TWI823242B - 文字生成方法及其裝置 - Google Patents
文字生成方法及其裝置 Download PDFInfo
- Publication number
- TWI823242B TWI823242B TW111103679A TW111103679A TWI823242B TW I823242 B TWI823242 B TW I823242B TW 111103679 A TW111103679 A TW 111103679A TW 111103679 A TW111103679 A TW 111103679A TW I823242 B TWI823242 B TW I823242B
- Authority
- TW
- Taiwan
- Prior art keywords
- candidate
- generated
- text generation
- text
- condition
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 44
- 238000010801 machine learning Methods 0.000 claims description 4
- 230000000694 effects Effects 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Landscapes
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
一種用於生成多個文字的文字生成裝置,該文字生成裝置接收到一包含一生成條件的生成請求後,將該生成條件編碼為一固定格式的待生成輸入資料,根據該待生成輸入資料利用一文字生成模型生成N個候選文字,將該等N個候選文字加入該候選字串,以更新該候選字串,對於每一個評分條件,根據該候選字串及該評分條件,獲得一相關於該候選字串的評分,判定該至少一評分之總分是否大於一評分閥值,當判定該至少一評分之總分大於該評分閥值時,判定該候選字串是否符合一生成終止條件,當判定該候選字串符合該生成終止條件時,輸出該候選字串。
Description
本發明是有關於一種生成符合條件之多個文字的方法,特別是指一種文字生成方法及其裝置。
當商業公司在產生行銷文案時,除了要了解客戶對於文案的喜好,亦需要知道文案中哪些文字能夠吸引客戶注意,且在網路時代中,客戶接觸的數位通路眾多,文案的需求也較以往的紙本廣告大幅增加,然而,要根據大量的文案產出最佳的行銷文案,其現有的方法是仰賴業務專家,依照產品特質與行銷目的,以人工的方式產生行銷文案,此方法缺點有二,第一是所產出的行銷文案會因為不同的業務專家而有品質差異,連帶會影響行銷結果,第二是為了產生最佳行銷文案,勢必得需閱讀大量的文案及找靈感,便會花費很多時間,因此,若是能提供一個可以快速且精準地生成能夠吸引客戶注意的最佳行銷文案,便能降低時間及人力成本。
因此,本發明的目的,即在提供一種可即時且自動地生成符合條件的多個文字之文字生成方法。
於是,本發明文字生成方法,藉由一文字生成裝置來實施,該文字生成裝置儲存有一用於生成多個文字的文字生成模型、至少一用於評分所生成之文字的評分條件,及一初始值為空的候選字串,該文本生成方法包含一步驟(A)、一步驟(B)、一步驟(C)、一步驟(D)、一步驟(E)、一步驟(F),及一步驟(G)。
該步驟(A)是該文字生成裝置接收到一包含一生成條件的生成請求後,將該生成條件編碼為一固定格式的待生成輸入資料,該生成條件包括一待生成產品類別,及一指示出該待生成產品類別是否有優惠的待生成優惠屬性。
該步驟(B)是該文字生成裝置根據該待生成輸入資料利用該文字生成模型生成N個候選文字。
該步驟(C)是該文字生成裝置將該等N個候選文字加入該候選字串,以更新該候選字串。
該步驟(D)是對於每一個評分條件,該文字生成裝置根據該候選字串及該評分條件,獲得一相關於該候選字串的評分。
該步驟(E)是該文字生成裝置判定該至少一評分之總分是否大於一評分閥值。
