductor (L m ) and a resonant capacitor (C r ) A resonant tank circuit, one end of which is connected to the primary side high-voltage switching/rectifier module; an isolation transformer, including a primary winding (N p ) and a secondary first winding (N s1 ) with a center tap, a secondary Second winding (N s2 ), both ends of the secondary winding are connected to the secondary side low-voltage switching/rectification module of the second low-voltage power switching element, and the center tap node end is connected to the high potential end of the second DC end. , used to accept input DC power or output load from the second DC terminal; a second plurality of secondary side low-voltage switching/rectification modules with back-connected diodes of low-voltage power switching elements, which are located on the secondary side The direction end is connected to the low potential of the secondary side low-voltage DC end power supply/load end and is used to receive the DC power supply or output load from the second DC end.

所述之具有隔離之雙向直流/直流能量轉換裝置,在降壓正向功率傳輸模式下,高壓側以變頻的控制方式,藉由改變脈衝頻率調變(PFM)及責任週期設定為0.5的切換控制方式。控制第一個多數個具有背接二極體的高壓功率開關元件之一次側高壓切換/整流模組,使諧振槽電路的諧振電感(Lr)、激磁電感(Lm)、諧振電容(Cr)之三個元件組成LLC諧振槽電路阻抗的改變,從而改變開關元件上的電壓及電流狀態,使第一個多數個具有背接二極體的高壓功率開關元件之一次側高壓切換模組在零電壓切換(ZVS)下運作。第二個多數個具有背接二極體的低壓功率開關元件之二次側低壓切換/整流模組之低壓功率開關元件之在輸出整流下以零電流切換(ZCS)運作。 The above-mentioned bidirectional DC/DC energy conversion device with isolation, in the step-down forward power transmission mode, uses a variable frequency control method on the high-voltage side, by changing the pulse frequency modulation (PFM) and setting the duty cycle to 0.5. control method. Control the primary-side high-voltage switching/rectification module, one of the first plurality of high-voltage power switching elements with back-connected diodes, to make the resonant inductance (L r ), magnetizing inductance (L m ), and resonant capacitance (C) of the resonant tank circuit r ) The change in the impedance of the LLC resonant tank circuit composed of three components, thereby changing the voltage and current states on the switching components, making the first primary-side high-voltage switching module of multiple high-voltage power switching components with back-connected diodes Operates under zero voltage switching (ZVS). The low-voltage power switching elements of the second plurality of secondary-side low-voltage switching/rectification modules with back-connected diodes operate in zero-current switching (ZCS) under output rectification.

所述之具有隔離之雙向直流/直流能量轉換裝置,在升壓反向功率傳輸模式下,藉由固定切換頻率改變脈衝寬度調變(PWM)模式,控制二次側低壓切換/整流模組之低壓開關元件以推挽式的方式運作。並藉由諧振槽電路中的之諧振電感(Lr)、諧振電容(Cr)之兩個元件組成的LC諧振電路,使其第二個多數個具有背接二極體的低壓功率開關元件之二次側低壓切換/整流模組之低壓功率開關元件在具有零電壓切換(ZVS)運作。第一個多數個具有背接二極體的高壓功率開關元件之一次側高壓切換/整流模組之高壓整流電路在輸出整流下以零電流切換(ZCS)運作。 The bidirectional DC/DC energy conversion device with isolation controls the secondary side low-voltage switching/rectification module by changing the pulse width modulation (PWM) mode at a fixed switching frequency in the boost reverse power transmission mode. Low-voltage switching elements operate in a push-pull manner. And through the LC resonant circuit composed of the two components of the resonant inductor (L r ) and the resonant capacitor (C r ) in the resonant tank circuit, the second plurality of low-voltage power switching elements with back-connected diodes The low-voltage power switching components of the secondary-side low-voltage switching/rectifier module operate with zero-voltage switching (ZVS). The high-voltage rectifier circuit of the primary-side high-voltage switching/rectification module of the first plurality of high-voltage power switching elements with back-connected diodes operates in zero-current switching (ZCS) under output rectification.

所述之具有隔離之雙向直流/直流能量轉換裝置,在降壓正向功率傳輸模式下,第二個多數個具有背接二極體的低壓功率開關元件之二次側低壓切換/整流模組之低壓功率開關元件採用同步全波整流控制。 The bidirectional DC/DC energy conversion device with isolation, in the step-down forward power transmission mode, has a second secondary side low-voltage switching/rectification module with a plurality of low-voltage power switching elements with back-connected diodes. The low-voltage power switching components adopt synchronous full-wave rectification control.

所述之具有隔離之雙向直流/直流能量轉換裝置,在升壓反向功率傳輸模式下,第一個多數個具有背接二極體的高壓功率開關元件之一次側高壓切換/整流模組之高壓功率開關元件採用同步全波整流控制。 In the above-mentioned bidirectional DC/DC energy conversion device with isolation, in the boost reverse power transmission mode, the primary side high-voltage switching/rectification module is one of the first plurality of high-voltage power switching elements with back-connected diodes. The high-voltage power switching components adopt synchronous full-wave rectification control.

優先的,為了減少磁性元件的數量,所述之隔離變壓器的原邊繞組(Np)與中心抽頭之副邊第一繞組(Ns1)、副邊第二繞組(Ns2),可以藉由分槽式線軸的製作方式,將諧振電感(Lr)嵌入在隔離變壓器的磁性結構中。 Preferably, in order to reduce the number of magnetic components, the primary winding (N p ) of the isolation transformer and the first secondary winding (N s1 ) and the second secondary winding (N s2 ) of the center tap can be connected by The slotted spool is made in such a way that the resonant inductor (L r ) is embedded in the magnetic structure of the isolation transformer.

優先的,所述之功率開關元件可以採用金屬氧化物半導體場效電晶體(MOSFET)、氮化鎵(GaN)及碳化矽(SiC)。 Preferably, the power switching element can be made of metal oxide semiconductor field effect transistor (MOSFET), gallium nitride (GaN) and silicon carbide (SiC).

由於上述之習知技術說明,本發明與現有的技術相比具有以下優點,本發明通過對隔離變壓器兩側可控功率開關元件的控制,在傳統單向直流轉換器的LLC拓撲上,不需要增加任何的元件,使用不同的控制方法,完成具有軟切換、無損耗的雙向直流/直流電源轉換裝置,從而提升電能轉換效率及降低製造生產及零件成本。 Due to the above conventional technical description, the present invention has the following advantages compared with the existing technology. By controlling the controllable power switching elements on both sides of the isolation transformer, the present invention does not require the LLC topology of the traditional one-way DC converter. Add any components and use different control methods to complete a bidirectional DC/DC power conversion device with soft switching and lossless, thereby improving power conversion efficiency and reducing manufacturing production and parts costs.