該步驟(F)是當該文字生成裝置判定該至少一評分之總分大於該評分閥值時,判定該候選字串是否符合一生成終止條件。
該步驟(G)是當該文字生成裝置判定該候選字串符合該生成終止條件時,該文字生成裝置輸出該候選字串。
本發明的另一目的,即在提供一種可即時且自動地生成符合條件的多個文字之文字生成裝置。
於是本發明文字生成裝置,用於生成多個文字,該文字生成裝置包含一輸出模組、一儲存模組,及一處理模組。
該輸出模組用於輸出該等文字。
該儲存模組用於儲存一用於生成多個文字的文字生成模型、至少一用於評分所生成之文字的評分條件,及一初始值為空的候選字串。
該處理模組電連接該輸出模組及該儲存模組。
其中,該處理模組接收到一包含一生成條件的生成請求後,將該生成條件編碼為一固定格式的待生成輸入資料,該生成條件包括一待生成產品類別,及一指示出該待生成產品類別是否有優惠的待生成優惠屬性,該處理模組根據該待生成輸入資料利用該文字生成模型生成N個候選文字,並將該等N個候選文字加入該儲存模組存有的該候選字串,以更新該候選字串,對於每一評分條件,該處理模組根據該儲存模組儲存的該候選字串及該評分條件,獲得一相關於該候選字串的評分,並判定該至少一評分之總分是否大於一評分閥值,當該處理模組判定該至少一評分之總分大於該評分閥值時,判定該候選字串是否符合一生成終止條件,當該處理模組判定該候選字串符合該生成終止條件時,該處理模組經由該輸出模組輸出該候選字串。
本發明的功效在於:藉由該文字生成裝置生成N個候選文字並加入該候選字串,且根據該候選字串利用該至少一評分條件獲得該總分,並判定該總分是否大於該評分閥值,當判定大於時,判定該候選字串是否符合生成終止條件,當判定符合時,輸出該等候選字串,藉此利用該至少一評分條件對所生成的N個候選文字評分以即時且自動地生成符合條件的字句。
在本發明被詳細描述的前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。
參閱圖1,本發明文字生成方法的一實施例,藉由一文字生成裝置來實施,該文字生成裝置包含一輸出模組1、一儲存模組2,及一電連接該輸出模組1及該儲存模組2的處理模組3。
該輸出模組1用於輸出多個文字。
該儲存模組2用於儲存一用於生成該等文字的文字生成模型、至少一用於評分所生成之文字的評分條件、多個特定關鍵字、一初始值為空的候選字串、多個與金融相關的訓練語句、多個服務產品類別,及多個與優惠相關的優惠關鍵字,每一訓練語句對應有一待設定產品類別,及一待設定優惠屬性,每一服務產品類別包含多個產品類別關鍵字。
參閱圖1,該文字生成裝置可為一平板電腦、一筆記型電腦、一伺服器或一個人電腦,但不以此為限。
以下將配合本發明文字生成方法之該實施例,來說明該文字生成裝置中各元件的運作細節,該文字生成方法之該實施例包含一用於建立該文字生成模型的模型建立程序,及一用於生成該等文字的字串生成程序。
該模型建立程序包含一步驟61、一步驟62、一步驟63、一步驟64、一步驟65、一步驟66,及一步驟67。
該字串生成程序包含一步驟71、一步驟72、一步驟73、一步驟74、一步驟75、一步驟76、一步驟77、一步驟78,及一步驟79。
參閱圖1與圖2,該模型建立程序包含以下步驟。
在步驟61中,對於每一訓練語句,該處理模組3判定該儲存模組2存有的該訓練語句中是否存在對應該等服務產品類別中之一目標產品類別下的該等產品類別關鍵字之任一者。當判定該訓練語句中存在對應該目標產品下的該等產品類別關鍵字之任一者時,流程進行步驟62。當判定該訓練語句中不存在對應該目標產品下的該等產品類別關鍵字之任一者時,流程結束(亦即,不繼續進行優惠屬性設定)。
在步驟62中,對於每一訓練語句,該處理模組3將該訓練語句所對應的該待設定產品類別設定為該目標產品類別。
在步驟63中,對於每一訓練語句,該處理模組3判定該訓練語句中是否存在該等優惠關鍵字之任一者。當判定該訓練語句中存在該等優惠關鍵字之任一者時,流程進行步驟64。當判定該訓練語句中不存在該等優惠關鍵字之任一者時,流程進行步驟65。
在步驟64中,對於每一訓練語句,該處理模組3將該訓練語句所對應的該待設定優惠屬性設定為有優惠的優惠屬性。
在步驟65中,對於每一訓練語句,該處理模組3將該訓練語句所對應的該待設定優惠屬性設定為無優惠的優惠屬性。
在步驟66中,對於每一訓練語句,該處理模組3根據該訓練語句、該訓練語句對應的目標產品類別,及該訓練語句對應的優惠屬性,編碼為一固定格式的訓練資料。
舉例來說,該等訓練語句之其中一者若為一起來換匯吧,且對應的目標產品類別及優惠屬性分別為外幣及無,則編碼後的固定格式之訓練資料為<PRODUCT>外幣<DISCOUNT>無<SLOGAN>一起來換匯吧。
在步驟67中,該處理模組3根據該等訓練資料,利用一機器學習演算法,建立該文字生成模型。其中,該機器學習演算法可為變換器神經網路(Transformer Neural Network)。
參閱圖1與圖3,該字串生成程序包含以下步驟。
在步驟71中,該處理模組3接收到一包含一生成條件的生成請求後,將該生成條件編碼為該固定格式的待生成輸入資料,該生成條件包括一待生成產品類別,及一指示出該待生成產品類別是否有優惠的待生成優惠屬性。其中,該待生成產品類別為該等服務產品類別之其中一者。
在步驟72中,該處理模組3根據該待生成輸入資料利用該儲存模組2存有的該文字生成模型生成N個候選文字。其中N可為20,但不以此為限。
參閱圖1與圖4,值得特別說明的是,步驟72包含以下子步驟。
在步驟721中,該處理模組3根據該待生成輸入資料利用該文字生成模型生成一個候選文字。
在步驟722中,該處理模組3判定所有執行步驟721所生成的所有候選文字之一總字數是否大於等於N。當判定該總字數不大於等於N時,流程進行步驟723。當判定該總字數大於等於N時,流程進行步驟724。
在步驟723中,該處理模組3將所有執行步驟721所生成的所有候選文字組合於該待生成輸入資料之後以作為又一待生成輸入資料,且流程回到步驟721。
在步驟724中,該處理模組3將所有執行步驟721所生成的所有候選文字依序排列以獲得該等N個候選文字。
在步驟73中,該處理模組3將該等N個候選文字加入該儲存模組2存有的該候選字串,以更新該候選字串。
在步驟74中,對於每一評分條件,該處理模組3根據該儲存模組2儲存的該候選字串及該評分條件,獲得一相關於該候選字串的評分。
參閱圖1與圖5,值得特別說明的是,該儲存模組2存有的該至少一評分條件包含用於判定該候選字串是否符合一語法規則、用於判定該候選字串中是否存在該等特定關鍵字之任一者,及用於判定該候選字串是否符合該生成條件之待生成產品類別,且步驟74包含以下子步驟。
在步驟741中,對於相關於該語法規則的該評分條件,該處理模組3將該候選字串進行一詞性標註,以獲得一相關於該候選字串的詞性標記結果。
在步驟742中,該處理模組3判定該詞性標記結果是否符合該語法規則,以獲得相關於該候選字串的該評分。其中,該語法規則可為該候選字串中不可以連接詞(例如,和、並)作結尾,但不以此為限,且當該處理模組3判定該詞性標記結果符合該語法規則時所獲的該評分例如,3分,高於當判定不符合該語法規則時所獲得的該評分例如,1分。值得特別說明的是,在其他實施方式中,該語法規則亦可為判定該候選字串中之特殊關鍵字後是否存在關聯關鍵字,此時,該處理模組3即無須進行步驟741,而是判定該候選字串是否存在如,利率、利息、折扣等的該特殊關鍵字,且當判定存在該特殊關鍵字時,判定該特殊關鍵字之後是否存在如,9折、8%等的關聯關鍵字,但不以此為限;又或者,該語法規則亦可為判定該候選字串中是否相鄰出現金融相關詞彙,此時,該處理模組3即無須進行步驟741,而是判定該候選字串中是否相鄰出現金融相關詞彙(例如,888元888元),但不以此為限。
在步驟743中,對於相關於該等特定關鍵字的該評分條件,該處理模組3判定該候選字串中是否存在該等特定關鍵字之任一者,以獲得相關於該候選字串的該評分。其中,該等特定關鍵字可為吸引客戶之詞彙(例如,優惠或折扣),但不以此為限,且當該處理模組3判定該候選字串中存在該等特定關鍵字之任一者時所獲的該評分例如,3分,高於當判定不存在該等特定關鍵字之任一者時所獲得的該評分例如,1分。值得特別說明的是,在其他實施方式中,該等特定關鍵字亦可為相關於公司規範的詞彙(例如,競爭公司的名稱或不雅文字等),且當該處理模組3判定該候選字串中存在該等特定關鍵字之任一者時所獲的該評分例如,1分,低於當判定不存在該等特定關鍵字之任一者時所獲得的該評分例如,3分,但不以此為限。