1:一次側高壓直流端電源/負載 1: Primary side high voltage DC power supply/load

2:一次側高壓端電容器 2: Primary side high voltage terminal capacitor

3A:一次側高壓切換/整流模組 3A: Primary side high voltage switching/rectifier module

31A:S1開關/整流元件 31A:S 1 switch/rectifier element

32A:S2開關/整流元件 32A:S 2 switch/rectifier element

33A:S3開關/整流元件 33A:S 3 switch/rectifier element

34A:S4開關/整流元件 34A:S 4 switch/rectifier element

4A:諧振槽電路 4A: Resonant tank circuit

41A:Lr諧振電感器 41A:L r resonant inductor

42A:Cr諧振電容器 42A:C r resonance capacitor

43A:Lm激磁電感 43A:L m magnetizing inductor

5A:隔離變壓器 5A: Isolation transformer

51A:Np原邊繞組 51A:N p primary winding

52A:Ns1副邊第一繞組 52A:N s1 secondary first winding

53A:Ns2副邊第二繞組 53A:N s2 secondary second winding

6A:二次側低壓切換/整流模組 6A: Secondary side low voltage switching/rectifier module

61A:S5開關/整流元件 61A:S 5 switch/rectifier element

62A:S6開關/整流元件 62A:S 6 switch/rectifier element

7:二次側低壓端電容器 7: Secondary side low voltage terminal capacitor

8:二次側低壓直流端電源/負載 8: Secondary side low-voltage DC terminal power supply/load

3B:一次側高壓切換/整流模組 3B: Primary side high voltage switching/rectifier module

31B:S1開關/整流元件 31B:S 1 switch/rectifier element

32B:S2開關/整流元件 32B:S 2 switch/rectifier element

4B:諧振槽電路 4B: Resonant tank circuit

41B:Cr1諧振電容器 41B:C r1 resonant capacitor

42B:Cr2諧振電容器 42B:C r2 resonant capacitor

43B:Lr諧振電感器 43B:L r resonant inductor

44B:Lm激磁電感 44B:L m magnetizing inductor

5B:隔離變壓器 5B: Isolation transformer

51B:Np原邊繞組 51B:N p primary winding

52B:Ns1副邊第一繞組 52B:N s1 secondary first winding

53B:Ns2副邊第二繞組 53B:N s2 secondary second winding

6B:二次側低壓切換/整流模組 6B: Secondary side low voltage switching/rectifier module

61B:S3開關/整流元件 61B:S 3 switch/rectifier element

62B:S4開關/整流元件 62B:S 4 switch/rectifier element

100A:第一實施例之雙向直流/直流轉換器 100A: Bidirectional DC/DC converter of the first embodiment

100B:第二實施例之雙向直流/直流轉換器 100B: Bidirectional DC/DC converter of the second embodiment

D:責任週期 D: Responsibility cycle

Vx:等效諧振電路高壓端電壓 V x : Equivalent resonant circuit high voltage terminal voltage

Vy:等效諧振電路低壓端電壓 V y : equivalent resonant circuit low-voltage terminal voltage

Rac:交流等效負載 R ac : AC equivalent load

RL:負載 R L : load

i Lr :諧振電感電流 i Lr : resonant inductor current

VH:一次側高壓 V H : primary side high voltage

VL:二次側低壓 V L : Secondary side low voltage

圖1本案指定代表圖。 Figure 1 is a designated representative diagram of this case.

圖2為本較佳實施例1之電路示意圖 Figure 2 is a circuit schematic diagram of the preferred embodiment 1.

圖3為本較佳實施例2之電路示意圖。 Figure 3 is a circuit schematic diagram of the second preferred embodiment.

圖4為本發明的正向能量傳輸的LLC拓撲簡化電路架構圖。 Figure 4 is a simplified circuit architecture diagram of the LLC topology for forward energy transmission of the present invention.

圖5為一次諧波逼近法(First Harmonic Approximation,FHA)的LLC拓撲諧振轉換器的等效電路。 Figure 5 is the equivalent circuit of the LLC topology resonant converter using the First Harmonic Approximation (FHA) method.

圖6為本發明的反向能量傳輸的推挽式拓撲簡化電路架構圖。 Figure 6 is a simplified circuit architecture diagram of the push-pull topology of reverse energy transmission of the present invention.

圖7為一次諧波逼近法(FHA)的推挽式拓撲諧振轉換器的等效電路。 Figure 7 shows the equivalent circuit of the push-pull topology resonant converter using the first harmonic approximation method (FHA).

圖8模擬LLC拓撲正向能量傳輸的前臂開關元件(31A)、(33A)電壓(Vds)、電流(Ids)波形均有呈現零電壓切換(ZVS)。 Figure 8. The voltage (V ds ) and current (I ds ) waveforms of the forearm switching elements (31A) and ( 33A ) simulating the forward energy transfer of the LLC topology all exhibit zero-voltage switching (ZVS).

圖9模擬LLC拓撲正向能量傳輸的後臂開關元件(32A)、(34A)電壓(Vds)、電流(Ids)波形均有呈現零電壓切換(ZVS)。 Figure 9 The voltage (Vds) and current (Ids) waveforms of the back arm switching elements (32A) and (34A) simulating the forward energy transfer of the LLC topology all show zero voltage switching (ZVS).

圖10模擬LLC拓撲正向能量傳輸的整流開關元件(61A)和(62A)電壓(Vds)、電流(Ids)波形均有呈現零流壓切換(ZCS)。 Figure 10 The voltage (Vds) and current (Ids) waveforms of the rectifier switching elements (61A) and (62A) simulating the forward energy transfer of the LLC topology all exhibit zero-current switching (ZCS).

圖11模擬推挽式拓撲反向能量傳輸的開關元件責任週期為0.48時(61A)和(62A)電壓(Vds)、電流(Ids)波形均有呈現零電壓切換(ZVS)。 Figure 11 shows zero voltage switching (ZVS) in the (61A) and (62A) voltage (Vds) and current (Ids) waveforms of the switching element simulating push-pull topology reverse energy transfer when the duty cycle is 0.48.

圖12模擬推挽式拓撲反向能量傳輸的開關元件責任週期為0.48時整流開關元件(31A)和(33A)電壓(Vds)、電流(Ids)波形均有呈現零流壓切換(ZCS)。 Figure 12: When the duty cycle of the switching element simulating push-pull topology reverse energy transfer is 0.48, the voltage (Vds) and current (Ids) waveforms of the rectifier switching elements (31A) and (33A) all exhibit zero-current switching (ZCS).

圖13模擬推挽式拓撲反向能量傳輸的開關元件責任週期為0.48時整流開關元件(32A)和(34A)電壓(Vds)、電流(Ids)波形均有 呈現零流壓切換(ZCS)。 Figure 13. When the duty cycle of the switching element simulating push-pull topology reverse energy transfer is 0.48, the voltage (Vds) and current (Ids) waveforms of the rectifier switching elements (32A) and (34A) are shown. Exhibits zero flow pressure switching (ZCS).

圖14實體電路之推挽式拓撲反向能量傳輸的開關元件責任週期為0.48時開關元件(61A)電壓(Vds)、電流(Ids)波形均有呈現零電壓切換(ZVS),整流開關元件(31A)電壓(Vds)、電流(Ids)波形均有呈現零流壓切換(ZCS)。 Figure 14. The push-pull topology reverse energy transfer of the physical circuit. When the duty cycle of the switching element is 0.48, the voltage (Vds) and current (Ids) waveforms of the switching element (61A) both show zero voltage switching (ZVS). The rectifier switching element ( 31A) The voltage (Vds) and current (Ids) waveforms both exhibit zero current switching (ZCS).