在步驟744中,對於相關於該生成條件的該評分條件,該處理模組3判定該候選字串中是否存在對應該待生成產品類別下的該等產品類別關鍵字之任一者,以判定該候選字串是否符合該生成條件之待生成產品類別,進而獲得相關於該候選字串的該評分。其中,當該處理模組3判定該候選字串符合該待生成產品類別時所獲的該評分例如,3分,高於當判定不符合該待生成產品類別時所獲得的該評分例如,1分。
在步驟75中,該處理模組3判定該至少一評分之總分是否大於一評分閥值。當該處理模組3判定該總分大於該評分閥值時,流程進行步驟76。當判定該總分不大於該評分閥值時,流程進行步驟78。
在步驟76中,該處理模組3判定該候選字串是否符合一生成終止條件。當判定該候選字串符合該生成終止條件時,流程進行步驟77。當判定該候選字串不符合該生成終止條件時,流程進行步驟79。其中,該生成終止條件可為判定該候選字串中是否存有一相關於句尾(EOS, End of Sentence)的終止符號(例如,句號),或判定該候選字串之字數是否等於一輸出字數閥值,但不以此為限。
在步驟77中,該處理模組3經由該輸出模組1輸出該候選字串。
在步驟78中,該處理模組3清空該儲存模組2儲存的該候選字串,並將該待生成輸入資料設定為步驟71的該待生成輸入資料,且流程回到步驟72。
在步驟79中,該處理模組3將該等N個候選文字組合於該待生成輸入資料之後以作為另一待生成輸入資料,且流程回到步驟72。
綜上所述,本發明文字生成方法,藉由該處理模組3根據該生成條件利用該文字生成模型生成N個候選文字並加入該候選字串,且根據該儲存模組2存有的該候選字串、該語法規則、該等特定關鍵字,及該生成條件之待生成產品類別,獲得相關於該候選字串的該總分,並判定該總分是否大於該評分閥值,當判定大於時,判定該候選字串是否符合生成終止條件,當判定符合時,輸出該等候選字串,藉此利用該至少一評分條件對所生成的N個候選文字評分以即時且自動地生成符合條件的字句,便能降低時間及人力成本,故確實能達成本發明的目的。
惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。
1:輸出模組
2:儲存模組
3:處理模組
61~67:步驟
71~79:步驟
721~724:步驟
741~744:步驟
本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:
圖1說明一用於執行本發明文字生成方法之一實施例的文字生成裝置;
圖2是一流程圖,說明本發明文字生成方法之該實施例的一模型建立程序;
圖3是一流程圖,說明該實施例的一字串生成程序;
圖4是一流程圖,說明該字串生成程序是如何逐字生成文字的細部流程;及
圖5是一流程圖,說明該字串生成程序是如何根據每一評分條件獲得評分的細部流程。
1:輸出模組
2:儲存模組
3:處理模組
Claims (16)
- 一種文字生成方法,藉由一文字生成裝置來實施,該文字生成裝置儲存有一用於生成多個文字的文字生成模型、至少一用於評分所生成之文字的評分條件,及一初始值為空的候選字串,該文本生成方法包含以下步驟: (A)該文字生成裝置接收到一包含一生成條件的生成請求後,將該生成條件編碼為一固定格式的待生成輸入資料,該生成條件包括一待生成產品類別,及一指示出該待生成產品類別是否有優惠的待生成優惠屬性; (B)該文字生成裝置根據該待生成輸入資料利用該文字生成模型生成N個候選文字; (C)該文字生成裝置將該等N個候選文字加入該候選字串,以更新該候選字串; (D)對於每一評分條件,該文字生成裝置根據該候選字串及該評分條件,獲得一相關於該候選字串的評分; (E)該文字生成裝置判定該至少一評分之總分是否大於一評分閥值; (F)當該文字生成裝置判定該至少一評分之總分大於該評分閥值時,判定該候選字串是否符合一生成終止條件;及 (G)當該文字生成裝置判定該候選字串符合該生成終止條件時,該文字生成裝置輸出該候選字串。
- 如請求項1所述的文字生成方法,在步驟(F)之後,還包含以下步驟: (H)當該文字生成裝置判定該候選字串不符合該生成終止條件時,將該等N個候選文字組合於該待生成輸入資料之後以作為另一待生成輸入資料,並回到步驟(B)。
- 如請求項1所述的文字生成方法,其中,在步驟(B)中,還包含以下子步驟: (B-1)該文字生成裝置根據該待生成輸入資料利用該文字生成模型生成一個候選文字; (B-2)該文字生成裝置判定所有執行步驟(B-1)所生成的所有候選文字之一總字數是否大於等於N; (B-3)當該文字生成裝置判定該總字數不大於等於N時,將所有執行步驟(B-1)所生成的所有候選文字組合於該待生成輸入資料之後以作為又一待生成輸入資料,並回到步驟(B-1);及 (B-4)當該文字生成裝置判定該總字數大於等於N時,該文字生成裝置將所有執行步驟(B-1)所生成的所有候選文字依序排列以獲得該等N個候選文字。
- 如請求項1所述的文字生成方法,該至少一評分條件之其中一者是用於判定該候選字串是否符合一語法規則,其中,在步驟(D)中,對於相關於該語法規則的該評分條件,該文字生成裝置是判定該候選字串是否符合該語法規則,以獲得相關於該候選字串的該評分。
- 如請求項1所述的文字生成方法,該文字生成裝置還存有多個特定關鍵字,該至少一評分條件之其中一者是用於判定該候選字串中是否存在該等特定關鍵字之任一者,其中,在步驟(D)中,對於相關於該等特定關鍵字的該評分條件,該文字生成裝置是判定該候選字串中是否存在該等特定關鍵字之任一者,以獲得相關於該候選字串的該評分。
- 如請求項1所述的文字生成方法,該文字生成裝置還存有多個服務產品類別,該待生成產品類別為該等服務產品類別之其中一者,每一服務產品類別包含多個產品類別關鍵字,該至少一評分條件之其中一者是用於判定該候選字串是否符合該生成條件之待生成產品類別,其中,在步驟(D)中,對於相關於該生成條件的該評分條件,該文字生成裝置是判定該候選字串中是否存在對應該待生成產品類別下的該等產品類別關鍵字之任一者,以判定該候選字串是否符合該生成條件之待生成產品類別,進而獲得相關於該候選字串的該評分。
- 如請求項1所述的文字生成方法,在步驟(E)之後,還包含以下步驟: (I)當該文字生成裝置判定該至少一評分之總分不大於該評分閥值時,該文字生成裝置清空該候選字串,並將該待生成輸入資料設定為步驟(A)的該待生成輸入資料,且回到步驟(B)。
- 如請求項1所述的文字生成方法,該文字生成裝置還存有多個與金融相關的訓練語句、多個服務產品類別,及多個與優惠相關的優惠關鍵字,每一訓練語句對應有一待設定產品類別,及一待設定優惠屬性,每一服務產品類別包含多個產品類別關鍵字,在步驟(A)之前,還包含以下步驟: (J)對於每一訓練語句,該文字生成裝置判定該訓練語句中是否存在對應該等服務產品類別中之一目標產品類別下的該等產品類別關鍵字之任一者; (K)對於每一訓練語句,當該文字生成裝置判定該訓練語句存在該目標產品類別下的該等產品類別關鍵字之任一者時,該文字生成裝置將該訓練語句所對應的該待設定產品類別設定為該目標產品類別; (L)對於每一訓練語句,該文字生成裝置判定該訓練語句中是否存在該等優惠關鍵字之任一者; (M)對於每一訓練語句,當該文字生成裝置判定該訓練語句中存在該等優惠關鍵字之任一者時,該文字生成裝置將該訓練語句所對應的該待設定優惠屬性設定為有優惠的優惠屬性; (N)對於每一訓練語句,當該文字生成裝置判定該訓練語句中不存在該等優惠關鍵字之任一者時,該文字生成裝置將該訓練語句所對應的該待設定優惠屬性設定為無優惠的優惠屬性; (O)對於每一訓練語句,該文字生成裝置根據該訓練語句、對應的目標產品類別,及對應的優惠屬性,編碼為一固定格式的訓練資料;及 (P)根據該等訓練資料,利用一機器學習演算法,建立該文字生成模型。