圖15模擬推挽式拓撲反向能量傳輸的開關元件責任週期為0.42時(61A)和(62A)電壓(Vds)、電流(Ids)波形均有呈現零電壓切換(ZVS)。 Figure 15 shows zero voltage switching (ZVS) in the (61A) and (62A) voltage (Vds) and current (Ids) waveforms of the switching element simulating push-pull topology reverse energy transfer when the duty cycle is 0.42.

圖16模擬推挽式拓撲反向能量傳輸的開關元件責任週期為0.42時整流開關元件(31A)和(33A)電壓(Vds)、電流(Ids)波形均有呈現零流壓切換(ZCS)。。 Figure 16: When the duty cycle of the switching element simulating push-pull topology reverse energy transfer is 0.42, the voltage (Vds) and current (Ids) waveforms of the rectifier switching elements (31A) and (33A) all exhibit zero-current switching (ZCS). .

圖17模擬推挽式拓撲反向能量傳輸的開關元件責任週期為0.42時整流開關元件(32A)和(34A)電壓(Vds)、電流(Ids)波形均有呈現零流壓切換(ZCS)。 Figure 17: When the duty cycle of the switching element simulating push-pull topology reverse energy transfer is 0.42, the voltage (Vds) and current (Ids) waveforms of the rectifier switching elements (32A) and (34A) all exhibit zero-current switching (ZCS).

圖18實體電路之推挽式拓撲反向能量傳輸的開關元件責任週期為0.42時開關元件(61A)電壓(Vds)、電流(Ids)波形均有呈現零電壓切換(ZVS),整流開關元件(31A)電壓(Vds)、電流(Ids)波形均有呈現零流壓切換(ZCS)。 Figure 18: When the duty cycle of the switching element of the push-pull topology reverse energy transfer in the physical circuit is 0.42, the voltage (Vds) and current (Ids) waveforms of the switching element (61A) both show zero voltage switching (ZVS), and the rectifier switching element ( 31A) The voltage (Vds) and current (Ids) waveforms both exhibit zero current switching (ZCS).

以下敘述的實施方式旨在作為對本發明示例性設計的描述,而不旨在表示可實施本發明之唯一設計。術語“示例性”在本文中用於表示“示例、實例或說明”。本文描述為”示例性"的任何設計不一定被解釋為 比其他設計優選或有利。為了提供對本發明的示例性設計的理解,詳細描述包括具體細節。對於本領域具有通常知識者而言,顯而易見的是可以在沒有這些實施方式的情況下實踐本文所描述的示例性設計。本文所描述的示例性之實施例只用於舉例說明,並不用於限制本申請。 The embodiments described below are intended as descriptions of exemplary designs of the invention and are not intended to represent the only designs in which the invention may be practiced. The term "exemplary" is used herein to mean "an example, instance, or illustration." Any design described herein as "exemplary" is not necessarily to be construed as Preferred or advantageous over other designs. The detailed description includes specific details in order to provide an understanding of the exemplary designs of the invention. It will be apparent to one of ordinary skill in the art that the exemplary designs described herein may be practiced without these embodiments. The exemplary embodiments described herein are for illustration only and are not intended to limit the application.

本申請提出的具有隔離之雙向直流/直流能量轉換裝置結構拓撲圖,如圖1所示,從左到右依序為一次側高壓直流端電源/負載(1)、一次側高壓端電容(2)、一次側高壓切換/整流模組(3A)、諧振槽電路(4A)、隔離變壓器(5A)、二次側低壓切換/整流模組(6A)、二次側低壓端電容(7)、二次側低壓直流端電源/負載(8)。 The structural topology diagram of the bidirectional DC/DC energy conversion device with isolation proposed in this application is shown in Figure 1. From left to right, in order: the primary side high-voltage DC terminal power supply/load (1), the primary side high-voltage terminal capacitor (2 ), primary-side high-voltage switching/rectifier module (3A), resonant tank circuit (4A), isolation transformer (5A), secondary-side low-voltage switching/rectifier module (6A), secondary-side low-voltage end capacitor (7), Secondary side low voltage DC power supply/load(8).

所述一次側高壓直流端電源/負載(1),用來接受來自該高壓端外接之直流電源或輸出負載。 The primary side high-voltage DC terminal power supply/load (1) is used to receive an external DC power supply or output load from the high-voltage terminal.

所述一次側高壓端電容(2),位於一次側高壓直流端電源/負載(1)與一次側高壓切換/整流模組(3A)之間,其作用在於濾波,將一次側高壓直流端的輸入或輸出電壓,濾除高頻電壓漣波。 The primary-side high-voltage terminal capacitor (2) is located between the primary-side high-voltage DC terminal power supply/load (1) and the primary-side high-voltage switching/rectifier module (3A). Its function is to filter the input of the primary-side high-voltage DC terminal. or output voltage, filtering out high-frequency voltage ripples.

所述一次側高壓切換/整流模組(3A),為第一個多數個具有背接二極體的高壓功率開關元件,其結構拓撲為全橋或半橋並且不排除其他作法,其位於一次側方向的兩端連結至位於一次側高壓直流端電源/負載(1)及一次側高壓端電容(2),用來接受來自該第一直流端之輸入直流電源或輸出負載。 The primary-side high-voltage switching/rectification module (3A) is the first high-voltage power switching element with back-connected diodes. Its structural topology is full bridge or half bridge and other methods are not excluded. It is located on the primary side. The two ends in the lateral direction are connected to the primary side high-voltage DC terminal power supply/load (1) and the primary side high-voltage terminal capacitor (2), which are used to accept the input DC power supply or output load from the first DC terminal.

所述諧振槽電路(4A),雙向直流/直流轉換裝置,在降壓正向功率傳輸模式下,諧振電感(Lr)、激磁電感(Lm)、諧振電容(Cr)三個元件組成的LLC諧振槽電路,藉由改變脈衝頻率調變(PFM)控制一次側 高壓切換/整流模組(3A),使諧振槽電路(4A)的阻抗改變,從而改變開關元件上的電壓及電流狀態;在升壓反向功率傳輸模式下,激磁電感(Lm)不參與諧振槽運作,諧振槽電路中只有諧振電感(Lr)、諧振電容(Cr)兩個元件參與諧振電路運作,藉由固定切換頻率改變脈衝寬度調變(PWM)模式,控制二次側低壓切換/整流模組(6A)方式運作,從而改變開關元件上的電壓及電流狀態。 The resonant tank circuit (4A), a bidirectional DC/DC conversion device, is composed of three components: a resonant inductor (L r ), a magnetizing inductor (L m ), and a resonant capacitor (C r ) in the step-down forward power transmission mode. The LLC resonant tank circuit controls the primary-side high-voltage switching/rectifier module (3A) by changing the pulse frequency modulation (PFM), so that the impedance of the resonant tank circuit (4A) changes, thereby changing the voltage and current state on the switching element. ; In the boost reverse power transfer mode, the magnetizing inductor (L m ) does not participate in the operation of the resonant tank. Only the resonant inductor (L r ) and the resonant capacitor (C r ) in the resonant tank circuit participate in the operation of the resonant circuit. The fixed switching frequency changes the pulse width modulation (PWM) mode to control the operation of the secondary side low-voltage switching/rectifier module (6A), thereby changing the voltage and current state on the switching element.