- 一種用於生成多個文字的文字生成裝置,包含: 一輸出模組,用於輸出該等文字; 一儲存模組,用於儲存一用於生成多個文字的文字生成模型、至少一用於評分所生成之文字的評分條件,及一初始值為空的候選字串;及 一處理模組,電連接該輸出模組及該儲存模組; 其中,該處理模組接收到一包含一生成條件的生成請求後,將該生成條件編碼為一固定格式的待生成輸入資料,該生成條件包括一待生成產品類別,及一指示出該待生成產品類別是否有優惠的待生成優惠屬性,該處理模組根據該待生成輸入資料利用該文字生成模型生成N個候選文字,並將該等N個候選文字加入該儲存模組存有的該候選字串,以更新該候選字串,對於每一評分條件,該處理模組根據該儲存模組儲存的該候選字串及該評分條件,獲得一相關於該候選字串的評分,並判定該至少一評分之總分是否大於一評分閥值,當該處理模組判定該至少一評分之總分大於該評分閥值時,判定該候選字串是否符合一生成終止條件,當該處理模組判定該候選字串符合該生成終止條件時,該處理模組經由該輸出模組輸出該候選字串。
- 如請求項9所述的文字生成裝置,其中,當該處理模組判定該候選字串不符合該生成終止條件時,將該等N個候選文字組合於該待生成輸入資料之後以作為另一待生成輸入資料,並重複根據該另一待生成輸入資料利用該文字生成模型生成另一N個候選文字,且更新該候選字串及獲得至少另一相關於該候選字串的評分,並判定該至少另一評分之總分是否大於該評分閥值,且判定該候選字串是否符合該生成終止條件,直到該候選字串符合該生成終止條件。
- 如請求項9所述的文字生成裝置,其中,該處理模組根據該待生成輸入資料利用該儲存模組儲存的該文字生成模型生成一個候選文字,該處理模組判定所有利用該文字生成模型所生成的所有候選文字之一總字數是否大於等於N,當判定該總字數不大於等於N時,將所有利用該文字生成模型所生成的所有候選文字組合於該待生成輸入資料之後以作為又一待生成輸入資料,並重複根據該又一待生成輸入資料利用該文字生成模型生成另一候選文字,並判定所有利用該文字生成模型所生成的所有另一候選文字之總字數是否大於等於N,直到該總字數大於等於N,當該處理模組判定該總字數大於等於N時,該文字生成裝置將所有利用該文字生成模型所生成的所有候選文字依序排列以獲得該等N個候選文字。
- 如請求項9所述的文字生成裝置,其中,該儲存模組儲存的該至少一評分條件之其中一者是用於判定該候選字串是否符合一語法規則,對於相關於該語法規則的該評分條件,該處理模組是判定該候選字串是否符合該語法規則,以獲得相關於該候選字串的該評分。
- 如請求項9所述的文字生成裝置,其中,該儲存模組還存有多個特定關鍵字,該儲存模組儲存的該至少一評分條件之其中一者是用於判定該候選字串中是否存在該等特定關鍵字之任一者,對於相關於該等特定關鍵字的該評分條件,該處存模組是判定該候選字串中是否存在該等特定關鍵字之任一者,以獲得相關於該候選字串的該評分。
- 如請求項9所述的文字生成裝置,其中,該儲存模組還存有多個服務產品類別,該待生成產品類別為該等服務產品類別之其中一者,每一服務產品類別包含多個產品類別關鍵字,該儲存模組儲存的該至少一評分條件之其中一者是用於判定該候選字串是否符合該生成條件之待生成產品類別,對於相關於該生成條件的該評分條件,該處理模組判定該候選字串中是否存在對應該待生成產品類別下的該等產品類別關鍵字之任一者,以判定該候選字串是否符合該生成條件之待生成產品類別,進而獲得相關於該候選字串的該評分。
- 如請求項9所述的文字生成裝置,其中,當該處理模組判定該至少一評分之總分不大於該評分閥值時,該處理模組清空該儲存模組儲存的該候選字串,並將該待生成輸入資料設定為該處理模組將該生成條件編碼後的該待生成輸入資料,且重複根據該待生成輸入資料利用該文字生成模型生成另外N個候選文字,且更新該候選字串及獲得至少另一相關於該候選字串的評分,並判定該至少另一評分之總分是否大於該評分閥值,且判定該候選字串是否符合該生成終止條件,直到該候選字串符合該生成終止條件。