所述隔離變壓器(5A),包括具有原邊繞組(Np)及中心抽頭之副邊第一繞組(Ns1)、副邊第二繞組(Ns2),依據一次高壓功率開關元件為全橋或半橋的拓撲結構,而有原邊繞組(Np)與副邊第一繞組(Ns1)、副邊第二繞組(Ns2)之圈數比有不同。原邊與副邊繞組之圈數比為n:1:1(n=Np/Ns1,Ns1=Ns2)。在全橋拓撲結構為n=V H /V L ,半橋拓撲結構為n=V H /2V L The isolation transformer (5A) includes a first secondary winding (N s1 ) and a second secondary winding (N s2 ) with a primary winding (N p ) and a center tap. According to the primary high-voltage power switching element, it is a full bridge Or half-bridge topology, but the turns ratio of the primary winding (N p ), the first secondary winding (N s1 ), and the second secondary winding (N s2 ) are different. The ratio of turns between the primary and secondary windings is n:1:1 (n=N p /N s1 , N s1 =N s2 ). In the full-bridge topology, n = V H / V L and in the half-bridge topology, n = V H /2 V L .

所述二次側低壓切換/整流模組(6A),為第二個多數個具有背接二極體的低壓功率開關元件,其結構拓樸為推挽式結構,連結至隔離變壓器(5A)的兩個端。 The secondary side low-voltage switching/rectification module (6A) is a second plurality of low-voltage power switching components with back-connected diodes. Its structural topology is a push-pull structure and is connected to the isolation transformer (5A). both ends of.

所述二次側低壓端電容器(7),位於二次側低壓直流端電源/負載(8)與隔離變壓器(5A)之間,其作用在於濾波,將二次側低壓直流端的輸入或輸出電壓,濾除高頻電壓漣波。 The secondary side low-voltage terminal capacitor (7) is located between the secondary side low-voltage DC terminal power supply/load (8) and the isolation transformer (5A). Its function is to filter the input or output voltage of the secondary side low-voltage DC terminal. , filter out high-frequency voltage ripples.

所述二次側低壓直流端電源/負載(8),用來接受來自該低壓端外接之輸入直流電源或輸出負載。 The secondary side low-voltage DC terminal power supply/load (8) is used to accept an external input DC power supply or output load from the low-voltage terminal.

具有隔離之雙向直流/直流能量轉換裝置可在相同裝置或零組件,根據需要而操作在下述兩種狀態之一:第一種狀態是從一次側高壓 向二次側低壓傳輸能量,第二種狀態是從二次側低壓向一次側高壓傳輸能量。 The bidirectional DC/DC energy conversion device with isolation can be operated in one of the following two states according to the needs of the same device or component: the first state is from the primary side high voltage Energy is transmitted to the secondary side low pressure, and the second state is to transmit energy from the secondary side low pressure to the primary side high pressure.

[實施例1] [Example 1]

圖2揭示本發明第一實施例,一次側高壓切換/整流模組(3A),採用的拓撲為全橋結構之具有隔離之雙向直流/直流能量轉換裝置100A。 Figure 2 shows the first embodiment of the present invention, the primary-side high-voltage switching/rectifier module (3A), which adopts a topology of a bidirectional DC/DC energy conversion device 100A with isolation in a full-bridge structure.

在圖2降壓的功率傳輸的情況下,該具有隔離之雙向直流/直流能量轉換裝置100A,由左側一次側高壓直流端電源/負載(1)輸入高電壓源,經連結到一次側高壓端電容器(2)濾除高壓切換漣波電壓,在經過一次側全橋架構之一次側高壓切換/整流模組(3A)。開關元件(31A)與(33A)組成全橋架構之前臂開關元件,(32A)與(34A)組成全橋架構之後臂開關元件,並且在上下臂切換間保持一段死區時間,避免上下臂開關元件同時導通造成短路。控制脈衝頻率調變(PFM)同時約以0.5的責任週期寬度開啟和關閉,使得全橋一次側高壓切換/整流模組(3A)於a節點和b節點之間產生具有0.5責任週期寬度和可變頻率的方波電壓波形。包括諧振電感器(41A)、諧振電容器(42A)和激磁電感器(43A)的諧振槽電路連結到節點a和節點b。激磁電感器(43A)與隔離變壓器(5A)之原邊繞組(51A)並聯。諸如隔離變壓器(5A)之類的變壓器在相關附圖中由虛線示意性地表示。為了減少磁性元件的數量,激磁電感器(43A)通常嵌入在隔離變壓器(5A)的磁性結構中。在這種情況下,可以通過在磁芯中引入氣隙並調整其寬度來控制激磁電感值。位於隔離變壓器(5A)的副邊側上的副邊第一繞組(52A)和副邊第二繞組(53A)包括相等數量的繞組匝數並 且以中心抽頭配置連結,其中心抽頭節點c連結到二次側低壓端電容器(7)和二次側低壓直流端電源/負載(8)之負載的正端子,而副邊繞組的節點d、e連結到二次側低壓切換/整流模組(6A)之推挽整流器電路,該電路包括受控開關元件(61A)和(62A)。用大約0.5的責任週期寬度可變頻率來控制開關元件(61A)和(62A),以同步整流方式整流由副邊第一繞組(52A)和副邊第二繞組(53A)產生的方波電壓波形。開關元件(61A)和(62A)的公共點連結到二次側低壓端電容器(7)和二次側低壓直流端電源/負載(8)之負載的負端子。在該負載電路中二次側低壓端電容器(7)與二次側低壓直流端電源/負載(8)之負載並聯,並且濾除直流低壓切換漣波電壓。在該示例實施例中,採用推挽式整流器電路作同步全波整流電路。這樣轉換器的運作將為連結到電源側的開關元件提供零電壓切換(ZVS)和連結到負載的整流開關元件的零電流切換(ZCS)。 In the case of step-down power transmission in Figure 2, the bidirectional DC/DC energy conversion device 100A with isolation inputs a high voltage source from the left primary side high voltage DC terminal power supply/load (1) and is connected to the primary side high voltage terminal. The capacitor (2) filters out the high-voltage switching ripple voltage and passes through the primary-side high-voltage switching/rectifier module (3A) in the primary-side full-bridge architecture. Switching elements (31A) and (33A) form the front arm switching elements of the full-bridge architecture, (32A) and (34A) form the rear-arm switching elements of the full-bridge architecture, and maintain a dead time between the upper and lower arm switching to avoid upper and lower arm switching. Components conduct at the same time causing a short circuit. The pulse frequency modulation (PFM) is controlled to turn on and off at the same time with a duty cycle width of about 0.5, so that the primary-side high-voltage switching/rectification module (3A) of the full bridge generates a duty cycle width of 0.5 and can be generated between node a and node b. Square wave voltage waveform with variable frequency. A resonant tank circuit including a resonant inductor (41A), a resonant capacitor (42A) and a magnetizing inductor (43A) is connected to nodes a and b. The exciting inductor (43A) is connected in parallel with the primary winding (51A) of the isolation transformer (5A). Transformers such as the isolation transformer (5A) are schematically represented by dashed lines in the relevant figures. To reduce the number of magnetic components, the magnetizing inductor (43A) is usually embedded in the magnetic structure of the isolation transformer (5A). In this case, the magnetizing inductance value can be controlled by introducing an air gap in the core and adjusting its width. The secondary first winding (52A) and the secondary second winding (53A) located on the secondary side of the isolation transformer (5A) include an equal number of winding turns and And connected in a center tap configuration, the center tap node c is connected to the positive terminal of the load of the secondary side low-voltage terminal capacitor (7) and the secondary side low-voltage DC terminal power supply/load (8), and the node d of the secondary winding, e is connected to the push-pull rectifier circuit of the secondary side low-voltage switching/rectification module (6A), which circuit includes controlled switching elements (61A) and (62A). The switching elements (61A) and (62A) are controlled with a variable frequency with a duty cycle width of approximately 0.5, and the square wave voltage generated by the first secondary winding (52A) and the second secondary winding (53A) is rectified in a synchronous rectification manner. waveform. The common point of the switching elements (61A) and (62A) is connected to the negative terminal of the load of the secondary low voltage side capacitor (7) and the secondary side low voltage DC side power supply/load (8). In this load circuit, the secondary side low-voltage terminal capacitor (7) is connected in parallel with the load of the secondary side low-voltage DC terminal power supply/load (8), and filters out the DC low-voltage switching ripple voltage. In this exemplary embodiment, a push-pull rectifier circuit is used as the synchronous full-wave rectification circuit. The operation of the converter will provide zero voltage switching (ZVS) for the switching element connected to the supply side and zero current switching (ZCS) for the rectifying switching element connected to the load.

在圖2升壓的功率傳輸的情況下,電源和負載互換位置,該具有隔離之雙向直流/直流能量轉換裝置100A,由右側二次側低壓直流端電源/負載(8)輸入低電壓源,經連結到二次側低壓端電容器(7)濾除直流低壓切換漣波電壓。開關元件(61A)和(62A)變成具有受控切換責任週期寬度的脈衝寬度調變(PWM)控制之推挽式開關,使其在隔離變壓器(5A)之原邊繞組(51A)的兩端產生方波電壓。此外,全橋一次側高壓切換/整流模組(3A)成為具有大約0.5的責任週期控制脈衝寬度之同步全波整流器電路,對開關元件(31A)、(32A)、(33A)和(34A)在節點a和節點b之間產生的方波電壓進行整流。這樣轉換器將為連結到電源側的開關元件提供零電壓切換(ZVS)和連結到負載的整流開關元件的零電流切換 (ZCS)。 In the case of boosted power transmission in Figure 2, the power supply and load exchange positions. The bidirectional DC/DC energy conversion device with isolation 100A inputs a low voltage source from the right secondary side low-voltage DC end power supply/load (8). The DC low voltage switching ripple voltage is filtered out by the capacitor (7) connected to the secondary side low voltage terminal. The switching elements (61A) and (62A) become pulse width modulation (PWM) controlled push-pull switches with a controlled switching duty period width at both ends of the primary winding (51A) of the isolation transformer (5A) Generates a square wave voltage. In addition, the full-bridge primary-side high-voltage switching/rectification module (3A) becomes a synchronous full-wave rectifier circuit with a duty cycle control pulse width of approximately 0.5, which is suitable for the switching elements (31A), (32A), (33A) and (34A). The square wave voltage generated between node a and node b is rectified. This converter will provide zero voltage switching (ZVS) for the switching element connected to the supply side and zero current switching for the rectifying switching element connected to the load. (ZCS).

從圖2降壓的功率傳輸的情況下諧振轉換器(4A),是一種串聯型、頻率控制的諧振轉換器,通常具有三個諧振組件:諧振電容器(42A)、諧振電感器(41A)和激磁電感器(43A)。對於轉換器進行分析建模,廣泛使用一次諧波逼近法(FHA),尤其是LLC轉換器在其諧振頻率附近運作時,由於諧振電流僅由純第一諧波電流。基於該等效電路假設,如圖5所示。轉換器的一次諧波逼近法(FHA)等效模型由電壓源Vx和諧振元件Lr、Lm、Cr和Rac組成。Rac是負載在隔離變壓器(5A)一次側的交流等效電阻。從等效電路控制轉換器諧振特性的參數可以由以下關係表示: In the case of step-down power transfer from Figure 2, the resonant converter (4A) is a series-type, frequency-controlled resonant converter that typically has three resonant components: a resonant capacitor (42A), a resonant inductor (41A), and Magnetizing inductor (43A). For analytical modeling of converters, the first harmonic approximation method (FHA) is widely used, especially when the LLC converter operates near its resonant frequency, since the resonant current consists only of the pure first harmonic current. Based on this equivalent circuit assumption, it is shown in Figure 5. The first harmonic approximation method (FHA) equivalent model of the converter consists of the voltage source V x and the resonant elements L r , L m , Cr and R ac . R ac is the AC equivalent resistance of the load on the primary side of the isolation transformer (5A). The parameters that control the resonant characteristics of the converter from the equivalent circuit can be expressed by the following relationship:

其中轉換器增益定義為輸出電壓與輸入電壓之比:M=V L /V H where converter gain is defined as the ratio of output voltage to input voltage: M = V L / V H .

其中一次側負載的交流等效電阻:R ac =8 n 2 R L 2The AC equivalent resistance of the primary side load: R ac =8 n 2 R L 2 .

其中f r 是諧振頻率:

Figure 111104703-A0101-12-0012-1
。 where f r is the resonant frequency:
Figure 111104703-A0101-12-0012-1
.

其中一次側-二次側功率傳輸期間的電感比L n =L m /L r Among them, the inductance ratio L n = L m / L r during primary side-secondary side power transmission

其中歸一化的頻率:F N =f s /f r where the normalized frequency: F N = f s / f r .

其中Q因子:

Figure 111104703-A0101-12-0012-2
。 Among them Q factor:
Figure 111104703-A0101-12-0012-2
.

從圖2升壓的功率傳輸的情況下諧振轉換器,是一種串聯型的諧振轉換器,具有二個諧振組件:諧振電容器(42A)和諧振電感器(41A),其中的激磁電感器(43A)不參與運作,以一次諧波逼近法(FHA)對LC轉換器進行分析,在其諧振頻率附近運作時,由於諧振電流僅由純第一諧波電流。基於該等效電路假設,如圖7所示,本發明採用固定頻率 下使用脈衝寬度調變(PWM)模式運作替代脈衝頻率調變(PFM)模式運作控制,而在固定切換頻率f s 取用在諧振點時f s =f r ,其諧振特性以LLC諧振電路的特性相似,在其脈衝寬度調變(PWM)模式中轉換器增益定義為輸出電壓與輸入電壓之比V H /V L =2Dn,因此藉由控制責任週期的脈衝寬度(Duty Cycle,D)來做調適輸出電壓。 In the case of boosted power transmission from Figure 2, the resonant converter is a series-type resonant converter with two resonant components: a resonant capacitor (42A) and a resonant inductor (41A), of which the exciting inductor (43A ) does not participate in the operation, the first harmonic approximation method (FHA) is used to analyze the LC converter. When operating near its resonant frequency, the resonant current only consists of the pure first harmonic current. Based on the equivalent circuit assumption, as shown in Figure 7, the present invention uses pulse width modulation (PWM) mode operation at a fixed frequency instead of pulse frequency modulation (PFM) mode operation control, and takes the fixed switching frequency f s When f s = f r at the resonance point, its resonance characteristics are similar to those of the LLC resonance circuit. In its pulse width modulation (PWM) mode, the converter gain is defined as the ratio of the output voltage to the input voltage V H / V L = 2 Dn , so the output voltage is adjusted by controlling the pulse width of the duty cycle (Duty Cycle, D).