- 如請求項9所述的文字生成裝置,其中,該儲存模組還存有多個與金融相關的訓練語句、多個服務產品類別,及多個與優惠相關的優惠關鍵字,每一訓練語句對應有一待設定產品類別,及一待設定優惠屬性,每一服務產品類別包含多個產品類別關鍵字,對於每一訓練語句,該處理模組判定該訓練語句中是否存在對應該等服務產品類別中之一目產品標類別下的該等產品類別關鍵字之任一者,對於每一訓練語句,當該處理模組判定該訓練語句存在該目標產品類別下的該等產品類別關鍵字之任一者時,該處理模組將該訓練語句所對應的該待設定產品類別設定為該目標產品類別,對於每一訓練語句,該處理模組判定該訓練語句中是否存在該等優惠關鍵字之任一者,對於每一訓練語句,當該處理模組判定該訓練語句中存在該等優惠關鍵字之任一者時,該處理模組將該訓練語句所對應的該待設定優惠屬性設定為有優惠的優惠屬性,對於每一訓練語句,當該處理模組判定該訓練語句中不存在該等優惠關鍵字之任一者時,該處理模組將該訓練語句所對應的該待設定優惠屬性設定為無優惠的優惠屬性,對於每一訓練語句,該處理模組根據該訓練語句、該訓練語句對應的目標產品類別,及該訓練語句對應的優惠屬性,編碼為一固定格式的訓練資料,並根據該等訓練資料,利用一機器學習演算法,建立該文字生成模型。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111103679A TWI823242B (zh) | 2022-01-27 | 2022-01-27 | 文字生成方法及其裝置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111103679A TWI823242B (zh) | 2022-01-27 | 2022-01-27 | 文字生成方法及其裝置 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202331581A TW202331581A (zh) | 2023-08-01 |
TWI823242B true TWI823242B (zh) | 2023-11-21 |
Family
ID=88558972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111103679A TWI823242B (zh) | 2022-01-27 | 2022-01-27 | 文字生成方法及其裝置 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI823242B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201007482A (en) * | 2008-08-06 | 2010-02-16 | Univ Nat Chiao Tung | Article generating system and method |
CN108763332A (zh) * | 2018-05-10 | 2018-11-06 | 北京奇艺世纪科技有限公司 | 一种搜索提示词的生成方法和装置 |
CN110688450A (zh) * | 2019-09-24 | 2020-01-14 | 创新工场(广州)人工智能研究有限公司 | 一种基于蒙特卡洛树搜索的关键词生成方法、基于强化学习的关键词生成模型及电子设备 |
CN113850066A (zh) * | 2021-09-26 | 2021-12-28 | 支付宝(杭州)信息技术有限公司 | 一种协议文本生成方法、装置及设备 |
TWM629035U (zh) * | 2022-01-27 | 2022-07-01 | 中國信託商業銀行股份有限公司 | 文字生成裝置 |
-
2022
- 2022-01-27 TW TW111103679A patent/TWI823242B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201007482A (en) * | 2008-08-06 | 2010-02-16 | Univ Nat Chiao Tung | Article generating system and method |
CN108763332A (zh) * | 2018-05-10 | 2018-11-06 | 北京奇艺世纪科技有限公司 | 一种搜索提示词的生成方法和装置 |