[實施例2] [Example 2]

圖3揭示本發明第二實施例,一次側高壓切換/整流模組(3B),採用半橋結構拓撲之具有隔離之雙向直流/直流能量轉換裝置100B。 Figure 3 shows a second embodiment of the present invention, a primary-side high-voltage switching/rectification module (3B), a bidirectional DC/DC energy conversion device 100B with isolation using a half-bridge structure topology.

從圖3降壓的功率傳輸的情況下,該具有隔離之雙向直流/直流能量轉換裝置100B,由左側一次側高壓直流端電源/負載(1)輸入高電壓源,經連結到一次側高壓端電容器(2)濾除高壓切換漣波電壓,再經過半橋結構一次側高壓切換/整流模組(3B)。開關元件(31B)、(32B)組成半橋結構,並且在上下臂切換間保持一段死區時間,避免上下臂開關同時導通造成短路。控制脈衝頻率調變(PFM)同時約以0.5的責任週期寬度開啟和關閉,使得半橋結構一次側高壓切換/整流模組(3B)在於節點a和節點b之間產生具有0.5責任週期寬度和可變頻率的方波電壓波形。包括諧振電感器(43B)、諧振電容器(41B)、(42B)和激磁電感器(44B)的諧振槽電路連結到節點a和節點b。激磁電感器(44B)與隔離變壓器(5B)之原邊繞組(51B)並聯。諸如隔離變壓器(5B)之類的變壓器在相關附圖中由虛線示意性地表示。為了減少磁性元件的數量,激磁電感器(44B)通常嵌入在隔離變壓器(5B)的磁性結構中。在這種情況下,可以通過在磁芯中引入氣隙並調整其寬度來控制激磁電感值。位於隔離變壓器(5B)的副邊側上的副 邊第一繞組(52B)和副邊第二繞組(53B)包括相等數量的繞組匝數並且以中心抽頭配置連結,其中心抽頭節點c連結到二次側低壓端電容器(7)和二次側低壓直流端電源/負載(8)之負載的正端子,而副邊繞組的節點d、e連結到二次側低壓切換/整流模組(6B)之推挽整流器電路,該電路包括受控開關元件(61B)和(62B)用大約0.5的責任週期寬度可變頻率來控制開關元件(61B)和(62B),以同步整流方式整流由副邊第一繞組(52B)和副邊第二繞組(53B)產生的方波電壓。開關元件(61B)和(62B)的公共點連結到二次側低壓端電容器(7)和二次側低壓直流端電源/負載(8)之負載的負端子。在該負載電路中二次側低壓端電容器(7)與二次側低壓直流端電源/負載(8)之負載阻抗並聯,並且濾除直流低壓切換漣波電壓。在該示例實施例中,採用推挽式整流器電路作同步全波整流電路。這樣轉換器將為連結到電源側的開關元件提供零電壓切換(ZVS)和連結到負載的整流開關元件的零電流切換(ZCS)。 In the case of step-down power transmission from Figure 3, the bidirectional DC/DC energy conversion device 100B with isolation inputs a high voltage source from the left primary side high voltage DC terminal power supply/load (1) and is connected to the primary side high voltage terminal. The capacitor (2) filters out the high-voltage switching ripple voltage, and then passes through the primary-side high-voltage switching/rectifier module (3B) of the half-bridge structure. The switching elements (31B) and (32B) form a half-bridge structure, and maintain a dead time between the upper and lower arm switches to avoid short circuit caused by the upper and lower arm switches being turned on at the same time. The pulse frequency modulation (PFM) is controlled to turn on and off with a duty cycle width of about 0.5 at the same time, so that the primary-side high-voltage switching/rectification module (3B) of the half-bridge structure generates a duty cycle width of 0.5 and between node a and node b. Variable frequency square wave voltage waveform. A resonant tank circuit including a resonant inductor (43B), resonant capacitors (41B), (42B) and a magnetizing inductor (44B) is connected to nodes a and b. The exciting inductor (44B) is connected in parallel with the primary winding (51B) of the isolation transformer (5B). Transformers such as the isolation transformer (5B) are schematically represented by dashed lines in the relevant figures. To reduce the number of magnetic components, the magnetizing inductor (44B) is usually embedded in the magnetic structure of the isolation transformer (5B). In this case, the magnetizing inductance value can be controlled by introducing an air gap in the core and adjusting its width. Located on the secondary side of the isolation transformer (5B) The side first winding (52B) and the secondary side second winding (53B) include an equal number of winding turns and are connected in a center tap configuration, with the center tap node c connected to the secondary side low voltage side capacitor (7) and the secondary side The positive terminal of the load of the low-voltage DC side power supply/load (8), while the nodes d and e of the secondary winding are connected to the push-pull rectifier circuit of the secondary-side low-voltage switching/rectifier module (6B), which circuit includes a controlled switch Components (61B) and (62B) control switching components (61B) and (62B) with a duty cycle width variable frequency of approximately 0.5, and are rectified in a synchronous rectification mode by the first secondary winding (52B) and the second secondary winding. (53B) produces a square wave voltage. The common point of the switching elements (61B) and (62B) is connected to the negative terminal of the load of the secondary low voltage side capacitor (7) and the secondary side low voltage DC side power supply/load (8). In this load circuit, the secondary side low-voltage terminal capacitor (7) is connected in parallel with the load impedance of the secondary side low-voltage DC terminal power supply/load (8), and filters out the DC low-voltage switching ripple voltage. In this exemplary embodiment, a push-pull rectifier circuit is used as the synchronous full-wave rectification circuit. This converter will provide zero voltage switching (ZVS) for the switching element connected to the power supply side and zero current switching (ZCS) for the rectifying switching element connected to the load.

在圖3升壓的功率傳輸的情況下,電源和負載互換位置,該具有隔離之雙向直流/直流能量轉換裝置100B,由右側二次側低壓直流端電源/負載(8)輸入低電壓源,經連結到二次側低壓端電容器(7)濾除直流低壓切換漣波電壓。此外,開關元件(61B)和(62B)變成具有受控開關責任週期寬度的脈衝寬度調變(PWM)控制之推挽式開關,使其在隔離變壓器(5B)之原邊繞組(51B)的兩端產生方波電壓。此外使得半橋結構一次側高壓切換/整流模組(3B)成為具有大約0.5的責任週期控制脈衝寬度之同步控制之半橋倍壓全波整流器電路,在節點a和節點b之間產生的方波電壓進行整流。這樣轉換器將為連結到電源側的切換元件提供零電壓 切換(ZVS)和連結到負載的整流開關元件的零電流切換(ZCS)。 In the case of boosted power transmission in Figure 3, the power supply and load exchange positions. The bidirectional DC/DC energy conversion device 100B with isolation inputs a low voltage source from the right secondary side low-voltage DC end power supply/load (8). The DC low voltage switching ripple voltage is filtered out by the capacitor (7) connected to the secondary side low voltage terminal. In addition, the switching elements (61B) and (62B) become pulse width modulation (PWM) controlled push-pull switches with a controlled switching duty cycle width, so that they are connected to the primary winding (51B) of the isolation transformer (5B). A square wave voltage is generated at both ends. In addition, the half-bridge structure primary-side high-voltage switching/rectification module (3B) becomes a synchronously controlled half-bridge voltage doubler full-wave rectifier circuit with a duty cycle control pulse width of approximately 0.5, generating a square wave between node a and node b. The wave voltage is rectified. This way the converter will provide zero voltage to the switching element connected to the supply side switching (ZVS) and zero-current switching (ZCS) of the rectifier switching element connected to the load.

1:一次側高壓直流端電源/負載 1: Primary side high voltage DC power supply/load

2:一次側高壓端電容器 2: Primary side high voltage terminal capacitor

3A:一次側高壓切換/整流模組 3A: Primary side high voltage switching/rectifier module

4A:諧振槽電路 4A: Resonant tank circuit

5A:隔離變壓器 5A: Isolation transformer

6A:二次側低壓切換/整流模組 6A: Secondary side low voltage switching/rectifier module

7:二次側低壓端電容器 7: Secondary side low voltage terminal capacitor

8:二次側低壓直流端電源/負載 8: Secondary side low-voltage DC terminal power supply/load

Claims (9)

一種具有隔離之雙向直流/直流能量轉換裝置之控制方法,在傳統單向直流轉換器的LLC諧振槽電路拓撲上,使用新穎控制方法,實現雙向能量傳輸且具有各自的諧振特性,完成具有軟切換、無損耗的雙向直流/直流電源轉換,所述新穎控制方法包括:在降壓正向功率傳輸模式,一次側高壓切換/整流模組(3A),藉由脈衝頻率調變(PFM)模式驅動切換元件方式控制,二次側低壓切換/整流模組(6A)以同步全波整流驅動切換元件方式控制;在升壓反向功率傳輸模式,二次側低壓切換/整流模組(6A),藉由固定切換頻率脈衝寬度調變(PWM)模式驅動切換元件方式控制,一次側高壓切換/整流模組(3A)以同步全波整流驅動切換元件方式控制。 A control method for an isolated bidirectional DC/DC energy conversion device. Based on the LLC resonant tank circuit topology of a traditional one-way DC converter, a novel control method is used to achieve bidirectional energy transmission with respective resonance characteristics, completing soft switching. , Lossless bidirectional DC/DC power conversion, the novel control method includes: in the buck forward power transfer mode, the primary side high-voltage switching/rectification module (3A) is driven by pulse frequency modulation (PFM) mode Controlled by the switching element method, the secondary side low-voltage switching/rectifier module (6A) is controlled by the synchronous full-wave rectification drive switching element method; in the boost reverse power transmission mode, the secondary side low-voltage switching/rectifier module (6A), The primary-side high-voltage switching/rectifier module (3A) is controlled by driving the switching element in a fixed switching frequency pulse width modulation (PWM) mode. The primary-side high-voltage switching/rectifier module (3A) is controlled by driving the switching element with synchronous full-wave rectification. 根據申請專利範圍請求項1所述具有隔離之雙向直流/直流能量轉換方法,其中包括所述固定切換頻率取其諧振槽電路之諧振頻率f s =f r According to the bidirectional DC/DC energy conversion method with isolation described in claim 1 of the patent application, the fixed switching frequency is determined by taking the resonant frequency f s = fr of the resonant tank circuit. 一種具有隔離之雙向直流/直流能量轉換裝置,實現雙向能量傳輸且具有各自的諧振特性,完成具有軟切換、無損耗的雙向直流/直流電源轉換,其特徵在於包括:一個一次側高壓切換/整流模組(3A),在降壓正向功率傳輸模式下,藉由改變脈衝頻率調變(PFM)的切換控制,其位於一次側方向的兩個端連結至第一直流端1,用來接受來自該第一直流端輸入之直流電源或第一直流端輸出負載;一個諧振槽電路(4A),其具有三個元件的諧振槽電路,以節點a和節點 b連結到一個一次側高壓切換/整流模組(3A);一個隔離變壓器(5A),包括具有原邊繞組(Np)及中心抽頭之副邊第一繞組(Ns1)、第二繞組(Ns2),其原邊繞組兩端連結於諧振槽(4A),副邊繞組以節點c連結到二次側低壓直流端電源/負載(8),以節點d和e連結到二次側低壓切換/整流模組(6A);一個二次側低壓切換/整流模組(6A),在升壓反向功率傳輸模式下,藉由固定切換頻率改變脈衝寬度調變(PWM)模式控制,以節點d和e連結到一個隔離變壓器(5A)之副邊繞組,其位於二次側方向的低電位端連結至二次側低壓直流端電源/負載(8),用來接受來自該第二直流端之直流電源或向第二直流端負載輸出。 An isolated bidirectional DC/DC energy conversion device, which realizes bidirectional energy transmission and has its own resonance characteristics, and completes bidirectional DC/DC power conversion with soft switching and no loss. It is characterized by including: a primary side high-voltage switching/rectifier Module (3A), in the buck forward power transfer mode, by changing the switching control of pulse frequency modulation (PFM), its two ends located in the primary side direction are connected to the first DC terminal 1 for Accept the DC power supply from the first DC terminal input or the first DC terminal output load; a resonant tank circuit (4A), which has a three-element resonant tank circuit connected to a primary side through nodes a and node b. High-voltage switching/ rectifier module (3A); an isolation transformer (5A), including a first secondary winding (N s1 ) and a second winding (N s2 ) with a primary winding (N p ) and a center tap. Both ends of the side winding are connected to the resonant tank (4A), the secondary winding is connected to the secondary side low-voltage DC power supply/load (8) with node c, and is connected to the secondary side low-voltage switching/rectifier module (8) with nodes d and e. 6A); a secondary side low-voltage switching/rectification module (6A), in the boost reverse power transfer mode, controlled by a fixed switching frequency changing pulse width modulation (PWM) mode, connected to nodes d and e The secondary winding of an isolation transformer (5A), with its low-potential end located in the secondary side direction connected to the secondary side low-voltage DC end power supply/load (8), is used to receive DC power from the second DC end or to Second DC terminal load output. 根據申請專利範圍請求項3所述具有隔離之雙向直流/直流能量轉換裝置,其中包括所述一次側高壓切換/整流模組(3A),為第一個多數個具有背接二極體的高壓功率開關元件,作為高壓切換功能,其拓撲具有四個高壓功率元件之全橋結構或具有兩個高壓功率元件之半橋結構。 According to claim 3 of the patent application, the bidirectional DC/DC energy conversion device with isolation includes the primary side high-voltage switching/rectification module (3A), which is the first of a plurality of high-voltage devices with back-connected diodes. The power switching element, as a high-voltage switching function, has a topology with a full-bridge structure of four high-voltage power elements or a half-bridge structure with two high-voltage power elements. 根據申請專利範圍請求項3所述具有隔離之雙向直流/直流能量轉換裝置,其中所述諧振槽電路(4A),包括具有諧振電感器(Lr)、激磁電感器(Lm)及諧振電容器(Cr)之三個元件組成的LLC諧振槽電路,其中諧振電感器(Lr)可為獨立元件或嵌入在隔離變壓器的磁性結構中。 According to claim 3 of the patent application, the bidirectional DC/DC energy conversion device with isolation is provided, wherein the resonant tank circuit (4A) includes a resonant inductor (L r ), a magnetizing inductor (L m ) and a resonant capacitor. An LLC resonant tank circuit composed of three components (C r ), in which the resonant inductor (L r ) can be an independent component or embedded in the magnetic structure of the isolation transformer. 根據申請專利範圍請求項5所述具有隔離之雙向直流/直流能量轉換裝置,其中包括所述諧振槽電路(4A),在降壓正向功率傳輸模式下,具有諧振電感器(Lr)、激磁電感器(Lm)及諧振電容器(Cr)之三個元件 組成運作的LLC諧振槽電路特性,在升壓反向功率傳輸模式,具有諧振電感器(Lr)及諧振電容器(Cr)之兩個元件組成運作的LC諧振槽電路特性。 According to claim 5 of the patent application, the bidirectional DC/DC energy conversion device with isolation includes the resonant tank circuit (4A), which has a resonant inductor (L r ), Characteristics of the LLC resonant tank circuit consisting of three components: the magnetizing inductor (L m ) and the resonant capacitor (C r ). In the boost reverse power transfer mode, it has the resonant inductor (L r ) and the resonant capacitor (C r ) of the two components that form the operating characteristics of the LC resonant tank circuit. 根據申請專利範圍請求項3所述具有隔離之雙向直流/直流能量轉換裝置,其中所述具有隔離變壓器(5A)具有原邊繞組(Np)及中心抽頭之副邊繞組(Ns1、Ns2),其中所述之原邊繞組(Np)與副邊繞組(Ns1、Ns2)可以藉由分槽式線軸的製作方式,將諧振電感(Lr)嵌入在隔離變壓器的磁性結構中。 According to the bidirectional DC/DC energy conversion device with isolation described in claim 3 of the patent application, the isolation transformer (5A) has a primary winding (N p ) and a center-tapped secondary winding (N s1 , N s2 ), where the primary winding (N p ) and secondary windings (N s1 , N s2 ) can be made by using slotted bobbins to embed the resonant inductor (L r ) in the magnetic structure of the isolation transformer. . 根據申請專利範圍請求項3所述具有隔離之雙向直流/直流能量轉換裝置,其中所述二次側低壓切換/整流模組(3A),為第一個多數個具有背接二極體的高壓功率開關元件,其結構拓樸為全橋或半橋式結構。 According to the bidirectional DC/DC energy conversion device with isolation described in claim 3 of the patent application, the secondary side low-voltage switching/rectification module (3A) is the first of a plurality of high-voltage modules with back-connected diodes. The structural topology of power switching components is full-bridge or half-bridge structure. 根據申請專利範圍請求項3所述具有隔離之雙向直流/直流能量轉換裝置,其中所述二次側低壓切換/整流模組(6A),為第二個多數個具有背接二極體的低壓功率開關元件,其結構拓樸為推挽式結構。 According to the bidirectional DC/DC energy conversion device with isolation described in claim 3 of the patent application, the secondary side low-voltage switching/rectification module (6A) is a second plurality of low-voltage low-voltage modules with back-connected diodes. The power switching element has a push-pull structure topology.
TW111104703A 2022-02-09 2022-02-09 Bidirectional dc-dc energy converter with isolation TWI823250B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111104703A TWI823250B (en) 2022-02-09 2022-02-09 Bidirectional dc-dc energy converter with isolation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111104703A TWI823250B (en) 2022-02-09 2022-02-09 Bidirectional dc-dc energy converter with isolation