CN110688450A (zh) * | 2019-09-24 | 2020-01-14 | 创新工场(广州)人工智能研究有限公司 | 一种基于蒙特卡洛树搜索的关键词生成方法、基于强化学习的关键词生成模型及电子设备 |
CN113850066A (zh) * | 2021-09-26 | 2021-12-28 | 支付宝(杭州)信息技术有限公司 | 一种协议文本生成方法、装置及设备 |
TWM629035U (zh) * | 2022-01-27 | 2022-07-01 | 中國信託商業銀行股份有限公司 | 文字生成裝置 |
Also Published As
Publication number | Publication date |
---|---|
TW202331581A (zh) | 2023-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180212918A1 (en) | Methods and apparatus for inserting content into conversations in on-line and digital environments | |
US7533089B2 (en) | Hybrid approach for query recommendation in conversation systems | |
CN110825876A (zh) | 电影评论观点情感倾向性分析方法 | |
CN112507248A (zh) | 一种基于用户评论数据和信任关系的旅游景点推荐方法 | |
CN106649603A (zh) | 一种基于网页文本数据情感分类的指定信息推送方法 | |
CN110134799B (zh) | 一种基于bm25算法的文本语料库的搭建和优化方法 | |
US20200342909A1 (en) | Methods and systems of automatically generating video content from scripts/text | |
CN112417155B (zh) | 基于指针-生成Seq2Seq模型的庭审询问生成方法、装置、介质 | |
WO2023240878A1 (zh) | 一种资源识别方法、装置、设备以及存储介质 | |
CN112541349A (zh) | 输出装置以及记录媒体 | |
Wong et al. | Hot item mining and summarization from multiple auction web sites | |
CN112632950A (zh) | Ppt生成方法、装置、设备及计算机可读存储介质 | |
CN112487151A (zh) | 文案生成方法及装置、存储介质与电子设备 | |
CN111737961A (zh) | 一种故事生成的方法、装置、计算机设备和介质 | |
Chen et al. | Sentiment analysis of animated film reviews using intelligent machine learning | |
TWM629035U (zh) | 文字生成裝置 | |
TWI823242B (zh) | 文字生成方法及其裝置 | |
TW202418191A (zh) | 資訊處理裝置、資訊處理方法、及電腦程式產品 | |
CN111259661B (zh) | 一种基于商品评论的新情感词提取方法 | |
CN110222181B (zh) | 一种基于Python的影评情感分析方法 | |
TWM638301U (zh) | 用於產生行銷文案的運算裝置 | |
CN115204959A (zh) | 广告文案生成方法及其装置、设备、介质 | |
CN115587179A (zh) | 基于大数据的政务评价文本分类管理方法 | |
Zou et al. | Automatic product copywriting for e‐commerce | |
TWI831432B (zh) | 行銷文案生成方法及其運算裝置 |