Publications (2)

Publication Number Publication Date
TW202333441A TW202333441A (en) 2023-08-16
TWI823250B true TWI823250B (en) 2023-11-21

Family

ID=88559164

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111104703A TWI823250B (en) 2022-02-09 2022-02-09 Bidirectional dc-dc energy converter with isolation

Country Status (1)

Country Link
TW (1) TWI823250B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103780099A (en) * 2014-01-21 2014-05-07 广东易事特电源股份有限公司 Bi-directional direct current switching circuit and switching power supply
US20170104365A1 (en) * 2014-03-27 2017-04-13 Schneider Electric It Corporation Bi-directional dc-dc converter
CN113258800B (en) * 2021-07-16 2021-10-26 深圳市洛仑兹技术有限公司 Bidirectional power supply equipment, power supply control method and device
TW202147758A (en) * 2020-06-05 2021-12-16 台達電子工業股份有限公司 Power converter and control method thereof
CN113890375A (en) * 2021-10-12 2022-01-04 燕山大学 Bipolar output bidirectional LLC resonant converter topology

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103780099A (en) * 2014-01-21 2014-05-07 广东易事特电源股份有限公司 Bi-directional direct current switching circuit and switching power supply
US20170104365A1 (en) * 2014-03-27 2017-04-13 Schneider Electric It Corporation Bi-directional dc-dc converter
TW202147758A (en) * 2020-06-05 2021-12-16 台達電子工業股份有限公司 Power converter and control method thereof
CN113258800B (en) * 2021-07-16 2021-10-26 深圳市洛仑兹技术有限公司 Bidirectional power supply equipment, power supply control method and device
CN113890375A (en) * 2021-10-12 2022-01-04 燕山大学 Bipolar output bidirectional LLC resonant converter topology

Also Published As

Publication number Publication date
TW202333441A (en) 2023-08-16

Similar Documents

Publication Publication Date Title
WO2021042773A1 (en) Llc resonant converter and control method
WO2021077757A1 (en) Wide gain control method for variable topology llc resonant converter
CN108028605B (en) Converter with hold-up operation
WO2021103415A1 (en) High-gain quasi-resonance dc-dc converter based on voltage doubling rectifier circuit
WO2020248472A1 (en) Asymmetric half-bridge converter and control method therefor
CN111181408B (en) Resonant converter based on hybrid rectification structure and control method
TWI270244B (en) Time delay control scheme for a power supply with multiple outputs
WO2015106701A1 (en) Ac-dc conversion circuit and control method therefor
US20130301306A1 (en) Switching power supply device
CN112054691B (en) Single-stage voltage-regulating conversion circuit sharing rectification structure and control method
CN110798073A (en) Wide voltage range output current feed converter
TW201815043A (en) DC-DC converter for modulating full-bridge control mode based on loading current capable of optimizing the conversion efficiency by switching to different operating mode based on magnitude of loading
CN114337344A (en) Control method based on self-adaptive hybrid rectification multi-switch resonant LLC converter
US20110069513A1 (en) Current-Sharing Power Supply Apparatus With Bridge Rectifier Circuit
CN114301300A (en) Wide-range bidirectional resonant soft-switching direct-current converter and control method thereof
CN114583967A (en) Isolated direct-current boost converter of two-phase parallel boost circuit and control method thereof
CN114465490A (en) Interleaved voltage-multiplying wide-output LLC resonant converter and control method thereof
CN109698627B (en) Full-bridge DC/DC converter based on switched capacitor and modulation strategy thereof
TW202247587A (en) Converter for a wide range of output voltage and control method thereof
CN109742957B (en) Double-ring full-resonance type soft switching converter
TWI823250B (en) Bidirectional dc-dc energy converter with isolation
CN110729906A (en) Zero-voltage conversion CLL resonant DC-DC converter and control method thereof
CN110572039A (en) Novel full-bridge direct-current converter based on current-doubling rectifier
CN116111830A (en) Half-bridge-full-bridge combined LLC resonant direct-current converter based on double transformers
CN114649959A (en) Buck-Boost LLC converter based on bipolar symmetrical phase-shift modulation strategy